FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Lucena, AF Odoh, SO Zhao, J Marcalo, J Schreckenbach, G Gibson, JK AF Lucena, Ana F. Odoh, Samuel O. Zhao, Jing Marcalo, Joaquim Schreckenbach, Georg Gibson, John K. TI Oxo-Exchange of Gas-Phase Uranyl, Neptunyl, and Plutonyl with Water and Methanol SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; ENERGY-ADJUSTED PSEUDOPOTENTIALS; PERCHLORIC ACID SOLUTION; TRANSITION-STATE METHOD; YL-OXYGEN EXCHANGE; AB-INITIO; CHEMICAL SPECIATION; LIGAND-EXCHANGE; PARAMETER SETS; SOLVENT WATER AB A challenge in actinide chemistry is activation of the strong bonds in the actinyl ions, AnO(2)(+) and AnO(2)(2+), where An = U, Np, or Pu. Actinyl activation in oxo-exchange with water in solution is well established, but the exchange mechanisms are unknown. Gas-phase actinyl oxo-exchange is a means to probe these processes in detail for simple systems, which are amenable to computational modeling. Gas-phase exchange reactions of UO2+, NpO2+, PuO2+, and UO22+ with water and methanol were studied by experiment and density functional theory (DFT); reported for the first time are experimental results for UO22+ and for methanol exchange, as well as exchange rate constants. Key findings are faster exchange of UO22+ versus UO2+ and faster exchange with methanol versus water; faster exchange of UO2+ versus PuO2+ was quantified. Computed potential energy profiles (PEPs) are in accord with the observed kinetics, validating the utility of DFT to model these exchange processes. The seemingly enigmatic result of faster exchange for uranyl, which has the strongest oxo-bonds, may reflect reduced covalency in uranyl as compared with plutonyl. C1 [Lucena, Ana F.; Marcalo, Joaquim] Univ Lisbon, Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, P-2695066 Bobadela Lrs, Portugal. [Odoh, Samuel O.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Odoh, Samuel O.; Schreckenbach, Georg] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Zhao, Jing] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Funct Crystals & Laser Technol, Beijing Ctr Crystal Res & Dev, Beijing 100190, Peoples R China. [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Schreckenbach, G (reprint author), Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. EM schrecke@cc.umanitoba.ca; jkgibson@lbl.gov RI Marcalo, Joaquim/J-5476-2013 OI Marcalo, Joaquim/0000-0001-7580-057X FU Fundacao para a Ciencia e a Tecnologia/Portugal [SFRH/BD/70475/2010]; Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry Program at LBNL [DE-AC02-05CH11231] FX This work was supported by Fundacao para a Ciencia e a Tecnologia/Portugal (PhD grant SFRH/BD/70475/2010 to A.F.L.), by the Natural Sciences and Engineering Research Council of Canada (NSERC, G.S.), and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry Program at LBNL under Contract Number DE-AC02-05CH11231 (J.K.G). NR 67 TC 5 Z9 5 U1 11 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 17 PY 2014 VL 53 IS 4 BP 2163 EP 2170 DI 10.1021/ic402824k PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AB9VP UT WOS:000332144100038 PM 24484174 ER PT J AU Xing, HB Liao, C Yang, QW Veith, GM Guo, BK Sun, XG Ren, QL Hu, YS Dai, S AF Xing, Huabin Liao, Chen Yang, Qiwei Veith, Gabriel M. Guo, Bingkun Sun, Xiao-Guang Ren, Qilong Hu, Yong-Sheng Dai, Sheng TI Ambient Lithium-SO2 Batteries with Ionic Liquids as Electrolytes SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE absorption; ionic liquids; lithium; primary batteries; sulfur dioxide ID LI/SO2 CELL; SULFUR-DIOXIDE; AIR BATTERIES; CHEMICAL ABSORPTION; DISCHARGE PRODUCTS; HIGHLY EFFICIENT; SO2; ELECTROCHEMISTRY; PERFORMANCE; CATHODE AB Li-SO2 batteries have a high energy density but bear serious safety problems that are associated with pressurized SO2 and flammable solvents in the system. Herein, a novel ambient Li-SO2 battery was developed through the introduction of ionic liquid (IL) electrolytes with tailored basicities to solvate SO2 by reversible chemical absorption. By tuning the interactions of ILs with SO2, a high energy density and good discharge performance with operating voltages above 2.8V were obtained. This strategy based on reversible chemical absorption of SO2 in IL electrolytes enables the development of the next generation of ambient Li-SO2 batteries. C1 [Xing, Huabin; Yang, Qiwei; Ren, Qilong] Zhejiang Univ, Dept Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Xing, Huabin; Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. [Hu, Yong-Sheng] Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Xing, HB (reprint author), Zhejiang Univ, Dept Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. EM xinghb@zju.edu.cn; sunx@ornl.gov; dais@ornl.gov RI Guo, Bingkun/J-5774-2014; Hu, Yong-Sheng/H-1177-2011; Dai, Sheng/K-8411-2015; OI Hu, Yong-Sheng/0000-0002-8430-6474; Dai, Sheng/0000-0002-8046-3931; Liao, Chen/0000-0001-5168-6493; Yang, Qiwei/0000-0002-6469-5126 FU U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering; National Natural Science Foundation of China [21222601, 20936005]; Zhejiang Provincial Natural Science Foundation of China [LR13B060001] FX The experimental part of this research was supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering; the calculation was supported by National Natural Science Foundation of China (21222601, 20936005), and the Zhejiang Provincial Natural Science Foundation of China (LR13B060001). NR 50 TC 19 Z9 19 U1 15 U2 187 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 17 PY 2014 VL 53 IS 8 BP 2099 EP 2103 DI 10.1002/anie.201309539 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AA2ET UT WOS:000330908600009 PM 24446427 ER PT J AU St Brice, LA Shao, XJ Izquierdo, JA Lynd, LR AF St Brice, Lois A. Shao, Xiongjun Izquierdo, Javier A. Lynd, Lee R. TI OPTIMIZATION OF AFFINITY DIGESTION FOR THE ISOLATION OF CELLULOSOMES FROM Clostridium thermocellum SO PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY LA English DT Article DE affinity digestion; cellulase; cellulase activity; cellulose; cellulosome; Clostridium thermocellum ID CELLULASE; BATCH; CELL; FERMENTATION; HYDROLYSIS; CULTURES; BINDING; ACID AB The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3mg amorphous cellulose per milligram supernatant protein. At this loading, 90-100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410L/g and a binding capacity of 0.249g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3hr for cellulase purified from Avicel cultures and 4hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery. C1 [St Brice, Lois A.; Shao, Xiongjun; Izquierdo, Javier A.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [St Brice, Lois A.; Shao, Xiongjun; Izquierdo, Javier A.; Lynd, Lee R.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. EM Lee.R.Lynd@dartmouth.edu RI Lynd, Lee/N-1260-2013; OI Lynd, Lee/0000-0002-5642-668X; Izquierdo, Javier/0000-0002-5143-3450 FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center, a DOE Bioenergy Research Center FX This work was supported in part by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center, a DOE Bioenergy Research Center. The present address for Lois A. St Brice is University of the West Indies, St Augustine, Trinidad and Tobago; the present address for Javier A. Izquierdo is Center for Agricultural and Environmental Biotechnology, RTI International, Research Triangle Park, NC 27709, USA. NR 20 TC 2 Z9 2 U1 0 U2 40 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1082-6068 EI 1532-2297 J9 PREP BIOCHEM BIOTECH JI Prep. Biochem. Biotechnol. PD FEB 17 PY 2014 VL 44 IS 2 BP 206 EP 216 DI 10.1080/10826068.2013.829494 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 238PJ UT WOS:000325959600008 PM 24152105 ER PT J AU Zeng, ZZ Wang, T Zhou, F Ciais, P Mao, JF Shi, XY Piao, SL AF Zeng, Zhenzhong Wang, Tao Zhou, Feng Ciais, Philippe Mao, Jiafu Shi, Xiaoying Piao, Shilong TI A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE evapotranspiration; water balance ID TROPICAL RAIN-FOREST; SOIL-MOISTURE; SURFACE-TEMPERATURE; GLOBAL ENERGY; EVAPORATION; PRECIPITATION; TRENDS; MODEL; VARIABILITY; FLUXNET AB A satellite-based water balance method is developed to model global evapotranspiration (ET) through coupling a water balance (WB) model with a machine-learning algorithm (the model tree ensemble, MTE) (hereafter WB-MTE). The WB-MTE algorithm was firstly trained by combining monthly WB-estimated basin ET with the potential drivers (e.g., radiation, temperature, precipitation, wind speed, and vegetation index) across 95 large river basins (5824 basin-months) and then applied to establish global monthly ET maps at a spatial resolution of 0.5 degrees from 1982 to 2009. The global land ET estimated from WB-MTE has an annual mean of 59317mm for 1982-2009, with a spatial distribution consistent with previous studies in all latitudes but the tropics. The ET estimated by WB-MTE also shows significant linear trends in both annual and seasonal global ET during 1982-2009, though the trends seem to have stalled after 1998. Moreover, our study presents a striking difference from the previous ones primarily in the magnitude of ET estimates during the wet season particularly in the tropics, where ET is highly uncertain due to lack of direct measurements. This may be tied to their lack of proper consideration to solar radiation and/or the rainfall interception process. By contrast, in the dry season, our estimate of ET compares well with the previous ones, both for the mean state and the variability. If we are to reduce the uncertainties in estimating ET, these results emphasize the necessity of deploying more observations during the wet season, particularly in the tropics. Key Points Developed a satellite-based water balance method to estimate global ET Significant seasonal and spatial variations exist in global terrestrial ET The method improved ET estimations in wet regions and seasons C1 [Zeng, Zhenzhong; Zhou, Feng; Piao, Shilong] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Wang, Tao; Ciais, Philippe] CEA CNRS UVSQ, Lab Sci Climat & Environm, Paris, France. [Mao, Jiafu; Shi, Xiaoying] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Piao, Shilong] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China. RP Piao, SL (reprint author), Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. EM slpiao@pku.edu.cn RI wang, tao/H-2830-2013; Mao, Jiafu/B-9689-2012; Zhou, Feng/C-9377-2011 OI wang, tao/0000-0003-4792-5898; Mao, Jiafu/0000-0002-2050-7373; FU National Natural Science Foundation of China [41125004]; National Basic Research Program of China [2013CB956303]; National Youth Top-notch Talent Support Program in China FX We thank M. Jung for helpful comments and the Global Runoff Data Centre (GRDC) for runoff data. This study was supported by the National Natural Science Foundation of China (grant 41125004), National Basic Research Program of China (2013CB956303), and National Youth Top-notch Talent Support Program in China. NR 60 TC 16 Z9 16 U1 3 U2 53 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2014 VL 119 IS 3 BP 1186 EP 1202 DI 10.1002/2013JD020941 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AD1LD UT WOS:000332994600006 ER PT J AU Berdahl, M Robock, A Ji, DY Moore, JC Jones, A Kravitz, B Watanabe, S AF Berdahl, Mira Robock, Alan Ji, Duoying Moore, John C. Jones, Andy Kravitz, Ben Watanabe, Shingo TI Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE GeoMIP; Arctic; sulfate aerosols; sea ice; snow ID SEA-ICE; CLIMATE-CHANGE; SNOW COVER; TEMPERATURE; AMPLIFICATION; REANALYSIS; SIMULATIONS; VARIABILITY; SENSITIVITY; ERUPTIONS AB We analyzed output from the Geoengineering Model Intercomparison Project for the two most realistic scenarios, which use the representative concentration pathway of 4.5 Wm(-2) by 2100 (RCP4.5) as the control run and inject sulfate aerosol precursors into the stratosphere. The first experiment, G3, is specified to keep RCP4.5 top of atmosphere net radiation at 2020 values by injection of sulfate aerosols, and the second, G4, injects 5 Tg SO2 per year. We ask whether geoengineering by injection of sulfate aerosols into the lower stratosphere from the years 2020 to 2070 is able to prevent the demise of Northern Hemispere minimum annual sea ice extent or slow spring Northern Hemispere snow cover loss. We show that in all available models, despite geoengineering efforts, September sea ice extents still decrease from 2020 to 2070, although not as quickly as in RCP4.5. In two of five models, total September ice loss occurs before 2060. Spring snow extent is increased from 2020 to 2070 compared to RCP4.5 although there is still a negative trend in 3 of 4 models. Because of the climate system lag in responding to the existing radiative forcing, to stop Arctic sea ice and snow from continuing to melt, the imposed forcing would have to be large enough to also counteract the existing radiative imbalance. After the cessation of sulfate aerosol injection in 2070, the climate system rebounds to the warmer RCP4.5 state quickly, and thus, any sea ice or snow retention as a result of geoengineering is lost within a decade. Key Points Sea ice extents decrease despite sulfate aerosol injection Ice extents collapse back to RCP4.5 levels after geoengineering stops Negative net radiative forcing is necessary to stop snow/sea ice melting C1 [Berdahl, Mira; Robock, Alan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Ji, Duoying; Moore, John C.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource, Beijing 100875, Peoples R China. [Jones, Andy] Met Off Hadley Ctr, Exeter, Devon, England. [Kravitz, Ben] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. RP Berdahl, M (reprint author), Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. EM mberdahl@envsci.rutgers.edu RI Moore, John/B-2868-2013; Kravitz, Ben/P-7925-2014; Robock, Alan/B-6385-2016; Watanabe, Shingo/L-9689-2014 OI Moore, John/0000-0001-8271-5787; Kravitz, Ben/0000-0001-6318-1150; Watanabe, Shingo/0000-0002-2228-0088 FU NSF [CBET-1240507, AGS-1157525, ARC-0908834]; DECC/Defra Met Office Hadley Centre [GA01101]; SOUSEI program, MEXT, Japan; Fund for Innovative Climate and Energy Research; U.S. Department of Energy [DE-AC05-76RL01830] FX We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP, and the scientists managing the Earth System Grid data nodes who have assisted with making GeoMIP output available. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank David Robinson for insightful discussions and the Rutgers University Snow Lab for snow cover data. MB and AR were supported by NSF grants CBET-1240507, AGS-1157525, and ARC-0908834. Some figures were drawn with the NCAR Command Language (NCL, http://dx.doi.org/10.5065/D6WD3XH5). AJ was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). SW was supported by SOUSEI program, MEXT, Japan and his simulations were performed using the Earth Simulator. BK is supported by the Fund for Innovative Climate and Energy Research. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Simulations performed by BK were supported by the NASA High-End Computing Program through the NASA Center for Climate Simulation at Goddard Space Flight Center. NR 52 TC 11 Z9 12 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2014 VL 119 IS 3 BP 1308 EP 1321 DI 10.1002/2013JD020627 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AD1LD UT WOS:000332994600014 ER PT J AU Chen, Y Reeves, GD Friedel, RHW Cunningham, GS AF Chen, Yue Reeves, Geoffrey D. Friedel, Reiner H. W. Cunningham, Gregory S. TI Global time- dependent chorus maps from low- Earth- orbit electron precipitation and Van Allen Probes data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Chorus Wave Distributions; Time-dependent global chorus maps; Van Allen Probes; Precipitation Electrons; Low-Earth-orbit; Radiation Belts ID RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; ACCELERATION; BELT; WAVES AB Substorm injected electrons (several-100skeV) produce whistler-mode chorus waves that are thought to have a major impact on the radiation belts by causing both energization and loss of relativistic electrons in the outer belt. High-altitude measurements, such as those from the Van Allen Probes, provide detailed wave measurements at a few points in the magnetosphere. But physics-based models of radiation-belt dynamics require knowledge of the global distribution of chorus waves. We demonstrate that time-dependent, global distributions of near-equatorial chorus wave intensities can be inferred from low-Earth-orbit (LEO) measurements of precipitating low-energy electrons. We compare in situ observations of near-equatorial chorus waves with LEO observations of precipitating electrons and derive a heuristic formula that relates, quantitatively, electron precipitation fluxes to chorus wave intensities. Finally, we demonstrate how that formula can be applied to LEO precipitation measurements and in situ Van Allen Probes wave measurements to provide global, data-driven inputs for radiation belt models. Key Points Demonstrate relation between chorus waves and precipitating low-energy electrons Precipitating e- fluxes as quantitative proxy for global distribution of chorus LEO e- observation has new significance for space weather monitoring/modeling C1 [Chen, Yue; Reeves, Geoffrey D.; Friedel, Reiner H. W.; Cunningham, Gregory S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Chen, Y (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM cheny@lanl.gov RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011; OI Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098; Cunningham, Gregory/0000-0001-8819-4345 FU NASA Living With a Star Program [07-LWS07-00054]; US Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) program [20130297ER]; UCOP Lab Fees Program [12-LF- 235337] FX We gratefully acknowledge the support of the NASA Living With a Star Program (07-LWS07-00054), the US Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) program (20130297ER), and the UCOP Lab Fees Program (12-LF- 235337). We want to acknowledge the PIs and instrument teams of NOAA POES SEM2, DEMETER IDP, CRRES PWE, THEMIS SST and FBK, and RBSP EMFISIS for providing measurements and allowing us to use their data. Thanks to Dr. Brian Fraser for kindly providing plasma frequencies for CRRES mission, thanks to Dr. Nigel P. Meredith for helping us analyze PWE wave data, and also thanks to CDAWeb for providing OMNI data. We are grateful for the use of IRBEM-LIB codes for calculating magnetic coordinates. NR 32 TC 15 Z9 15 U1 6 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2014 VL 41 IS 3 BP 755 EP 761 DI 10.1002/2013GL059181 PG 7 WC Geosciences, Multidisciplinary SC Geology GA AD1JO UT WOS:000332990500002 ER PT J AU Gonis, A Zhang, XG Nicholson, DM Stocks, GM AF Gonis, A. Zhang, X-G Nicholson, D. M. Stocks, G. M. TI Self-entanglement and the dissociation of homonuclear diatomic molecules SO MOLECULAR PHYSICS LA English DT Article DE entanglement; mixed states; ensemble density; electronic structure theory; density functional theory; convexity; open systems ID PURE QUANTUM STATE; THERMAL NOISE; DENSITY; FUNCTIONALS; OBTAINMENT; SYSTEMS AB The concept of self-entanglement is introduced to describe a mixed state or ensemble density as a pure state in an augmented Hilbert space formed by the products of the individual states forming a mixed state (or ensemble). We use this representation of mixed states to show that upon dissociation a neutral homonuclear diatomic molecule will separate into two neutral atoms. C1 [Gonis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, X-G] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Zhang, X-G; Nicholson, D. M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Stocks, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Gonis, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM gonis@comcast.net RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences; Division of Scientific User Facilities; Center for Defect Physics in Structural Materials, an Energy Frontier Research Center; US Department of Energy, Office of Science; US Department of Energy, Office of Basic Energy Sciences FX Research at ORNL was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences (DMN, GMS), the Division of Scientific User Facilities (XGZ) and the Center for Defect Physics in Structural Materials (CDP), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences (DMN, GMS, AG). NR 20 TC 3 Z9 3 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 EI 1362-3028 J9 MOL PHYS JI Mol. Phys. PD FEB 16 PY 2014 VL 112 IS 3-4 SI SI BP 453 EP 461 DI 10.1080/00268976.2013.836610 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 304OL UT WOS:000330756100017 ER PT J AU Han, YL Tretiak, S Kilin, D AF Han, Yulun Tretiak, Sergei Kilin, Dmitri TI Dynamics of charge transfer at Au/Si metal-semiconductor nano-interface SO MOLECULAR PHYSICS LA English DT Article DE silicon-gold contact; nanowires hot carrier relaxation; hybrid materials; non-adiabatic dynamics; p-n junction ID INITIO MOLECULAR-DYNAMICS; SILICON QUANTUM DOTS; MULTILEVEL REDFIELD THEORY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; AB-INITIO; OPTICAL-PROPERTIES; ELECTRON-TRANSFER; HIGHLY FLUORESCENT; BASIS-SET AB An ab initio analysis of the periodic array of Au/Si nanostructure composed of gold clusters linked to silicon quantum dot (QD) co-doped by aluminium and phosphorus along [111] direction is presented in this paper. The density functional theory (DFT) is used to compute the electronic structure of the simulated system. Non-adiabatic coupling implemented in the form of dissipative equation of motion for reduced density matrix is used to study the phonon-induced relaxation in the simulated system. The density of states clearly shows that the formation of Au-Si bonds contributes states to the band gap of the model. Dynamics of selected photo-excitations shows that hole relaxation in energy and in space is much faster than electron relaxation, which is due to the higher density of states of the valence band. C1 [Han, Yulun; Kilin, Dmitri] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. RP Kilin, D (reprint author), Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. EM dmitri.kilin@usd.edu RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU NSF/EPSCoR [EPS0903804]; State of South Dakota, governor's Office of Economic Development; DOE, BES Chemical Sciences, NERSC [DE-AC02-05CH11231, 85213, 86185]; South Dakota IDeA Networks of Biomedical Research Excellence NIH [2 P20 RR016479]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory (LANL); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; Dakota IDeA Networks of Biomedical Research Excellence NIH [2 P20 RR016479] FX We thank the NSF/EPSCoR award EPS0903804, and the State of South Dakota, governor's Office of Economic Development. The computational resources of DOE, BES Chemical Sciences, NERSC Contract No. DE-AC02-05CH11231, allocation Awards 85213 and 86185 'Computational Modeling of Photo-catalysis and Photoinduced Charge Transfer Dynamics on Surfaces' are gratefully acknowledged. Computational resources of USD High Performance Computing facilities cosponsored by South Dakota IDeA Networks of Biomedical Research Excellence NIH 2 P20 RR016479 and maintained by Douglas Jennewein are gratefully acknowledged. Inspiring discussions with Mary T. Berry (USD), P. Stanley May (USD) on photoexcited nanomaterials and with Tom Picraux (LANL) and Sergei Ivanov (Los Alamos National Lab, New Mexico) on doped nanowires are acknowledged. We also acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory (LANL). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 66 TC 7 Z9 7 U1 5 U2 41 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0026-8976 EI 1362-3028 J9 MOL PHYS JI Mol. Phys. PD FEB 16 PY 2014 VL 112 IS 3-4 SI SI BP 474 EP 484 DI 10.1080/00268976.2013.842007 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 304OL UT WOS:000330756100019 ER PT J AU Shpotyuk, M Shpotyuk, O Golovchak, R McCloy, J Riley, B AF Shpotyuk, M. Shpotyuk, O. Golovchak, R. McCloy, J. Riley, B. TI Compositional trends of gamma-induced optical changes observed in chalcogenide glasses of binary As - S system SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Chalcogenide glasses; gamma-Irradiation; Optical spectroscopy; Destruction-polymerization transformations; Physical aging ID AS-S; PHOTOINDUCED TRANSFORMATIONS; REFRACTIVE-INDEX; THIN-FILMS; SEMICONDUCTORS; ORIGIN; SPACE; FABRICATION; DEPENDENCE; PHOTONICS AB Compositional trends of gamma-induced optical changes in chalcogenide glasses are studied with the binary As- S system. Effects of gamma-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As- S glasses, while gamma-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destruction-polymerization transformations and physical aging occurring in As- S chalcogenide glasses under the influence of gamma-irradiation. (C.) 2013 Elsevier B.V. All. rights reserved. C1 [Shpotyuk, M.; Shpotyuk, O.] Sci Res Co Carat, UA-79031 Lvov, Ukraine. [Shpotyuk, M.] Lviv Polytech Natl Univ, UA-79013 Lvov, Ukraine. [Shpotyuk, O.] Jan Dlugosz Univ, PL-42200 Czestochowa, Poland. [Golovchak, R.] Austin Peay State Univ, Clarksville, TN 37044 USA. [McCloy, J.] Washington State Univ, Pullman, WA 99164 USA. [Riley, B.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shpotyuk, M (reprint author), Sci Res Co Carat, 202 Stryjska Str, UA-79031 Lvov, Ukraine. EM shpotyukmy@yahoo.com RI Shpotyuk, Mykhaylo/B-6206-2009 OI Shpotyuk, Mykhaylo/0000-0002-3860-7727 FU Science and Technology Center in Ukraine [5429]; International Visegrad Fund FX This research was partially supported by the Science and Technology Center in Ukraine within regular project #5429. M.Sh. would like to acknowledge support from the International Visegrad Fund. NR 38 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 15 PY 2014 VL 386 BP 95 EP 99 DI 10.1016/j.jnoncrysol.2013.12.001 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA AC5XW UT WOS:000332595300016 ER PT J AU Hasanbeigi, A Price, L Zhang, CX Aden, N Li, XP Fangqin, SG AF Hasanbeigi, Ali Price, Lynn Zhang Chunxia Aden, Nathaniel Li Xiuping Fangqin, Shangguan TI Comparison of iron and steel production energy use and energy intensity in China and the U.S. SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Energy intensity; Iron and steel industry; Technology structure; Comparison methodology ID INDUSTRY; INDICATORS; POLICY AB The goal of this study was to develop a methodology for making an accurate comparison of the energy intensity of steel production in China and the U.S. Such values are often sought by policy-makers when making decisions related to energy, greenhouse gases, and competitiveness. The methodology addresses issues related to boundary definitions, conversion factors, and technology structure. In addition to the base case analysis, four sensitivity and two factor analyses were developed to assess the effect of different factors on energy intensities. The results of the analysis show that for the whole iron and steel production process, the final energy intensity in 2006 was equal to 14.90 GJ/t crude steel in the U.S. and 23.11 GJ/t crude steel in China in the base-case analysis. In another factor analysis that assumed the Chinese share of electric arc furnace production in 2006 (10.5%) in the U.S., the energy intensity of steel production in the U.S. increased by 54% to 22.96 GJ/t crude steel. This result highlights the fact that when comparing the energy intensity of the U.S and Chinese steel industry, the technology structure, especially the share of electric arc furnace should be taken into account. A number of policy implications are also discussed. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, China Energy Grp, Berkeley, CA 94720 USA. [Zhang Chunxia; Li Xiuping; Fangqin, Shangguan] China Iron & Steel Res Inst, State Key Lab Adv Steel Proc & Prod, Beijing, Peoples R China. RP Hasanbeigi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, China Energy Grp, 1 Cyclotron Rd,MS 90R2002, Berkeley, CA 94720 USA. EM hasanbeigi@gmail.com FU China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge the insightful review comments and suggestions of Ernst Worrell and Deger Saygin of Utrecht University, Christopher Weber of Science and Technology Policy Institute, Joan Pelligrino and Keith Jamison of Energetics, Lawrence Kavanagh of American Iron and Steel Institute, Henk Reimink of worldsteel Association, and Wang Yanjia of Tsinghua University. At LBNL, the authors gratefully acknowledge Ryan Triolo, Hongyou Lu, and Cecilia Fino-Chen for their valuable research assistance for this study. NR 38 TC 16 Z9 16 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD FEB 15 PY 2014 VL 65 BP 108 EP 119 DI 10.1016/j.jclepro.2013.09.047 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AC3PH UT WOS:000332433200012 ER PT J AU Morrow, WR Hasanbeigi, A Sathaye, J Xu, TF AF Morrow, William R., III Hasanbeigi, Ali Sathaye, Jayant Xu, Tengfang TI Assessment of energy efficiency improvement and CO2 emission reduction potentials in India's cement and iron & steel industries SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE India; Cement industry; Iron and steel industry; Industrial energy efficiency technologies; Bottom-up modeling; CO2 emissions AB India's cement industry accounted for over six percent of the world's annual cement production and its iron and steel industry accounted for nearly five percent of the world's annual steel production in 2010. We analyzed 22 and 25 energy efficiency measures applicable to India's cement and iron and steel industries. A forward looking bottom-up Conservation Supply Curve (CSC) model utilizes forecasted Indian cement and iron and steel demand, current adoption estimates for energy efficiency measures, and a stock roll-over methodology for each industry. From 2010 to 2030 cumulative cost-effective electricity savings are 83 TWh, with an associated 82 Mt CO2 emissions reduction; and cumulative cost-effective fuel savings are 1029 PJ, with associated CO2 emission reduction of 97 Mt CO2 for India's cement industry. In India steel sector, cumulative cost-effective electricity savings are 66 TWh, with an associated 65 Mt CO2 emissions reduction; and cumulative cost-effective fuel savings are 768 PJ, with associated CO2 emission reduction of 67 Mt CO2. The estimates from this study give a comprehensive perspective to the Indian cement and iron and steel industries and policy makers about the energy efficiency potential and its associated costs over the next twenty years. Published by Elsevier Ltd. C1 [Morrow, William R., III; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP Morrow, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wrmorrow@lbl.gov; ahasandeigi@lbl.gov; jasathaye@lbl.gov; ttxu@lbl.gov OI Morrow, William/0000-0001-6640-5711 FU Climate Economics Branch, Climate Change Division of U.S. Environmental Protection Agency [DE-AC02-05CH11231]; U.S. Department of Energy FX This study is sponsored by Climate Economics Branch, Climate Change Division of U.S. Environmental Protection Agency, under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. This report benefits from the guidance and recommendations provided by Eric Smith of Climate Economics Branch, Climate Change Division of the U.S. Environmental Protection Agency. The author's would also like to acknowledge Dr. Krishnan with CSTEP for his collaboration in estimating adoption rates of energy efficiency measures. As well as Stephane de la Rue du Can, and Nihan Karali at Lawrence Berkeley National Lab for their help in estimating India's steel sector energy consumption and processes. NR 41 TC 28 Z9 28 U1 7 U2 42 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD FEB 15 PY 2014 VL 65 BP 131 EP 141 DI 10.1016/j.jclepro.2013.07.022 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AC3PH UT WOS:000332433200014 ER PT J AU Bates, BL Zhang, Y Dryepondt, S Pint, BA AF Bates, B. L. Zhang, Y. Dryepondt, S. Pint, B. A. TI Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic-martensitic alloy SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Aluminide coatings; Pack cementation; Creep; Ferritic-martensitic steel; Hardness ID STEAM-TURBINE COMPONENTS; WATER-VAPOR; DIFFUSION COATINGS; OXIDATION BEHAVIOR; STEELS; CHROMIUM; EXPOSURE; CR AB The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 degrees C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 degrees C (low temperature) and 1050 degrees C (high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 degrees C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16-51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 degrees C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of <25 h, much shorter than the specimen coated at 1050 degrees C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bates, B. L.; Zhang, Y.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. [Dryepondt, S.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. EM yzhang@tntech.edu RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU Department of Energy (DOE) Advanced Coal Research at U.S. Colleges and Universities [DE-FG26-06NT42674]; DOE Fossil Energy Advanced Materials Research Program [DE-AC05-00OR22725]; UT-Battelle LLC; Tennessee Technological University [4000071336] FX The authors would like to acknowledge funding by the Department of Energy (DOE) Advanced Coal Research at U.S. Colleges and Universities, under Grant No. DE-FG26-06NT42674. Additional support is from DOE Fossil Energy Advanced Materials Research Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC and subcontract 4000071336 with Tennessee Technological University. NR 29 TC 3 Z9 3 U1 3 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD FEB 15 PY 2014 VL 240 BP 32 EP 39 DI 10.1016/j.surfcoat.2013.12.008 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AB7SB UT WOS:000331989900005 ER PT J AU Rao, B Simpson, C Lin, H Liang, LY Gu, BH AF Rao, Balaji Simpson, Carolyne Lin, Hui Liang, Liyuan Gu, Baohua TI Determination of thiol functional groups on bacteria and natural organic matter in environmental systems SO TALANTA LA English DT Article DE Thiols; Mercury; Fluorescence spectroscopy; Titration; NOM ID PERFORMANCE LIQUID-CHROMATOGRAPHY; MERCURY METHYLATION; REDUCING BACTERIA; BIOLOGICAL THIOLS; HUMIC SUBSTANCES; REDUCTION; GLUTATHIONE; FLUORESCENT; BINDING; DERIVATIZATION AB Organic thiols (R-SH) are known to react and form complexes with some toxic soft metals such as mercury (Hg) in both biotic and abiotic systems. However, a clear understanding of these interactions is currently limited because quantifying thiols in environmental matrices is difficult due to their low abundance, susceptibility to oxidation, and measurement interference by non-thiol compounds in samples. Here, we report a fluorescence-labeling method using a maleimide containing probe, ThioGlo-1 (TG-1), to determine total thiols directly on bacterial cells and natural organic matter (NOM). We systematically evaluated the optimal thiol labeling conditions and interference from organic compounds such as disulfide, methionine, thiourea, and amine, and inorganic ions such as Na+, K+, Ca2+, Fe2+, Cl-, SO42-, HCO3-, and SCN-, and found that the method is highly sensitive and selective. Only relatively high levels of sulfide (S2-) and sulfite (SO32-) significantly interfere with the thiol analysis. The method was successful in determining thiols in a bacterium Geobacter sulfurreducens PCA and its mutants in a phosphate buffered saline solution. The measured value of similar to 2.1 x 10(4) thiols cell(-1) (or similar to 0.07 mu mol g(-1) wet cells) is in good agreement with that observed during reactions between Hg and PCA cells. Using the standard addition, we determined the total thiols of two reference NOM samples, the reduced Elliot soil humic acid and Suwanee River NOM, to be 3.6 and 0.7 mu mol g(-1), respectively, consistent with those obtained based on their reactions with Hg. (C) 2013 Elsevier B.V. All rights reserved. C1 [Rao, Balaji; Lin, Hui; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Simpson, Carolyne] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Liang, Liyuan/O-7213-2014; Gu, Baohua/B-9511-2012 OI Liang, Liyuan/0000-0003-1338-0324; Gu, Baohua/0000-0002-7299-2956 FU Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area (SFA) Program at ORNL; DOE [DE-AC05-00OR22725] FX We thank D. R. Lovley and colleagues at the University of Massachusetts, Amherst, for providing the Delta omcBESTZ mutant, Richard Hurt Jr. and Dwayne Elias of ORNL for providing the Delta hgcAB mutant, and Xiangping Yin for technical assistance. This research was sponsored by the Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area (SFA) Program at ORNL, which is managed by UT-Battelle LLC for the DOE under Contract DE-AC05-00OR22725. NR 39 TC 15 Z9 15 U1 8 U2 94 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 EI 1873-3573 J9 TALANTA JI Talanta PD FEB 15 PY 2014 VL 119 BP 240 EP 247 DI 10.1016/j.talanta.2013.11.004 PG 8 WC Chemistry, Analytical SC Chemistry GA AB3DE UT WOS:000331670700034 PM 24401410 ER PT J AU Zong, HX Lookman, T Ding, XD Luo, SN Sun, J AF Zong, Hongxiang Lookman, Turab Ding, Xiangdong Luo, Sheng-Nian Sun, Jun TI Anisotropic shock response of titanium: Reorientation and transformation mechanisms SO ACTA MATERIALIA LA English DT Article DE Shock compression; Martensitic transition; Titanium; Orientation relationships ID ALPHA-OMEGA TRANSFORMATION; MOLECULAR-DYNAMICS; PHASE-TRANSITION; GRAIN ROTATION; LOADED ZIRCONIUM; SINGLE-CRYSTALS; PRESSURE; DEFORMATION; METALS; ALLOY AB We investigate shock-induced phase transformations in titanium (alpha-Ti) single crystals induced by shock loading along the [0001], [10 (1) over bar0] and [12 (1) over bar0] directions using molecular dynamics simulations. We find a significant dependence of the microstructure evolution on the crystallographic shock direction, providing insight into the nature of the coupling between deformation and phase transformation. For shock along the c-axis, the orientation relationships (ORs) (0001)(alpha)//(10 (1) over bar0)(omega) and [10 (1) over bar0](alpha)//[11 (2) over bar3](omega) between parent and product phases are observed, which differs from that previously reported for Ti. For shock compression along the [10 (1) over bar0] and [12 (1) over bar0] directions, there is a reorientation of the hexagonally close-packed alpha phase before the alpha -> omega martensitic transformation, and the OR is consistent with the previously proposed Silcock relationship. We associate the reorientation with a shuffle and shear mechanism and suggest that shear stress is an underlying factor for the anisotropic phase transformation sensitivity. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zong, Hongxiang; Ding, Xiangdong; Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Zong, Hongxiang; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Luo, Sheng-Nian] Peac Inst Multiscale Sci, Chengdu 610207, Sichuan, Peoples R China. [Luo, Sheng-Nian] Sichuan Univ, Chengdu 610207, Sichuan, Peoples R China. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM txl@lanl.gov; Dingxd@mail.xjtu.edu.cn RI Ding, Xiangdong/K-4971-2013; Luo, Sheng-Nian /D-2257-2010 OI Ding, Xiangdong/0000-0002-1220-3097; Luo, Sheng-Nian /0000-0002-7538-0541 FU NSFC [51171140, 51231008, 51320105014, 51321003]; 973 Program of China [2010CB631003, 2012CB619402]; 111 projects [B06025]; US DOE at LANL [DE-AC52-06NA25396] FX This work was supported by NSFC (51171140, 51231008, 51320105014, 51321003), the 973 Program of China (2010CB631003, 2012CB619402) and 111 projects (B06025), as well as the US DOE at LANL (DE-AC52-06NA25396). NR 49 TC 13 Z9 14 U1 4 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2014 VL 65 BP 10 EP 18 DI 10.1016/j.actamat.2013.11.047 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA8LS UT WOS:000331347600002 ER PT J AU McKeown, JT Kulovits, AK Liu, C Zweiacker, K Reed, BW LaGrange, T Wiezorek, JMK Campbell, GH AF McKeown, Joseph T. Kulovits, Andreas K. Liu, Can Zweiacker, Kai Reed, Bryan W. LaGrange, Thomas Wiezorek, Joerg M. K. Campbell, Geoffrey H. TI In situ transmission electron microscopy of crystal growth-mode transitions during rapid solidification of a hypoeutectic Al-Cu alloy SO ACTA MATERIALIA LA English DT Article DE Rapid solidification; In situ TEM; Time-resolved TEM; Al-Cu alloy ID MICROSTRUCTURE SELECTION MAP; COPPER THIN-FILMS; BANDED STRUCTURE; LATERAL SOLIDIFICATION; THERMAL-CONDUCTIVITY; MATERIALS SCIENCE; DENDRITIC GROWTH; EUTECTIC ALLOY; STABILITY; HEAT AB The rapid solidification dynamics of a pulsed-laser-melted hypoeutectic Al-Cu thin-film alloy were monitored using in situ transmission electron microscopy with high spatial and temporal resolutions. Direct observation of the solid liquid interface during the transformation allowed measurements of the time-evolving solidification front morphology and velocity. Transitions in the growth mode were detected and related to acceleration and instability at the solidification front. A banded structure that forms during instability at high solidification front velocities, previously only observed ex situ in post-mortem analyses, was imaged during formation, providing insight to the growth mechanisms of this banded morphology. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [McKeown, Joseph T.; Reed, Bryan W.; LaGrange, Thomas; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Kulovits, Andreas K.; Liu, Can; Zweiacker, Kai; Wiezorek, Joerg M. K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP McKeown, JT (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM mckeown3@llnl.gov OI Zweiacker, Kai/0000-0002-4365-7374 FU US Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program [DMR 1105757]; US Department of Energy [DE-AC04-94-AL85000] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy. Activities and personnel at the University of Pittsburgh were supported by the National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program through Grant No. DMR 1105757. J.T.M. would like to thank Dr. Joshua Sugar for access to and assistance with the JEOL 2010F TEM at Sandia National Laboratory in Livermore. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the US Department of Energy under Contract No. DE-AC04-94-AL85000. NR 65 TC 12 Z9 13 U1 8 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2014 VL 65 BP 56 EP 68 DI 10.1016/j.actamat.2013.11.046 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA8LS UT WOS:000331347600006 ER PT J AU Bulatov, VV Reed, BW Kumar, M AF Bulatov, Vasily V. Reed, Bryan W. Kumar, Mukul TI Grain boundary energy function for fcc metals SO ACTA MATERIALIA LA English DT Article DE Grain boundary energy; Crystal structure; Misorientation; Modeling; Lattice geometry ID CENTERED-CUBIC METALS; MODEL; ANISOTROPY; GEOMETRY; METRICS; TWIST AB Anisotropy of interfacial energy is the principal driving force for thermally driven microstructure evolution, yet its origins remain uncertain and a quantitative description lacking. We present and justify a concise hypothesis on the topography of the functional space of interface energies and, based on this hypothesis, construct a closed-form function that quantitatively describes energy variations in the 5-space of macroscopic parameters defining grain boundary geometry. The new function is found to be universal for the crystallography class of face-centered cubic (fcc) metals. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bulatov, Vasily V.; Reed, Bryan W.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bulatov, VV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bulatov1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The authors were supported by the US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. We are indebted to D. Olmsted for many useful discussions and to L. Zepeda-Ruiz, T. Oppelstrup, and J. Mason for their advice on various technical aspects of this work. NR 25 TC 27 Z9 27 U1 4 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2014 VL 65 BP 161 EP 175 DI 10.1016/j.actamat.2013.10.057 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA8LS UT WOS:000331347600016 ER PT J AU Srirangam, P Chattopadhyay, S Bhattacharya, A Nag, S Kaduk, J Shankar, S Banerjee, R Shibata, T AF Srirangam, P. Chattopadhyay, S. Bhattacharya, A. Nag, S. Kaduk, J. Shankar, S. Banerjee, R. Shibata, T. TI Probing the local atomic structure of Sr-modified Al-Si alloys SO ACTA MATERIALIA LA English DT Article DE Al-Si alloys; X-ray diffraction; X-ray absorption spectroscopy; Atom probe tomography; Sr modification ID ABSORPTION FINE-STRUCTURE; ALUMINUM-SILICON ALLOYS; HYPOEUTECTIC ALLOYS; STRONTIUM; NUCLEATION; MICROSTRUCTURE; SEGREGATION; MICROSCOPY; MECHANISM; BEHAVIOR AB Extended X-ray absorption fine structure (EXAFS) spectroscopy and atom probe tomography (APT) measurements were jointly used for the first time to probe the local structure around Sr atoms in Al-10%Sr master alloy and in Al-3%Si-0.04%Sr and Al-12.5%Si-0.04%Sr eutectic alloys in order to study the impact of trace levels of Sr on the morphological changes occurring in Al-Si binary eutectic alloy. EXAFS analysis shows the oxidation states of Sr is close to Sr in all the alloys studied. In the Al-10%Sr master alloy, Sr atoms tend to form the intermetallic compound Al4Sr. On the other hand, in Al-Si alloys, Sr atoms segregate towards Si-rich regions, preferentially bonding to Si atoms to form Al2Si2Sr-like clusters with a coordination environment consistent with bulk Al2Si2Sr. APT study reveals the presence of nanometer-sized Al-rich and Si-rich regions and support the EXAFS results. We speculate that addition of trace levels of Sr to Al-Si binary alloy system results in the initial formation of Al2Si2Sr-like clusters and the presence of such intermetallic clusters could play an important role such as poisoning of nucleation sites, thereby delaying the nucleation of eutectic phases and causing the morphological changes of the eutectic phases in the Al-Si alloys. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Srirangam, P.; Shankar, S.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Chattopadhyay, S.; Shibata, T.] Argonne Natl Lab, MRCAT, Argonne, IL 60439 USA. [Chattopadhyay, S.; Shibata, T.] IIT, Dept Phys, Adv Mat Grp, Chicago, IL 60616 USA. [Bhattacharya, A.; Nag, S.; Banerjee, R.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA. [Kaduk, J.] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA. RP Srirangam, P (reprint author), Rutherford Appleton Lab, MXIF, Res Complex Harwell, Didcot OX11 0FA, Oxon, England. EM p.srirangam@manchester.ac.uk RI ID, MRCAT/G-7586-2011 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Authors would like to thank Dr. Jeffrey T. Miller of Argonne National Laboratory for fruitful discussions, Prof. Carlo Segre of Illinois Institute of Technology for support of this research by allocating staff time to beamline scientists; and Dr. Vladislav Zyryanov for his help during the experiments. We thank Dr. Shelly Kelly of EXAFS analysis Inc., USA for her valuable suggestions during EXAFS data analysis. NR 46 TC 20 Z9 22 U1 3 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2014 VL 65 BP 185 EP 193 DI 10.1016/j.actamat.2013.10.060 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA8LS UT WOS:000331347600018 ER PT J AU Pang, JWL Liu, W Budai, JD Ice, GE AF Pang, J. W. L. Liu, W. Budai, J. D. Ice, G. E. TI Inhomogeneous deformation behavior in intercrystalline regions in polycrystalline Ni SO ACTA MATERIALIA LA English DT Article DE Plastic deformation; Grain boundaries; X-ray diffraction ID CRYSTAL PLASTICITY; GRAIN-BOUNDARIES; DISCRETE DISLOCATION; EBSD QUANTIFICATION; DAMAGE; SIMULATIONS; ORIENTATION; MESOSCALE; EVOLUTION; GRADIENT AB We report on three-dimensional spatially resolved X-ray microdiffraction measurements of inhomogeneous deformation within individual polycrystalline grains. These measurements provide new insights into the role of grain boundaries. Particularly striking is the qualitatively different mechanical behavior of subgrain volumes near grain boundaries and triple junctions compared to bulk-grain mechanical behavior. These differences are studied by characterizing the evolution of the local orientation distribution in a polycrystalline Ni sample using polychromatic synchrotron X-ray microdiffraction. Dependence of deformation on grain boundary types and triple junctions is determined. Quantitative distinctions in deformation behavior between low-angle boundaries, special low-energy high-angle boundaries, general high-angle boundaries and triple junctions are characterized in terms of spatially resolved misorientation development and extensions of grain boundary effects. In general, larger lattice misorientations are observed near boundaries with higher grain boundary energy. Special high-coincidence grain boundaries exhibit smaller deformation misorientations than general high-angle grain boundaries. These observations are consistent with the observed increases in ductility in grain boundary engineered materials. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pang, J. W. L.; Budai, J. D.; Ice, G. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Pang, JWL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6118, Oak Ridge, TN 37831 USA. EM pangj@ornl.gov RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Office of Basic Energy Sciences, U.S. Department of Energy [W-31-109ENG-38]; Argonne National Laboratory FX Research sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Work in part on beamline 34-ID at the Advanced Photon Source, which is supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. W-31-109ENG-38 with Argonne National Laboratory. NR 42 TC 4 Z9 4 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 15 PY 2014 VL 65 BP 393 EP 399 DI 10.1016/j.actamat.2013.11.008 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA8LS UT WOS:000331347600037 ER PT J AU Saxena, S Gopal, A Phadke, A AF Saxena, Samveg Gopal, Anand Phadke, Amol TI Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India SO APPLIED ENERGY LA English DT Article DE Electric vehicles; Powertrain; Transportation; Vehicle to grid; India ID DRIVING PATTERNS; PASSENGER CARS; POWER-SYSTEMS; DEMAND; EMISSIONS; IMPACTS; LOAD AB The Government of India has recently announced the National Electric Mobility Mission Plan, which sets ambitious targets for electric vehicle deployment in India. One important barrier to substantial market penetration of EVs in India is the impact that large numbers of EVs will have on an already strained electricity grid. Properly predicting the impact of EVs on the Indian grid will allow better planning of new generation and distribution infrastructure as the EV mission is rolled out. Properly predicting the grid impacts from EVs requires information about the electrical energy consumption of different types of EVs in Indian driving conditions. This study uses detailed vehicle powertrain models to estimate per kilometer electrical consumption for electric scooters, 3-wheelers and different types of 4-wheelers in India. The powertrain modeling methodology is validated against experimental measurements of electrical consumption for a Nissan Leaf. The model is then used to predict electrical consumption for several types of vehicles in different driving conditions. The results show that in city driving conditions, the average electrical consumption is: 33 Wh/km for the scooter, 61 Wh/km for the 3-wheeler, 84 Wh/km for the low power 4-wheeler, and 123 Wh/km for the high power 4-wheeler. For highway driving conditions, the average electrical consumption is: 133 Wh/km for the low power 4-wheeler, and 165 Wh/km for the high power 4-wheeler. The impact of variations in several parameters are modeled, including the impact of different driving conditions, different levels of loading by air conditions and other ancillary components, different total vehicle masses, and different levels of motor operating efficiency. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Saxena, Samveg; Gopal, Anand; Phadke, Amol] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Saxena, S (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM samveg@berkeley.edu FU Regulatory Assistance Project through the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary of Policy and International Affairs, Office of Policy and International Affairs, of the US Department of Energy and the Regulatory Assistance Project through the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 10 Z9 10 U1 1 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 15 PY 2014 VL 115 BP 582 EP 590 DI 10.1016/j.apenergy.2013.10.043 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AA2ES UT WOS:000330908500056 ER PT J AU Dai, KH Mao, J Li, ZT Zhai, YC Wang, ZH Song, XY Battaglia, V Liu, G AF Dai, Kehua Mao, Jing Li, Zitao Zhai, Yuchun Wang, Zhihui Song, Xiangyun Battaglia, Vince Liu, Gao TI Microsized single-crystal spinel LAMO for high-power lithium ion batteries synthesized via polyvinylpyrrolidone combustion method SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; Cathode material; LiMn2O4; Single crystal; PVP combustion method ID ELEVATED-TEMPERATURE PERFORMANCE; HIGH-RATE CAPABILITY; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; TRANSPORT-PROPERTIES; CAPACITY RETENTION; OXYGEN DEFICIENCY; MANGANESE OXIDES; LIMN2O4; STABILITY AB Microsized single-crystal Li1.08Mn1.89Al0.03O4 (LAMO) was synthesized via polyvinylpyriolidone (PVP) combustion method. X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM) characterization results indicate that the as-prepared LAMO has good crystallinity, uniform and smooth-surfaced morphology, and very low specific surface area. Galvanostatic charge-discharge tests demonstrate its excellent electrochemical performance. The capacity retentions at 30 degrees C and 55 degrees C are 98.8% and 93.3% respectively after 200 cycles at 1 C charge/discharge rate. Moreover, the LAMO exhibits excellent rate and low temperature performance. Even at high rates of 40 C and 60 C, the as-prepared LAMO are still able to deliver 91.2% and 85.6% capacity relative to the discharge capacity at C/5. The specific discharge capacity at -20 degrees C is 97.9 mAh g(-1) which is 93.7% of the capacity discharging at 25 degrees C. To study the reason of the excellent rate performance, the potential intermittent titration technique (PITT) tests and cyclic voltammetry (CV) measurements were conducted and the lithium chemical diffusion coefficient (DLi+) was calculated. Published by Elsevier B.V. C1 [Dai, Kehua; Mao, Jing; Li, Zitao; Zhai, Yuchun] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. [Dai, Kehua; Mao, Jing; Wang, Zhihui; Song, Xiangyun; Battaglia, Vince; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM Gliu@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Fundamental Research Funds for the Central Universities of China [N110802002]; Office of Vehicle Technologies of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Fundamental Research Funds for the Central Universities of China (N110802002) and the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program. NCEM located at Lawrence Berkeley National Laboratory (LBNL), and is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 43 TC 13 Z9 13 U1 5 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2014 VL 248 BP 22 EP 27 DI 10.1016/j.jpowsour.2013.09.058 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 301RY UT WOS:000330551000004 ER PT J AU Corpuz, AR Wood, KN Pylypenko, S Dameron, AA Joghee, P Olson, TS Bender, G Dinh, HN Gennett, T Richards, RM O'Hayre, R AF Corpuz, April R. Wood, Kevin N. Pylypenko, Svitlana Dameron, Arrelaine A. Joghee, Prabhuram Olson, Tim S. Bender, Guido Dinh, Huyen N. Gennett, Thomas Richards, Ryan M. O'Hayre, Ryan TI Effect of nitrogen post-doping on a commercial platinum-ruthenium/carbon anode catalyst SO JOURNAL OF POWER SOURCES LA English DT Article DE Electrocatalyst; Durability; Direct methanol fuel cell; Nitrogen doping; Carbon support ID OXYGEN REDUCTION REACTION; METHANOL FUEL-CELL; CARBONIZED POLYACRYLONITRILE FOAM; PT-RU ALLOYS; DOPED CARBON; SUPPORT INTERACTIONS; CNX NANOTUBES; NANOPARTICLES; DURABILITY; ELECTROOXIDATION AB This work investigates the effects of after-the-fact chemical modification of a state-of-the-art commercial carbon-supported PtRu catalyst for direct methanol fuel cells (DMFCs). A commercial PtRu/C (JM HiSPEC10000) catalyst is post-doped with nitrogen by ion-implantation, where "post-doped" denotes nitrogen doping after metal is carbon-supported. Composition and performance of the PtRu/C catalyst postmodified with nitrogen at several dosages are evaluated using X-ray photoelectron spectroscopy (XPS), rotating disk electrode (ROE), and membrane electrode assemblies (MEAs) for DMFC. Overall, implantation at high dosage results in 16% higher electrochemical surface area and enhances performance, specifically in the mass transfer region. Rotating disk electrode (RDE) results show that after 5000 cycles of accelerated durability testing to high potential, the modified catalyst retains 34% more electrochemical surface area (ECSA) than the unmodified catalyst. The benefits of nitrogen post-doping are further substantiated by DMFC durability studies (carried out for 425 h), where the MEA with the modified catalyst exhibits higher surface area and performance stability in comparison to the MEA with unmodified catalyst. These results demonstrate that post-doping of nitrogen in a commercial PtRu/C catalyst is an effective approach, capable of improving the performance of available best-in-class commercial catalysts. (C) 2013 Elsevier B.V. All rights reserved. C1 [Corpuz, April R.; Richards, Ryan M.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Wood, Kevin N.; Pylypenko, Svitlana; Joghee, Prabhuram; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Dameron, Arrelaine A.; Olson, Tim S.; Bender, Guido; Dinh, Huyen N.; Gennett, Thomas] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Pylypenko, S (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. EM april.corpuz@gmail.com; kewood@mymail.mines.edu; spylypen@mines.edu; Arrelaine.Dameron@nrel.gov; pjoghee@mines.edu; Guido.Bender@nrel.gov; Huyen.Dinh@nrel.gov; Thomas.Gennett@nrel.gov; rrichard@mines.edu; rohayre@mines.edu RI Richards, Ryan/B-3513-2008 FU Army Research Office at the Colorado School of Mines [W911NF-09-1-0528]; U.S. Department of Energy EERE, Fuel Cell Technology Office [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The work was supported by the Army Research Office (under Grant No. W911NF-09-1-0528 at the Colorado School of Mines) and the U.S. Department of Energy EERE, Fuel Cell Technology Office (under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory). The authors also acknowledge the Electron Microscopy Laboratory at CSM and surface analysis facilities at NREL. NR 63 TC 6 Z9 6 U1 5 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2014 VL 248 BP 296 EP 306 DI 10.1016/j.jpowsour.2013.09.067 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 301RY UT WOS:000330551000037 ER PT J AU Ye, JC An, YH Heo, TW Biener, MM Nikolic, RJ Tang, M Jiang, H Wang, YM AF Ye, J. C. An, Y. H. Heo, T. W. Biener, M. M. Nikolic, R. J. Tang, M. Jiang, H. Wang, Y. M. TI Enhanced lithiation and fracture behavior of silicon mesoscale pillars via atomic layer coatings and geometry design SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; Silicon micropillars; Atomic layer deposition; TiO2; Al2O3; Fast lithium ion transport ID LITHIUM-ION BATTERIES; SOLID-ELECTROLYTE-INTERPHASE; THIN-FILM ELECTRODES; ELECTROCHEMICAL LITHIATION; AMORPHOUS-SILICON; LOW-TEMPERATURE; ANODES; DEPOSITION; NANOWIRES; KINETICS AB Crystalline silicon nanostructures are commonly known to exhibit anisotropic expansion behavior during the lithiation that leads to grooving and fracture. Here we report surprisingly relatively uniform volume expansion behavior of large aspect-ratio ( 25), well-patterned, n-type (100) silicon micropillars (similar to 2 mu m diameter) during the initial lithiation. The comparison results with and without atomic layer metal oxides (Al2O3 and TiO2) coatings reveal drastically enhanced solid electrolyte interphase (SEI) formation, higher volume expansion, and increased anisotropy. Square-pillars are found to exhibit nearly twice volume expansion without fracture compared to circular-pillars. Models are invoked to qualitatively address these beneficial or detrimental properties of silicon for lithium ion battery. Our experiments and computer simulations point at the critical relevance of SEI and pristine geometry in regulating volume expansion and failure. ALD-coated ultrathin metal oxides can act as an ion channel gate that helps promote fast Li+ transport into the bulk by changing the surface kinetics, suggesting new ways of designing electrodes for high-performance lithium ion battery applications. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ye, J. C.; An, Y. H.; Heo, T. W.; Biener, M. M.; Tang, M.; Wang, Y. M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Nikolic, R. J.] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Livermore, CA 94550 USA. [An, Y. H.; Jiang, H.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ymwang@llnl.gov RI Jiang, Hanqing/B-1810-2008; Wang, Yinmin (Morris)/F-2249-2010 OI Jiang, Hanqing/0000-0002-1947-4420; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) programs of LLNL [12-ERD-053, 13-LW-031]; NSF [CMMI-1067947, CMMI-1162619] FX The authors would like to thank C.E. Reinhardt and N. Teslich for experimental assistance. Helpful discussions with B.C. Wood, J. Lee and M.D. Merrill are acknowledged. The work was performed under the auspices of the US Department of Energy by LLNL under contract No. DE-AC52-07NA27344. The project is supported by the Laboratory Directed Research and Development (LDRD) programs of LLNL (12-ERD-053 and 13-LW-031). HJ acknowledges support from NSF CMMI-1067947 and CMMI-1162619. NR 41 TC 12 Z9 12 U1 8 U2 107 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2014 VL 248 BP 447 EP 456 DI 10.1016/j.jpowsour.2013.09.097 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 301RY UT WOS:000330551000058 ER PT J AU Sun, CN Delnick, FM Baggetto, L Veith, GM Zawodzinski, TA AF Sun, Che-Nan Delnick, Frank M. Baggetto, Loic Veith, Gabriel M. Zawodzinski, Thomas A., Jr. TI Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Hydrogen evolution; Redox flow battery; Side reaction; Electrochemical surface area ID ENERGY-STORAGE; GRAPHITE FELT; CELL; PERFORMANCE; MEMBRANE; COUPLE AB This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 mu mol min(-1) g(-1)). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB. Published by Elsevier B.V. C1 [Sun, Che-Nan; Baggetto, Loic; Veith, Gabriel M.; Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Delnick, Frank M.] Sandia Natl Labs, Power Sources Technol Grp, Albuquerque, NM 87185 USA. [Zawodzinski, Thomas A., Jr.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Zawodzinski, Thomas A., Jr.] King Abdulaziz Univ, Dept Chem, Jeddah 21413, Saudi Arabia. RP Sun, CN (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sunc@ornl.gov; tzawodzi@utk.edu RI Baggetto, Loic/D-5542-2017 OI Baggetto, Loic/0000-0002-9029-2363 FU US Department of Energy Office of Electricity Storage Systems Program; University of Tennessee Governor's Chair Fund; U.S. Department of Energy's (DOE) Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division FX The authors gratefully acknowledge the support of the US Department of Energy Office of Electricity Storage Systems Program directed by Dr. Imre Gyuk and the University of Tennessee Governor's Chair Fund for support of this work. Dr. Hui Zhou is gratefully acknowledged for his support during SEM collection. This work was partially supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (LB, GMV). NR 30 TC 26 Z9 26 U1 15 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2014 VL 248 BP 560 EP 564 DI 10.1016/j.jpowsour.2013.09.125 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 301RY UT WOS:000330551000071 ER PT J AU Webb, SA Baggetto, L Bridges, CA Veith, GM AF Webb, Samantha A. Baggetto, Loic Bridges, Craig A. Veith, Gabriel M. TI The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance SO JOURNAL OF POWER SOURCES LA English DT Article DE Indium (In) sputtered thin films; Lithium-ion anode; Sodium-ion anode; Anomalous electrolyte decomposition; Benefits of fluoroethylene additive (FEC) additive; Very high rate performance ID ION BATTERIES; LITHIUM BATTERIES; THIN-FILMS; SODIUM; INSERTION; TIN; GERMANIUM; ANODE; INSB; INP AB Indium thin films were evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g(-1) for Li and 467 mAh g(-1) for Na). XRD data reveal that several known Li In phases (Liln, Li3In2, LiIn2 and Li13In3) form providing 950 rnAh g(-1) reversible capacity. In contrast, the reaction with Na is severely limited (75-125 mAh g(-1)). XRD data of short-circuited cells (40 h at 65 degrees C) show the coexistence of Naln, In, and an unknown Naxln phase. In electrodes exhibit anomalous electrolyte decomposition characterized by large discharge plateaus at 1.4 V vs Li/Li+ and 0.9 V vs Na/Na+. The presence of 5 wt% fluoroethylene carbonate additive suppresses the occurrence of the electrolyte decomposition during the first cycle but does not necessarily prevent it upon further cycling. Prevention of the anomalous decomposition can be achieved by restricting the (dis)charge voltages, increasing the current or by using larger amounts of FEC. The native surface oxides (In2O3) are responsible for the pronounced electrolyte decomposition during the first cycle while other ln(3+) species are responsible during the subsequent cycles. We also show that indium electrodes can exhibit very high rate capability for both Li (100 C-rate) and Na (30 C-rate). (C) 2013 Elsevier B.V. All rights reserved. C1 [Webb, Samantha A.; Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bridges, Craig A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Baggetto, L (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM baggettol@ornl.gov; veithgm@ornl.gov RI Baggetto, Loic/D-5542-2017 OI Baggetto, Loic/0000-0002-9029-2363 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; DOE-BES FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Microscopy research was supported via a user project supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is also supported by DOE-BES. NR 29 TC 18 Z9 18 U1 20 U2 138 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2014 VL 248 BP 1105 EP 1117 DI 10.1016/j.jpowsour.2013.10.033 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 301RY UT WOS:000330551000139 ER PT J AU Polizos, G Winter, K Lance, MJ Meyer, HM Armstrong, BL Schaeffer, DA Simpson, JT Hunter, SR Datskos, PG AF Polizos, Georgios Winter, Kyle Lance, Michael J. Meyer, Harry M. Armstrong, Beth L. Schaeffer, Daniel A. Simpson, John T. Hunter, Scott R. Datskos, Panos G. TI Scalable superhydrophobic coatings based on fluorinated diatomaceous earth: Abrasion resistance versus particle geometry SO APPLIED SURFACE SCIENCE LA English DT Article DE Diatomaceous earth; Superhydrophobic; Coatings; Scalable; Abrasion resistance ID INTERPARTICLE FORCES; ROUGH SURFACES; WATER DROPLETS; SOLID-SURFACES; HYDROPHOBICITY; ROUTE; DROPS; FILMS AB Bio-inspired superhydrophobic surfaces were fabricated based on fossilized silica fresh water diatomaceous earth (DE) particles. These nanostructured silicified diatom frustules of cylindrical and circular structures were fluorinated to impart them with superhydrophobic properties. Substrates coated with superhydrophobic DE structures of varying size and shape were found to have water contact angles of approximately 170 degrees and sliding angles of approximately 3. The substrates were subjected to significant abrasion forces using a standard surface abrader. The ability to retain their superhydrophobic properties was observed to depend on the geometry and average size of the DE particles. The wettability of the abraded coatings was determined by their surface topology, and a transition from a non-wetted state to a partially wetted state was observed to occur and was dependent on the surface roughness. The proposed coatings are scalable, cost-effective, and can be applied on a variety of surfaces on critical infrastructures requiring protection from water saturation, ice formation and water based corrosion. (C) 2013 Elsevier B.V. All rights reserved. C1 [Polizos, Georgios; Winter, Kyle; Lance, Michael J.; Meyer, Harry M.; Armstrong, Beth L.; Schaeffer, Daniel A.; Simpson, John T.; Hunter, Scott R.; Datskos, Panos G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Polizos, G (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM polyzosg@ornl.gov RI Lance, Michael/I-8417-2016; Armstrong, Beth/E-6752-2017 OI Lance, Michael/0000-0001-5167-5452; Armstrong, Beth/0000-0001-7149-3576 FU U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability - Power Electronics Program; SunShot Program of the Office of Energy Efficiency and Renewable Energy; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Oak Ridge National Laboratory is operated for the U.S. Department of Energy by U.T.-Battelle under Contract No. DE-AC05-00OR22725. This work was supported by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability - Power Electronics Program, and the SunShot Program of the Office of Energy Efficiency and Renewable Energy. Particle size analyses were supported by the United States Marine Corps Corrosion Prevention and Control Program. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank John Henry at ORNL for his contributions to the experimental work. NR 42 TC 14 Z9 14 U1 4 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 15 PY 2014 VL 292 BP 563 EP 569 DI 10.1016/j.apsusc.2013.12.009 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 296TO UT WOS:000330208500077 ER PT J AU Fleharty, ME van Swol, F Petsev, DN AF Fleharty, Mark E. van Swol, Frank Petsev, Dimiter N. TI The effect of surface charge regulation on conductivity in fluidic nanochannels SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Charge regulation; Electrostatic potential; Nanochannels; Ionic conductivity ID DENSITY-FUNCTIONAL THEORY; DOUBLE-LAYER INTERACTIONS; INTERFACES; MODEL AB The precise electrostatic potential distribution is very important for the electrokinetic transport in fluidic channels. This is especially valid for small nanochannels where the electric double layers formed at the walls are comparable to the channel width. It can be expected that due to the large surface to volume ratio in such systems, they will exhibit properties that are not detectable in larger channels, capillaries and pores. We present a detailed numerical analysis of the current transport in fluidic nanochannels. It is based on solving the Poisson-Boltzmann equation with charge regulation boundary conditions that account for the surface-aqueous solution chemical equilibria. The focus is on studying the effect of the pH on the current transport. The pH is varied by adding either HCl or KOH. The analysis predicts non-monotonous and sometimes counterintuitive dependence of the conductivity on the pH. The channel conductivity exhibits practically no change over a range of pH values due to a buffering exerted by the chemical groups at the walls. An unexpected drop of the conductivity is observed around the wall isoelectric point and also in the vicinity of pH = 7 even though the concentration of ions in the channel increases. These observations are explained in the framework of charge regulation theory. (C) 2013 Elsevier Inc. All rights reserved. C1 [Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [van Swol, Frank] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petsev, DN (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM dimiter@unm.edu FU United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CBET 0844645]; UNM Graduate Excellence Fellowship, GAANN [P200A090028]; Charlotte and William Kraft Graduate Fellowship FX Research supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.; This work was also funded by NSF (CBET 0844645). Mark Fleharty was also supported by the UNM Graduate Excellence Fellowship, GAANN (P200A090028), and the Charlotte and William Kraft Graduate Fellowship. We are also thankful to the UNM Center for Advanced Research Computing for computational resources used in this research. NR 27 TC 6 Z9 6 U1 2 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD FEB 15 PY 2014 VL 416 BP 105 EP 111 DI 10.1016/j.jcis.2013.10.051 PG 7 WC Chemistry, Physical SC Chemistry GA 296CH UT WOS:000330162200016 PM 24370409 ER PT J AU Mirijanian, DT Mannige, RV Zuckermann, RN Whitelam, S AF Mirijanian, Dina T. Mannige, Ranjan V. Zuckermann, Ronald N. Whitelam, Stephen TI Development and Use of an Atomistic CHARMM-Based Forcefield for Peptoid Simulation SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE peptoid; forcefield; parameterization; CHARMM; simulation ID MOLECULAR-DYNAMICS; NMR DETERMINATION; SIDE-CHAINS; OLIGOMERS; PEPTIDES; CONFORMATION; DISPERSION; POLYMERS; PROGRAM; DISEASE AB Peptoids are positional isomers of peptides: peptoid sidechains are attached to backbone nitrogens rather than -carbons. Peptoids constitute a class of sequence-specific polymers resistant to biological degradation and potentially as diverse, structurally and functionally, as proteins. While molecular simulation of proteins is commonplace, relatively few tools are available for peptoid simulation. Here, we present a first-generation atomistic forcefield for peptoids. Our forcefield is based on the peptide forcefield CHARMM22, with key parameters tuned to match both experimental data and quantum mechanical calculations for two model peptoids (dimethylacetamide and a sarcosine dipeptoid). We used this forcefield to demonstrate that solvation of a dipeptoid substantially modifies the conformations it can access. We also simulated a crystal structure of a peptoid homotrimer, H-(N-2-phenylethyl glycine)(3)-OH, and we show that experimentally observed structural and dynamical features of the crystal are accurately described by our forcefield. The forcefield presented here provides a starting point for future development of peptoid-specific simulation methods within CHARMM. (c) 2013 Wiley Periodicals, Inc. C1 [Mirijanian, Dina T.; Mannige, Ranjan V.; Zuckermann, Ronald N.; Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Mirijanian, DT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Defense Threat Reduction Agency [IACRO-B1144571]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Contract/grant sponsor: Defense Threat Reduction Agency, contract/grant number: IACRO-B1144571, Contract/grant sponsor: Office of Science of the U.S. Department of Energy, contract/grant number: DE-AC02-05CH11231. NR 53 TC 12 Z9 13 U1 3 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD FEB 15 PY 2014 VL 35 IS 5 BP 360 EP 370 DI 10.1002/jcc.23478 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 292TH UT WOS:000329924800002 PM 24293222 ER PT J AU Hynninen, AP Crowley, MF AF Hynninen, Antti-Pekka Crowley, Michael F. TI New Faster CHARMM Molecular Dynamics Engine SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE CHARMM; molecular dynamics; parallel programming; domain decomposition ID SIMULATION; ALGORITHMS; PROGRAM AB We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores. (c) 2013 Wiley Periodicals, Inc. C1 [Hynninen, Antti-Pekka] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Hynninen, AP (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. EM antti.pekka.hynninen@nrel.gov FU Department of Energy, Office of Advanced Computing Research [SciDAC DE-AC36-99G0-10337]; NIH [R01 GM103695]; DOE Office of the Biomass Program; DOE EERE (NREL Computational Sciences Center) [DE-AC36-08GO28308] FX Contract grant sponsor: Department of Energy, Office of Advanced Computing Research (SciDAC DE-AC36-99G0-10337); Contract grant sponsor: NIH; Contract grant number: R01 GM103695; Contract grant sponsor: DOE Office of the Biomass Program; Contract grant sponsor: DOE EERE (NREL Computational Sciences Center); Contract grant number: DE-AC36-08GO28308 NR 13 TC 24 Z9 24 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD FEB 15 PY 2014 VL 35 IS 5 BP 406 EP 413 DI 10.1002/jcc.23501 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 292TH UT WOS:000329924800007 PM 24302199 ER PT J AU Madami, M Gubbiotti, G Tacchi, S Carlotti, G Jain, S AF Madami, M. Gubbiotti, G. Tacchi, S. Carlotti, G. Jain, S. TI Study of the spin excitations in antidot lattices with line defects SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Brillouin light scattering; Antidot; Line defects; Spin waves ID NANOSTRUCTURES AB The propagation of spin waves in antidot lattices with line defects has been studied by both microfocused Brillouin light scattering and micromagnetic simulations. The samples under investigation are NiFe square antidot lattices with circular holes of 250 nm of diameter, periodicity of 700 nm and thickness of 60 nm. Line defects have been introduced in the antidot lattices by removing one row (column) of holes every three rows (columns). Microfocused BLS has been used in order to map out the intensity profile of the main eigenmodes which are excited by a microwave current injected into a coplanar waveguide deposited on top of the sample surface. The comparison between micromagnetic simulations and mu-BLS measurements shows a good agreement not only for the measured frequency but also for the spatial profiles of the modes with the highest intensity in BLS spectra. These eigenmodes extend along the channels between dots rows and their frequency is different in presence of row- or column-defects because of the modification of the internal field felt by the precessing spins. (C) 2013 Elsevier B.V. All rights reserved C1 [Madami, M.; Carlotti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Gubbiotti, G.; Tacchi, S.] Univ Perugia, Dipartimento Fis, IOM CNR, I-06123 Perugia, Italy. [Jain, S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Madami, M (reprint author), Univ Perugia, Dipartimento Fis, Via A Pascoli, I-06123 Perugia, Italy. EM marco.madami@fisica.unipg.it OI Madami, Marco/0000-0002-0727-1773 FU European Community [318287]; Ministero Italian dell'Universita e della Ricerca (MIUR) [2010ECA8P3] FX This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant no. 318287 "LANDAUER" and by the Ministero Italian dell'Universita e della Ricerca (MIUR) under the PRIN2010 Project (No. 2010ECA8P3). NR 14 TC 7 Z9 7 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD FEB 15 PY 2014 VL 435 BP 152 EP 155 DI 10.1016/j.physb.2013.07.036 PG 4 WC Physics, Condensed Matter SC Physics GA 295SB UT WOS:000330134700037 ER PT J AU van Genuchten, CM Pena, J Amrose, SE Gadgil, AJ AF van Genuchten, Case M. Pena, Jasquelin Amrose, Susan E. Gadgil, Ashok J. TI Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID PAIR DISTRIBUTION FUNCTION; K-EDGE EXAFS; TETRAHEDRALLY COORDINATED FE(III); MODELING COMPETITIVE ADSORPTION; IRON ELECTROCOAGULATION; SURFACE COMPLEXATION; 2-LINE FERRIHYDRITE; GROWTH MECHANISMS; FE OXYHYDROXIDE; ARSENIC REMOVAL AB We apply Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and pair distribution function (PDF) analysis of high-energy X-ray scattering to investigate the effects of bivalent cation-oxyanion pairs on the structure of Fe(III) precipitates formed from the oxidation of Fe(II) generated by the electrolytic dissolution of Fe(0) electrodes. We found that Fe(II) oxidation in the presence of weakly adsorbing electrolytes (NaCl, CaCl2, MgCl2) leads to pseudo-lepidocrocite (Lp; c-FeOOH), a poorly crystalline version of Lp with low sheet-stacking coherence. In the absence of bivalent cations, P and As(V) have similar uptake behavior, but different effects on the average Fe(III) precipitate structure: pseudo-Lp dominates in the presence of P, whereas a disordered ferrihydrite-like precipitate akin to hydrous ferric oxide (HFO) is the dominant phase that forms in the presence of As(V). Despite its lower affinity for Fe(III) precipitates, Si leads to Si-HFO in all conditions tested. The presence of 1 mM Ca2+ or Mg2+ enhances oxyanion uptake, destabilizes the colloidally stable oxyanion-bearing particle suspensions and, in some P and As(V) electrolytes, results in more crystalline precipitates. The trends in oxyanion uptake and Fe(III) precipitate structure in the presence of Ca2+/Mg2+ suggest a systematic decrease in the strength of bivalent cation: oxyanion interaction in the order of Ca2+> Mg2+ and P > As(V) Si. Using the PDF technique, we identify the polyhedral linkages that contribute to the intermediate structures (> 6 angstrom) of disordered, nanoscale oxyanion-bearing Fe(III) precipitate samples. Our results suggest that oxyanions present during Fe(III) polymerization bind to corner-sharing Fe surface sites leading to a precipitate surface deficient in corner-sharing Fe, whereas the edge-and corner-sharing Fe sites in the precipitate core likely remain intact. (C) 2013 Elsevier Ltd. All rights reserved. C1 [van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Pena, Jasquelin] Univ Lausanne, Inst Earth Sci, Lausanne, Switzerland. [Gadgil, Ashok J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP van Genuchten, CM (reprint author), Univ Calif Berkeley, 120 Blum Hall, Berkeley, CA 94720 USA. EM cmvangenuchten@berkeley.edu OI Gadgil, Ashok/0000-0002-0357-9455 FU National Science Foundation Graduate Research Fellowship; Richard C. Blum Center for Developing Economies; Sandoz Family Foundation; US DOE [DE-AC02-06CH11357] FX We gratefully acknowledge the following researchers for their technical assistance and/or advice along the various stages of this work: Sharon Bone, Joe Rogers, Matthew Lattimer, Jeff Maske, Erik Nelson, Kevin Beyer, Karena Chapman, Peter Chupas, Garrison Sposito, Alejandro Fernandez-Martinez, F. Marc Michel, Siva Rama Satyam Bandaru, and Caroline Delaire. This work was supported by a National Science Foundation Graduate Research Fellowship to C. M. van Genuchten. We acknowledge The Richard C. Blum Center for Developing Economies and the Sandoz Family Foundation for support of this research. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U. S. Department of Energy Office of Science by Stanford University. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 80 TC 22 Z9 23 U1 4 U2 72 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2014 VL 127 BP 285 EP 304 DI 10.1016/j.gca.2013.11.044 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 291QC UT WOS:000329842900018 ER PT J AU Cappillino, PJ Lavernia, EJ Ong, MD Wolfer, WG Yang, NY AF Cappillino, P. J. Lavernia, E. J. Ong, M. D. Wolfer, W. G. Yang, N. Y. TI Plastic deformation and hysteresis for hydrogen storage in Pd-Rh alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Metal hydrides; Palladium; Rhodium; Hydrogen storage; Pressure hysteresis; Dislocations ID HYDRIDE PRECIPITATION; DISLOCATION CONTRAST; SOLUTE SEGREGATION; PALLADIUM; SYSTEM; THERMODYNAMICS; BEHAVIOR; POWDERS; PHASE AB The hysteresis observed when reversibly absorbing and desorbing hydrogen in metals is currently not fully understood. In general, a hysteresis represents energy that is dissipated during a cycle, but the underlying mechanism of dissipation is still uncertain. It has been suggested that the hysteresis arises either from plastic work, or from elastic strains associated with the accommodation of the hydride phase, or from both. We present here experimental evidence that implicates plastic deformation as the cause of the hysteresis in a Pd-Rh alloy. The plastic work is evident from the increased dislocation density, from the accumulation of surface steps from slip bands, from line broadening of X-ray diffraction peaks, and from an increase in hardness with the number of hydriding cycles. A model of this plastic work is developed that depends on an effective yield strength. When this model is correlated with the measured hysteresis losses, two values are found for the effective yield strength. The lower value is shown to agree with yield strength values derived from Vickers hardness measurements. The hysteresis areas for repeated cycles of absorption and desorption decrease little with the number of cycles which is reminiscent of the plastic deformation hysteresis during low-cycle fatigue of metals. This similarity further confirms the plastic nature of the hydriding hysteresis. (C) 2013 Elsevier B. V. All rights reserved. C1 [Cappillino, P. J.; Wolfer, W. G.; Yang, N. Y.] Sandia Natl Labs, Livermore, CA 94551 USA. [Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Ong, M. D.] Whitworth Univ, Dept Phys, Spokane, WA 99251 USA. RP Cappillino, PJ (reprint author), Sandia Natl Labs, POB 969,Mail Stop 9292, Livermore, CA 94551 USA. EM pcappil@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors gratefully acknowledge Steven F. Rice, Mike Hardwick and Paul Spence for support and helpful commentary. NR 32 TC 2 Z9 2 U1 5 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 15 PY 2014 VL 586 BP 59 EP 65 DI 10.1016/j.jallcom.2013.10.033 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 291UT UT WOS:000329856800010 ER PT J AU Sato, T Tomiyasu, K Ikeda, K Otomo, T Feygenson, M Neuefeind, J Yamada, K Orimo, S AF Sato, Toyoto Tomiyasu, Keisuke Ikeda, Kazutaka Otomo, Toshiya Feygenson, Mikhail Neuefeind, Joerg Yamada, Kazuyoshi Orimo, Shin-ichi TI Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Hydrogen storage; Complex hydride; Local atomic structure; Total neutron scattering; Pair distribution function ID NEUTRON POWDER-DIFFRACTION; X-RAY-DIFFRACTION; ALUMINUM HYDRIDES; STORAGE; DECOMPOSITION; REFINEMENT; CATALYST; ALANATE AB Local atomic structural investigations of LiAlD4, which is composed of Li+ and [AlD4] , at 40-300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD4. The results showed that the Al-D pair distribution almost unchanged, while the Li-D pair distribution clearly started to broaden and shrink above 200-250 K. The shrinking of the Li-D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD4. (C) 2013 Elsevier B.V. All rights reserved. C1 [Sato, Toyoto; Orimo, Shin-ichi] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. [Tomiyasu, Keisuke] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Ikeda, Kazutaka; Otomo, Toshiya; Yamada, Kazuyoshi] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan. [Feygenson, Mikhail; Neuefeind, Joerg] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Orimo, Shin-ichi] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. RP Sato, T (reprint author), Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. EM toyoto@imr.tohoku.ac.jp RI ORIMO, Shin-ichi/A-4971-2011; Yamada, Kazuyoshi/C-2728-2009; Feygenson, Mikhail /H-9972-2014; Sato, Toyoto/G-3798-2010; Neuefeind, Joerg/D-9990-2015 OI ORIMO, Shin-ichi/0000-0002-4216-0446; Feygenson, Mikhail /0000-0002-0316-3265; Neuefeind, Joerg/0000-0002-0563-1544 FU Neutron Science Proposal Review Committee of J-PARC/MLF [2011A0026]; S-type neutron research project of IMSS, KEK [2009S06]; Division of Scientific User Facilities Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT Battelle, LLC; New Energy and Industrial Technology Development Organization (NEDO); Tohoku University; JSPS KAKENHI [22244039, 23686101, 24241034 and 25220911]; MEXT, Japan FX The neutron scattering experiment was approved by the Neutron Science Proposal Review Committee of J-PARC/MLF (Proposal No. 2011A0026) and supported by the S-type neutron research project (Proposal No. 2009S06) of IMSS, KEK. Neutron scattering experiments were conducted at the SNS, which is operated with the support from the Division of Scientific User Facilities Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT Battelle, LLC. A part of this work was financially supported by the Advanced Fundamental Research on Hydrogen Storage Materials from the New Energy and Industrial Technology Development Organization (NEDO), the Exploratory Research Program for Young Researchers from Tohoku University and JSPS KAKENHI Grant Numbers 22244039, 23686101, 24241034 and 25220911 from the MEXT, Japan. NR 24 TC 2 Z9 2 U1 0 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 15 PY 2014 VL 586 BP 244 EP 247 DI 10.1016/j.jallcom.2013.09.209 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 291UT UT WOS:000329856800038 ER PT J AU Allerman, AA Crawford, MH Lee, SR Clark, BG AF Allerman, A. A. Crawford, M. H. Lee, S. R. Clark, B. G. TI Low dislocation density AlGaN epilayers by epitaxial overgrowth of patterned templates SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Metalorganic chemical vapor deposition; AlGaN; Nitrides; Semiconducting aluminum compounds ID LIGHT-EMITTING-DIODES; UV LASER-DIODE; LATERAL OVERGROWTH; GAN; ALN; SAPPHIRE; GROWTH AB We present an epitaxial overgrowth process for reducing threading dislocations in AlxGa1-xN over the entire compositional range. This process avoids the use of UV-absorbing GaN layers and results in a spatially uniform defect reduction which eliminates the need for precise alignment of devices to low-defect areas of the wafer. Using the described overgrowth process, we demonstrate Al0.3Ga0.7N and Al0.6Ga0.4N epilayers with a dislocation density of 2 x 10(8) cm(-2) and 5 x 10(8) cm(-2) respectively, rendering them suitable as templates for deep-UV bottom-emitting LEDs and laser diodes. The process involves patterning of submicron-wide-stripes, less than 1 mu m in height, into an AlGaN/AIN/sapphire template and subsequent regrowth of a 5-10 mu m thick AlGaN epilayer. The sub-micron width of the mesa allows for bending of threading dislocations that would continue to thread vertically through wider mesas. Utilizing 1.3 mm-thick sapphire substrates (3 x thicker than commonly used), epilayer cracking from regrowth is eliminated and wafer bow over a 2-in diameter substrate is reduced to less than 15 mu m. We observed a 7 x increase in photoluminescence intensity from GaN-AlGaN multi-quantum well structures emitting at 340 am and a 15 x increase in electroluminescence from laser diode heterostructures when grown on patterned Al0.3Ga0.7N templates. (C) 2013 Published by Elsevier B.V. C1 [Allerman, A. A.; Crawford, M. H.; Lee, S. R.; Clark, B. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Allerman, AA (reprint author), Sandia Natl Labs, M-S 1086,1515 Eubank SE,POB 5800, Albuquerque, NM 87185 USA. EM aaaller@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the technical support by L Alessi, K. Cross, M. Smith, K, Westlake and G. Bryant. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000 NR 23 TC 9 Z9 9 U1 5 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 15 PY 2014 VL 388 BP 76 EP 82 DI 10.1016/j.jcrysgro.2013.11.052 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 286YQ UT WOS:000329505600013 ER PT J AU Karagiannis, G Lin, G AF Karagiannis, Georgios Lin, Guang TI Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Generalized polynomial chaos; Bayesian model uncertainty; LASSO; Median probability model; Bayesian model average; MCMC; Splines ID PARTIAL-DIFFERENTIAL-EQUATIONS; REGRESSION; LASSO AB Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions. Published by Elsevier Inc. C1 [Karagiannis, Georgios; Lin, Guang] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Lin, G (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, 902 Battelle Blvd,POB 999,MSIN K7-90, Richland, WA 99352 USA. EM georgios.karagiannis@pnnl.gov; guang.lin@pnnl.gov FU Applied Mathematics Program within the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4); U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Applied Mathematics Program within the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. We would like to thank Drs. Bledar (Alex) Konomi and Bin Zheng for their constructive comments on UQ and SPDEs and Dr. Kenneth Jarman for carefully proofreading the manuscript. The research was performed using PNNL Institutional Computing, as well as the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. NR 40 TC 9 Z9 9 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2014 VL 259 BP 114 EP 134 DI 10.1016/j.jcp.2013.11.016 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 286YZ UT WOS:000329506500008 ER PT J AU Pan, WX Bao, J Tartakovsky, AM AF Pan, Wenxiao Bao, Jie Tartakovsky, Alexandre M. TI Smoothed particle hydrodynamics continuous boundary force method for Navier-Stokes equations subject to a Robin boundary condition SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Robin boundary condition; Smoothed particle hydrodynamics; Slip boundary condition; No slip boundary condition; Navier-Stokes equations ID NON-NEWTONIAN MODEL; ICE-SHELF DYNAMICS; REACTIVE TRANSPORT; SURFACE-TENSION; SIMULATION; FLOWS; SHEET; SPH AB A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH-CBF method accurately describes both the no-slip and slip conditions. (C) 2013 Elsevier Inc. All rights reserved. C1 [Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Tartakovsky, Alexandre M.] Univ S Florida, Sch Geosci, Dept Math & Stat, Tampa, FL USA. RP Pan, WX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wenxiao.pan@pnnl.gov FU Applied Mathematics Program within the U.S. Department of Energy Office of Advanced Scientific Computing Research as part of the Collaboration on Mathematics for Mesoscopic Modeling of Materials (CM4) [DE-SC0009247]; U.S. Department of Energy by Battelle [DE-AC06-76RL01830] FX The authors gratefully acknowledge the funding support by the Applied Mathematics Program within the U.S. Department of Energy Office of Advanced Scientific Computing Research as part of the Collaboration on Mathematics for Mesoscopic Modeling of Materials (CM4), under award number DE-SC0009247. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RL01830. NR 30 TC 7 Z9 7 U1 2 U2 28 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2014 VL 259 BP 242 EP 259 DI 10.1016/j.jcp.2013.12.014 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 286YZ UT WOS:000329506500014 ER PT J AU Tipireddy, R Ghanem, R AF Tipireddy, Ramakrishna Ghanem, Roger TI Basis adaptation in homogeneous chaos spaces SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Curse of dimensionality; Model reduction; Polynomial chaos; Stochastic analysis ID REPRESENTATIONS; EXPANSIONS; OUTPUT; PDES AB We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces. (C) 2013 Elsevier Inc. All rights reserved. C1 [Ghanem, Roger] Univ So Calif, Los Angeles, CA 90089 USA. [Tipireddy, Ramakrishna] Pacific NW Natl Lab, Computat Math Dept, Richland, WA 99352 USA. RP Ghanem, R (reprint author), Univ So Calif, 210 KAP Hall, Los Angeles, CA 90089 USA. EM tipiredd@usc.edu; ghanem@usc.edu RI Ghanem, Roger/B-8570-2008 OI Ghanem, Roger/0000-0002-1890-920X FU DOE/ASCR; DOE/SciDAC FX Support from DOE/ASCR and DOE/SciDAC is gratefully acknowledged. NR 23 TC 10 Z9 10 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2014 VL 259 BP 304 EP 317 DI 10.1016/j.jcp.2013.12.009 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 286YZ UT WOS:000329506500018 ER PT J AU Guzik, SM Weisgraber, TH Colella, P Alder, BJ AF Guzik, Stephen M. Weisgraber, Todd H. Colella, Phillip Alder, Berni J. TI Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lattice-Boltzmann; Adaptive mesh refinement; Poiseuille flow; Taylor-Green vortex ID VISCOUS-FLUID FLOWS; GRID REFINEMENT; MODELS; HYDRODYNAMICS; STABILITY; SCHEMES AB A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adaptively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite-volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examples highlighting the mesh adaptivity of this method are also provided. (C) 2013 Elsevier Inc. All rights reserved. C1 [Guzik, Stephen M.] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Weisgraber, Todd H.; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Guzik, SM (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM Stephen.Guzik@colostate.edu; weisgraber2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344.] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 8 Z9 9 U1 3 U2 28 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2014 VL 259 BP 461 EP 487 DI 10.1016/j.jcp.2013.11.037 PG 27 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 286YZ UT WOS:000329506500026 ER PT J AU Morgan, NR Lipnikov, KN Burton, DE Kenamond, MA AF Morgan, Nathaniel R. Lipnikov, Konstantin N. Burton, Donald E. Kenamond, Mark A. TI A Lagrangian staggered grid Godunov-like approach for hydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian; Hydrodynamics; Staggered grid; Viscosity; Godunov; Finite-volume; Riemann ID ARTIFICIAL VISCOSITY; RIEMANN SOLVER; ENERGY; SCHEME; CONSERVATION; COMPRESSION; DYNAMICS; SYSTEMS; ERRORS AB Much research in Lagrangian staggered-grid hydrodynamics (SGH) has focused on explicit viscosity models for adding dissipation to a calculation that has shocks. The explicit viscosity is commonly called "artificial viscosity". Recently, researchers have developed hydrodynamic algorithms that incorporate approximate Riemann solutions on the dual grid [23,29,35,30,2,3]. This approach adds dissipation to the calculation via solving a Riemann-like problem. In this work, we follow the works of [28,2935,30] and solve a multidirectional Riemann-like problem at the cell center. The Riemann-like solution at the cell center is used in the momentum and energy equations. The multidirectional Riemann-like problem used in this work differs from previous work in that it is an extension of the cell-centered hydrodynamics (CCH) nodal solution approach in [7]. Incorporating the multidirectional Riemann-like problem from [7] into SGH has merits such as the ability to resist mesh instabilities like hourglass null modes and chevron null modes. The approach is valid for complex multidimensional flows with strong shocks. Numerical details and test problems are presented. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved. C1 [Morgan, Nathaniel R.; Burton, Donald E.; Kenamond, Mark A.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. [Lipnikov, Konstantin N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Morgan, NR (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM nmorgan@lanl.gov FU U.S. Department of Energy through the Laboratory Directed Research and Development (LDRD) program; Advanced Scientific Computing (ASC) program at Los Alamos National Laboratory FX We gratefully acknowledge the support of the U.S. Department of Energy through the Laboratory Directed Research and Development (LDRD) program and the Advanced Scientific Computing (ASC) program at Los Alamos National Laboratory. We are grateful for the help of Scott Ramsey on the Kidder problem. We also thank Misha Shashkov for his input on this research effort. The Los Alamos unlimited release number is: LA-UR-13-23442. NR 48 TC 8 Z9 9 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 15 PY 2014 VL 259 BP 568 EP 597 DI 10.1016/j.jcp.2013.12.013 PG 30 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 286YZ UT WOS:000329506500030 ER PT J AU Park, ES Kim, HJ Bae, JC Huh, MY AF Park, E. S. Kim, H. J. Bae, J. C. Huh, M. Y. TI Effect of stress states on the deformation behavior of Cu-based bulk metallic glass in the supercooled liquid region SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Bulk metallic glass; Supercooled liquid region; Deformation behavior; Diffusion ID CRYSTALLIZATION BEHAVIOR; SUPERPLASTIC DEFORMATION; AMORPHOUS-ALLOYS; MECHANICAL-BEHAVIOR; VISCOUS-FLOW AB The effect of stress states on the deformation behavior of the Cu54Zr22Ti18Ni6 bulk metallic glass (BMG) alloy was studied in the supercooled liquid region. At 723 K, Newtonian plastic flow governed the deformation during the compression test, whereas strain-hardening occurred during the tensile test. At 733 K, a fast failure was observed during tensile test. The diffusion rate of Cu atoms in the BMG alloy plays an important role in the deformation behavior. The fast diffusion of Cu atoms under the tensile stress state caused faster crystallization leading to a fast strain-hardening during the tensile plastic deformation. Published by Elsevier B.V. C1 [Park, E. S.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Kim, H. J.; Bae, J. C.] Korea Inst Ind Technol, Liquid Proc & Casting Technol R&D Dept, Inchon 406130, South Korea. [Huh, M. Y.] Korea Univ, Dept Mat Sci & Engn, Seoul 136701, South Korea. RP Park, ES (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM espark@ameslab.gov NR 30 TC 1 Z9 1 U1 2 U2 36 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 15 PY 2014 VL 586 SU 1 BP S31 EP S35 DI 10.1016/j.jallcom.2013.01.031 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 268RS UT WOS:000328188800007 ER PT J AU Smith, KA Pickel, DL Yager, K Kisslinger, K Verduzco, R AF Smith, Kendall A. Pickel, Deanna L. Yager, Kevin Kisslinger, Kim Verduzco, Rafael TI Conjugated Block Copolymers via Functionalized Initiators and Click Chemistry SO JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY LA English DT Article DE block copolymers; click chemistry; conducting polymers; conjugated block copolymers; crystallization; morphology; organic photovoltaics; P3DDT; P3HT; PFO; self-assembly; self-organization; X-ray ID POLYMER SOLAR-CELLS; SIDE-CHAIN; POLY(3-ALKYLTHIOPHENES); POLY(3-HEXYLTHIOPHENE); CRYSTALLINITY; POLYTHIOPHENE; GRIM AB Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well-defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3-hexylthiophene)-block-poly(9,9-dioctylfluorene) (P3HT-b-PF) and poly(3-dodecylthiophene)-block-poly(9,9-dioctylfluorene) (P3DDT-b-PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The thin film morphology of the resulting all-conjugated block copolymers is analyzed by a combination of grazing-incidence X-ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT-b-PF films exhibit significant PF/P3DDT co-crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the - stacking direction of polymer crystallites. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 154-163 C1 [Smith, Kendall A.; Verduzco, Rafael] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Pickel, Deanna L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yager, Kevin; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Verduzco, R (reprint author), Rice Univ, Dept Chem & Biomol Engn, MS-362,6100 Main St, Houston, TX 77005 USA. EM rafaelv@rice.edu RI Yager, Kevin/F-9804-2011; Kisslinger, Kim/F-4485-2014 OI Yager, Kevin/0000-0001-7745-2513; FU National Science Foundation [CBET-1264703]; Welch Foundation for Chemical Research [C-1750]; U.S. DOE [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This material is based upon work supported by the National Science Foundation under Grant No. CBET-1264703. We acknowledge support from the Welch Foundation for Chemical Research (grant C-1750). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source and Center for Functional Nanomaterials, Brookhaven National Laboratory, were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Authors also acknowledge the Mikos group at Rice University for the use of their DSC instrument. NR 29 TC 9 Z9 9 U1 1 U2 85 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-624X EI 1099-0518 J9 J POLYM SCI POL CHEM JI J. Polym. Sci. Pol. Chem. PD FEB 15 PY 2014 VL 52 IS 2 BP 154 EP 163 DI 10.1002/pola.26984 PG 10 WC Polymer Science SC Polymer Science GA 266VI UT WOS:000328051600002 ER PT J AU Capanoa, MA Capano, BM Morisette, DT Salleo, A Lee, S Toney, MF AF Capanoa, Michael A. Capano, Benjamin M. Morisette, Dallas T. Salleo, Alberto Lee, Sangwon Toney, Michael F. TI High-resolution x-ray analysis of graphene grown on 4H-SiC (000(1)over-bar) at low pressures SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID EPITAXIAL GRAPHENE; SILICON-CARBIDE; ELECTRONIC-STRUCTURE; CARRIER MOBILITY; LARGE-AREA; FACE; GRAPHITIZATION; CONFINEMENT; GRAPHITE; SURFACE AB This article explores the growth of graphene under low-pressure Ar conditions. Carbon- and silicon-face 4H-SiC samples are subjected to epitaxial graphene growth at 1600 degrees C in vacuum, in 1 mbar argon, or in 10 mbar of argon. High-resolution x-ray scattering is used to characterize all graphene films. On the C-face, specular scans reveal a bimodal distribution of thicknesses that decrease with increasing Ar pressure. Thin and thick regions are approximately 15 and 46 monolayers in C-face graphene grown at high vacuum, 14 and 42 monolayers thick in graphene grown at 1 mbar, and 12 and 32 monolayers thick in graphene grown at 10 mbar. Azimuthal scans confirm in all cases that graphene layers are epitaxial and display expected crystallographic relationships with the underlying SiC substrate. In-plane azimuthal scans show the rotational disorder increases as pressure increases. Peaks in radial scans are asymmetric, suggesting the grain structure has a bimodal distribution of large and small domains. The sample displaying the lowest average Hall mobility (grown at 1 mbar) has the largest population of small crystallites (coherence length on the order of similar to 30 nm). Variations in structure and mobility of C-face graphene are attributed to inadequate control of Si sublimation during growth. C1 [Capanoa, Michael A.; Morisette, Dallas T.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Capanoa, Michael A.; Morisette, Dallas T.] Purdue Univ, Comp Engn & Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Capanoa, Michael A.; Capano, Benjamin M.; Morisette, Dallas T.] Grp 4 Dev LLC, W Lafayette, IN 47906 USA. [Salleo, Alberto; Lee, Sangwon] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Toney, Michael F.] SSRL, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Capanoa, MA (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM capano@purdue.edu FU Indiana's 21 Fund; AFRL; DARPA FX This work is funded through grants from Indiana's 21 Fund, AFRL, and DARPA. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U. S. Department of Energy Office of Science by Stanford University. The authors acknowledge the contributions of Diana Convey (Arizona State University) for help with x-ray topography. NR 46 TC 0 Z9 0 U1 2 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD FEB 14 PY 2014 VL 29 IS 3 BP 439 EP 446 DI 10.1557/jmr.2013.306 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AB7IJ UT WOS:000331962700014 ER PT J AU Ekuma, CE Terletska, H Tam, KM Meng, ZY Moreno, J Jarrell, M AF Ekuma, C. E. Terletska, H. Tam, K. -M. Meng, Z. -Y. Moreno, J. Jarrell, M. TI Typical medium dynamical cluster approximation for the study of Anderson localization in three dimensions SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; SELF-CONSISTENT THEORY; FERMION SYSTEMS; ALLOYS; DIFFUSION; ABSENCE; LATTICE; MODEL AB We develop a systematic typical medium dynamical cluster approximation that provides a proper description of the Anderson localization transition in three dimensions (3D). Our method successfully captures the localization phenomenon both in the low and large disorder regimes, and allows us to study the localization in different momenta cells, which renders the discovery that the Anderson localization transition occurs in a cell-selective fashion. As a function of cluster size, our method systematically recovers the reentrance behavior of the mobility edge and obtains the correct critical disorder strength for Anderson localization in 3D. C1 [Ekuma, C. E.; Terletska, H.; Tam, K. -M.; Meng, Z. -Y.; Moreno, J.; Jarrell, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Ekuma, C. E.; Tam, K. -M.; Meng, Z. -Y.; Moreno, J.; Jarrell, M.] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Terletska, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Meng, Z. -Y.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Ekuma, CE (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM cekuma1@lsu.edu; jarrellphysics@gmail.com RI Meng, Zi Yang/F-5212-2012; Moreno, Juana/D-5882-2012 OI Meng, Zi Yang/0000-0001-9771-7494; FU DOE BES CMCSN [DE-AC02-98CH10886]; DOE SciDAC Grant [DE-SC0005274]; NSF EPSCoR Cooperative Agreement [EPS-1003897] FX We thank V. Dobrosavljevic, S.-X. Yang, and C. Moore for useful discussions. This work is supported by the DOE BES CMCSN Grant No. DE-AC02-98CH10886 (H. T.) and SciDAC Grant No. DE-SC0005274 (M.J. and K. M. T), and the NSF EPSCoR Cooperative Agreement No. EPS-1003897 (C.E., Z.Y.M., and J.M.). Supercomputer support is provided by the Louisiana Optical Network Initiative (LONI) and HPC@LSU computing resources. NR 43 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 14 PY 2014 VL 89 IS 8 AR 081107 DI 10.1103/PhysRevB.89.081107 PG 5 WC Physics, Condensed Matter SC Physics GA AC3AV UT WOS:000332388300001 ER PT J AU Quevedo, RC Goity, JL Trinchero, RC AF Carcasses Quevedo, R. Goity, J. L. Trinchero, R. C. TI QCD condensates and holographic Wilson loops for asymptotically AdS spaces SO PHYSICAL REVIEW D LA English DT Article ID N FIELD-THEORIES; STRING THEORY; GAUGE-THEORY; PHYSICS AB The minimization of the Nambu-Goto action for a surface whose contour defines a circular Wilson loop of radius a placed at a finite value of the coordinate orthogonal to the boundary is considered. This is done for asymptotically anti-de Sitter (AdS) spaces. The condensates of even dimension n = 2 through 10 are calculated in terms of the coefficient of an in the expansion of the on-shell subtracted Nambu-Goto action for small a. The subtraction employed is such that it presents no conflict with conformal invariance in the AdS case and need not introduce an additional infrared scale for the case of confining geometries. It is shown that the UV value of the condensates is universal in the sense that they only depend on the first coefficients of the difference with the AdS case. C1 [Carcasses Quevedo, R.; Trinchero, R. C.] Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Carcasses Quevedo, R.; Trinchero, R. C.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Goity, J. L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Quevedo, RC (reprint author), Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM robert.carcasses-quevedo@ib.edu.ar; goity@jlab.org; trincher@cab.cnea.gov.ar FU DOE [DEAC05-06OR23177]; National Science Foundation (U. S.) [PHY-0855789, PHY-1307413]; CONICET (Argentina) [11220090101018] FX This work was supported by DOE Contract No. DEAC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility, and by the National Science Foundation (U. S.) through Grants No. PHY-0855789 and No. PHY-1307413 (J. L. G.), and by CONICET (Argentina) PIP No. 11220090101018 (R. C. T.). J. L. G. thanks the Instituto Balseiro and the Centro NR 29 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 14 PY 2014 VL 89 IS 3 AR 036004 DI 10.1103/PhysRevD.89.036004 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AC0BT UT WOS:000332160500005 ER PT J AU Naterer, GF Suppiah, S Stolberg, L Lewis, M Ahmed, S Wang, Z Rosen, MA Dincer, I Gabriel, K Secnik, E Easton, EB Lvov, SN Papangelakis, V Odukoya, A AF Naterer, G. F. Suppiah, S. Stolberg, L. Lewis, M. Ahmed, S. Wang, Z. Rosen, M. A. Dincer, I. Gabriel, K. Secnik, E. Easton, E. B. Lvov, S. N. Papangelakis, V. Odukoya, A. TI Progress of international program on hydrogen production with the copper-chlorine cycle SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Thermochemical hydrogen production; Copper-chlorine cycle; Nuclear energy; Electrolysis; Hydrolysis; Thermolysis ID CL THERMOCHEMICAL CYCLE; PROTON-EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; FUEL-CELL; NAFION MEMBRANES; TRANSPORT; PYRROLE; POLYMERIZATION; ELECTROLYZER; ACID AB This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper chlorine (Cu-Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm(2) electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl-HCl-H2O and CuCl2-HCl-H2O ternary systems are presented along with solubility data for CuCl in HCl-H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu-Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Naterer, G. F.] Mem Univ Newfoundland, St John, NF A1B 3X5, Canada. [Naterer, G. F.; Odukoya, A.] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada. [Suppiah, S.; Stolberg, L.] Atom Energy Canada Ltd, Hydrogen Isotopes Technol Branch, Chalk River, ON K0J 1J0, Canada. [Lewis, M.; Ahmed, S.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. [Wang, Z.; Rosen, M. A.; Dincer, I.; Gabriel, K.] UOIT, Clean Energy Res Lab, Oshawa, ON L1H 7K4, Canada. [Secnik, E.] UOIT, Fac Engn & Appl Sci, Oshawa, ON L1H 7K, Canada. [Easton, E. B.] UOIT, Fac Sci, Oshawa, ON L1H 7K4, Canada. [Lvov, S. N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Papangelakis, V.] Univ Toronto, Toronto, ON M5S 3E5, Canada. RP Naterer, GF (reprint author), Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada. EM gnaterer@mun.ca RI Dincer, Ibrahim/A-5379-2012 FU Atomic Energy of Canada Limited; Ontario Research Excellence Fund; Natural Sciences and Engineering Research Council of Canada; University Network of Excellence in Nuclear Engineering (UNENE); Canada Research Chairs Program FX Support of this research from Atomic Energy of Canada Limited, Ontario Research Excellence Fund, Natural Sciences and Engineering Research Council of Canada, University Network of Excellence in Nuclear Engineering (UNENE) and the Canada Research Chairs Program are gratefully acknowledged. NR 51 TC 11 Z9 11 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 14 PY 2014 VL 39 IS 6 BP 2431 EP 2445 DI 10.1016/j.ijhydene.2013.11.073 PG 15 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AB6SP UT WOS:000331920100001 ER PT J AU Jiang, XJ Devaraj, A Balamurugan, B Cui, J Shield, JE AF Jiang, Xiujuan Devaraj, Arun Balamurugan, B. Cui, Jun Shield, Jeffrey E. TI Microstructure of multistage annealed nanocrystalline SmCo2Fe2B alloy with enhanced magnetic properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PERMANENT-MAGNETS; ATOM-PROBE; COERCIVITY MECHANISMS; PHASE-TRANSFORMATIONS; GRAIN-BOUNDARY; DISORDER; ORDER; PRECIPITATION; DECOMPOSITION; FERROMAGNETS AB The microstructure and chemistry of SmCo2Fe2B melt-spun alloy after multistage annealing was investigated using high resolution transmission electron microscopy (HRTEM) and 3D atom probe tomography. The multistage annealing resulted in an increase in both the coercivity and magnetization. The presence of Sm(Co,Fe)(4)B (1:4:1) and Sm-2(Co,Fe)(17)B-x (2:17:x) magnetic phases were confirmed using both techniques. Fe2B at a scale of similar to 5 nm was found by HRTEM precipitating within the 1:4:1 phase after the second-stage annealing. Ordering within the 2:17:x phase was directly identified both by the presence of antiphase boundaries observed by TEM and the interconnected isocomposition surface network found in 3D atom probe results in addition to radial distribution function analysis. The variations in the local chemistry after the secondary annealing were considered pivotal in improving the magnetic properties. (C) 2014 AIP Publishing LLC. C1 [Jiang, Xiujuan; Shield, Jeffrey E.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Jiang, Xiujuan; Balamurugan, B.; Shield, Jeffrey E.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Devaraj, Arun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Balamurugan, B.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Cui, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Jiang, XJ (reprint author), Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. EM xiujuan.jiang@Huskers.unl.edu FU Army Research Office [W911 NF-10-1-0099]; Pacific Northwest National Laboratory Multiscale Synthesis and Simulation Initiative; Nebraska Research Initiative; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-76RL01830] FX The authors are obliged to funding from Army Research Office under grant number W911 NF-10-1-0099 and Pacific Northwest National Laboratory Multiscale Synthesis and Simulation Initiative. This research was performed in part in Central Facilities of the Nebraska Center for Materials and Nanoscience, which is supported by the Nebraska Research Initiative. Arun Devaraj would like to acknowledge Thevuthasan Suntharampillai for the helpful discussions. A portion of the research described here was performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and is a part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). EMSL is located at PNNL, a multiprogram national laboratory operated by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 for the U.S. Department of Energy. NR 45 TC 2 Z9 2 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2014 VL 115 IS 6 AR 063902 DI 10.1063/1.4865298 PG 6 WC Physics, Applied SC Physics GA AB5PC UT WOS:000331839800031 ER PT J AU Paisley, EA Gaddy, BE LeBeau, JM Shelton, CT Biegalski, MD Christen, HM Losego, MD Mita, S Collazo, R Sitar, Z Irving, DL Maria, JP AF Paisley, Elizabeth A. Gaddy, Benjamin E. LeBeau, James M. Shelton, Christopher T. Biegalski, Michael D. Christen, Hans M. Losego, Mark D. Mita, Seiji Collazo, Ramon Sitar, Zlatko Irving, Douglas L. Maria, Jon-Paul TI Smooth cubic commensurate oxides on gallium nitride SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; EPITAXY; GROWTH; SURFACES; METALS; WATER; MGO AB Smooth, commensurate alloys of < 111 >-oriented Mg0.52Ca0.48O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide vertical bar nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 x reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO vertical bar GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures. (C) 2014 AIP Publishing LLC. C1 [Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Paisley, EA (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jpmaria@ncsu.edu RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU NSF DMR [0547134, 1108071]; NSF GRF [12345]; NSF [DMR-1151568]; DoD, AFOSR through the NDSEG fellowship [32 CFR 168a]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory FX E.A.P., J.-P.M., and C. T. S. acknowledge support by the NSF DMR grants 0547134 and 1108071 and the NSF GRF grant 12345. D. L. I. and B. E. G. acknowledge support from the NSF under DMR-1151568 as well as support from the DoD, AFOSR, through the NDSEG fellowship, 32 CFR 168a. PLD synthesis was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge Bahar M. Alipour for TEM sample preparation. NR 26 TC 4 Z9 4 U1 0 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2014 VL 115 IS 6 AR 064101 DI 10.1063/1.4861172 PG 6 WC Physics, Applied SC Physics GA AB5PC UT WOS:000331839800040 ER PT J AU Paudel, NR Young, M Roland, PJ Ellingson, RJ Yan, YF Compaan, AD AF Paudel, Naba R. Young, Matthew Roland, Paul J. Ellingson, Randy J. Yan, Yanfa Compaan, Alvin D. TI Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; THIN-FILMS; INDUCED RECRYSTALLIZATION; SULFUR DIFFUSION; CDTE; CDCL2 AB CdCl2 activation near 400 degrees C is known to be critically important for obtaining high efficiency CdS/CdTe solar cells. However, this treatment step behaves differently on high-temperature-grown CdTe than on lower-temperature-grown CdTe layers such as those grown by sputtering. On sputtered films, the post-deposition activation produces grain-boundary passivation, sulfur diffusion into CdTe, and substantial grain growth. Nevertheless, we find the CdCl2 process for sputtered films to be characterized by a single activation energy that we interpret as applying to S diffusion into CdTe. We find this activation energy to hold for CdCl2 treatments from 370 to 440 degrees C. The completed CdS/CdTe solar-cell structures showed somewhat poorer initial performance with activation above 420 degrees C, but, in this case, the cell efficiency increased after accelerated life testing at 85 degrees C, open-circuit biasing and one-sun illumination. With an optimized CdCl2 activation process, the use of oxygenated sputtered CdS, and low-iron soda-lime glass, cell efficiencies of 14.5% were achieved. (C) 2014 AIP Publishing LLC. C1 [Paudel, Naba R.; Roland, Paul J.; Ellingson, Randy J.; Yan, Yanfa; Compaan, Alvin D.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Young, Matthew] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Paudel, NR (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. FU DOE University PV Process and Product Development Program [DE-FG36-08GO18067] FX The Authors would like to thank Dr. David Strickler from NSG (Pilkington NA) Toledo, OH, for supplying low-iron, SnO2:F-coated, soda-lime glass substrates. This work was partially supported by the DOE University PV Process and Product Development Program under Contract No. DE-FG36-08GO18067. NR 28 TC 16 Z9 16 U1 2 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2014 VL 115 IS 6 AR 064502 DI 10.1063/1.4864415 PG 7 WC Physics, Applied SC Physics GA AB5PC UT WOS:000331839800052 ER PT J AU Perry, JO Bacon, JD Borozdin, KN Fabritius, JM Morris, CL AF Perry, J. O. Bacon, J. D. Borozdin, K. N. Fabritius, J. M., II Morris, C. L. TI Analysis of the multigroup model for muon tomography based threat detection SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID COSMIC-RAY MUONS; INNER-STRUCTURE; RADIOGRAPHY; RECONSTRUCTION; SCATTERING AB We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M., II; Morris, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perry, JO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617 FU Defense Nuclear Nonproliferation Research and Development; US Department of Energy; NNSA; United States Department of State; Defense Threat Reduction Agency of the United States Department of Defense FX The authors would like to acknowledge the past several years of collaboration with National Security Technologies and Decision Sciences Corporation. This work was supported in part by the Defense Nuclear Nonproliferation Research and Development, US Department of Energy, NNSA, the United States Department of State, and the Defense Threat Reduction Agency of the United States Department of Defense, but it does not necessarily reflect the views or position of the U.S. government on the issues discussed herein. NR 21 TC 0 Z9 1 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2014 VL 115 IS 6 AR 064904 DI 10.1063/1.4865169 PG 5 WC Physics, Applied SC Physics GA AB5PC UT WOS:000331839800065 ER PT J AU Shaughnessy, MC Bartelt, NC Zimmerman, JA Sugar, JD AF Shaughnessy, M. C. Bartelt, N. C. Zimmerman, J. A. Sugar, J. D. TI Energetics and diffusion of gold in bismuth telluride-based thermoelectric compounds SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SOLID SOLUBILITY; BI2TE3; CRYSTALS; SYSTEM; ALLOYS; SB2TE3; BI2SE3; FIGURE; COPPER; SILVER AB We investigate experimentally and theoretically the long-term chemical and morphological stability of Au contacts on Bi2Te3-based materials. Electron microscopy and energy dispersive spectroscopy experiments show that thermal annealing severely degrades the integrity of micron-thick Au films on n-type Bi2Te3, eventually leading to their complete dissolution. To explain this result, we have used density functional theory to calculate defect formation energies and diffusion barriers of Au within Bi2Te3. We identify an interstitial binding site consistent with previous reports of (rapid) anisotropic diffusion of Au in Bi2Te3. We find, however, that substitutional Au has lower formation energies. We suggest that these substitutional defects may be active in our experiments and account for the relatively long time scale of the contact degradation. (C) 2014 AIP Publishing LLC. C1 [Shaughnessy, M. C.; Bartelt, N. C.; Zimmerman, J. A.; Sugar, J. D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Shaughnessy, MC (reprint author), Synopsys, Mountain View, CA 95051 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 40 TC 2 Z9 2 U1 12 U2 74 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 14 PY 2014 VL 115 IS 6 AR 063705 DI 10.1063/1.4865735 PG 8 WC Physics, Applied SC Physics GA AB5PC UT WOS:000331839800027 ER PT J AU Barros, K Sinkovits, D Luijten, E AF Barros, Kipton Sinkovits, Daniel Luijten, Erik TI Efficient and accurate simulation of dynamic dielectric objects SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; EWALD METHOD; ELECTROSTATICS; SYSTEMS; MEDIA; COMPUTATION; ALGORITHM; CHEMISTRY; CHANNEL; BIOLOGY AB Electrostatic interactions between dielectric objects are complex and of a many-body nature, owing to induced surface bound charge. We present a collection of techniques to simulate dynamical dielectric objects. We calculate the surface bound charge from a matrix equation using the Generalized Minimal Residue method (GMRES). Empirically, we find that GMRES converges very quickly. Indeed, our detailed analysis suggests that the relevant matrix has a very compact spectrum for all non-degenerate dielectric geometries. Each GMRES iteration can be evaluated using a fast Ewald solver with cost that scales linearly or near-linearly in the number of surface charge elements. We analyze several previously proposed methods for calculating the bound charge, and show that our approach compares favorably. (C) 2014 AIP Publishing LLC. C1 [Barros, Kipton; Sinkovits, Daniel; Luijten, Erik] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Barros, Kipton; Luijten, Erik] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. [Barros, Kipton] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Barros, Kipton] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Barros, K (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM kbarros@lanl.gov; luijten@northwestern.edu RI Luijten, Erik/E-3899-2010; OI Luijten, Erik/0000-0003-2364-1866; Barros, Kipton/0000-0002-1333-5972 FU National Science Foundation [DMR-1006430, DMR-1310211]; LANL/LDRD program under the DOE NNSA [DE-AC52-06NA25396] FX This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-1006430 and DMR-1310211. We acknowledge computing time at the Quest high-performance computing facility at Northwestern University. K.B. also acknowledges support by the LANL/LDRD program under the auspices of the DOE NNSA, Contract No. DE-AC52-06NA25396. NR 55 TC 16 Z9 16 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2014 VL 140 IS 6 AR 064903 DI 10.1063/1.4863451 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AB5ZV UT WOS:000331868100043 PM 24527936 ER PT J AU Ding, J Xu, M Guan, PF Deng, SW Cheng, YQ Ma, E AF Ding, J. Xu, M. Guan, P. F. Deng, S. W. Cheng, Y. Q. Ma, E. TI Temperature effects on atomic pair distribution functions of melts SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; AUGMENTED-WAVE METHOD; SUPERCOOLED LIQUIDS; LOCAL ORDER; SILICON; CRYSTALLINE; TRANSITION; METALS; PHASES AB Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds. (C) 2014 AIP Publishing LLC. C1 [Ding, J.; Guan, P. F.; Deng, S. W.; Ma, E.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Xu, M.] Rhein Westfal TH Aachen, Phys Inst IA 1, D-52056 Aachen, Germany. [Guan, P. F.] Beijing Computat Sci Res Ctr, Beijing 100086, Peoples R China. [Deng, S. W.] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Cheng, Y. Q.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Ding, J (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM ding@jhu.edu RI Ma, En/A-3232-2010; Cheng, Yongqiang/F-6567-2010; Ding, Jun/K-1989-2012; Xu, Ming/E-2188-2015 OI Ding, Jun/0000-0002-4091-8663; Xu, Ming/0000-0002-2730-283X FU U.S.-DOE-BES, Division of Materials Sciences and Engineering [DE-FG02-09ER46056]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX J.D. and E.M. were supported at JHU by U.S.-DOE-BES, Division of Materials Sciences and Engineering, under Contract No. DE-FG02-09ER46056. The computer simulations were performed using the NERSC supercomputers. Y.Q.C. was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 9 Z9 9 U1 3 U2 50 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2014 VL 140 IS 6 AR 064501 DI 10.1063/1.4864106 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AB5ZV UT WOS:000331868100033 PM 24527926 ER PT J AU Lin, MF Neumark, DM Gessner, O Leone, SR AF Lin, Ming-Fu Neumark, Daniel M. Gessner, Oliver Leone, Stephen R. TI Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PHOTOELECTRON-PHOTOION COINCIDENCE; ENERGY-LOSS SPECTROSCOPY; INTENSE LASER FIELDS; HIGH-RESOLUTION; POLYATOMIC-MOLECULES; STRUCTURAL DYNAMICS; SHELL EXCITATION; FINE-STRUCTURE; GENERATION; IONS AB Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH2=CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C2H3Br, the formation of C2H3Br+ ions in their ground ((X) over tilde) and first excited ((A) over tilde) states, the production of C2H3Br++ ions, and the appearance of neutral Br (P-2(3/2)) atoms by dissociative ionization. The formation of free Br (P-2(3/2)) atoms occurs on a timescale of 330 +/- 150 fs. The ionic (A) over tilde state exhibits a time-dependent XUV absorption energy shift of similar to 0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the (A) over tilde state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C2H3Br+ ((A) over tilde) ions undergoes intramolecular vibrational energy redistribution followed by the C-Br bond dissociation. The C2H3Br+ ((X) over tilde) products and the majority of the C2H3Br++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy. (C) 2014 AIP Publishing LLC. C1 [Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Lin, Ming-Fu; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Lin, MF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Security Science and Engineering Faculty Fellowship; Ministry of Education, Taiwan, Republic of China FX We thank Scott Sayres and Chih-Yuan Lin for discussions of strong-field ionization of polyatomic molecules and spin-orbit coupling of valence orbitals. We appreciate the help of Camila Bacellar, Neil Cole-Filipiak, and Alex Shreve with respect to the theoretical calculations using the GAUSSIAN 09 program package. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. S.R.L. acknowledges the support of a National Security Science and Engineering Faculty Fellowship. M.-F. Lin also expresses gratitude for a fellowship from the Ministry of Education, Taiwan, Republic of China. NR 76 TC 11 Z9 11 U1 5 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2014 VL 140 IS 6 AR 064311 DI 10.1063/1.4865128 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AB5ZV UT WOS:000331868100026 PM 24527919 ER PT J AU Gan, YX Yazawa, RH Smith, JL Oxley, JC Zhang, G Canino, J Ying, J Kagan, G Zhang, LH AF Gan, Yong X. Yazawa, Rachel H. Smith, James L. Oxley, Jimmie C. Zhang, Guang Canino, Jonathan Ying, Joanna Kagan, Gerald Zhang, Lihua TI Nitroaromatic explosive sorption and sensing using electrochemically processed polyaniline-titanium dioxide hybrid nanocomposite SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Nanostructures; Polymers; Oxides; Electrochemical techniques; Electron microscopy; Surface properties ID ENHANCED RAMAN-SPECTROSCOPY; SENSITIVE DETECTION; INORGANIC NANOMATERIALS; TRACE-DETECTION; GRAPHENE OXIDE; NANOPARTICLES; SENSORS; 2,4,6-TRINITROTOLUENE; TRINITROTOLUENE; POLYMER AB This work deals with synthesis and characterization of polyaniline and titanium dioxide nanocomposites for explosive detection and mitigation. The titanium dioxide nanotube array was prepared through electrochemical oxidation of pure titanium in a fluorine ion-containing ethylene glycol water solution followed by annealing at 450 degrees C in air. Polyaniline was obtained by electrochemical polymerization from an aniline and sulfuric acid solution. Both polyaniline and the nanotube show sorption of 2,4,6-trinitrotoluene (TNT) vapor at 60 degrees C. Polyaniline modified by alginic acid sodium salt caused color change of TNT solutions. Polyaniline-based sensor showed decrease of electrical resistance in TNT acetonitrile solutions. Ultraviolet light response tests revealed that TNT caused significant drop in open circuit voltage of the titanium dioxide nanotube. In addition, the polyaniline/titanium oxide nanocomposites show colorimetric responses in the explosive solution, which makes them have multiple response mechanisms for nitro-aromatic explosive detection and mitigation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gan, Yong X.] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA. [Yazawa, Rachel H.] Calif State Polytech Univ Pomona, Dept Civil Engn, Pomona, CA 91768 USA. [Smith, James L.; Oxley, Jimmie C.; Zhang, Guang; Canino, Jonathan; Ying, Joanna; Kagan, Gerald] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gan, YX (reprint author), Calif State Polytech Univ Pomona, Dept Mech Engn, Coll Engn, 3801 W Temple Ave, Pomona, CA 91768 USA. EM yxgan@csupomona.edu RI Zhang, Lihua/F-4502-2014 FU DOE [DE-AC05-06OR23100]; U.S. National Science Foundation (NSF) [CMMI-1333044]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was performed under an appointment to the U.S. Department of Homeland Security (DHS) Science & Technology (S&T) Directorate Office of University Programs Summer Research Team Program for Minority Serving Institutions, administrated by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DHS, DOE or ORAU/ORISE. YXG acknowledges the support from U.S. National Science Foundation (NSF) under Grant No. CMMI-1333044. The electron microscopic research carried out in the Center for Functional Nanomaterials at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We appreciate Ryan Rettinger, Devon Swanson, Marc Cote, and Courtney Buratczuk for their valuable assistance in experiments. NR 47 TC 3 Z9 3 U1 5 U2 56 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD FEB 14 PY 2014 VL 143 IS 3 BP 1431 EP 1439 DI 10.1016/j.matchemphys.2013.11.059 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA AA8LR UT WOS:000331347500075 ER PT J AU Droubay, TC Chambers, SA Joly, AG Hess, WP Nemeth, K Harkay, KC Spentzouris, L AF Droubay, Timothy C. Chambers, Scott A. Joly, Alan G. Hess, Wayne P. Nemeth, Karoly Harkay, Katherine C. Spentzouris, Linda TI Metal-Insulator Photocathode Heterojunction for Directed Electron Emission SO PHYSICAL REVIEW LETTERS LA English DT Article ID WORK FUNCTION MEASUREMENTS; OXIDE-FILMS; SPECTROSCOPY; MGO AB We use angle-resolved photoemission under ultraviolet laser excitation to demonstrate that the electron emission properties of Ag(001) can be markedly enhanced and redirected along the surface normal by the deposition of a few monolayers of epitaxial MgO. We observe new low-binding energy states with small spreads in their surface parallel momenta as a result of MgO/Ag(001) interface formation. Under 4.66 eV laser excitation, the quantum efficiency of MgO/Ag(001) is a factor of 7 greater than that of clean Ag(001), revealing the utility of such heterojunctions as advanced photocathodes. C1 [Droubay, Timothy C.; Chambers, Scott A.; Joly, Alan G.; Hess, Wayne P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Nemeth, Karoly; Harkay, Katherine C.; Spentzouris, Linda] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Nemeth, Karoly; Spentzouris, Linda] IIT, Dept Phys, Chicago, IL 60616 USA. RP Droubay, TC (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov RI Nemeth, Karoly/L-7806-2014; Droubay, Tim/D-5395-2016 OI Nemeth, Karoly/0000-0001-8366-1397; Droubay, Tim/0000-0002-8821-0322 FU Department of Energy's Office of Biological and Environmental Research; U.S. DOE Office of Science [DE-AC02-06CH11357, DE-SC0007952]; National Science Foundation [PHY-0969989]; NERSC (U.S. DOE) [DE-AC02-05CH11231] FX The experiments described here were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and is part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). EMSL is located at PNNL, a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy. K. C. H. and K. N. were supported by the U.S. DOE Office of Science, under Contract No. DE-AC02-06CH11357, and L. S. was supported by the National Science Foundation (Grant No. PHY-0969989) as well as the U.S. DOE Office of Science, under Contract No. DE-SC0007952. K. N. gratefully acknowledges computational resources from NERSC (U.S. DOE Contract No. DE-AC02-05CH11231). NR 24 TC 7 Z9 7 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 14 PY 2014 VL 112 IS 6 AR 067601 DI 10.1103/PhysRevLett.112.067601 PG 5 WC Physics, Multidisciplinary SC Physics GA AB7EK UT WOS:000331951900006 PM 24580707 ER PT J AU Beall, CJ Campbell, AG Dayeh, DM Griffen, AL Podar, M Leys, EJ AF Beall, Clifford J. Campbell, Alisha G. Dayeh, Daniel M. Griffen, Ann L. Podar, Mircea Leys, Eugene J. TI Single Cell Genomics of Uncultured, Health-Associated Tannerella BU063 (Oral Taxon 286) and Comparison to the Closely Related Pathogen Tannerella forsythia SO PLOS ONE LA English DT Article ID GINGIVAL EPITHELIAL-CELLS; REPEAT BSPA PROTEIN; BACTEROIDES-FORSYTHUS; S-LAYER; ATCC 43037; SURFACE; PERIODONTITIS; EXPRESSION; IDENTIFICATION; SYSTEM AB The uncultivated bacterium Tannerella BU063 (oral taxon 286) is the closest relative to the periodontal pathogen Tannerella forsythia, but is not disease-associated itself. Using a single cell genomics approach, we isolated 12 individual BU063 cells by flow cytometry, and we amplified and sequenced their genomes. Comparative analyses of the assembled genomic scaffolds and their gene contents allowed us to study the diversity of this taxon within the oral community of a single human donor that provided the sample. Eight different BU063 genotypes were represented, all about 5% divergent at the nucleotide level. There were 2 pairs of cells and one group of three that were more highly identical, and may represent clonal populations. We did pooled assemblies on the nearly identical genomes to increase the assembled genomic coverage. The presence of a set of 66 "core'' housekeeping genes showed that two of the single cell assemblies and the assembly derived from the three putatively identical cells were essentially complete. As expected, the genome of BU063 is more similar to Tannerella forsythia than any other known genome, although there are significant differences, including a 44% difference in gene content, changes in metabolic pathways, loss of synteny, and an 8-9% difference in GC content. Several identified virulence genes of T. forsythia are not found in BU063 including karilysin, prtH, and bspA. The absence of these genes may explain the lack of periodontal pathogenesis by this species and provides a new foundation to further understand the genome evolution and mechanisms of bacterial-host interaction in closely related oral microbes with different pathogenicity potential. C1 [Beall, Clifford J.; Dayeh, Daniel M.; Leys, Eugene J.] Ohio State Univ, Coll Dent, Div Oral Biol, Columbus, OH 43210 USA. [Campbell, Alisha G.; Podar, Mircea] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Campbell, Alisha G.; Podar, Mircea] Univ Tennessee, Genome Sci & Technol Program, Knoxville, TN USA. [Griffen, Ann L.] Ohio State Univ, Coll Dent, Div Pediat Dent & Community Oral Hlth, Columbus, OH 43210 USA. RP Beall, CJ (reprint author), Ohio State Univ, Coll Dent, Div Oral Biol, Columbus, OH 43210 USA. EM beall.3@osu.edu OI Podar, Mircea/0000-0003-2776-0205 FU NIDCR [DE021567]; National Human Genome Research Institute [R01 HG004857] FX The work was supported by NIDCR grant DE021567 (nidcr.nih.gov) and grant #R01 HG004857 from the National Human Genome Research Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 57 TC 6 Z9 7 U1 0 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 14 PY 2014 VL 9 IS 2 AR e89398 DI 10.1371/journal.pone.0089398 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA7IR UT WOS:000331271500110 PM 24551246 ER PT J AU Brandt, AR Heath, GA Kort, EA O'Sullivan, F Petron, G Jordaan, SM Tans, P Wilcox, J Gopstein, AM Arent, D Wofsy, S Brown, NJ Bradley, R Stucky, GD Eardley, D Harriss, R AF Brandt, A. R. Heath, G. A. Kort, E. A. O'Sullivan, F. Petron, G. Jordaan, S. M. Tans, P. Wilcox, J. Gopstein, A. M. Arent, D. Wofsy, S. Brown, N. J. Bradley, R. Stucky, G. D. Eardley, D. Harriss, R. TI Methane Leaks from North American Natural Gas Systems SO SCIENCE LA English DT Editorial Material ID UNITED-STATES; EMISSIONS C1 [Brandt, A. R.; Wilcox, J.] Stanford Univ, Stanford, CA 94305 USA. [Heath, G. A.; Arent, D.] Natl Renewable Energy Lab, Golden, CO USA. [Kort, E. A.] Univ Michigan, Ann Arbor, MI 48109 USA. [O'Sullivan, F.] MIT, Cambridge, MA 02139 USA. [Petron, G.; Tans, P.] NOAA, Boulder, CO USA. [Petron, G.] Univ Colorado, Boulder, CO 80309 USA. [Jordaan, S. M.] Univ Calgary, Calgary, AB, Canada. [Gopstein, A. M.] US Dept State, Washington, DC 20520 USA. [Arent, D.] Joint Inst Strateg Energy Anal, Golden, CO USA. [Wofsy, S.] Harvard Univ, Cambridge, MA 02138 USA. [Brown, N. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stucky, G. D.; Eardley, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Harriss, R.] Environm Def Fund, Boulder, CO USA. RP Brandt, AR (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM abrandt@stanford.edu RI Kort, Eric/F-9942-2012 OI Kort, Eric/0000-0003-4940-7541 NR 29 TC 192 Z9 195 U1 28 U2 166 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 14 PY 2014 VL 343 IS 6172 BP 733 EP 735 DI 10.1126/science.1247045 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AB1NB UT WOS:000331557800024 PM 24531957 ER PT J AU Camilli, L Pisani, C Gautron, E Scarselli, M Castrucci, P D'Orazio, F Passacantando, M Moscone, D De Crescenzi, M AF Camilli, L. Pisani, C. Gautron, E. Scarselli, M. Castrucci, P. D'Orazio, F. Passacantando, M. Moscone, D. De Crescenzi, M. TI A three-dimensional carbon nanotube network for water treatment SO NANOTECHNOLOGY LA English DT Article ID MAGNETIC-PROPERTIES; SULFUR; SURFACES AB The bulk synthesis of freestanding carbon nanotube (CNT) frameworks is developed through a sulfur-addition strategy during an ambient-pressure chemical vapour deposition process, with ferrocene used as the catalyst precursor. This approach enhances the CNTs' length and contorted morphology, which are the key features leading to the formation of the synthesized porous networks. We demonstrate that such a three-dimensional structure selectively uptakes from water a mass of toxic organic solvent (i.e. o-dichlorobenzene) about 3.5 times higher than that absorbed by individual CNTs. In addition, owing to the presence of highly defective nanostructures constituting them, our samples exhibit an oil-absorption capacity higher than that reported in the literature for similar CNT sponges. C1 [Camilli, L.; Pisani, C.; Scarselli, M.; Castrucci, P.; De Crescenzi, M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Gautron, E.] Univ Nantes, CNRS, UMR 6502, Inst Mat Jean Rouxel IMN, F-44322 Nantes 3, France. [D'Orazio, F.; Passacantando, M.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Coppito, Italy. [Moscone, D.] Univ Roma Tor Vergata, Dipartimento Sci & Tecnol Chim, I-00133 Rome, Italy. RP Camilli, L (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM camilli@roma2.infn.it RI D'Orazio, Franco/M-1905-2015; Camilli, Luca/C-4785-2016; OI D'Orazio, Franco/0000-0002-1907-3125; Camilli, Luca/0000-0003-2498-0210; Scarselli, Manuela/0000-0002-5611-0319; PASSACANTANDO, Maurizio/0000-0002-3680-5295 FU European Office of Aerospace Research and Development (EOARD) through the Air Force Office of Scientific Research Material Command, USAF [FA8655-11-1-3036] FX We acknowledge the financial support of the European Office of Aerospace Research and Development (EOARD) through the Air Force Office of Scientific Research Material Command, USAF, under Grant No. FA8655-11-1-3036. NR 25 TC 17 Z9 17 U1 4 U2 89 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 14 PY 2014 VL 25 IS 6 AR 065701 DI 10.1088/0957-4484/25/6/065701 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 296OP UT WOS:000330194800008 PM 24434944 ER PT J AU Huse, SM Young, VB Morrison, HG Antonopoulos, DA Kwon, J Dalal, S Arrieta, R Hubert, NA Shen, L Vineis, JH Koval, JC Sogin, ML Chang, EB Raffals, LE AF Huse, Susan M. Young, Vincent B. Morrison, Hilary G. Antonopoulos, Dionysios A. Kwon, John Dalal, Sushila Arrieta, Rose Hubert, Nathaniel A. Shen, Lici Vineis, Joseph H. Koval, Jason C. Sogin, Mitchell L. Chang, Eugene B. Raffals, Laura E. TI Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects SO MICROBIOME LA English DT Article DE Microbiome; Ulcerative colitis; Mucosal biopsy; Cytology brush; Microbial sampling; Mucosal brushing; Microbiome methods ID GUT MICROBIOTA; POPULATION; QUALITY AB Background: Mucosal biopsy is the most common sampling technique used to assess microbial communities associated with the intestinal mucosa. Biopsies disrupt the epithelium and can be associated with complications such as bleeding. Biopsies sample a limited area of the mucosa, which can lead to potential sampling bias. In contrast to the mucosal biopsy, the mucosal brush technique is less invasive and provides greater mucosal coverage, and if it can provide equivalent microbial community data, it would be preferable to mucosal biopsies. Results: We compared microbial samples collected from the intestinal mucosa using either a cytology brush or mucosal biopsy forceps. We collected paired samples from patients with ulcerative colitis (UC) who had previously undergone colectomy and ileal pouch anal anastomosis (IPAA), and profiled the microbial communities of the samples by sequencing V4-V6 or V4-V5 16S rRNA-encoding gene amplicons. Comparisons of 177 taxa in 16 brush-biopsy sample pairs had a mean R-2 of 0.94. We found no taxa that varied significantly between the brush and biopsy samples after adjusting for multiple comparisons (false discovery rate <= 0.05). We also tested the reproducibility of DNA amplification and sequencing in 25 replicate pairs and found negligible variation (mean R-2 = 0.99). A qPCR analysis of the two methods showed that the relative yields of bacterial DNA to human DNA were several-fold higher in the brush samples than in the biopsies. Conclusions: Mucosal brushing is preferred to mucosal biopsy for sampling the epithelial-associated microbiota. Although both techniques provide similar assessments of the microbial community composition, the brush sampling method has relatively more bacterial to host DNA, covers a larger surface area, and is less traumatic to the epithelium than the mucosal biopsy. C1 [Huse, Susan M.] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA. [Young, Vincent B.] Dept Internal Med, Div Infect Dis, Ann Arbor, MI USA. [Young, Vincent B.] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA. [Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.] Josephine Bay Paul Ctr, Marine Biol Lab, Wood Hole, MA USA. [Antonopoulos, Dionysios A.; Koval, Jason C.] Inst Genom & Syst Biol, Argonne Natl Lab, Argonne, IL USA. [Kwon, John; Dalal, Sushila; Arrieta, Rose; Hubert, Nathaniel A.; Shen, Lici; Chang, Eugene B.] Univ Chicago, Knapp Ctr Biomed Discovery, Gastroenterol Sect, Dept Med, Chicago, IL 60637 USA. [Raffals, Laura E.] Mayo Clin, Div Gastroenterol & Hepatol, Dept Internal Med, Rochester, MN USA. RP Huse, SM (reprint author), Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA. EM susan_huse@brown.edu OI Morrison, Hilary/0000-0003-0281-326X FU NIH [UH2/3 DK083993]; NIDDK [DK 42086, DK097268, DK47722]; Crohn's Colitis Foundation of America Career Development Award; Leona M. & Harry B. Helmsley Charitable Trust FX Funding for this project came from an NIH Human Microbiome Project Demonstration Project Award (UH2/3 DK083993) to VBY, EBC, and MLS, NIDDK DK 42086 (University of Chicago Digestive Disease Research Core Center), DK097268 (EBC), DK47722 (EBC), Crohn's Colitis Foundation of America Career Development Award (LER), and the Leona M. & Harry B. Helmsley Charitable Trust (EBC, LER). NR 24 TC 18 Z9 18 U1 1 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD FEB 14 PY 2014 VL 2 AR 5 DI 10.1186/2049-2618-2-5 PG 8 WC Microbiology SC Microbiology GA CU0ER UT WOS:000363189300001 PM 24529162 ER PT J AU Luu, Q Hor, A Fisher, J Anderson, RB Liu, S Luk, TS Paudel, HP Baroughi, MF May, PS Smith, S AF QuocAnh Luu Hor, Amy Fisher, Jon Anderson, Robert B. Liu, Sheng Luk, Ting-Shan Paudel, Hari P. Baroughi, Mahdi Farrokh May, P. Stanley Smith, Steve TI Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOCRYSTALS; FLUORESCENCE; SPECTROSCOPY; EMISSION; IONS; TM3+; YB3+ AB Spectroscopic imaging and time-resolved spectroscopy are used to study the surface plasmon polariton (SPP) enhanced infrared to visible upconversion luminescence from NaYF4:Tm:Yb nanoparticles embedded in polymethyl methylacrylate (PMMA) supported on Au nanopillar arrays. The arrays have a lattice resonance associated with the SPP near 980 nm, near-resonant with the peak absorption of the Yb3+ ion, while a local surface plasmon resonance (LSPR) associated with the individual pillars is seen to enhance the near-infrared emission of Tm3+ ions near 780 nm. The two combined channels of enhancement result in a significantly higher enhancement of the near-infrared emission when compared to the visible upconversion lines of the Tm3+ ion, consistent with the interpretation of sequential surface plasmon assisted absorption and emission at two separate and disparate energies. The presence of SPP and LSPR was confirmed by spectrally resolved reflectivity, and the mechanisms for luminescence enhancement were further confirmed by time-resolved measurements of the upconversion luminescence. C1 [QuocAnh Luu; Hor, Amy; Fisher, Jon; Anderson, Robert B.; Smith, Steve] South Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [QuocAnh Luu; May, P. Stanley] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Liu, Sheng; Luk, Ting-Shan] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. [Paudel, Hari P.; Baroughi, Mahdi Farrokh] S Dakota State Univ, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA. RP Smith, S (reprint author), South Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. EM Smay@usd.edu; Steve_Smith@mailaps.org RI Liu, Sheng/P-6029-2014 OI Liu, Sheng/0000-0003-0967-4514 FU NSF [EPS-0903804, DGE-0903685, CHE-0840507]; State of South Dakota, Governor's Office of Economic Development; NASA [NNX10AN34A] FX The authors acknowledge support from NSF (EPS-0903804, DGE-0903685, CHE-0840507) and the State of South Dakota, Governor's Office of Economic Development. P.S.M. acknowledges support from NASA (Cooperative Agreement Number: NNX10AN34A). The authors acknowledge Lynn Gedvilas of NREL for making the FTIR reflectivity measurements, Sandia National Laboratories for access to their facilities for reflectivity measurements, made under our CINT Proposal No. C2011B87, and the Nanofabrication Center at the University of Minnesota for providing access to the electron beam lithography and thermal evaporation systems. NR 28 TC 25 Z9 26 U1 8 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 13 PY 2014 VL 118 IS 6 BP 3251 EP 3257 DI 10.1021/jp4115173 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB0PA UT WOS:000331493400042 ER PT J AU Kim, JW Kamiya, Y Mun, ED Jaime, M Harrison, N Thompson, JD Kiryukhin, V Yi, HT Oh, YS Cheong, SW Batista, CD Zapf, VS AF Kim, Jae Wook Kamiya, Y. Mun, Eun Deok Jaime, M. Harrison, N. Thompson, J. D. Kiryukhin, V. Yi, H. T. Oh, Y. S. Cheong, S. -W. Batista, C. D. Zapf, V. S. TI Multiferroicity with coexisting isotropic and anisotropic spins in Ca3Co2-xMnxO6 SO PHYSICAL REVIEW B LA English DT Article ID COMMENSURATE PHASES; MAGNETIZATION; POLARIZATION; MODEL AB We study magnetic and multiferroic behavior in Ca3Co2-xMnxO6 (x similar to 0.97) by high-field measurements of magnetization (M), magnetostriction [L(H)/L], electric polarization (P), and magnetocaloric effect. This study also gives insight into the zero- and low-magnetic-field magnetic structure and magnetoelectric coupling mechanisms. We measured M and Delta L/L up to pulsed magnetic fields of 92 T, and determined the saturation moment and field. On the controversial topic of the spin states of Co2+ and Mn4+ ions, we find evidence for S = 3/2 spins for both ions with no magnetic-field-induced spin-state crossovers. Our data also indicate that Mn4+ spins are quasi-isotropic and develop components in the ab plane in applied magnetic fields of 10 T. These spins cant until saturation at 85 T, whereas the Ising Co2+ spins saturate by 25 T. Furthermore, our results imply that the mechanism for suppression of electric polarization with magnetic fields near 10 T is flopping of the Mn4+ spins into the ab plane, indicating that appropriate models must include the coexistence of Ising and quasi-isotropic spins. C1 [Kim, Jae Wook; Mun, Eun Deok; Jaime, M.; Harrison, N.; Zapf, V. S.] Los Alamos Natl Lab, NHMFL, Mat Phys & Applicat MPA Condensed Matter & Magnet, Los Alamos, NM 87545 USA. [Kim, Jae Wook] Los Alamos Natl Lab, Lujan Ctr Neutron Scattering, Los Alamos, NM 87545 USA. [Kamiya, Y.; Batista, C. D.] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Kamiya, Y.; Batista, C. D.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Thompson, J. D.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Kiryukhin, V.; Yi, H. T.; Oh, Y. S.; Cheong, S. -W.] Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Kiryukhin, V.; Yi, H. T.; Oh, Y. S.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Kim, JW (reprint author), Los Alamos Natl Lab, NHMFL, Mat Phys & Applicat MPA Condensed Matter & Magnet, POB 1663, Los Alamos, NM 87545 USA. RI Kamiya, Yoshitomo/B-6307-2012; Oh, Yoon Seok/A-1071-2011; Yi, Hee Taek/F-6399-2010; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016; OI Kamiya, Yoshitomo/0000-0002-0758-0234; Oh, Yoon Seok/0000-0001-8233-1898; Jaime, Marcelo/0000-0001-5360-5220; Harrison, Neil/0000-0001-5456-7756 FU US NSF [DMR-1157490]; State of Florida; DOE BES project "Science at 100 Tesla"; DOE [DE-FG02-07ER46328] FX The NHMFL facility is funded through the US NSF Cooperative Grant No. DMR-1157490, the DOE, and the State of Florida. This work is supported by the DOE BES project "Science at 100 Tesla". The work at Rutgers was supported by the DOE Award No. DE-FG02-07ER46328. We acknowledge discussions with R. Flint, P. Chandra, and G. Pascut. NR 44 TC 6 Z9 6 U1 3 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 13 PY 2014 VL 89 IS 6 AR 060404 DI 10.1103/PhysRevB.89.060404 PG 5 WC Physics, Condensed Matter SC Physics GA AC2ZU UT WOS:000332385600002 ER PT J AU Morozovska, AN Eliseev, EA Krishnan, PSSR Tselev, A Strelkov, E Borisevich, A Varenyk, OV Morozovsky, NV Munroe, P Kalinin, SV Nagarajan, V AF Morozovska, Anna N. Eliseev, Eugene A. Krishnan, P. S. Sankara Rama Tselev, Alexander Strelkov, Evgheny Borisevich, Albina Varenyk, Olexander V. Morozovsky, Nicola V. Munroe, Paul Kalinin, Sergei V. Nagarajan, Valanoor TI Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION PATHWAYS; SEMICONDUCTORS; SEGREGATION; ELECTRODES; EVOLUTION; DIFFUSION; DIAGRAMS; PARTICLE; STRESS; MOTION AB We present a theoretical description of the influence of misfit strain on mobile defects dynamics in thin strained ferroelectric films. Self-consistent solutions obtained by coupling the Poisson's equation for electric potential with continuity equations for mobile donor and electron concentrations and time-dependent Landau-Ginzburg-Devonshire equations reveal that the Vegard mechanism (chemical pressure) leads to the redistribution of both charged and electro-neutral defects in order to decrease the effective stress in the film. Internal electric fields, both built-in and depolarization ones, lead to a strong accumulation of screening space charges (charged defects and electrons) near the film interfaces. Importantly, the corresponding screening length is governed by the misfit strain and Vegard coefficient. Mobile defects dynamics, kinetics of polarization, and electric current reversal are defined by the complex interplay between the donor, electron and phonon relaxation times, misfit strain, finite size effect, and Vegard stresses. C1 [Morozovska, Anna N.; Morozovsky, Nicola V.] NAS Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Morozovska, Anna N.; Eliseev, Eugene A.] NAS Ukraine, Inst Problems Mat Sci, UA-03028 Kiev, Ukraine. [Krishnan, P. S. Sankara Rama; Munroe, Paul; Nagarajan, Valanoor] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Tselev, Alexander; Strelkov, Evgheny; Borisevich, Albina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. [Varenyk, Olexander V.] Taras Shevchenko Kiev Natl Univ, Radiophys Fac, UA-03022 Kiev, Ukraine. RP Morozovska, AN (reprint author), NAS Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. EM sergei2@ornl.gov; nagarajan@unsw.edu.au RI Borisevich, Albina/B-1624-2009; Strelcov, Evgheni/H-1654-2013; valanoor, nagarajan/B-4159-2012; Tselev, Alexander/L-8579-2015; Kalinin, Sergei/I-9096-2012; Munroe, Paul/I-9313-2016 OI Borisevich, Albina/0000-0002-3953-8460; Tselev, Alexander/0000-0002-0098-6696; Kalinin, Sergei/0000-0001-5354-6152; Munroe, Paul/0000-0002-5091-2513 FU State Fund of Fundamental Research of Ukraine-US National Science Foundation (SFFR-NSF) [NSF-DMR-1210588, UU48/002]; ARC FX A.N.M. and E. A. E. acknowledge the support via a bilateral State Fund of Fundamental Research of Ukraine-US National Science Foundation (SFFR-NSF) project under Grant Nos. NSF-DMR-1210588 and, UU48/002. The research at UNSW was supported by an ARC Discovery grant. S. V. K. and A.Y.B. acknowledge Office of Basic Energy Sciences, U. S. Department of Energy. NR 61 TC 11 Z9 11 U1 2 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 13 PY 2014 VL 89 IS 5 AR 054102 DI 10.1103/PhysRevB.89.054102 PG 10 WC Physics, Condensed Matter SC Physics GA AC2ZP UT WOS:000332385100001 ER PT J AU Mehio, N Dai, S Jiang, DE AF Mehio, Nada Dai, Sheng Jiang, De-en TI Quantum Mechanical Basis for Kinetic Diameters of Small Gaseous Molecules SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID METAL-ORGANIC FRAMEWORKS; POROUS AROMATIC FRAMEWORK; GRAPHENE OXIDE MEMBRANES; CARBON-DIOXIDE CAPTURE; IONIC LIQUIDS; GAS SEPARATION; CO2 CAPTURE; NANOPOROUS GRAPHENE; ADSORPTION; SIEVE AB Kinetic diameters are often invoked in discussing gas adsorption and permeation in porous and polymeric materials. However, how these empirical kinetic diameters relate to the size and shape of the molecules as manifested by their "electron cloud" is unclear. In this paper, we obtain the quantum mechanical (QM) diameters of several common gaseous molecules by determining the cross-sectional sizes of their iso-electronic density surfaces at a predetermined small value. We show that the QM diameters are in good agreement with the kinetic diameters. For example, the trends for important gas pairs such as O-2 versus N-2 and CO2 versus N-2 are consistent between the QM diameters and the most often quoted kinetic diameters. Hence, our work now provides a quantum mechanical basis for the empirical kinetic diameters and will be useful for designing separation media for small gaseous molecules according to their sizes. C1 [Mehio, Nada; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Dai, Sheng; Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 46 TC 26 Z9 26 U1 6 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 13 PY 2014 VL 118 IS 6 BP 1150 EP 1154 DI 10.1021/jp412588f PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AB0PB UT WOS:000331493500022 PM 24446751 ER PT J AU Ingraham, JM Deng, ZD Martinez, JJ Trumbo, BA Mueller, RP Weiland, MA AF Ingraham, John M. Deng, Z. Daniel Martinez, Jayson J. Trumbo, Bradly A. Mueller, Robert P. Weiland, Mark A. TI Feasibility of Tracking Fish with Acoustic Transmitters in the Ice Harbor Dam Tailrace SO SCIENTIFIC REPORTS LA English DT Article ID TELEMETRY SYSTEM; INSTRUMENTATION; DESIGN AB The Juvenile Salmon Acoustic Telemetry System (JSATS) has been used at many dams but has never been deployed in the near-dam tailrace environment. The use of JSATS in the tailrace is of interest to fishery managers to evaluate downstream passage behavior of juvenile salmonids and dam approach behavior of upstream migrating adult salmon and lamprey. The acoustic noise level and detection range of JSATS were studied to determine the feasibility of deploying JSATS in the Ice Harbor Dam tailrace. The noise level measured from the powerhouse deck was less than 104 dB re 1 mu Pa except for the turbine outlet near the spillway, and 350 mdownstream of the dam, the noise level was less than 106 dB. The measured noise levels would allow a theoretical detection range of 100 m to 350 m and 85 m to 320 m, respectively. Validation experiments showed that the detection range is 113 to 184 m using hydrophones deployed from the powerhouse deck and 148 m using hydrophones deployed 500 m downstream of the dam. C1 [Ingraham, John M.; Deng, Z. Daniel; Martinez, Jayson J.; Mueller, Robert P.; Weiland, Mark A.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Trumbo, Bradly A.] US Army Corps Engineers, Walla Walla, WA USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE) FX This research was funded by the U.S. Army Corps of Engineers (USACE). We greatly appreciate the assistance of USACE staff members including Martin Ahmann, Derek Fryer, Marvin Shutters, Jon Renholds, Mark Plummer, Trevor Mclaen, and Mike Trusty. Critical assistance also was provided by many staff members of Pacific Northwest National Laboratory, including Tylor Abel, Evan Arntzen, Brian Bellgraph, Zach Booth, Tom Carlson, Katrina Cook, Cary Counts, Eric Fischer, Tao Fu, Amanda Hanson, Ryan Harnish, Julie Hughes, Xinya Li, Brian Jeide, Ryan Klett, Kyle Larson, Kathy Lavender, Geoff McMichael, Caleb Price, Huiying Ren, Jason Reynolds, John Serkowski, John Stephenson, Craig Swartout, Scott Titzler, Jinshan Xu, and Yong Yuan. NR 14 TC 1 Z9 1 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 13 PY 2014 VL 4 AR 4090 DI 10.1038/srep04090 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA7QU UT WOS:000331292800002 PM 24522516 ER PT J AU Zhou, SY Langner, MC Zhu, Y Chuang, YD Rini, M Glover, TE Hertlein, MP Gonzalez, AGC Tahir, N Tomioka, Y Tokura, Y Hussain, Z Schoenlein, RW AF Zhou, S. Y. Langner, M. C. Zhu, Y. Chuang, Y. -D. Rini, M. Glover, T. E. Hertlein, M. P. Gonzalez, A. G. Cruz Tahir, N. Tomioka, Y. Tokura, Y. Hussain, Z. Schoenlein, R. W. TI Glass-like recovery of antiferromagnetic spin ordering in a photo-excited manganite Pr0.7Ca0.3MnO3 SO SCIENTIFIC REPORTS LA English DT Article ID TRANSITION; PHASE; RELAXATION AB Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward undertsanding the underlying physics of important emergent phenomena. Here we use time-resolved resonant soft x-ray scattering spectroscopy to probe the dynamics of antiferromagnetic spin ordering in the manganite Pr0.7Ca0.3MnO3 following ultrafast photo-exitation. Our studies reveal a glass-like recovery of the spin ordering and a crossover in the dimensionality of the restoring interaction from quasi-1D at low pump fluence to 3D at high pump fluence. This behavior arises from the metastable state created by photo-excitation, a state characterized by spin disordered metallic droplets within the larger charge- and spin-ordered insulating domains. Comparison with time-resolved resistivity measurements suggests that the collapse of spin ordering is correlated with the insulator-to-metal transition, but the recovery of the insulating phase does not depend on the re-establishment of the spin ordering. C1 [Zhou, S. Y.; Langner, M. C.; Zhu, Y.; Rini, M.; Schoenlein, R. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhou, S. Y.] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Zhou, S. Y.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhou, S. Y.; Chuang, Y. -D.; Glover, T. E.; Hertlein, M. P.; Gonzalez, A. G. Cruz; Tahir, N.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhu, Y.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Tahir, N.] Natl Ctr Phys, Islamabad, Pakistan. [Tomioka, Y.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058562, Japan. [Tokura, Y.] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Tokura, Y.] RIKEN, Adv Sci Inst, Cross Correlated Mat Res Grp CMRG, Wako, Saitama 3510198, Japan. [Tokura, Y.] RIKEN, Adv Sci Inst, CERG, Wako, Saitama 3510198, Japan. RP Zhou, SY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM syzhou@mail.tsinghua.edu.cn; YChuang@lbl.gov; RWSchoenlein@lbl.gov RI Schoenlein, Robert/D-1301-2014; Tokura, Yoshinori/C-7352-2009; Zhou, Shuyun/A-5750-2009 OI Schoenlein, Robert/0000-0002-6066-7566; FU Office of Science, Office of Basic Energy Sciences, the Materials Sciences and Engineering Division under the Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank D.-H. Lee, E. Dagotto, J. Orenstein, R.A. Kaindl, H. Yao and W.L. Yang for useful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, the Materials Sciences and Engineering Division under the Department of Energy Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 6 Z9 6 U1 0 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 13 PY 2014 VL 4 AR 4050 DI 10.1038/srep04050 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA7QE UT WOS:000331291200001 PM 24522173 ER PT J AU Mun, E Frontzek, M Podlesnyak, A Ehlers, G Barilo, S Shiryaev, SV Zapf, VS AF Mun, Eundeok Frontzek, M. Podlesnyak, A. Ehlers, G. Barilo, S. Shiryaev, S. V. Zapf, Vivien S. TI High magnetic field evolution of ferroelectricity in CuCrO2 SO PHYSICAL REVIEW B LA English DT Article ID ANTIFERROMAGNET; DIFFRACTION AB CuCrO2 offers insights into the different types of spiral magnetic orderings that can form spontaneously due to frustration in triangular-lattice antiferromagnets. We explore the magnetic phase diagram up to 65 T along all the principal axes, and also use electric polarization to probe changes in the spiral order at high magnetic fields. It is known that at zero magnetic field a proper-screw spiral of the Cr S = 3/2 spins forms that in turn induces electric polarization with six possible orientations in the ab plane. Applied magnetic fields in the (hard) ab plane have been shown to induce a transition to cycloidal-spiral magnetic order above 5.3 T in those domains that have spins perpendicular to the applied magnetic field. We show that the cycloidal order remains unchanged all the way up to 65 T, which is one quarter of the extrapolated saturation magnetization. On the other hand, for magnetic fields along the (easy) c axis, we observe a transition in the electric polarization near 45 T, and it is followed by a series of steps and/or oscillations in the electric polarization. The data are consistent with a proper-screw-to-cycloidal transition that is pushed from 5.3 to 45 T by easy-axis anisotropy, and is in turn followed by stretching of the magnetic spiral through commensurate and incommensurate wave vectors. This work also highlights the ability of the magnetically induced electric polarization to probe complex magnetic orders in regimes of phase space that are difficult to reach with neutron diffraction. C1 [Mun, Eundeok; Zapf, Vivien S.] LANL, MPA CMMS, NHMFL, Los Alamos, NM 87545 USA. [Frontzek, M.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Podlesnyak, A.; Ehlers, G.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Barilo, S.; Shiryaev, S. V.] Inst Solid State & Semicond Phys, Minsk 220072, Byelarus. RP Mun, E (reprint author), LANL, MPA CMMS, NHMFL, Los Alamos, NM 87545 USA. RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; Frontzek, Matthias/C-5146-2012 OI Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Frontzek, Matthias/0000-0001-8704-8928 FU U.S. National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy; DOE BES; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; European Community's Seventh Framework Programme [290605] FX We thank N. Harrison for the loan of his extraction magnetometer, and valuable discussions with C. D. Batista. The NHMFL user facility is supported by the U.S. National Science Foundation through Cooperative Grant No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. V.S.Z. acknowledges the Department of Energy's Laboratory Directed Research and Development program and EDM was supported by the DOE BES "Science at 100 Tesla" program. A. P. and G. E. acknowledge funding by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 290605 (PSIFELLOW/COFUND). NR 42 TC 8 Z9 8 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 12 PY 2014 VL 89 IS 5 AR 054411 DI 10.1103/PhysRevB.89.054411 PG 9 WC Physics, Condensed Matter SC Physics GA AC2YZ UT WOS:000332383500001 ER PT J AU Van Gough, D Lambert, TN Wheeler, DR Rodriguez, MA Brumbach, MT Allendorf, MD Spoerke, ED AF Van Gough, Dara Lambert, Timothy N. Wheeler, David R. Rodriguez, Mark A. Brumbach, Michael T. Allendorf, Mark D. Spoerke, Erik D. TI Controlled Nucleation and Growth of Pillared Paddlewheel Framework Nanostacks onto Chemically Modified Surfaces SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE pillared paddlewheel framework; porphyrin; metal-organic framework; surface functionalization; nucleation and growth ID METAL-ORGANIC FRAMEWORKS; SELF-ASSEMBLED MONOLAYERS; THIN-FILMS; MOLECULES; ACID; ADSORPTION; INTERFACE; MEMBRANES; CRYSTALS; CATECHOL AB The nucleation and growth of metal organic frameworks onto functional surfaces stands to facilitate the utility of these supramolecular crystalline materials across a wide range of applications. Here, we demonstrate the solvothermal nucleation and growth of a pillared paddlewheel porphyrin framework 5 (PPF-5) onto semiconductor surfaces modified with carboxylic acids. Using versatile diazonium and catechol chemistries to modify silicon and titania surface chemistries, we show that solvothermally grown PPF-5 selectively nucleates and grows as stacked crystalline sheets with preferential (001), (111), and (110) crystallographic orientations. Furthermore, variations in the synthesis temperature produce modified stack morphologies that correlate with changes in the surface-nucleated PPF-5 photoluminescence. C1 [Van Gough, Dara; Lambert, Timothy N.; Wheeler, David R.; Rodriguez, Mark A.; Brumbach, Michael T.; Spoerke, Erik D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edspoer@sandia.gov FU Sunshot Initiative through the Department of Energy's Energy Efficiency and Renewable Energy Solar Energy Technologies Program [DE-FOA-0000387-1923]; Sandia's Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge Bonnie McKenzie and Dr. Nelson Bell for SEM analysis and aid in contact-angle measurement, respectively. This work was supported by the Sunshot Initiative through the Department of Energy's Energy Efficiency and Renewable Energy Solar Energy Technologies Program (Grant DE-FOA-0000387-1923) and Sandia's Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 40 TC 7 Z9 7 U1 11 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 12 PY 2014 VL 6 IS 3 BP 1509 EP 1514 DI 10.1021/am404102f PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AB0OY UT WOS:000331493200025 PM 24377289 ER PT J AU Zhang, JA Wang, KX Guo, SJ Wang, SP Liang, ZQ Chen, ZM Fu, JW Xu, Q AF Zhang, Jianan Wang, Kaixi Guo, Shaojun Wang, Shoupei Liang, Zhiqiang Chen, Zhimin Fu, Jianwei Xu, Qun TI One-Step Carbonization Synthesis of Hollow Carbon Nanococoons with Multimodal Pores and Their Enhanced Electrochemical Performance for Supercapacitors SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE hollow carbon capsules; one-step carbonization; hollow carbon nanococoon; microporous materials; supercapacitor ID ELECTRODE MATERIALS; HIERARCHICAL NANOARCHITECTURE; OXYGEN REDUCTION; FACILE SYNTHESIS; ANODE MATERIAL; DRUG-DELIVERY; SPHERES; NANOFIBERS; NANOCAGES; POLYMER AB Hollow carbon capsules with multimodal pores are highly promising for developing novel electrode materials for high-performance electrochemical devices due to their more active sites for ion and electron transfer. However, at present, most of the previous efforts are focused on the multistep process for the synthesis of hollow carbon nanostructures with individual pores. Herein, hollow carbon nanococoons (HCNCs) with non-spherical cavity and multimodal hierarchical pores have been facilely synthesized via a one-step carbonization of a Fe2O3/carbon precursor core/shell nanospindle at 850 degrees C. We interestingly found that during the carbonization, Fe2O3 was automatically "escaped" from the inside nanospindle, leading to the formation of new HCNCs. Most importantly, the spindle-shaped cavity of the obtained HCNCs with high conductivity can offer a multimodal ion diffusion pathway, which can facilitate the reaction kinetics in a supercapacitor. As a result, the HCNCs-based supacapacitor exhibits the capacitance of 220.0 F g(-1) at a given scan rate of 5 mV s(-1), 3.5 times higher than that of hollow carbon spheres, high stability with 98% of the initial capacity maintained even after 1000 cycles, and high rate capability. This work provides a new and facile avenue for enhancing performance of a HCNCs-based supercapacitor by using the non-spherical hollow structures with multimodal pores. C1 [Zhang, Jianan; Wang, Kaixi; Wang, Shoupei; Chen, Zhimin; Fu, Jianwei; Xu, Qun] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450052, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liang, Zhiqiang] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. RP Guo, SJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM shaojun.guo.nano@gmail.com; qunxu@zzu.edu.cn RI Liang, Zhiqiang/G-8135-2011; Guo, Shaojun/A-8449-2011 OI Guo, Shaojun/0000-0002-5941-414X FU National Natural Science Foundation of China [21101141, 51173170]; Program for New Century Excellent Talents in Universities (NCET); J. Robert Oppenheimer Distinguished Fellowship; Open Project Foundation of State Key Laboratory of Inorganic Synthesis and Preparation Chemistry of Jilin University FX This work was financially supported by the National Natural Science Foundation of China (Nos. 21101141 and 51173170), Program for New Century Excellent Talents in Universities (NCET), J. Robert Oppenheimer Distinguished Fellowship and the Open Project Foundation of State Key Laboratory of Inorganic Synthesis and Preparation Chemistry of Jilin University (2012-13). NR 45 TC 18 Z9 18 U1 9 U2 166 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 12 PY 2014 VL 6 IS 3 BP 2192 EP 2198 DI 10.1021/am405375s PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AB0OY UT WOS:000331493200114 PM 24433086 ER PT J AU Higman, C Tam, S AF Higman, Christopher Tam, Samuel TI Advances in Coal Gasification, Hydrogenation, and Gas Treating for the Production of Chemicals and Fuels SO CHEMICAL REVIEWS LA English DT Review ID ENTRAINED-FLOW GASIFIER; TRACE-ELEMENT BEHAVIOR; LURGI FBDB GASIFIER; HIGH-TEMPERATURE GASIFICATION; CATALYTIC STEAM GASIFICATION; NITROGEN-COMPOUNDS ABATEMENT; ASH FUSION TEMPERATURES; FLUIDIZED-BED GASIFIER; MULTI-BURNER GASIFIER; SYNTHETIC NATURAL-GAS C1 [Higman, Christopher] Higman Consulting GmbH, D-65824 Schwalbach, Germany. [Tam, Samuel] US DOE, Adv Energy Syst Div, Off Fossil Energy, Washington, DC 20585 USA. RP Higman, C (reprint author), Higman Consulting GmbH, D-65824 Schwalbach, Germany. EM chris@higman.de FU Engler-Bunte-Institute, Karlsruhe Institute of Technology FX C.H. wishes to express his thanks for support from the Engler-Bunte-Institute, Karlsruhe Institute of Technology, in particular from Prof. Thomas Kolb and Dr. Siegfried Bajohr. S.T. wishes to thank Joseph Wong of DOE for his support in the literature search. NR 394 TC 32 Z9 33 U1 8 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB 12 PY 2014 VL 114 IS 3 BP 1673 EP 1708 DI 10.1021/cr400202m PG 36 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KC UT WOS:000331343400005 PM 24144161 ER PT J AU Bain, RL Magrini-Bair, KA Hensley, JE Jablonski, WS Smith, KM Gaston, KR Yung, MM AF Bain, Richard L. Magrini-Bair, Kimberly A. Hensley, Jesse E. Jablonski, Whitney S. Smith, Kristin M. Gaston, Katherine R. Yung, Matthew M. TI Pilot Scale Production of Mixed Alcohols from Wood SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID BIOMASS-DERIVED SYNGAS; CATALYTIC HOT GAS; COBALT-MOLYBDENUM SULFIDE; POISONED NICKEL-CATALYST; LIGNOCELLULOSIC BIOMASS; GASIFICATION GAS; CLEANING CATALYSTS; HYDROGEN-SULFIDE; K/MOS2 CATALYSTS; FLUIDIZED-BEDS AB An integrated thermochemical biomass to ethanol process was demonstrated at the pilot scale at the National Renewable Energy Laboratory (NREL). A total of 233 h of pilot scale mixed alcohol production was achieved, comprising 81 h of continuous operation in methanol-derived syngas followed by 152 h of continuous operation in biomass-derived syngas. During this period the system generated 20 L of mixed alcohol product. The fully integrated biomass to mixed alcohol process was comprised of a solids feeder, fluidized bed indirect steam gasifier, thermal cracker, char collector, fluidized bed steam reformer, packed bed polishing steam reformer, scrubber, pressure-swing CO2 adsorber, and gas-phase continuously stirred tank gas-to-liquid reactor (CSTR). Additional pumps, compressors, and blowers were used to convey gases, solids, and liquids. Tars and methane were reformed using sequential steps: first in a fluidized bed using an NREL-developed Ni-based catalyst followed by a fixed bed reactor loaded with pelletized, precious metal catalyst developed by Johnson Matthey. Mixed alcohols (a mixture of methanol, ethanol, 1-propanol, etc.) were produced using a metal sulfide catalyst developed at NREL. Under steady state conditions, the steam reformers converted >99.9, 97.0, and 86% of tars, benzene, and methane, respectively, in the producer gas. A simulated partial recycle of carbon dioxide to the gasifier was used to reduce the H-2:CO ratio of the reformed syngas to 3:1 without adding water gas shift reactors to the process or coking the reforming catalysts. When operating on biomass-derived syngas in a CSTR, the fuel synthesis catalyst produced as much as 31 g of EtOH.kg of catalyst(-1).h(-1) at a CO2-free ethanol selectivity of 27% at 2000 psi, 300 degrees C, and 27% CO conversion. A bench scale packed bed reactor operated under analogous conditions produced 39 g of EtOH.kg of catalyst(-1).h(-1) at a CO2-free ethanol selectivity of 28% showing reasonable parity between bench scale and pilot scale. C1 [Bain, Richard L.; Magrini-Bair, Kimberly A.; Hensley, Jesse E.; Jablonski, Whitney S.; Smith, Kristin M.; Gaston, Katherine R.; Yung, Matthew M.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hensley, JE (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jesse.hensley@nrel.gov OI Gaston, Katherine/0000-0002-1162-0905 FU DOE [DE-AC36-08-GO28308] FX We are grateful for funding provided under DOE Contract No. DE-AC36-08-GO28308. We are also grateful for the dedication and hard work exhibited by the following NREL researchers: Abhijit Dutta, Adam Unruh, Calvin Feik, Calvin Mukurakate, Chris Kinchin, Dan Ruddy, Danny Carpenter, David Isham, David Robichaud, Erica Gjersing, Helena Chum, Jack Ferrell, James Page, Jason Thibodeaux, Jessica Olstad, Jim Stunkel, Joan Tarud, Joe Gardner, Josh Schaidle, Christa Loux, Steve Phillips, Marc Pomeroy, Mark Davis, Mark Jarvis, Mark Nimlos, Marc Oddo, Mary Biddy, Mike Cleary, Mike Sprague, Mike Talmadge, Ray Hansen, Singfoong Cheah, Steve Deutch, Stuart Black, Angela Ziebell, and Adam Brat:is. NR 113 TC 7 Z9 7 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 12 PY 2014 VL 53 IS 6 BP 2204 EP 2218 DI 10.1021/ie403631h PG 15 WC Engineering, Chemical SC Engineering GA AA8KE UT WOS:000331343600015 ER PT J AU Burgess, WA Tapriyal, D Gamwo, IK Wu, Y McHugh, MA Enick, RM AF Burgess, Ward A. Tapriyal, Deepak Gamwo, Isaac K. Wu, Yue McHugh, Mark A. Enick, Robert M. TI New Group-Contribution Parameters for the Calculation of PC-SAFT Parameters for Use at Pressures to 276 MPa and Temperatures to 533 K SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID EQUATION-OF-STATE; PERTURBED-CHAIN SAFT; ASSOCIATING MOLECULES; LIQUID DENSITIES; MIXTURES; HYDROCARBONS; VISCOSITY; POLYDISPERSE; EQUILIBRIA; PREDICTION AB Cubic Equations of State (EoSs) typically provide unreliable predictions for phase density and derivative properties at the high-temperature, high-pressure (HTHP) conditions associated with ultradeep petroleum reservoirs (that is, temperatures to 533 K and pressures to 241 MPa). The perturbed-chain statistical associating fluid theory (PC-SAFT) EoS returns improved predictions for density but still can overpredict the experimental value by up to 5% at HTHP conditions. Not surprisingly, when a modified set of the pure-component PC-SAFT parameters m, sigma, and epsilon/k are fit to HTHP experimental density data, density predictions throughout the HTHP range agree with reference data to better than +/- 1%. However, the lack of such HTHP density data for many hydrocarbons presents a hurdle to the more widespread use of this PC-SAFT method. This study presents a group-contribution (G-C) method for calculating PC-SAFT parameters that are designed to yield accurate HTHP density predictions. First- and second-order group contributions are considered. We have extended the group contribution model of Tihic and co-workers, developed for polymers, to accurately determine PC-SAFT parameters for alkanes, aromatics, and cycloalkanes at temperatures to 533 K and pressures to 276 MPa. The parameter values are a function of contributions from the various functional groups present and the nature of the various carbon atoms (aliphatic, aromatic, and naphthenic) comprising the molecule. Furthermore, when using second-order group contributions, it is possible to distinguish the differences in density among isomers. Density values are usually calculated to within +/- 1-2%. Isothermal compressibility values are calculated to within +/- 10%, isobaric heat capacity to within +/- 5%, and speed of sound to within +/- 4%. C1 [Burgess, Ward A.; Tapriyal, Deepak; Gamwo, Isaac K.; McHugh, Mark A.; Enick, Robert M.] Dept Energy, Off Res & Dev, NETL, Pittsburgh, PA 15236 USA. [Tapriyal, Deepak] URS, NETL Site Support Contractor, Pittsburgh, PA 15236 USA. [Wu, Yue; McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. [Enick, Robert M.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Burgess, WA (reprint author), Dept Energy, Off Res & Dev, NETL, Pittsburgh, PA 15236 USA. EM Ward.Burgess@or.netl.doe.gov FU Strategic Center for Natural Gas and Oil under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES Contract DE-FE0004000. NR 32 TC 7 Z9 7 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 12 PY 2014 VL 53 IS 6 BP 2520 EP 2528 DI 10.1021/ie4034973 PG 9 WC Engineering, Chemical SC Engineering GA AA8KE UT WOS:000331343600047 ER PT J AU Moon, EJ Xie, YJ Laird, ED Keavney, DJ Li, CY May, SJ AF Moon, Eun Ju Xie, Yujun Laird, Eric D. Keavney, David J. Li, Christopher Y. May, Steven J. TI Fluorination of Epitaxial Oxides: Synthesis of Perovskite Oxyfluoride Thin Films SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-ABSORPTION; MAGNETIC-PROPERTIES; SPECTROSCOPY; SUPERLATTICES; LA1-XSRXFEO3-XFX; FERROELECTRICITY; FLUORIDE; SYSTEM; GROWTH; STATES AB While the synthesis of ABO(3) perovskite films has enabled new strategies to control the functionality of this material class, the chemistries that have been realized in thin film form constitute only a fraction of those accessible to bulk chemists. Here, we report the synthesis of oxyfluoride films, where the incorporation of F may provide a new means to tune physical properties in thin films by modifying electronic structure. Fluorination is achieved by spin coating a poly(vinylidene fluoride) (PVDF) solution onto oxygen-deficient films. The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-alpha F gamma films, as confirmed by X-ray photoemission spectroscopy and X-ray absorption spectroscopy. C1 [Moon, Eun Ju; Xie, Yujun; Laird, Eric D.; Li, Christopher Y.; May, Steven J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Keavney, David J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Moon, EJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM em582@drexel.edu; smay@coe.drexel.edu RI May, Steven/D-8563-2011; Moon, Eun Ju/C-7856-2014; Li, Christopher/A-1603-2012 OI May, Steven/0000-0002-8097-1549; FU U.S. Army Research Office [W911NF-12-1-0132, W911NF-11-1-0283]; U.S. DOE [DEAC02-06CH11357] FX This work is supported by the U.S. Army Research Office under grant no. W911NF-12-1-0132. Acquisition of the PPMS was supported by the U.S. Army Research Office under grant no. W911NF-11-1-0283. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under contract no. DEAC02-06CH11357. NR 32 TC 13 Z9 13 U1 7 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2224 EP 2227 DI 10.1021/ja410954z PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300010 PM 24443775 ER PT J AU Sarkisov, L Martin, RL Haranczyk, M Smit, B AF Sarkisov, Lev Martin, Richard L. Haranczyk, Maciej Smit, Berend TI On the Flexibility of Metal-Organic Frameworks SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; RAY-POWDER DIFFRACTION; CO2 ADSORPTION; BREATHING TRANSITIONS; RETICULAR CHEMISTRY; MIL-53; NETS; DESIGN; TAXONOMY; MOFS AB Occasional, large amplitude flexibility in metal organic frameworks (MOFs) is one of the most intriguing recent discoveries in chemistry and material science. Yet, there is at present no theoretical framework that permits the identification of flexible structures in the rapidly expanding universe of MOFs. Here, we propose a simple method to predict whether a MOF is flexible, based on treating it as a system of rigid elements, connected by hinges. This proposition is correct in application to MOFs based on rigid carboxylate linkers. We validate the method by correctly classifying known experimental MOFs into rigid and flexible groups. Applied to hypothetical MOFs, the method reveals an abundance of flexibility phenomena, and this seems to be at odds with the proportion of flexible structures among experimentally known MOFs. We speculate that the flexibility of a MOF may constitute an intrinsic impediment on its experimental realization. This highlights the importance of systematic prediction of large amplitude flexibility regimes in MOFs. C1 [Sarkisov, Lev] Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh EH9 3JL, Midlothian, Scotland. [Martin, Richard L.; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Sarkisov, L (reprint author), Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh EH9 3JL, Midlothian, Scotland. EM Lev.Sarkisov@ed.ac.uk; Berend-Smit@berkeley.edu RI Smit, Berend/B-7580-2009; Martin, Richard/C-7129-2013; Haranczyk, Maciej/A-6380-2014 OI Smit, Berend/0000-0003-4653-8562; Martin, Richard/0000-0001-9858-2608; Haranczyk, Maciej/0000-0001-7146-9568 FU Royal Academy of Engineering; Leverhulme Trust through the Senior Research Fellowship program; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362] FX L.S. acknowledges financial support from the Royal Academy of Engineering and the Leverhulme Trust through the Senior Research Fellowship program. We thank Prof. Ileana Streinu for useful insights on the rigidity theory. R.L.M., M.H., and B.S. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. NR 33 TC 55 Z9 55 U1 11 U2 168 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2228 EP 2231 DI 10.1021/ja411673b PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300011 PM 24460112 ER PT J AU Yamada, Y Murota, K Fujita, R Kim, J Watanabe, A Nakamura, M Sato, S Hata, K Ercius, P Ciston, J Song, CY Kim, K Regan, W Gannett, W Zettl, A AF Yamada, Yasuhiro Murota, Kazumasa Fujita, Ryo Kim, Jungpil Watanabe, Ayuko Nakamura, Masashi Sato, Satoshi Hata, Kenji Ercius, Peter Ciston, Jim Song, Cheng Yu Kim, Kwanpyo Regan, William Gannett, Will Zettl, Alex TI Subnanometer Vacancy Defects Introduced on Graphene by Oxygen Gas SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WALL CARBON NANOHORNS; RAMAN-SPECTROSCOPY; GRAPHITE OXIDATION; NANOTUBES; OXIDE; SEPARATION; DYNAMICS AB The basal plane of graphene has been known to be less reactive than the edges, but some studies observed vacancies in the basal plane after reaction with oxygen gas. Observation of these vacancies has typically been limited to nanometer-scale resolution using microscopic techniques. This work demonstrates the introduction and observation of subnanometer vacancies in the basal plane of graphene by heat treatment in a flow of oxygen gas at low temperature such as 533 K or lower. High-resolution transmission electron microscopy was used to directly observe vacancy structures, which were compared with image simulations. These proposed structures contain C = O, pyran-like ether, and lactone-like groups. C1 [Yamada, Yasuhiro; Murota, Kazumasa; Fujita, Ryo; Kim, Jungpil; Watanabe, Ayuko; Nakamura, Masashi; Sato, Satoshi] Chiba Univ, Dept Appl Chem & Biotechnol, Inage Ku, Chiba 2638522, Japan. [Hata, Kenji] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058561, Japan. [Ercius, Peter; Ciston, Jim; Song, Cheng Yu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Regan, William; Gannett, Will; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Yamada, Y (reprint author), Chiba Univ, Dept Appl Chem & Biotechnol, Inage Ku, 1-33 Yayoi, Chiba 2638522, Japan. EM y-yamada@faculty.chiba-u.jp RI Kim, Kwanpyo/D-9121-2011; Foundry, Molecular/G-9968-2014; Zettl, Alex/O-4925-2016; OI Kim, Kwanpyo/0000-0001-8497-2330; Zettl, Alex/0000-0001-6330-136X; Regan, William/0000-0003-0143-9827 FU Japan Society for the Promotion of Science (JSPS) KAKENHI [22760594]; JSPS; Murata Science Foundation; Yazaki Memorial Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX Acknowledgments are made to the Kagoshima University in Japan for XPS measurements. Graphite was supplied from Nippon Graphite Industries, Ltd. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant 22760594, the JSPS Institutional Program for Young Researcher Overseas Visits, the Murata Science Foundation for an overseas visit, and the Yazaki Memorial Foundation for Science and Technology for an overseas visit. A portion of this work was performed at NCEM, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-05CH11231. NR 43 TC 29 Z9 29 U1 5 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2232 EP 2235 DI 10.1021/ja4117268 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300012 PM 24460150 ER PT J AU Melaet, G Ralston, WT Li, CS Alayoglu, S An, K Musselwhite, N Kalkan, B Somorjai, GA AF Melaet, Gerome Ralston, Walter T. Li, Cheng-Shiuan Alayoglu, Selim An, Kwangjin Musselwhite, Nathan Kalkan, Bora Somorjai, Gabor A. TI Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer-Tropsch Synthesis and CO2 Hydrogenation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUPPORT AB Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H-2 (i.e., Fischer-Tropsch synthesis) and CO2/H-2 reactions. Exploiting synchrotron based in situ characterization techniques such as XANES and XPS, we were able to demonstrate that 10 nm Co NPs cannot be reduced at 250 degrees C while supported on TiO2 or SiO2 and that the complete reduction of cobalt can only be achieved at 450 degrees C. Interestingly, cobalt oxide performs better than fully reduced cobalt when supported on TiO2. In fact, the catalytic results indicate an enhancement of 10-fold for the CO2/H-2 reaction rate and 2-fold for the CO/H-2 reaction rate for the Co/TiO2 treated at 250 degrees C in H-2 versus Co/TiO2 treated at 450 degrees C. Inversely, the activity of cobalt supported on SiO2 has a higher turnover frequency when cobalt is metallic. The product distributions could be tuned depending on the support and the oxidation state of cobalt. For oxidized cobalt on TiO2, we observed an increase of methane production for the CO2/H-2 reaction whereas it is more selective to unsaturated products for the CO/H-2 reaction. In situ investigation of the catalysts indicated wetting of the TiO2 support by Cog, and partial encapsulation of metallic Co by TiO2-x. C1 [Melaet, Gerome; Ralston, Walter T.; Li, Cheng-Shiuan; Alayoglu, Selim; An, Kwangjin; Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Melaet, Gerome; Ralston, Walter T.; Musselwhite, Nathan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Li, Cheng-Shiuan; Alayoglu, Selim; An, Kwangjin; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kalkan, Bora] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Alayoglu, S (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM salayoglu@lbl.gov; somorjai@berkeley.edu RI Melaet, Gerome/N-4879-2015; Foundry, Molecular/G-9968-2014 OI Melaet, Gerome/0000-0003-1414-1683; FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Green Energy and Environment Research Laboratories, Industrial Technology Research Institute (Hsinchu, Taiwan) FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231. The user project at the Advanced Light Source and the Molecular Foundry at the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. Finally, Cheng-Shiuan Li is thanking Green Energy and Environment Research Laboratories, Industrial Technology Research Institute (Hsinchu, Taiwan) for his research grant. NR 17 TC 54 Z9 54 U1 20 U2 290 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2260 EP 2263 DI 10.1021/ja412447q PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300019 PM 24460136 ER PT J AU Demortiere, A Schaller, RD Li, T Chattopadhyay, S Krylova, G Shibata, T Claro, PCD Rowland, CE Miller, JT Cook, R Lee, B Shevchenko, EV AF Demortiere, Arnaud Schaller, Richard D. Li, Tao Chattopadhyay, Soma Krylova, Galyna Shibata, Tomohiro Claro, Paula C. dos Santos Rowland, Clare E. Miller, Jeffrey T. Cook, Russell Lee, Byeongdu Shevchenko, Elena V. TI In Situ Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au Heterostructures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; NANOROD HETEROSTRUCTURES; HYDROGEN-PRODUCTION; CHARGE SEPARATION; HOLE LOCALIZATION; PARTICLE-SIZE; SEEDED GROWTH; NANOPARTICLES; ULTRAFAST; ABSORPTION AB We report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination). Our data indicate similar photoluminescence (PL) quenching and PL decay profiles in both types of samples. Via transient absorption and PL, we show that such behavior is consistent with rapid (faster than 3 ps) hole trapping by gold-sulfur sites at the surface of semiconductor nanoparticles. This dominant process was overlooked in previous end-point studies on semiconductor/metal heterostructures. C1 [Demortiere, Arnaud; Schaller, Richard D.; Krylova, Galyna; Claro, Paula C. dos Santos; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Li, Tao; Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Cook, Russell] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Chattopadhyay, Soma; Shibata, Tomohiro] Argonne Natl Lab, CSRRI IIT, MRCAT, Argonne, IL 60439 USA. [Demortiere, Arnaud; Chattopadhyay, Soma; Shibata, Tomohiro] IIT, Dept Phys, Chicago, IL 60616 USA. [Schaller, Richard D.; Rowland, Clare E.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Schaller, RD (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM schaller@anl.gov; eshevchenko@anl.gov RI ID, MRCAT/G-7586-2011; li, tao/K-8911-2012; OI li, tao/0000-0001-5454-1468; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH- 11357]; Department of Energy; MRCAT member institutions; U.S. DOE [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials, Advanced Photon Source, and Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH- 11357. The authors would like to thank Prof. Carlo Segre of Illinois Institute of Technology for staff time used to perform the EXAFS experiments and to Dr. Vladislav Zyryanov for designing sample cells used for EXAFS samples. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Advanced Photon Source, an Office of Science User Facilities operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 50 TC 27 Z9 27 U1 9 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2342 EP 2350 DI 10.1021/ja4092616 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300032 PM 24443818 ER PT J AU Van Humbeck, JF McDonald, TM Jing, XF Wiers, BM Zhu, GS Long, JR AF Van Humbeck, Jeffrey F. McDonald, Thomas M. Jing, Xiaofei Wiers, Brian M. Zhu, Guangshan Long, Jeffrey R. TI Ammonia Capture in Porous Organic Polymers Densely Functionalized with Bronsted Acid Groups SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE CAPTURE; HIGH-SURFACE-AREA; GAS-PHASE; COORDINATION POLYMER; TARGETED SYNTHESIS; CO2 ADSORPTION; FLUE-GAS; FRAMEWORKS; NETWORKS; CONTAMINATION AB The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 angstrom pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption. C1 [Van Humbeck, Jeffrey F.; McDonald, Thomas M.; Wiers, Brian M.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jing, Xiaofei; Zhu, Guangshan] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI EFRC, CGS/I-6680-2012; Stangl, Kristin/D-1502-2015 FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015, DE-AC02-06CH11357] FX This research was supported through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001015. We thank the 11-BM and 17-BM staff at the Advanced Photon Source at Argonne National Laboratory for assisting with powder X-ray diffraction experiments. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We thank the 11-BM and 17-BM staff at the Advanced Photon Source at Argonne National Laboratory, Dr. Wendy L. Queen, and Jarad A. Mason for assisting with powder X-ray diffraction experiments. Dr. C.-N. Kuo is thanked for helpful discussions. NR 65 TC 38 Z9 38 U1 14 U2 175 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 12 PY 2014 VL 136 IS 6 BP 2432 EP 2440 DI 10.1021/ja4105478 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AA8KB UT WOS:000331343300042 PM 24456083 ER PT J AU Park, YI Park, YS Gao, J Grey, JK Wang, CC Johal, MA Park, J Woo, HY Wang, HL AF Park, Young Il Park, Young-Shin Gao, Jian Grey, John K. Wang, Chun-Chih Johal, Malkiat A. Park, Jongwook Woo, Han Young Wang, Hsing-Lin TI Water-soluble PPV and C-60 nanocomposite with enhanced miscibility and enhanced photo-induced charge transfer through ground state electrostatic interactions SO POLYMER LA English DT Article DE Poly(phenylene vinylene); Nanocomposite; Efficient charge transfer ID CONJUGATED POLYMERS; CONDUCTING POLYMER; THERMAL-TREATMENT; SOLAR-CELLS; FULLERENES; MORPHOLOGY; EFFICIENCY; HYBRID AB We report the preparation of highly charged nanocomposites comprised of water-soluble, anionic fullerene and cationic poly-phenylenevinylene (PPV) derivatives. The nanocomposites display high fluorescence quenching efficiency (99%) presumably due to enhanced miscibility between cationic PPV and anionic C-60 via electrostatic interactions. We show that complexation between the cationic PPV and anionic C-60 derivatives leads to formation of nanocomposites with optical and electronic properties distinct from individual components without preferential electrostatic interactions. Photo-induced charge transfer quenches fluorescence from the PPV component is consistent with the frontier energy offsets of PPV and C-60, and cyclic voltammetry and UV-Vis spectroscopy measurements. This result confirms high miscibility between donor and acceptor and resonance Raman spectra indicate a conformational changes of the PPV backbone upon complex formation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Park, Young Il; Park, Young-Shin; Wang, Chun-Chih; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Phys Chem & Spect Grp, Los Alamos, NM 87544 USA. [Gao, Jian; Grey, John K.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Johal, Malkiat A.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. [Park, Jongwook] Catholic Univ Korea, Director Display Res Ctr, Puchon 420743, Kyunggi, South Korea. [Woo, Han Young] Pusan Natl Univ, Dept Nanofus Technol, Miryang 627706, South Korea. [Park, Young Il] Korea Res Inst Chem Technol, Res Ctr Green Fine Chem, Ulsan 681802, South Korea. RP Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, Phys Chem & Spect Grp, POB 1663, Los Alamos, NM 87544 USA. EM hwang@lanl.gov OI Park, Young-Shin/0000-0003-4204-1305 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Biomolecular Materials program; Laboratory Directed Research and Development (LDRD) program under DOE; National Science Foundation [CHE-0955242] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Biomolecular Materials program. We also like to acknowledge partial support by the Laboratory Directed Research and Development (LDRD) program under the auspices of DOE. JKG acknowledges support in the form of a grant from the National Science Foundation (CHE-0955242). NR 22 TC 4 Z9 4 U1 2 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD FEB 12 PY 2014 VL 55 IS 3 BP 855 EP 859 DI 10.1016/j.polymer.2013.11.050 PG 5 WC Polymer Science SC Polymer Science GA AA9RY UT WOS:000331431800020 ER PT J AU Bozin, ES Knox, KR Juhas, P Hor, YS Mitchell, JF Billinge, SJL AF Bozin, E. S. Knox, K. R. Juhas, P. Hor, Y. S. Mitchell, J. F. Billinge, S. J. L. TI Cu(Ir1-xCrx)(2)S-4: a model system for studying nanoscale phase coexistence at the metal-insulator transition SO SCIENTIFIC REPORTS LA English DT Article ID COPPER-OXIDE SUPERCONDUCTORS; CHARGE-DENSITY WAVES; THIOSPINEL CUIR2S4; NEUTRON-DIFFRACTION; STRIPE ORDER; LA2NIO4+DELTA; INHOMOGENEITY; TEMPERATURE; MAGNETISM; PRESSURE AB Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1-xCrx)(2)S-4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states. C1 [Bozin, E. S.; Knox, K. R.; Juhas, P.; Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hor, Y. S.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Bozin, ES (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM bozin@bnl.gov OI Juhas, Pavol/0000-0001-8751-4458 FU U.S. Department of Energy Office of Science (DOE-OS) [DE-AC02-98CH10886]; U.S. DOE-OS [DE-AC02-06CH11357] FX Work at Brookhaven National Laboratory (data collection, analysis and modeling) is supported by the U.S. Department of Energy Office of Science (DOE-OS) under Contract no. DE-AC02-98CH10886. Work at Argonne National Laboratory, which is operated by UChicago Argonne LLC, and the Advanced Photon Source (APS) facility, (materials synthesis and characterization) is supported under the U.S. DOE-OS Contract No. DE-AC02-06CH11357. This work has benefited from using the 11-IDC beamline of the APS. NR 66 TC 4 Z9 4 U1 4 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 12 PY 2014 VL 4 AR 4081 DI 10.1038/srep04081 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA7PT UT WOS:000331290100007 PM 24518384 ER PT J AU Buscaglia, V Tripathi, S Petkov, V Dapiaggi, M Deluca, M Gajovic, A Ren, Y AF Buscaglia, Vincenzo Tripathi, Saurabh Petkov, Valeri Dapiaggi, Monica Deluca, Marco Gajovic, Andreja Ren, Yang TI Average and local atomic-scale structure in BaZrxTi1-xO3 (x=0.10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE relaxors; BaTiO3; Raman spectroscopy; high-energy XRD; polar nanoregions ID TITANATE THIN-FILMS; PHASE-TRANSITIONS; DIELECTRIC-PROPERTIES; BA(TI0.7ZR0.3)O-3 CERAMICS; FERROELECTRIC PEROVSKITES; TETRAGONAL BATIO3; OPTICAL PHONONS; TEMPERATURE; CROSSOVER; CRYSTALS AB High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi1-xO3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr4+ and Ti4+. As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration. C1 [Buscaglia, Vincenzo] Natl Res Council IENI CNR, Inst Energet & Interphases, I-16149 Genoa, Italy. [Tripathi, Saurabh; Petkov, Valeri] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Dapiaggi, Monica] Univ Milan, Dipartimento Sci Terra, I-20133 Milan, Italy. [Deluca, Marco] Univ Leoben, Inst Struktur & Funkt Keram, A-8700 Leoben, Austria. [Deluca, Marco] Mat Ctr Leoben Forsch GmbH, A-8700 Leoben, Austria. [Gajovic, Andreja] Inst Rudjer Boskov, Div Mat Phys, Mol Phys Lab, Zagreb 10000, Croatia. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Buscaglia, V (reprint author), Natl Res Council IENI CNR, Inst Energet & Interphases, Via De Marini 6, I-16149 Genoa, Italy. EM v.buscaglia@ge.ieni.cnr.it; saurabh14bhu@gmail.com; m.deluca@mcl.at RI Deluca, Marco/C-4886-2009; Buscaglia, Vincenzo/E-8758-2011 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. The authors thank M Suchomel for the help with the high-resolution XRD experiments at beam-line 11-BM, Advanced Photon Source. NR 75 TC 15 Z9 15 U1 1 U2 72 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 12 PY 2014 VL 26 IS 6 AR 065901 DI 10.1088/0953-8984/26/6/065901 PG 13 WC Physics, Condensed Matter SC Physics GA 304BB UT WOS:000330719100022 PM 24441707 ER PT J AU Cui, J Choi, JP Li, G Polikarpov, E Darsell, J Overman, N Olszta, M Schreiber, D Bowden, M Droubay, T Kramer, MJ Zarkevich, NA Wang, LL Johnson, DD Marinescu, M Takeuchi, I Huang, QZ Wu, H Reeve, H Vuong, NV Liu, JP AF Cui, J. Choi, J. P. Li, G. Polikarpov, E. Darsell, J. Overman, N. Olszta, M. Schreiber, D. Bowden, M. Droubay, T. Kramer, M. J. Zarkevich, N. A. Wang, L. L. Johnson, D. D. Marinescu, M. Takeuchi, I. Huang, Q. Z. Wu, H. Reeve, H. Vuong, N. V. Liu, J. P. TI Thermal stability of MnBi magnetic materials SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE non rare earth permanent magnet; MnBi; thermal decomposition; positive temperature coefficient ID INTERMETALLIC COMPOUND; RAPID SOLIDIFICATION; NEUTRON-DIFFRACTION; PHASE AB MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74.6 emu g(-1) saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH)(max) of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air. C1 [Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Overman, N.; Olszta, M.; Schreiber, D.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Cui, J.; Takeuchi, I.; Wu, H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Bowden, M.] Environm Mol Sci Lab, Richland, WA 99354 USA. [Droubay, T.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Kramer, M. J.; Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Marinescu, M.] Elect Energy Corp, Landisville, PA 17538 USA. [Huang, Q. Z.; Wu, H.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Reeve, H.] United Technol Res Ctr, E Hartford, CT 06108 USA. [Vuong, N. V.; Liu, J. P.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Cui, J (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM jun.cui@pnnl.gov RI Zarkevich, Nikolai/A-3261-2013; Droubay, Tim/D-5395-2016; OI Zarkevich, Nikolai/0000-0003-1919-0177; Droubay, Tim/0000-0002-8821-0322; Johnson, Duane/0000-0003-0794-7283 FU US Department of Energy's Advanced Research Projects Agency-Energy [11/CJ000/09/03] FX This research was supported by the US Department of Energy's Advanced Research Projects Agency-Energy under contract No. 11/CJ000/09/03. NR 16 TC 27 Z9 27 U1 9 U2 85 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 12 PY 2014 VL 26 IS 6 AR 064212 DI 10.1088/0953-8984/26/6/064212 PG 10 WC Physics, Condensed Matter SC Physics GA 304BB UT WOS:000330719100013 PM 24469323 ER PT J AU Jiang, JS Bader, SD AF Jiang, J. S. Bader, S. D. TI Rational design of the exchange-spring permanent magnet SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE permanent magnet; exchange-spring; nucleation; energy product; micromagnetic modeling ID MAGNETIZATION; BEHAVIOR; FILMS AB The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)(max), while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)(max). The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication. C1 [Jiang, J. S.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jiang, JS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jiang@anl.gov FU UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a US Department of Energy Office of Science laboratory, operated under contract No. DE-AC02-06CH11357. NR 29 TC 22 Z9 22 U1 4 U2 55 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 12 PY 2014 VL 26 IS 6 AR 064214 DI 10.1088/0953-8984/26/6/064214 PG 9 WC Physics, Condensed Matter SC Physics GA 304BB UT WOS:000330719100015 PM 24469386 ER PT J AU Ronning, F Bader, S AF Ronning, Filip Bader, Sam TI Rare earth replacement magnets SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Editorial Material C1 [Ronning, Filip] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bader, Sam] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bader, Sam] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ronning, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fronning@lanl.gov OI Ronning, Filip/0000-0002-2679-7957 NR 20 TC 6 Z9 6 U1 3 U2 45 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 12 PY 2014 VL 26 IS 6 AR 060301 DI 10.1088/0953-8984/26/6/060301 PG 3 WC Physics, Condensed Matter SC Physics GA 304BB UT WOS:000330719100001 PM 24468738 ER PT J AU Zverev, VI Tishin, AM Chernyshov, AS Mudryk, Y Gschneidner, KA Pecharsky, VK AF Zverev, V. I. Tishin, A. M. Chernyshov, A. S. Mudryk, Ya Gschneidner, K. A., Jr. Pecharsky, V. K. TI Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE magnetic materials; rare-earth metals; single crystalline terbium; phase diagram; magnetic transitions ID SPIN SYSTEM; DYSPROSIUM; TRANSITIONS; FIELD; HEAT AB The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb. C1 [Zverev, V. I.; Tishin, A. M.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Zverev, V. I.; Tishin, A. M.] Adv Magnet Technol & Consulting LLC, Troitsk 142190, Russia. [Chernyshov, A. S.] Western Digital, San Jose, CA 95131 USA. [Mudryk, Ya; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zverev, VI (reprint author), Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. EM vi.zverev@physics.msu.ru RI Zverev, Vladimir/D-9196-2014; Tishin, Alexander/E-8705-2014 OI Zverev, Vladimir/0000-0002-6977-2143; Tishin, Alexander/0000-0003-2252-7279 FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the Office of Science of the US Department of Energy [DE-AC02-07CH11358]; Iowa State University; AMTC Group, UK FX Work at the Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the Office of Science of the US Department of Energy, under contract No DE-AC02-07CH11358 with Iowa State University (YaM, VKP and KAG). AMT and VIZ acknowledge support by the AMT&C Group, UK. NR 28 TC 5 Z9 5 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 12 PY 2014 VL 26 IS 6 AR 066001 DI 10.1088/0953-8984/26/6/066001 PG 7 WC Physics, Condensed Matter SC Physics GA 304BB UT WOS:000330719100023 PM 24451321 ER PT J AU Ackermann, M Albert, A Anderson, B Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bissaldi, E Bloom, ED Bonamente, E Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caragiulo, M Caraveo, PA Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J D'Ammando, F de Angelis, A Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Essig, R Favuzzi, C Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giroletti, M Godfrey, G Gomez-Vargas, GA Grenier, IA Guiriec, S Gustafsson, M Hayashida, M Hays, E Hewitt, J Hughes, RE Jogler, T Kamae, T Knodlseder, J Kocevski, D Kuss, M Larsson, S Latronico, L Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Martinez, G Mayer, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nemmen, R Nuss, E Ohsugi, T Orlando, E Ormes, JF Perkins, JS Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Ritz, S Sanchez-Conde, M Sehgal, N Sgro, C Siskind, EJ Spinelli, P Strigari, L Suson, DJ Tajima, H Takahashi, H Thayer, JB Tibaldo, L Tinivella, M Torres, DF Uchiyama, Y Usher, TL Vandenbroucke, J Vianello, G Vitale, V Werner, M Winer, BL Wood, KS Wood, M Zaharijas, G Zimmer, S AF Ackermann, M. Albert, A. Anderson, B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bissaldi, E. Bloom, E. D. Bonamente, E. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caragiulo, M. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. D'Ammando, F. de Angelis, A. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Essig, R. Favuzzi, C. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giroletti, M. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Guiriec, S. Gustafsson, M. Hayashida, M. Hays, E. Hewitt, J. Hughes, R. E. Jogler, T. Kamae, T. Knoedlseder, J. Kocevski, D. Kuss, M. Larsson, S. Latronico, L. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Martinez, G. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nemmen, R. Nuss, E. Ohsugi, T. Orlando, E. Ormes, J. F. Perkins, J. S. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ritz, S. Sanchez-Conde, M. Sehgal, N. Sgro, C. Siskind, E. J. Spinelli, P. Strigari, L. Suson, D. J. Tajima, H. Takahashi, H. Thayer, J. B. Tibaldo, L. Tinivella, M. Torres, D. F. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vianello, G. Vitale, V. Werner, M. Winer, B. L. Wood, K. S. Wood, M. Zaharijas, G. Zimmer, S. CA Fermi-LAT Collaboration TI Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope SO PHYSICAL REVIEW D LA English DT Article ID DWARF SPHEROIDAL GALAXIES; CONFIDENCE-INTERVALS; LUMINOSITY FUNCTION; GALACTIC HALO; LOCAL GROUP; SKY SURVEY; KINEMATICS; LAT; PROFILES; SUBSTRUCTURE AB The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on.-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in. rays, and we present.-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse.-ray background modeling, and assumed dark matter density profile. C1 [Ackermann, M.; Buehler, R.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Godfrey, G.; Jogler, T.; Kamae, T.; Kocevski, D.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Sehgal, N.; Strigari, L.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Godfrey, G.; Jogler, T.; Kamae, T.; Kocevski, D.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Sehgal, N.; Strigari, L.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Bechtol, K.; Conrad, J.; Larsson, S.; Garde, M. Llena; Martinez, G.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Conrad, J.; Larsson, S.; Garde, M. Llena; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Razzano, M.; Sgro, C.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, Lab AIM, CEA Saclay,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Bissaldi, E.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bissaldi, E.; Zaharijas, G.] Univ Trieste, I-34127 Trieste, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Hays, E.; Hewitt, J.; Nemmen, R.; Perkins, J. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brigida, M.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; Caragiulo, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ciprini, S.; Gasparrini, D.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Ciprini, S.; Gasparrini, D.] Osserv Astron Roma, Ist Nazl Astrofis, I-00040 Monte Porzio Catone, Roma, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier 2, Lab Univers & Particules Montpellier, CNRS, IN2P3, Montpellier, France. [D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Space Sci Div, Washington, DC 20375 USA. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Essig, R.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Fukazawa, Y.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gomez-Vargas, G. A.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Gomez-Vargas, G. A.] Univ Autonoma Madrid, Dept Fis Teor, CSIC, E-28049 Madrid, Spain. [Guiriec, S.] NASA, Postdoctoral Program, Washington, DC USA. [Gustafsson, M.] Univ Libre Bruxelles, Serv Phys Theor, B-1050 Brussels, Belgium. [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Razzaque, S.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Reimer, A.; Reimer, O.; Werner, M.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Werner, M.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] CSIC, Inst Ciencies Espai IEEE, Barcelona 08193, Spain. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM johann.cohen-tanugi@lupm.in2p3.fr; conrad@fysik.su.se; kadrlica@fnal.gov; maja.garde@fysik.su.se; mazziotta@ba.infn.it RI Orlando, E/R-5594-2016; Moskalenko, Igor/A-1301-2007; Morselli, Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Torres, Diego/O-9422-2016; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gomez-Vargas, German/C-7138-2015; Loparco, Francesco/O-8847-2015; Mazziotta, Mario /O-8867-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016 OI Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Moskalenko, Igor/0000-0001-6141-458X; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Strigari, Louis/0000-0001-5672-6079; Bastieri, Denis/0000-0002-6954-8862; Giroletti, Marcello/0000-0002-8657-8852; Morselli, Aldo/0000-0002-7704-9553; Torres, Diego/0000-0002-1522-9065; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Mazziotta, Mario /0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Bissaldi, Elisabetta/0000-0001-9935-8106 FU Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) [DE-AC05-06OR23100]; Wenner-Gren Foundation; Italian Ministry of Education, University and Research (MIUR) [FIRB-2012-RBFR12PM1F]; National Aeronautics and Space Administration; Department of Energy in the U.S.; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the U.S., the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. Support was also provided by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100 and by the Wenner-Gren Foundation. J. C. is Wallenberg Academy Fellow, supported by the Knut & Alice Wallenberg foundation. M. R. received funds from Contract No. FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and Research (MIUR). The authors would like to thank Joakim Edsjo, Torbjorn Sjostrand, and Peter Skands for helpful conversations concerning Pythia. The authors acknowledge the use of HEALPIX [97].12 NR 97 TC 227 Z9 229 U1 5 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 11 PY 2014 VL 89 IS 4 AR 042001 DI 10.1103/PhysRevD.89.042001 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM1TE UT WOS:000339630400001 ER PT J AU Wang, J AF Wang, Jun TI Watching Microstructures in Action in Lithium-Ion Batteries SO CHEMELECTROCHEM LA English DT Editorial Material DE batteries; electrochemistry; microstructures; synchrotron; X-ray tomography ID IN-SITU OBSERVATION; ELECTRODE C1 Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, 75 Brookhaven Ave,BLDG 744, Upton, NY 11973 USA. EM junwang@bnl.gov NR 12 TC 3 Z9 3 U1 5 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD FEB 11 PY 2014 VL 1 IS 2 BP 329 EP 331 DI 10.1002/celc.201300267 PG 3 WC Electrochemistry SC Electrochemistry GA AK3AU UT WOS:000338295400003 ER PT J AU Tenhaeff, WE Rangasamy, E Wang, YY Sokolov, AP Wolfenstine, J Sakamoto, J Dudney, NJ AF Tenhaeff, Wyatt E. Rangasamy, Ezhiyl Wang, Yangyang Sokolov, Alexei P. Wolfenstine, Jeff Sakamoto, Jeffrey Dudney, Nancy J. TI Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes SO CHEMELECTROCHEM LA English DT Article DE ceramics; energy storage; impedance spectroscopy; lithium; solid electrolyte ID SOLID-ELECTROLYTE C1 [Tenhaeff, Wyatt E.; Dudney, Nancy J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Rangasamy, Ezhiyl; Sakamoto, Jeffrey] Michigan State Univ, E Lansing, MI 48824 USA. [Wang, Yangyang; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Wolfenstine, Jeff] Army Res Lab, Adelphi, MD USA. RP Tenhaeff, WE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. EM wyatt.tenhaeff@rochester.edu RI Wang, Yangyang/A-5925-2010; Dudney, Nancy/I-6361-2016 OI Wang, Yangyang/0000-0001-7042-9804; Dudney, Nancy/0000-0001-7729-6178 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; U. S. Army Research Office [W911NF0910451]; Army Research Lab FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.Y.W. and A.P.S. acknowledge the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Authors J.S. and E.L. acknowledge the support of the U. S. Army Research Office under contract/grant number W911NF0910451. J.W. would like to acknowledge support from the Army Research Lab. NR 12 TC 18 Z9 18 U1 12 U2 73 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD FEB 11 PY 2014 VL 1 IS 2 BP 375 EP 378 DI 10.1002/celc.201300022 PG 4 WC Electrochemistry SC Electrochemistry GA AK3AU UT WOS:000338295400013 ER PT J AU Kamburov, D Mueed, MA Shayegan, M Pfeiffer, LN West, KW Baldwin, KW Lee, JJD Winkler, R AF Kamburov, D. Mueed, M. A. Shayegan, M. Pfeiffer, L. N. West, K. W. Baldwin, K. W. Lee, J. J. D. Winkler, R. TI Fermi contour anisotropy of GaAs electron-flux composite fermions in parallel magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID SURFACE ACOUSTIC-WAVES; LANDAU-LEVEL; TRANSPORT; MAGNETORESISTANCE; SUPERLATTICES; POTENTIALS; MODULATION AB In high-quality two-dimensional electrons confined to GaAs quantum wells, near Landau level filling factors nu = 1/2 and 1/4, we observe signatures of the commensurability of the electron-flux composite fermion cyclotron orbits with a unidirectional periodic density modulation. Focusing on the data near nu = 1/2, we directly and quantitatively probe the shape of the composite fermions' cyclotron orbit, and therefore their Fermi contour, as a function of magnetic field (B-parallel to) applied parallel to the sample plane. The composite fermion Fermi contour becomes severely distorted with increasing B-parallel to and appears to be elliptical, in sharp contrast to the electron Fermi contour which splits as the system becomes bilayerlike at high B-parallel to. We present a simple, qualitative model to interpret our findings. C1 [Kamburov, D.; Mueed, M. A.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Lee, J. J. D.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kamburov, D (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. OI Kamburov, Dobromir/0000-0002-8605-1946 FU Gordon and Betty Moore Foundation [GBMF2719]; National Science Foundation [DMR-1157490]; State of Florida; US Department of Energy; DOE BES [DE-AC02-06CH11357] FX We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, NSF (ECCS-1001719, DMR-1305691, and MRSEC DMR-0819860) for sample fabrication and characterization. A portion of this work was performed at the National High Magnetic Field Laboratory which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida and the US Department of Energy. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. We thank S. Hannahs, T. Murphy, and A. Suslov at NHMFL for valuable technical support during the measurements. We also express gratitude to Tokoyama Corporation for supplying the negative e-beam resist TEBN-1 used to make the samples. NR 41 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 11 PY 2014 VL 89 IS 8 AR 085304 DI 10.1103/PhysRevB.89.085304 PG 5 WC Physics, Condensed Matter SC Physics GA AC2YW UT WOS:000332383200004 ER PT J AU Gaffney, LP Hackstein, M Page, RD Grahn, T Scheck, M Butler, PA Bertone, PF Bree, N Carroll, RJ Carpenter, MP Chiara, CJ Dewald, A Filmer, F Fransen, C Huyse, M Janssens, RVF Joss, DT Julin, R Kondev, FG Nieminen, P Pakarinen, J Rigby, SV Rother, W Van Duppen, P Watkins, HV Wrzosek-Lipska, K Zhu, S AF Gaffney, L. P. Hackstein, M. Page, R. D. Grahn, T. Scheck, M. Butler, P. A. Bertone, P. F. Bree, N. Carroll, R. J. Carpenter, M. P. Chiara, C. J. Dewald, A. Filmer, F. Fransen, C. Huyse, M. Janssens, R. V. F. Joss, D. T. Julin, R. Kondev, F. G. Nieminen, P. Pakarinen, J. Rigby, S. V. Rother, W. Van Duppen, P. Watkins, H. V. Wrzosek-Lipska, K. Zhu, S. TI Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in Hg-184,Hg-186 and two-state mixing calculations SO PHYSICAL REVIEW C LA English DT Article ID LIGHT MERCURY ISOTOPES; DECAY CURVE METHOD; HIGH-SPIN STATES; ALPHA-DECAY; NUCLEI; SHIFT; HG-184; BAND; TRANSITION; DEFORMATIONS AB The neutron-deficient mercury isotopes, Hg-184,Hg-186, were studied with the recoil distance Doppler-shift method using the Gammasphere array and the Koln plunger device. The differential decay curve method was employed to determine the lifetimes of the yrast states in Hg-184,Hg-186. An improvement on previously measured values of yrast states up to 8(+) is presented as well as first values for the 9(3) state in Hg-184 and 10(+) state in 186Hg. B(E2) values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia model, allowing for extraction of spin-dependent mixing strengths and amplitudes. C1 [Gaffney, L. P.; Page, R. D.; Grahn, T.; Scheck, M.; Butler, P. A.; Carroll, R. J.; Filmer, F.; Joss, D. T.; Pakarinen, J.; Rigby, S. V.; Watkins, H. V.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Gaffney, L. P.; Bree, N.; Huyse, M.; Van Duppen, P.; Wrzosek-Lipska, K.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Hackstein, M.; Dewald, A.; Fransen, C.; Rother, W.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Grahn, T.; Julin, R.; Nieminen, P.; Pakarinen, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Scheck, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Pakarinen, J.] CERN, CERN ISOLDE, CH-1211 Geneva 23, Switzerland. RP Gaffney, LP (reprint author), Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. EM Liam.Gaffney@fys.kuleuven.be; hackstein@ikp.uni-koeln.de; rdp@ns.ph.liv.ac.uk RI Pakarinen, Janne/F-6695-2010; Gaffney, Liam/G-3169-2014; Carpenter, Michael/E-4287-2015; Dewald, Alfred/O-5810-2015 OI Pakarinen, Janne/0000-0001-8944-8757; Gaffney, Liam/0000-0002-2938-3696; Carpenter, Michael/0000-0002-3237-5734; FU United Kingdom Science and Technology Facilities Council; German DFG [DE 1516/1-1]; Academy of Finland [131665]; German BMBF [06 KY 7153]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834]; FWO-Vlaanderen (Belgium); Interuniversity Attraction Poles Programme; Belgian Science Policy Office [BriX network P7/12]; European Commission within the Seventh Framework Programme through I3-ENSAR [RII3-CT-2010-262010]; Marie Curie Intra-European Fellowship [PIEF-GA-2008-219175]; FWO-Vlaanderen (Belgium) as an FWO PegasusMarie Curie Fellow; [GOA/2010/010 (BOF KU Leuven)] FX The authors would like to thank the operators of the ATLAS facility at ANL for providing the beams. This work was supported by the United Kingdom Science and Technology Facilities Council, by the German DFG, Grant No. DE 1516/1-1, by the Academy of Finland, Contract No. 131665, by the German BMBF, Grant No. 06 KY 7153, by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 as well as Grant No. DE-FG02-94ER40834, by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), by the European Commission within the Seventh Framework Programme through I3-ENSAR (Contract No. RII3-CT-2010-262010), and by a Marie Curie Intra-European Fellowship of the European Community's 7th Framework Programme under Contract No. PIEF-GA-2008-219175. L.P.G. acknowledges support from FWO-Vlaanderen (Belgium) as an FWO PegasusMarie Curie Fellow. NR 46 TC 12 Z9 12 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 11 PY 2014 VL 89 IS 2 AR 024307 DI 10.1103/PhysRevC.89.024307 PG 8 WC Physics, Nuclear SC Physics GA AC0DD UT WOS:000332164100004 ER PT J AU Sheckelton, JP Foronda, FR Pan, LD Moir, C McDonald, RD Lancaster, T Baker, PJ Armitage, NP Imai, T Blundell, SJ McQueen, TM AF Sheckelton, J. P. Foronda, F. R. Pan, LiDong Moir, C. McDonald, R. D. Lancaster, T. Baker, P. J. Armitage, N. P. Imai, T. Blundell, S. J. McQueen, T. M. TI Local magnetism and spin correlations in the geometrically frustrated cluster magnet LiZn2Mo3O8 SO PHYSICAL REVIEW B LA English DT Article ID PYROCHLORE ANTIFERROMAGNET; TRIANGULAR LATTICE; NEEL ORDER; LIQUID; RELAXATION; SUPERCONDUCTIVITY; RESONANCE; PARAMAGNETISM; MONOPOLES; SPECTRA AB LiZn2Mo3O8 has been proposed to contain S = 1/2 Mo3O13 magnetic clusters arranged on a triangular lattice with antiferromagnetic nearest-neighbor interactions. Here, microwave and terahertz electron spin resonance, Li-7 nuclear magnetic resonance, and muon spin rotation spectroscopies are used to characterize the local magnetic properties of LiZn2Mo3O8. These results show the magnetism in LiZn2Mo3O8 arises from a single isotropic S = 1/2 electron per cluster and that there is no static long-range magnetic ordering down to T = 0.07 K. Further, there is evidence of gapless spin excitations with spin fluctuations slowing down as the temperature is lowered. These data indicate strong spin correlations, which, together with previous data, suggest a low-temperature resonating valence-bond state in LiZn2Mo3O8. C1 [Sheckelton, J. P.; McQueen, T. M.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Sheckelton, J. P.; Pan, LiDong; Armitage, N. P.; McQueen, T. M.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Sheckelton, J. P.; Pan, LiDong; Armitage, N. P.; McQueen, T. M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Foronda, F. R.; Blundell, S. J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Moir, C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Lancaster, T.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Baker, P. J.] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Imai, T.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Imai, T.] Canadian Inst Adv Res, Toronto, ON M5G1Z8, Canada. RP Sheckelton, JP (reprint author), Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA. EM mcqueen@jhu.edu RI Baker, Peter/E-4216-2010 OI Baker, Peter/0000-0002-2306-2648 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-08ER46544]; Gordon and Betty Moore Foundation [GBMF2628]; NSF/DMR [11574]; NSERC; CIFAR; William Hooper Grafflin Fellowship FX This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-08ER46544 to The Institute for Quantum Matter at JHU. The mu SR measurements were supported by EPSRC and a beamtime allocation from the Science and Technology Facilities Council (UK). The THz ESR measurements and instrumentation development was funded by the Gordon and Betty Moore Foundation through Grant No. GBMF2628 to N.P.A. The work at the National High Magnetic Field Laboratory is supported via NSF/DMR 11574. The NMR work at McMaster was supported by NSERC and CIFAR. J.P.S. would like to thank the William Hooper Grafflin Fellowship. The authors would like to thank W. Hayes, R. Flint, M. Mourigal, P. A. Lee, C. L. Broholm, and O. Tchernyshyov for useful discussions. NR 51 TC 11 Z9 11 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 11 PY 2014 VL 89 IS 6 AR 064407 DI 10.1103/PhysRevB.89.064407 PG 7 WC Physics, Condensed Matter SC Physics GA AC2YO UT WOS:000332382400001 ER PT J AU Kapadia, R Yu, ZB Hettick, M Xu, JS Zheng, MS Chen, CY Balan, AD Chrzan, DC Javey, A AF Kapadia, Rehan Yu, Zhibin Hettick, Mark Xu, Jingsan Zheng, Maxwell S. Chen, Cheng-Ying Balan, Arunima D. Chrzan, Daryl C. Javey, Ali TI Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor-Liquid-Solid Growth Mode SO CHEMISTRY OF MATERIALS LA English DT Article ID SOLAR-CELL; LOW-COST; EFFICIENCY; PHOTOVOLTAICS AB A method for growth of ultralarge grain (>100 mu m) semiconductor thin-films on nonepitaxial substrates was developed via the thin-film vapor liquid solid growth mode. The resulting polycrystalline films exhibit similar optoelectronic quality as their single-crystal counterparts. Here, deterministic control of nucleation sites is presented by substrate engineering, enabling user-tuned internuclei spacing of up to similar to 1 mm. Besides examining the theory associated with the nucleation process, this work presents an important advance toward controlled growth of high quality semiconductor thin films with unprecedented grain sizes on nonepitaxial substrates. C1 [Kapadia, Rehan; Yu, Zhibin; Hettick, Mark; Xu, Jingsan; Zheng, Maxwell S.; Chen, Cheng-Ying; Balan, Arunima D.; Chrzan, Daryl C.; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kapadia, Rehan; Yu, Zhibin; Hettick, Mark; Xu, Jingsan; Zheng, Maxwell S.; Chen, Cheng-Ying; Balan, Arunima D.; Chrzan, Daryl C.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Chen, Cheng-Ying/E-1662-2011; Javey, Ali/B-4818-2013; Xu, Jingsan/N-7938-2016 OI Chen, Cheng-Ying/0000-0002-0802-6681; Xu, Jingsan/0000-0003-1172-3864 FU Bay Area Photovoltaic Consortium; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The experimental part of this work was funded by Bay Area Photovoltaic Consortium. The nucleation modeling and theory was funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 8 Z9 9 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 11 PY 2014 VL 26 IS 3 BP 1340 EP 1344 DI 10.1021/cm403403v PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AA8JY UT WOS:000331343000009 ER PT J AU Kazem, N Xie, WW Ohno, S Zevalkink, A Miller, GJ Snyder, GJ Kauzlarich, SM AF Kazem, Nasrin Xie, Weiwei Ohno, Saneyuki Zevalkink, Alexandra Miller, Gordon J. Snyder, G. Jeffrey Kauzlarich, Susan M. TI High-Temperature Thermoelectric Properties of the Solid-Solution Zintl Phase Eu11Cd6Sb12-xAsx (x < 3) SO CHEMISTRY OF MATERIALS LA English DT Article ID SR11CD6SB12; PERFORMANCE; YB14MNSB11; CRYSTALS AB Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid-solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12-xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding similar to 3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78-0.49 W/mK for x = 0; 0.72-0.53 W/mK for x = 1; and 0.70-0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 mu V/K) but also high electrical resistivity (6.8 to 12.8 m Omega.cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12-xAsx are interpreted in discussion with the As site substitution. C1 [Kazem, Nasrin; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Xie, Weiwei; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Xie, Weiwei; Miller, Gordon J.] USDOE Ames, Ames Lab, Ames, IA 50011 USA. [Ohno, Saneyuki; Zevalkink, Alexandra; Snyder, G. Jeffrey] CALTECH, Pasadena, CA 91125 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. EM smkauzlarich@ucdavis.edu RI Snyder, G. Jeffrey/E-4453-2011; Snyder, G/I-2263-2015; OI Snyder, G. Jeffrey/0000-0003-1414-8682; Xie, Weiwei/0000-0002-5500-8195 FU GAANN fellowship; NSF [DMR-1100313]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering FX We thank Prof. Marilyn Olmstead for assistance with crystallography, Dr. Sarah Roeske for assistance with microprobe analysis, Dr. Catherine Uvarov at Romny Scientific Inc. for assistance with the hot press, and Dr. Oliver Janka for many helpful discussions. This research was funded by GAANN fellowship and NSF DMR-1100313. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Research carried out at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 29 TC 11 Z9 11 U1 3 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 11 PY 2014 VL 26 IS 3 BP 1393 EP 1403 DI 10.1021/cm403345a PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AA8JY UT WOS:000331343000016 ER PT J AU Parent, LR Robinson, DB Cappillino, PJ Hartnett, RJ Abellan, P Evans, JE Browning, ND Arslan, I AF Parent, Lucas R. Robinson, David B. Cappillino, Patrick J. Hartnett, Ryan J. Abellan, Patricia Evans, James E. Browning, Nigel D. Arslan, Ilke TI In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates SO CHEMISTRY OF MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; COPOLYMER THIN-FILMS; LIQUID-CRYSTALLINE PHASES; SOLVENT VAPORS; GROWTH; RADIOLYSIS; NANOSTRUCTURES; CELL; MORPHOLOGIES; ORIENTATION AB The prevalent approach to developing new nanomaterials is a trial-and-error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during. synthesis can be inferred only from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution and facilitates a mechanistic approach to nanomaterial development. Here, we use in situ liquid-stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions, and we ultimately determined a refined synthesis procedure that yields extended structures with ordered pores. We found that after sufficient drying time of the casting solvent (tetrahydrofuran, THF), the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order was greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround, but do not overgrow, the micelles, forming an ordered mesoporous structure. The microscope observations revealed that pore disorder can be addressed prior to metal reduction and is not invariably induced by the Pd growth process itself, allowing for more rapid optimization of the synthetic method. C1 [Parent, Lucas R.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Robinson, David B.; Cappillino, Patrick J.; Hartnett, Ryan J.] Sandia Natl Labs, Livermore, CA 94551 USA. [Abellan, Patricia; Browning, Nigel D.; Arslan, Ilke] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Evans, James E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Parent, LR (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, One Shields Ave, Davis, CA 95616 USA. EM lrparent@ucdavis.edu RI Abellan, Patricia/G-4255-2011; OI Abellan, Patricia/0000-0002-5797-1102; Browning, Nigel/0000-0003-0491-251X FU DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830]; Presidential Early Career Award for Scientist and Engineers; University of California Academic Senate; University of California Laboratory fee research grant, the Laboratory-Directed Research and Development program at Sandia National Laboratories; Chemical Imaging Initiative at Pacific Northwest National Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research was funded in part by the Presidential Early Career Award for Scientist and Engineers for LA:, the University of California Academic Senate and the University of California Laboratory fee research grant, the Laboratory-Directed Research and Development program at Sandia National Laboratories, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 52 TC 9 Z9 9 U1 2 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 11 PY 2014 VL 26 IS 3 BP 1426 EP 1433 DI 10.1021/cm4035209 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AA8JY UT WOS:000331343000020 ER PT J AU Narayanan, B Gilmer, GH Tao, JH De Yoreo, JJ Ciobanu, CV AF Narayanan, Badri Gilmer, George H. Tao, Jinhui De Yoreo, James J. Ciobanu, Cristian V. TI Self-Assembly of Collagen on Flat Surfaces: The Interplay of Collagen-Collagen and Collagen-Substrate Interactions SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; I COLLAGEN; MOLECULAR-DYNAMICS; PHASE-TRANSITIONS; FIBRILS; MICA; MATRICES; GROWTH; MODEL; VITRO AB Fibrillar collagens, common tissue scaffolds in live organisms, can also self-assemble in vitro from solution. While previous in vitro studies showed that the pH and the electrolyte concentration in solution largely control the collagen assembly, the physical reasons why such control could be exerted are still elusive. To address this issue and to be able to simulate self-assembly over large spatial and temporal scales, we have developed a microscopic model of collagen with explicit interactions between the units that make up the collagen molecules, as well as between these units and the substrate. We have used this model to investigate assemblies obtained via molecular dynamics deposition of collagen on a substrate at room temperature using an implicit solvent. By comparing the morphologies from our molecular dynamics simulations with those from our atomic-force microscopy experiments, we have found that the assembly is governed by the competition between the collagen-collagen interactions and those between collagen and the substrate. The microscopic model developed here can serve for guiding future experiments that would explore new regions of the parameter space. C1 [Narayanan, Badri; Gilmer, George H.; Ciobanu, Cristian V.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. [Narayanan, Badri; Gilmer, George H.; Ciobanu, Cristian V.] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA. [Tao, Jinhui; De Yoreo, James J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Ciobanu, CV (reprint author), Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. EM cciobanu@mines.edu RI Ciobanu, Cristian/B-3580-2009; OI Narayanan, Badri/0000-0001-8147-1047 FU Lawrence Livermore National Laboratory [B601600]; National Science Foundation [CMMI-0846858]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344] FX The research at Colorado School of Mines was supported by Lawrence Livermore National Laboratory (Contract B601600) and by the National Science Foundation (Grant CMMI-0846858). The experimental part of this work was performed at Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory with support from the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contracts DE-AC02-05CH11231 and DE-AC52-07NA27344, respectively. Super-computer time for the MD calculations was provided by the Golden Energy Computing Organization at Colorado School of Mines. NR 47 TC 12 Z9 12 U1 5 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 11 PY 2014 VL 30 IS 5 BP 1343 EP 1350 DI 10.1021/la4043364 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AA8KI UT WOS:000331344000020 PM 24437511 ER PT J AU Jackson, NE Savoie, BM Kohlstedt, KL Marks, TJ Chen, LX Ratner, MA AF Jackson, Nicholas E. Savoie, Brett M. Kohlstedt, Kevin L. Marks, Tobin J. Chen, Lin X. Ratner, Mark A. TI Structural and Conformational Dispersion in the Rational Design of Conjugated Polymers SO MACROMOLECULES LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; ORGANIC PHOTOVOLTAICS; COMPUTATIONAL DISCOVERY; MOLECULAR-WEIGHT; PERFORMANCE; DONOR; EFFICIENCY; STATES; REGIOREGULARITY AB Quantum-chemical computation is a useful and widespread tool for understanding the electronic structure of conjugated polymers as well as predicting new synthetic targets. In this work, we assess the validity of considering a single conformational or structural isomer as representative of the entire conformational or structural distributions in ab-initio computations of figures-of-merit (dipole moment, HOMO, LUMO, and optical gap). It is found from surveying numerous conjugated copolymers that considering only a single conformational or structural isomer can hide significant deviations in frontier molecular orbital energies and optical gaps as well as qualitative shifts in dipole moments. We discuss the limitations of not considering isomeric dispersion on the polymer's computed electronic properties and the implications these findings have on the rational design of conjugated polymers. C1 [Jackson, Nicholas E.; Savoie, Brett M.; Kohlstedt, Kevin L.; Marks, Tobin J.; Chen, Lin X.; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jackson, NE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM nicholasjackson2016@u.northwestern.edu; ratner@northwestern.edu FU U.S. DOE-BES Argonne-Northwestern Solar Energy Research Center (ANSER), an Energy Frontier Research Center [DE-SC0001059]; NSF [NSF DGE-0824162]; Northwestern U. MRSEC; MRSEC program of the NSF at the Materials Research Center of Northwestern University [DMR-1121262] FX We thank the U.S. DOE-BES Argonne-Northwestern Solar Energy Research Center (ANSER), an Energy Frontier Research Center (Award DE-SC0001059), for funding this project. N.E.J. thanks the NSF for the award of a Graduate Research Fellowship (NSF DGE-0824162). B.M.S. thanks the Northwestern U. MRSEC for a predoctoral fellowship. This work was supported by the MRSEC program of the NSF (DMR-1121262) at the Materials Research Center of Northwestern University. NR 40 TC 22 Z9 22 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 11 PY 2014 VL 47 IS 3 BP 987 EP 992 DI 10.1021/ma4023923 PG 6 WC Polymer Science SC Polymer Science GA AA8KK UT WOS:000331344200014 ER PT J AU Kuo, CY Nie, WY Tsai, HH Yen, HJ Mohite, AD Gupta, G Dattelbaum, AM William, DJ Cha, KC Yang, Y Wang, LY Wang, HL AF Kuo, Cheng-Yu Nie, Wanyi Tsai, Hsinhan Yen, Hung-Ju Mohite, Adytia D. Gupta, Gautam Dattelbaum, Andrew M. William, Darrick J. Cha, Kitty C. Yang, Yang Wang, Leeyih Wang, Hsing-Lin TI Structural Design of Benzo[1,2-b:4,5-b ']dithiophene-Based 2D Conjugated Polymers with Bithienyl and Terthienyl Substituents toward Photovoltaic Applications SO MACROMOLECULES LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; SIDE-CHAINS; CONVERSION EFFICIENCY; PERFORMANCE; MORPHOLOGY; POLYTHIOPHENES; MIXTURES; LEVEL AB In this contribution, six conjugated polymers consisting of benzo[1,2-b:4,5-b']dithiophene-bithiophene (BDT-BT) and benzo[1,2-b:4,5-b']dithiophene-benzothiadiazle (BDT-BTD) as building blocks in the main chain were synthesized by coupling polymerization and utilized for photovoltaic applications. By directly attaching three kinds of alkylthienyl side chains to the conjugated main chain, the resulted two-dimensional configuration revealed a broader absorption range due to the ground state electron transition of their corresponding alkylthienyl units and polymer backbone. Temperature-dependent absorbance, emission spectra, and thermal annealing further verify that the shoulder band(s) were originated from the aggregated (crystalline) species of polymers. The photovoltaic properties of the donor acceptor polymers revealed well-defined side chain geometries, physical, and electronic structures and showed the highest power conversion efficiency of 4.25% among polymer solar cells based on two-dimensional (2-D) bithienyl- or terthienyl-substituted benzodithiophene. C1 [Kuo, Cheng-Yu; Tsai, Hsinhan; Yen, Hung-Ju; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA. [Nie, Wanyi; Mohite, Adytia D.; Gupta, Gautam; Dattelbaum, Andrew M.; William, Darrick J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Cha, Kitty C.; Yang, Yang] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Kuo, Cheng-Yu; Wang, Leeyih] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan. RP Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA. EM hwang@lanl.gov RI Yang, Yang/A-2944-2011; OI Yen, Hung-Ju/0000-0002-6316-9124 FU Basic Energy Science (BES), Materials Sciences and Engineering Division, Biomolecular Materials Program, US Department of Energy; Los Alamos National Laboratory (LANL) Directed Research and Development Funds; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; National Science Council of Taiwan [NSC 102-2113-M-002-003-MY3] FX We acknowledge support of the Basic Energy Science (BES), Materials Sciences and Engineering Division, Biomolecular Materials Program, US Department of Energy and Los Alamos National Laboratory (LANL) Directed Research and Development Funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. L.W. acknowledges financial support from National Science Council of Taiwan (NSC 102-2113-M-002-003-MY3). NR 43 TC 30 Z9 31 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 11 PY 2014 VL 47 IS 3 BP 1008 EP 1020 DI 10.1021/ma401846n PG 13 WC Polymer Science SC Polymer Science GA AA8KK UT WOS:000331344200017 ER PT J AU Alam, TM Hibbs, MR AF Alam, Todd M. Hibbs, Michael R. TI Characterization of Heterogeneous Solvent Diffusion Environments in Anion Exchange Membranes SO MACROMOLECULES LA English DT Article ID METHANOL FUEL-CELLS; POLYMER ELECTROLYTE MEMBRANES; PROTON-CONDUCTING MEMBRANES; SELF-DIFFUSION; TRANSPORT-PROPERTIES; NAFION MEMBRANES; WATER; NMR; SORPTION; SCALE AB H-1 high resolution magic angle spinning (HRMAS) NMR spectroscopy was used to characterize the solvent environments in a series of poly(phenylene)- and poly(phenylene alkylene)-based anion exchange membranes (AEMs). Multiple water and methanol environments were I resolved in the membranes under HRMAS NMR. This allowed the self-diffusion rate constants to be evaluated for each different solvent environment as a function of the membrane identity, ion exchange capacity, water content, and sample temperature. These ionomers have been designed to function as binders within the catalyst layers of direct methanol fuel cells. In such applications, it is desirable to maximize the diffusion of the fuel (methanol) as well as the solvated ions to increase power output. To that end, the flexibilities of the backbone and the cationic side chains have been varied with the expectation that greater polymer mobility will lead to improved permeability. For the two types of AEMs investigated, it was observed that the methanol self-diffusion rates were preferentially reduced with respect to the water diffusion rates: It was also shown that the water diffusion rates within the AEMs were the largest at high water concentration, as observed in membranes containing the hexamethylene chain spacer in both the polymer backbone and the trimethylammonium (TMA(+)) Cation-containing side chains. C1 [Alam, Todd M.] Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, Albuquerque, NM 87123 USA. [Hibbs, Michael R.] Sandia Natl Labs, Dept Mat Devices & Energy Technol, Albuquerque, NM 87123 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, Albuquerque, NM 87123 USA. EM tmalam@sandia.gov FU Sandia's LDRD program FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration. This work was entirely funded by Sandia's LDRD program. NR 38 TC 13 Z9 13 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 11 PY 2014 VL 47 IS 3 BP 1073 EP 1084 DI 10.1021/ma402528v PG 12 WC Polymer Science SC Polymer Science GA AA8KK UT WOS:000331344200024 ER PT J AU Fletcher, CV Staskus, K Wietgrefe, SW Rothenberger, M Reilly, C Chipman, JG Beilman, GJ Khoruts, A Thorkelson, A Schmidt, TE Anderson, J Perkey, K Stevenson, M Perelson, AS Douek, DC Haase, AT Schacker, TW AF Fletcher, Courtney V. Staskus, Kathryn Wietgrefe, Stephen W. Rothenberger, Meghan Reilly, Cavan Chipman, Jeffrey G. Beilman, Greg J. Khoruts, Alexander Thorkelson, Ann Schmidt, Thomas E. Anderson, Jodi Perkey, Katherine Stevenson, Mario Perelson, Alan S. Douek, Daniel C. Haase, Ashley T. Schacker, Timothy W. TI Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE drug levels; pharmacokinetics; FDC network ID HUMAN-IMMUNODEFICIENCY-VIRUS; T-CELL-ACTIVATION; LYMPHOID-TISSUES; PROTEASE INHIBITOR; INFECTED PATIENTS; RALTEGRAVIR INTENSIFICATION; IMMUNE RECONSTITUTION; DENDRITIC CELLS; UNITED-STATES; THERAPY AB Antiretroviral therapy can reduce HIV-1 to undetectable levels in peripheral blood, but the effectiveness of treatment in suppressing replication in lymphoid tissue reservoirs has not been determined. Here we show in lymph node samples obtained before and during 6 mo of treatment that the tissue concentrations of five of the most frequently used antiretroviral drugs are much lower than in peripheral blood. These lower concentrations correlated with continued virus replication measured by the slower decay or increases in the follicular dendritic cell network pool of virions and with detection of viral RNA in productively infected cells. The evidence of persistent replication associated with apparently suboptimal drug concentrations argues for development and evaluation of novel therapeutic strategies that will fully suppress viral replication in lymphatic tissues. These strategies could avert the long-term clinical consequences of chronic immune activation driven directly or indirectly by low-level viral replication to thereby improve immune reconstitution. C1 [Fletcher, Courtney V.] Univ Nebraska Med Ctr, Dept Pharm Practice, Coll Pharm, Omaha, NE USA. [Staskus, Kathryn; Wietgrefe, Stephen W.; Perkey, Katherine; Haase, Ashley T.] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA. [Rothenberger, Meghan; Khoruts, Alexander; Thorkelson, Ann; Schmidt, Thomas E.; Anderson, Jodi; Schacker, Timothy W.] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA. [Reilly, Cavan] Univ Minnesota, Dept Biostat, Minneapolis, MN 55455 USA. [Chipman, Jeffrey G.; Beilman, Greg J.] Univ Minnesota, Dept Surg, Minneapolis, MN 55455 USA. [Stevenson, Mario] Univ Miami, Dept Med, Miami, FL 33136 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Douek, Daniel C.] NIAID, Human Immunol Sect, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. RP Schacker, TW (reprint author), Univ Minnesota, Dept Med, Box 736 UMHC, Minneapolis, MN 55455 USA. EM schacker@umn.edu OI Chipman, Jeffrey/0000-0002-0759-3705; Beilman, Gregory/0000-0001-5036-3027 FU National Institutes of Health [AI074340, AI028433] FX We thank Lisa Turnquist, Colleen O'Neil, and Tim Leonard for their contributions. Methods for IC and tissue assessment of drug concentration were developed in the C.V.F. laboratory by C.V.F., Dr. Brian L. Robbins, and Mr. Lee Winchester. This work was supported in part by National Institutes of Health Grants AI074340 and AI028433. NR 55 TC 150 Z9 150 U1 3 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 11 PY 2014 VL 111 IS 6 BP 2307 EP 2312 DI 10.1073/pnas.1318249111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA3NO UT WOS:000330999600058 PM 24469825 ER PT J AU Yadav, SK Liu, XY Wang, J Ramprasad, R Misra, A Hoagland, RG AF Yadav, S. K. Liu, X. -Y Wang, J. Ramprasad, R. Misra, A. Hoagland, R. G. TI First-principles density functional theory study of generalized stacking faults in TiN and MgO SO PHILOSOPHICAL MAGAZINE LA English DT Article DE DFT; ceramic; generalized stacking fault energy; slip; bonding ID TITANIUM NITRIDE; SINGLE-CRYSTALS; METALS; SLIP; ENERGIES; PRESSURE; NANOINDENTATION; BEHAVIOR; SCALE AB In this paper, the generalized stacking fault (GSF) energies in different slip planes of TiN and MgO are calculated using highly reliable first-principles density functional theory (DFT) calculations. During DFT calculations, the issue of different ways to calculate the GSF energetics in ceramic materials containing more than one element was addressed and applied. For < 110 >/{111} slip, a splitting of saddle point in TiN was observed. For < 112 >/{111} slip, a stable stacking fault at a(0)/3 < 112 > displacement was formed in TiN. For synchroshear mechanism where the slip was accompanied by a cooperative motion of the interfacial nitrogen atoms within the slip plane, a second stable stacking fault was formed at a(0)/6 < 112 > displacement. The energy barrier for the shuffling of nitrogen atoms from one state to another is calculated to be 0.70eV per atom. In contrast, such features are absent in MgO. These differences highlight the influence of complex bonding nature (mixed covalent, ionic, and metallic bondings) of TiN, which is substantially different than that in MgO (simple ionic bonding) on GSF shapes. C1 [Yadav, S. K.; Liu, X. -Y; Wang, J.; Hoagland, R. G.] Los Alamos Natl Lab, Mat Sci Technol Div, Los Alamos, NM 87545 USA. [Yadav, S. K.; Ramprasad, R.] Univ Connecticut, Storrs, CT 06269 USA. [Misra, A.] Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Liu, XY (reprint author), Los Alamos Natl Lab, Mat Sci Technol Div, MST 8, Los Alamos, NM 87545 USA. EM xyliu@lanl.gov RI Yadav, Satyesh/M-6588-2014; yadav, satyesh/C-5811-2013; Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI yadav, satyesh/0000-0002-6308-6070; Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory (LANL) Directed Research and Development Program; US Department of Energy [DE-AC52-06NA25396] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. SKY and XYL also acknowledge partial support by the Los Alamos National Laboratory (LANL) Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. The authors acknowledge insightful discussions with Prof. J.P. Birth. NR 38 TC 11 Z9 11 U1 5 U2 28 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD FEB 11 PY 2014 VL 94 IS 5 BP 464 EP 475 DI 10.1080/14786435.2013.856525 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 294CV UT WOS:000330020900004 ER PT J AU Paulauskas, SV Madurga, M Grzywacz, R Miller, D Padgett, S Tan, H AF Paulauskas, S. V. Madurga, M. Grzywacz, R. Miller, D. Padgett, S. Tan, H. TI A digital data acquisition framework for the Versatile Array of Neutron Detectors at Low Energy (VANDLE) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Plastic scintillators; Timing; Digitizers; Time-of-flight; Neutron detection ID TIME RESOLUTION; SPECTROSCOPY AB Neutron energy measurements can be achieved using time-of-flight (ToF) techniques. A digital data acquisition system was developed for reliable ToF measurements with subnanosecond timing resolution based on digitizers with 10 ns and 4 ns sampling periods using pulse shape analysis algorithms. A validation procedure was developed to confirm the reliability. The response of the algorithm to photomultiplier signals was studied using a specially designed experimental system based on fast plastic scintillators. The presented developments enabled digital data acquisition systems to instrument the recently developed Versatile Array of Neutron Detectors at Low-Energy (VANDLE). (C) 2013 Elsevier B.V. All rights reserved C1 [Paulauskas, S. V.; Madurga, M.; Grzywacz, R.; Miller, D.; Padgett, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Grzywacz, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tan, H.] XIA LLC, Hayward, CA 94544 USA. RP Paulauskas, SV (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Miller, David/B-5372-2012; OI Miller, David/0000-0002-0426-974X; Paulauskas, Stanley/0000-0002-6479-4626 FU NNSA, through DOE [DE-FG52-08NA28552] FX The NNSA, through DOE Cooperative Agreement DE-FG52-08NA28552, supported this work, NR 17 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 22 EP 28 DI 10.1016/j.nima.2013.11.028 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500005 ER PT J AU Do, C Heller, WT Stanley, C Gallmeier, FX Doucet, M Smith, GS AF Do, Changwoo Heller, William T. Stanley, Christopher Gallmeier, Franz X. Doucet, Mathieu Smith, Gregory S. TI Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Time-of-llight SANS; Inelastic scattering; Water; Thermalization ID CALIBRATION; DYNAMICS; SNS AB It is generally assumed by most of the small angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from watet Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room temperature thermal energies (similar to 20 meV) regardless of the incident neutrons energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at he defector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature dependent, necessitating careful processing of the raw data into the SANS cross-section. (C) 2013 Elsevier B.V. All rights reserved. C1 [Do, Changwoo; Heller, William T.; Stanley, Christopher; Smith, Gregory S.] Oak Ridge Natl Lab, Biol & Suft Mutter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Gallmeier, Franz X.] Oak Ridge Natl Lab, Instrument & Source Design Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Doucet, Mathieu] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Do, C (reprint author), Oak Ridge Natl Lab, Biol & Suft Mutter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM doc1@ornl.gov RI Doucet, Mathieu/A-5333-2010; Smith, Gregory/D-1659-2016; Do, Changwoo/A-9670-2011; OI Doucet, Mathieu/0000-0002-5560-6478; Smith, Gregory/0000-0001-5659-1805; Do, Changwoo/0000-0001-8358-8417; Stanley, Christopher/0000-0002-4226-7710 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 9 TC 6 Z9 6 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 42 EP 46 DI 10.1016/j.nima.2013.11.030 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500008 ER PT J AU Bass, CD Bade, C Blecher, M Caracappa, A D'Angelo, A Deur, A Dezern, G Glueckler, H Hanretty, C Ho, D Honig, A Kageya, T Khandaker, M Laine, V Lincoln, F Lowry, MM Mahon, JC O'Connell, T Pap, M Peng, P Preedom, B Sandorfi, AM Seyfarth, H Stroeher, H Thorn, CE Wei, X Whisnant, CS AF Bass, C. D. Bade, C. Blecher, M. Caracappa, A. D'Angelo, A. Deur, A. Dezern, G. Glueckler, H. Hanretty, C. Ho, D. Honig, A. Kageya, T. Khandaker, M. Laine, V. Lincoln, F. Lowry, M. M. Mahon, J. C. O'Connell, T. Pap, M. Peng, P. Preedom, B. Sandorfi, A. M. Seyfarth, H. Stroeher, H. Thorn, C. E. Wei, X. Whisnant, C. S. TI A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Solid hydrogen deuteride; Frozen-spin target; Spin relaxation; Halbach rare-earth magnet ID DESIGN AB A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over 2 m into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show very little polarization loss for either H (-1 +/- 2%, relative) or D (0 +/- 3%, relative) over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device. (C) 2013 Elsevier B.V. All rights reserved, C1 [Bass, C. D.; D'Angelo, A.; Deur, A.; Dezern, G.; Kageya, T.; Laine, V.; Lowry, M. M.; Sandorfi, A. M.; Wei, X.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Caracappa, A.; Lincoln, F.; Lowry, M. M.; Sandorfi, A. M.; Thorn, C. E.; Wei, X.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Glueckler, H.; Pap, M.; Seyfarth, H.; Stroeher, H.] Forschungszentrum Julich, D-52425 Julich, Germany. [Ho, D.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Whisnant, C. S.] James Madison Univ, Harrisonburg, VA 22807 USA. [Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Bade, C.; Mahon, J. C.] Ohio Univ, Athens, OH 45701 USA. [Honig, A.] Syracuse Univ, Syracuse, NY 13210 USA. [Laine, V.] Univ Clermont Ferrand, F-63177 Aubiere, France. [O'Connell, T.] Univ Connecticut, Storrs, CT 06269 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma2, I-00133 Rome, Italy. [Preedom, B.] Univ S Carolina, Columbia, SC 29208 USA. [Hanretty, C.; Peng, P.] Univ Virginia, Charlottesville, VA 22903 USA. [Blecher, M.; Kageya, T.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Sandorfi, AM (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM bassc@lemoyne.edu; sandorfi@JLab.org RI D'Angelo, Annalisa/A-2439-2012 OI D'Angelo, Annalisa/0000-0003-3050-4907 FU United States Department of Energy, Office of Nuclear Physics Division [DE-AC02-98-CH10886]; US National Science Foundation, the German Ministries for Science and Education; [DE-AC05-06OR23177] FX This work has been supported by the United States Department of Energy, Office of Nuclear Physics Division, under contract DE-AC02-98-CH10886 supporting Brookhaven National Laboratory, and under contract DE-AC05-06OR23177 under which Jefferson Science Associates operates Jefferson Laboratory, the US National Science Foundation, the German Ministries for Science and Education supporting Forschungszentrum Julich, and the Istituto Nazionale di Fisica Nucleare of Italy. NR 13 TC 2 Z9 2 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 107 EP 116 DI 10.1016/j.nima.2013.10.056 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500018 ER PT J AU Shizuma, T Hayakawa, T Angell, CT Hajima, R Minato, F Suyama, K Seya, M Johnson, MS McNabb, DP AF Shizuma, Toshiyuki Hayakawa, Takehito Angell, Christopher T. Hajima, Ryoichi Minato, Futoshi Suyama, Kenya Seya, Michio Johnson, Micah S. McNabb, Dennis P. TI Statistical uncertainties of nondestructive assay for spent nuclear fuel by using nuclear resonance fluorescence SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nondestructive assay; Nuclear resonance fluorescence; Laser Compton scattering; Mono-energetic photon beam ID SCATTERING AB We estimated statistical uncertainties of a nondestructive assay system using nuclear resonance fluorescence (NRF) for spent nuclear fuel including low concentrations of actinide nuclei with an intense, mono energetic photon beam. Background counts from radioactive materials inside the spent fuel were calculated with the ORIGEN2.2-UPJ burn-up computer code. Coherent scattering contribution associated with Rayleigh, nuclear Thomson, and Delbruck scattering was also considered. The energy of he coherent scattering overlaps with that L of NRF transitions to the ground state. Here, we propose to measure NRF transitions to the first excited state to avoid the coherent scattering contribution. Assuming that L the total NRF cross-sections are in the range of 3-100 eV b at excitation energies of 225, 3.5, and 5 MeV, statistical uncertainties of the NRF measurement were estimated. We concluded that it is possible to assay 1% actinide content in the spent fuel with 2.2-32% statistical precision during 40005 measurement time for the total integrated cross-section of 30 eV b at excitation energies of 3.5-5 MeV by using a photon beam with an intensity of 106 photons/s/eV. We also examined both the experimental and theoretical NRF cross-sections for actinide nuclei. The calculation based On the quasi-particle random phase approximation suggests the existence of strong magnetic dipole resonances at excitation energies ranging from 2 to 6 MeV with the scattering cross-sections of tens eV b around 5 MeV in U-238. (C) 2013 Published by Elsevier B.V. C1 [Shizuma, Toshiyuki; Hayakawa, Takehito; Angell, Christopher T.; Hajima, Ryoichi] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tukai, Ibaraki 3191195, Japan. [Minato, Futoshi; Suyama, Kenya] Japan Atom Energy Agcy, Nucl Sci Grid Engn Directorate, Tukai, Ibaraki 3191195, Japan. [Seya, Michio] Japan Atom Energy Agcy, Integrated Support Ctr Nucl Nonproliferat & Nucl, Tukai, Ibaraki 3191195, Japan. [Johnson, Micah S.; McNabb, Dennis P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Johnson, Micah S.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. RP Shizuma, T (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tukai, Ibaraki 3191195, Japan. EM shizum.toshiyuki@jaea.go.jp RI Hayakawa, Takehito/K-8478-2015 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan FX This work was supported in part by Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. NR 42 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 170 EP 175 DI 10.1016/j.nima.2013.11.069 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500026 ER PT J AU DeVore, P Escontrias, D Koblesky, T Lin, CJ Liu, DW Luk, KB Ngan, J Peng, JC Polly, C Roloff, J Steiner, H Wang, S Wong, J Yeh, M AF DeVore, P. Escontrias, D. Koblesky, T. Lin, C. J. Liu, D. W. Luk, K. B. Ngan, J. Peng, J. C. Polly, C. Roloff, J. Steiner, H. Wang, S. Wong, J. Yeh, M. TI Light-weight flexible magnetic shields for large-aperture photomultiplier tubes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Magnetic shield; Photomultiplier tube; FINEMET AB Thin flexible sheets of high permeability FINEMET(R) foils encased in thin plastic layers have been used to shield various types of 20-cm-diameter photomultiplier tubes from ambient magnetic fields. In the presence of the Earth's magnetic field this type of shielding is shown to increase the collection efficiency of photoelectrons and can improve the uniformity of response of these photomultiplier tubes. (C) 2013 Elsevier B.V. All rights reserved. C1 [DeVore, P.; Luk, K. B.; Steiner, H.; Wang, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [DeVore, P.; Escontrias, D.; Lin, C. J.; Liu, D. W.; Luk, K. B.; Ngan, J.; Steiner, H.; Wang, S.; Wong, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Koblesky, T.; Peng, J. C.; Polly, C.; Roloff, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ngan, J.; Wong, J.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Luk, KB (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM k_luk@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; U.S. National Science Foundation; Research Grant Council of the Hong Kong Special Administrative Region, China [CUHK 1/07C, CUHK3/CRF/10]; Department of Physics, Chinese University of Hong Kong FX We would like to express our gratitude to the technical staffs of the Lawrence Berkeley National Laboratory for their excellent support. This work was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Office of High Energy Physics, of the U.S. Department of Energy under Contract nos, DE-AC02-05CH11231 and DE-AC02-98CH10886, the U.S. National Science Foundation, the Research Grant Council of the Hong Kong Special Administrative Region, China (Project nos. CUHK 1/07C and CUHK3/CRF/10). J.N. and J.W. were also partially supported by the Department of Physics, Chinese University of Hong Kong. NR 7 TC 4 Z9 4 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 222 EP 228 DI 10.1016/j.nima.2013.11.024 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500032 ER PT J AU Abe, K Hayato, Y Iida, T Iyogi, K Kameda, J Kishimoto, Y Koshio, Y Marti, L Miura, M Moriyama, S Nakahata, M Nakano, Y Nakayama, S Obayashi, Y Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takenaga, Y Tanaka, H Tomura, T Ueno, K Wendell, RA Yokozawa, T Irvine, TJ Kaji, H Kajita, T Kaneyuki, K Lee, KP Nishimura, Y Okumura, K McLachlan, T Labarga, L Kearns, E Raaf, JL Stone, JL Sulak, LR Berkman, S Tanaka, HA Tobayama, S Goldhaber, M Bays, K Carminati, G Kropp, WR Mine, S Renshaw, A Smy, MB Sobel, HW Ganezer, KS Hill, J Keig, WE Jang, JS Kim, JY Lim, IT Hong, N Akiri, T Albert, JB Himmel, A Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Learned, JG Matsuno, S Smith, SN Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Huang, K Ieki, K Ikeda, M Kikawa, T Kubo, H Minamino, A Murakami, A Nakaya, T Otani, M Suzuki, K Takahashi, S Fukuda, Y Choi, K Itow, Y Mitsuka, G Miyake, M Mijakowski, P Tacik, R Hignight, J Imber, J Jung, CK Taylor, I Yanagisawa, C Idehara, Y Ishino, H Kibayashi, A Mori, T Sakuda, M Yamaguchi, R Yano, T Kuno, Y Kim, SB Yang, BS Okazawa, H Choi, Y Nishijima, K Koshiba, M Totsuka, Y Yokoyama, M Martens, K Vagins, MR Martin, JF de Perio, P Konaka, A Wilking, MJ Chen, S Heng, Y Sui, H Yang, Z Zhang, H Zhenwei, Y Connolly, K Dziomba, M Wilkes, RJ AF Abe, K. Hayato, Y. Iida, T. Iyogi, K. Kameda, J. Kishimoto, Y. Koshio, Y. Marti, Ll Miura, M. Moriyama, S. Nakahata, M. Nakano, Y. Nakayama, S. Obayashi, Y. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takenaga, Y. Tanaka, H. Tomura, T. Ueno, K. Wendell, R. A. Yokozawa, T. Irvine, T. J. Kaji, H. Kajita, T. Kaneyuki, K. Lee, K. P. Nishimura, Y. Okumura, K. McLachlan, T. Labarga, L. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Berkman, S. Tanaka, H. A. Tobayama, S. Goldhaber, M. Bays, K. Carminati, G. Kropp, W. R. Mine, S. Renshaw, A. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Hong, N. Akiri, T. Albert, J. B. Himmel, A. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Learned, J. G. Matsuno, S. Smith, S. N. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Huang, K. Ieki, K. Ikeda, M. Kikawa, T. Kubo, H. Minamino, A. Murakami, A. Nakaya, T. Otani, M. Suzuki, K. Takahashi, S. Fukuda, Y. Choi, K. Itow, Y. Mitsuka, G. Miyake, M. Mijakowski, P. Tacik, R. Hignight, J. Imber, J. Jung, C. K. Taylor, I. Yanagisawa, C. Idehara, Y. Ishino, H. Kibayashi, A. Mori, T. Sakuda, M. Yamaguchi, R. Yano, T. Kuno, Y. Kim, S. B. Yang, B. S. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Totsuka, Y. Yokoyama, M. Martens, K. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Wilking, M. J. Chen, S. Heng, Y. Sui, H. Yang, Z. Zhang, H. Zhenwei, Y. Connolly, K. Dziomba, M. Wilkes, R. J. TI Calibration of the Super-Kamiokande detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino detector; Detector calibration; Water Cherenkov detector; Super-Kamioknade; Cosmic rays AB Procedures and results on hardware-level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics have been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT), In this context, we developed an in situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a defector. The second part describes modeling of the detector in Monte Carlo simulations, including, in particular, the optical properties of the wafer target and their variability over Lime. Detailed studies on wafer qualify are also presented. As a result of this work, we have achieved a precision sufficient for physics analyses over a wide energy range (from a few MeV to above 1 TeV). For example, charge determination was at the level of 1%, and the timing resolution was 2.1 ns at the one-photoelectron charge level and 0.5 ns at the 100-photoelectron charge level. (C) 2013 Elsevier B.V. All rights reserved, C1 [Abe, K.; Hayato, Y.; Iida, T.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Koshio, Y.; Marti, Ll; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Irvine, T. J.; Kaji, H.; Kajita, T.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; Okumura, K.; McLachlan, T.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Berkman, S.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Bays, K.; Carminati, G.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Kim, J. Y.; Lim, I. T.; Hong, N.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Akiri, T.; Albert, J. B.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Jr Coll, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Huang, K.; Ieki, K.; Ikeda, M.; Kikawa, T.; Kubo, H.; Minamino, A.; Murakami, A.; Nakaya, T.; Otani, M.; Suzuki, K.; Takahashi, S.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Mitsuka, G.; Miyake, M.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Itow, Y.] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan. [Mijakowski, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Hignight, J.; Imber, J.; Jung, C. K.; Taylor, I.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Idehara, Y.; Ishino, H.; Kibayashi, A.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Hayato, Y.; Kishimoto, Y.; Moriyama, S.; Nakahata, M.; Shiozawa, M.; Suzuki, Y.; Kajita, T.; Kaneyuki, K.; Stone, J. L.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Takeuchi, Y.; Nakaya, T.; Yokoyama, M.; Martens, K.; Vagins, M. R.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Heng, Y.; Sui, H.; Yang, Z.; Zhang, H.; Zhenwei, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Connolly, K.; Dziomba, M.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Koshio, Y (reprint author), Okayama Univ, Dept Phys, Okayama 7008530, Japan. EM koshio@fphy.hep.okayama-u.ac.jp RI Takeuchi, Yasuo/A-4310-2011; Yokoyama, Masashi/A-4458-2011; Suzuki, Yoichiro/F-7542-2010; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Kibayashi, Atsuko/K-7327-2015; Obayashi, Yoshihisa/A-4472-2011; Nakano, Yuuki/S-2684-2016; OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X FU Japanese Ministry of Education, Culture, Sports, Science and Technology; United States Department of Energy; U.S. National Science Foundation; Korean Research Foundation [BK21]; National Research Foundation of Korea [NRF-2009-C00046]; State Committee for Scientific Research in Poland [1757/B/H03/2008/35]; Japan Society for the Promotion of Science; National Natural Science Foundation of China [10875062]; Spanish Ministry of Economy and Competitiveness [FPA2009-13697-C04-02] FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the United States Department of Energy, and the U.S. National Science Foundation. Some of us have been funded by the Korean Research Foundation (BK21), the National Research Foundation of Korea (NRF-2009-C00046), the State Committee for Scientific Research in Poland (Grant no. 1757/B/H03/2008/35), the Japan Society for the Promotion of Science, the National Natural Science Foundation of China under Grant no. 10875062, and the Spanish Ministry of Economy and Competitiveness (Grant no. FPA2009-13697-C04-02). NR 20 TC 31 Z9 31 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 253 EP 272 DI 10.1016/j.nima.2013.11.081 PG 20 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500037 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Arthaud, M Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Seri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Calfayan, P Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Chevalier-Thery, S Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clement, C Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C De Vaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Lesne, V Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Luo, C Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulders, M Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Nurse, E Orduna, J Osman, N Osta, J Owen, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Strohmer, R Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R Van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Arthaud, M. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Seri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Calfayan, P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Chevalier-Thery, S. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clement, C. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. De Vaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Lesne, V. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Luo, C. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulders, M. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Nurse, E. Orduna, J. Osman, N. Osta, J. Owen, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Stroehmer, R. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. Van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI Muon reconstruction and identification with the Run II D0 detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fermilab; D0; Tevatron Run II; Muon identification; Muon reconstruction ID SYSTEM AB We present an overview of the muon reconstruction and identification methods employed by the DO collaboration to analyze the Run II (2001-2011) p (p) over bar data of the Fermilab Tevatron collider at root s = 1.96 TeV. We discuss the performance of these methods, how it is measured using DO data, and how it is properly modeled by the DO simulation program. In its pseudorapidity acceptance, vertical bar eta vertical bar < 2, the muon system identifies high-p(T) muons (p(T) greater than or similar to 10 GeV) with efficiencies ranging from 72% to 89%. Muons tracks are reconstructed in the DO central tracking system with efficiencies ranging from 85% to 92% and with a typical relative momentum resolution of 10% for p(T) = 40 GeV. Isolation criteria reject multijet background with efficiencies of 87-99%. (C) 2013 Elsevier B.V. All rights reserved, C1 [Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph; Lesne, V.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris VI & VII, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chapon, E.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Calfayan, P.; Nunnemann, T.; Sanders, M. P.; Stroehmer, R.] Univ Munich, Munich, Germany. [Seri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Van Leeuwen, W. M.] Nikhef, Sci Pk, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.; Clement, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Buszello, C. P.; Clement, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Nurse, E.; Owen, M.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Mulders, M.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Luo, C.; Parua, N.; Price, D.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Atkins, S.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; De Vaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Gadfort, T.; Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Tuchming, B (reprint author), CEA, Irfu, SPP, Saclay, France. EM boris.tuchming@cea.fr RI Juste, Aurelio/I-2531-2015; Yip, Kin/D-6860-2013; Merkin, Mikhail/D-6809-2012; Li, Liang/O-1107-2015; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014 OI Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Ding, Pengfei/0000-0002-4050-1753; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Yip, Kin/0000-0002-8576-4311; Bertram, Iain/0000-0003-4073-4941; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); NRC KI (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 23 TC 23 Z9 23 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2014 VL 737 BP 281 EP 294 DI 10.1016/j.nima.2013.11.050 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 285OX UT WOS:000329404500039 ER PT J AU Weng, W Barile, CJ Du, P Abouimrane, A Assary, RS Gewirth, AA Curtiss, LA Amine, K AF Weng, Wei Barile, Christopher J. Du, Peng Abouimrane, Ali Assary, Rajeev S. Gewirth, Andrew A. Curtiss, Larry A. Amine, Khalil TI Polymer supported organic catalysts for O-2 reduction in Li-O-2 batteries SO ELECTROCHIMICA ACTA LA English DT Article DE (Organic catalyst; Li-O-2 batteries; Oxygen reduction reaction (ORR)) ID LITHIUM-AIR BATTERIES; ANODE-ACTIVE MATERIALS; HYDROGEN-PEROXIDE; FUEL-CELL; CHALLENGES; ELECTRODES; ELECTROCATALYSTS; ELECTROLYTES; ENERGY; OXYGEN AB A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction catalyst was successfully incorporated in the cathode of Li-O-2 batteries. The addition of the anthraquinone-based catalyst improved the cycleability of the Li-O-2 battery when cycled in a tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with a wide range of analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, electrochemical impedence spectroscopy, and X-ray diffraction were used to interrogate the Li-O-2 battery with and without the organic catalyst present. This study suggests that organic catalysts may serve as light and inexpensive alternatives to the precious metals frequently used in Li-O-2 batteries. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Weng, Wei; Du, Peng; Abouimrane, Ali; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Barile, Christopher J.; Gewirth, Andrew A.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Abouimrane, A (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abouimrane@anl.gov RI Surendran Assary, Rajeev/E-6833-2012 OI Surendran Assary, Rajeev/0000-0002-9571-3307 FU U.S. Department of Energy, Office of Vehicle Technologies.; UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; National Science Foundation Graduate Research Fellowship (NSF) [DGE-1144245]; Springborn Fellowship FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, Office of Vehicle Technologies. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The authors also acknowledge the use of the Advanced Photon Source and Electron Microscopy Center of Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. C. J. B. acknowledges a National Science Foundation Graduate Research Fellowship (NSF DGE-1144245) and a Springborn Fellowship. Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center, U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 32 TC 8 Z9 8 U1 3 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 10 PY 2014 VL 119 BP 138 EP 143 DI 10.1016/j.electacta.2013.12.027 PG 6 WC Electrochemistry SC Electrochemistry GA AH1JS UT WOS:000335877000020 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Behera, B Beilicke, M Benbow, W Berger, K Bird, R Bouvier, A Buckley, JH Bugaev, V Byrum, K Cerruti, M Chen, X Ciupik, L Connolly, MP Cui, W Duke, C Dumm, J Errando, M Falcone, A Federici, S Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Galante, N Gillanders, GH Griffin, S Griffiths, ST Grube, J Gyuk, G Hanna, D Holder, J Hughes, G Humensky, TB Johnson, CA Kaaret, P Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lang, MJ Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Meagher, K Millis, J Moriarty, P Mukherjee, R Nieto, D de Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Pohl, M Popkow, A Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Richards, GT Roache, E Sembroski, GH Smith, AW Staszak, D Telezhinsky, I Theiling, M Varlotta, A Vassiliev, VV Vincent, S Wakely, SP Weekes, TC Weinstein, A Welsing, R Williams, DA Zajczyk, A Zitzer, B AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Behera, B. Beilicke, M. Benbow, W. Berger, K. Bird, R. Bouvier, A. Buckley, J. H. Bugaev, V. Byrum, K. Cerruti, M. Chen, X. Ciupik, L. Connolly, M. P. Cui, W. Duke, C. Dumm, J. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Galante, N. Gillanders, G. H. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Humensky, T. B. Johnson, C. A. Kaaret, P. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Meagher, K. Millis, J. Moriarty, P. Mukherjee, R. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Pohl, M. Popkow, A. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Richards, G. T. Roache, E. Sembroski, G. H. Smith, A. W. Staszak, D. Telezhinsky, I. Theiling, M. Varlotta, A. Vassiliev, V. V. Vincent, S. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Williams, D. A. Zajczyk, A. Zitzer, B. TI A THREE-YEAR MULTI-WAVELENGTH STUDY OF THE VERY-HIGH-ENERGY gamma-RAY BLAZAR 1ES 0229+200 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; BL Lacertae objects: individual (1ES 0229+200, VER J0232+202); diffuse radiation; galaxies: active; gamma rays: general; magnetic fields ID EXTRAGALACTIC BACKGROUND LIGHT; ACTIVE GALACTIC NUCLEI; BL LACERTAE OBJECTS; INTERGALACTIC MAGNETIC-FIELD; LARGE-AREA TELESCOPE; X-RAY; TEV BLAZARS; SPACE-TELESCOPE; DISTANT BLAZARS; LORENTZ FACTOR AB The high-frequency-peaked BL Lacertae object 1ES 0229+200 is a relatively distant (z = 0.1396), hard-spectrum (Gamma similar to 2.5), very-high-energy (VHE; E > 100 GeV) emitting gamma-ray blazar. VHE measurements of this active galactic nucleus have been used to place constraints on the intensity of the extragalactic background light and the intergalactic magnetic field (IGMF). A multi-wavelength study of this object centered around VHE observations by Very Energetic Radiation Imaging Telescope Array System (VERITAS) is presented. This study obtained, over a period of three years, an 11.7 standard deviation detection and an average integral flux F(E > 300 GeV) = (23.3 +/- 2.8(stat) +/- 5.8(sys)) x 10(-9) photons m(-2) s(-1), or 1.7% of the Crab Nebula's flux (assuming the Crab Nebula spectrum measured by H. E. S. S). Supporting observations from Swift and RXTE are analyzed. The Swift observations are combined with previously published Fermi observations and the VHE measurements to produce an overall spectral energy distributionwhich is then modeled assuming one-zone synchrotron-self-Compton emission. The chi(2) probability of the TeV flux being constant is 1.6%. This, when considered in combination with measured variability in the X-ray band, and the demonstrated variability of many TeV blazars, suggests that the use of blazars such as 1ES 0229+200 for IGMF studies may not be straightforward and challenges models that attribute hard TeV spectra to secondary gamma-ray production along the line of sight. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Arlen, T.; Aune, T.; Majumdar, P.; Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Behera, B.; Chen, X.; Federici, S.; Fleischhack, H.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.; Zajczyk, A.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Galante, N.; Roache, E.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Berger, K.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Berger, K.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bird, R.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Bouvier, A.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chen, X.; Federici, S.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dumm, J.; Fortson, L.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Humensky, T. B.; Nieto, D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Krennrich, F.; Madhavan, A. S.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, India. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Aliu, E (reprint author), Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM mcerruti@cfa.harvard.edu; jeremy.s.perkins@nasa.gov RI Khassen, Yerbol/I-3806-2015; Nieto, Daniel/J-7250-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Nieto, Daniel/0000-0003-3343-0755; Cui, Wei/0000-0002-6324-5772 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K; National Aeronautics and Space Administration FX VERITAS is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748) and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 73 TC 14 Z9 14 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2014 VL 782 IS 1 AR 13 DI 10.1088/0004-637X/782/1/13 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AB5SG UT WOS:000331848200013 ER PT J AU Corsi, A Ofek, EO Gal-Yam, A Frail, DA Kulkarni, SR Fox, DB Kasliwal, MM Sullivan, M Horesh, A Carpenter, J Maguire, K Arcavi, I Cenko, SB Cao, Y Mooley, K Pan, YC Sesar, B Sternberg, A Xu, D Bersier, D James, P Bloom, JS Nugent, PE AF Corsi, A. Ofek, E. O. Gal-Yam, A. Frail, D. A. Kulkarni, S. R. Fox, D. B. Kasliwal, M. M. Sullivan, M. Horesh, A. Carpenter, J. Maguire, K. Arcavi, I. Cenko, S. B. Cao, Y. Mooley, K. Pan, Y. -C. Sesar, B. Sternberg, A. Xu, D. Bersier, D. James, P. Bloom, J. S. Nugent, P. E. TI A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (PTF11qcj) ID GAMMA-RAY BURST; DIGITAL SKY SURVEY; 25 APRIL 1998; X-RAY; IC SUPERNOVAE; IBC SUPERNOVA; LIGHT-CURVE; GRB 980425; SN 2009IP; SPACE-TELESCOPE AB We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L-5 GHz approximate to 10(29) erg s(-1) Hz(-1)). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of similar to 10(-4) M-circle dot yr(-1) x (v(w)/1000 km s(-1)), and a velocity of approximate to 0.3-0.5 c for the fastest moving ejecta (at approximate to 10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M-r approximate to -13 mag may have occurred approximate to 2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars. C1 [Corsi, A.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Corsi, A.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Ofek, E. O.; Gal-Yam, A.; Xu, D.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Fox, D. B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Kasliwal, M. M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Sullivan, M.; Maguire, K.; Pan, Y. -C.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cenko, S. B.; Bloom, J. S.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Sternberg, A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Xu, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Bersier, D.; James, P.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Corsi, A (reprint author), George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA. EM corsi@gwu.edu RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Sullivan, Mark/0000-0001-9053-4820; James, Philip/0000-0003-4131-5183 FU DOE Office of Science; UT/Austin; Pennsylvania State University; Stanford; Ludwig-Maximilians-Universitat Munchen; Georg-August-Universitat Gottingen; Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico; W. M. Keck Foundation; UK Science and Technology Facilities Council; BSF; ISF; EU/FP7 via an ERC; GIF; Minerva; Kimmel Award; Israeli Ministry of Science; I-CORE Program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; NSF-CDI [0941742]; Hubble Fellowship; Carnegie-Princeton Fellowship; Royal Society; Richard and Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916] FX PTF is a collaboration of Caltech, LCOGT, the Weizmann Institute, LBNL, Oxford, Columbia, IPAC, and Berkeley. Staff and computational resources were provided by NERSC, supported by the DOE Office of Science. HET/LRS are supported by UT/Austin, the Pennsylvania State University, Stanford, Ludwig-Maximilians-Universitat Munchen, Georg-August-Universitat Gottingen, and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. The K. Jansky Very Large Array is operated by NRAO, for the NSF under cooperative agreement by Associated Universities, Inc. The W. M. Keck Observatory, is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. A.G. and S.R.K. acknowledge support from the BSF; A.G. further acknowledges support from the ISF, EU/FP7 via an ERC grant, GIF, Minerva, and a Kimmel Award; E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful to support by a grant from the Israeli Ministry of Science and the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant No 1829/12); J.S.B. acknowledges support of an NSF-CDI Grant 0941742, "Real-time Classification of Massive Time-series Data Streams"; M.M.K. acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship; M.S. acknowledges support from the Royal Society; S.B.C. acknowledges generous financial assistance from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. A.C. thanks the VLA staff for their support, and in particular: Miriam Krauss for very useful discussions on many aspects of the data reduction procedures; Heidi Medlin for support with the scheduling of the observations; and Drew Medlin for useful discussions on the VLA data reduction pipeline. A.C. also thanks E. Nakar for useful discussions. We thank the anonymous referee for useful comments. NR 90 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2014 VL 782 IS 1 AR 42 DI 10.1088/0004-637X/782/1/42 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AB5SG UT WOS:000331848200042 ER PT J AU Kitaguchi, T An, HJ Beloborodov, AM Gotthelf, EV Hayashi, T Kaspi, VM Rana, VR Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Stern, D Zhang, WW AF Kitaguchi, Takao An, Hongjun Beloborodov, Andrei M. Gotthelf, Eric V. Hayashi, Takayuki Kaspi, Victoria M. Rana, Vikram R. Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Stern, Daniel Zhang, Will W. TI NuSTAR AND SWIFT OBSERVATIONS OF THE FAST ROTATING MAGNETIZED WHITE DWARF AE AQUARII SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; novae, cataclysmic variables; stars: individual (AE Aquarii); white dwarfs; X-rays: stars ID X-RAY PULSATIONS; CATACLYSMIC VARIABLES; INTERMEDIATE POLARS; LINE DIAGNOSTICS; ACCRETION FLOWS; HOT PLASMA; XMM-NEWTON; EMISSION; TELESCOPE; SPECTRA AB AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(-0.45)(+0.18), 2.29(-0.82)(+0.96), and 9.33(-2.18)(+6.07) keV, or an optically thin thermal plasma model with two temperatures of 1.00(-0.23)(+0.34) and 4.64(-0.84)(+1.58) keV plus a power-law component with photon index of 2.50(-0.23)(+0.17). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile. C1 [Kitaguchi, Takao] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan. [An, Hongjun; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hayashi, Takayuki] Inst Space & Astronaut Sci JAXA, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Rana, Vikram R.; Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, Will W.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kitaguchi, T (reprint author), RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Rana, Vikram/0000-0003-1703-8796 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; Japan Society for the Promotion of Science (JSPS) [24740185] FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams and the Swift Operations team for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA) and the XRT Data Analysis Software (XRTDAS) developed under the responsibility of ASDC. T. K. was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (B) (No. 24740185). NR 42 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2014 VL 782 IS 1 AR 3 DI 10.1088/0004-637X/782/1/3 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AB5SG UT WOS:000331848200003 ER PT J AU Malone, CM Nonaka, A Woosley, SE Almgren, AS Bell, JB Dong, S Zingale, M AF Malone, C. M. Nonaka, A. Woosley, S. E. Almgren, A. S. Bell, J. B. Dong, S. Zingale, M. TI THE DEFLAGRATION STAGE OF CHANDRASEKHAR MASS MODELS FOR TYPE Ia SUPERNOVAE. I. EARLY EVOLUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; hydrodynamics; methods: numerical; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID EVALUATING SYSTEMATIC DEPENDENCIES; FLUID DYNAMICAL SIMULATIONS; DELAYED-DETONATION MODEL; SUBGRID SCALE-MODEL; OFF-CENTER IGNITION; WHITE-DWARF; EXPLOSION MODELS; CARBON IGNITION; FLAMES; PROPAGATION AB We present high-resolution, full-star simulations of the post-ignition phase of Type Ia supernovae using the compressible hydrodynamics code Castro. Initial conditions, including the turbulent velocity field and ignition site, are imported directly from a simulation of the last few hours of presupernova convection using a low Mach number code, Maestro. Adaptive mesh refinement allows the initial burning front to be modeled with an effective resolution of 36,864(3) zones (136 m zone(-1)). The initial rise and expansion of the deflagration front are tracked until burning reaches the star's edge and the role of the background turbulence on the flame is investigated. The effect of artificially moving the ignition location closer to the star's center is explored. The degree to which turbulence affects the burning front decreases with increasing ignition radius since the buoyancy force is stronger at larger radii. Even central ignition-in the presence of a background convective flow field-is rapidly carried off-center as the flame is carried by the flow field. We compare our results to analytic models for burning thermals, and find that they reproduce the general trends of the bubble's size and mass, but underpredict the amount of buoyant acceleration due to simplifying assumptions of the bubble's properties. Overall, we find that the amount of mass that burns prior to flame break out is small, consistent with a "gravitationally confined detonation" occurring at a later epoch, but additional burning will occur following breakout that may modify this conclusion. C1 [Malone, C. M.; Woosley, S. E.; Dong, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Nonaka, A.; Almgren, A. S.; Bell, J. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Zingale, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Malone, CM (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. OI Zingale, Michael/0000-0001-8401-030X FU National Science Foundation [OCI 07-25070, OCI-1036199, AST 0909129]; state of Illinois; DOE INCITE award at the Oak Ridge Leadership Computational Facility (OLCF) at Oak Ridge National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]; NASA Theory Program [NNX09AK36G]; DOE HEP Program [DE-FC02-06ER41438]; DOE/Office of Nuclear Physics [DE-FG02-06ER41448] FX We thank the referee for their thorough reading of our manuscript and their constructive comments. We also thank Andy Aspden for insights into the nature of burning thermals and his one-dimensional models. We also thank Kalyana Chadalavada for help in getting us (and keeping us) running on the Blue Waters Early Science System. C. M. M. would also like to thank Rob Sisneros and Dave Semararo for discussions of large-scale visualization and the inherent problems therein. Our discussions with Rainer Moll regarding fluid-flame interactions have been extremely insightful, and we thank him. Correspondence with Ivo Seitenzahl was helpful in understanding unpublished details of the MPA models. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champagne and its National Center for Supercomputing Applications. This work is also part of the "PRAC Type Ia Supernovae" PRAC allocation support by the National Science Foundation (award number OCI-1036199). Additional computer time for the calculations in this paper was provided through a DOE INCITE award at the Oak Ridge Leadership Computational Facility (OLCF) at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported, at UCSC, by the National Science Foundation (AST 0909129), the NASA Theory Program (NNX09AK36G), and especially by the DOE HEP Program through grant DE-FC02-06ER41438. M.Z. is supported by DOE/Office of Nuclear Physics grant No. DE-FG02-06ER41448 to Stony Brook. NR 47 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2014 VL 782 IS 1 AR 11 DI 10.1088/0004-637X/782/1/11 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AB5SG UT WOS:000331848200011 ER PT J AU Papatheodore, TL Messer, OEB AF Papatheodore, Thomas L. Messer, O. E. Bronson TI ON NUMERICAL CONSIDERATIONS FOR MODELING REACTIVE ASTROPHYSICAL SHOCKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; shock waves; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; IA SUPERNOVA EXPLOSION; WHITE-DWARF MODELS; CELLULAR DETONATIONS; OPTICAL-SPECTRA; DEFLAGRATION; SIMULATIONS; MERGERS; HYDRODYNAMICS; EVOLUTION AB Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables. C1 [Papatheodore, Thomas L.; Messer, O. E. Bronson] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papatheodore, Thomas L.; Messer, O. E. Bronson] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Messer, O. E. Bronson] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Papatheodore, TL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM tpapathe@utk.edu; bronson@ornl.gov RI Messer, Bronson/G-1848-2012; OI Messer, Bronson/0000-0002-5358-5415; Papatheodore, Thomas/0000-0002-6991-4332 FU Laboratory Directed Research and Development Program (Seed Money Fund) of Oak Ridge National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was sponsored in part by the Laboratory Directed Research and Development Program (Seed Money Fund) of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC05-00OR22725. The authors thank Raph Hix, Suzanne Parete-Koon, Chris Smith, and Dean Townsley for useful discussions. The authors also thank the anonymous referee for suggestions that materially improved this paper. NR 56 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2014 VL 782 IS 1 AR 12 DI 10.1088/0004-637X/782/1/12 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AB5SG UT WOS:000331848200012 ER PT J AU Poole, ZL Ohodnicki, P Chen, RZ Lin, YK Chen, KP AF Poole, Zsolt L. Ohodnicki, Paul Chen, Rongzhang Lin, Yuankun Chen, Kevin P. TI Engineering metal oxide nanostructures for the fiber optic sensor platform SO OPTICS EXPRESS LA English DT Article ID GAS SENSORS; REFRACTIVE-INDEX; HYDROGEN SENSOR; THIN-FILMS; TEMPERATURE; SENSITIVITY; CHEMIRESISTORS; NANOFIBERS; GRATINGS; DIOXIDE AB This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500 degrees C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials. (C) 2014 Optical Society of America C1 [Poole, Zsolt L.; Chen, Rongzhang; Chen, Kevin P.] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA. [Ohodnicki, Paul] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lin, Yuankun] Univ N Texas, Dept Phys, Denton, TX 76203 USA. RP Chen, KP (reprint author), Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA. EM pec9@pitt.edu RI Chen, Rongzhang/B-7259-2017 OI Chen, Rongzhang/0000-0003-4582-2983 FU National Science Foundation [CMMI-1054652, CMMI-1109977]; Department of Energy [DE-FE0003859]; United States Government FX This work was supported by the National Science Foundation (CMMI-1054652 and CMMI-1109977) and the Department of Energy (DE-FE0003859). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 46 TC 13 Z9 13 U1 5 U2 34 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 10 PY 2014 VL 22 IS 3 BP 2665 EP 2674 DI 10.1364/OE.22.002665 PG 10 WC Optics SC Optics GA AC4VB UT WOS:000332518100051 PM 24663558 ER PT J AU Idir, M Kaznatcheev, K Dovillaire, G Legrand, J Rungsawang, R AF Idir, Mourad Kaznatcheev, Konstantine Dovillaire, Guillaume Legrand, Jerome Rungsawang, Rakchanok TI A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head SO OPTICS EXPRESS LA English DT Article ID RESOLUTION; MIRRORS AB We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms. (C) 2014 Optical Society of America C1 [Idir, Mourad; Kaznatcheev, Konstantine] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Idir, M (reprint author), Brookhaven Natl Lab, NSLS 2 50 Rutherford Dr, Upton, NY 11973 USA. EM midir@bnl.gov FU US Department of Energy, Office of Science, Office of Basic Energy sciences [DE-AC-02-98CH10886] FX The authors would like to thanks WinlightX/France, JTEC corporation/Japan, Q-SYS/Netherlands and all colleagues from Imagine Optic/France and NSLSII for useful discussions and contributions to this project. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy sciences, under contract No. DE-AC-02-98CH10886. NR 27 TC 16 Z9 17 U1 3 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 10 PY 2014 VL 22 IS 3 BP 2770 EP 2781 DI 10.1364/OE.22.002770 PG 12 WC Optics SC Optics GA AC4VB UT WOS:000332518100061 PM 24663568 ER PT J AU Ribaudo, T Taylor, A Nguyen, BM Bethke, D Shaner, EA AF Ribaudo, T. Taylor, A. Nguyen, B. -M. Bethke, D. Shaner, E. A. TI High efficiency reflective waveplates in the midwave infrared SO OPTICS EXPRESS LA English DT Article ID QUARTER-WAVE PLATE; BROAD-BAND AB We demonstrate a high efficiency reflective waveplate which exhibits incidence angle dependent phase shift tuning capabilities in the midwave infrared. Using Finite Difference Time Domain (FDTD) modeling, the phase shift and reflection efficiency are simulated for a variety of geometrical parameters, the results of which are then employed to optimize design. Devices were fabricated and both the polarization and efficiency characteristics were measured and compared to FDTD simulations showing excellent agreement. Further, the potential for scalability to other wavelength ranges and the capability to generate an arbitrary phase shift are explored to demonstrate the versatility of our design. (C) 2013 Optical Society of America C1 [Ribaudo, T.; Bethke, D.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Taylor, A.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Nguyen, B. -M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Shaner, EA (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87185 USA. EM eashane@sandia.gov FU Sandia laboratory directed research and development (LDRD) program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, and Office of Basic Energy Sciences user facility. This work was supported by the Sandia laboratory directed research and development (LDRD) program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 9 TC 1 Z9 1 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 10 PY 2014 VL 22 IS 3 BP 2821 EP 2829 DI 10.1364/OE.22.002821 PG 9 WC Optics SC Optics GA AC4VB UT WOS:000332518100066 PM 24663573 ER PT J AU Shen, N Bude, JD Carr, CW AF Shen, Nan Bude, Jeff D. Carr, Christopher W. TI Model laser damage precursors for high quality optical materials SO OPTICS EXPRESS LA English DT Article ID FUSED-SILICA SURFACES; IRRADIATION; PARTICLES; GOLD; NM; ALUMINUM; ABLATION; PULSES; GROWTH; SITES AB Surface damage is known to occur at fluences well below the intrinsic limit of the fused silica. A native surface precursor can absorb sub band-gap light and initiate a process which leads to catastrophic damage many micrometers deep with prominent fracture networks. Previously, the absorption front model of damage initiation has been proposed to explain how this nano-scale absorption can lead to macro-scale damage. However, model precursor systems designed to study initiation experimentally have not been able to clearly reproduce these damage events. In our study, we create artificial absorbers on fused silica substrates to investigate precursor properties critical for native surface damage initiation. Thin optically absorbing films of different materials were deposited on silica surfaces and then damage tested and characterized. We demonstrated that strong interfacial adhesion strength between absorbers and silica is crucial for the launch of an absorption front and subsequent damage initiation. Simulations using the absorption-front model are performed and agree qualitatively with experimental results. (C) 2014 Optical Society of America C1 [Shen, Nan] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94550 USA. RP Shen, N (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM nshen@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX The authors wish to thank Dr. Manyalibo J. Matthews for helpful discussions. We are also grateful to Elaine Behymer, Julie Hamilton and Alford Craig for preparing the thin film samples. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344. NR 24 TC 16 Z9 17 U1 2 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 10 PY 2014 VL 22 IS 3 BP 3393 EP 3404 DI 10.1364/OE.22.003393 PG 12 WC Optics SC Optics GA AC4VB UT WOS:000332518100122 PM 24663629 ER PT J AU Bernhardt, B Beck, AR Li, X Warrick, ER Bell, MJ Haxton, DJ McCurdy, CW Neumark, DM Leone, SR AF Bernhardt, Birgitta Beck, Annelise R. Li, Xuan Warrick, Erika R. Bell, M. Justine Haxton, Daniel J. McCurdy, C. William Neumark, Daniel M. Leone, Stephen R. TI High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon SO PHYSICAL REVIEW A LA English DT Article ID STATES; PULSES; LIGHT; ULTRAVIOLET; EXCITATION; KRYPTON; FIELDS; PHASE; NM AB The decay of highly excited states of xenon after absorption of extreme ultraviolet light is directly tracked via attosecond transient absorption spectroscopy using a time-delayed near-infrared perturbing pulse. The lifetimes of the autoionizing 5s5p(6)6p and 5s5p(6)7p channels are determined to be (21.9 +/- 1.3) fs and (48.4 +/- 5.0) fs, respectively. The observed values support lifetime estimates obtained by traditional linewidth measurements. The experiment additionally obtains the temporal evolution of the decay as a function of energy detuning from the resonance center, and a quantum mechanical formalism is introduced that correctly accounts for the observed energy dependence. C1 [Bernhardt, Birgitta; Beck, Annelise R.; Li, Xuan; Warrick, Erika R.; Bell, M. Justine; Haxton, Daniel J.; McCurdy, C. William; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Bernhardt, Birgitta; Beck, Annelise R.; Warrick, Erika R.; Bell, M. Justine; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bernhardt, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM BCBernhardt@lbl.gov RI Li, Xuan/A-4945-2011; Bernhardt, Birgitta/L-9424-2015; OI Li, Xuan/0000-0002-7646-1132; Bernhardt, Birgitta/0000-0001-7537-4689; Warrick, Erika/0000-0003-0637-7645 FU Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at LBNL [DE-AC02-05CH11231]; Alexander von Humboldt foundation; NSF-GRFP; Office of the Secretary of Defense through the NSSEFF program FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. B.B. gratefully acknowledges support by the Alexander von Humboldt foundation. A.R.B. acknowledges funding from NSF-GRFP. S.R.L. acknowledges support of the Office of the Secretary of Defense through the NSSEFF program. The authors thank Camilla Bacellar, Mike Ziemkiewicz, and He Wang for providing replacement optics on short notice. NR 32 TC 23 Z9 23 U1 1 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 10 PY 2014 VL 89 IS 2 AR 023408 DI 10.1103/PhysRevA.89.023408 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AC0YT UT WOS:000332222100011 ER PT J AU Wiringa, RB Schiavilla, R Pieper, SC Carlson, J AF Wiringa, R. B. Schiavilla, R. Pieper, Steven C. Carlson, J. TI Nucleon and nucleon-pair momentum distributions in A <= 12 nuclei SO PHYSICAL REVIEW C LA English DT Article AB Background: Momentum distributions of individual nucleons and nucleon pairs reflect features of the short-range structure of nuclei and provide useful insights into various reactions on nuclei, such as (e, e'p) and (e, e' pp / pn) electrodisintegration processes or neutrino-nucleus interaction experiments. Purpose: To provide the nuclear physics community with the results (available online) of a systematic study of single-nucleon momentum distributions and nucleon-pair and nucleon-cluster momentum distributions for A <= 12 nuclei. Method: The realistic Argonne nu(18) two-nucleon and Urbana X three-nucleon potentials are used to generate accurate variational Monte Carlo wave functions for the A <= 12 nuclei; quantum Monte Carlo methods are used to calculate the momentum distributions. Results: Single-nucleon distributions are given, broken down into proton and neutron components and spin-up and spin-down components where appropriate. Nucleon-pair momentum distributions are given either in pair spin and isospin ST projection or for pp, pn, and nn pairs. Nucleon-cluster momentum distributions include dp in He-3, tp and dd in He-4, alpha d in Li-6, alpha t in Li-7, and alpha alpha in Be-8. Conclusions: The momentum distributions exhibit common characteristic shapes, with tensor correlations (or lack thereof) playing a dominant role in the 1.5-3 fm(-1) range, while spin-isospin correlations dominate at higher momenta. C1 [Wiringa, R. B.; Pieper, Steven C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schiavilla, R.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wiringa, RB (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM wiringa@anl.gov; schiavil@jlab.org; spieper@anl.gov; carlson@lanl.gov RI Wiringa, Robert/M-4970-2015 FU U.S. Department of Energy, Office of Nuclear Physics under the NUCLEI SciDAC grant [DE-AC02-06CH11357, DE-AC05-06OR23177, DE-AC52-06NA25396] FX This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (R. B. W. and S. C. P.), No. DE-AC05-06OR23177 (R. S.), and No. DE-AC52-06NA25396 (J.C.), and under the NUCLEI SciDAC grant. The calculations were made on the parallel computers of Argonne's Laboratory Computing Resource Center. NR 18 TC 37 Z9 37 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 10 PY 2014 VL 89 IS 2 AR 024305 DI 10.1103/PhysRevC.89.024305 PG 9 WC Physics, Nuclear SC Physics GA AC0CZ UT WOS:000332163700002 ER PT J AU Xu, HJ Dong, X Ruan, LJ Wang, Q Xu, ZB Zhang, YF AF Xu, Hao-jie Dong, Xin Ruan, Li-juan Wang, Qun Xu, Zhang-bu Zhang, Yi-fei TI Charm quarks in medium and their contribution to di-electron spectra in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; GLUON PLASMA; DILEPTON EMISSION; PHASE-TRANSITION; QCD MATTER; PHYSICS; COLLABORATION; FLAVOR; FLOW AB We study the dynamics of charm quarks in the partonic medium and its implication for the di-electron spectra in high-energy heavy ion collisions. The charm quarks traversing a thermal medium are simulated by the relativistic Langevin equation for elastic scattering of charm quarks by thermal partons in an expanding fireball. The transport coefficients of the charm quarks are calculated by the in-medium T-matrix method, where a static heavy quark potential is used with parameters fitted by the lattice QCD results. The di-electron invariant mass spectra are computed in the most central collisions and are compared to the STAR data. The angular correlations of di-electrons are almost the same in p + p and Au + Au collisions in the mass range 1.1 < M < 2.5 GeV/c(2) with a back-to-back feature. This means that the angular correlation is intact even with medium interaction at the energy of the Relativistic Heavy Ion Collider. C1 [Xu, Hao-jie; Wang, Qun; Zhang, Yi-fei] Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Anhui, Peoples R China. [Dong, Xin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Ruan, Li-juan; Xu, Zhang-bu] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, HJ (reprint author), Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Anhui, Peoples R China. RI Dong, Xin/G-1799-2014; Xu, Hao-jie/S-7425-2016 OI Dong, Xin/0000-0001-9083-5906; Xu, Hao-jie/0000-0002-6377-9424 FU Major State Basic Research Development Program in China [2014CB845402]; National Natural Science Foundation of China [11125524]; Offices of Nuclear Physics and High-Energy Physics within the US Department of Energy Office of Science [DE-FG02-88ER40412, DE-AC02-98CH10886.USTC] FX H. X. thanks Y.-K. Song, B.-C. Huang, and J. Song for helpful discussions. This work is supported in part by the Major State Basic Research Development Program in China under the Grant No. 2014CB845402. Q. W. is supported by the National Natural Science Foundation of China under Grant No. 11125524. This work was supported in part by the Offices of Nuclear Physics and High-Energy Physics within the US Department of Energy Office of Science under Contracts No. DE-FG02-88ER40412 and No. DE-AC02-98CH10886.USTC. NR 44 TC 7 Z9 8 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 10 PY 2014 VL 89 IS 2 AR 024905 DI 10.1103/PhysRevC.89.024905 PG 8 WC Physics, Nuclear SC Physics GA AC0CZ UT WOS:000332163700005 ER PT J AU Chen, AP Zhang, WR Khatkhatay, F Su, Q Tsai, CF Chen, L Jia, QX MacManus-Driscoll, JL Wang, H AF Chen, Aiping Zhang, Wenrui Khatkhatay, Fauzia Su, Qing Tsai, Chen-Fong Chen, Li Jia, Q. X. MacManus-Driscoll, Judith L. Wang, H. TI Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes (vol 102, 093114, 2013) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Chen, Aiping; Zhang, Wenrui; Khatkhatay, Fauzia; Su, Qing; Tsai, Chen-Fong; Chen, Li; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Wang, H (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Jia, Q. X./C-5194-2008; Su, Qing/N-2518-2014; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 1 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 10 PY 2014 VL 104 IS 6 AR 069901 DI 10.1063/1.4865899 PG 1 WC Physics, Applied SC Physics GA AB5BL UT WOS:000331803800101 ER PT J AU Cybart, SA Cho, EY Wong, TJ Glyantsev, VN Huh, JU Yung, CS Moeckly, BH Beeman, JW Ulin-Avila, E Wu, SM Dynes, RC AF Cybart, Shane A. Cho, E. Y. Wong, T. J. Glyantsev, V. N. Huh, J. U. Yung, C. S. Moeckly, B. H. Beeman, J. W. Ulin-Avila, E. Wu, S. M. Dynes, R. C. TI Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions SO APPLIED PHYSICS LETTERS LA English DT Article ID EDGE JUNCTIONS; ION DAMAGE; RF SQUIDS; DC SQUIDS; YBA2CU3O7-DELTA; FILMS; FABRICATION; PAIRS AB We have fabricated and tested two-dimensional arrays of YBa2Cu3O7-delta superconducting quantum interference devices. The arrays contain over 36 000 nano Josephson junctions fabricated from ion irradiation of YBa2Cu3O7-delta through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30mV. (C) 2014 AIP Publishing LLC. C1 [Cybart, Shane A.; Cho, E. Y.; Wong, T. J.; Dynes, R. C.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Cybart, Shane A.; Beeman, J. W.; Ulin-Avila, E.; Wu, S. M.; Dynes, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H.] Superconductor Technol Inc, Santa Barbara, CA 93111 USA. RP Cybart, SA (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM scybart@ucsd.edu RI ulin-avila, erick/M-3278-2014 FU AFOSR [FA9550-07-1-0493]; ONR [N00014-11-1-0049]; Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy [DEAC02-05CH11231] FX This work was supported by AFOSR Grant No. FA9550-07-1-0493, ONR Grant No. N00014-11-1-0049, and the Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. NR 23 TC 15 Z9 15 U1 6 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 10 PY 2014 VL 104 IS 6 AR 062601 DI 10.1063/1.4865216 PG 3 WC Physics, Applied SC Physics GA AB5BL UT WOS:000331803800056 ER PT J AU Kim, J Kim, S Jiang, CS Ramanathan, K Al-Jassim, MM AF Kim, Junho Kim, SeongYeon Jiang, Chun-Sheng Ramanathan, Kannan Al-Jassim, Mowafak M. TI Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se-2 solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS AB We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se-2 solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs. (C) 2014 AIP Publishing LLC. C1 [Kim, Junho; Kim, SeongYeon] Incheon Natl Univ, Dept Phys, Inchon 406772, South Korea. [Kim, Junho; Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Kim, J (reprint author), Incheon Natl Univ, Dept Phys, Inchon 406772, South Korea. EM jhk@incheon.ac.kr RI jiang, chun-sheng/F-7839-2012 FU Incheon National University International Cooperative Research Grant; U.S. Department of Energy [DOE-AC36-08GO28308]; NREL FX The authors thank Dr. J. Pankow at NREL for the AES analysis. J.K. and S.K. appreciate the support by the Incheon National University International Cooperative Research Grant in 2011. The experimental work was carried out at NREL. This work was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with NREL. NR 23 TC 6 Z9 6 U1 1 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 10 PY 2014 VL 104 IS 6 AR 063902 DI 10.1063/1.4864758 PG 5 WC Physics, Applied SC Physics GA AB5BL UT WOS:000331803800097 ER PT J AU Zhang, F Mendelev, MI Zhang, Y Wang, CZ Kramer, MJ Ho, KM AF Zhang, Feng Mendelev, M. I. Zhang, Yue Wang, Cai-Zhuang Kramer, M. J. Ho, Kai-Ming TI Effects of sub-T-g annealing on Cu64.5Zr35.5 glasses: A molecular dynamics study SO APPLIED PHYSICS LETTERS LA English DT Article ID BULK METALLIC-GLASS; MEDIUM-RANGE ORDER; ALLOYS; LIQUID AB Creating metallic glasses by cooling liquid melts in molecular dynamics simulations faces a well-known challenge that the cooling rate is too fast compared with experiments. Taking the prototypical Cu64.5Zr35.5 glasses as an example, we propose an efficient cooling strategy in which most of the computer time is spent on a prolonged isothermal process slightly below the glass-transition temperature, T-g. The glassy sample prepared in this way demonstrates significant energetic stability, slow dynamics, and well-developed short-range icosahedral order. By conventional uniform cooling, similar properties can only be obtained using a cooling rate more than 15 times slower. (C) 2014 AIP Publishing LLC. C1 [Zhang, Feng; Mendelev, M. I.; Zhang, Yue; Wang, Cai-Zhuang; Kramer, M. J.; Ho, Kai-Ming] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, F (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM fzhang@ameslab.gov RI Zhang, Yue/K-2527-2014 FU U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358 including the computer time support from the National Energy Research Scientific Computing Center (NERSC) in Berkeley, CA. NR 24 TC 14 Z9 14 U1 4 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 10 PY 2014 VL 104 IS 6 AR 061905 DI 10.1063/1.4864652 PG 4 WC Physics, Applied SC Physics GA AB5BL UT WOS:000331803800028 ER PT J AU Zhang, WR Jian, J Chen, AP Jiao, L Khatkhatay, F Li, LG Chu, F Jia, QX MacManus-Driscoll, JL Wang, HY AF Zhang, Wenrui Jian, Jie Chen, Aiping Jiao, Liang Khatkhatay, Fauzia Li, Leigang Chu, Frank Jia, Quanxi MacManus-Driscoll, Judith L. Wang, Haiyan TI Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO3:CoFe2O4 vertically aligned nanocomposite thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOSTRUCTURES AB Self-assembled BiFeO3:CoFe2O4 (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO3 (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy. (C) 2014 AIP Publishing LLC. C1 [Zhang, Wenrui; Jiao, Liang; Li, Leigang; Wang, Haiyan] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Jian, Jie; Chen, Aiping; Khatkhatay, Fauzia; Chu, Frank; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Chen, Aiping; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Wang, HY (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Wang, Haiyan/P-3550-2014; Chen, Aiping/F-3212-2011; Zhang, Wenrui/D-1892-2015 OI Wang, Haiyan/0000-0002-7397-1209; Chen, Aiping/0000-0003-2639-2797; Zhang, Wenrui/0000-0002-0223-1924 FU U.S. National Science Foundation [NSF-1007969, NSF-0846504]; NNSA's Laboratory Directed Research and Development Program; ERC [ERC-2009-AfG-247276] FX This work was supported by the U.S. National Science Foundation (Ceramic Program, NSF-1007969 and NSF-0846504). The work at Los Alamos was partially supported by the NNSA's Laboratory Directed Research and Development Program and was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. J.L.M.-D gratefully acknowledges funding from the ERC Advanced Investigator Grant, Novox, ERC-2009-AfG-247276. NR 33 TC 14 Z9 14 U1 7 U2 65 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 10 PY 2014 VL 104 IS 6 AR 062402 DI 10.1063/1.4864405 PG 5 WC Physics, Applied SC Physics GA AB5BL UT WOS:000331803800043 ER PT J AU Jager, HI AF Jager, Henriette I. TI Thinking outside the channel: Timing pulse flows to benefit salmon via indirect pathways SO ECOLOGICAL MODELLING LA English DT Article DE Reservoir releases; Environmental flows; Natural flow paradigm; Optimization; Quantile model; Pulse flows ID JUVENILE CHINOOK SALMON; CALIFORNIA CENTRAL VALLEY; RAINBOW-TROUT; RESERVOIR OPERATION; WATER TEMPERATURE; SACRAMENTO RIVER; PACIFIC SALMON; LAKE-MICHIGAN; SNAKE RIVER; GROWTH AB Using models to represent relationships between flow and fishes has important practical applications for managing reservoir releases. Attempts to model such relationships often neglect indirect mechanisms by which flow influences fish. For example, growth of salmon juveniles is measurably faster when flows inundate floodplain and promote higher production of invertebrate prey, but out-of-channel flows have not yet been incorporated into models. The QUANTUS model developed here represents indirect linkages between flow and freshwater survival, mediated by temperature and prey availability, for fall Chinook salmon (Oncorhynchus tshawytscha). Quantiles of spawning time and place were used to define cohorts of salmon in a regulated Central Valley, California river. Survival of these quantile-cohorts was simulated through incubation, juvenile growth, and eventual downstream migration. A genetic algorithm was used to optimize the seasonal timing of pulse flows. Simulated survival was highest for flow regimes that provided a modest, temperature-moderating pulse flow in early summer and, for wetter years, a second, larger pulse of over-bank flow in late winter. For many rivers of the Pacific coast that support fall Chinook salmon, the thermal window of opportunity for spawning and rearing is narrow. Optimized flows made the most of this window by providing access to accelerated juvenile growth and early survival in floodplain habitat, a result that should be verified with field experiments. Timing of optimized pulse flows differed in some respects from the region's natural hydrograph, dominated by spring runoff. This suggests that understanding the mechanisms by which flow influences fishes can be important when shaping flows in the changed context of a regulated river. (C) 2013 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov OI Jager, Henriette/0000-0003-4253-533X FU United States Department of Energy's (DOE) Energy Efficiency and Renewable Energy Office; DOE [DE-AC05-00OR22725] FX This research was supported by the United States Department of Energy's (DOE) Energy Efficiency and Renewable Energy Office, Wind and Water Power Technologies Program and conducted by Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. I appreciate collegial reviews by Drs. Glenn Cada and Jitendra Kumar, as well as by anonymous reviewers. NR 62 TC 8 Z9 8 U1 10 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD FEB 10 PY 2014 VL 273 BP 117 EP 127 DI 10.1016/j.ecolmodel.2013.11.007 PG 11 WC Ecology SC Environmental Sciences & Ecology GA AB3EJ UT WOS:000331673800012 ER PT J AU Xiong, W Balkovic, J van der Velde, M Zhang, XS Izaurralde, RC Skalsky, R Lin, E Mueller, N Obersteiner, M AF Xiong, Wei Balkovic, Juraj van der Velde, Marijn Zhang, Xuesong Izaurralde, R. Cesar Skalsky, Rastislav Lin, Erda Mueller, Nathan Obersteiner, Michael TI A calibration procedure to improve global rice yield simulations with EPIC SO ECOLOGICAL MODELLING LA English DT Article DE Global calibration; Crop model; Rice; EPIC ID SUB-SAHARAN AFRICA; CLIMATE-CHANGE; MODEL CALIBRATION; HIGH-RESOLUTION; CROP; SCALE; WATER; MANAGEMENT; IMPACTS; PRODUCTIVITY AB Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit - PHU, planting density - PD, harvest index - HI, and biomass energy ratio - BER) and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5-35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981-2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models' calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xiong, Wei; Balkovic, Juraj; van der Velde, Marijn; Skalsky, Rastislav; Obersteiner, Michael] Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, A-2361 Laxenburg, Austria. [Xiong, Wei; Lin, Erda] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Being 10081, Peoples R China. [Zhang, Xuesong; Izaurralde, R. Cesar] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Zhang, Xuesong; Izaurralde, R. Cesar] Univ Maryland, College Pk, MD 20740 USA. [Mueller, Nathan] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA. [Balkovic, Juraj] Comenius Univ, Fac Nat Sci, Bratislava 84215, Slovakia. [Skalsky, Rastislav] Soil Sci & Conservat Res Inst, Bratislava 82713, Slovakia. RP Xiong, W (reprint author), Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, Schlosspl 1, A-2361 Laxenburg, Austria. EM Xiong@iiasa.ac.at RI xiong, wei/O-1782-2014; zhang, xuesong/B-7907-2009; van der Velde, Marijn/B-3305-2009 FU National Basic Research Program of China [2012CB955904, 2010CB951504]; National Natural Science Foundation of China [41171073]; National Scientific Program [2012BAC19B01]; European Community [226701] FX We appreciate the comments provided by the anonymous reviewers, which greatly improved the quality of this paper. This study was supported by National Basic Research Program of China (2012CB955904, 2010CB951504), National Natural Science Foundation of China (41171073), National Scientific Program (2012BAC19B01), and European Community's Seventh Framework Programme (226701). NR 47 TC 7 Z9 7 U1 1 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD FEB 10 PY 2014 VL 273 BP 128 EP 139 DI 10.1016/j.ecolmodel.2013.10.026 PG 12 WC Ecology SC Environmental Sciences & Ecology GA AB3EJ UT WOS:000331673800013 ER PT J AU Bert, FE Rovere, SL Macal, CM North, MJ Podesta, GP AF Bert, Federico E. Rovere, Santiago L. Macal, Charles M. North, Michael J. Podesta, Guillermo P. TI Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems SO ECOLOGICAL MODELLING LA English DT Article DE Agent-based model; Validation; Agriculture; Land use; Land tenure ID LAND-USE; STRUCTURAL-CHANGE; SOCIOECOLOGICAL SYSTEMS; ASPIRATION LEVEL; SOCIAL-SYSTEMS; SIMULATION; ECONOMICS; PROTOCOL AB There are few published examples of comprehensively validated large-scale land-use agent-based models (ABMs). We present guidelines for doing so, and provide an example in the context of the Pampas Model (PM), an ABM aimed to explore the dynamics of structural and land use changes in the agricultural systems of the Argentine Pampas. Many complementary strategies are proposed for validation of ABM's. We adopted a validation framework that relies on two main streams: (a) validation of model processes and components during model development, which involved a literature survey, design based on similar models, involvement of stakeholders, and focused test scenarios and (b) empirical validation, which involved comparisons of model outputs from multiple realistic simulations against real world data. The design process ensured a realistic model ontology and representative behavioral rules. As result, we obtained reasonable outcomes from a set of initial and simplified scenarios: the PM successfully reproduced the direction of the primary observed structural and land tenure patterns, even before calibration. The empirical validation process lead to tuning and further development of the PM. After this, the PM was able to reproduce not only the direction but also the magnitude of the observed changes. The main lesson from our validation process is the need for multiple validation strategies, including empirical validation. Approaches intended to validate model processes and components may lead to structurally realistic models. However, some kind of subsequent empirical validation is needed to assess the model's ability to reproduce observed results. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bert, Federico E.] Univ Buenos Aires, CONICET, Fac Agron, Buenos Aires, DF, Argentina. [Rovere, Santiago L.] Univ Buenos Aires, Fac Ingn, Buenos Aires, DF, Argentina. [Macal, Charles M.; North, Michael J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Podesta, Guillermo P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. RP Bert, FE (reprint author), Univ Buenos Aires, CONICET, Fac Agron, Av San Martin 4453,POB C1417DSE, Buenos Aires, DF, Argentina. EM fbert@agro.uba.ar OI Podesta, Guillermo/0000-0002-4909-0567 FU U.S. National Science Foundation (NSF) [0709681, 1211613]; Inter-American Institute for Global Change Research (IAI) [CRN-2031]; NSF [GEO-0452325]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) of Argentina; University of Chicago [W-31-109-Eng-38] FX This research was supported by U.S. National Science Foundation (NSF) grants 0709681 and 1211613. Additional support was provided by the Inter-American Institute for Global Change Research (IAI) grant CRN-2031 (addendum). The IAI is supported by NSF grant GEO-0452325. F. Bert is supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) of Argentina. Argonne National Laboratory, a US Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. The authors are grateful to the management, technical advisors, and farmer members of the Asociacion Argentina de Consorcios Regionales de Experimentacion Agricola (AACREA) for their commitment to this research. The authors are very thankful to editor Dr. Volker Grimm for summarizing the reviewers' comments in recommendations that improved significantly the manuscript. The authors are especially thankful to reviewer Dr. William Rand for his thorough comments that greatly contributed to improve the manuscript. NR 57 TC 5 Z9 5 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD FEB 10 PY 2014 VL 273 BP 284 EP 298 DI 10.1016/j.optcom.2013.11.024 PG 15 WC Ecology SC Environmental Sciences & Ecology GA AB3EJ UT WOS:000331673800028 ER PT J AU Calder, S Cao, GX Okamoto, S Kim, JW Cooper, VR Gai, Z Sales, BC Lumsden, MD Mandrus, D Christianson, AD AF Calder, S. Cao, G-X Okamoto, S. Kim, J. W. Cooper, V. R. Gai, Z. Sales, B. C. Lumsden, M. D. Mandrus, D. Christianson, A. D. TI J(eff)=1/2 Mott spin-orbit insulating state close to the cubic limit in Ca4IrO6 SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD AB The J(eff) = 1/2 state is manifested in systems with large cubic crystal field splitting and spin-orbit coupling that are comparable to the on-site Coulomb interaction, U . 5d transition-metal oxides host parameters in this regime and strong evidence for this state in Sr2IrO4, and additional iridates, has been presented. All the candidates, however, deviate from the cubic crystal field required to provide an unmixed canonical J(eff) = 1/2 state, impacting the development of a robust model of this novel insulating and magnetic state. We present experimental and theoretical results that not only show Ca4IrO6 hosts the state, but furthermore uniquely resides in the limit required for a canonical unmixed J(eff) = 1/2 state. C1 [Calder, S.; Lumsden, M. D.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Cao, G-X; Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Cao, G-X; Okamoto, S.; Cooper, V. R.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gai, Z.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Calder, S (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM caldersa@ornl.gov RI Gai, Zheng/B-5327-2012; Okamoto, Satoshi/G-5390-2011; Mandrus, David/H-3090-2014; Cooper, Valentino /A-2070-2012; Cao, Guixin/G-4452-2015; christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012 OI Calder, Stuart/0000-0001-8402-3741; Gai, Zheng/0000-0002-6099-4559; Okamoto, Satoshi/0000-0002-0493-7568; Cooper, Valentino /0000-0001-6714-4410; Cao, Guixin/0000-0002-9252-1158; christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; US DOE [DE-AC02-06CH11357] FX This research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Part of the work (D. M., B. C. S., G. C., V. R. C., and S.O.) was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 33 TC 9 Z9 9 U1 5 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2014 VL 89 IS 8 AR 081104 DI 10.1103/PhysRevB.89.081104 PG 5 WC Physics, Condensed Matter SC Physics GA AC2YC UT WOS:000332381200001 ER PT J AU Clancy, JP Lupascu, A Gretarsson, H Islam, Z Hu, YF Casa, D Nelson, CS LaMarra, SC Cao, G Kim, YJ AF Clancy, J. P. Lupascu, A. Gretarsson, H. Islam, Z. Hu, Y. F. Casa, D. Nelson, C. S. LaMarra, S. C. Cao, G. Kim, Young-June TI Dilute magnetism and spin-orbital percolation effects in Sr2Ir1-xRhxO4 SO PHYSICAL REVIEW B LA English DT Article ID SR2IRO4; TRANSITION; METAL; SR2RHO4 AB We have used a combination of resonant magnetic x-ray scattering and x-ray absorption spectroscopy to investigate the properties of the doped spin-orbital Mott insulator Sr2Ir1-xRhxO4 (0.07 <= x <= 0.70). We show that Sr2Ir1-xRhxO4 represents a unique model system for the study of dilute magnetism in the presence of strong spin-orbit coupling, and provide evidence of a doping-induced change in magnetic structure and a suppression of magnetic order at x(c) similar to 0.17. We demonstrate that Rh-doping introduces Rh3+/Ir5+ ions which effectively hole-dope this material. We propose that the magnetic phase diagram for this material can be understood in terms of a novel spin-orbital percolation picture. C1 [Clancy, J. P.; Lupascu, A.; Gretarsson, H.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Islam, Z.; Casa, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hu, Y. F.] Canadian Light Source, Saskatoon, SK S7N 0X4, Canada. [Nelson, C. S.; LaMarra, S. C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Clancy, JP (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. RI Casa, Diego/F-9060-2016; Kim, Young-June /G-7196-2011 OI Kim, Young-June /0000-0002-1172-8895 FU NSERC of Canada; Banting Postdoctoral Fellowship program; Canada Research Chair program; NSF [DMR-0856234, DMR-1265162, EPS-0814194]; NRC of Canada; CIHR; University of Saskatchewan; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX The authors would like to acknowledge valuable discussions with Y. Cao, D. Dessau, D. Haskel, and J. W. Kim. Work at the University of Toronto was supported by NSERC of Canada, the Banting Postdoctoral Fellowship program, and the Canada Research Chair program. Work at the University of Kentucky was supported by NSF through Grants No. DMR-0856234, No. DMR-1265162, and No. EPS-0814194. Use of SXRMB at the Canadian Light Source is supported by NSERC of Canada, NRC of Canada, CIHR, and the University of Saskatchewan. Use of the Advanced Photon Source at Argonne National Laboratory and the National Synchrotron Light Source at Brookhaven National Laboratory is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contracts No. DE-AC02-06CH11357 and No. DE-AC02-98CH10886. NR 41 TC 23 Z9 23 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2014 VL 89 IS 5 AR 054409 DI 10.1103/PhysRevB.89.054409 PG 8 WC Physics, Condensed Matter SC Physics GA AC2XP UT WOS:000332379900005 ER PT J AU Udalov, OG Chtchelkatchev, NM Glatz, A Beloborodov, IS AF Udalov, O. G. Chtchelkatchev, N. M. Glatz, A. Beloborodov, I. S. TI Interplay of Coulomb blockade and ferroelectricity in nanosized granular materials SO PHYSICAL REVIEW B LA English DT Article ID COMPOSITES; SYSTEMS; FILMS AB We study electron transport properties of composite ferroelectrics-materials consisting of metallic grains embedded in a ferroelectric matrix. In particular, we calculate the conductivity in a wide range of temperatures and electric fields, showing pronounced hysteretic behavior. In weak fields, electron cotunneling is the main transport mechanism. In this case, we show that the ferroelectric matrix strongly influences the transport properties through two effects: (i) the dependence of the Coulomb gap on the dielectric permittivity of the ferroelectric matrix, which in turn is controlled by temperature and external field, and (ii) the dependence of the tunneling matrix elements on the electric polarization of the ferroelectric matrix, which can be tuned by temperature and applied electric field as well. In the case of strong electric fields, the Coulomb gap is suppressed and only the second mechanism is important. Our results are important for (i) thermometers for precise temperature measurements and (ii) ferrroelectric memristors. C1 [Udalov, O. G.; Chtchelkatchev, N. M.; Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Udalov, O. G.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyi 141700, Russia. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Glatz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Udalov, OG (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; NSF [EEC-1160504]; RFBR [13-02-00579]; Russian Federation for support of Leading Scientific Schools; RAS presidium; Russian Federal Government FX A.G. was supported by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. I. B. was supported by NSF under Cooperative Agreement Award EEC-1160504 and N.C. was partly supported by RFBR No. 13-02-00579, the Grant of President of Russian Federation for support of Leading Scientific Schools, RAS presidium and Russian Federal Government programs. NR 40 TC 8 Z9 8 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2014 VL 89 IS 5 AR 054203 DI 10.1103/PhysRevB.89.054203 PG 10 WC Physics, Condensed Matter SC Physics GA AC2XP UT WOS:000332379900001 ER PT J AU Kim, T Assary, RS Pauls, RE Marshall, CL Curtiss, LA Stair, PC AF Kim, Taejin Assary, Rajeev S. Pauls, Richard E. Marshall, Christopher L. Curtiss, Larry A. Stair, Peter C. TI Thermodynamics and reaction pathways of furfuryl alcohol oligomer formation SO CATALYSIS COMMUNICATIONS LA English DT Article DE Furfuryl alcohol; Oligomerization; Terminal CH2OH dimer; Density functional theory calculation ID LEVULINIC ACID; POLYMERIZATION; CONVERSION; POLYMERS; CARBON; ETHER; RAMAN AB The acid-catalyzed transformation of furfuryl alcohol (FA) monomer to oligomers has been studied in the liquid phase to investigate the reaction mechanisms and intermediate species by using a combination of quantitative reaction product measurements and density functional theory calculations. FA monomer was converted into oligomers with a broad range of carbon number: C-9-C-10, C-14-C-15, C-19-C-29, >C-29. Based on the calculations, terminal CH2OH dimer formation is both kinetically and thermodynamically favored, consistent with the experimental results. The order for dimer production in the C-9-C-10 range follows terminal CH2OH > ether bridged-methylene bridged dimer > OH-carbon bridge. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Taejin; Pauls, Richard E.; Marshall, Christopher L.; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI KIM, TAE JIN/M-7994-2014; Surendran Assary, Rajeev/E-6833-2012; Marshall, Christopher/D-1493-2015 OI KIM, TAE JIN/0000-0002-0096-303X; Surendran Assary, Rajeev/0000-0002-9571-3307; Marshall, Christopher/0000-0002-1285-7648 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357. Use of the computational resources from Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 32 TC 4 Z9 4 U1 4 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 EI 1873-3905 J9 CATAL COMMUN JI Catal. Commun. PD FEB 10 PY 2014 VL 46 BP 66 EP 70 DI 10.1016/j.catcom.2013.11.030 PG 5 WC Chemistry, Physical SC Chemistry GA AB0TI UT WOS:000331504600014 ER PT J AU Li, L Tian, CC Chai, SH Binder, A Brown, S Veith, GM Dai, S AF Li, Lin Tian, Chengcheng Chai, Song-Hai Binder, Andrew Brown, Suree Veith, Gabriel M. Dai, Sheng TI Gold nanocatalysts supported on heterostructured PbSO4-MCF mesoporous materials for CO oxidation SO CATALYSIS COMMUNICATIONS LA English DT Article DE PbSO4-MCF; Gold nanocatalyst; CO oxidation; Catalyst supports; Mesoporous materials ID LOW-TEMPERATURE OXIDATION; AU CATALYSTS; METAL; NANOPARTICLES; TITANIA; NOBLE; FOAMS; TIO2 AB Metal oxides are commonly used as the supports of gold nanoparticles for catalytic CO oxidation, whereas metal salts are rarely considered suitable supports. In the present work, we developed a new kind of gold nanocatalyst supported on heterostructured PbSO4-MCF mesoporous materials that was prepared by an in situ growth method using dodecylbenzenesulfonate (SOBS) as a sulfonate precursor. It was found that an Au/PbSO4-MCF (SDBS) catalyst preheated at 300 degrees C showed high CO conversion below 100 degrees C. In addition, the stability of selected catalysts was studied as a function of time on stream. Because of the alteration of surface properties, these Au nanocatalysts were highly sinter-resistant. Published by Elsevier B.V. C1 [Li, Lin] South Central Univ Nationalities, Coll Chem & Mat Sci, Key Lab Catalysis & Mat Sci, State Ethn Affairs Commiss, Wuhan 430074, Peoples R China. [Li, Lin] South Central Univ Nationalities, Coll Chem & Mat Sci, Minist Educ, Wuhan 430074, Peoples R China. [Chai, Song-Hai; Binder, Andrew; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Lin; Tian, Chengcheng; Brown, Suree; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Tian, Chengcheng] E China Univ Sci & Technol, Res Inst Ind Catalysis, Key Lab Adv Mat, Shanghai 200237, Peoples R China. RP Li, L (reprint author), South Central Univ Nationalities, Coll Chem & Mat Sci, Key Lab Catalysis & Mat Sci, State Ethn Affairs Commiss, Wuhan 430074, Peoples R China. EM lilinchem@sina.com RI Chai, Song-Hai/A-9299-2012; Dai, Sheng/K-8411-2015 OI Chai, Song-Hai/0000-0002-4152-2513; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy [De-AC05-00OR22725]; Oak Ridge National Laboratory; South-Central University for Nationalities [CZZ12002] FX The research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under Contract No. De-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Lin Li expresses gratitude for the financial support from the South-Central University for Nationalities (No. CZZ12002). NR 25 TC 2 Z9 2 U1 7 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-7367 EI 1873-3905 J9 CATAL COMMUN JI Catal. Commun. PD FEB 10 PY 2014 VL 46 BP 234 EP 237 DI 10.1016/j.catcom.2013.12.028 PG 4 WC Chemistry, Physical SC Chemistry GA AB0TI UT WOS:000331504600049 ER PT J AU An, FP Balantekin, AB Band, HR Beriguete, W Bishai, M Blyth, S Brown, RL Butorov, I Cao, GF Cao, J Carr, R Chan, YL Chang, JF Chang, Y Chasman, C Chen, HS Chen, HY Chen, SJ Chen, SM Chen, XC Chen, XH Chen, Y Chen, YX Cheng, YP Cherwinka, JJ Chu, MC Cummings, JP de Arcos, J Deng, ZY Ding, YY Diwan, MV Draeger, E Du, XF Dwyer, DA Edwards, WR Ely, SR Fu, JY Ge, LQ Gill, R Gonchar, M Gong, GH Gong, H Gornushkin, YA Gu, WQ Guan, MY Guo, XH Hackenburg, RW Hahn, RL Han, GH Hans, S He, M Heeger, KM Heng, YK Hinrichs, P Hor, Y Hsiung, YB Hu, BZ Hu, LJ Hu, LM Hu, T Hu, W Huang, EC Huang, HX Huang, HZ Huang, XT Huber, P Hussain, G Isvan, Z Jaffe, DE Jaffke, P Jetter, S Ji, XL Ji, XP Jiang, HJ Jiao, JB Johnson, RA Kang, L Kettell, SH Kramer, M Kwan, KK Kwok, MW Kwok, T Lai, WC Lai, WH Lau, K Lebanowski, L Lee, J Lei, RT Leitner, R Leung, A Leung, JKC Lewis, CA Li, DJ Li, F Li, GS Li, QJ Li, WD Li, XN Li, XQ Li, YF Li, ZB Liang, H Lin, CJ Lin, GL Lin, SK Lin, YC Ling, JJ Link, JM Littenberg, L Littlejohn, BR Liu, DW Liu, H Liu, JC Liu, JL Liu, SS Liu, YB Lu, C Lu, HQ Luk, KB Ma, QM Ma, XB Ma, XY Ma, YQ McDonald, KT McFarlane, MC McKeown, RD Meng, Y Mitchell, I Nakajima, Y Napolitano, J Naumov, D Naumova, E Nemchenok, I Ngai, HY Ngai, WK Ning, Z Ochoa-Ricoux, JP Olshevski, A Patton, S Pec, V Peng, JC Piilonen, LE Pinsky, L Pun, CSJ Qi, FZ Qi, M Qian, X Raper, N Ren, B Ren, J Rosero, R Roskovec, B Ruan, XC Shao, BB Steiner, H Sun, GX Sun, JL Tam, YH Tanaka, HK Tang, X Themann, H Trentalange, S Tsai, O Tsang, KV Tsang, RHM Tull, CE Tung, YC Viren, B Vorobel, V Wang, CH Wang, LS Wang, LY Wang, LZ Wang, M Wang, NY Wang, RG Wang, W Wang, WW Wang, X Wang, YF Wang, Z Wang, Z Wang, ZM Webber, DM Wei, H Wei, YD Wen, LJ Whisnant, K White, CG Whitehead, L Wise, T Wong, HLH Wong, SCF Worcester, E Wu, Q Xia, DM Xia, JK Xia, X Xing, ZZ Xu, J Xu, JL Xu, JY Xu, Y Xue, T Yan, J Yang, CG Yang, L Yang, MS Ye, M Yeh, M Yeh, YS Young, BL Yu, GY Yu, JY Yu, ZY Zang, SL Zhan, L Zhang, C Zhang, FH Zhang, JW Zhang, QM Zhang, SH Zhang, YC Zhang, YH Zhang, YM Zhang, YX Zhang, ZJ Zhang, ZP Zhang, ZY Zhao, J Zhao, QW Zhao, YB Zheng, L Zhong, WL Zhou, L Zhou, ZY Zhuang, HL Zou, JH AF An, F. P. Balantekin, A. B. Band, H. R. Beriguete, W. Bishai, M. Blyth, S. Brown, R. L. Butorov, I. Cao, G. F. Cao, J. Carr, R. Chan, Y. L. Chang, J. F. Chang, Y. Chasman, C. Chen, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, Y. Chen, Y. X. Cheng, Y. P. Cherwinka, J. J. Chu, M. C. Cummings, J. P. de Arcos, J. Deng, Z. Y. Ding, Y. Y. Diwan, M. V. Draeger, E. Du, X. F. Dwyer, D. A. Edwards, W. R. Ely, S. R. Fu, J. Y. Ge, L. Q. Gill, R. Gonchar, M. Gong, G. H. Gong, H. Gornushkin, Y. A. Gu, W. Q. Guan, M. Y. Guo, X. H. Hackenburg, R. W. Hahn, R. L. Han, G. H. Hans, S. He, M. Heeger, K. M. Heng, Y. K. Hinrichs, P. Hor, Yk. Hsiung, Y. B. Hu, B. Z. Hu, L. J. Hu, L. M. Hu, T. Hu, W. Huang, E. C. Huang, H. X. Huang, H. Z. Huang, X. T. Huber, P. Hussain, G. Isvan, Z. Jaffe, D. E. Jaffke, P. Jetter, S. Ji, X. L. Ji, X. P. Jiang, H. J. Jiao, J. B. Johnson, R. A. Kang, L. Kettell, S. H. Kramer, M. Kwan, K. K. Kwok, M. W. Kwok, T. Lai, W. C. Lai, W. H. Lau, K. Lebanowski, L. Lee, J. Lei, R. T. Leitner, R. Leung, A. Leung, J. K. C. Lewis, C. A. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Liang, H. Lin, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Ling, J. J. Link, J. M. Littenberg, L. Littlejohn, B. R. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. S. Liu, Y. B. Lu, C. Lu, H. Q. Luk, K. B. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. McDonald, K. T. McFarlane, M. C. McKeown, R. D. Meng, Y. Mitchell, I. Nakajima, Y. Napolitano, J. Naumov, D. Naumova, E. Nemchenok, I. Ngai, H. Y. Ngai, W. K. Ning, Z. Ochoa-Ricoux, J. P. Olshevski, A. Patton, S. Pec, V. Peng, J. C. Piilonen, L. E. Pinsky, L. Pun, C. S. J. Qi, F. Z. Qi, M. Qian, X. Raper, N. Ren, B. Ren, J. Rosero, R. Roskovec, B. Ruan, X. C. Shao, B. B. Steiner, H. Sun, G. X. Sun, J. L. Tam, Y. H. Tanaka, H. K. Tang, X. Themann, H. Trentalange, S. Tsai, O. Tsang, K. V. Tsang, R. H. M. Tull, C. E. Tung, Y. C. Viren, B. Vorobel, V. Wang, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Webber, D. M. Wei, H. Wei, Y. D. Wen, L. J. Whisnant, K. White, C. G. Whitehead, L. Wise, T. Wong, H. L. H. Wong, S. C. F. Worcester, E. Wu, Q. Xia, D. M. Xia, J. K. Xia, X. Xing, Z. Z. Xu, J. Xu, J. L. Xu, J. Y. Xu, Y. Xue, T. Yan, J. Yang, C. G. Yang, L. Yang, M. S. Ye, M. Yeh, M. Yeh, Y. S. Young, B. L. Yu, G. Y. Yu, J. Y. Yu, Z. Y. Zang, S. L. Zhan, L. Zhang, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhao, J. Zhao, Q. W. Zhao, Y. B. Zheng, L. Zhong, W. L. Zhou, L. Zhou, Z. Y. Zhuang, H. L. Zou, J. H. CA Daya Bay Collaboration TI Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON FISSION-PRODUCTS; PU-239; DECAY; LI-9 AB A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos ((v) over bar (e)) from six 2.9 GW(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41 589 (203 809 and 92 912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude sin(2) 2 theta(13) = 0.090(-0.009)(+0.008) and the first direct measurement of the (v) over bar (e) mass-squared difference vertical bar Delta m(ee)(2)vertical bar = (2.59(-0.20)(+0.19) x 10(-3) eV(2)) is obtained using the observed (v) over bar (e) rates and energy spectra in a three-neutrino framework. This value of vertical bar Delta m(ee)(2)vertical bar eejis consistent with vertical bar Delta m(mu mu)(2)vertical bar measured by muon neutrino disappearance, supporting the three-flavor oscillation model. C1 [An, F. P.; Cao, G. F.; Cao, J.; Chang, J. F.; Chen, H. S.; Chen, X. H.; Cheng, Y. P.; Deng, Z. Y.; Ding, Y. Y.; Du, X. F.; Fu, J. Y.; Guan, M. Y.; He, M.; Heng, Y. K.; Hu, T.; Hu, W.; Jetter, S.; Ji, X. L.; Leung, A.; Li, F.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, Y. F.; Liu, J. C.; Liu, Y. B.; Lu, H. Q.; Ma, Q. M.; Ma, X. Y.; Ma, Y. Q.; Ning, Z.; Qi, F. Z.; Sun, G. X.; Tang, X.; Wang, L. S.; Wang, L. Y.; Wang, R. G.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Wen, L. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Yang, C. G.; Yang, M. S.; Ye, M.; Yu, Z. Y.; Zhan, L.; Zhang, F. H.; Zhang, J. W.; Zhang, S. H.; Zhang, Y. H.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhuang, H. L.; Zou, J. H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [An, F. P.] E China Univ Sci & Technol, Shanghai 200237, Peoples R China. [Balantekin, A. B.; Band, H. R.; Cherwinka, J. J.; Hinrichs, P.; Lewis, C. A.; McFarlane, M. C.; Webber, D. M.; Wise, T.] Univ Wisconsin, Madison, WI USA. [Beriguete, W.; Bishai, M.; Brown, R. L.; Chasman, C.; Diwan, M. V.; Gill, R.; Hackenburg, R. W.; Hahn, R. L.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Ling, J. J.; Littenberg, L.; Qian, X.; Rosero, R.; Tanaka, H. K.; Themann, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blyth, S.; Hsiung, Y. B.; Tung, Y. C.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Butorov, I.; Gonchar, M.; Gornushkin, Y. A.; Naumov, D.; Naumova, E.; Nemchenok, I.; Patton, S.; Pec, V.; Peng, J. C.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Carr, R.; Qian, X.; Tsang, R. H. M.] CALTECH, Pasadena, CA 91125 USA. [Chan, Y. L.; Chen, X. C.; Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Tam, Y. H.; Wong, S. C. F.; Xu, J. Y.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Chang, Y.; Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Chen, H. Y.; Hu, B. Z.; Lai, W. H.; Lin, G. L.; Yeh, Y. S.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. [Chen, S. J.; Qi, M.; Wang, W. W.; Yu, G. Y.; Zang, S. L.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. [Chen, S. M.; Gong, G. H.; Gong, H.; Hussain, G.; Lebanowski, L.; Shao, B. B.; Wang, Z.; Wei, H.; Xue, T.; Yu, J. Y.; Zhang, Y. M.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chen, Y.] Shenzhen Univ, Shenzhen, Peoples R China. [Chen, Y. X.; Ma, X. B.; Wang, L. Z.] N China Elect Power Univ, Beijing, Peoples R China. [Cummings, J. P.] Siena Coll, Loudonville, NY USA. [de Arcos, J.; Draeger, E.; White, C. G.] IIT, Dept Phys, Chicago, IL 60616 USA. [Dwyer, D. A.; Edwards, W. R.; Kramer, M.; Lee, J.; Lin, C. J.; Luk, K. B.; Nakajima, Y.; Ochoa-Ricoux, J. P.; Steiner, H.; Tsang, K. V.; Tull, C. E.; Wong, H. L. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Edwards, W. R.; Kramer, M.; Luk, K. B.; Steiner, H.; Wong, H. L. H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ely, S. R.; Huang, E. C.; Liu, D. W.; Ngai, W. K.] Univ Illinois, Dept Phys, Urbana, IL USA. [Ge, L. Q.; Jiang, H. J.; Lai, W. C.; Lin, Y. C.] Chengdu Univ Technol, Chengdu, Peoples R China. [Gu, W. Q.; Li, G. S.; Liu, J. L.] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. [Guo, X. H.; Hu, L. J.; Wang, N. Y.; Xu, J.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Han, G. H.; McKeown, R. D.; Wang, W.] Coll William & Mary, Williamsburg, VA USA. [Heeger, K. M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hor, Yk.; Huber, P.; Jaffke, P.; Link, J. M.; Meng, Y.; Piilonen, L. E.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA USA. [Huang, H. X.; Ren, J.; Ruan, X. C.; Zhou, Z. Y.] China Inst Atom Energy, Beijing, Peoples R China. [Huang, H. Z.; Trentalange, S.; Tsai, O.] Univ Calif Los Angeles, Los Angeles, CA USA. [Huang, X. T.; Jiao, J. B.; Wang, M.; Wu, Q.; Xia, X.] Shandong Univ, Jinan 250100, Peoples R China. [Ji, X. P.; Li, X. Q.; Xu, Y.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Johnson, R. A.; Littlejohn, B. R.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Kang, L.; Lei, R. T.; Ren, B.; Wei, Y. D.; Yang, L.; Zhang, Z. J.] Dongguan Univ Technol, Dongguan, Peoples R China. [Kwok, T.; Leung, A.; Leung, J. K. C.; Liu, S. S.; Ngai, H. Y.; Pun, C. S. J.] Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Peoples R China. [Lau, K.; Lin, S. K.; Liu, D. W.; Liu, H.; Mitchell, I.; Pinsky, L.; Whitehead, L.] Univ Houston, Dept Phys, Houston, TX USA. [Leitner, R.; Roskovec, B.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Li, D. J.; Liang, H.; Zhang, Y. C.; Zhang, Z. P.; Zheng, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, Z. B.] Sun Yat Sen Zhongshan Univ, Guangzhou, Guangdong, Peoples R China. [Lu, C.; McDonald, K. T.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Napolitano, J.; Olshevski, A.; Raper, N.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY USA. [Sun, J. L.; Zhang, Y. X.] China Guangdong Nucl Power Grp, Shenzhen, Peoples R China. [Wang, X.] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Peoples R China. [Whisnant, K.; Young, B. L.] Iowa State Univ, Ames, IA USA. [Yan, J.; Zhang, Q. M.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. RP An, FP (reprint author), Inst High Energy Phys, Beijing 100039, Peoples R China. RI Cao, Jun/G-8701-2012; Wei, Yen/H-5329-2012; Nemchenok, Igor/F-9715-2014; Link, Jonathan/L-2560-2013; Balantekin, Akif Baha/E-4776-2010; Wen, Liangjian/C-5113-2015; Zhang, Shengbai/D-4885-2013; Olshevskiy, Alexander/I-1580-2016; Ling, Jiajie/I-9173-2014; Liu, Jianglai/P-2587-2015 OI Wang, Zhimin/0000-0002-8651-8999; Cao, Jun/0000-0002-3586-2319; Zhong, Weili/0000-0002-4566-5490; HSIUNG, YEE/0000-0003-4801-1238; Qian, Xin/0000-0002-7903-7935; Zhang, Chao/0000-0003-2298-6272; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Naumov, Dmitry Vadimovich/0000-0002-0966-8803; Link, Jonathan/0000-0002-1514-0650; Ngai, Ho Yin/0000-0003-0336-2165; Xu, Jilei/0000-0001-5743-6807; Balantekin, Akif Baha/0000-0002-2999-0111; Wen, Liangjian/0000-0003-4541-9422; Zhang, Shengbai/0000-0003-0833-5860; Olshevskiy, Alexander/0000-0002-8902-1793; Ling, Jiajie/0000-0003-2982-0670; Liu, Jianglai/0000-0002-4563-3157 NR 27 TC 142 Z9 143 U1 10 U2 122 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 10 PY 2014 VL 112 IS 6 AR 061801 DI 10.1103/PhysRevLett.112.061801 PG 8 WC Physics, Multidisciplinary SC Physics GA AB7EB UT WOS:000331951000002 PM 24580686 ER PT J AU Schneider, MD AF Schneider, Michael D. TI Probing Dark Energy with Lensing Magnification in Photometric Surveys SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR CROSS-CORRELATION; COSMIC MAGNIFICATION; GALAXIES; DISTRIBUTIONS; REDSHIFT AB I present an estimator for the angular cross correlation of two tracers of the cosmological large-scale structure that utilizes redshift information to isolate separate physical contributions. The estimator is derived by solving the Limber equation for a reweighting of the foreground tracer that nulls either clustering or lensing contributions to the cross correlation function. Applied to future photometric surveys, the estimator can enhance the measurement of gravitational lensing magnification effects to provide a competitive independent constraint on the dark energy equation of state. C1 [Schneider, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schneider, Michael D.] Univ Calif Davis, Davis, CA 94551 USA. RP Schneider, MD (reprint author), Lawrence Livermore Natl Lab, POB 808 L-210, Livermore, CA 94551 USA. EM schneider42@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX I thank Shaun Cole and Tony Tyson for helpful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 27 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 10 PY 2014 VL 112 IS 6 AR 061301 DI 10.1103/PhysRevLett.112.061301 PG 5 WC Physics, Multidisciplinary SC Physics GA AB7EB UT WOS:000331951000001 PM 24580685 ER PT J AU Zhang, H Tian, XJ Mukhopadhyay, A Kim, KS Xing, JH AF Zhang, Hang Tian, Xiao-Jun Mukhopadhyay, Abhishek Kim, K. S. Xing, Jianhua TI Statistical Mechanics Model for the Dynamics of Collective Epigenetic Histone Modification SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHROMATIN; HETEROCHROMATIN; MEMORY; CELLS; DIMERIZATION; METHYLATION; INHERITANCE; ACTIVATION; GENOME; GENE AB Epigenetic histone modifications play an important role in the maintenance of different cell phenotypes. The exact molecular mechanism for inheritance of the modification patterns over cell generations remains elusive. We construct a Potts-type model based on experimentally observed nearest-neighbor enzyme lateral interactions and nucleosome covalent modification state biased enzyme recruitment. The model can lead to effective nonlocal interactions among nucleosomes suggested in previous theoretical studies, and epigenetic memory is robustly inheritable against stochastic cellular processes. C1 [Zhang, Hang; Tian, Xiao-Jun; Xing, Jianhua] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. [Mukhopadhyay, Abhishek; Xing, Jianhua] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Kim, K. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kim, K. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xing, Jianhua] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China. RP Zhang, H (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. EM jxing@vt.edu RI Xing, Jianhua/A-8101-2012 OI Xing, Jianhua/0000-0002-3700-8765 FU National Science Foundation [DMS-0969417, EF-1038636, DGE-0966125] FX We thank Dr. Andrew Angel, Dr. Bing Zhu, and Dr. Michael Surh for their careful review of our manuscript and insightful comments. We also thank Mr. Yujin Kim for discussions. This work has been supported by National Science Foundation Grants No. DMS-0969417, No. EF-1038636, and No. DGE-0966125. NR 34 TC 11 Z9 12 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 10 PY 2014 VL 112 IS 6 AR 068101 DI 10.1103/PhysRevLett.112.068101 PG 5 WC Physics, Multidisciplinary SC Physics GA AB7EB UT WOS:000331951000007 PM 24580708 ER PT J AU Luttrell, T Halpegamage, S Tao, JG Kramer, A Sutter, E Batzill, M AF Luttrell, Tim Halpegamage, Sandamali Tao, Junguang Kramer, Alan Sutter, Eli Batzill, Matthias TI Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films SO SCIENTIFIC REPORTS LA English DT Article ID MOLECULAR-BEAM EPITAXY; EXPOSED 001 FACETS; ORIENTATION DEPENDENCE; SINGLE-CRYSTAL; TITANIUM-DIOXIDE; OXYGEN VACANCIES; SURFACE SCIENCE; CHARGE-TRANSFER; METHYL-ORANGE; BILAYER FILMS AB The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high - quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to, similar to 5 nm thick, while rutile films reach their maximum activity for, similar to 2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies. C1 [Luttrell, Tim; Halpegamage, Sandamali; Tao, Junguang; Kramer, Alan; Batzill, Matthias] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Batzill, M (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM mbatzill@usf.edu RI Batzill, Matthias/J-4297-2014 OI Batzill, Matthias/0000-0001-8984-8427 FU DOE- BES [DE-FG02-09ER1608]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support from DOE- BES under grant no. DE-FG02-09ER1608 is acknowledged. The TEM characterization of the TiO2 films was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors thank Kim Kisslinger for technical support. NR 60 TC 146 Z9 147 U1 24 U2 253 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2014 VL 4 AR 4043 DI 10.1038/srep04043 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA7LP UT WOS:000331279200007 PM 24509651 ER PT J AU Bo, W Grove, JW AF Bo, Wurigen Grove, John W. TI A volume of fluid method based ghost fluid method for compressible multi-fluid flows SO COMPUTERS & FLUIDS LA English DT Article DE Volume of fluid method; Ghost fluid method; Compressible multi-phase flows ID FRONT-TRACKING METHOD; MULTIMATERIAL FLOWS; TAYLOR INSTABILITY; CONSERVATION-LAWS; RIEMANN PROBLEM; SIMULATION; INTERFACES; DYNAMICS; COMPUTATIONS; ALGORITHMS AB A ghost fluid method for compressible multi-fluid flows is presented in an adaptive mesh refinement (AMR) environment, where the volume of fluid method is used to track the interface. Various numerical examples are presented to compare the proposed method with interface capturing methods using pressure-temperature equilibrium and non-equilibrium temperature mixed cell approaches. It is found both mixing models are unable to generate accurate results for strong shock refractions through high acoustic impedance mismatch interfaces. The proposed method is found to be quite robust and can provide relatively reasonable results across a wide variety of flow regimes. The ghost fluid coupling between the fluid solver and the volume of fluid method is designed to be simple and consistent in any spatial dimension on AMR grid. Published by Elsevier Ltd. C1 [Bo, Wurigen; Grove, John W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Bo, W (reprint author), Los Alamos Natl Lab, MS-784, Los Alamos, NM 87544 USA. EM wbo@lanl.gov; jgrove@lanl.gov FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Advanced Simulation and Computing (ASC) program FX This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation and Computing (ASC) program. NR 51 TC 5 Z9 7 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD FEB 10 PY 2014 VL 90 BP 113 EP 122 DI 10.1016/j.compfluid.2013.11.013 PG 10 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA AA2HP UT WOS:000330916000011 ER PT J AU Fang, XW Huang, L Wang, CZ Ho, KM Ding, ZJ AF Fang, X. W. Huang, Li Wang, C. Z. Ho, K. M. Ding, Z. J. TI Structure of Cu64.5Zr35.5 metallic glass by reverse Monte Carlo simulations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RADIAL-DISTRIBUTION FUNCTIONS; INITIO MOLECULAR-DYNAMICS; BOND-ORIENTATIONAL ORDER; MEDIUM-RANGE ORDER; DIFFRACTION DATA; SIMPLE LIQUIDS; DISORDERED STRUCTURES; RMC; TRANSITION; PACKING AB Reverse Monte Carlo simulations (RMC) have been widely used to generate three dimensional (3D) atomistic models for glass systems. To examine the reliability of the method for metallic glass, we use RMC to predict the atomic configurations of a "known" structure from molecular dynamics (MD) simulations, and then compare the structure obtained from the RMC with the target structure from MD. We show that when the structure factors and partial pair correlation functions from the MD simulations are used as inputs for RMC simulations, the 3D atomistic structure of the glass obtained from the RMC gives the short- and medium-range order in good agreement with those from the target structure by the MD simulation. These results suggest that 3D atomistic structure model of the metallic glass alloys can be reasonably well reproduced by RMC method with a proper choice of input constraints. (C) 2014 AIP Publishing LLC. C1 [Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Fang, X. W.; Huang, Li; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Huang, Li] South Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Peoples R China. RP Huang, L (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM huang.l@sustc.edu.cn; wangcz@ameslab.gov FU US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358]; China Scholarship Council [2008634035]; National Natural Science Foundation of China [similar to10874160, 11074232]; '111' project FX We thank Dr. M. I. Mendelev for suggesting the comparison and providing us with MD simulation data. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. X. W. Fang aclknowledges the support from China Scholarship Council for the Postgraduate Scholarship Program (File No. 2008634035) and Z. J. Ding acknowledges the National Natural Science Foundation of China (Grant Nos. similar to 10874160 and 11074232) and '111' project. NR 49 TC 1 Z9 1 U1 5 U2 48 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2014 VL 115 IS 5 AR 053522 DI 10.1063/1.4865164 PG 7 WC Physics, Applied SC Physics GA AB2TV UT WOS:000331645900028 ER PT J AU France, RM McMahon, WE Kang, J Steiner, MA Geisz, JF AF France, Ryan M. McMahon, William E. Kang, Joongoo Steiner, Myles A. Geisz, John F. TI In situ measurement of CuPt alloy ordering using strain anisotropy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; VAPOR-PHASE EPITAXY; LONG-RANGE ORDER; BAND-GAP; SEMICONDUCTOR ALLOYS; OPTICAL-PROPERTIES; SOLAR-CELLS; GROWTH-RATE; GAINP; REFLECTANCE AB The optical and electrical properties of many III-V alloys change with the degree of CuPt atomic ordering, which is very sensitive to growth conditions. The bulk ordered alloy is elongated along the normal to the ordered planes, and is asymmetrically strained when coherent to a cubic substrate. Here, we demonstrate in situ measurement of the anisotropic strain due to ordering using two-dimensional wafer curvature. The measurement is sensitive to bulk anisotropies, and so is complementary to other in situ measurements that are sensitive to surface anisotropies. Using ab initio calculations, we determine a maximum strain anisotropy of 0.27% between [110] and [(1) over bar 10] when perfectly ordered single-variant GaInP2 is coherent to a (001) cubic substrate. We relate the in situ measurement of strain anisotropy on various GaInP2 samples to ex situ measurements of the order parameter to validate the measurement and confirm the capability to predict material properties. The measurement monitors change in ordering during growth, useful for quickly determining the growth condition dependence of ordering or monitoring order-disorder transitions. More generally, this measurement technique could, in principle, be used to monitor phase changes in any epitaxial system for which the strain anisotropy of the two phases differs. (C) 2014 AIP Publishing LLC. C1 [France, Ryan M.; McMahon, William E.; Kang, Joongoo; Steiner, Myles A.; Geisz, John F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP France, RM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX It is our pleasure to acknowledge Suhuai Wei, Jerry Olson, and Dan Friedman for valuable discussions, Waldo Olavarria for sample growth, Michelle Young for sample processing, and Pat Dippo for PL measurements. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 42 TC 2 Z9 2 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2014 VL 115 IS 5 AR 053502 DI 10.1063/1.4863821 PG 5 WC Physics, Applied SC Physics GA AB2TV UT WOS:000331645900008 ER PT J AU Gallington, LC Chapman, KW Morelock, CR Chupas, PJ Wilkinson, AP AF Gallington, Leighanne C. Chapman, Karena W. Morelock, Cody R. Chupas, Peter J. Wilkinson, Angus P. TI Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order-disorder phase transition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; ORTHORHOMBIC PHASE; HIGH-PRESSURE; ZIRCONIUM TUNGSTATE; ELASTIC-CONSTANTS; ZRW2O8; TRANSFORMATION; COMPOSITES; COMPRESSIBILITY; TEMPERATURE AB HfW2O8 undergoes a dramatic softening where the average bulk modulus (P = 52-414MPa) drops from 69GPa at 298K to 48GPa at 430K as the temperature of the WO4 orientation order-disorder transition is approached. This is accompanied by increasingly negative thermal expansivity (-10ppm . K-1 to -15ppm . K-1) and reversible WO4 orientational disordering upon compression in alpha-HfW2O8. Additionally, alpha-HfW2O8 becomes elastically softer upon compression at constant temperature. The alpha -> beta phase transition temperature decreases by similar to 30K between 52 and 414MPa. Above this phase transition, no further temperature-dependent softening or pressure-dependent changes in the coefficient of thermal expansion occurred. (C) 2014 AIP Publishing LLC. C1 [Gallington, Leighanne C.; Morelock, Cody R.; Wilkinson, Angus P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Wilkinson, Angus P.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM angus.wilkinson@chemistry.gatech.edu RI Wilkinson, Angus/C-3408-2008; Morelock, Cody/C-2831-2012; Gallington, Leighanne/G-9341-2011 OI Wilkinson, Angus/0000-0003-2904-400X; Gallington, Leighanne/0000-0002-0383-7522 FU National Science Foundation [DMR-0905842]; U.S. DOE [DE-AC02-06CH11357] FX A.P.W. acknowledges financial support from the National Science Foundation (Grant No. DMR-0905842). Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We are grateful for the assistance of Charles Kurtz and Kevin Beyer with the experimental setup. NR 43 TC 4 Z9 4 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2014 VL 115 IS 5 AR 053512 DI 10.1063/1.4864258 PG 5 WC Physics, Applied SC Physics GA AB2TV UT WOS:000331645900018 ER PT J AU Liu, ZQ Sun, L Huang, Z Li, CJ Zeng, SW Han, K Lu, WM Venkatesan, T Ariando AF Liu, Z. Q. Sun, L. Huang, Z. Li, C. J. Zeng, S. W. Han, K. Lu, W. M. Venkatesan, T. Ariando TI Dominant role of oxygen vacancies in electrical properties of unannealed LaAlO3/SrTiO3 interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID OXIDE HETEROSTRUCTURES; GASES AB We report that in unannealed LaAlO3/SrTiO3 (LAO/STO) heterostructures the critical thickness for the appearance of the two-dimensional electron gas can be less than 4 unit cell, the interface is conducting even for STO substrates with mixed terminations and the low-temperature resistance upturn in LAO/STO heterostructures with thick LAO layers strongly depends on laser fluence. Our experimental results provide fundamental insights into the different roles played by oxygen vacancies and polarization catastrophe in the two-dimensional electron gas in crystalline LAO/STO heterostructures. (C) 2014 AIP Publishing LLC. C1 [Liu, Z. Q.; Sun, L.; Huang, Z.; Li, C. J.; Zeng, S. W.; Han, K.; Lu, W. M.; Venkatesan, T.; Ariando] Natl Univ Singapore, NUSNNI Nanocore, Singapore 117411, Singapore. [Liu, Z. Q.; Zeng, S. W.; Han, K.; Venkatesan, T.; Ariando] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Li, C. J.; Venkatesan, T.] Natl Univ Singapore, Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore. [Venkatesan, T.] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore. RP Liu, ZQ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM liuz@ornl.gov; ariando@nus.edu.sg RI Ariando, Ariando/F-8953-2012; Venkatesan, Thirumalai/E-1667-2013; Huang, Zhen/C-8275-2012; Liu, Zhiqi/N-6052-2014; Zeng, Shengwei/B-7166-2009 OI Ariando, Ariando/0000-0002-0598-426X; Huang, Zhen/0000-0003-0733-9149; Liu, Zhiqi/0000-0003-0492-9290; FU National Research Foundation (NRF) Singapore under the Competitive Research Program (CRP) "Tailoring Oxide Electronics by Atomic Control" [NRF2008NRF-CRP002-024]; Singapore National Research Foundation under CRP Award [NRF-CRP10-2012-02] FX We thank the National Research Foundation (NRF) Singapore under the Competitive Research Program (CRP) "Tailoring Oxide Electronics by Atomic Control" (Grant No. NRF2008NRF-CRP002-024) for financial support. The research is supported (in part) by the Singapore National Research Foundation under CRP Award No. NRF-CRP10-2012-02. NR 16 TC 7 Z9 7 U1 4 U2 55 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2014 VL 115 IS 5 AR 054303 DI 10.1063/1.4863800 PG 3 WC Physics, Applied SC Physics GA AB2TV UT WOS:000331645900072 ER PT J AU Lueth, CA Bolintineanu, DS Stevens, MJ Frischknecht, AL AF Lueth, Christopher A. Bolintineanu, Dan S. Stevens, Mark J. Frischknecht, Amalie L. TI Hydrogen-bonded aggregates in precise acid copolymers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ION-CONTAINING POLYETHYLENES; MOLECULAR-DYNAMICS; POLY(ACRYLIC ACID); METHACRYLIC-ACID; PHOSPHONIC ACID; FORCE-FIELD; IONOMERS; MORPHOLOGY; SIMULATIONS; TEMPERATURE AB We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates. (C) 2014 AIP Publishing LLC. C1 [Lueth, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Lueth, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov; alfrisc@sandia.gov RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU U.S. Department of Energy [DE-AC04-94AL85000] FX We thank Professor Karen I. Winey for helpful discussions. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories (C.A.L., D.S.B., M.J.S., and A.L.F.). This work was also performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility (D.S.B., M.J.S., and A.L.F.). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 28 TC 7 Z9 7 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 7 PY 2014 VL 140 IS 5 AR 054902 DI 10.1063/1.4863326 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AA7PK UT WOS:000331289200060 PM 24511974 ER PT J AU Orenstein, J Moore, JE AF Orenstein, J. Moore, Joel E. TI Reply to "Comment on 'Berry phase mechanism for optical gyrotropy in stripe-ordered cuprates' " SO PHYSICAL REVIEW B LA English DT Editorial Material AB In response to the Comment of Chakravarty, we explain that interplane incoherence is unlikely to invalidate the Berry phase mechanism of gyrotropy in metals, although it will certainly modify the observed magnitude of the effect. C1 [Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Orenstein, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Orenstein, Joseph/I-3451-2015; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 6 TC 0 Z9 0 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 7 PY 2014 VL 89 IS 8 AR 087102 DI 10.1103/PhysRevB.89.087102 PG 1 WC Physics, Condensed Matter SC Physics GA AC2WO UT WOS:000332377200006 ER PT J AU Ahuatzin, G Flores-Mendieta, R Hernandez-Ruiz, MA Hofmann, CP AF Ahuatzin, Giovanna Flores-Mendieta, Ruben Hernandez-Ruiz, Maria A. Hofmann, Christoph P. TI Baryon magnetic moments in large-N-c chiral perturbation theory: Effects of the decuplet-octet mass difference and flavor symmetry breaking SO PHYSICAL REVIEW D LA English DT Article ID 1/N-C EXPANSION AB The magnetic and transition magnetic moments of the ground-state baryons are computed in heavy baryon chiral perturbation theory in the large-N-c limit, where N-c is the number of colors. SU(3) symmetry breaking is systematically studied twofold: On the one hand, one-loop nonanalytic corrections of orders m(q)(1/2) and m(q) ln m(q) are included, with contributions of baryon intermediate states from both flavor octet and flavor decuplet multiplets, assuming degeneracy between baryon states within a given flavor multiplet but nondegeneracy between baryons of different multiplets. On the other hand, perturbative SU(3) symmetry breaking is also analyzed by including all relevant leading-order operators that explicitly break SU(3) at linear order. The resultant expressions are compared with the available experimental data and with other determinations in the context of conventional heavy baryon chiral perturbation theory for three flavors of light quarks and at the physical value N-c = 3. The agreement reached is quite impressive. C1 [Ahuatzin, Giovanna] Univ Politecn San Luis Potosi, Acad Ciencias, San Luis Potosi 78369, Mexico. [Flores-Mendieta, Ruben] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Hernandez-Ruiz, Maria A.] Univ Autonoma Zacatecas, Fac Ciencias Quim, Zacatecas 98060, Mexico. [Hofmann, Christoph P.] Univ Colima, Fac Ciencias, Colima 28045, Mexico. RP Ahuatzin, G (reprint author), Univ Politecn San Luis Potosi, Acad Ciencias, Urbano Villalon 500, San Luis Potosi 78369, Mexico. FU Consejo Nacional de Ciencia y Tecnologia; Fondo de Apoyo a la Investigacion (Universidad Autonoma de San Luis Potosi), Mexico FX The authors wish to express their gratitude to A. V. Manohar and J. M. Camalich for enlightening correspondence and to J. Goity for useful discussions. This work has been partially supported by Consejo Nacional de Ciencia y Tecnologia and Fondo de Apoyo a la Investigacion (Universidad Autonoma de San Luis Potosi), Mexico. NR 27 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 7 PY 2014 VL 89 IS 3 AR 034012 DI 10.1103/PhysRevD.89.034012 PG 39 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AB6DS UT WOS:000331878400005 ER PT J AU Qiao, CF Sun, P Yang, DS Zhu, RL AF Qiao, Cong-Feng Sun, Peng Yang, Deshan Zhu, Rui-Lin TI B-c exclusive decays to charmonium and a light meson at next-to-leading order accuracy SO PHYSICAL REVIEW D LA English DT Article ID PERTURBATIVE QCD APPROACH; DISTRIBUTION AMPLITUDES; SPECTATOR-SCATTERING; HADRONIC PRODUCTION; VECTOR-MESONS; FORM-FACTORS; FACTORIZATION; PI AB In this paper, we study the B-c-meson exclusive decays to S-wave charmonia and light pseudoscalar or vector mesons, i.e., pi, K, rho, and K* at the next-to-leading order (NLO) in the QCD coupling. The nonfactorizable contribution is included, which is absent in traditional naive factorization. Numerical results show that NLO QCD corrections markedly enhance the branching ratio with a K factor of 1.75 for B-c(+/-) -> eta(c)pi(+/-) and 1.31 for B-c(+/-) -> J/psi pi(+/-) using certain input parameters. And the theoretical uncertainties for their branching ratios are reduced compared with that of direct tree-level calculation. In order to investigate the asymptotic behavior, the analytic form is obtained in the heavy quark limit, i.e., m(b) -> infinity . We note that annihilation topologies contribute trivia in this limit, and the corrections at leading order in z = m(c)/m(b) expansion come from form factors and hard spectator interactions. At last, some related phenomenologies are also discussed. C1 [Qiao, Cong-Feng; Yang, Deshan; Zhu, Rui-Lin] Univ Chinese Acad Sci, Dept Phys, Beijing 100049, Peoples R China. [Sun, Peng] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Sun, Peng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Zhu, RL (reprint author), Univ Chinese Acad Sci, Dept Phys, YuQuan Rd 19A, Beijing 100049, Peoples R China. EM qiaocf@ucas.ac.cn; sunp@pku.edu.cn; yangds@ucas.ac.cn; zhuruilin09@mails.ucas.ac.cn RI Zhu, Rui-Lin/L-6440-2016 OI Zhu, Rui-Lin/0000-0001-6733-859X FU National Natural Science Foundation of China (NSFC) [10935012, 11121092, 11375200, 11275263, 11175249] FX This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grants No. 10935012, No. 11121092, No. 11375200, No. 11275263, and No. 11175249. NR 54 TC 17 Z9 18 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 7 PY 2014 VL 89 IS 3 AR 034008 DI 10.1103/PhysRevD.89.034008 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AB6DS UT WOS:000331878400004 ER PT J AU Allanach, BC George, DP Nachman, B AF Allanach, B. C. George, Damien P. Nachman, Benjamin TI Investigating multiple solutions in the constrained minimal supersymmetric standard model SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID GENERIC MODEL; DARK-MATTER; PROGRAM; HIGGS; COUPLINGS; PARTICLE; SPECTRA; DECAYS; BOSON; MASS AB Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion. C1 [Allanach, B. C.; George, Damien P.] Univ Cambridge, DAMTP, CMS, Cambridge CB3 0HA, England. [George, Damien P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Nachman, Benjamin] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Allanach, BC (reprint author), Univ Cambridge, DAMTP, CMS, Wilberforce Rd, Cambridge CB3 0HA, England. EM B.C.Allanach@damtp.cam.ac.uk; dpg39@cam.ac.uk; bnachman@cern.ch OI Allanach, Benjamin/0000-0003-4635-6830 FU STFC; Herchel Smith fellowship FX This work has been partially supported by STFC. DG is funded by a Herchel Smith fellowship. We would like to thank other members of the Cambridge SUSY Working Group for discussions and helpful comments. NR 40 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 7 PY 2014 IS 2 AR 031 DI 10.1007/JHEP02(2014)031 PG 31 WC Physics, Particles & Fields SC Physics GA AA3CJ UT WOS:000330970200002 ER PT J AU Biswas, R Prabhu, S Lynd, LR Guss, AM AF Biswas, Ranjita Prabhu, Sandeep Lynd, Lee R. Guss, Adam M. TI Increase in Ethanol Yield via Elimination of Lactate Production in an Ethanol-Tolerant Mutant of Clostridium thermocellum SO PLOS ONE LA English DT Article ID PROTEOMIC ANALYSIS; ATCC 27405; CELLULOSE; FERMENTATION; EXPRESSION; GENE AB Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) Delta ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) Dldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts. C1 [Biswas, Ranjita; Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Biswas, Ranjita; Lynd, Lee R.; Guss, Adam M.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Prabhu, Sandeep] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. RP Guss, AM (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM gussam@ornl.gov RI Guss, Adam/A-6204-2011 OI Guss, Adam/0000-0001-5823-5329 FU BioEnergy Science Center, a U.S. DOE Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; U.S. DOE [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program FX This work was supported by the BioEnergy Science Center, a U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. This work was also supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 20 TC 15 Z9 15 U1 1 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 7 PY 2014 VL 9 IS 2 AR e86389 DI 10.1371/journal.pone.0086389 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA1CR UT WOS:000330834400009 PM 24516531 ER PT J AU Cordova, EJ Martinez-Hernandez, A Uribe-Figueroa, L Centeno, F Morales-Marin, M Koneru, H Coleman, MA Orozco, L AF Cordova, Emilio J. Martinez-Hernandez, Angelica Uribe-Figueroa, Laura Centeno, Federico Morales-Marin, Mirna Koneru, Harsha Coleman, Matthew A. Orozco, Lorena TI The NRF2-KEAP1 Pathway Is an Early Responsive Gene Network in Arsenic Exposed Lymphoblastoid Cells SO PLOS ONE LA English DT Article ID BINDING CASSETTE TRANSPORTER; TRANSCRIPTION FACTOR NRF2; EXPRESSION PROFILES; DRINKING-WATER; ANTIOXIDANT RESPONSE; SODIUM ARSENITE; UROTHELIAL CELLS; HEPG2 CELLS; KERATINOCYTES; LYMPHOCYTES AB Inorganic arsenic (iAs), a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min) and was responsive to low iAs concentrations (0.1 mu M), this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs. C1 [Cordova, Emilio J.; Martinez-Hernandez, Angelica; Uribe-Figueroa, Laura; Centeno, Federico; Orozco, Lorena] Inst Nacl Med Genom, Immunogen & Metab Dis Lab, SS, Mexico City, DF, Mexico. [Morales-Marin, Mirna; Orozco, Lorena] Univ Autonoma Ciudad Mexico, Mexico City, DF, Mexico. [Koneru, Harsha; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Coleman, Matthew A.] Univ Calif Davis, Davis Med Ctr, Dept Radiat Oncol, Sacramento, CA 95817 USA. RP Orozco, L (reprint author), Inst Nacl Med Genom, Immunogen & Metab Dis Lab, SS, Mexico City, DF, Mexico. EM lorozco@inmegen.gob.mx OI Coleman, Matthew/0000-0003-1389-4018 FU CONACyT-FOSSIS [71053]; U.S. Department of Energy [DE-AC52-07NA27344]; US DOE Low Dose Radiation Research Program [KP110202] FX This work was supported by grant CONACyT-FOSSIS, No. 71053, and of the U.S. Department of Energy under contract number DE-AC52-07NA27344 with funding support from the US DOE Low Dose Radiation Research Program Grant KP110202. The sponsors of this study had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. NR 49 TC 7 Z9 7 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 7 PY 2014 VL 9 IS 2 AR e88069 DI 10.1371/journal.pone.0088069 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA1CR UT WOS:000330834400027 PM 24516582 ER PT J AU Miliordos, E Xantheas, SS AF Miliordos, Evangelos Xantheas, Sotiris S. TI Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Alkaline earth dication aqueous clusters; Unimolecular dissociation; Potential energy curve; Electronic structure; Hydrolysis channel ID DENSITY-FUNCTIONAL THEORY; GAS-PHASE ION; COLLISION-INDUCED DISSOCIATION; HYDRATION ENERGIES; AB-INITIO; CALCIUM-ION; BINDING-ENERGIES; METAL-CATIONS; BASIS-SETS; MAGNESIUM AB We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O) (n) ](2+), M = Mg, Ca, Sr, Ba, n a parts per thousand currency sign 6. These are the unimolecular water loss (M2+(H2O) (n-1) + H2O) and the two hydrolysis channels resulting the loss of hydronium ([MOH(H2O) (n-2)](+) + H3O+) and Zundel ([MOH(H2O) (n-3)](+) + H3O+(H2O)) cations. Minimum energy paths (MEPs) corresponding to those three channels were constructed at the Moller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-zeta quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O) (n) ](+), 1 a parts per thousand currency sign n a parts per thousand currency sign 4. Our results indicate the preference of the hydronium loss and possibly the Zundel-cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel-cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high-energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult. C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Div Phys Sci, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge useful discussions with Drs. Nikolai Petrik and Gregory Kimmel of PNNL. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 2 Z9 2 U1 1 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X EI 1432-2234 J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD FEB 7 PY 2014 VL 133 IS 4 AR 1450 DI 10.1007/s00214-014-1450-4 PG 12 WC Chemistry, Physical SC Chemistry GA AA2YS UT WOS:000330960700001 ER PT J AU Conrado, RJ Gonzalez, R AF Conrado, Robert J. Gonzalez, Ramon TI Envisioning the Bioconversion of Methane to Liquid Fuels SO SCIENCE LA English DT Editorial Material ID OXIDATION C1 [Conrado, Robert J.; Gonzalez, Ramon] US DOE, Adv Res Projects Agcy Energy ARPA E, Washington, DC 20585 USA. RP Conrado, RJ (reprint author), US DOE, Adv Res Projects Agcy Energy ARPA E, 1000 Independence Ave SW, Washington, DC 20585 USA. EM ramon.gonzalez@doe.gov RI Gonzalez, Ramon/B-1961-2010 NR 12 TC 34 Z9 34 U1 7 U2 67 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 7 PY 2014 VL 343 IS 6171 BP 621 EP 623 DI 10.1126/science.1246929 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 304CP UT WOS:000330724000031 PM 24503844 ER PT J AU Laroche, D Gervais, G Lilly, MP Reno, JL AF Laroche, D. Gervais, G. Lilly, M. P. Reno, J. L. TI 1D-1D Coulomb Drag Signature of a Luttinger Liquid SO SCIENCE LA English DT Article ID SPIN-CHARGE SEPARATION; QUANTUM WIRES; CARBON NANOTUBES; SYSTEMS AB One-dimensional (1D) interacting electronic systems exhibit distinct properties when compared to their counterparts in higher dimensions. We report Coulomb drag measurements between vertically integrated quantum wires separated by a barrier only 15 nanometers wide. The temperature dependence of the drag resistance is measured in the true 1D regime where both wires have less than one 1D subband occupied. As a function of temperature, an upturn in the drag resistance is observed below a temperature T* similar to 1.6 kelvin. This crossover in Coulomb drag behavior is consistent with Tomonaga-Luttinger liquid models for the 1D-1D drag between quantum wires. C1 [Laroche, D.; Gervais, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Laroche, D.; Lilly, M. P.; Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Gervais, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM gervais@physics.mcgill.ca FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); U.S. DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute For Advanced Research (CIFAR); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) FX We acknowledge the technical assistance of D. Tibbetts and J. Hedberg and we thank I. Affleck for illuminating discussions. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences, user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institute For Advanced Research (CIFAR), and the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT). All data and fabrication recipes presented in this work are available upon request to G.G. NR 27 TC 21 Z9 21 U1 1 U2 29 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 7 PY 2014 VL 343 IS 6171 BP 631 EP 634 DI 10.1126/science.1244152 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 304CP UT WOS:000330724000036 PM 24457214 ER PT J AU Shah, M Lin, CC Kukkadapu, R Engelhard, MH Zhao, XH Wang, YP Barkay, T Yee, N AF Shah, Madhavi Lin, Chu-Ching Kukkadapu, Ravi Engelhard, Mark H. Zhao, Xiuhong Wang, Yanping Barkay, Tamar Yee, Nathan TI Syntrophic Effects in a Subsurface Clostridial Consortium on Fe(III)-(Oxyhydr)oxide Reduction and Secondary Mineralization SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE iron reduction; biomineralization; subsurface microbiology ID SULFATE-REDUCING BACTERIUM; FRESH-WATER SEDIMENT; MICROBIAL REDUCTION; ELECTRON-TRANSFER; URANIUM(VI) REDUCTION; FE(III) REDUCTION; NATURAL-WATERS; GREEN RUST; GEN. NOV.; IRON AB In this study, we cultivated from subsurface sediments an anaerobic clostridial consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as strain FGH) and a novel sulfate-reducing bacterium belonging to the clostridia family Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated the reductive dissolution/transformation of iron oxides during growth on peptone. When Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction were significantly higher. Iron reduction by the consortium was mediated by multiple mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions involving biogenic sulfide formed by strain RU4. The Clostridium sp. FGH produced hydrogen during fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The sulfate-reducing partner strain RU4 was stimulated by the presence of H(2)and generated reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of Fe(II) mineral products showed the formation of nanoparticulate magnetite during ferrihydrite reduction, and the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an important pathway for iron reduction and secondary mineralization by fermentative sulfate-reducing microbial consortia through syntrophy-driven biotic/abiotic reactions with biogenic sulfide. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file. C1 [Shah, Madhavi; Zhao, Xiuhong; Yee, Nathan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Lin, Chu-Ching; Wang, Yanping; Barkay, Tamar] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08903 USA. [Kukkadapu, Ravi; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yee, N (reprint author), Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. EM nyee@envsci.rutgers.edu OI Engelhard, Mark/0000-0002-5543-0812 FU Office of Science (BER), U.S. Department of Energy [DE-FG02-08ER64544]; Department of Energy's Office of Biological and Environmental Research FX This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-08ER64544. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 68 TC 2 Z9 3 U1 7 U2 70 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-0451 EI 1521-0529 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD FEB 7 PY 2014 VL 31 IS 2 BP 101 EP 115 DI 10.1080/01490451.2013.806610 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 260IO UT WOS:000327588500002 ER PT J AU Marciano, WJ AF Marciano, William J. TI PARTICLE PHYSICS Quarks are not ambidextrous SO NATURE LA English DT Editorial Material ID INELASTIC ELECTRON-SCATTERING; PARITY NON-CONSERVATION; WEAK INTERACTIONS C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Marciano, WJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM marciano@quark.phy.bnl.gov NR 10 TC 1 Z9 1 U1 1 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 6 PY 2014 VL 506 IS 7486 BP 43 EP 44 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 303BA UT WOS:000330648100026 PM 24499915 ER PT J AU Wilson, MC Mori, T Ruckert, C Uria, AR Helf, MJ Takada, K Gernert, C Steffens, UAE Heycke, N Schmitt, S Rinke, C Helfrich, EJN Brachmann, AO Gurgui, C Wakimoto, T Kracht, M Crusemann, M Hentschel, U Abe, I Matsunaga, S Kalinowski, J Takeyama, H Piel, J AF Wilson, Micheal C. Mori, Tetsushi Rueckert, Christian Uria, Agustinus R. Helf, Maximilian J. Takada, Kentaro Gernert, Christine Steffens, Ursula A. E. Heycke, Nina Schmitt, Susanne Rinke, Christian Helfrich, Eric J. N. Brachmann, Alexander O. Gurgui, Cristian Wakimoto, Toshiyuki Kracht, Matthias Cruesemann, Max Hentschel, Ute Abe, Ikuro Matsunaga, Shigeki Kalinowski, Joern Takeyama, Haruko Piel, Joern TI An environmental bacterial taxon with a large and distinct metabolic repertoire SO NATURE LA English DT Article ID SYNTHETASE ADENYLATION DOMAINS; SPONGE THEONELLA-SWINHOEI; COMPLETE GENOME SEQUENCE; MARINE SPONGE; SOFTWARE ENVIRONMENT; MICROBIAL DIVERSITY; GENE CLUSTERS; PEPTIDE; POLYKETIDE; BIOSYNTHESIS AB Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such 'talented' producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus 'Entotheonella' with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. 'Entotheonella' spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum 'Tectomicrobia'. The pronounced bioactivities and chemical uniqueness of 'Entotheonella' compounds provide significant opportunities for ecological studies and drug discovery. C1 [Wilson, Micheal C.; Uria, Agustinus R.; Helf, Maximilian J.; Helfrich, Eric J. N.; Brachmann, Alexander O.; Piel, Joern] ETH, Inst Microbiol, CH-8093 Zurich, Switzerland. [Wilson, Micheal C.; Uria, Agustinus R.; Helf, Maximilian J.; Steffens, Ursula A. E.; Heycke, Nina; Helfrich, Eric J. N.; Gurgui, Cristian; Kracht, Matthias; Cruesemann, Max; Piel, Joern] Univ Bonn, Kekule Inst Organ Chem & Biochem, D-53121 Bonn, Germany. [Mori, Tetsushi; Takeyama, Haruko] Waseda Univ, Ctr Adv Biomed Sci, Fac Sci & Engn, Shinjuku Ku, Tokyo 1628480, Japan. [Rueckert, Christian; Kalinowski, Joern] Univ Bielefeld, Ctr Biotechnol, Inst Genome Res & Syst Biol, D-33594 Bielefeld, Germany. [Takada, Kentaro; Matsunaga, Shigeki] Univ Tokyo, Grad Sch Agr & Life Sci, Bunkyo Ku, Tokyo 1138657, Japan. [Gernert, Christine; Hentschel, Ute] Univ Wurzburg, Julius von Sachs Inst Biol Sci, Dept Bot 2, D-97082 Wurzburg, Germany. [Schmitt, Susanne] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany. [Rinke, Christian] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Wakimoto, Toshiyuki; Abe, Ikuro] Univ Tokyo, Grad Sch Pharmaceut Sci, Bunkyo Ku, Tokyo 1130033, Japan. RP Piel, J (reprint author), ETH, Inst Microbiol, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland. EM jpiel@ethz.ch RI Abe, Ikuro/E-4449-2010; Mori, Tetsushi/C-1973-2017; Hentschel, Ute/H-8343-2013; OI Mori, Tetsushi/0000-0001-7096-4161; Hentschel, Ute/0000-0003-0596-790X; Rinke, Christian/0000-0003-4632-1187; Uria, Agustinus R./0000-0002-9223-7464; Crusemann, Max/0000-0001-6660-2715; Ruckert, Christian/0000-0002-9722-4435; Helf, Maximilian/0000-0002-1393-3999 FU SNF [31003A_146992]; BMBF [GenBioCom: 0315581I, 0315585J]; DFG [PI 430/1-3, PI 430/9-1, SFB 630-TP A5]; EU (BlueGenics); MIWFT within the BIO.NRW initiative [280371902]; KAKENHI, JSPS [23760755]; Alexander von Humboldt Foundation; German National Academic Foundation; DAAD; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank R. Lasken and M.F. Freeman for discussion, R. W. M. van Soest, P. R. Bergquist, and Y. Ise for taxonomic identification of sponges, P. Kiefer for eMZed support, P. Dorrestein and J. Watrous for mass spectrometry networking support, A. Semeniuk and R. Meoded for experimental support, and T. Ravasi, P. Crews, Y. Kashman and M. Aknin for providing sponge specimens. This work was supported by the SNF (31003A_146992) to J.P., BMBF (GenBioCom: 0315581I to J.P. and 0315585J to J.K.), DFG (PI 430/1-3 and PI 430/9-1 to J.P., SFB 630-TP A5 to U.H.), the EU (BlueGenics to J.P.), MIWFT within the BIO.NRW initiative (280371902 to C. Ruckert), the Grants-in-aid for Young Scientists (B), KAKENHI (23760755 to T.M.), JSPS to J.P., S.M. and H.T., Alexander von Humboldt Foundation to M.C.W., German National Academic Foundation to M.J.H. and E.J.N.H., and DAAD to A.R.U. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 66 TC 145 Z9 146 U1 15 U2 147 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 6 PY 2014 VL 506 IS 7486 BP 58 EP + DI 10.1038/nature12959 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 303BA UT WOS:000330648100030 PM 24476823 ER PT J AU Wang, D Pan, K Subedi, R Deng, X Ahmed, Z Allada, K Aniol, KA Armstrong, DS Arrington, J Bellini, V Beminiwattha, R Benesch, J Benmokhtar, F Bertozzi, W Camsonne, A Canan, M Cates, GD Chen, JP Chudakov, E Cisbani, E Dalton, MM de Jager, CW De Leo, R Deconinck, W Deur, A Dutta, C El Fassi, L Erler, J Flay, D Franklin, GB Friend, M Frullani, S Garibaldi, F Gilad, S Giusa, A Glamazdin, A Golge, S Grimm, K Hafidi, K Hansen, JO Higinbotham, DW Holmes, R Holmstrom, T Holt, RJ Huang, J Hyde, CE Jen, CM Jones, D Kang, H King, PM Kowalski, S Kumar, KS Lee, JH LeRose, JJ Liyanage, N Long, E McNulty, D Margaziotis, DJ Meddi, F Meekins, DG Mercado, L Meziani, ZE Michaels, R Mihovilovic, M Muangma, N Myers, KE Nanda, S Narayan, A Nelyubin, V Nuruzzaman Oh, Y Parno, D Paschke, KD Phillips, SK Qian, X Qiang, Y Quinn, B Rakhman, A Reimer, PE Rider, K Riordan, S Roche, J Rubin, J Russo, G Saenboonruang, K Saha, A Sawatzky, B Shahinyan, A Silwal, R Sirca, S Souder, PA Suleiman, R Sulkosky, V Sutera, CM Tobias, WA Urciuoli, GM Waidyawansa, B Wojtsekhowski, B Ye, L Zhao, B Zheng, X AF Wang, D. Pan, K. Subedi, R. Deng, X. Ahmed, Z. Allada, K. Aniol, K. A. Armstrong, D. S. Arrington, J. Bellini, V. Beminiwattha, R. Benesch, J. Benmokhtar, F. Bertozzi, W. Camsonne, A. Canan, M. Cates, G. D. Chen, J. -P. Chudakov, E. Cisbani, E. Dalton, M. M. de Jager, C. W. De Leo, R. Deconinck, W. Deur, A. Dutta, C. El Fassi, L. Erler, J. Flay, D. Franklin, G. B. Friend, M. Frullani, S. Garibaldi, F. Gilad, S. Giusa, A. Glamazdin, A. Golge, S. Grimm, K. Hafidi, K. D. Hansen, J. O. Higinbotham, D. W. Holmes, R. Holmstrom, T. Holt, R. J. Huang, J. Hyde, C. E. Jen, C. M. Jones, D. Kang, Hoyoung King, P. M. Kowalski, S. Kumar, K. S. Lee, J. H. LeRose, J. J. Liyanage, N. Long, E. McNulty, D. Margaziotis, D. J. Meddi, F. Meekins, D. G. Mercado, L. Meziani, Z. -E. Michaels, R. Mihovilovic, M. Muangma, N. Myers, K. E. Nanda, S. Narayan, A. Nelyubin, V. Nuruzzaman Oh, Y. Parno, D. Paschke, K. D. Phillips, S. K. Qian, X. Qiang, Y. Quinn, B. Rakhman, A. Reimer, P. E. Rider, K. Riordan, S. Roche, J. Rubin, J. Russo, G. Saenboonruang, K. Saha, A. Sawatzky, B. Shahinyan, A. Silwal, R. Sirca, S. Souder, P. A. Suleiman, R. Sulkosky, V. Sutera, C. M. Tobias, W. A. Urciuoli, G. M. Waidyawansa, B. Wojtsekhowski, B. Ye, L. Zhao, B. Zheng, X. CA Jefferson Lab PVDIS Collaboration TI Measurement of parity violation in electron-quark scattering SO NATURE LA English DT Article ID CONTACT INTERACTIONS; WEAK INTERACTIONS; NON-CONSERVATION; COLLISIONS; NUCLEON; SYMMETRIES; SEARCH; TESTS; HERA AB Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not(1,2). Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C-2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly(3,4) only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C(2u)-C-2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C-2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future. C1 [Wang, D.; Subedi, R.; Deng, X.; Cates, G. D.; Dalton, M. M.; de Jager, C. W.; Jones, D.; Liyanage, N.; Nelyubin, V.; Paschke, K. D.; Riordan, S.; Saenboonruang, K.; Silwal, R.; Tobias, W. A.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Pan, K.; Bertozzi, W.; Deconinck, W.; Gilad, S.; Huang, J.; Kowalski, S.; Muangma, N.; Sulkosky, V.] MIT, Cambridge, MA 02139 USA. [Ahmed, Z.; Holmes, R.; Jen, C. M.; Rakhman, A.; Souder, P. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allada, K.; Dutta, C.] Univ Kentucky, Lexington, KY 40506 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Armstrong, D. S.; Lee, J. H.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Arrington, J.; Holt, R. J.; Reimer, P. E.; Rubin, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bellini, V.; Giusa, A.; Russo, G.; Sutera, C. M.] Univ Catania, Ist Nazl Fis Nucl, Dipt Fis, I-95123 Catania, Italy. [Beminiwattha, R.; King, P. M.; Lee, J. H.; Roche, J.; Waidyawansa, B.] Ohio Univ, Athens, OH 45701 USA. [Benesch, J.; Camsonne, A.; Chen, J. -P.; Chudakov, E.; de Jager, C. W.; Deur, A.; Hansen, J. O.; Higinbotham, D. W.; LeRose, J. J.; Meekins, D. G.; Michaels, R.; Nanda, S.; Saha, A.; Sawatzky, B.; Suleiman, R.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Benmokhtar, F.; Franklin, G. B.; Friend, M.; Parno, D.; Quinn, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Canan, M.; Golge, S.; Hyde, C. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Roma, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [De Leo, R.] Univ Bari, I-70126 Bari, Italy. [El Fassi, L.] Rutgers State Univ, Newark, NJ 07102 USA. [Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. [Flay, D.; Meziani, Z. -E.] Temple Univ, Philadelphia, PA 19122 USA. [Glamazdin, A.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Grimm, K.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Holmstrom, T.; Rider, K.] Longwood Univ, Farmville, VA 23909 USA. [Hyde, C. E.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, Lab Phys Corpusculaire, FR-63000 Clermont Ferrand, France. [Kang, Hoyoung; Oh, Y.] Seoul Natl Univ, Seoul 151742, South Korea. [Kumar, K. S.; McNulty, D.; Mercado, L.] Univ Massachusetts, Amherst, MA 01003 USA. [Long, E.] Kent State Univ, Kent, OH 44242 USA. [Meddi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00161 Rome, Italy. [Meddi, F.; Urciuoli, G. M.] Univ Roma La Sapienza, I-00161 Rome, Italy. [Mihovilovic, M.; Sirca, S.] Jozef Stefan Inst, SI-1001 Ljubljana, Slovenia. [Myers, K. E.] George Washington Univ, Washington, DC 20052 USA. [Narayan, A.; Nuruzzaman] Mississippi State Univ, Starkeville, MS 39762 USA. [Phillips, S. K.] Univ New Hampshire, Durham, NH 03824 USA. [Qian, X.; Qiang, Y.] Duke Univ, Durham, NC 27708 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 0036, Armenia. [Ye, L.] China Inst Atom Energy, Beijing 102413, Peoples R China. RP Zheng, X (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM xz5y@virginia.edu RI Rakhman, Adurahim/K-8146-2012; Cisbani, Evaristo/C-9249-2011; Dalton, Mark/B-5380-2016; Giusa, Antonio/G-5508-2012; Pan, Kai/D-4241-2016; Narayan, Amrendra/Q-3243-2016; Higinbotham, Douglas/J-9394-2014; Mesick, Katherine/M-3495-2014; Quinn, Brian/N-7343-2014; Franklin, Gregg/N-7743-2014; Arrington, John/D-1116-2012; BELLINI, Vincenzo/B-1239-2012; Parno, Diana/B-7546-2017; Beminiwattha, Rakitha/K-5685-2013; OI Rakhman, Adurahim/0000-0002-9880-6074; Cisbani, Evaristo/0000-0002-6774-8473; Dalton, Mark/0000-0001-9204-7559; Giusa, Antonio/0000-0002-5142-0043; Pan, Kai/0000-0001-9930-5063; Narayan, Amrendra/0000-0003-3814-9559; Higinbotham, Douglas/0000-0003-2758-6526; Mesick, Katherine/0000-0001-6138-1474; Quinn, Brian/0000-0003-2800-986X; Franklin, Gregg/0000-0003-4176-1378; Arrington, John/0000-0002-0702-1328; BELLINI, Vincenzo/0000-0001-6906-7463; Parno, Diana/0000-0002-9363-0401; Glamazdin, Alexander/0000-0002-4172-7324; Jen, Chun-Min/0000-0003-4070-8866; Beminiwattha, Rakitha/0000-0002-1473-1651; Deconinck, Wouter/0000-0003-4033-6716; Hyde, Charles/0000-0001-7282-8120; Qian, Xin/0000-0002-7903-7935; King, Paul/0000-0002-3448-2306 FU Medium Energy Physics Group at the Argonne National Laboratory; PAPIIT (DGAPAUNAM) [IN106913]; CONACyT (Mexico) [151234]; Mainz Institute for Theoretical Physics (MITP); Jeffress Memorial Trust [J-836]; US NSF [0653347]; US DOE [DE-SC0003885, DE-AC02-06CH11357, DE-AC05-06OR23177] FX We thank the personnel of Jefferson Lab for their efforts which resulted in the successful completion of the experiment, and A. Accardi, P. Blunden, W. Melnitchouk and their collaborators for carrying out the calculations necessary for the completion of the data analysis. X.Z. thanks the Medium Energy Physics Group at the Argonne National Laboratory for support during the initial work on this experiment. J.E. was supported by PAPIIT (DGAPAUNAM) project IN106913 and CONACyT (Mexico) project 151234, and acknowledges the hospitality and support by the Mainz Institute for Theoretical Physics (MITP) where part of his work was completed. This work was supported in part by the Jeffress Memorial Trust (award no. J-836), the US NSF (award no. 0653347), and the US DOE (award nos DE-SC0003885 and DE-AC02-06CH11357). This work was authored by Jefferson Science Associates, LLC under US DOE contract no. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. NR 27 TC 23 Z9 24 U1 2 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 6 PY 2014 VL 506 IS 7486 BP 67 EP 70 DI 10.1038/nature12964 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 303BA UT WOS:000330648100032 ER PT J AU Kopnin, NB Mel'nikov, AS Sadovskyy, IA Vinokur, VM AF Kopnin, N. B. Mel'nikov, A. S. Sadovskyy, I. A. Vinokur, V. M. TI Weak links in proximity-superconducting two-dimensional electron systems SO PHYSICAL REVIEW B LA English DT Article ID JOSEPHSON-JUNCTIONS; CARBON NANOTUBES; GRAPHENE; GAS AB We find a giant inverse proximity effect that arises in small low-dimensional superconductor-normal-superconductor (S/N/S) junctions, where a proximity coherence length is larger than the coherence length of a source superconductor, due to a huge backaction exerted by normal conductors on the proximity superconducting regions. Inverse proximity develops even in case where dimensions of the normal parts are smaller than the proximity coherence length and significantly suppresses superconducting characteristics of the entire system, including critical current, well below those for the usual S/N/S structures. C1 [Kopnin, N. B.] Aalto Univ, Low Temp Lab, Aalto 00076, Finland. [Kopnin, N. B.] LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Region, Russia. [Mel'nikov, A. S.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. [Mel'nikov, A. S.] Nizhnii Novgorod State Univ, Nizhnii Novgorod 603950, Russia. [Sadovskyy, I. A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Chicago, IL 60637 USA. RP Kopnin, NB (reprint author), Aalto Univ, Low Temp Lab, POB 15100, Aalto 00076, Finland. RI Mel'nikov, Alexander/E-8099-2017 OI Mel'nikov, Alexander/0000-0002-4241-467X FU US Department of Energy Office of Science [DEAC02-06CH11357]; Academy of Finland through its Centre of Excellence Program [250280]; European Union [308850] FX This work was supported by the US Department of Energy Office of Science under Contract No. DEAC02-06CH11357. The work of N.B.K. and A. S. M. was also supported by the Academy of Finland through its Centre of Excellence Program (Project No. 250280) and by the European Union Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 308850. NR 27 TC 1 Z9 1 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 6 PY 2014 VL 89 IS 8 AR 081402 DI 10.1103/PhysRevB.89.081402 PG 5 WC Physics, Condensed Matter SC Physics GA AC2VG UT WOS:000332373800001 ER PT J AU Menestrina, J Yang, C Schiel, M Vlassiouk, I Siwy, ZS AF Menestrina, Justin Yang, Crystal Schiel, Matthew Vlassiouk, Ivan Siwy, Zuzanna S. TI Charged Particles Modulate Local Ionic Concentrations and Cause Formation of Positive Peaks in Resistive-Pulse-Based Detection SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID-STATE NANOPORES; SUBMICRON PARTICLES; DNA TRANSLOCATION; MEMBRANES; PORES; TRANSPORT; DEFORMATION; CHANNELS; SIZE AB We study the effect of electrolyte concentration on the shape of ion current pulses in resistive-pulse sensing. We show that electrokinetic passage of several hundred nanometers in diameter charged polystyrene particles through a micropore leads to formation of current increase when the particles exit the pore. The particle entrance, as reported before, causes formation of the current decrease, which is a measure of the particle size. Formation of the double peak, i.e., current decrease followed by a current increase, is especially pronounced if the resistive-pulse experiments are carried out in KCl concentrations below 200 mM. In order to explain the pulse shape, experiments were designed in which the particles passed through the pore only by either electroosmosis or electrophoresis. The presented experiments and modeling indicate that while both electroosmosis and electrophoresis affect the ion current pulse, formation of the positive peak is mainly determined by the latter effect and the charged state of the particle. The importance of the findings for resistive-pulse analysis is discussed. C1 [Menestrina, Justin; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Yang, Crystal; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Schiel, Matthew; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Biochem Engn, Irvine, CA 92697 USA. [Vlassiouk, Ivan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Siwy, ZS (reprint author), Univ Calif Irvine, Dept Phys & Astron, 210G Rowland Hall, Irvine, CA 92697 USA. EM zsiwy@uci.edu RI Vlassiouk, Ivan/F-9587-2010 OI Vlassiouk, Ivan/0000-0002-5494-0386 FU National Science Foundation [CHE-1306058]; UC National Lab Fee Program [12-LF- 236772] FX Irradiation with swift heavy ions was performed at the GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt, Germany. This research was supported by the National Science Foundation (CHE-1306058) and UC National Lab Fee Program 12-LF- 236772. NR 38 TC 29 Z9 29 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2391 EP 2398 DI 10.1021/jp412135v PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700020 ER PT J AU Koo, J Huang, B Lee, H Kim, G Nam, J Kwon, Y Lee, H AF Koo, Jahyun Huang, Bing Lee, Hosik Kim, Gunn Nam, Jaewook Kwon, Yongkyung Lee, Hoonkyung TI Tailoring the Electronic Band Gap of Graphyne SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE; DECORATED GRAPHYNE; CARBON; GRAPHENE; DEHYDROBENZOANNULENES; SUBSTRUCTURES; CAPACITY; LITHIUM AB We report a first-principles study on tuning the electronic band gap of graphyne, consisting of two-dimensional sp-sp(2) hybrid carbon atoms, by chemical functionalization. Halogen atoms form a sp(2) hybridization with sp-bonded carbon atoms. This is in sharp contrast to the adsorption of halogen atoms onto graphene: fluorine atoms on graphene form sp(3) bonds, while chlorine, bromine, and iodine atoms do not form any bond to graphene. The band gaps of graphyne increase by similar to 3 eV as the halogen concentration varies, comparable to the similar to 3.4 and similar to 2.7 eV engineered band gaps of graphene by hydrogenation and fluorination, respectively. We also find that the mixture adsorption of hydrogen and halogen atoms is favorable compared with the segregation of the hydrogen-attached phase and the halogen-attached one and that the band gaps are tunable by similar to 1.5 eV as the hydrogen halogen concentration varies. We also consider sp(3) hybrid bonds by halogenation to sp-bonded carbon atoms. C1 [Koo, Jahyun; Kwon, Yongkyung; Lee, Hoonkyung] Konkuk Univ, Sch Phys, Seoul 143701, South Korea. [Huang, Bing] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lee, Hosik] UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Kim, Gunn] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Kim, Gunn] Sejong Univ, Graphene Res Inst, Seoul 143747, South Korea. [Nam, Jaewook] Sungkyunkwan Univ, Sch Chem Engn, Suwon 300, South Korea. RP Lee, H (reprint author), Konkuk Univ, Sch Phys, Seoul 143701, South Korea. EM hkiee3@konkuk.ac.kr RI Lee, Hosik/C-2658-2009; Huang, Bing/D-8941-2011 OI Lee, Hosik/0000-0003-4667-6551; Huang, Bing/0000-0001-6735-4637 FU Basic Science Research Program through the National Research Foundation of Korea [KRF-2012R1A1A1013124]; Ministry of Education, Science and Technology; KISTI under Supercomputing Applications Support Program [KSC-2013-C3-025]; Priority Research Center Program [2010-0020207] FX We thank Dr. Chung for critically reading this manuscript. This work was supported by the Basic Science Research Program (Grant No. KRF-2012R1A1A1013124) through the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology. The authors also acknowledge the support from KISTI under the Supercomputing Applications Support Program (KSC-2013-C3-025). G.K. acknowledges the Priority Research Center Program (Grant No. 2010-0020207). NR 36 TC 10 Z9 10 U1 4 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2463 EP 2468 DI 10.1021/jp4087464 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700027 ER PT J AU Zhao, FZ Liu, ZY Xu, WQ Yao, SY Kubacka, A Johnston-Peck, AC Senanayake, SD Zhang, AQ Stach, EA Fernandez-Garcia, M Rodriguez, JA AF Zhao, Fuzhen Liu, Zongyuan Xu, Wenqian Yao, Siyu Kubacka, Anna Johnston-Peck, Aaron C. Senanayake, Sanjaya D. Zhang, Ai-Qing Stach, Eric A. Fernandez-Garcia, Marcos Rodriguez, Jose A. TI Water-Gas Shift Reaction on Ni-W-Ce Catalysts: Catalytic Activity and Structural Characterization SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IN-SITU CHARACTERIZATION; MIXED-METAL OXIDES; CO OXIDATION; CHEMICAL-PROPERTIES; GOLD CATALYSTS; PARTICLE-SIZE; CERIA; HYDROGEN; SURFACE; COPPER AB The water-gas shift reaction (WGS, CO + H2O -> H-2 + CO2) was studied over a series of W-Ce, Ni-Ce, and Ni-W-Ce mixed-metal oxide catalysts. The structure of the catalysts and the WGS reaction intermediates were characterized using in situ techniques.. including X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), scanning transmission electron microscopy (STEM), and diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). XANES showed the existence of Ni2+ and W6+ inside the ceria lattices. The coexistence of Ni and W inside of ceria led to a large lattice strain, not seen for Ni-Ce and W-Ce, that facilitated the reduction of Ni-W-Ce and gave this oxide special catalytic properties. A Ni0.2W0.1Ce0.7O2 catalyst displayed the highest catalytic activity among all the mixed oxides, followed by a Ni0.2W0.2Ce0.6O2 catalyst. Besides high activity, the Ni-W-Ce catalysts also displayed the effective suppression of the methanation reaction (CO + 3H(2) -> CH4 + H2O) under WGS conditions compared to W-free Ni-Ce catalysts. The introduction of W in the lattice Of Ni-Ce favored the formation of O vacancies that facilitated the dissociation of water, preventing the dissociation of CO and the formation of methane. Because of the special chemical properties of Ni-W-Ce, monodentate formates and carbonates, which could be chemically active species for the WGS reaction, appear on the surface of these catalysts. Synergistic interactions between Ni and W give Ni-W-Ce unique structural and chemical properties not seen for W-Ce or Ni-Ce mixed-metal oxides. C1 [Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Senanayake, Sanjaya D.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhao, Fuzhen; Zhang, Ai-Qing] South Cent Univ Nationalities, Coll Chem & Mat, Key Lab Catalysis & Mat Sci, State Ethn Affairs Commiss, Wuhan 430074, Hubei, Peoples R China. [Zhao, Fuzhen; Zhang, Ai-Qing] South Cent Univ Nationalities, Coll Chem & Mat, Minist Educ, Wuhan 430074, Hubei, Peoples R China. [Kubacka, Anna; Fernandez-Garcia, Marcos] CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain. [Johnston-Peck, Aaron C.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Fernandez-Garcia, Marcos/A-8122-2014; Stach, Eric/D-8545-2011; Yao, Siyu/G-5865-2013; Kubacka, Anna /B-8054-2015; Senanayake, Sanjaya/D-4769-2009; OI Stach, Eric/0000-0002-3366-2153; Kubacka, Anna /0000-0002-3504-0032; Senanayake, Sanjaya/0000-0003-3991-4232; Liu, Zongyuan/0000-0001-8526-5590 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Natural Science Foundation of China [21303272]; China Scholarship Council [201208420304]; Spanish MINECO FX The research carried out at National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-98CH10886 contract). STEEM-EELS data were obtained at the Center for Functional Nanomaterials, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. The financial support from the National Natural Science Foundation of China (Grant 21303272) and China Scholarship Council (File No. 201208420304) is gratefully acknowledged. Anna Kubacka thanks Spanish MINECO for a "Ramon y Cajal" postdoctoral fellowship. NR 63 TC 16 Z9 16 U1 5 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2528 EP 2538 DI 10.1021/jp410790z PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700034 ER PT J AU Hu, QC Laskin, J AF Hu, Qichi Laskin, Julia TI Reactive Landing of Dendrimer Ions onto Activated Self-Assembled Monolayer Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MASS-SELECTED IONS; PHASE PROBE MOLECULES; CHEMICAL-MODIFICATION; IN-SITU; COVALENT IMMOBILIZATION; ION/SURFACE REACTIONS; CONFINED MONOLAYERS; PEPTIDE IONS; SOFT; GOLD AB The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy. The reaction extent is determined from depletion of the infrared band at 1753 cm(-1), corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G(0)-G(3)) containing 4, 8, 16, and 32 terminal amino groups, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H](4+) ions of the G(2) dendrimer at 30, 80, and 120 eV, we demonstrate that the ion's kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion's charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups. C1 [Hu, Qichi; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division. The research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 65 TC 3 Z9 3 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2602 EP 2608 DI 10.1021/jp411637w PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700042 ER PT J AU Kim, J Lin, LC Lee, K Neaton, JB Smit, B AF Kim, Jihan Lin, Li-Chiang Lee, Kyuho Neaton, Jeffrey B. Smit, Berend TI Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; CO2 ADSORPTION; ZEOLITES; STORAGE; SITES; SIMULATIONS; TEMPERATURE; SEPARATION; DESIGN AB Accurate characterization of porous materials is essential for understanding material properties and evaluating their performance for potential applications. In general, any methodology that entails developing an accurate classical force field is computationally expensive as it requires a large number of quantum mechanical nonempirical calculations. In order to expedite such calculations without sacrificing too much accuracy, we have developed a systematic procedure where, starting from an initial trial force field, accurate adsorption isotherms of porous materials can be obtained at low computational cost. Specifically, the procedure involves correcting single-point energy values sampled from the trial force field in grand canonical Monte Carlo simulations from few quantum mechanical calculations. We demonstrate that the methodology yields accurate adsorption data in diverse selection of guest molecules in porous materials such as CH4 and CO2 in zeolites (i.e., MFI, LTA, WEI, RHO, SOD, FAU, RWY, and ABW) and CO2 in metal-organic frameworks (i.e., M-MOF-74 with M = Mg, Fe). Furthermore, we use our corrected force fields to predict the adsorption properties of N-2 in V-MOF-74 and Ti-MOF-74, which are two materials that have yet to be synthesized experimentally. We anticipate that this methodology will be useful in accurately characterizing a given porous material in the absence of a reliable force field as well as for efficiently screening a large number of porous materials. C1 [Kim, Jihan] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305710, South Korea. [Lin, Li-Chiang; Lee, Kyuho; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Lee, Kyuho; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kim, J (reprint author), Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Taejon 305710, South Korea. EM jihankim@kaist.ac.kr RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Lee, Kyuho/B-9370-2008; Lin, Li-Chiang/J-8120-2014; Stangl, Kristin/D-1502-2015; Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; OI Smit, Berend/0000-0003-4653-8562; Lee, Kyuho/0000-0001-9325-3717; Neaton, Jeffrey/0000-0001-7585-6135; Lin, Li-Chiang/0000-0002-2821-9501 FU KAIST [G04130042]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; US Department of Energy, Office of Science, and Office of BES; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX J.K. is supported by the KAIST Startup Fund (Project G04130042). B.S. and L.C.L. are supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. K.L. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Award DE-FG02-12ER16362. Work at the Molecular Foundry is also supported by the US Department of Energy, Office of Science, and Office of BES. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 39 TC 10 Z9 10 U1 11 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2693 EP 2701 DI 10.1021/jp412368m PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700052 ER PT J AU Lee, SW Bak, SM Lee, CW Jaye, C Fischer, DA Kim, BK Yang, XQ Nam, KW Kim, KB AF Lee, Suk-Woo Bak, Seong-Min Lee, Chang-Wook Jaye, Cherno Fischer, Daniel A. Kim, Bae-Kyun Yang, Xiao-Qing Nam, Kyung-Wan Kim, Kwang-Bum TI Structural Changes in Reduced Graphene Oxide upon MnO2 Deposition by the Redox Reaction between Carbon and Permanganate Ions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MANGANESE OXIDE; ELECTRODE MATERIALS; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; CAVITY MICROELECTRODE; COMPOSITE ELECTRODE; ACETYLENE BLACK; GRAPHITE OXIDE; NANOTUBES; PERFORMANCE AB We explore structural changes of the carbon in MnO2/reduced graphene oxide (RGO) hybrid materials prepared by the direct redox reaction between carbon and permanganate ions (MnO4-) to reach better understanding for the effects of carbon corrosion on carbon loss and its bonding nature during the hybrid material synthesis. In particular, we carried out near-edge X-ray absorption fine structure spectroscopy at the C K-edge (284.2 eV) to show the changes in the electronic structure of RGO. Significantly, the redox reaction between carbon and MnO4- causes both quantitative carbon loss and electronic structural changes upon MnO2 deposition. Such disruptions of carbon bonding have a detrimental effect on the initial electrical properties of the RGO and thus lead to a significant decrease in electrical conductivity. Electrochemical measurements of the MnO2/reduced graphene oxide hybrid materials using a cavity microelectrode revealed unfavorable electrochemical properties that were mainly due to the poor electrical conductivity of the hybrid materials. The results of this study should serve as a useful guide to rationally approaching the syntheses of metal/RGO and metal oxide/RGO hybrid materials. C1 [Lee, Suk-Woo; Bak, Seong-Min; Lee, Chang-Wook; Kim, Kwang-Bum] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. [Bak, Seong-Min; Yang, Xiao-Qing; Nam, Kyung-Wan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Kim, Bae-Kyun] Samsung Electromech Co Ltd, Cent R&D Inst, Suwon 443743, Gyunggi Do, South Korea. RP Nam, KW (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM knam@bnl.gov; kbkim@yonsei.ac.kr RI Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015; Bak, Seong Min/J-4597-2013 OI Bak, Seong-Min/0000-0002-1626-5949; Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369; FU Energy Efficiency & Resources portion of the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Korea government from the Ministry of Knowledge Economy, Korea [20122010100140]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE) [DE-AC02-98CH10886] FX This work was supported by the Energy Efficiency & Resources portion of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government from the Ministry of Knowledge Economy, Korea (no. 20122010100140). The work done at Brookhaven National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE), under contract no. DE-AC02-98CH10886. Certain commercial names are presented in this Article for the purposes of illustration and do not constitute an endorsement by the National Institute of Standards and Technology. NR 57 TC 23 Z9 23 U1 3 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 6 PY 2014 VL 118 IS 5 BP 2834 EP 2843 DI 10.1021/jp411176b PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AA5QC UT WOS:000331153700068 ER PT J AU Zhao, YX Nardes, AM Zhu, K AF Zhao, Yixin Nardes, Alexandre M. Zhu, Kai TI Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; COLLECTION EFFICIENCIES; PHOTOVOLTAIC PROPERTIES; ELECTRON-TRANSPORT; HOLE CONDUCTOR; LOW-COST; DYE; IODIDE; SENSITIZER; DEPOSITION AB We report on the effect of TiO2 film thickness on charge transport and recombination in solid-state mesostructured perovskite CH3NH3PbI3 (via one-step coating) solar cells using spiro-MeOTAD as the hole conductor. Intensity-modulated photocurrent/photovoltage spectroscopies show that the transport and recombination properties of solid-state mesostructured perovskite solar cells are similar to those of solid-state dye-sensitized solar cells. Charge transport in perovskite cells is dominated by electron conduction within the mesoporous TiO2 network rather than from the perovskite layer. Although no significant film-thickness dependence is found for transport and recombination, the efficiency of perovskite cells increases with TiO2 film thickness from 240 nm to about 650-850 nm owing primarily to the enhanced light harvesting. Further increasing film thickness reduces cell efficiency associated with decreased fill factor or photocurrent density. The electron diffusion length in mesostructured perovskite cells is longer than 1 mu m for over four orders of magnitude of light intensity. C1 [Zhao, Yixin; Nardes, Alexandre M.; Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Kai.Zhu@nrel.gov RI Nardes, Alexandre/C-8556-2012; Zhao, Yixin/D-2949-2012 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 41 TC 122 Z9 122 U1 20 U2 391 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 6 PY 2014 VL 5 IS 3 BP 490 EP 494 DI 10.1021/jz500003v PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AA5QB UT WOS:000331153600017 PM 26276597 ER PT J AU Kwak, JH Dagle, R Tustin, GC Zoeller, JR Allard, LF Wang, Y AF Kwak, Ja Hun Dagle, Robert Tustin, Gerald C. Zoeller, Joseph R. Allard, Lawrence F. Wang, Yong TI Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CO INSERTION; LEWIS-ACIDS; COMPLEXES; ACTIVATION; CHEMISTRY; IODIDE; CARBON; GOLD; GAP AB We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of similar to 1.5 mol acetyl/mol Ir.s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications. C1 [Kwak, Ja Hun; Dagle, Robert; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Tustin, Gerald C.; Zoeller, Joseph R.] Eastman Chem Co, Kingsport, TN 37660 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Oak Ridge, TN 37871 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Kwak, JH (reprint author), Ulsan Natl Inst Sci & Technol, Sch Nanobiosci & Chem Engn, Ulsan, South Korea. EM jhkwak@unist.ac.kr; jzoeller@eastman.com; yongwang@pnl.gov RI Kwak, Ja Hun/J-4894-2014 FU Eastman Chemical Company; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE/OBER; DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; DOE/EERE/VTP FX This research was supported by Eastman Chemical Company and the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. XPS work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE/OBER and located at PNNL. PNNL is operated for the DOE by Battelle Memorial Institute under Contract Number DE-AC05-76RL01830. The electron microscopy work carried out at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the DOE/EERE/VTP. NR 33 TC 7 Z9 7 U1 5 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 6 PY 2014 VL 5 IS 3 BP 566 EP 572 DI 10.1021/jz402728e PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AA5QB UT WOS:000331153600030 PM 26276610 ER PT J AU Niklas, J Holt, JM Mistry, K Rumbles, G Blackburn, JL Poluektov, OG AF Niklas, Jens Holt, Josh M. Mistry, Kevin Rumbles, Garry Blackburn, Jeffrey L. Poluektov, Oleg G. TI Charge Separation in P3HT:SWCNT Blends Studied by EPR: Spin Signature of the Photoinduced Charged State in SWCNT SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID BULK-HETEROJUNCTIONS; CONJUGATED POLYMERS; PHOTOVOLTAIC CELLS; MULTIFREQUENCY EPR; CARBON NANOTUBES; ENERGY; PHOTOSYNTHESIS; COMPOSITES; EFFICIENT; POLARON AB Single-wall carbon nanotubes (SWCNTs) could be employed in organic photovoltaic (OPV) devices as a replacement or additive for currently used fullerene derivatives, but significant research remains to explain fundamental aspects of charge generation. Electron paramagnetic resonance (EPR) spectroscopy, which is sensitive only to unpaired electrons, was applied to explore charge separation in P3HT:SWCNT blends. The EPR signal of the P3HT positive polaron increases as the concentration of SWCNT acceptors in a photoexcited P3HT:SWCNT blend is increased, demonstrating long-lived charge separation induced by electron transfer from P3HT to SWCNTs. An EPR signal from reduced SWCNTs was not identified in blends due to the free and fast-relaxing nature of unpaired SWCNT electrons as well as spectral overlap of this EPR signal with the signal from positive P3HT polarons. However, a weak EPR signal was observed in chemically reduced SWNTs, and the g values of this signal are close to those of C-70-PCBM anion radical. The anisotropic line shape indicates that these unpaired electrons are not free but instead localized. C1 [Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Holt, Josh M.; Mistry, Kevin; Rumbles, Garry; Blackburn, Jeffrey L.] Chem & Mat Sci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Chem & Mat Sci Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Jeffrey.Blackburn@nrel.gov; oleg@anl.gov RI Niklas, Jens/I-8598-2016; OI Niklas, Jens/0000-0002-6462-2680; Rumbles, Garry/0000-0003-0776-1462 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract DE-AC02-06CH11357. J.L.B., J.M.H., and K.M. were funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), Grant DE-AC36-08GO28308. NR 32 TC 7 Z9 7 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 6 PY 2014 VL 5 IS 3 BP 601 EP 606 DI 10.1021/jz402668h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AA5QB UT WOS:000331153600036 PM 26276616 ER PT J AU Meskauskas, M Muller, D AF Meskauskas, M. Mueller, D. TI A fresh look at exclusive electroproduction of light vector mesons SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID TO-LEADING ORDER; GENERALIZED PARTON DISTRIBUTIONS; VIRTUAL COMPTON-SCATTERING; DEEP-INELASTIC-SCATTERING; ELASTIC ELECTROPRODUCTION; DISTRIBUTION AMPLITUDES; DIPOLE PICTURE; BFKL POMERON; HERA; RHO AB Relying on the collinear factorization approach, we demonstrate that H1 and ZEUS measurements of exclusive light vector meson and photon electroproduction cross sections can be simultaneously described for photon virtualities of Q greater than or similar to 2GeV. Our findings reveal that quark exchanges are important in this small x(Bj) region and that in leading order approximation the gluonic component is suppressed, e.g., the skewness ratio can be much smaller than one. C1 [Meskauskas, M.; Mueller, D.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. [Mueller, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Meskauskas, M (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. EM dieter.mueller@tp2.rub.de OI Mueller, Dieter/0000-0003-0341-0446 FU DAAD; DFG [436 KRO 113/11/0-1]; BMBF [06BO9012] FX We are grateful to K. Kumericki, T. Lautenschlager, K. Passek-Kumericki, and A. Schafer for many fruitful discussions. D. M. likes to thank the Nuclear Group at the Brookhaven National Laboratory for the warm hospitality. This work was supported by a DAAD fellow ship, BMBF grant under the contract no. 06BO9012, and by DFG grant, contract no. 436 KRO 113/11/0-1. NR 54 TC 4 Z9 4 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 6 PY 2014 VL 74 IS 2 AR 2719 DI 10.1140/epjc/s10052-014-2719-4 PG 11 WC Physics, Particles & Fields SC Physics GA AA2WT UT WOS:000330955600002 ER PT J AU Beste, A AF Beste, Anana TI ReaxFF Study of the Oxidation of Lignin Model Compounds for the Most Common Linkages in Softwood in View of Carbon Fiber Production SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHENETHYL PHENYL ETHER; BOND-DISSOCIATION ENTHALPIES; POLYCYCLIC AROMATIC-HYDROCARBONS; REACTIVE FORCE-FIELD; DENSITY-FUNCTIONAL THEORY; LOW-RANK COAL; MOLECULAR-DYNAMICS; ALPHA/BETA-SELECTIVITIES; COMPUTATIONAL PREDICTION; THERMAL-DEGRADATION AB Lignin is an underused but major component of biomass. One possible area of utilization is the production of carbon fiber. A necessary processing step is the stabilization of lignin fiber (typically in an oxygen environment) before high temperature treatment. We investigate oxidative, thermal conversion of lignin using computational methods. Dilignol model compounds for the most common (seven) linkages in softwood are chosen to represent the diverse structure of lignin. We perform molecular dynamics simulation where the potential energy surface is described by a reactive force field (ReaxFF). We calculate overall activation energies for model conversion and reveal initial mechanisms of formaldehyde formation. We record fragmentation patterns and average carbon oxidation numbers at various temperatures. Most importantly, we identify mechanisms for stabilizing reactions that result in cyclic and rigid connections in softwood lignin fibers that are necessary for further processing into carbon fibers. C1 [Beste, Anana] Univ Tennessee, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. [Beste, Anana] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Beste, A (reprint author), Univ Tennessee, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov OI Beste, Ariana/0000-0001-9132-792X FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank Dr. Amit Naskar for inspiring conversations on the topic of carbon fiber production from alternative precursors. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was supported by an allocation of advanced computing resources provided by the National Science Foundation. The computations were performed on Kraken at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). NR 71 TC 17 Z9 17 U1 6 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 6 PY 2014 VL 118 IS 5 BP 803 EP 814 DI 10.1021/jp410454q PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AA5PZ UT WOS:000331153400002 PM 24428197 ER PT J AU Ryu, IS Dong, H Fleming, GR AF Ryu, Ian Seungwan Dong, Hui Fleming, Graham R. TI Role of Electronic-Vibrational Mixing in Enhancing Vibrational Coherences in the Ground Electronic States of Photosynthetic Bacterial Reaction Center SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID 2-DIMENSIONAL IR-SPECTROSCOPY; LIGHT-HARVESTING COMPLEXES; ENERGY-TRANSFER DYNAMICS; RHODOBACTER-SPHAEROIDES; QUANTUM COHERENCE; SPECIAL PAIRS; MARINE-ALGAE; SPECTRA; PROTEIN; DONOR AB We describe polarization controlled two-color coherence photon echo studies of the reaction center complex from a purple bacterium Rhodobacter sphaeroides. Long-lived oscillatory signals that persist up to 2 ps are observed in neutral, oxidized, and mutant (lacking the special pair) reaction centers, for both (0 degrees,0 degrees,0 degrees,0 degrees) and (45 degrees,-45 degrees,90 degrees,0 degrees) polarization sequences. We show that the long-lived signals arise via vibronic coupling of the bacteriopheophytin (H) and accessory bacteriochlorophyll (B) pigments that leads to vibrational wavepackets in the B ground electronic state. Fourier analysis of the data suggests that the 685 cm(-1) mode of B may play a key role in the H to B energy transfer. C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov FU Office of Science, and Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF000098]; Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the Director, Office of Science, and Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231 and by the Division of Chemical Sciences, Geosciences, and Biosciences and Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC03-76SF000098. We thank S.G. Boxer for Rhodobacter sphaeroides strains; and S. Marqusee and K. Hart for their help with sample preparations. NR 46 TC 13 Z9 13 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 6 PY 2014 VL 118 IS 5 BP 1381 EP 1388 DI 10.1021/jp4100476 PG 8 WC Chemistry, Physical SC Chemistry GA AA5QD UT WOS:000331153800021 PM 24433029 ER PT J AU Bao, ZM Stodghill, PV Myers, CR Lam, H Wei, HL Chakravarthy, S Kvitko, BH Collmer, A Cartinhour, SW Schweitzer, P Swingle, B AF Bao, Zhongmeng Stodghill, Paul V. Myers, Christopher R. Lam, Hanh Wei, Hai-Lei Chakravarthy, Suma Kvitko, Brian H. Collmer, Alan Cartinhour, Samuel W. Schweitzer, Peter Swingle, Bryan TI Genomic Plasticity Enables Phenotypic Variation of Pseudomonas syringae pv. tomato DC3000 SO PLOS ONE LA English DT Article ID SECRETION SYSTEM EFFECTORS; GENE DUPLICATION; III EFFECTORS; ESCHERICHIA-COLI; AVIRULENCE GENES; REGULON MEMBERS; EVOLUTION; PATHOGEN; BACTERIA; IDENTIFICATION AB Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst) DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS) followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae. C1 [Bao, Zhongmeng; Lam, Hanh; Wei, Hai-Lei; Chakravarthy, Suma; Collmer, Alan; Cartinhour, Samuel W.; Swingle, Bryan] Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Ithaca, NY 14853 USA. [Stodghill, Paul V.; Cartinhour, Samuel W.; Swingle, Bryan] ARS, USDA, Ithaca, NY USA. [Myers, Christopher R.] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA. [Kvitko, Brian H.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Schweitzer, Peter] Cornell Univ, Biotechnol Resource Ctr, Ithaca, NY USA. RP Swingle, B (reprint author), Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Ithaca, NY 14853 USA. EM Bryan.Swingle@ars.usda.gov FU USDA-ARS; National Science Foundation [IOS-1025642] FX This work was funded by the USDA-ARS. This work was partially supported by National Science Foundation Plant Genome Research Program Grant IOS-1025642. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 64 TC 5 Z9 5 U1 2 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 6 PY 2014 VL 9 IS 2 AR e86628 DI 10.1371/journal.pone.0086628 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA1BH UT WOS:000330830700010 PM 24516535 ER PT J AU Jiang, YY Kirmizialtin, S Sanchez, IC AF Jiang, Yingying Kirmizialtin, Serdal Sanchez, Isaac C. TI Dynamic void distribution in myoglobin and five mutants SO SCIENTIFIC REPORTS LA English DT Article ID SPERM-WHALE MYOGLOBIN; MOLECULAR-DYNAMICS; CARBON-MONOXIDE; QM/MM SIMULATIONS; LIGAND DIFFUSION; DISTAL HISTIDINE; PATHWAYS; MIGRATION; PROTEINS; CAVITIES AB Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins. C1 [Jiang, Yingying; Sanchez, Isaac C.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Kirmizialtin, Serdal] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanchez, IC (reprint author), Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. EM serdal@lanl.gov; sanchez@che.utexas.edu NR 45 TC 1 Z9 1 U1 3 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 6 PY 2014 VL 4 AR 4011 DI 10.1038/srep04011 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA6RE UT WOS:000331224800002 PM 24500195 ER PT J AU Stubben, CJ Challacombe, JF AF Stubben, Chris J. Challacombe, Jean F. TI Mining locus tags in PubMed Central to improve microbial gene annotation SO BMC BIOINFORMATICS LA English DT Article ID BURKHOLDERIA-PSEUDOMALLEI; BIOINFORMATICS RESOURCE; VI SECRETION; MALLEI; VIRULENCE; BIOLOGY; IDENTIFICATION; TECHNOLOGY; GENOMES AB Background: The scientific literature contains millions of microbial gene identifiers within the full text and tables, but these annotations rarely get incorporated into public sequence databases. We propose to utilize the Open Access (OA) subset of PubMed Central (PMC) as a gene annotation database and have developed an R package called pmcXML to automatically mine and extract locus tags from full text, tables and supplements. Results: We mined locus tags from 1835 OA publications in ten microbial genomes and extracted tags mentioned in 30,891 sentences in main text and 20,489 rows in tables. We identified locus tag pairs marking the start and end of a region such as an operon or genomic island and expanded these ranges to add another 13,043 tags. We also searched for locus tags in supplementary tables and publications outside the OA subset in Burkholderia pseudomallei K96243 for comparison. There were 168 publications containing 48,470 locus tags and 83% of mentions were from supplementary materials and 9% from publications outside the OA subset. Conclusions: B. pseudomallei locus tags within the full text and tables of OA publications represent only a small fraction of the total mentions in the literature. For microbial genomes with very few functionally characterized proteins, the locus tags mentioned in supplementary tables and within ranges like genomic islands contain the majority of locus tags. Significantly, the functions in the R package provide access to additional resources in the OA subset that are not currently indexed or returned by searching PMC. C1 [Stubben, Chris J.; Challacombe, Jean F.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Stubben, CJ (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM stubben@lanl.gov FU DTRA [CB5119924543-7049-BASIC] FX This work was supported in part through DTRA Grant CB5119924543-7049-BASIC to JFC. Jian Song provided helpful comments on earlier drafts. NR 32 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD FEB 5 PY 2014 VL 15 AR 43 DI 10.1186/1471-2105-15-43 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA AF1JD UT WOS:000334469300003 PM 24499370 ER PT J AU Londergan, JT Nebreda, J Pelaez, JR Szczepaniak, AP AF Londergan, J. T. Nebreda, J. Pelaez, J. R. Szczepaniak, A. P. TI Identification of non-ordinary mesons from the dispersive connection between their poles and their Regge trajectories: The f(0)(500) resonance SO PHYSICS LETTERS B LA English DT Article DE Regge theory; Light scalar mesons ID LIGHT SCALAR MESONS; MULTIQUARK HADRONS; DECAYS AB We show how the Regge trajectory of a resonance can be obtained from its pole in a scattering process and analytic constraints in the complex angular momentum plane. The method is suited for resonances that dominate an elastic scattering amplitude. In particujar, from the p(770) resonance pole in pi pi scattering, we obtain its linear Regge trajectory, characteristic of ordinary quark-antiquark states. In contrast, the f(0)(500) pole-the sigma meson-which dominates scalar isoscalar pi pi scattering, yields a nonlinear trajectory with a much smaller slope at the f(0)(500) mass. Conversely, imposing a linear Regge trajectory for the f(0)(500), with a slope of typical size, yields an elastic amplitude at odds with the data. This provides strong support for the non-ordinary nature of the sigma meson. (c) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Londergan, J. T.; Nebreda, J.; Szczepaniak, A. P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Londergan, J. T.; Nebreda, J.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Nebreda, J.; Pelaez, J. R.] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain. [Nebreda, J.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Szczepaniak, A. P.] Jefferson Lab, Newport News, VA 23606 USA. RP Pelaez, JR (reprint author), Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain. RI Pelaez, Jose/K-9767-2014 OI Pelaez, Jose/0000-0003-0737-4681 FU Spanish project FPA2011-27853-C02-02; EU FP7 HadronPhysics3 project; Deutscher Akademischer Austauschdienst (DAAD); Fundacion Ramon Areces; hospitality of Bonn and Indiana Universities; U.S. Department of Energy [DE-FG0287ER40365]; U.S. National Science Foundation [PHY-1205019] FX J.R.P. and J.N. are supported by the Spanish project FPA2011-27853-C02-02 and the EU FP7 HadronPhysics3 project. J.N. acknowledges funding by the Deutscher Akademischer Austauschdienst (DAAD), the Fundacion Ramon Areces and the hospitality of Bonn and Indiana Universities. A.P.S. is supported in part by the U.S. Department of Energy under Grant DE-FG0287ER40365. J.T.L. is supported by the U.S. National Science Foundation under grant PHY-1205019. NR 34 TC 13 Z9 13 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 5 PY 2014 VL 729 BP 9 EP 14 DI 10.1016/j.physletb.2013.12.061 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AC3QO UT WOS:000332436500003 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, RE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, R Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Abdelalim, AA Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Chariot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, E Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Gueth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thueer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kramer, M Krucker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Schroder, M Stein, M Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbrueck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nurnberg, A Oberst, O Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Topsis-giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beni, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Saxena, R Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, R Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Benaglia, A Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, E Torassa, E Tosi, M Triossi, A Vanini, S Ventura, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, E Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, E Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, E Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Umer, T Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Lbarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, E Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Perfilov, M Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Mulders, M Musella, P Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Steggemann, J Stieger, B Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Zeuner, WD Bert, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casa, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Quittnat, M Ronga, FJ Rossini, M Starodumov, A Takahashi, M Tauscher, L Theofilatos, K Treille, D Wallny, R Weber, HA Amsler, C Chiochia, V De Cosa, A Favaro, C Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, E Yagil, A Yoo, J Barge, D Campagnari, C Danielson, T Flowers, K Geffert, P George, C Golf, E Incandela, J Justus, C Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Liyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Befryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, E Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, E Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, R Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, R Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, R. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, R. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Abdelalim, A. A. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Chariot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, E. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Topsis-giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beni, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, R. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, R. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Benaglia, A. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, E. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Ventura, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, E. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, E. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, E. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Lbarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, E. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Perfilov, M. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Mulders, M. Musella, P. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stieger, B. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Zeuner, W. D. Bert, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Konig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casa, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Quittnat, M. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Tauscher, L. Theofilatos, K. Treille, D. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. De Cosa, A. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, E. Yagil, A. Yoo, J. Barge, D. Campagnari, C. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, E. Incandela, J. Justus, C. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Liyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Befryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, E. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, E. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, R. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, R. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. CA CMS Collaboration TI Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics ID PAIR PRODUCTION; FINAL-STATE; HADRON COLLIDERS; ATLAS DETECTOR; LEPTON; BOSON; HEAVY; LHC AB A search is performed for a massive new vector-like quark T, with charge 2/3, that is pair produced together with its antiparticle in proton-proton collisions. The data were collected by the CMS experiment at the Large Hadron Collider in 2012 at root s = 8 TeV and correspond to an integrated luminosity of 19.5 fb(-1). The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried out using events with at least one isolated lepton. No deviations from standard model expectations are observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies between 687 and 782 GeV for all possible values of the branching fractions into the three different final states assuming strong production. These limits are the most stringent constraints to date on the existence of such a quark. (C) Published by Elsevier B.V. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, R. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, R.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Chariot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, E.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beni, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, R.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, R.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.; Paolucci, P.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, E.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Ligabue, F.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Fiori, F.; Foa, L.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, E.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, E.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, E.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientate Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, E.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Lbarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, E.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bert, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Konig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casa, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tauscher, L.; Theofilatos, K.; Treille, D.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Cosa, A.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Adler, V.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, E.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, E.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Liyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Befryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, E.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, R.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, R.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Giordano, R.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Pelliccioni, M.; Cossutti, E.; Seixas, J.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Dias, F. A.; Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Abdelalim, A. A.; Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Alvarez, J. D. Ruiz] Univ Antioquia, Medellin, Colombia. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Guchait, M.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale & Sez INFN, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, E.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Lo Vetere, Maurizio/J-5049-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Yazgan, Efe/A-4915-2015; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Calderon, Alicia/K-3658-2014; Josa, Isabel/K-5184-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Hill, Christopher/B-5371-2012; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Venturi, Andrea/J-1877-2012; Bonacorsi, Daniele/F-1505-2014; Petrushanko, Sergey/D-6880-2012; Codispoti, Giuseppe/F-6574-2014; Dudko, Lev/D-7127-2012; Bellan, Riccardo/G-2139-2014; Novaes, Sergio/D-3532-2012; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Moon, Chang-Seong/J-3619-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Torassa, Ezio/I-1788-2012; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; de Jesus Damiao, Dilson/0000-0002-3769-1680; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Lo Vetere, Maurizio/0000-0002-6520-4480; Rovelli, Tiziano/0000-0002-9746-4842; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Hill, Christopher/0000-0003-0059-0779; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Codispoti, Giuseppe/0000-0003-0217-7021; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Montanari, Alessandro/0000-0003-2748-6373; Moon, Chang-Seong/0000-0001-8229-7829; Cerrada, Marcos/0000-0003-0112-1691; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Heath, Helen/0000-0001-6576-9740; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Ghezzi, Alessio/0000-0002-8184-7953; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619 FU BMWF; FWF; FNRS; FWO; CNPq; CAPES; FAPERJ; FAPESP; MES; CERN; CAS; MoST; NSFC; COLCIENCIAS; MSES; RPF; MoER [SF0690030s09]; ERDF; Academy of Finland; MEC; HIP FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium);.CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 44 TC 104 Z9 105 U1 8 U2 112 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 5 PY 2014 VL 729 BP 149 EP 171 DI 10.1016/j.physletb.2014.01.006 PG 23 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AC3QO UT WOS:000332436500026 ER PT J AU Schenke, B Tribedy, P Venugopalan, R AF Schenke, Bjoern Tribedy, Prithwish Venugopalan, Raju TI Multiplicity distributions in p plus p, p plus A, and A plus A collisions from Yang-Mills dynamics SO PHYSICAL REVIEW C LA English DT Article ID COLOR GLASS CONDENSATE; MCLERRAN-VENUGOPALAN MODEL; NONLINEAR GLUON EVOLUTION; NUCLEAR COLLISIONS; TRANSVERSE-MOMENTUM; FLUX TUBES; SMALL-X; ENERGY; SCATTERING; SATURATION AB We compute transverse-momentum and momentum-integrated multiplicity distributions consistently in the IP-Glasma model for proton-proton and proton-lead collisions at the CERN Large Hadron Collider (LHC), in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider (RHIC), and in heavy-ion collisions at both RHIC and LHC energies. Several sources of subnucleon-scale contributions to the multiplicity distributions are identified. Our results, which are constrained by inclusive and diffractive deeply inelastic scattering data from the Hadron-Electron Ring Accelerator at DESY, are compared to measured distributions for a range of collision energies. These results are an essential first step in quantifying the relative role of initial-and final-state effects on multiparticle correlations in light-and heavy-ion collisions. C1 [Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tribedy, Prithwish] Ctr Variable Energy Cyclotron, Kolkata 700064, India. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU DOE [DE-AC02-98CH10886]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX B. P. S. and R. V. are supported under DOE Contract No. DE-AC02-98CH10886. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, and additional computer time on the Guillimin cluster at the CLUMEQ HPC centre, a part of Compute Canada HPC facilities. NR 87 TC 30 Z9 30 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 5 PY 2014 VL 89 IS 2 AR 024901 DI 10.1103/PhysRevC.89.024901 PG 13 WC Physics, Nuclear SC Physics GA AC0CJ UT WOS:000332162100003 ER PT J AU Pan, LD Pindak, R Huang, CC AF Pan, LiDong Pindak, R. Huang, C. C. TI Resonant x-ray diffraction spectrum for possible structures of the smectic liquid crystal phase with a six-layer periodicity SO PHYSICAL REVIEW E LA English DT Article AB With the discovery of the smectic-C-d6* (SmCd6*) phase showing six-layer periodicity [S. Wang et al., Phys. Rev. Lett. 104, 027801 (2010)] and a recent report of the observation of a possible alternative structure, the need for a reliable and accurate method for distinguishing different possible structures is more urgent than ever. Through simulations using the tensorial structure factor method, we present the resonant x-ray diffraction (RXRD) spectra for different possible structures as proposed in several theoretical studies. Subtle distinctions between models are shown. The ability and limitations of RXRD as a technique for determining the structure of this particular phase is discussed. C1 [Pan, LiDong] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pindak, R.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Huang, C. C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Pan, LD (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. NR 24 TC 3 Z9 3 U1 3 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 5 PY 2014 VL 89 IS 2 AR 022501 DI 10.1103/PhysRevE.89.022501 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AC0GX UT WOS:000332173900004 PM 25353483 ER PT J AU Disch, S Hermann, RP Wetterskog, E Podlesnyak, AA An, K Hyeon, T Salazar-Alvarez, G Bergstrom, L Bruckel, T AF Disch, S. Hermann, R. P. Wetterskog, E. Podlesnyak, A. A. An, K. Hyeon, T. Salazar-Alvarez, G. Bergstrom, L. Brueckel, Th. TI Spin excitations in cubic maghemite nanoparticles studied by time-of-flight neutron spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC NANOPARTICLES; MOSSBAUER-SPECTRA; SCATTERING; DYNAMICS; PARTICLES; NANOCRYSTALS; GAMMA-FE2O3 AB We have determined the field dependence of collective magnetic excitations in iron oxide nanoparticles of cubic shape with 8.42(2) nm edge length and a narrow log normal size distribution of 8.2(2)% using time-of-flight neutron spectroscopy. The energy dependence of the uniform precession modes was investigated up to 5 T applied field and yields a Lande factor g = 2.05(2) as expected for maghemite (gamma-Fe2O3) nanoparticles. A large effective anisotropy field of B-A,B-eff = 0.45(16) T was determined, in excellent agreement with macroscopic measurements. This anisotropy is attributed to enhanced shape anisotropy in these monodisperse cubic nanoparticles. The combination of our results with macroscopic magnetization information provides a consistent view of the energy scales of superparamagnetic relaxation and collective magnetic excitations in magnetic nanoparticles. C1 [Disch, S.; Hermann, R. P.; Brueckel, Th.] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Disch, S.; Hermann, R. P.; Brueckel, Th.] Forschungszentrum Julich, JARA FIT, PGI, D-52425 Julich, Germany. [Disch, S.] Inst Laue Langevin, F-38042 Grenoble, France. [Hermann, R. P.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Wetterskog, E.; Salazar-Alvarez, G.; Bergstrom, L.] Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden. [Podlesnyak, A. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [An, K.; Hyeon, T.] Ctr Nanoparticle Res, Inst Basic Sci, Seoul 151742, South Korea. [An, K.; Hyeon, T.] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea. RP Disch, S (reprint author), Univ Cologne, Dept Chem, Luxemburger Str 116, D-50939 Cologne, Germany. EM T.Brueckel@fz-juelich.de RI Salazar-Alvarez, German/A-4802-2009; Bergstrom, Lennart/F-2938-2011; Hermann, Raphael/F-6257-2013; Bruckel, Thomas/J-2968-2013; Instrument, CNCS/B-4599-2012; Podlesnyak, Andrey/A-5593-2013; Disch, Sabrina/K-7185-2013 OI Salazar-Alvarez, German/0000-0002-0671-435X; Bergstrom, Lennart/0000-0002-5702-0681; Hermann, Raphael/0000-0002-6138-5624; Bruckel, Thomas/0000-0003-1378-0416; Podlesnyak, Andrey/0000-0001-9366-6319; Disch, Sabrina/0000-0002-4565-189X FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Swedish Research Council (VR); European Community [PIEF-GA-2011-298918] FX We acknowledge HASYLAB/DESY and the Argonne Photon Source (APS) for providing the synchrotron radiation facilities at beamline B1 and 6-ID-D, respectively. Institut Laue-Langevin (ILL) and JCNS are acknowledged for provision of neutron scattering facilities at the D22 and DNS instruments, respectively. Research conducted at SNS (POWGEN and CNCS instruments) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We acknowledge Dr. U. Vainio, Dr. D. Robinson, Dr. A. Wiedenmann, Dr. Y. Su, and Dr. O. Gourdon for their support in data acquisition at these instruments. E. W., G. S. A., and L. B. acknowledge the Swedish Research Council (VR) for financial support. S. D. acknowledges funding by the 7th European Community Framework Programme (PIEF-GA-2011-298918). NR 37 TC 3 Z9 3 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 5 PY 2014 VL 89 IS 6 AR 064402 DI 10.1103/PhysRevB.89.064402 PG 7 WC Physics, Condensed Matter SC Physics GA AC2TW UT WOS:000332370200003 ER PT J AU Sivadas, N Dixit, H Cooper, VR Xiao, D AF Sivadas, N. Dixit, H. Cooper, Valentino R. Xiao, Di TI Thickness-dependent carrier density at the surface of SrTiO3 (111) slabs SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-GAS; OXIDE HETEROSTRUCTURES; INTERFACES; TRANSITION; INSULATOR AB We investigate the surface electronic structure and thermodynamic stability of the SrTiO3 (111) slabs using density functional theory. We observe that, for Ti-terminated slabs it is indeed possible to create a two-dimensional electron gas (2DEG). However, the carrier density of the 2DEG displays a strong thickness dependence due to the competition between electronic reconstruction and polar distortions. As expected, having a surface oxygen atom at the Ti termination can stabilize the system, eliminating any electronic reconstruction, thereby making the system insulating. An analysis of the surface thermodynamic stability suggests that the Ti terminated (111) surface should be experimentally realizable. This surface may be useful for exploring the behavior of electrons in oxide (111) interfaces and may have implications for modern device applications. C1 [Sivadas, N.; Xiao, Di] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Dixit, H.; Cooper, Valentino R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sivadas, N (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM coopervr@ornl.gov; dixiao@cmu.edu RI Xiao, Di/B-1830-2008; Cooper, Valentino /A-2070-2012 OI Xiao, Di/0000-0003-0165-6848; Cooper, Valentino /0000-0001-6714-4410 FU AFOSR [FA9550-12-1-0479]; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science Early Career Research Program; ASTRO program at ORNL; Office of Science, US Department of Energy [DEAC02-05CH11231]; NSF [OCI-1041726, OCI-1053575] FX We would like to thank Marek Skowronski, Michael Widom, Satoshi Okamoto, and Wenguang Zhu for useful discussions. This work was supported by AFOSR Grant No. FA9550-12-1-0479 (N.S. and D. X.), and by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (D. X., H. D., and V. R. C.) and the Office of Science Early Career Research Program (V. R. C). N.S. acknowledges support through the ASTRO program at ORNL. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231, and Pittsburgh Supercomputing Center's Blacklight system, supported by NSF Grant No. OCI-1041726, which is part of the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF Grant No. OCI-1053575. NR 44 TC 10 Z9 10 U1 5 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 5 PY 2014 VL 89 IS 7 AR 075303 DI 10.1103/PhysRevB.89.075303 PG 7 WC Physics, Condensed Matter SC Physics GA AC2UA UT WOS:000332370600004 ER PT J AU Qiu, JW Sun, P Xiao, BW Yuan, F AF Qiu, Jian-Wei Sun, Peng Xiao, Bo-Wen Yuan, Feng TI Universal suppression of heavy quarkonium production in pA collisions at low transverse momentum SO PHYSICAL REVIEW D LA English DT Article ID COLOR GLASS CONDENSATE; HADRONIC COLLISIONS; J/PSI-PRODUCTION; SATURATION AB The nuclear suppression of heavy quarkonium production at low transverse momentum in pA collisions in high energy scatterings is investigated in the small-x factorization formalism. A universal suppression is found in the large N-c limit between the two formalisms to describe the heavy quarkonium production: the nonrelativistic QCD and the color-evaporation model. This provides an important probe to the saturation momentum at small x in the big nucleus. We also comment on the phenomenological applications of our results. C1 [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Sun, Peng; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Xiao, Bo-Wen] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Qiu, JW (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-05CH11231] FX We thank Al Muller for stimulating discussions. This work was supported in part by the U.S. Department of Energy under Contracts No. DE-AC02-98CH10886 and No. DE-AC02-05CH11231. NR 41 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 5 PY 2014 VL 89 IS 3 AR 034007 DI 10.1103/PhysRevD.89.034007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AB6CT UT WOS:000331875900002 ER PT J AU Fu, DJ Chen, BZ Zhang, HF Wang, J Black, TA Amiro, BD Bohrer, G Bolstad, P Coulter, R Rahman, AF Dunn, A McCaughey, JH Meyers, T Verma, S AF Fu, Dongjie Chen, Baozhang Zhang, Huifang Wang, Juan Black, T. Andy Amiro, Brian D. Bohrer, Gil Bolstad, Paul Coulter, Richard Rahman, Abdullah F. Dunn, Allison McCaughey, J. Harry Meyers, Tilden Verma, Shashi TI Estimating landscape net ecosystem exchange at high spatial-temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Net ecosystem exchange; Eddy-covariance; Regression tree; Image fusion; Footprint climatology; Upscaling ID CARBON-DIOXIDE EXCHANGE; PRINCIPAL COMPONENT ANALYSIS; GROSS PRIMARY PRODUCTION; DIFFERENCE WATER INDEX; CLOUD-COVER ASSESSMENT; LEAF-AREA INDEX; IMAGE FUSION; VEGETATION INDEXES; INTERANNUAL VARIABILITY; SURFACE-TEMPERATURE AB More accurate estimation of the carbon dioxide flux depends on the improved scientific understanding of the terrestrial carbon cycle. Remote-sensing-based approaches to continental-scale estimation of net ecosystem exchange (NEE) have been developed but coarse spatial resolution is a source of errors. Here we demonstrate a satellite-based method of estimating NEE using Landsat TM/ETM + data and an upscaling framework. The upscaling framework contains flux-footprint climatology modeling, modified regression tree (MRT) analysis and image fusion. By scaling NEE measured at flux towers to landscape and regional scales, this satellite-based method can improve NEE estimation at high spatial-temporal resolution at the landscape scale relative to methods based on MODIS data with coarser spatial-temporal resolution. This method was applied to sixteen flux sites from the Canadian Carbon Program and AmeriFlux networks located in North America, covering forest, grass, and cropland biomes. Compared to a similar method using MODIS data, our estimation is more effective for diagnosing landscape NEE with the same temporal resolution and higher spatial resolution (30 m versus 1 km) (r(2) = 0.7548 vs. 0.5868, RMSE = 1.3979 vs. 1.7497 g C m-(2) day(-1), average error = 0.8950 vs. 1.0178 g C m(-2) day(-1), relative error = 0.47 vs. 0.54 for fused Landsat and MODIS imagery, respectively). We also compared the regional NEE estimations using Carbon Tracker, our method and eddy-covariance observations. This study demonstrates that the data-driven satellite-based NEE diagnosed model can be used to upscale eddy-flux observations to landscape scales with high spatial-temporal resolutions. (C) 2013 Elsevier Inc. All rights reserved. C1 [Fu, Dongjie; Chen, Baozhang; Zhang, Huifang] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, LREIS, Beijing, Peoples R China. [Fu, Dongjie; Chen, Baozhang; Zhang, Huifang] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Wang, Juan] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China. [Black, T. Andy] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Amiro, Brian D.] Univ Manitoba, Dept Soil Sci, Winnipeg, MB R3T 2N2, Canada. [Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Bolstad, Paul] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Coulter, Richard] Argonne Natl Lab, Div Environm Sci, Climate Res Sect, Argonne, IL 60439 USA. [Rahman, Abdullah F.] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Dunn, Allison] Worcester State Univ, Dept Phys & Earth Sci, Worcester, MA 01602 USA. [McCaughey, J. Harry] Queens Univ, Dept Geog, Kingston, ON K7L 3N6, Canada. [Meyers, Tilden] NOAA, Atmospher Turbulence & Diffus Div, ARL, Oak Ridge, TN 37831 USA. [Verma, Shashi] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA. RP Chen, BZ (reprint author), Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, LREIS, 11A Datun Rd, Beijing, Peoples R China. EM baozhang.chen@igsnrr.ac.cn RI Meyers, Tilden/C-6633-2016; OI Bohrer, Gil/0000-0002-9209-9540 FU Chinese Ministry of Science and Technology [2010CB950704]; IGSNRR, CAS [2012ZD010]; National Science Foundation of China; Research Plan of LREIS, CAS [O88RA900KA]; "One Hundred Talents" program; Chinese Academy of Sciences; US Department of Energy [DE-SC0006708]; US National Science Foundation [DEB-0911461]; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Natural Science and Engineering Council of Canada (NSERC); [41071059]; [41271116] FX This research is supported by a research grant (2010CB950704) under the Global Change Program of the Chinese Ministry of Science and Technology, a research grant (2012ZD010) of Key Project for the Strategic Science Plan in IGSNRR, CAS, the research grants (41071059 & 41271116) funded by the National Science Foundation of China, a Research Plan of LREIS (O88RA900KA), CAS, and "One Hundred Talents" program funded by the Chinese Academy of Sciences. Flux data collection in the sites was funded by: US Department of Energy grants: DE-SC0006708; US National Science Foundation grants: DEB-0911461; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) and Natural Science and Engineering Council of Canada (NSERC) though grants supporting Fluxnet Canada and the Canadian Carbon Program. We thank the USGS EROS data center for providing free Landsat data and the LP-DAAC and MODIS science team for providing free MODIS products. Additional contributions from the many researchers involved in data collection, as in the Fluxnet-Canada and AmeriFlux research network, and in-kind support from many government and private agencies for each study site are also gratefully acknowledged. NR 93 TC 16 Z9 17 U1 4 U2 80 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB 5 PY 2014 VL 141 BP 90 EP 104 DI 10.1016/j.rse.2013.10.029 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA AB3AB UT WOS:000331662600008 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Abdelalim, AA Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Kramer, M Krucker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Stein, M Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Goebel, K Gorner, M Gosselink, M Haller, J Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nurnberg, A Oberst, O Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Psallidas, A Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Jones, J Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Benaglia, A Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Umer, T Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kim, MS Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kwon, E Lee, B Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Perfilov, M Savrin, V Tsirova, N Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C de Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Mulders, M Musella, P Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Steggemann, J Stieger, B Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Quittnat, M Ronga, FJ Rossini, M Starodumov, A Takahashi, M Tauscher, L Theofilatos, K Treille, D Wallny, R Weber, HA Amsler, C Chiochia, V De Cosa, A Favaro, C Hinzmann, A Hreus, T Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Campagnari, C Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VI Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jha, M Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sakharov, A Sarangi, T Savin, A Smith, WH AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Abdelalim, A. A. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Gosselink, M. Haller, J. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Psallidas, A. Topsis-giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Jones, J. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Benaglia, A. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, B. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Perfilov, M. Savrin, V. Tsirova, N. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Mulders, M. Musella, P. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stieger, B. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Quittnat, M. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Tauscher, L. Theofilatos, K. Treille, D. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. De Cosa, A. Favaro, C. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Campagnari, C. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Martinez Outschoorn, V. I. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jha, M. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sakharov, A. Sarangi, T. Savin, A. Smith, W. H. CA CMS Collaboration TI Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s=8 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering; Top physics ID PROTON-PROTON COLLISIONS; GAUGE COUPLINGS; ATLAS DETECTOR; LIMITS AB The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Gosselink, M.; Haller, J.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Psallidas, A.; Topsis-giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Giordano, F.] CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, B.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Jabatan Fiz, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Tsirova, N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Contardo, D.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Giordano, F.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Pelliccioni, M.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tauscher, L.; Theofilatos, K.; Treille, D.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sakharov, A.; Sarangi, T.; Savin, A.; Smith, W. H.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Abdelalim, A. A.; Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Tinoco Mendes, Andre David/D-4314-2011; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; D'Alessandro, Raffaello/F-5897-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Lo Vetere, Maurizio/J-5049-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Russ, James/P-3092-2014; Ragazzi, Stefano/D-2463-2009; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Yazgan, Efe/A-4915-2015; Ferguson, Thomas/O-3444-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; Josa, Isabel/K-5184-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Hill, Christopher/B-5371-2012; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Bellan, Riccardo/G-2139-2014; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Moon, Chang-Seong/J-3619-2014; Cerrada, Marcos/J-6934-2014; Torassa, Ezio/I-1788-2012; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Bonacorsi, Daniele/F-1505-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Dudko, Lev/D-7127-2012 OI Tinoco Mendes, Andre David/0000-0001-5854-7699; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; D'Alessandro, Raffaello/0000-0001-7997-0306; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Lo Vetere, Maurizio/0000-0002-6520-4480; Rovelli, Tiziano/0000-0002-9746-4842; Russ, James/0000-0001-9856-9155; Ragazzi, Stefano/0000-0001-8219-2074; Ferguson, Thomas/0000-0001-5822-3731; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Hill, Christopher/0000-0003-0059-0779; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; TUVE', Cristina/0000-0003-0739-3153; de Jesus Damiao, Dilson/0000-0002-3769-1680; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Montanari, Alessandro/0000-0003-2748-6373; Moon, Chang-Seong/0000-0001-8229-7829; Cerrada, Marcos/0000-0003-0112-1691; Novaes, Sergio/0000-0003-0471-8549; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Dudko, Lev/0000-0002-4462-3192 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIEN-CIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU, Regional Development Fund; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, co-financed by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 38 TC 11 Z9 11 U1 5 U2 90 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 5 PY 2014 IS 2 AR 024 DI 10.1007/JHEP02(2014)024 PG 31 WC Physics, Particles & Fields SC Physics GA AB7LS UT WOS:000331972200001 ER PT J AU McCaffrey, R Long, H Jin, YH Sanders, A Park, W Zhang, W AF McCaffrey, Ryan Long, Hai Jin, Yinghua Sanders, Aric Park, Wounjhang Zhang, Wei TI Template Synthesis of Gold Nanoparticles with an Organic Molecular Cage SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENDRIMER-ENCAPSULATED NANOPARTICLES; CATALYSIS; SIZE; NANOSTRUCTURES; NANOCLUSTERS; SELECTIVITY; DIMENSIONS; CHEMISTRY; CLUSTERS; SILVER AB We report a novel strategy for the controlled synthesis of gold nanoparticles (AuNPs) with narrow size distribution (1.9 +/- 0.4 nm) through NP nucleation and growth inside the cavity of a well-defined three-dimensional, shape-persistent organic molecular cage. Our results show that both a well-defined cage structure and pendant thioether groups pointing inside the cavity are essential for the AuNP synthesis. C1 [McCaffrey, Ryan; Jin, Yinghua; Zhang, Wei] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Park, Wounjhang] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Long, Hai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sanders, Aric] NIST, Boulder, CO 80305 USA. RP Zhang, W (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM wei.zhang@colorado.edu RI Long, Hai/C-5838-2015 FU Army Research Office [W911NF-12-1-0581]; Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy [DE-AC36-08GO28308] FX The authors thank Army Research Office (W911NF-12-1-0581) for financial support, Dr. Tom Giddings and Suehyun Cho for TEM image analysis, and Dr. Richard Shoemaker for NMR analysis, and Dr. Matthew Cowan for TGA study. This research used capabilities of the National Renewable Energy Laboratory Computational Sciences Center, which is supported by the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 49 TC 31 Z9 31 U1 10 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 5 PY 2014 VL 136 IS 5 BP 1782 EP 1785 DI 10.1021/ja412606t PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AB0PD UT WOS:000331493700026 PM 24432779 ER PT J AU Sun, J Teran, AA Liao, XX Balsara, NP Zuckermann, RN AF Sun, Jing Teran, Alexander A. Liao, Xunxun Balsara, Nitash P. Zuckermann, Ronald N. TI Crystallization in Sequence-Defined Peptoid Diblock Copolymers Induced by Microphase Separation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BLOCK-COPOLYMERS; POLYMER CRYSTALLIZATION; POLY(ETHYLENE OXIDE); TRANSITION; TEMPERATURE; DYNAMICS AB Atomic level synthetic control over a polymer's chemical structure can reveal new insights into the crystallization kinetics of block copolymers. Here, we explore the impact of side chain structure on crystallization behavior, by designing a series of sequence-defined, highly monodisperse peptoid diblock copolymers poly-N-decylglycine-block-poly-N-2-(2-(2-methoxyethoxy)ethoxy)-ethylglycine (pNdc-b-pNte) with volume fraction of pNte (phi(Nte)) values ranging from 0.29 to 0.71 and polydispersity indices <= 1.00017. Both monomers have nearly identical molecular volumes, but the pNte block is amorphous while the pNdc block is crystalline. We demonstrate by X-ray scattering and calorimetry that all the block copolypeptoids self-assemble into lamellar microphases and that the self-assembly is driven by crystallization of the pNdc block. Interestingly, the microphase separated pNdc-b-pNte diblock copolymers form two distinct crystalline phases. Crystallization of the normally amorphous pNte chains is induced by the preorganization of the crystalline pNdc chains. We hypothesize that this is due to the similarity of chemical structure of the monomers (both monomers have linear side chains of similar lengths emanating from a polyglycine backbone). The pNte block remains amorphous when the pNdc block is replaced by another crystalline block, poly-N-isoamylglycine, suggesting that a close matching of the lattice spacings is required for induced crystallization. To our knowledge, there are no previous reports of crystallization of a polymer chain induced by microphase separation. These investigations show that polypeptoids provide a unique platform for examining the effect of intertwined roles of side chain organization on the thermodynamic properties of diblock copolymers. C1 [Sun, Jing; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Liao, Xunxun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Liao, Xunxun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu; rnzuckermann@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Soft Matter Electron Microscopy Program; Office of Science, Office of Basic Energy Science, U.S. Department of Energy [DE-AC02-05CH11231] FX Funding for this work was provided by the Soft Matter Electron Microscopy Program, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The work was carried out at the Molecular Foundry and the Advanced Light Source at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. We thank Dr. Adrianne M. Rosales for helpful advice and Dr. Gloria Olivier for help with XRD on the project. NR 41 TC 19 Z9 20 U1 3 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 5 PY 2014 VL 136 IS 5 BP 2070 EP 2077 DI 10.1021/ja412123y PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AB0PD UT WOS:000331493700059 PM 24422712 ER PT J AU Dittrich, TR Hurricane, OA Callahan, DA Dewald, EL Doppner, T Hinkel, DE Hopkins, LFB Le Pape, S Ma, T Milovich, JL Moreno, JC Patel, PK Park, HS Remington, BA Salmonson, JD Kline, JL AF Dittrich, T. R. Hurricane, O. A. Callahan, D. A. Dewald, E. L. Doeppner, T. Hinkel, D. E. Hopkins, L. F. Berzak Le Pape, S. Ma, T. Milovich, J. L. Moreno, J. C. Patel, P. K. Park, H-S Remington, B. A. Salmonson, J. D. Kline, J. L. TI Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility SO PHYSICAL REVIEW LETTERS LA English DT Article AB The National Ignition Campaign's [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] point design implosion has achieved DT neutron yields of 7.5 x 10(14) neutrons, inferred stagnation pressures of 103 Gbar, and inferred areal densities (rho R) of 0.90 g/cm(2) (shot N111215), values that are lower than 1D expectations by factors of 10x, 3.3x, and 1.5x, respectively. In this Letter, we present the design basis for an inertial confinement fusion capsule using an alternate indirect-drive pulse shape that is less sensitive to issues that may be responsible for this lower than expected performance. This new implosion features a higher radiation temperature in the "foot" of the pulse, three-shock pulse shape resulting in an implosion that has less sensitivity to the predicted ionization state of carbon, modestly lower convergence ratio, and significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this new design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. Early experimental results support our assertions since as of this Letter, a high-foot implosion has obtained a record DT yield of 2.4 x 10(15) neutrons (within similar to 70% of 1D simulation) with fuel rho R = 0.84 g/cm(2) and an estimated similar to 1/3 of the yield coming from alpha-particle self-heating. C1 [Dittrich, T. R.; Hurricane, O. A.; Callahan, D. A.; Dewald, E. L.; Doeppner, T.; Hinkel, D. E.; Hopkins, L. F. Berzak; Le Pape, S.; Ma, T.; Milovich, J. L.; Moreno, J. C.; Patel, P. K.; Park, H-S; Remington, B. A.; Salmonson, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dittrich, TR (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM dittrich1@llnl.gov; hurricane1@llnl.gov RI lepape, sebastien/J-3010-2015; Patel, Pravesh/E-1400-2011; OI Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Parney Albright, Jeff Atherton, M. John Edwards, Bruce Goodwin, John Lindl, Edward Moses, Charlie Verdon, Steve Haan, Dan Clark, Jim Hammer, Howard Scott, Harry Robey, Peggy Kervin and many others in the WCI and NIF programs at LLNL for their support of this work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 20 TC 78 Z9 81 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2014 VL 112 IS 5 AR 055002 DI 10.1103/PhysRevLett.112.055002 PG 5 WC Physics, Multidisciplinary SC Physics GA AB7DO UT WOS:000331949700012 PM 24580604 ER PT J AU Park, HS Hurricane, OA Callahan, DA Casey, DT Dewald, EL Dittrich, TR Doppner, T Hinkel, DE Hopkins, LFB Le Pape, S Ma, T Patel, PK Remington, BA Robey, HF Salmonson, JD Kline, JL AF Park, H-S Hurricane, O. A. Callahan, D. A. Casey, D. T. Dewald, E. L. Dittrich, T. R. Doeppner, T. Hinkel, D. E. Hopkins, L. F. Berzak Le Pape, S. Ma, T. Patel, P. K. Remington, B. A. Robey, H. F. Salmonson, J. D. Kline, J. L. TI High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility SO PHYSICAL REVIEW LETTERS LA English DT Article AB This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of similar to 300 eV. The resulting experimental neutron yield was (2.4 +/- 0.05) x 10(15) DT, the fuel rho R was (0.86 +/- 0.063) g/cm(2), and the measured T-ion was (4.2 +/- 0.16) keV, corresponding to 8 kJ of fusion yield, with similar to 1/3 of the yield caused by self-heating of the fuel by a particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was similar to 70% of the value predicted by simulations that include alpha-particle self-heating. C1 [Park, H-S; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Hinkel, D. E.; Hopkins, L. F. Berzak; Le Pape, S.; Ma, T.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM park1@llnl.gov; hurricane1@llnl.gov RI Ma, Tammy/F-3133-2013; lepape, sebastien/J-3010-2015; Patel, Pravesh/E-1400-2011; OI Ma, Tammy/0000-0002-6657-9604; Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank the entire NIF operations, cryogenics, diagnostics, and target teams. We would also like to thank Dr. P. Albright, Dr. J. Atherton, Dr. M. J. Edwards, Dr. J. Lindl, Dr. E. Moses, Dr. C. Verdon, and Dr. A. Wan for their support. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 77 Z9 83 U1 7 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2014 VL 112 IS 5 AR 055001 DI 10.1103/PhysRevLett.112.055001 PG 5 WC Physics, Multidisciplinary SC Physics GA AB7DO UT WOS:000331949700011 PM 24580603 ER PT J AU Ito, J Parsons, HT Heazlewood, JL AF Ito, Jun Parsons, Harriet T. Heazlewood, Joshua L. TI The Arabidopsis cytosolic proteome: the metabolic heart of the cell SO FRONTIERS IN PLANT SCIENCE LA English DT Review DE cytosol; ribosome; proteasome; localization; Arabidopsis ID GLYOXYLATE REDUCTASE ISOFORM; SUBCELLULAR LOCATION; 26S PROTEASOME; SPOROPHYTE DEVELOPMENT; RIBOSOMAL-PROTEINS; PLANT-METABOLISM; ABIOTIC STRESSES; GENE FAMILY; THALIANA; DATABASE AB The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago. C1 [Ito, Jun; Parsons, Harriet T.; Heazlewood, Joshua L.] Joint BioEnergy Inst, Emeryville, CA USA. [Ito, Jun; Parsons, Harriet T.; Heazlewood, Joshua L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Parsons, Harriet T.] Univ Copenhagen, Dept Plant & Environm Sci, Copenhagen, Denmark. RP Heazlewood, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, One Cyclotron Rd MS 978-4466, Berkeley, CA 94720 USA. EM jlheazlewood@lbl.gov RI Heazlewood, Joshua/A-2554-2008; Parsons, Harriet/J-9094-2016 OI Heazlewood, Joshua/0000-0002-2080-3826; Parsons, Harriet/0000-0003-1666-9123 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Marie Curie Fellowship FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Harriet T. Parsons was supported by a Marie Curie Fellowship. NR 83 TC 4 Z9 4 U1 3 U2 28 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD FEB 5 PY 2014 VL 5 AR 21 DI 10.3389/fpls.2014.00021 PG 8 WC Plant Sciences SC Plant Sciences GA AB1FA UT WOS:000331535700001 PM 24550929 ER PT J AU Debela, TT Wang, XD Cao, QP Zhang, DX Wang, SY Wang, CZ Jiang, JZ AF Debela, T. T. Wang, X. D. Cao, Q. P. Zhang, D. X. Wang, S. Y. Wang, C. Z. Jiang, J. Z. TI Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE ab initio simulations; liquid niobium; solidification; atomic structure ID BULK METALLIC GLASSES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MECHANICAL-PROPERTIES; THERMOPHYSICAL PROPERTIES; TRANSITION-METALS; REFRACTORY-METALS; AMORPHOUS-ALLOYS; HIGH-TEMPERATURE; NB ADDITION AB Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt-Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K. C1 [Debela, T. T.; Wang, X. D.; Cao, Q. P.; Wang, C. Z.; Jiang, J. Z.] Zhejiang Univ, Int Ctr New Struct Mat ICNSM, Lab New Struct Mat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Debela, T. T.; Wang, X. D.; Cao, Q. P.; Wang, C. Z.; Jiang, J. Z.] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Zhang, D. X.] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China. [Wang, S. Y.] Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China. [Wang, S. Y.] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China. [Wang, C. Z.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, C. Z.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Debela, TT (reprint author), Zhejiang Univ, Int Ctr New Struct Mat ICNSM, Lab New Struct Mat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. EM wangxd@zju.edu.cn; jiangjz@zju.edu.cn RI Zhejiang University, Dep. Optical Eng./G-9022-2011; Debela, Tekalign Terfa/N-1706-2014; Wang, Songyou/H-4529-2011; Debela, Tekalign Terfa/A-9223-2017 OI Debela, Tekalign Terfa/0000-0003-4859-2597; Wang, Songyou/0000-0002-4249-3427; Debela, Tekalign Terfa/0000-0003-4859-2597 FU National Key Basic Research Program of China [2012CB825700]; National Natural Science Foundation of China [10979002, 51371157, 11179026, 51071141]; Natural Science Foundation of Zhejiang Province [Z1110196, Y4110192]; Zhejiang University-Helmholtz cooperation fund; Fundamental Research Funds for the Central Universities FX Financial support from the National Key Basic Research Program of China (2012CB825700), National Natural Science Foundation of China (grants 10979002, 51371157, 11179026 and 51071141), Natural Science Foundation of Zhejiang Province (grants Z1110196 and Y4110192), Zhejiang University-Helmholtz cooperation fund, and the Fundamental Research Funds for the Central Universities are gratefully acknowledged. The computer resources at the Shanghai Supercomputer Center are gratefully acknowledged. NR 52 TC 8 Z9 8 U1 6 U2 55 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 5 PY 2014 VL 26 IS 5 AR 055004 DI 10.1088/0953-8984/26/5/055004 PG 8 WC Physics, Condensed Matter SC Physics GA 303PJ UT WOS:000330686200005 PM 24334654 ER PT J AU Gustafson, J Blomberg, S Martin, NM Fernandes, V Borg, A Liu, Z Chang, R Lundgren, E AF Gustafson, J. Blomberg, S. Martin, N. M. Fernandes, V. Borg, A. Liu, Z. Chang, R. Lundgren, E. TI A high pressure x-ray photoelectron spectroscopy study of CO oxidation over Rh(100) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE high pressure x-ray photoelectron spectroscopy; Rh(100); catalysis; CO oxidation ID PT-GROUP METALS; ACTIVE CATALYTIC SURFACE; ULTRAHIGH-VACUUM; REALISTIC CONDITIONS; 2. PALLADIUM; RH; RUTHENIUM; RH(111); PLATINUM; PD(100) AB We have studied the oxidation of CO over Rh(100) using high pressure x-ray photoelectron spectroscopy under CO and O-2 pressures ranging from 0.01 to 1 mbar. The results show a very low or no conversion for the CO covered surface found at low temperatures, while the activity rises slightly when the temperature is high enough for some CO to desorb, exposing surface sites for dissociative O-2 adsorption. As the temperature is increased further, more CO desorbs and oxygen replaces CO as the dominating species at the surface. At the same time we find a sudden increase in the reactivity, such that all CO that reaches the surface is instantly transformed into CO2. We find that the O coverage in the active state is highly dependent on the total pressure and, although we do not detect any presence of a surface oxide as in previous surface x-ray diffraction studies, the highest O coverage indicates that the surface is close to being oxidized. C1 [Gustafson, J.; Blomberg, S.; Martin, N. M.; Lundgren, E.] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden. [Fernandes, V.; Borg, A.] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway. [Liu, Z.; Chang, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. RP Gustafson, J (reprint author), Lund Univ, Div Synchrotron Radiat Res, Box 118, SE-22100 Lund, Sweden. EM johan.gustafson@sljus.lu.se RI Liu, Zhi/B-3642-2009; Lundgren, Edvin/F-5551-2010 OI Liu, Zhi/0000-0002-8973-6561; FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Research Council of Norway [138368/V30]; National Natural Science Foundation of China [11227902] FX The authors would like to thank the Swedish Research Council, the Swedish Foundation for Strategic Research (SSF), the Crafoord foundation, the Knut and Alice Wallenberg foundation, and the Anna and Edwin Berger foundation. The work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231, and the Research Council of Norway (Project No. 138368/V30). The ALS staff are gratefully acknowledged. RC is supported by the National Natural Science Foundation of China under contract no. 11227902. NR 44 TC 1 Z9 1 U1 4 U2 45 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 5 PY 2014 VL 26 IS 5 AR 055003 DI 10.1088/0953-8984/26/5/055003 PG 6 WC Physics, Condensed Matter SC Physics GA 303PJ UT WOS:000330686200004 PM 24334623 ER PT J AU Maiti, A AF Maiti, Amitesh TI Atomistic Modeling Toward High-Efficiency Carbon Capture: A Brief Survey with a Few Illustrative Examples SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Review DE CO2 capture; molecular modeling; ionic liquids; COSMO-RS ID METAL-ORGANIC FRAMEWORKS; IONIC LIQUID-MEMBRANES; MOLECULAR-DYNAMICS SIMULATIONS; AQUEOUS ALKANOLAMINE SOLUTIONS; GAS SEPARATION MEMBRANES; PRESSURE PHASE-BEHAVIOR; CO2 CAPTURE; COSMO-RS; SPECIES DISTRIBUTION; DIOXIDE CAPTURE AB With the negative environmental implications of the anthropogenic emission of greenhouse gases like CO2 having been scientifically established, emphasis is being placed on a concerted global effort to prevent such gases from reaching the atmosphere. Especially important are capture efforts at large point emission sources like fossil fuel power generation, natural gas processing, and various industrial plants. Given the importance and scale of such activities, it is a significant priority to optimize the capture process in terms of speed, energy requirements, and cost efficiency. For CO2 capture, in particular, multiple systems are being pursued both with near-term retrofitting and medium- to long-term designs in mind, including: (1) liquid solvents like amines, carbonates, and ionic liquids (ILs); (2) microporous sorbents like zeolites, activated carbon, and metal-organic frameworks; (3) solid sorbents like metal-oxides and ionic clays; and (4) polymeric and inorganic membrane separators. Each system is unique in its molecular-level guest-host interactions, chemistry, heats of adsorption/desorption, and equilibrium thermodynamic and transport properties as a function of loading, temperature, and pressure. This opens up exciting opportunities for molecular modeling in the design and optimization of materials systems. Here, we offer a brief survey of molecular modeling applications in the field of carbon capture, with a few illustrative examples from our own work primarily involving amine solutions and ILs. Important molecular dynamics, Monte Carlo, and correlations-based work in the literature relevant to CO2 capture in other systems are also discussed. (c) 2013 Wiley Periodicals, Inc. C1 Lawrence Livermore Natl Lab, Phys & Life Sci Div, Livermore, CA 94550 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Div, Livermore, CA 94550 USA. EM amaiti@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work at LLNL was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 122 TC 9 Z9 9 U1 4 U2 110 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD FEB 5 PY 2014 VL 114 IS 3 BP 163 EP 175 DI 10.1002/qua.24579 PG 13 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 271EO UT WOS:000328374400001 ER PT J AU Kamarchik, E Toffoli, D Christiansen, O Bowman, JM AF Kamarchik, Eugene Toffoli, Daniele Christiansen, Ove Bowman, Joel M. TI Ab initio potential energy and dipole moment surfaces of the F-(H2O) complex SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE Potential energy surfaces; Anharmonic vibrations; Ab initio calculations; Complexes; Hydrogen bonding; IR spectra ID VIBRATIONAL SPECTROSCOPY; BASIS-SETS; MOLECULES; HYDRATION; SPECTRUM; HYDROGEN; SYSTEMS; WATER; IONS; BR AB We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F-(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F-(H2O) and for the deuterated analog, F-(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kamarchik, Eugene] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Toffoli, Daniele] Middle E Tech Univ, Dept Chem, TR-06531 Ankara, Turkey. [Christiansen, Ove] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark. [Bowman, Joel M.] Emory Univ, Dept Chem, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. RP Christiansen, O (reprint author), Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark. EM ove@chem.au.dk RI Toffoli, Daniele/G-4897-2011 OI Toffoli, Daniele/0000-0002-8225-6119 FU National Science Foundation [CHE-1145227]; Department of Energy [DE DFG02-97ER14782]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC04-94-AL85000] FX Financial support from the National Science Foundation (CHE-1145227) and Department of Energy (DE DFG02-97ER14782) is gratefully acknowledged. This work is also supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DE-AC04-94-AL85000). NR 22 TC 7 Z9 7 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD FEB 5 PY 2014 VL 119 BP 59 EP 62 DI 10.1016/j.saa.2013.04.076 PG 4 WC Spectroscopy SC Spectroscopy GA 277HN UT WOS:000328809700009 PM 23756053 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Abdelalim, AA Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Fluegge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Topsis-giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Benaglia, A Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Montecassiano, F Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJ Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Quertenmont, L Racz, A Reece, W Rojo, J Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Lucas, C Meng, Z Metson, S Newbold, DM Nirunpong, K Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Campagnari, C Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Martin, C Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Cerizza, G Hollingsworth, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Abdelalim, A. A. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F-P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Topsis-giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Benaglia, A. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Quertenmont, L. Racz, A. Reece, W. Rojo, J. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Lucas, C. Meng, Z. Metson, S. Newbold, D. M. Nirunpong, K. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Campagnari, C. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Martin, C. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Cerizza, G. Hollingsworth, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Measurement of associated W plus charm production in pp collisions at root s=7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID PARTON DISTRIBUTIONS; DECAYS; LHC; LEP AB Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb(-1), collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region p(T)(jet) > 25 GeV, vertical bar eta(jet)vertical bar < 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range eta(l) < 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: sigma(pp -> W + c + X) x B (W -> lv) = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb (p(T)(l) > 25 GeV) and sigma (pp -> W + c + X) x B (W -> lv) = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb (p(T)(l) > 35 GeV), and the cross section ratios sigma(pp -> W+ + (c) over bar + X)/sigma(pp -> W- + c + X) = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) (p(T)(l) > 25 GeV) and sigma(pp -> W+ + (c) over bar + X)/sigma(pp -> W- + c + X) = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) (p(T)(l) > 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Dutta, D.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Swain, S. K.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] INFN Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Lee, S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Sharma, A.; Mohanty, A. K.; Giordano, F.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; Pelliccioni, M.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rojo, J.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Lucas, C.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Turner, M.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Martin, C.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Abdelalim, A. A.; Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Grippo, M. T.; Martini, L.] Univ Siena, I-53100 Siena, Italy. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Lo Vetere, Maurizio/J-5049-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Yazgan, Efe/A-4915-2015; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Petrushanko, Sergey/D-6880-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Dudko, Lev/D-7127-2012; Hill, Christopher/B-5371-2012; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Ragazzi, Stefano/D-2463-2009; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Scodellaro, Luca/K-9091-2014; Novaes, Sergio/D-3532-2012; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Moon, Chang-Seong/J-3619-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Torassa, Ezio/I-1788-2012; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; Josa, Isabel/K-5184-2014; de la Cruz, Begona/K-7552-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Tinoco Mendes, Andre David/D-4314-2011; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Mundim, Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014 OI TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; de Jesus Damiao, Dilson/0000-0002-3769-1680; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Lo Vetere, Maurizio/0000-0002-6520-4480; Rovelli, Tiziano/0000-0002-9746-4842; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Calvo Alamillo, Enrique/0000-0002-1100-2963; Dudko, Lev/0000-0002-4462-3192; Hill, Christopher/0000-0003-0059-0779; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Ragazzi, Stefano/0000-0001-8219-2074; Scodellaro, Luca/0000-0002-4974-8330; Novaes, Sergio/0000-0003-0471-8549; Montanari, Alessandro/0000-0003-2748-6373; Moon, Chang-Seong/0000-0001-8229-7829; Cerrada, Marcos/0000-0003-0112-1691; Tinoco Mendes, Andre David/0000-0001-5854-7699; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950 FU Austrian Federal Ministry of Science and Research; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Office for Research and Technology, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology, Republic of Korea; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Spain; Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science - EU; Regional Development Fund; Thalis programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, co-financed by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 54 TC 13 Z9 13 U1 5 U2 58 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 4 PY 2014 IS 2 AR 013 DI 10.1007/JHEP02(2014)013 PG 63 WC Physics, Particles & Fields SC Physics GA AH9YW UT WOS:000336503000001 ER PT J AU Lanekoff, I Thomas, M Laskin, J AF Lanekoff, Ingela Thomas, Mathew Laskin, Julia TI Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ASSISTED LASER-DESORPTION; RAT-BRAIN; TISSUE-SECTIONS; BIOLOGICAL SAMPLES; DRUG DISTRIBUTION; LIPID-COMPOSITION; MOUSE-BRAIN; QUANTIFICATION; IDENTIFICATION; CELLS AB Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization (nano-DESI) is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate that this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 endogenous PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section. C1 [Lanekoff, Ingela; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Thomas, Mathew] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Lanekoff, I (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,K8-88, Richland, WA 99352 USA. EM Ingela.Lanekoff@pnnl.gov; Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research; PNNL's Laboratory Directed Research and Development Program FX The research described in this paper is part of the Chemical Imaging Initiative at PNNL, which is supported under PNNL's Laboratory Directed Research and Development Program. PNNL is operated by Battelle for the U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 75 TC 19 Z9 20 U1 11 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD FEB 4 PY 2014 VL 86 IS 3 BP 1872 EP 1880 DI 10.1021/ac403931r PG 9 WC Chemistry, Analytical SC Chemistry GA AA3TI UT WOS:000331014800076 PM 24428785 ER PT J AU Iacocca, E Heinonen, O Muduli, PK Akerman, J AF Iacocca, Ezio Heinonen, Olle Muduli, P. K. Akerman, Johan TI Generation linewidth of mode-hopping spin torque oscillators SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC DROPLET SOLITONS; MAGNETORESISTANCE; MULTILAYER; EXCITATION AB Experiments on spin torque oscillators commonly observe multimode signals. Recent theoretical works have ascribed the multimode signal generation to coupling between energy-separated spin wave modes. Here, we analyze in detail the dynamics generated by such mode coupling. We show analytically that the mode-hopping dynamics broaden the generation linewidth and makes it generally well described by a Voigt line shape. Furthermore, we show that the mode-hopping contribution to the linewidth can dominate, in which case it provides a direct measure of the mode-hopping rate. Due to the thermal drive of mode-hopping events, the mode-hopping rate also provides information on the energy barrier separating modes and temperature-dependent linewidth broadening. Our results are in good agreement with experiments, revealing the physical mechanism behind the linewidth broadening in multimode spin torque oscillators. C1 [Iacocca, Ezio; Muduli, P. K.; Akerman, Johan] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden. [Heinonen, Olle] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Muduli, P. K.] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India. [Akerman, Johan] Royal Inst Technol, Sch ICT, S-16440 Kista, Sweden. RP Iacocca, E (reprint author), Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden. EM ezio.iacocca@physics.gu.se RI Muduli, Pranaba/B-9334-2008; Akerman, Johan/B-5726-2008; OI Muduli, Pranaba/0000-0002-0061-8455; Akerman, Johan/0000-0002-3513-6608; Heinonen, Olle/0000-0002-3618-6092; Iacocca, Ezio/0000-0002-8870-5106 FU Swedish Research Council (VR); Swedish Foundation for Strategic Research (SSF); Knut and Alice Wallenberg Foundation; US Department of Energy, Office of Science, Materials Sciences and Engineering Division FX Support from the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation is gratefully acknowledged. Part of the work was supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. NR 42 TC 11 Z9 11 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 4 PY 2014 VL 89 IS 5 AR 054402 DI 10.1103/PhysRevB.89.054402 PG 8 WC Physics, Condensed Matter SC Physics GA AC2OS UT WOS:000332342000001 ER PT J AU Varley, JB Janotti, A Van de Walle, CG AF Varley, J. B. Janotti, A. Van de Walle, C. G. TI Hydrogenated vacancies and hidden hydrogen in SrTiO3 SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; EXCHANGE; STRESS; OXIDE AB We investigate the stability of O, Ti, and Sr vacancies in SrTiO3 and their interactions with hydrogen impurities. Based on density functional calculations with a hybrid functional, we analyze formation energies, binding energies, and H-related vibrational modes. We find that interstitial hydrogen (H-i(+)) and substitutional hydrogen on an oxygen site (H-O) both act as shallow donors and are likely to contribute to unintentional n-type conductivity. Hydrogen can also bind to Ti vacancies in the form of (V-Ti-H)(-3) and (V-Ti-2H)(-2) complexes. Sr vacancies can form (V-Sr-H)(-) or accommodate an H-2 molecule in the form of (V-Sr-H-2)(-2) complex. The latter provides an explanation for the "hidden" hydrogen recently observed in annealing experiments [M. C. Tarun and M. D. McCluskey, J. Appl. Phys. 109, 063706 (2011)]. C1 [Varley, J. B.; Janotti, A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Varley, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Varley, JB (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RI Van de Walle, Chris/A-6623-2012; Janotti, Anderson/F-1773-2011 OI Van de Walle, Chris/0000-0002-4212-5990; Janotti, Anderson/0000-0001-5028-8338 FU U.S. Army Research Office [W911-NF-11-1-0232]; NSF MRSEC Program [DMR-1121053]; NSF [OCI-1053575]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344] FX Discussions with B. Jalan and M. D. McCluskey are gratefully acknowledged. This work was supported by the U.S. Army Research Office (W911-NF-11-1-0232) and by the NSF MRSEC Program (DMR-1121053). Computing resources were provided by the Center for Scientific Computing from the CNSI/MRL under NSF MRSEC (DMR-1121053) and NSF (CNS-0960316), and XSEDE (DMR-070072N) which is supported by NSF (OCI-1053575). Part of this work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07A27344. NR 39 TC 12 Z9 12 U1 5 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 4 PY 2014 VL 89 IS 7 AR 075202 DI 10.1103/PhysRevB.89.075202 PG 8 WC Physics, Condensed Matter SC Physics GA AC2PJ UT WOS:000332343800002 ER PT J AU Bory, AJM Abouchami, W Galer, SJG Svensson, A Christensen, JN Biscaye, PE AF Bory, Aloys J. -M. Abouchami, Wafa Galer, Stephen J. G. Svensson, Anders Christensen, John N. Biscaye, Pierre E. TI A Chinese Imprint in Insoluble Pollutants Recently Deposited in Central Greenland As Indicated by Lead Isotopes SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ICE CORE; MINERAL DUST; ARCTIC SNOW; POLLUTION; PB; VARIABILITY; ERUPTION; SHEET; PROVENANCE; SIGNATURES AB A unique similar to 10 year record of the lead isotopic composition of airborne insoluble particulate matter deposited in central Greenland was extracted from recent snow layers at NorthGRIP (75.1 degrees N, 042.3 degrees W; elevation 2,959 m), spanning the years 1989-2001. Comparison with lead isotopic signatures of both natural and anthropogenic northern hemisphere (NH) aerosol sources shows that human activities must have accounted for most of the insoluble lead deposited on Greenland during the late 1990s, exceeding by far the natural contribution from large Asian mineral dust inputs. Lead isotopes imply predominance with time of European/Canadian sources over U.S.-derived lead, with an admixed signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter shows a marked seasonal increase during spring. Our record also suggests that China's weight in the overall supply of insoluble pollutants deposited on Greenland was growing over the past decade of the 20th century. C1 [Bory, Aloys J. -M.; Biscaye, Pierre E.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Abouchami, Wafa; Galer, Stephen J. G.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Svensson, Anders] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Christensen, John N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bory, AJM (reprint author), Univ Lille 1, UMR CNRS Geosyst 8217, F-59655 Villeneuve Dascq, France. EM aloys.bory@univ-lille1.fr RI Svensson, Anders/A-2643-2010; Christensen, John/D-1475-2015 OI Svensson, Anders/0000-0002-4364-6085; FU National Science Foundation [OPP96-16146]; University of California Ernest Orlando Lawrence Berkeley National Laboratory (DOE) [DE-AC03-76SF00098]; Vetlesen Foundation; National Oceanographic and Atmospheric Administration [NA77RJ0453 UCSIO PO 10156283] FX This work was supported by the National Science Foundation under (grant OPP96-16146), with additional funds from the University of California Ernest Orlando Lawrence Berkeley National Laboratory (DOE contract DE-AC03-76SF00098), from the Vetlesen Foundation, and from the National Oceanographic and Atmospheric Administration by cooperative agreement (grant NA77RJ0453 UCSIO PO 10156283). This manuscript benefited from comments by two anonymous reviewers. This is LDEO contribution 7745. NR 48 TC 5 Z9 5 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 1451 EP 1457 DI 10.1021/es4035655 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100014 PM 24377320 ER PT J AU Latta, DE Mishra, B Cook, RE Kemner, KM Boyanov, MI AF Latta, Drew E. Mishra, Bhoopesh Cook, Russell E. Kemner, Kenneth M. Boyanov, Maxim I. TI Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID U(VI) REDUCTION; U-VI; MAGNETITE STOICHIOMETRY; PENTAVALENT URANIUM; URANYL REDUCTION; AQUEOUS-SOLUTION; SPECIATION; PRODUCTS; BIOREDUCTION; UO2 AB Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where U-IV predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed U-IV species following reduction of U-IV. Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, U-IV forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm(-2) and <0.037 U nm(-2), respectively). The uraninite (UO2) form of U-IV predominates only at higher surface loading. U-IV-TiO2 complexes remain stable for at least 12 months, and U-IV-Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed U-IV results from U-IV reduction by Fell or by the reduced electron shuttle AH(2)QDS, suggesting that both abiotic and biotic reduction pathways can produce stable U-IV-mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on U-IV speciation helps explain the presence of nonuraninite U-IV in sediments and has important implications for U transport modeling. C1 [Latta, Drew E.; Kemner, Kenneth M.; Boyanov, Maxim I.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Mishra, Bhoopesh] IIT, Dept Phys, Chicago, IL 60616 USA. [Cook, Russell E.] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. RP Latta, DE (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dlatta@anl.gov; mboyanov@anl.gov RI ID, MRCAT/G-7586-2011 FU DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; DOE; MRCAT/EnviroCAT; Argonne [DE-AC02-06CH11357] FX We thank Michael McCormick at Hamilton College for graciously providing BET surface area analysis for the materials used in this study. We also thank Edward O'Loughlin for insightful discussions and Karen Haugen for editing. This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory supported by the DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science. Use of the Electron Microscopy Center at Argonne and the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. All work at Argonne was under contract DE-AC02-06CH11357. NR 54 TC 17 Z9 17 U1 13 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 1683 EP 1691 DI 10.1021/es4047389 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100041 PM 24404905 ER PT J AU Liu, CX Shang, JY Shan, HM Zachara, JM AF Liu, Chongxuan Shang, Jianying Shan, Huimei Zachara, John M. TI Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CONTAMINATED SEDIMENTS; URANIUM(VI) ADSORPTION; MINERAL ASSEMBLAGES; TRANSPORT MODELS; REACTION-RATES; POROUS-MEDIA; KINETICS; FIELD; DISSOLUTION; DIFFUSION AB The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the U.S. Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those. columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relatively homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly overpredicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains, improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit to a lesser degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field. C1 [Liu, Chongxuan; Shang, Jianying; Shan, Huimei; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Shan, Huimei] China Univ Geosci, Wuhan 430074, Hubei Province, Peoples R China. RP Liu, CX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Chongxuan.Liu@pnnl.gov RI Shang, jianying/E-3787-2013; Liu, Chongxuan/C-5580-2009 OI Shang, jianying/0000-0002-2498-9699; FU DOE Biological and Environmental Research (BER) Division through Subsurface Biogeochemical Research Program, Science Focus Area at Pacific Northwest National Laboratory (PNNL); DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; DOE/BER; PNNL FX This research was supported by the DOE Biological and Environmental Research (BER) Division through Subsurface Biogeochemical Research Program, Science Focus Area at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. Part of the research was performed using Environmental Molecular Science Laboratory, a national user facility sponsored by the DOE/BER and located at PNNL. NR 38 TC 9 Z9 9 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 1745 EP 1752 DI 10.1021/es404224j PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100048 PM 24377314 ER PT J AU Justicia-Leon, SD Higgins, S Mack, EE Griffiths, DR Tang, SQ Edwards, EA Loffler, FE AF Justicia-Leon, Shandra D. Higgins, Steven Mack, E. Erin Griffiths, Daniel R. Tang, Shuiquan Edwards, Elizabeth A. Loeffler, Frank E. TI Bioaugmentation with Distinct Dehalobacter Strains Achieves Chloroform Detoxification in Microcosms SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID STRICTLY ANAEROBIC BACTERIUM; CARBON-TETRACHLORIDE; REDUCTIVE DECHLORINATION; BIOTRANSFORMATION RATES; METHANOGENIC CONDITIONS; ENRICHMENT CULTURE; DICHLOROMETHANE; TRICHLOROETHENE; BIODEGRADATION; RESPIRATION AB Chloroform (CF) is a widespread groundwater contaminant not susceptible to aerobic degradation. Under anoxic conditions, CF can undergo abiotic and cometabolic transformation but detoxification is generally not achieved. The recent discovery of distinct Dehalobacter strains that respire CF to dichloromethane (DCM) and ferment DCM to nonchlorinated products promises that bioremediation of CF plumes is feasible. To track both strains, 16S rRNA gene-based qPCR assays specific for either Dehalobacter strain were designed and validated. A laboratory treatability study explored the value of bioaugmentation and biostimulation to achieve CF detoxification using anoxic microcosms established with aquifer material from a CF-contaminated site. Microcosms that received 6% (v/v) of the CF-to-DCM-dechlorinating culture Dhb-CF to achieve an initial Dehalobacter cell titer of 1.6 +/- 0.9 x 10(4) mL(-1) dechlorinated CF to stoichiometric amounts of DCM. Subsequent augmentation with 3% (v/v) of the DCM-degrading consortium RM to an initial Dehalobacter cell abundance of 1.2 +/- 0.2 x 10(2) mL(-1) achieved complete DCM degradation in microcosms amended with 10 mM bicarbonate. Growth of the CF-respiring and the DCM-degrading Dehalobacter populations and detoxification were also observed in microcosms that received both inocula simultaneously. These findings suggest that anaerobic bioremediation (e.g., bioaugmentation) is a possible remedy at CF- and DCM-contaminated sites without CT, which strongly inhibited CF organohalide respiration and DCM organohalide fermentation. C1 [Justicia-Leon, Shandra D.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Higgins, Steven; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Higgins, Steven; Loeffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Mack, E. Erin] EI DuPont de Nemours & Co, Corp Remediat Grp, Newark, DE 19714 USA. [Griffiths, Daniel R.] Parsons Corp, Denver, CO 80203 USA. [Tang, Shuiquan; Edwards, Elizabeth A.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Edwards, Elizabeth A.] Univ Toronto, Dept Cell & Syst Biol, Toronto, ON M5S 3E5, Canada. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee & Oak Ridge Natl Lab UT ORNL, Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu OI Higgins, Steven/0000-0002-5209-5000; Edwards, Elizabeth/0000-0002-8071-338X FU DuPont Company; Strategic Environmental Research and Development Program (SERDP); ASM Robert D. Watkins graduate research fellowship; U.S. Department of Education's Graduate Assistance in Areas of National Need (GAANN) fellowship FX This work was supported by the DuPont Company and we acknowledge members of the DuPont Corporate Remediation Group for fruitful discussions. Additional support was provided by the Strategic Environmental Research and Development Program (SERDP). We thank Dr. Laura Hug and Melanie Duhamel from the University of Toronto for providing the Dhb-CF culture and the plasmid containing the 16S rRNA gene of the CF-to-DCM-respiring Dehalobacter strain. We also thank Dr. Janet Hatt, Dr. Kirsti M. Ritalahti, and Dr. Claribel Cruz-Garcia for assistance with the design of Dehalobacter-specific primers and probes. Shandra D. Justicia-Leon acknowledges financial support through the ASM Robert D. Watkins graduate research fellowship and the U.S. Department of Education's Graduate Assistance in Areas of National Need (GAANN) fellowship. NR 51 TC 9 Z9 9 U1 1 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 1851 EP 1858 DI 10.1021/es403582f PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100061 PM 24392834 ER PT J AU Suss, ME Biesheuvel, PM Baumann, TF Stadermann, M Santiago, JG AF Suss, Matthew E. Biesheuvel, P. M. Baumann, Theodore F. Stadermann, Michael Santiago, Juan G. TI In Situ Spatially and Temporally Resolved Measurements of Salt Concentration between Charging Porous Electrodes for Desalination by Capacitive Deionization SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MESOPOROUS CARBON; CONSTANT-CURRENT; ION-TRANSPORT; WASTE-WATER; MEMBRANE; EFFICIENCY; PERFORMANCE; ELECTROLYTES; OPTIMIZATION; POROSITY AB Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements. C1 [Suss, Matthew E.; Santiago, Juan G.] Stanford Univ, Dept Mech Engn, 440 Escondido Mall, Stanford, CA 94305 USA. [Suss, Matthew E.; Baumann, Theodore F.; Stadermann, Michael] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Biesheuvel, P. M.] Wetsus, Ctr Excellence Sustainable Water Technol, NL-8934 CJ Leeuwarden, Netherlands. [Biesheuvel, P. M.] Wageningen Univ, Dept Environm Technol, NL-6708 WG Wageningen, Netherlands. RP Santiago, JG (reprint author), Stanford Univ, Dept Mech Engn, 440 Escondido Mall, Stanford, CA 94305 USA. RI Biesheuvel, P.M./J-5842-2012 OI Biesheuvel, P.M./0000-0002-5468-559X FU National Science Foundation [0967600]; State of California's Proposition 50 funds; Lawrence Scholar program; Natural Sciences and Engineering Research Council (NSERC) of Canada; US DOE by LLNL [DE-AC52-07NA27344] FX This work was supported by the National Science Foundation under Grant No. 0967600 and State of California's Proposition 50 funds administered by the Department of Water Resources. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. M.E.S. would like to thank the Lawrence Scholar program and the Natural Sciences and Engineering Research Council (NSERC) of Canada for a postgraduate scholarship. Work at LLNL was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 43 TC 23 Z9 24 U1 9 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 2008 EP 2015 DI 10.1021/es403682n PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100078 PM 24433022 ER PT J AU Tenney, CM Cygan, RT AF Tenney, Craig M. Cygan, Randall T. TI Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Interactions and Determination of Contact Angles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GEOLOGIC CO2 STORAGE; INTERFACIAL-TENSION; LINE TENSION; TEMPERATURE CONDITIONS; DYNAMICS SIMULATIONS; WATER DROPLETS; FORCE-FIELD; PORE-SCALE; SEQUESTRATION; MONTMORILLONITE AB Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide. C1 [Tenney, Craig M.; Cygan, Randall T.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Tenney, CM (reprint author), Sandia Natl Labs, 1515 Eubank, Albuquerque, NM 87123 USA. EM cmtenne@sandia.gov FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Thanks go to Ian Bourg (Lawrence Berkeley National Laboratory) and Louise Criscenti (Sandia National Laboratories) for helpful discussions regarding the best simulation methods for the study of contact angle phenomena. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 18 Z9 18 U1 4 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 4 PY 2014 VL 48 IS 3 BP 2035 EP 2042 DI 10.1021/es404075k PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AA3TL UT WOS:000331015100081 PM 24410258 ER PT J AU Nforbi, LNN Talekar, A Lau, KH Chellapa, R Chien, WM Chandra, D Hagemann, H Filinchuk, Y Zhao, JC Levchenko, A AF Nforbi, L. -N. N. Talekar, A. Lau, K. H. Chellapa, R. Chien, W. -M. Chandra, D. Hagemann, H. Filinchuk, Y. Zhao, J. -C. Levchenko, Andre TI Vapor pressure measurements of Mg(BH4)(2) using Knudsen torsion effusion thermo graphic method SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Mg(BH4)(2); Hydrogen desorption under dynamic vacuum; Torsion effusion vapor pressure; measurements; Vaporization thermodynamics ID MAGNESIUM BOROHYDRIDE MG(BH4)(2); WELL-CRYSTALLIZED MG(BH4)(2); METAL BOROHYDRIDES; PHASE-TRANSITIONS; HYDROGEN; 1ST-PRINCIPLES; DECOMPOSITION; DIFFRACTION; CARBONYLS; CR AB The vapor pressure and molecular weight of effusing vapors of alpha, beta, and amorphous Mg(BH4)(2) were determined by Torsion-effusion gravimetric method, under dynamic vacuum. A Cahn balance in the system yielded the rate of the weight loss. Molecular weights measured revealed if the effusion was congruent or there was disproportionation. The vaporization behavior of crystalline Mg(BH4)(2), was measured up to 533 K at pressures of similar to 10(-5) torr. It was found that Mg(BH4)(2) disproportionates to form predominantly H-2 gas (similar to 95%) with a small amount of Mg(BH4)(2) (similar to 5%) in the gas phase. The combined average molecular weight measured is 4.16 g/mol. The equations for vapor pressures for crystalline Mg(BH4)(2) are given by: log P-Total (bar) = 9.2303 - 7286.2/T, log P-mg(BH4)2 (bar) = 8.2515 - 7286.2/T, and log PH, (bar) = 9.1821 - 7286.2/T. The partial pressures of the gaseous species were determined as P-Mg(BH4)2(g)/PT = 0.105 and PH2(g)/PT = 0.895. Enthalpies of vaporization for the effusing gases were calculated to be Delta H = +558.0 kJ/mol H-2 and Delta H = +135 kJ/mol Mg(BH4)2. The standard Gibbs free energy changes, Delta G degrees(kJ/mol), for the complete decomposition reaction (Mg(BH4)(2(s)) -> Mg-(s) + 2B((s)) + 4H(2(g)), sublimation reaction (Mg(BH4)(2) -> Mg(BH4)(2(g))) and the disproportionation reaction for Mg(BH4)(2) are reported in this paper. The decomposition pathway of amorphous Mg(BH4)(2) was also carried out between 388.2 K and 712.8 K showing multistep decomposition of a-Mg(BH4)(2) Different reaction products were obtained depending on the method used in the vaporization experiment. The behavior of the amorphous Mg(BH4)(2)(s) is very different from those for the two crystalline phases (alpha and beta). The vapor pressure behavior and thermodynamics of vaporization of different phases of Mg(BH4)(2) are presented. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Nforbi, L. -N. N.; Talekar, A.; Chien, W. -M.; Chandra, D.] Univ Nevada, Reno, NV 89557 USA. [Chellapa, R.] Los Alamos Natl Lab, Shock & Detonat Phys WX 9, Los Alamos, NM 87545 USA. [Lau, K. H.] SRI Int, Menlo Pk, CA 94025 USA. [Hagemann, H.] Univ Geneva, Dept Chem, CH-1211 Geneva 4, Switzerland. [Zhao, J. -C.] Ohio State Univ, Columbus, OH 43210 USA. [Levchenko, Andre] Setaram Inc, Newark, CA 94560 USA. [Filinchuk, Y.] Catholic Univ Louvain, B-1348 Louvain, Belgium. RP Chandra, D (reprint author), Univ Nevada, MS 388, Reno, NV 89557 USA. EM dchandra@unr.edu RI Zhao, Ji-Cheng (JC)/H-4387-2012 OI Zhao, Ji-Cheng (JC)/0000-0002-4426-1080 FU Intel Corporation FX We greatly appreciate the financial support of the Intel Corporation. We particularly acknowledge, Murli Tirumala and Daryl Nelson for simulating discussions. We also thank Setaram Instruments for helping us with TGA experiments. NR 51 TC 3 Z9 3 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 4 PY 2014 VL 39 IS 5 BP 2175 EP 2186 DI 10.1016/j.ijhydene.2013.11.071 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AA8KQ UT WOS:000331344800029 ER PT J AU He, WD Lin, X Lv, WQ Dickerson, JH AF He, Weidong Lin, Xiao Lv, Weiqiang Dickerson, James H. TI Electrochemical devices with optimized gas tightness for the diffusivity measurement in fuel cells SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Fuel cells; Diffusivities; Gas tightness; Limiting current densities; Electrode thicknesses; Concentration polarizations ID HIGH-PERFORMANCE; SENSOR; ANODE; POLARIZATION; TEMPERATURE; ELECTRODES; CATHODE; SOFCS AB The technique allowing for direct gas diffusivity measurement in fuel cells has been advanced rapidly in recent years. Such development has largely improved the accuracy in the evaluation of fuel cell limiting current density (LCD) and overall concentration polarization (CP). However, electrolyte discs were employed in all the previous gas diffusivity electrochemical devices, which inevitably induced gas leak in the gas diffusivity measurement. In this report, quantitative analysis is performed to evaluate the correlation between gas leak and the important fuel cell parameters including electrode diffusivity, LCD and CP. To avoid gas leak, electrochemical devices without any electrolyte discs is then proposed. Our quantitative study and the proposed devices facilitate the accurate analysis on the electrochemical performance of a fuel cell system and the development of highly-efficient fuel cells. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [He, Weidong; Lv, Weiqiang] Univ Elect Sci & Technol China, Sch Energy Sci & Engn, Chengdu 611731, Peoples R China. [Lin, Xiao] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China. [Lin, Xiao] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Lv, Weiqiang] Hong Kong Univ Sci & Technol, Dept Chem, Clear Water Bay, Hong Kong, Peoples R China. [Dickerson, James H.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP He, WD (reprint author), Univ Elect Sci & Technol China, Sch Energy Sci & Engn, Chengdu 611731, Peoples R China. EM weidong.he@uestc.edu.cn RI Dickerson, James/F-7950-2013; Lin, Xiao/B-5055-2009 OI Dickerson, James/0000-0001-9636-6303; FU UESTC new faculty startup fund FX The work is supported in part by the UESTC new faculty startup fund. The authors thank Professor John B. Good-enough at UT Austin for his insightful discussions. NR 19 TC 2 Z9 2 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 4 PY 2014 VL 39 IS 5 BP 2334 EP 2339 DI 10.1016/j.ijhydene.2013.11.110 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA AA8KQ UT WOS:000331344800045 ER PT J AU Ding, Y Chen, CC Zeng, QS Kim, HS Han, MJ Balasubramanian, M Gordon, R Li, FF Bai, LG Popov, D Heald, SM Gog, T Mao, HK van Veenendaal, M AF Ding, Yang Chen, Cheng-Chien Zeng, Qiaoshi Kim, Heung-Sik Han, Myung Joon Balasubramanian, Mahalingam Gordon, Robert Li, Fangfei Bai, Ligang Popov, Dimitry Heald, Steve M. Gog, Thomas Mao, Ho-kwang van Veenendaal, Michel TI Novel High-Pressure Monoclinic Metallic Phase of V2O3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID CR-DOPED V2O3; MOTT TRANSITION; INSULATOR-TRANSITION; LATTICE DISTORTION; ORBITAL OCCUPATION; CRITICAL-BEHAVIOR; SPIN; MODEL; BAND; HYBRIDIZATION AB Vanadium sesquioxide, V2O3, is a prototypical metal-to-insulator system where, in temperature-dependent studies, the transition always coincides with a corundum-to-monoclinic structural transition. As a function of pressure, V2O3 follows the expected behavior of increased metallicity due to a larger bandwidth for pressures up to 12.5 GPa. Surprisingly, for higher pressures when the structure becomes unstable, the resistance starts to increase. Around 32.5 GPa at 300 K, we observe a novel pressure-induced corundum-to-monoclinic transition between two metallic phases, showing that the structural phase transition can be decoupled from the metal-insulator transition. Using x-ray Raman scattering, we find that screening effects, which are strong in the corundum phase, become weakened at high pressures. Theoretical calculations indicate that this can be related to a decrease in coherent quasiparticle strength, suggesting that the high-pressure phase is likely a critical correlated metal, on the verge of Mott-insulating behavior. C1 [Ding, Yang; Chen, Cheng-Chien; Balasubramanian, Mahalingam; Heald, Steve M.; Gog, Thomas; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zeng, Qiaoshi] Stanford Univ, Stanford, CA 94305 USA. [Kim, Heung-Sik; Han, Myung Joon] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Gordon, Robert] PNCSRF, APS Sect 20, Argonne, IL 60439 USA. [Li, Fangfei; Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, HPSynC, Argonne, IL 60439 USA. [Li, Fangfei] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Bai, Ligang] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Bai, Ligang] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Popov, Dimitry; Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Mao, Ho-kwang] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [van Veenendaal, Michel] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. RP Ding, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM yangding@aps.anl.gov RI Han, Myung Joon/H-7104-2012; Ding, Yang/K-1995-2014; Bai, Ligang/E-9371-2015; Zeng, Qiaoshi/I-8688-2012 OI Han, Myung Joon/0000-0002-8089-7991; Ding, Yang/0000-0002-8845-4618; Zeng, Qiaoshi/0000-0001-5960-1378 FU EFree, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, and Office of Basic Energy Sciences (BES) [DESC0001057]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-FG02-03ER46097]; NSF; NSERC (Canada); University of Washington; Canadian Light Source; Advanced Photon Source; U.S. DOE [DE-AC02-06CH11357]; Aneesur Rahman Postdoctoral Fellowship Program at ANL; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001057]; NIU Institute for Nanoscience, Engineering and Technology; DOE [DE-AC02-05CH11231] FX We thank Dr. S. Tkachev for helium gas loading in the diffraction experiments. This research was supported in part by EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, and Office of Basic Energy Sciences (BES) under Award No. DESC0001057. The diffraction measurements were carried out at HPCAT sector 16, and the x-ray Raman scattering measurements were carried out using the LERIX end station at sector 20 (PNC/XSD). HP-CAT operations was supported by DOE-NNSA under Award No. DE-NA0001974, and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. PNC/XSD facilities, and research at these facilities were supported by DOE-BES, a Major Resources Support grant from NSERC (Canada), the University of Washington, the Canadian Light Source, and the Advanced Photon Source. Use of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. C. C. C. was supported by the Aneesur Rahman Postdoctoral Fellowship Program at ANL. H. K. Mao was supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001057. M. v. V was supported by DOE-BES under Award No. DE-FG02-03ER46097 and the NIU Institute for Nanoscience, Engineering and Technology. The simulations were performed at NERSC-supported by DOE under Contract No. DE-AC02-05CH11231. NR 54 TC 22 Z9 22 U1 6 U2 94 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2014 VL 112 IS 5 AR 056401 DI 10.1103/PhysRevLett.112.056401 PG 6 WC Physics, Multidisciplinary SC Physics GA AB7DK UT WOS:000331949300002 PM 24580615 ER PT J AU Pujades, E Vazquez-Sune, E Carrera, J Vilarrasa, V De Simone, S Jurado, A Ledesma, A Ramos, G Lloret, A AF Pujades, Estanislao Vazquez-Sune, Enric Carrera, Jesus Vilarrasa, Victor De Simone, Silvia Jurado, Anna Ledesma, Alberto Ramos, Gonzalo Lloret, Antonio TI Deep enclosures versus pumping to reduce settlements during shaft excavations SO ENGINEERING GEOLOGY LA English DT Article DE Shaft; Excavation; Dewatering; Settlement; Jet-grouting; Diaphragm walls ID STEADY-STATE CONDITIONS; AQUIFER PARAMETERS; DIAPHRAGM WALLS; SALINE MEDIA; SOFT SOIL; JET; GROUNDWATER; TRANSIENT; DESIGN; CONSTRUCTION AB Deep excavations in aquifers may be constructed by combining pumping with the cut and cover method. The enclosures are often deepened more than structurally needed, in order to diminish the risk of heave or fluidisation inside the excavation, and to reduce pumping rates and the associated settlements outside jet-grouting piles are sometimes adopted for lengthening. We analysed the water-proofing efficiency of jet-grouting and the need for water isolation in preconsolidated sediments. We used data obtained from two shaft excavations during the construction of the high speed train tunnel in Barcelona, located adjacent to the Sagrada Familia Basilica. Jet-grouting was characterised using pumping tests before and after the construction of the enclosure. The effectiveness of deepened enclosures was evaluated by comparing settlements caused and discharges required for several dewatering scenarios. Differences between them lie in the depth of the enclosures. Settlements were calculated analytically, using the drawdown obtained from a hydrogeological model, and numerically employing a hydro-mechanical model. Results show that jet-grouting reduced the permeability of the soil (90% reduction, from 5.5 to 0.6 m/d). However, this reduction only affected the pile area, so that the necessary pumping rate and the settlements outside the enclosure were only reduced by 40%. Results also show that settlements due to groundwater pumping are fairly smooth (i.e., differential settlements are small) with low absolute values. Moreover, they recover when pumping ceases. This rather elastic and stiff behaviour reflects the preconsolidated nature of the sediments in Barcelona and the fact that drawdowns concentrate at depth, where the soil is most compact, causing little change in effective stress near the soil surface. Under these conditions, pumping does not pose a serious risk to settlements, and excavation costs can be lowered by constructing the enclosure at the minimum depth required structurally. Also, an intense control of the pumping process may help reducing the conventional safety factors against heave. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pujades, Estanislao; Vazquez-Sune, Enric; Carrera, Jesus; Vilarrasa, Victor; De Simone, Silvia; Jurado, Anna] CSIC, Inst Environm Assessment & Water Res IDAEA, GHS, Barcelona, Spain. [Pujades, Estanislao; De Simone, Silvia; Jurado, Anna] Univ Politecn Cataluna, UPC BarcelonaTech, Dept Geotech Engn & Geosci, GHS, Barcelona, Spain. [Vilarrasa, Victor] LBNL, Berkeley, CA 94720 USA. [Ledesma, Alberto; Lloret, Antonio] Univ Politecn Cataluna, UPC BarcelonaTech, Dept Geotech Engn & Geosci, Barcelona, Spain. [Ramos, Gonzalo] Univ Politecn Cataluna, UPC BarcelonaTech, Dept Construct Engn, Barcelona, Spain. RP Pujades, E (reprint author), CSIC, Inst Environm Assessment & Water Res IDAEA, GHS, Barcelona, Spain. EM estanislao.pujades@gmail.com RI Lloret Morancho, Antonio/L-5349-2014; Ledesma, Alberto/I-1032-2015; Vilarrasa, Victor/A-1700-2016; Vazquez-Sune, Enric/G-2501-2016; De Simone, Silvia/S-4915-2016; OI Lloret Morancho, Antonio/0000-0001-7991-8487; Ledesma, Alberto/0000-0003-3321-3849; Vilarrasa, Victor/0000-0003-1169-4469; Pujades, Estanislao/0000-0002-2604-5376; Vazquez-Sune, Enric/0000-0001-7022-2192; De Simone, Silvia/0000-0002-3647-7869; Ramos Schneider, Gonzalo/0000-0002-7263-8471; Jurado, Anna/0000-0003-1683-7908 FU Spanish Ministry of Science and Innovation [CGL2007-66748, BIA2010-20244]; Generalitat de Catalunya (Grup Consolidat de Recerca: Grup d'Hidrologia Subterrania) [2009-SGR-1057]; AGAUR (Generalitat de Catalunya) FX The authors would like to acknowledge ADIF (Administration), SACYR (construction company) and INTECSA-INARSA (technical assistance), for their support throughout the hydrogeological monitoring of the civil works. The authors were appointed by ADIE as external advisors during the construction of the tunnel. Additional funding was provided by Spanish Ministry of Science and Innovation (HEROS project: CGL2007-66748 and MEPONE project: BIA2010-20244); and the Generalitat de Catalunya (Grup Consolidat de Recerca: Grup d'Hidrologia Subterrania, 2009-SGR-1057). E. Pujades and S. De Simone gratefully acknowledge the financial support from the AGAUR (Generalitat de Catalunya) through "the grant for universities and research centres for the recruitment of new research personnel (FI-DGR 2011- FI-DGR 2012)". NR 54 TC 13 Z9 13 U1 3 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0013-7952 EI 1872-6917 J9 ENG GEOL JI Eng. Geol. PD FEB 4 PY 2014 VL 169 BP 100 EP 111 DI 10.1016/j.enggeo.2013.11.017 PG 12 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA AA5SS UT WOS:000331160500010 ER PT J AU Lu, P Zhou, L Kramer, MJ Smith, DJ AF Lu, Ping Zhou, Lin Kramer, M. J. Smith, David J. TI Atomic-scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-ray Spectroscopy SO SCIENTIFIC REPORTS LA English DT Article ID SYSTEM; FE; CO AB Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24-Fe0.40Co0.60 ordering and the other is the L2(1) phase with Ni0.48Co0.52 at A-sites, Al at B-I-sites and Fe0.20Ti0.80 at B-II-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems. C1 [Lu, Ping] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhou, Lin; Kramer, M. J.] Ames Lab, Ames, IA 50014 USA. [Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM plu@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy-Energy Efficiency and Renewable Energy, Vehicles Technology Office, PEEM program [DE-AC02-07CH11358] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work at Ames Laboratory was supported by the Department of Energy-Energy Efficiency and Renewable Energy, Vehicles Technology Office, PEEM program, under Contract No. DE-AC02-07CH11358 for the operation of Ames Laboratory (USDOE). The authors thank Arnold Magnetic Technologies Corp for providing the alloy used in this study and Haley Dillon for her assistance in preparing the samples for TEM evaluation. NR 19 TC 20 Z9 20 U1 5 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 4 PY 2014 VL 4 AR 3945 DI 10.1038/srep03945 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA6OJ UT WOS:000331217400001 PM 24492747 ER PT J AU Wall, ME Adams, PD Fraser, JS Sauter, NK AF Wall, Michael E. Adams, Paul D. Fraser, James S. Sauter, Nicholas K. TI Diffuse X-Ray Scattering to Model Protein Motions SO STRUCTURE LA English DT News Item ID STAPHYLOCOCCAL NUCLEASE; MACROMOLECULAR CRYSTALS; LYSOZYME CRYSTALS; DYNAMICS; CRYSTALLOGRAPHY; SIMULATION; TROPOMYOSIN; DETECTORS; MOVEMENTS; NETWORKS C1 [Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Adams, Paul D.; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fraser, James S.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM mewall@lanl.gov RI Sauter, Nicholas/K-3430-2012; Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Fraser, James/0000-0002-5080-2859; Alexandrov, Ludmil/0000-0003-3596-4515 FU Department of Energy through the Laboratory-Directed Research and Development Program at Los Alamos National Laboratory; National Institutes of Health [1P01GM063210, DP5OD009180, GM095887]; QB3; Department of Energy [DE-AC02-05CH11231.] FX We are grateful to the participants of the workshop, both for their insights into diffuse scattering and for a highly stimulating meeting. MEW. is supported by the Department of Energy through the Laboratory-Directed Research and Development Program at Los Alamos National Laboratory; P.D.A. is supported by National Institutes of Health grant 1P01GM063210; J.S.F. is supported by a National Institutes of Health Early Independence Award (DP5OD009180) and QB3; and N.K.S. is supported by National Institutes of Health grant GM095887. The Advanced Light Source User Meeting was supported by the Department of Energy under Contract DE-AC02-05CH11231. NR 41 TC 16 Z9 16 U1 0 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD FEB 4 PY 2014 VL 22 IS 2 BP 182 EP 184 DI 10.1016/j.str.2014.01.002 PG 3 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AA3VH UT WOS:000331022300003 PM 24507780 ER PT J AU Takei, K Yu, ZB Zheng, M Ota, H Takahashi, T Javey, A AF Takei, Kuniharu Yu, Zhibin Zheng, Maxwell Ota, Hiroki Takahashi, Toshitake Javey, Ali TI Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE strain sensors; artificial devices; flexible electronics; nano materials ID STRAIN SENSORS; PRESSURE; SKIN; CONDUCTORS; GRAPHENE AB Mammalian whiskers present an important class of tactile sensors that complement the functionalities of skin for detecting wind with high sensitivity and navigation around local obstacles. Here, we report electronic whiskers based on highly tunable composite films of carbon nanotubes and silver nanoparticles that are patterned on high-aspect-ratio elastic fibers. The nanotubes form a conductive network matrix with excellent bendability, and nanoparticle loading enhances the conductivity and endows the composite with high strain sensitivity. The resistivity of the composites is highly sensitive to strain with a pressure sensitivity of up to similar to 8%/Pa for the whiskers, which is > 10x higher than all previously reported capacitive or resistive pressure sensors. It is notable that the resistivity and sensitivity of the composite films can be readily modulated by a few orders of magnitude by changing the composition ratio of the components, thereby allowing for exploration of whisker sensors with excellent performance. Systems consisting of whisker arrays are fabricated, and as a proof of concept, real-time two-and three-dimensional gas-flow mapping is demonstrated. The ultrahigh sensitivity and ease of fabrication of the demonstrated whiskers may enable a wide range of applications in advanced robotics and human-machine interfacing. C1 [Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU Defense Advanced Research Projects Agency; Defense Sciences Office Maximum Mobility and Manipulation FX This work was funded by Defense Advanced Research Projects Agency, Defense Sciences Office Maximum Mobility and Manipulation. NR 27 TC 44 Z9 45 U1 10 U2 110 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 4 PY 2014 VL 111 IS 5 BP 1703 EP 1707 DI 10.1073/pnas.1317920111 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 302FL UT WOS:000330587600028 PM 24449857 ER PT J AU Bradley, JP Ishii, HA Gillis-Davis, JJ Ciston, J Nielsen, MH Bechtel, HA Martin, MC AF Bradley, John P. Ishii, Hope A. Gillis-Davis, Jeffrey J. Ciston, James Nielsen, Michael H. Bechtel, Hans A. Martin, Michael C. TI Detection of solar wind-produced water in irradiated rims on silicate minerals SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE solar wind radiolysis; prebiotic wate; cosmic dust; astrobiology; aberration-corrected scanning transmission electron microscopy ID ENERGY-LOSS SPECTROSCOPY; LUNAR REGOLITH; COSMIC DUST; SURFACE; HYDROXYL; MOON; PARTICLES; ORIGIN AB The solar wind ( SW), composed of predominantly similar to 1-keV H+ ions, produces amorphous rims up to similar to 150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H+ may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. C1 [Bradley, John P.; Ishii, Hope A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Bradley, John P.; Ishii, Hope A.; Gillis-Davis, Jeffrey J.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Ciston, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Nielsen, Michael H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Nielsen, Michael H.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Bradley, JP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. EM johnbrad@hawaii.edu RI Nielsen, Michael/D-1881-2015; Foundry, Molecular/G-9968-2014 FU National Aeronautics and Space Administration's Cosmochemistry and Laboratory Analysis of Returned Samples (LARS) programs; US Department of Energy [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the National Aeronautics and Space Administration's Cosmochemistry and Laboratory Analysis of Returned Samples (LARS) programs. Portions of this work were performed at Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344 and at the National Center for Electron Microscopy and Advanced Light Source Division, which are supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract DE-AC02-05CH11231. NR 30 TC 11 Z9 12 U1 2 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 4 PY 2014 VL 111 IS 5 BP 1732 EP 1735 DI 10.1073/pnas.1320115111 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 302FL UT WOS:000330587600033 PM 24449869 ER PT J AU Lin, JT Pan, D Davis, SJ Zhang, Q He, KB Wang, C Streets, DG Wuebbles, DJ Guan, DB AF Lin, Jintai Pan, Da Davis, Steven J. Zhang, Qiang He, Kebin Wang, Can Streets, David G. Wuebbles, Donald J. Guan, Dabo TI China's international trade and air pollution in the United States SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE input-output analysis; emission control; international collaboration ID NORTH-AMERICA; CO2 EMISSIONS; OZONE; TRANSPORT; MORTALITY; METAANALYSIS; CONSUMPTION; SATELLITE; AEROSOLS; DIOXIDE AB China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution. C1 [Lin, Jintai; Pan, Da] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China. [Davis, Steven J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Zhang, Qiang; Wang, Can; Guan, Dabo] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China. [He, Kebin; Wang, Can] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [He, Kebin] Collaborat Innovat Ctr Reg Environm Qual, Beijing 100084, Peoples R China. [Streets, David G.] Argonne Natl Lab, Lemont, IL 60439 USA. [Wuebbles, Donald J.] Univ Illinois, Sch Earth Soc & Environm, Dept Atmospher Sci, Urbana, IL 61801 USA. [Guan, Dabo] Univ Leeds, Sch Earth & Environm, Water Leeds, Leeds LS2 9JT, W Yorkshire, England. RP Lin, JT (reprint author), Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China. EM linjt@pku.edu.cn; qiangzhang@tsinghua.edu.cn; hekb@tsinghua.edu.cn RI Zhang, Qiang/D-9034-2012; Lin, Jintai/A-8872-2012; 杨, 宇栋/F-6250-2012; Chem, GEOS/C-5595-2014; OI Lin, Jintai/0000-0002-2362-2940; Davis, Steven/0000-0002-9338-0844; Guan, Dabo/0000-0003-3773-3403 FU National Natural Science Foundation of China [41175127, 41005078, 41222036, 21221004, 41328008, J1103404]; Tsinghua University Initiative Research Program [2011Z01026] FX We thank Michael Prather for comments. This research is supported by the National Natural Science Foundation of China, Grants 41175127, 41005078, 41222036, 21221004, 41328008, and J1103404. The work at Tsinghua University is also supported by the Tsinghua University Initiative Research Program (2011Z01026). NR 38 TC 79 Z9 80 U1 13 U2 112 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 4 PY 2014 VL 111 IS 5 BP 1736 EP 1741 DI 10.1073/pnas.1312860111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 302FL UT WOS:000330587600034 PM 24449863 ER PT J AU Phelan, D Stock, C Rodriguez-Rivera, JA Chi, SX Leao, J Long, XF Xie, YJ Bokov, AA Ye, ZG Ganesh, P Gehring, PM AF Phelan, Daniel Stock, Christopher Rodriguez-Rivera, Jose A. Chi, Songxue Leao, Juscelino Long, Xifa Xie, Yujuan Bokov, Alexei A. Ye, Zuo-Guang Ganesh, Panchapakesan Gehring, Peter M. TI Role of random electric fields in relaxors SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE lead zirconate titanate; piezoelectricity; short-range order; soft modes; neutron scattering ID DIFFUSE-SCATTERING; SINGLE-CRYSTAL; ELECTROMECHANICAL RESPONSE; NEUTRON RESEARCH; NIST CENTER; FERROELECTRICS; PBMG1/3TA2/3O3; PEROVSKITES; INSTABILITY AB PbZr(1-x)TixO(3) (PZT) and Pb(Mg1/3Nb2/3)(1-x)TixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. C1 [Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leao, Juscelino; Gehring, Peter M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Stock, Christopher] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Rodriguez-Rivera, Jose A.; Chi, Songxue] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang] Simon Fraser Univ, LABS 4D, Burnaby, BC V5A 1S6, Canada. [Ganesh, Panchapakesan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Gehring, PM (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM peter.gehring@nist.gov RI Bokov, Alexei/C-6924-2008; Rodriguez-Rivera, Jose/A-4872-2013; Ganesh, Panchapakesan/E-3435-2012; Chi, Songxue/A-6713-2013 OI Bokov, Alexei/0000-0003-1126-3378; Rodriguez-Rivera, Jose/0000-0002-8633-8314; Ganesh, Panchapakesan/0000-0002-7170-2902; Chi, Songxue/0000-0002-3851-9153 FU National Science Foundation [DMR-0944772]; US Office of Naval Research [N00014-11-1-0552, N00014-12-1-1045]; Natural Science and Engineering Research Council of Canada; Carnegie Trust; Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors acknowledge fruitful discussions with R.E. Erwin, D.K. Singh, and L. Kneller regarding the use and fabrication of a single-crystal silicon sample mount. This work used facilities supported in part by the National Science Foundation under Agreement DMR-0944772. The work at Simon Fraser University was supported by the US Office of Naval Research (Grants N00014-11-1-0552 and N00014-12-1-1045) and the Natural Science and Engineering Research Council of Canada. C.S. was partially supported by the Carnegie Trust. P.G. was supported by the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 60 TC 27 Z9 28 U1 9 U2 60 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 4 PY 2014 VL 111 IS 5 BP 1754 EP 1759 DI 10.1073/pnas.1314780111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 302FL UT WOS:000330587600037 PM 24449912 ER PT J AU Reback, ML Buchko, GW Kier, BL Ginovska-Pangovska, B Xiong, YJ Lense, S Hou, JB Roberts, JAS Sorensen, CM Raugei, S Squier, TC Shaw, WJ AF Reback, Matthew L. Buchko, Garry W. Kier, Brandon L. Ginovska-Pangovska, Bojana Xiong, Yijia Lense, Sheri Hou, Jianbo Roberts, John A. S. Sorensen, Christina M. Raugei, Simone Squier, Thomas C. Shaw, Wendy J. TI Enzyme Design from the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE electrocatalysis; hydrogen production; outer coordination sphere; peptide catalysis; synthetic enzymes ID ENANTIOSELECTIVE CATALYSIS; ARTIFICIAL METALLOENZYMES; HYDROGEN-PRODUCTION; H-2 PRODUCTION; METALLOPROTEINS; TECHNOLOGY; OXIDATION; PROTEINS; CLUSTER; RATES AB Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni((P2NPh)-N-Ph)(2)](2+) ((P2NPh)-N-Ph = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its beta-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (approximate to 100,000 s(-1)) is enhanced compared to the parent complex ([Ni((P2NAPPA)-N-Ph)(2)](2+); approximate to 50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality. C1 [Reback, Matthew L.; Buchko, Garry W.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A. S.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Kier, Brandon L.] Univ Washington, Seattle, WA 98195 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wendy.shaw@pnnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU US DOE Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center; US DOE, Office of Science, Office of BES; U.S. DOE's Office of Biological and Environmental Research (BER) program FX The authors would like to thank Dr. Daniel L. Dubois for helpful discussions. This work was funded by the US DOE Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, Office of Science, Office of BES. Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. DOE's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy. NR 38 TC 14 Z9 14 U1 2 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 3 PY 2014 VL 20 IS 6 BP 1510 EP 1514 DI 10.1002/chem.201303976 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AI9XN UT WOS:000337300000006 PM 24443316 ER PT J AU Wang, CY Lin, CK Zhang, LH Quan, ZW Sun, K Zhao, B Wang, F Porter, N Wang, YX Fang, JY AF Wang, Chenyu Lin, Cuikun Zhang, Lihua Quan, Zewei Sun, Kai Zhao, Bo Wang, Feng Porter, Nathan Wang, Yuxuan Fang, Jiye TI Pt3Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE anisotropic overgrowth; catalytic activity; hydrogenation; nanostructures; platinum ID HIGH-INDEX FACETS; METHANOL OXIDATION ACTIVITY; OXYGEN REDUCTION; PLATINUM NANOCATALYSTS; METAL NANOSTRUCTURES; NANOCRYSTALS; SHAPE; PALLADIUM; SURFACE; NANOPARTICLES AB We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size. C1 [Wang, Chenyu; Quan, Zewei; Porter, Nathan; Fang, Jiye] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Lin, Cuikun; Zhao, Bo] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sun, Kai] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Wang, Feng] Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA. [Wang, Yuxuan; Fang, Jiye] SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA. RP Fang, JY (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. EM jfang@binghamton.edu RI Quan, Zewei/G-4759-2011; Zhang, Lihua/F-4502-2014; Wang, Yuxuan/P-4470-2014 FU Department of Energy; NSF [CHE-0840507]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Analytical and Diagnostics Laboratory (ADL) at Binghamton University FX This work was partially supported by Department of Energy and Analytical and Diagnostics Laboratory (ADL) at Binghamton University. The authors thank Dr. Jurgen Schulte for his assistance with NMR measurements. Dr. P. Stanley May and Dr. Mary T. Berry at University of South Dakota are gratefully acknowledged for their help in using the TEM facility that was obtained through an NSF grant (CHE-0840507). The HRTEM and STEM/HAADF-STEM-EDS studies were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 58 TC 11 Z9 11 U1 6 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 3 PY 2014 VL 20 IS 6 BP 1753 EP 1759 DI 10.1002/chem.201301724 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AI9XN UT WOS:000337300000034 PM 24382713 ER PT J AU Abdul-Jabbar, NM Ercius, P Gronsky, R Bourret-Courchesne, ED Wirth, BD AF Abdul-Jabbar, N. M. Ercius, P. Gronsky, R. Bourret-Courchesne, E. D. Wirth, B. D. TI Probing the local environment of two-dimensional ordered vacancy structures in Ga2SeTe2 via aberration-corrected electron microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-CHANGE MATERIALS; X-RAY; MODULATED STRUCTURE; SEMICONDUCTORS; DEFECT; GA2TE3 AB There has been considerable interest in chalcogenide alloys with high concentrations of native vacancies that lead to properties desirable for thermoelectric and phase-change materials. Recently, vacancy ordering has been identified as the mechanism for metal-insulator transitions observed in GeSb2Te4 and an unexpectedly low thermal conductivity in Ga2Te3. Here, we report the direct observation of vacancy ordering in Ga2SeTe2 utilizing aberration-corrected electron microscopy. Images reveal a cation-anion dumbbell inversion associated with the accommodation of vacancy ordering across the entire crystal. The result is a striking example of the interplay between native defects and local structure. (C) 2014 AIP Publishing LLC. C1 [Abdul-Jabbar, N. M.; Wirth, B. D.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Abdul-Jabbar, N. M.; Bourret-Courchesne, E. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ercius, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Gronsky, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wirth, B. D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Abdul-Jabbar, NM (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RI Wirth, Brian/O-4878-2015; Foundry, Molecular/G-9968-2014 OI Wirth, Brian/0000-0002-0395-0285; FU Nuclear Nonproliferation International Safeguards Graduate Fellowship Program; National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI); Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC0205CH11231]; U.S. Department of Energy/NNSA/NA22; Lawrence Berkeley National Laboratory [AC0205CH11231] FX We thank G. Gundiah (LBNL) and G.-Y. Huang (UT Knoxville) for useful discussions. We also acknowledge M. Libbee (LBNL-NCEM) for her crucial role in sample preparation. N.M.A. acknowledges support from the Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). This work was performed at NCEM, which was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. This work was supported by the U.S. Department of Energy/NNSA/NA22 and carried out at the Lawrence Berkeley National Laboratory under Contract No. AC0205CH11231. NR 17 TC 3 Z9 3 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 3 PY 2014 VL 104 IS 5 AR 051904 DI 10.1063/1.4863974 PG 3 WC Physics, Applied SC Physics GA AB2TD UT WOS:000331644100043 ER PT J AU Ding, J Cheng, YQ AF Ding, Jun Cheng, Yongqiang TI Charge transfer and atomic-level pressure in metallic glasses SO APPLIED PHYSICS LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; ELECTRONEGATIVITY; HEAT; DENSITY; ALLOYS; ORDER AB This paper presents a systematic study on the charge transfer and ionicity in various metallic-glass forming systems, as well as its relationship with other atomic-level structure indicators, using the Bader analysis method and molecular dynamics simulation. It is shown that in a binary or multicomponent system, the chemical effects (when more than one elements present) appear to play a more important role in setting the absolute level of the atomic-level pressure, compared to the topological fluctuation. (C) 2014 AIP Publishing LLC. C1 [Ding, Jun] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Cheng, Yongqiang] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Ding, J (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM ding@jhu.edu RI Cheng, Yongqiang/F-6567-2010; Ding, Jun/K-1989-2012 OI Ding, Jun/0000-0002-4091-8663 FU U.S.-DOE-BES, Division of Materials Sciences and Engineering [DE-FG02-09ER46056]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported at JHU by U.S.-DOE-BES, Division of Materials Sciences and Engineering, under Contract No. DE-FG02-09ER46056. The calculations were performed at the NERSC supercomputers. Y.Q.C. was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 32 TC 9 Z9 9 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 3 PY 2014 VL 104 IS 5 AR 051903 DI 10.1063/1.4863970 PG 4 WC Physics, Applied SC Physics GA AB2TD UT WOS:000331644100042 ER PT J AU Wu, Y Liu, WH Wang, XL Ma, D Stoica, AD Nieh, TG He, ZB Lu, ZP AF Wu, Y. Liu, W. H. Wang, X. L. Ma, D. Stoica, A. D. Nieh, T. G. He, Z. B. Lu, Z. P. TI In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLID-SOLUTION PHASE; STAINLESS-STEEL; PLASTIC-DEFORMATION; ELASTIC-CONSTANTS; FLOW-STRESS; X-RAY; TEMPERATURE; STABILITY; EVOLUTION; VULCAN AB Deformation behavior of a high-entropy alloy (HEA) was investigated by in situ tensile deformation with neutron diffraction. It was found that the face-centered cubic (FCC) HEA alloy showed strong crystal elastic and plastic anisotropy, and the evolution of its lattice strains and textures were similar to those observed in conventional FCC metals and alloys. Our results demonstrated that, in spite of chemical complexity, the multi-component HEA behaved like a simple FCC metal and the deformation was caused by the motion of mixed dislocations. (C) 2014 AIP Publishing LLC. C1 [Wu, Y.; Liu, W. H.; He, Z. B.; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 10083, Peoples R China. [Wang, X. L.] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. [Ma, D.; Stoica, A. D.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Nieh, T. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Lu, ZP (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 10083, Peoples R China. EM luzp@ustb.edu.cn RI Ma, Dong/G-5198-2011; Lu, Zhao-Ping/A-2718-2009; Stoica, Alexandru/K-3614-2013; Wu, Yuan/C-4025-2015; Wang, Xun-Li/C-9636-2010 OI Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134; Wu, Yuan/0000-0001-7857-0247; Wang, Xun-Li/0000-0003-4060-8777 FU National Natural Science Foundation of China [51010001, 51001009, 51371003, 50901006]; 111 Project [B07003]; Program for Changjiang Scholarsand Innovative Research Team in University; Fundamental Research Funds for the Central Universities; Center for Advanced Structure Materials, City University of Hong Kong; NSF [DMR-0905979]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported in part by the National Natural Science Foundation of China (Grant Nos. 51010001, 51001009, 51371003, and 50901006), the 111 Project (B07003) and the Program for Changjiang Scholarsand Innovative Research Team in University. Y.W. acknowledges the financial support from "the Fundamental Research Funds for the Central Universities" X.L.W. acknowledges the support by Center for Advanced Structure Materials, City University of Hong Kong. T.G.N. was supported by NSF Contract No. DMR-0905979. Part of the Research conducted on the VULCAN diffractometer at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 37 TC 20 Z9 20 U1 15 U2 113 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 3 PY 2014 VL 104 IS 5 AR 051910 DI 10.1063/1.4863748 PG 5 WC Physics, Applied SC Physics GA AB2TD UT WOS:000331644100049 ER PT J AU Stockem, A Fiuza, F Bret, A Fonseca, RA Silva, LO AF Stockem, A. Fiuza, F. Bret, A. Fonseca, R. A. Silva, L. O. TI Exploring the nature of collisionless shocks under laboratory conditions SO SCIENTIFIC REPORTS LA English DT Article ID PLASMA; ACCELERATION; WAVES; INSTABILITY; MECHANISM AB Collisionless shocks are pervasive in astrophysics and they are critical to understand cosmic ray acceleration. Laboratory experiments with intense lasers are now opening the way to explore and characterise the underlying microphysics, which determine the acceleration process of collisionless shocks. We determine the shock character - electrostatic or electromagnetic - based on the stability of electrostatic shocks to transverse electromagnetic fluctuations as a function of the electron temperature and flow velocity of the plasma components, and we compare the analytical model with particle-in-cell simulations. By making the connection with the laser parameters driving the plasma flows, we demonstrate that shocks with different and distinct underlying microphysics can be explored in the laboratory with state-of-the-art laser systems. C1 [Stockem, A.; Fonseca, R. A.; Silva, L. O.] Univ Lisbon, Inst Super Tecn, Lab Associado, GoLP Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal. [Fiuza, F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bret, A.] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain. [Bret, A.] Inst Invest Energet & Aplicac Ind, Ciudad Real 13071, Spain. [Fonseca, R. A.] Univ Lisbon, ISCTE Inst, P-1699 Lisbon, Portugal. RP Stockem, A (reprint author), Univ Lisbon, Inst Super Tecn, Lab Associado, GoLP Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal. EM anne.stockem@ist.utl.pt; luis.silva@ist.utl.pt RI Fonseca, Ricardo/B-7680-2009; Silva, Luis/C-3169-2009; Bret, Antoine/C-9112-2009 OI Fonseca, Ricardo/0000-0001-6342-6226; Silva, Luis/0000-0003-2906-924X; Bret, Antoine/0000-0003-2030-0046 FU European Research Council [ERC-2010-AdG Grant 267841]; FCT (Portugal) [SFRH/BPD/65008/2009, SFRH/BD/38952/2007, PTDC/FIS/111720/2009]; Spanish Ministerio de Educacion y Ciencia [ENE2009-09276] FX This work was supported by the European Research Council (ERC-2010-AdG Grant 267841), FCT (Portugal) grants SFRH/BPD/65008/2009, SFRH/BD/38952/2007, and PTDC/FIS/111720/2009 and projects ENE2009-09276 of the Spanish Ministerio de Educacion y Ciencia. We acknowledge PRACE for providing access to resource Juqueen based in Germany at Julich Supercomputing Centre and SuperMUC based in Germany at the Leibniz research center. Simulations were performed at the IST cluster (Lisbon, Portugal), the Jugene/Juqueen and SuperMuc supercomputers (Germany). We thank Laurent Gremillet and Charles Ruyer for fruitful discussions on this work. NR 38 TC 28 Z9 28 U1 3 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 3 PY 2014 VL 4 AR 3934 DI 10.1038/srep03934 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA6NQ UT WOS:000331215400005 PM 24488212 ER PT J AU Habel-Rodriguez, D Poineau, F Johnstone, EV Czerwinski, KR Sattelberger, AP Kirk, ML AF Habel-Rodriguez, Diana Poineau, Frederic Johnstone, Erik V. Czerwinski, Kenneth R. Sattelberger, Alfred P. Kirk, Martin L. TI Magnetic Circular Dichroism and Electronic Structure of [Re2X4(PMe3)(4)](+) (X = Cl, Br) SO INORGANIC CHEMISTRY LA English DT Article ID METAL-METAL BONDS; QUADRUPLE BONDS; SPECTRA; COMPLEXES; ENERGIES; BAND AB Magnetic circular dichroism (MCD) and electronic absorption spectroscopies have been used to probe the electronic structure of the classical paramagnetic metal-metal-bonded complexes [Re2X4(PMe3)(4)](+) (X = Cl, Br). A violation of the MCD sum rule is observed that indicates the presence of ground-state contributions to the MCD intensity. The z-polarized delta -> delta* band in the near-IR is formally forbidden in MCD but gains intensity through a combination of ground- and excited-state mechanisms to yield a positive C term. C1 [Habel-Rodriguez, Diana; Kirk, Martin L.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Poineau, Frederic; Johnstone, Erik V.; Czerwinski, Kenneth R.; Sattelberger, Alfred P.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Lemont, IL 60439 USA. RP Sattelberger, AP (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM asattelberger@anl.gov; mkirk@unm.edu FU NSF [CHE-1301142]; SISGR Grant (U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences) [47824B] FX M.L.K. acknowledges NSF Grant CHE-1301142 for financial support. K.R.C. acknowledges an SISGR Grant (U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract 47824B) for financial support. We thank Prof. M. D. Hopkins (University of Chicago) and Dr. K. D. John (Los Alamos National Laboratory) for helpful suggestions on the synthesis and purification of 1 and 2. NR 23 TC 2 Z9 2 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 3 PY 2014 VL 53 IS 3 BP 1260 EP 1262 DI 10.1021/ic4028139 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AA0UK UT WOS:000330812700002 PM 24437639 ER PT J AU Maurya, A Thamizhavel, A Provino, A Pani, M Manfrinetti, P Paudyal, D Dhar, SK AF Maurya, Arvind Thamizhavel, Arumugam Provino, Alessia Pani, Marcella Manfrinetti, Pietro Paudyal, Durga Dhar, Sudesh Kumar TI Synthesis, Crystal and Electronic Structure of the Quaternary Magnetic EuTAl4Si2 (T = Rh and Ir) Compounds SO INORGANIC CHEMISTRY LA English DT Article ID INTERMETALLIC COMPOUNDS; SINGLE-CRYSTALS; ALUMINUM; GROWTH; METAL; FLUX AB Single crystals of the quaternary europium compounds EuRhAl4Si2 and EuIrAl4Si2 were synthesized by using the Al Si binary eutectic as a flux. The structure of the two quaternary compounds has been refined by single crystal X-ray diffraction. Both compounds are stoichiometric and adopt an ordered derivative of the ternary KCu4S3 structure type (tetragonal tP8, P4/mmm). The two compounds reported here represent the first example of a quaternary and truly stoichiometric 1:1:4:2 phase crystallizing with this structure type. In light of our present results, the structure of the BaMg4Si3 compound given in literature as representing a new prototype is actually isotypic with the KCu4S3 structure. Local spin density approximation including the Hubbard U parameter (LSDA + U) calculations show that Eu ions are in the divalent state, with a significant hybridization between the Eu 5d, Rh (Ir) 4d (5d), Si 3p and Al 3p states. Magnetic susceptibility measured along the [001] direction confirms the divalent nature of the Eu ions in EuRhAl4Si2 and EuIrAl4Si2, which order magnetically near similar to 11 and similar to 15 K, respectively. C1 [Maurya, Arvind; Thamizhavel, Arumugam; Dhar, Sudesh Kumar] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India. [Provino, Alessia; Pani, Marcella; Manfrinetti, Pietro] Univ Genoa, Dept Chem, I-16146 Genoa, Italy. [Provino, Alessia; Pani, Marcella; Manfrinetti, Pietro] CNR, Inst SPIN, I-16152 Genoa, Italy. [Paudyal, Durga] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Dhar, SK (reprint author), Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM sudesh@tifr.res.in RI Thamizhavel, Arumugam/A-1801-2011 OI Thamizhavel, Arumugam/0000-0003-1679-4370 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The theory part of the work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 22 TC 4 Z9 4 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 3 PY 2014 VL 53 IS 3 BP 1443 EP 1448 DI 10.1021/ic402363s PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AA0UK UT WOS:000330812700023 PM 24446816 ER PT J AU Yakushev, A Gates, JM Turler, A Schadel, M Dullmann, CE Ackermann, D Andersson, LL Block, M Bruchle, W Dvorak, J Eberhardt, K Essel, HG Even, J Forsberg, U Gorshkov, A Graeger, R Gregorich, KE Hartmann, W Herzberg, RD Hessberger, FP Hild, D Hubner, A Jager, E Khuyagbaatar, J Kindler, B Kratz, JV Krier, J Kurz, N Lommel, B Niewisch, LJ Nitsche, H Omtvedt, JP Parr, E Qin, Z Rudolph, D Runke, J Schausten, B Schimpf, E Semchenkov, A Steiner, J Thorle-Pospiech, P Uusitalo, J Wegrzecki, M Wiehl, N AF Yakushev, Alexander Gates, Jacklyn M. Tuerler, Andreas Schaedel, Matthias Duellmann, Christoph E. Ackermann, Dieter Andersson, Lise-Lotte Block, Michael Bruechle, Willy Dvorak, Jan Eberhardt, Klaus Essel, Hans G. Even, Julia Forsberg, Ulrika Gorshkov, Alexander Graeger, Reimar Gregorich, Kenneth E. Hartmann, Willi Herzberg, Rolf-Dietmar Hessberger, Fritz P. Hild, Daniel Huebner, Annett Jaeger, Egon Khuyagbaatar, Jadambaa Kindler, Birgit Kratz, Jens V. Krier, Joerg Kurz, Nikolaus Lommel, Bettina Niewisch, Lorenz J. Nitsche, Heino Omtvedt, Jon Petter Parr, Edward Qin, Zhi Rudolph, Dirk Runke, Joerg Schausten, Brigitta Schimpf, Erwin Semchenkov, Andrey Steiner, Jutta Thoerle-Pospiech, Petra Uusitalo, Juha Wegrzecki, Maciej Wiehl, Norbert TI Superheavy Element Flerovium (Element 114) Is a Volatile Metal SO INORGANIC CHEMISTRY LA English DT Article ID HEAVIEST ELEMENTS; CA-48-INDUCED REACTIONS; ADSORPTION; CHEMISTRY; SURFACES; RADON; MODEL; SEPARATOR; NUMBERS; GASES AB The electron shell structure of superheavy elements, i.e., elements with atomic number Z >= 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p(1/2)(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p(1/2) valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Experimental gas solid chromatography studies on Cn have, indeed, revealed a metal-metal bond formation with Au. In contrast to this, for Fl, the formation of a weak bond upon physisorption on a Au surface was inferred from first experiments. Here, we report on a gas solid chromatography study of the adsorption of Fl on a Au surface. Fl was produced in the nuclear fusion reaction (244)pu(Ca-48, 3-4n)(288,289)Fl and was isolated in-flight from the primary Ca-48 beam in a physical recoil separator. The adsorption behavior of Fl, its nuclear alpha-decay product Cn, their lighter homologues in groups 14 and 12, i.e., Pb and Hg, and the noble gas Rn were studied simultaneously by isothermal gas chromatography and thermochromatography. Two Fl atoms were detected. They adsorbed on a Au surface at room temperature in the first, isothermal part, but not as readily as Pb and Hg. The observed adsorption behavior of Fl points to a higher inertness compared to its nearest homologue in the group, Pb. However, the measured lower limit for the adsorption enthalpy of Fl on a Au surface points to the formation of a metal-metal bond of Fl with Au. Fl is the least reactive element in the group, but still a metal. C1 [Yakushev, Alexander; Gates, Jacklyn M.; Tuerler, Andreas; Gorshkov, Alexander; Graeger, Reimar] Tech Univ Munich, Inst Radiochem, D-85748 Garching, Germany. [Gates, Jacklyn M.; Schaedel, Matthias; Duellmann, Christoph E.; Ackermann, Dieter; Block, Michael; Bruechle, Willy; Essel, Hans G.; Hartmann, Willi; Hessberger, Fritz P.; Huebner, Annett; Jaeger, Egon; Khuyagbaatar, Jadambaa; Kindler, Birgit; Krier, Joerg; Kurz, Nikolaus; Lommel, Bettina; Runke, Joerg; Schausten, Brigitta; Schimpf, Erwin; Steiner, Jutta] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Duellmann, Christoph E.; Eberhardt, Klaus; Even, Julia; Hild, Daniel; Kratz, Jens V.; Niewisch, Lorenz J.; Thoerle-Pospiech, Petra; Wiehl, Norbert] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55099 Mainz, Germany. [Duellmann, Christoph E.; Hessberger, Fritz P.; Khuyagbaatar, Jadambaa; Thoerle-Pospiech, Petra; Wiehl, Norbert] Helmholtz Inst Mainz, Sekt SHE Chem, D-55099 Mainz, Germany. [Andersson, Lise-Lotte; Herzberg, Rolf-Dietmar; Parr, Edward] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Dvorak, Jan; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Dvorak, Jan; Nitsche, Heino] Univ Calif Berkeley, Fac Chem, Berkeley, CA 94720 USA. [Forsberg, Ulrika; Rudolph, Dirk] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Omtvedt, Jon Petter; Semchenkov, Andrey] Univ Oslo, Dept Chem, N-0315 Oslo, Norway. [Qin, Zhi] Inst Modern Phys, Lanzhou 730000, Peoples R China. [Uusitalo, Juha] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Wegrzecki, Maciej] Inst Electr Mat Technol, PL-02668 Warsaw, Poland. RP Dullmann, CE (reprint author), GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. EM duellmann@uni-mainz.de RI Rudolph, Dirk/D-4259-2009; Block, Michael/I-2782-2015; Even, Julia/K-1186-2016; Turler, Andreas/D-3913-2014; OI Rudolph, Dirk/0000-0003-1199-3055; Block, Michael/0000-0001-9282-8347; Even, Julia/0000-0002-6314-9094; Turler, Andreas/0000-0002-4274-1056; Gorshkov, Alexander/0000-0003-3011-9670 FU German BMBF [06MT2471, 06MT248, 06MZ2231] FX We thank the ion source and accelerator staff for providing stable and intense beams, the GSI experimental electronic department for providing data acquisition and analysis software, and V. Pershina for valuable discussions. This work was supported by the German BMBF under contracts 06MT2471, 06MT248, and 06MZ2231. The Research Center "Elementary Forces and Mathematical Foundations" is gratefully acknowledged. NR 44 TC 36 Z9 36 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 3 PY 2014 VL 53 IS 3 BP 1624 EP 1629 DI 10.1021/ic4026766 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AA0UK UT WOS:000330812700043 PM 24456007 ER PT J AU De Sio, SM Wilson, RE AF De Sio, Stephanie M. Wilson, Richard E. TI Structural and Spectroscopic Studies of Fluoroprotactinates SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; FLUORO-COMPLEXES; IONS; PROTACTINIUM; CHEMISTRY; LANTHANIDE; RAMAN AB Seven protactinium(V) fluoride compounds have been synthesized, and their crystal structures and Raman spectra are reported. (NH4)(2)PaF7, K(2)PaF7, Rb(2)PaF7, and Cs(2)PaF7 were found to crystallize in the monoclinic space group P21/c for the ammonium compound and C2/c for the K+-, Rb+-, and Cs+-containing compounds, with nine-coordinate Pa forming infinite chains through fluorine bridges. Na3PaF8 crystallizes in the tetragonal space group I4/mmm with eight-coordinate Pa in tetragonal geometry, while tetramethylammonium fluoroprotactinate shows two different structures: (Me4N)(2)(H3O)PaF8, an eight-coordinate molecular compound crystallizing in the monoclinic space group C2/c, and (Me4N)PaF6, an eight-coordinate Pa compound forming infinite chains and crystallizing in the orthorhombic space group Pnnm. A comparison of solid- and solution-state Raman data indicates that the PaF8 anion could be the predominant Pa(V) complex in concentrated solutions of aqueous HF. C1 [De Sio, Stephanie M.; Wilson, Richard E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wilson, RE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rewilson@anl.gov RI Wilson, Richard/H-1763-2011; De Sio, Stephanie/I-7327-2013 OI Wilson, Richard/0000-0001-8618-5680; De Sio, Stephanie/0000-0001-7724-3498 FU United States Department of Energy [DE-AC02-06CH11357]; Office of Science Early Career Research Award Program FX This work was performed at Argonne National Laboratory, operated by the University of Chicago, for the United States Department of Energy under contract number DE-AC02-06CH11357 and the Office of Science Early Career Research Award Program. NR 35 TC 6 Z9 6 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 3 PY 2014 VL 53 IS 3 BP 1750 EP 1755 DI 10.1021/ic402877a PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AA0UK UT WOS:000330812700057 PM 24437929 ER PT J AU Montasserasadi, D Mohanty, D Huq, A Heroux, L Payzant, EA Wiley, JB AF Montasserasadi, Dariush Mohanty, Debasish Huq, Ashfia Heroux, Luke Payzant, Edward Andrew Wiley, John B. TI Topochemical Synthesis of Alkali-Metal Hydroxide Layers within Double- and Triple-Layered Perovskites SO INORGANIC CHEMISTRY LA English DT Article ID ROOM-TEMPERATURE; INTERCALATION; HYDROGEN; RUBIDIUM; PHASES; ARRAYS; OXYGEN; HOST AB The formation of alkali-metal hydroxide layers within lamellar perovskites has been accomplished by a two-step topochemical reaction strategy. Reductive intercalation of ALaNb(2)O(7) with alkali metal (A = K, Rb) and RbCa2Nb3O10 with Rb leads to A(2)LaNb(2)O(7) and Rb2Ca2Nb3O10, respectively. Oxidative intercalation with stoichiometric amounts of water vapor, produced by the decomposition of calcium oxalate monohydrate in a sealed ampule, allows the insertion hydroxide species. Compounds of the form (A(2)OH)LaNb2O7 (A = K, Rb) and (Rb2OH)Ca2Nb3O10 are accessible. X-ray diffraction data indicates a clear layer expansion of almost 3 A on the insertion of hydroxide relative to that of the parent. Rietveld refinement of neutron diffraction data collected on deuterated samples of (Rb2OD)LaNb2O7 (P4/mmm space group, a = 3.9348(1) A, c = 14.7950(7) A) finds that both rubidium and oxygen species reside in cubic sites forming a CsCl-like interlayer structure between niobate perovskite blocks. Hydrogens, attached to the interlayer oxygens, are disordered over a 4-fold site in the xy plane and have OH bond distances (0.98 A) consistent with known hydroxide species. This synthetic approach expands the library of available topochemical reactions, providing a facile method for the construction of alkali-metal hydroxide layers within receptive perovskite hosts. C1 [Montasserasadi, Dariush; Wiley, John B.] Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA. [Montasserasadi, Dariush; Wiley, John B.] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA. [Mohanty, Debasish] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Huq, Ashfia; Heroux, Luke; Payzant, Edward Andrew] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Wiley, JB (reprint author), Univ New Orleans, Dept Chem, 2000 Lakeshore Dr, New Orleans, LA 70148 USA. EM jwiley@uno.edu RI Payzant, Edward/B-5449-2009; Huq, Ashfia/J-8772-2013; OI Payzant, Edward/0000-0002-3447-2060; Huq, Ashfia/0000-0002-8445-9649; Heroux, Luke/0000-0001-8993-3904 FU National Science Foundation [DMR-1005856]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Support from the National Science Foundation (DMR-1005856) is gratefully acknowledged. Part of the research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 4 Z9 4 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 3 PY 2014 VL 53 IS 3 BP 1773 EP 1778 DI 10.1021/ic402957c PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AA0UK UT WOS:000330812700060 PM 24410708 ER PT J AU Contino, R Grojean, C Pappadopulo, D Rattazzi, R Thamm, A AF Contino, Roberto Grojean, Christophe Pappadopulo, Duccio Rattazzi, Riccardo Thamm, Andrea TI Strong Higgs interactions at a linear collider SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Beyond Standard Model; Technicolor and Composite Models ID STRONG ELECTROWEAK SECTOR; COMPOSITE HIGGS; VACUUM MISALIGNMENT; E(+)E(-) COLLIDERS; BOSON PRODUCTION; WLWL SCATTERING; CUSTODIAL SU(2); STANDARD MODEL; TOP-QUARK; LHC AB We study the impact of Higgs precision measurements at a high-energy and high-luminosity linear electron positron collider, such as CLIC or the ILC, on the parameter space of a strongly interacting Higgs boson. Some combination of anomalous couplings are already tightly constrained by current fits to electroweak observables. However, even small deviations in the cross sections of single and double Higgs production, or the mere detection of a triple Higgs final state, can help establish whether it is a composite state and whether or not it emerges as a pseudo-Nambu-Goldstone boson from an underlying broken symmetry. We obtain an estimate of the ILC and CLIC sensitivities on the anomalous Higgs couplings from a study of W W scattering and h h production which can be translated into a sensitivity on the compositeness scale 4 pi f, or equivalently on the degree of compositeness xi = v(2)/f(2). We summarize the current experimental constraints, from electroweak data and direct resonance searches, and the expected reach of the LHC and CLIC on xi and on the scale of the new resonances. C1 [Contino, Roberto] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Contino, Roberto] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Grojean, Christophe] Univ Autonoma Barcelona, ICREA, IFAE, E-08193 Bellaterra, Spain. [Grojean, Christophe; Thamm, Andrea] CERN, Dept Phys, Theory Unit, Geneva, Switzerland. [Pappadopulo, Duccio] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pappadopulo, Duccio] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Rattazzi, Riccardo; Thamm, Andrea] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland. RP Contino, R (reprint author), Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. EM roberto.contino@roma1.infn.it; christophe.grojean@cern.ch; pappadopulo@berkeley.edu; riccardo.rattazzi@epfl.ch; andrea.thamm@epfl.ch RI EPFL, Physics/O-6514-2016; OI Contino, Roberto/0000-0002-1031-6565; Rattazzi, Riccardo/0000-0003-0276-017X; grojean, christophe/0000-0002-7196-7361 FU European Commission under the contract ERC [226371]; NSF [PHY-0855653]; Swiss National Science Foundation [200020-138131, 200022-126941]; ERC; [PITN-GA-2009-237920] FX We would like to thank Daniele Del Re, Enrico Franco, Gian Giudice, Lucie Linssen, Markus Luty, Barbara Mele, Paolo Meridiani, Satoshi Mishima, Alexandra Oliveira, Rogerio Rosenfeld, Luca Silvestrini, Alessandro Strumia, Riccardo Torre, James Wells and Andrea Wulzer for useful discussions and comments. We are grateful to Philipp Roloff and Marc Thomson for discussions and clarifications about the CLIC detector simulation. We thank Ian Low for pointing out a typo in the first version of the paper. The work of C. G. and A. T. has been partly supported by the European Commission under the contract ERC advanced grant 226371 'MassTeV' and the contract PITN-GA-2009-237920 'UNILHC'. The work of D. P. is supported by the NSF Grant PHY-0855653. The work of R. R. and A. T. is supported by the Swiss National Science Foundation under contracts No. 200020-138131 and No. 200022-126941. R. C. was partly supported by the ERC Advanced Grant No. 267985 Electroweak Symmetry Breaking, Flavour and Dark Matter: One Solution for Three Mysteries (DaMeSyFla). NR 146 TC 33 Z9 33 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 3 PY 2014 IS 2 AR 006 DI 10.1007/JHEP02(2014)006 PG 51 WC Physics, Particles & Fields SC Physics GA AA3DJ UT WOS:000330972800001 ER PT J AU Yang, Y Wong, SE Lightstone, FC AF Yang, Yue Wong, Sergio E. Lightstone, Felice C. TI Understanding a Substrate's Product Regioselectivity in a Family of Enzymes: A Case Study of Acetaminophen Binding in Cytochrome P450s SO PLOS ONE LA English DT Article ID HISTOGRAM ANALYSIS METHOD; FREE-ENERGY CALCULATIONS; DRUG-DRUG INTERACTIONS; HUMAN LIVER-MICROSOMES; IN-VITRO; METABOLITE FORMATION; TOXIC METABOLITE; ACCURATE DOCKING; ACTIVE-SITE; ACTIVATION AB Product regioselectivity as influenced by molecular recognition is a key aspect of enzyme catalysis. We applied large-scale two-dimensional (2D) umbrella sampling (USP) simulations to characterize acetaminophen (APAP) binding in the active sites of the family of Cytochrome P450 (CYP) enzymes as a case study to show the different regioselectivity exhibited by a single substrate in comparative enzymes. Our results successfully explain the experimentally observed product regioselectivity for all five human CYPs included in this study, demonstrating that binding events play an important role in determining regioselectivity. In CYP2C9 and CYP3A4, weak interactions in an overall large active site cavity result in a fairly small binding free energy difference between APAP reactive binding states, consistent with experimental results that show little preference for resulting metabolites. In contrast, in CYP1A2 and CYP2E1, APAP is strongly restrained by a compact binding pocket, leading to a preferred binding conformation. The calculated binding equilibrium of APAP within the compact active site of CYP2A6 is able to predict the experimentally documented product ratios and is also applied to explain APAP regioselectivity in CYP1A2 and CYP2C9. APAP regioselectivity seems to be related to the selectivity for one binding conformation over another binding conformation as dictated by the size and shape of the active site. Additionally, unlike docking and molecular dynamics (MD), our free energy calculations successfully reproduced a unique APAP pose in CYP3A4 that had been reported experimentally, suggesting this approach is well suited to find the realistic binding pose and the lowest-energy starting structure for studying the chemical reaction step in the future. C1 [Yang, Yue; Wong, Sergio E.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. EM Lightstone1@llnl.gov FU Laboratory Directed Research and Development fund [12-SI-004] FX This work was funded by Laboratory Directed Research and Development fund, 12-SI-004. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 86 TC 8 Z9 8 U1 0 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 3 PY 2014 VL 9 IS 2 AR e87058 DI 10.1371/journal.pone.0087058 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 302TD UT WOS:000330626900037 PM 24498291 ER PT J AU Mirrione, MM Schulz, D Lapidus, KAB Zhang, S Goodman, W Henn, FA AF Mirrione, Martine M. Schulz, Daniela Lapidus, Kyle A. B. Zhang, Samuel Goodman, Wayne Henn, Fritz A. TI Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior SO FRONTIERS IN HUMAN NEUROSCIENCE LA English DT Article DE metabolism; whole-brain; imaging; FDG; PET; circuitry; depression; DBS ID DORSAL RAPHE NUCLEUS; COMORBIDITY SURVEY REPLICATION; MEDIAL PREFRONTAL CORTEX; DEEP BRAIN-STIMULATION; VENTRAL TEGMENTAL AREA; DSM-IV DISORDERS; LATERAL HABENULA; RAT-BRAIN; TRYPTOPHAN DEPLETION; INESCAPABLE SHOCK AB Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[F-18]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula. C1 [Mirrione, Martine M.] Quinnipiac Univ, Dept Biomed Sci, Hamden, CT 06518 USA. [Mirrione, Martine M.; Henn, Fritz A.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Mirrione, Martine M.; Schulz, Daniela; Henn, Fritz A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Schulz, Daniela] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY USA. [Lapidus, Kyle A. B.; Zhang, Samuel; Goodman, Wayne; Henn, Fritz A.] Icahn Sch Med, Dept Psychiat, New York, NY USA. RP Mirrione, MM (reprint author), Quinnipiac Univ, Dept Biomed Sci, 275 Mt Carmel Ave,EC BMS, Hamden, CT 06518 USA. EM martine.mirrione@quinnipiac.edu FU Brain and Behavior Research Foundation (NARSAD); Simons Foundation; Brookhaven National Laboratory Directed Research and Development Program; U.S. Department of Energy [LDRD-07-096] FX This work was supported by a Young Investigator Award from the Brain and Behavior Research Foundation (NARSAD) to Martine M. Mirrione who is a Chrissy Rossi Investigator, the Simons Foundation to Fritz A. Henn, and Brookhaven National Laboratory Directed Research and Development Program funded by the U.S. Department of Energy (LDRD-07-096 to Fritz A. Henn). The authors would like to thank members of the Brookhaven National Laboratory cyclotron and PET facility David Alexoff, Colleen Shea, Youwen Xu, Michael Schueller, Lisa Muench, and David J. Schlyer. We would also like to thank Dr.'s Joanna Fowler, Paul Vaska, Bo Li, Stephen Shea, and members of the Li and Shea labs for valuable discussions. NR 59 TC 11 Z9 11 U1 1 U2 21 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1662-5161 J9 FRONT HUM NEUROSCI JI Front. Hum. Neurosci. PD FEB 3 PY 2014 VL 8 AR 29 DI 10.3389/fnhum.2014.00029 PG 8 WC Neurosciences; Psychology SC Neurosciences & Neurology; Psychology GA 302XU UT WOS:000330639200001 PM 24550809 ER PT J AU Rohe, DP Allen, MS AF Rohe, Daniel P. Allen, Matthew S. TI Investigation of the effectiveness of using an experiment to validate experimental substructure models SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE Experimental substructuring; Validation; Transmission simulator method; Modal constraints for fixture and subsystem AB Experimental-to-analytical substructuring has been investigated as a way to avoid costly tests and analyses on large systems by experimentally characterizing certain subcomponents and then coupling them to an analytical model for the rest of the structure. Unfortunately, substructuring has sometimes proven difficult to implement because the substructuring calculations can be sensitive to modal truncation and experimental noise and often require the measurement of rotational motions at the interface. These issues have led to decreased confidence in substructuring calculations, causing it to remain underutilized in industry. This work proposes performing a small, inexpensive validation test to give confidence or reveal flaws in an experimentally derived model. This is only meaningful if the error in the validation test is characteristic of the error in an application of interest; this work explores this assumption. The validation test is evaluated in two scenarios which represent substructuring realities. The first scenario investigates measurement errors by applying normally distributed noise to a simple beam structure and evaluating how well the validation test compares to the application of interest. The Second scenario simulates substructuring of a complicated engine generator system with a statically indeterminate connection, where the effect of modal truncation is not easy to anticipate. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Rohe, Daniel P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Allen, Matthew S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Allen, MS (reprint author), Univ Wisconsin, Dept Engn Phys, 535 Engn Res Bldg,1500 Engn Dr, Madison, WI 53706 USA. EM dprohe@sandia.gov; msallen@engr.wisc.edu OI Allen, Matthew/0000-0001-6593-7724 NR 13 TC 1 Z9 1 U1 0 U2 8 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD FEB 3 PY 2014 VL 43 IS 1-2 BP 192 EP 216 DI 10.1016/j.ymssp.2013.08.026 PG 25 WC Engineering, Mechanical SC Engineering GA 292HB UT WOS:000329891700013 ER PT J AU Van Buren, KL Atamturktur, S Hemez, FM AF Van Buren, Kendra L. Atamturktur, Sez Hemez, Francois M. TI Model selection through robustness and fidelity criteria: Modeling the dynamics of the CX-100 wind turbine blade SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE Info-Gap decision theory; Model selection; Wind turbine blade; Model complexity; Prediction; Test-analysis correlation ID VALIDATION; UNCERTAINTY AB Several plausible modeling strategies are available to develop numerical models for simulating the dynamics of wind turbine blades. While the modeling strategy is typically selected according to expert judgment, the "best" modeling approach is unknown to the model developer. Thus, comparing plausible modeling strategies through a systematic and rigorous approach becomes necessary. This manuscript departs from the conventional approach that selects the model with the highest fidelity-to-data; and instead explores the trade-off between fidelity of model predictions to experiments and robustness of model predictions to model imprecision and inexactness. Exploring robustness in addition to fidelity lends credibility to the model, ensuring model predictions can be trusted even when lack-of-knowledge in the modeling assumptions and/or input parameters result in unforeseen. errors and uncertainties. This concept is demonstrated on the CX-100 wind turbine blade in an experimental configuration with large masses added to load the blade in bending during vibration testing. The finite element model of the blade is built with shell elements and validated against experimental evidence, while the large masses are modeled according to two different, but plausible strategies using (i) a combination of point-mass and spring elements, and (ii) solid elements. These two modeling strategies are evaluated considering both the fidelity of the natural frequency predictions against experiments, and the robustness of the predicted natural frequencies to uncertainties in the input parameters. By considering robustness during model selection, the authors determine the extent to which prediction accuracy deteriorates as the lack-of-knowledge increases. The findings suggest the model with solid elements offers a higher degree of fidelity-to-data and robustness to uncertainties, thus providing a superior modeling strategy than the model with point masses and stiffening springs. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Van Buren, Kendra L.] Los Alamos Natl Lab, INST OFF, Los Alamos, NM 87544 USA. [Atamturktur, Sez] Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. [Hemez, Francois M.] Los Alamos Natl Lab, XTD 3, Los Alamos, NM 87544 USA. RP Atamturktur, S (reprint author), Clemson Univ, Glenn Dept Civil Engn, Lowry Hall,Box 340911, Clemson, SC 29634 USA. EM klvan@lanl.gov; sez@clemson.edu; hemez@lanl.gov OI Hemez, Francois/0000-0002-5319-4078; Van Buren, Kendra/0000-0002-0495-2354 FU Laboratory Directed Research and Development project "Intelligent Wind Turbines" at the Los Alamos National Laboratory (LANL); U.S. Department of Energy [DE-AC52-06NA25396.] FX This work is performed under the auspices of the Laboratory Directed Research and Development project "Intelligent Wind Turbines" at the Los Alamos National Laboratory (LANL). The authors are grateful to Dr. Curtt Ammerman, project leader, for his continued support and technical leadership. The authors also wish to express their gratitude to Dr. Stuart Taylor, who supplied the modal analysis data of the CX-100 wind turbine blade. LANL is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 34 TC 6 Z9 6 U1 0 U2 18 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD FEB 3 PY 2014 VL 43 IS 1-2 BP 246 EP 259 DI 10.1016/j.ymssp.2013.10.010 PG 14 WC Engineering, Mechanical SC Engineering GA 292HB UT WOS:000329891700016 ER PT J AU Arnst, M Ghanem, R Phipps, E Red-Horse, J AF Arnst, M. Ghanem, R. Phipps, E. Red-Horse, J. TI Reduced chaos expansions with random coefficients in reduced-dimensional stochastic modeling of coupled problems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE uncertainty quantification; coupled problems; multiphysics; polynomial chaos ID REPRESENTATIONS; REDUCTION AB We address the curse of dimensionality in methods for solving stochastic coupled problems with an emphasis on stochastic expansion methods such as those involving polynomial chaos expansions. The proposed method entails a partitioned iterative solution algorithm that relies on a reduced-dimensional representation of information exchanged between subproblems to allow each subproblem to be solved within its own stochastic dimension while interacting with a reduced projection of the other subproblems. The proposed method extends previous work by the authors by introducing a reduced chaos expansion with random coefficients. The representation of the exchanged information by using this reduced chaos expansion with random coefficients enables an expeditious construction of doubly stochastic polynomial chaos expansions that separate the effect of uncertainty local to a subproblem from the effect of statistically independent uncertainty coming from other subproblems through the coupling. After laying out the theoretical framework, we apply the proposed method to a multiphysics problem from nuclear engineering. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Arnst, M.] Univ Liege, B-4000 Liege, Belgium. [Arnst, M.; Ghanem, R.] Univ So Calif, Los Angeles, CA 90089 USA. [Phipps, E.; Red-Horse, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Arnst, M (reprint author), Univ Liege, B52-3 Chemin Chevreuils 1, B-4000 Liege, Belgium. EM maarten.arnst@ulg.ac.be RI Ghanem, Roger/B-8570-2008; OI Ghanem, Roger/0000-0002-1890-920X; Arnst, Maarten/0000-0003-4993-0527 FU Department of Energy through an Applied Scientific Computing Research grant; NSF [0904754] FX This work was supported by the Department of Energy through an Applied Scientific Computing Research grant. The authors would also like to thank Professor Christian Soize for the relevant discussions during the final stages of the preparation of this paper. The authors also acknowledge NSF support under award 0904754 entitled "Uncertainty quantification for petascale simulation of carbon sequestration through fast ultra-scalable stochastic finite element methods." NR 21 TC 6 Z9 6 U1 1 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB 3 PY 2014 VL 97 IS 5 BP 352 EP 376 DI 10.1002/nme.4595 PG 25 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 275WE UT WOS:000328708600002 ER PT J AU Schempp, P Cross, CE Pittner, A Oder, G Neumann, RS Rooch, H Dorfel, I Osterle, W Rethmeier, M AF Schempp, P. Cross, C. E. Pittner, A. Oder, G. Neumann, R. S. Rooch, H. Doerfel, I. Oesterle, W. Rethmeier, M. TI Solidification of GTA Aluminum Weld Metal: Part 1-Grain Morphology Dependent upon Alloy Composition and Grain Refiner Content SO WELDING JOURNAL LA English DT Article DE Aluminum; Gas Tungsten Arc Welding (GTAW); Grain Refinement; Columnar to Equiaxed Transition (CET); Epitaxial Nucleation; Duplex Nucleation Theory ID CONTAINING MASTER ALLOYS; AL-TI-B; HOT CRACKING; NUCLEATION MECHANISMS; WELDABILITY; ADDITIONS; TITANIUM; BORON; INOCULANTS; PARAMETERS AB The solidification conditions during welding strongly influence the weld metal microstructure and mechanical properties of a weld. In the first part of this study, the grain morphology of gas tungsten arc (GTA) bead-on-plate welds was investigated for the aluminum Alloys 1050A (Al 99.5), 6082 (Al Si1MgMn), and 5083 (Al Mg4.5Mn0.7). The experiments revealed that increasing welding speed and alloy content allow the growth of small, equiaxed grains, particularly in the weld center. Furthermore, increasing grain refiner additions led to a strong reduction of the weld metal mean grain size and hence facilitated the columnar to equiaxed transition (CET). In addition, wavelength dispersive X-ray spectroscopy (WDS) and transmission electron microscopy (TEM) analysis revealed in the weld metal TiB2 particles that were surrounded by Al3Ti. This suggests the duplex nucleation theory for nucleation of aluminum grains in GTA weld metal. C1 [Schempp, P.; Pittner, A.; Oder, G.; Neumann, R. S.; Rooch, H.; Doerfel, I.; Oesterle, W.; Rethmeier, M.] BAM Fed Inst Mat Res & Testing, Berlin, Germany. [Cross, C. E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rethmeier, M.] IPK Fraunhofer Inst Prod Syst & Design Technol, Berlin, Germany. RP Schempp, P (reprint author), BAM Fed Inst Mat Res & Testing, Berlin, Germany. EM P.Schempp@gmx.de RI Rethmeier, Michael/B-9847-2009 OI Rethmeier, Michael/0000-0001-8123-6696 FU German Research Association on Welding and Allied Processes of the DVS; Program for Funding of Industrial Research and Technology (IGF) of the German Federal Ministry of Economics and Technology [16.242N] FX In addition, the authors are thankful to the German Research Association on Welding and Allied Processes of the DVS for their support and the Program for Funding of Industrial Research and Technology (IGF) of the German Federal Ministry of Economics and Technology for funding the research project 16.242N. NR 58 TC 6 Z9 6 U1 0 U2 7 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD FEB PY 2014 VL 93 IS 2 BP 53S EP 59S PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AW5QM UT WOS:000346329200011 ER PT J AU Zhou, J AF Zhou, Joey TI INCORRECT ANALYSES OF RADIATION AND MESOTHELIOMA SO AMERICAN JOURNAL OF PUBLIC HEALTH LA English DT Letter C1 US DOE, Off Domest & Int Hlth Studies, Washington, DC 20585 USA. RP Zhou, J (reprint author), US DOE, Off Domest & Int Hlth Studies, HS-13-GTN,1000 Independence Ave SW, Washington, DC 20585 USA. EM joey.zhou@hq.doe.gov RI WSU, USTUR/I-1056-2013 NR 6 TC 1 Z9 1 U1 0 U2 1 PU AMER PUBLIC HEALTH ASSOC INC PI WASHINGTON PA 800 I STREET, NW, WASHINGTON, DC 20001-3710 USA SN 0090-0036 EI 1541-0048 J9 AM J PUBLIC HEALTH JI Am. J. Public Health PD FEB PY 2014 VL 104 IS 2 BP E1 EP E1 DI 10.2105/AJPH.2013.301718 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AP0KW UT WOS:000341751200001 PM 24328627 ER PT J AU Boice, JD Cohen, SS Mumma, MT Ellis, ED Cragle, DL Eckerman, KF Wallace, PW Chadda, B Sonderman, JS Wiggs, LD Richter, BS Leggett, RW AF Boice, John D., Jr. Cohen, Sarah S. Mumma, Michael T. Ellis, Elizabeth Dupree Cragle, Donna L. Eckerman, Keith F. Wallace, Phillip W. Chadda, Bandana Sonderman, Jennifer S. Wiggs, Laurie D. Richter, Bonnie S. Leggett, Richard W. TI Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944-1979 SO RADIATION RESEARCH LA English DT Article ID EXTERNAL IONIZING-RADIATION; PLUTONIUM WORKERS; CANCER-MORTALITY; HANFORD SITE; MAYAK PA; CIRCULATORY DISEASE; LUNG-CANCER; COHORT; RISKS; PLANT AB Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944-1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88-0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79-0.93), lung cancer (SMR 0.85; 95% CI 0.74-0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15-2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23-1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97-1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63-1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95-1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U. S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes. (C) 2014 by Radiation Research Society C1 [Boice, John D., Jr.] Natl Council Radiat Protect & Measurements, Bethesda, MD 20814 USA. [Boice, John D., Jr.] Vanderbilt Epidemiol Ctr, Dept Med, Div Epidemiol, Nashville, TN USA. [Boice, John D., Jr.] Vanderbilt Ingram Canc Ctr, Nashville, TN USA. [Cohen, Sarah S.] EpidStat Inst, Ann Arbor, MI USA. [Mumma, Michael T.; Chadda, Bandana; Sonderman, Jennifer S.] Int Epidemiol Inst, Rockville, MD USA. [Ellis, Elizabeth Dupree; Cragle, Donna L.; Wallace, Phillip W.] Oak Ridge Associated Univ, Oak Ridge, TN USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Boice, JD (reprint author), Natl Council Radiat Protect & Measurements, 7910 Woodmont Ave,Ste 400, Bethesda, MD 20814 USA. EM john.boice@vanderbilt.edu FU Vanderbilt-lngram Cancer Center [404-357-9682]; U.S. Department of Energy [DE-SC0004307, DE-SC0008944, DE-AC05-06OR23100]; Oak Ridge Associated Universities [DE-AC05-06OR23100] FX This second follow-up was funded by a Discovery Grant from the Vanderbilt-lngram Cancer Center (Center no. 404-357-9682), two research grants from the U.S. Department of Energy (grant no. DE-SC0004307 and grant no. DE-SC0008944) and a contract between the U.S. Department of Energy and Oak Ridge Associated Universities (contract no. DE-AC05-06OR23100). The results presented herein represent the conclusions and opinions solely of the authors. Its publication does not imply endorsement by the National Council on Radiation Protection and Measurements, Vanderbilt University or any of the acknowledged agencies. NR 77 TC 5 Z9 5 U1 2 U2 10 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD FEB PY 2014 VL 181 IS 2 BP 208 EP 228 DI 10.1667/RR13395.1 PG 21 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA AO4KP UT WOS:000341307000012 PM 24527690 ER PT J AU Tongay, S Sahin, H Ko, C Luce, A Fan, W Liu, K Zhou, J Huang, YS Ho, CH Yan, JY Ogletree, DF Aloni, S Ji, J Li, SS Li, JB Peeters, FM Wu, JQ AF Tongay, Sefaattin Sahin, Hasan Ko, Changhyun Luce, Alex Fan, Wen Liu, Kai Zhou, Jian Huang, Ying-Sheng Ho, Ching-Hwa Yan, Jinyuan Ogletree, D. Frank Aloni, Shaul Ji, Jie Li, Shushen Li, Jingbo Peeters, F. M. Wu, Junqiao TI Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling SO NATURE COMMUNICATIONS LA English DT Article ID RAMAN-SPECTROSCOPY; PRESSURE; CRYSTALS; MOS2; SEMICONDUCTORS; ABSORPTION; WS2 AB Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers. C1 [Tongay, Sefaattin; Zhou, Jian; Li, Shushen; Li, Jingbo; Wu, Junqiao] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Tongay, Sefaattin; Ko, Changhyun; Luce, Alex; Fan, Wen; Liu, Kai; Zhou, Jian; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Sahin, Hasan; Peeters, F. M.] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium. [Fan, Wen; Ji, Jie] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China. [Huang, Ying-Sheng; Ho, Ching-Hwa] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 106, Taiwan. [Yan, Jinyuan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ogletree, D. Frank; Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tongay, S (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. EM wuj@berkeley.edu RI Liu, Kai/A-4754-2012; Wu, Junqiao/G-7840-2011; CMT, UAntwerpen Group/A-5523-2016; Foundry, Molecular/G-9968-2014; Ogletree, D Frank/D-9833-2016; Ko, Changhyun/E-1686-2011; Sahin, Hasan/C-6267-2016; Ho, Ching-Hwa/D-1776-2012; OI Liu, Kai/0000-0002-0638-5189; Wu, Junqiao/0000-0002-1498-0148; Ogletree, D Frank/0000-0002-8159-0182; Ho, Ching-Hwa/0000-0002-7195-208X; Sahin, Hasan/0000-0002-6189-6707 FU United States Department of Energy Early Career Award [DE-FG02-11ER46796]; COMPRES; Consortium for Materials Properties Research in Earth Sciences [EAR 11-577758]; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231]; Natural Science Foundation of China [60925016, 91233120]; National Science Council of Taiwan [NSC 100-2112-M-011-001-MY3, NSC 101-2221-E-011-052-MY3]; FWO Pegasus Marie Curie Long Fellowship programme; Flemish Science Foundation (FWO-Vl); Methusalem programme of the Flemish government FX This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. NR 22 TC 148 Z9 148 U1 45 U2 269 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3252 DI 10.1038/ncomms4252 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6WP UT WOS:000332666700010 PM 24500082 ER PT J AU Takada, M Ellis, RS Chiba, M Greene, JE Aihara, H Arimoto, N Bundy, K Cohen, J Dore, O Graves, G Gunn, JE Heckman, T Hirata, CM Ho, P Kneib, JP Le Fevre, O Lin, L More, S Murayama, H Nagao, T Ouchi, M Seiffert, M Silverman, JD Sodre, L Spergel, DN Strauss, MA Sugai, H Suto, Y Takami, H Wyse, R AF Takada, Masahiro Ellis, Richard S. Chiba, Masashi Greene, Jenny E. Aihara, Hiroaki Arimoto, Nobuo Bundy, Kevin Cohen, Judith Dore, Olivier Graves, Genevieve Gunn, James E. Heckman, Timothy Hirata, Christopher M. Ho, Paul Kneib, Jean-Paul Le Fevre, Olivier Lin, Lihwai More, Surhud Murayama, Hitoshi Nagao, Tohru Ouchi, Masami Seiffert, Michael Silverman, John D. Sodre, Laerte, Jr. Spergel, David N. Strauss, Michael A. Sugai, Hajime Suto, Yasushi Takami, Hideki Wyse, Rosemary TI Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Review DE cosmology: dark energy; cosmology: large-scale structure of Universe; galaxies: formation; galaxies: kinematics and dynamics; instrumentation: spectographs ID GALAXY REDSHIFT SURVEY; LYMAN BREAK GALAXIES; DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; LY-ALPHA EMITTERS; STAR-FORMATION HISTORIES; MULTIELEMENT ABUNDANCE MEASUREMENTS; LUMINOUS RED GALAXIES; PROBING DARK ENERGY; SPECTROSCOPIC SURVEY AB The Subaru Prime Focus Spectrograph (PFS) is a massively multiplexed fiber-fed optical and near-infrared three-arm spectrograph (N-fiber = 2400, 380 <= lambda <= 1260 nm, 1 degrees.3 diameter field of view). Here, we summarize the science cases in terms of provisional plans for a 300-night Subaru survey. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 h(-3) Gpc(3) in the redshift range 0.8 < z < 2.4. In each of six redshift bins, the cosmological distances will be measured to 3% precision via the baryonic acoustic oscillation scale, and redshift-space distortion measures will constrain structure growth to 6% precision. In the near-field cosmology program, radial velocities and chemical abundances of stars in the Milky Way and M 31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10(6) stars in the Galactic thick-disk, halo, and tidal streams as faint as V similar to 22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars. For the galaxy evolution program, our simulations suggest the wide wavelength range of PFS will be powerful in probing the galaxy population and its clustering over a wide redshift range. We plan to conduct a color-selected survey of 1 < z < 2 galaxies and AGN over 16 deg(2) to J similar or equal to 23.4, yielding a fair sample of galaxies with stellar masses above similar to 10(10) M-circle dot at z similar or equal to 2. A two-tiered survey of higher redshift Lyman break galaxies and Lyman alpha emitters will quantify the properties of early systems close to the reionization epoch. C1 [Takada, Masahiro; Aihara, Hiroaki; Bundy, Kevin; More, Surhud; Murayama, Hitoshi; Silverman, John D.; Spergel, David N.; Sugai, Hajime] Univ Tokyo, Kavli Inst Phys & Math Universe, Kavli IPMU, WPI, Kashiwa, Chiba 2778583, Japan. [Ellis, Richard S.; Cohen, Judith; Dore, Olivier; Hirata, Christopher M.] CALTECH, Pasadena, CA 91125 USA. [Chiba, Masashi] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Greene, Jenny E.; Graves, Genevieve; Gunn, James E.; Spergel, David N.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Aihara, Hiroaki; Suto, Yasushi] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Arimoto, Nobuo; Takami, Hideki] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Dore, Olivier; Seiffert, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA. [Heckman, Timothy; Wyse, Rosemary] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ho, Paul; Lin, Lihwai] Natl Taiwan Univ, Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Kneib, Jean-Paul; Le Fevre, Olivier] Lab Astrophys Marseille, Pole Etoile Site Chateau Gombert, F-13388 Marseille 13, France. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nagao, Tohru] Kyoto Univ, Hakubi Ctr Adv Res, Sakyo Ku, Kyoto 6068501, Japan. [Ouchi, Masami] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Sodre, Laerte, Jr.] Inst Astron Geofis & Ciencias Atmosfer Sao Paulo, BR-05508090 Sao Paulo, Brazil. RP Takada, M (reprint author), Univ Tokyo, Kavli Inst Phys & Math Universe, Kavli IPMU, WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. EM masahiro.takada@ipmu.jp RI More, Surhud/A-5049-2013; Aihara, Hiroaki/F-3854-2010; Kneib, Jean-Paul/A-7919-2015; Sodre, Laerte/P-6045-2016; OI More, Surhud/0000-0002-2986-2371; Aihara, Hiroaki/0000-0002-1907-5964; Kneib, Jean-Paul/0000-0002-4616-4989; Sodre, Laerte/0000-0002-3876-268X; Raccanelli, Alvise/0000-0001-6726-0438 FU JSPS Core-to-Core Program "International Research Network for Dark Energy,"; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)," CSTP, Japan FX This work is supported in part by the JSPS Core-to-Core Program "International Research Network for Dark Energy," by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and by the FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)," CSTP, Japan. NR 121 TC 60 Z9 60 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB PY 2014 VL 66 IS 1 AR R1 DI 10.1093/pasj/pst019 PG 51 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AL8YX UT WOS:000339426900019 ER PT J AU Wilkins, MJ Kennedy, DW Castelle, CJ Field, EK Stepanauskas, R Fredrickson, JK Konopka, AE AF Wilkins, Michael J. Kennedy, David W. Castelle, Cindy J. Field, Erin K. Stepanauskas, Ramunas Fredrickson, James K. Konopka, Allan E. TI Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer SO MICROBIOLOGY-SGM LA English DT Article ID ALTERNATIVE COMPLEX-III; SP-NOV.; ESCHERICHIA-COLI; FACULTATIVE PSYCHROPHILE; CONTAMINATED GROUNDWATER; PEDOBACTER-DAECHUNGENSIS; RHODOTHERMUS-MARINUS; OUTER-MEMBRANE; HANFORD SITE; SWISS-MODEL AB Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa(3)-type and cbb(3)-type cytochrome c oxidases. These SAGs encoded a wide range of both intra-and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion. C1 [Wilkins, Michael J.; Kennedy, David W.; Fredrickson, James K.; Konopka, Allan E.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Castelle, Cindy J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Field, Erin K.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, Boothbay, ME 04544 USA. RP Wilkins, MJ (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. EM wilkins.231@osu.edu OI Kennedy, David/0000-0003-0763-501X; Stepanauskas, Ramunas/0000-0003-4458-3108 FU US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of the Subsurface Biogeochemistry Research Program's Scientific Focus Area (SFA) at Pacific North-west National Laboratory (PNNL); DOE [DE-AC06-76RLO 1830] FX This research was supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of the Subsurface Biogeochemistry Research Program's Scientific Focus Area (SFA) at Pacific North-west National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. We thank two anonymous reviewers for their helpful comments and suggestions. NR 72 TC 4 Z9 4 U1 3 U2 30 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD FEB PY 2014 VL 160 BP 362 EP 372 DI 10.1099/mic.0.073965-0 PN 2 PG 11 WC Microbiology SC Microbiology GA AK7IX UT WOS:000338603100012 PM 24324032 ER PT J AU Fu, D Finney, L AF Fu, Dax Finney, Lydia TI Metalloproteomics: challenges and prospective for clinical research applications SO EXPERT REVIEW OF PROTEOMICS LA English DT Review DE elemental analysis; metalloproteins; metalloproteomics; metals; molecular pathology ID X-RAY-FLUORESCENCE; PLASMA-MASS SPECTROMETRY; GEL-ELECTROPHORESIS; METAL-BINDING; ATOMIC SPECTROMETRY; CONTAINING PROTEINS; ZINC HOMEOSTASIS; TRACE-ELEMENTS; ICP-MS; COPPER AB Metals are essential cofactors, utilized in many critical cellular processes. For example, zinc is important in insulin biosynthesis and may play a role in Alzheimer's disease, but much of how the zinc-mediated process remains unknown. Knowing which metal is in which protein at a given point in time would lead to new insights into how metals work in biological systems. New tools are being developed to investigate the biochemistry and cell biology of metals, with potential for biomedical applications. In this report, we consider the promise and limitations of metalloproteins detection techniques. We provide a brief overview of the techniques available and a discussion of the technical challenges to biomedical applications, with particular focus on what must be overcome for the potential of these approaches to be achieved. C1 [Fu, Dax] Johns Hopkins Sch Med, Dept Physiol, Baltimore, MD 21205 USA. [Finney, Lydia] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. RP Finney, L (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM lfinney@aps.anl.gov FU Department of Energy, Office of Science [DE-AC-02-06CH11357] FX This work was supported by the Department of Energy, Office of Science Contract DE-AC-02-06CH11357. The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. NR 47 TC 5 Z9 5 U1 3 U2 24 PU EXPERT REVIEWS PI LONDON PA UNITEC HOUSE, 3RD FL, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON N3 1QB, ENGLAND SN 1478-9450 EI 1744-8387 J9 EXPERT REV PROTEOMIC JI Expert Rev. Proteomics PD FEB PY 2014 VL 11 IS 1 BP 13 EP 19 DI 10.1586/14789450.2014.876365 PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AK2ZF UT WOS:000338288800004 PM 24433146 ER PT J AU Ndione, PF Shi, YZ Stevanovic, V Lany, S Zakutayev, A Parilla, PA Perkins, JD Berry, JJ Ginley, DS Toney, MF AF Ndione, Paul F. Shi, Yezhou Stevanovic, Vladan Lany, Stephan Zakutayev, Andriy Parilla, Philip A. Perkins, John D. Berry, Joseph J. Ginley, David S. Toney, Michael F. TI Control of the Electrical Properties in Spinel Oxides by Manipulating the Cation Disorder SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID NICO2O4 SPINEL; ION BATTERIES; COBALT OXIDE; TRANSITION AB In this work, the impact of cation disorder on the electrical properties of biaxially textured Co2ZnO4 and Co2NiO4 thin films grown by pulsed laser deposition are investigated using a combination of experiment and theory. Resonant elastic X-ray diffraction along with conductivity measurements both before and after post-deposition annealing show that Co2NiO4 and Co2NiO4 exhibit opposite changes of the conductivity with cation disorder, which can be traced back to their different ground-state atomic structures, being normal and inverse spinel, respectively. Electronic structure calculations identify a self-doping mechanism as the origin of conductivity. A novel thermodynamic model describes the non-equilibrium cation disorder in terms of an effective temperature. This work offers a way of controlling the conductivity in spinels in a quantitative manner by controlling the cation disorder and a new design principle whereby non-equilibrium growth can be used to create beneficial disorder. C1 [Ndione, Paul F.; Stevanovic, Vladan; Lany, Stephan; Zakutayev, Andriy; Parilla, Philip A.; Perkins, John D.; Berry, Joseph J.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shi, Yezhou; Toney, Michael F.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Stevanovic, Vladan] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Ndione, PF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM paul.ndione@nrel.gov; mftoney@slac.stanford.edu RI Ndione, Paul/O-6152-2015; OI Ndione, Paul/0000-0003-4444-2938; Lany, Stephan/0000-0002-8127-8885; Zakutayev, Andriy/0000-0002-3054-5525 FU "Center for Inverse Design", an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC36-08GO28308] FX P. F. Ndione, Y. Shi, and V. Stevanovic contributed equally to this work. This material is based upon work supported as part of the "Center for Inverse Design", an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC36-08GO28308 to NREL. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. We acknowledge helpful discussions with Dr. Tula R. Paudel with regard to the Doping Type theory. We also thank Ronald Marks, Charles Troxel, Jr., and Bart Johnson for their assistance at the SSRL facilities. V. S. acknowledges administrative support of REMRSEC at Colorado School of Mines. The spacing of Equation 1 was corrected on February 5, 2014. NR 33 TC 18 Z9 18 U1 10 U2 67 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2014 VL 24 IS 5 BP 610 EP 618 DI 10.1002/adfm.201302535 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AJ8PL UT WOS:000337968400006 ER PT J AU Schulz, P Cowan, SR Guan, ZL Garcia, A Olson, DC Kahn, A AF Schulz, Philip Cowan, Sarah R. Guan, Ze-Lei Garcia, Andres Olson, Dana C. Kahn, Antoine TI NiOX/MoO3 Bi-Layers as Efficient Hole Extraction Contacts in Organic Solar Cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID TRANSITION-METAL OXIDES; PHOTOVOLTAICS; PERFORMANCE; ENERGETICS; MOLECULES; LEVEL AB The electronic structure of a bi-layer hole extraction contact consisting of nickel oxide (NiOx) and molybdenum trioxide (MoO3) is determined via ultraviolet and X-ray photoemission spectroscopy. The bi-layer presents ideal energetics for the extraction of holes and suppression of carrier recombination at the interface. The application of the NiOx/MoO3 bi-layer as the anode of organic bulk heterojunction solar cells based on PCDTBT/PC71BM leads to improved device performance, which is explained by an intricate charge transfer process across the interface. C1 [Schulz, Philip; Guan, Ze-Lei; Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Cowan, Sarah R.; Garcia, Andres; Olson, Dana C.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Schulz, P (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM phschulz@princeton.edu RI Schulz, Philip/N-2295-2015 OI Schulz, Philip/0000-0002-8177-0108 FU Center for Interface Science: Solar-Electric Materials (CIS:SEM), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001084]; Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Fellowship through the SunShot Solar Energy Technologies Program FX The work was supported as part of the Center for Interface Science: Solar-Electric Materials (CIS:SEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001084. S. R. C. acknowledges funding from the Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Fellowship through the SunShot Solar Energy Technologies Program. Figure 3 was updated on February 5, 2014. NR 29 TC 17 Z9 17 U1 6 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2014 VL 24 IS 5 BP 701 EP 706 DI 10.1002/adfm.201302477 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AJ8PL UT WOS:000337968400016 ER PT J AU Napier, BA AF Napier, Bruce A. TI JOINT US/RUSSIAN STUDIES OF POPULATION EXPOSURES RESULTING FROM NUCLEAR PRODUCTION ACTIVITIES IN THE SOUTHERN URALS SO HEALTH PHYSICS LA English DT Article DE dose assessment; epidemiology; National Council on Radiation Protection and Measurements; radiation effects ID FILM DOSIMETER RESPONSE; TECHA RIVER COHORT; MAYAK WORKER DOSIMETRY; CANCER-MORTALITY; DISEASES; PLUTONIUM; HEALTH; RISKS; LUNG; PA AB Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility, now known as the Mayak Production Association, and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal in the metallurgical plant. The rush to production, coupled with inexperience in handling radioactive materials, led to large radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of similar to 37 PBq of I-131 between 1948 and 1967. Designed disposals of low-and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes into the small Techa River, caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of Sr-90 and Cs-137) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately Sr-90, was blown over a large area to the northeast of the site. A large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a unique group of cohorts with their chronic, low dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of similar to 21,000 persons born to one or more exposed parents of this group, many who also lived along the contaminated river. The EURT Cohort consists of similar to 18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8,000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the United States, Russia, and the European Union to address the question, "Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?'' C1 Pacific NW Natl Lab, Earth Syst Sci Di, Environm Assessment Grp, Richland, WA 99352 USA. RP Napier, BA (reprint author), Pacific NW Natl Lab, Earth Syst Sci Di, Environm Assessment Grp, POB 999,MS K3-54, Richland, WA 99352 USA. EM Bruce.Napier@pnnl.gov FU U.S. Department of Energy; U.S. Nuclear Regulatory Commission; U.S. Environmental Protection Agency; National Aeronautics and Space Administration; Russian Ministry of Health; Federal Medical Biological Agency; ROSATOM; Commission of European Communities; International Science and Technology Center; International Science Foundation; National Cancer Institute; JCCRER FX The author would like to recognize the nearly 20-y efforts of U. S. Department of Energy staff members who have served on the JCCRER Executive Committee; previous Program Managers Mohandas Bhat, Elizabeth White, and Claudia Beach; previous Subject Matter Experts Eleanor Melamed, Ruth Neta, Mohandas Bhat, and Libby White; current Subject Matter Expert Joel Rabovsky; and current Program Manager Barrett Fountos. The JCCRER has been sustained by the continuing contributions by dozens of scientists at the Mayak Production Association, Southern Urals Biophysics Institute, and Urals Research Center for Radiation Medicine. Funding for JCCRER activities over the years has been supplied by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, U.S. Environmental Protection Agency, and National Aeronautics and Space Administration and by the Russian Ministry of Health, ROSATOM, and Federal Medical Biological Agency. Other work briefly described here has also been funded at various times by the Commission of European Communities, the International Science and Technology Center, and the International Science Foundation. Much of the epidemiological work has been independently supported by the National Cancer Institute in close collaboration with the JCCRER. NR 32 TC 5 Z9 6 U1 1 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2014 VL 106 IS 2 BP 294 EP 304 DI 10.1097/HP.0000000000000033 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AJ2SO UT WOS:000337512400020 PM 24378505 ER PT J AU Borst, M Brown, RA AF Borst, Michael Brown, Robert A. TI CHLORIDE RELEASED FROM THREE PERMEABLE PAVEMENT SURFACES AFTER WINTER SALT APPLICATION SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE pervious concrete; porous asphalt; permeable interlocking concrete pavers; green infrastructure; stormwater control measure; field study; deicing salt; chloride ID ROAD DEICING SALT; TOXICITY; SODIUM; FRESH AB Few studies exist on how chloride from chloride-based deicers is transported in infiltration-based stormwater control measures. In 2009, the U. S. Environmental Protection Agency (USEPA) constructed a 0.4 ha parking lot in Edison, New Jersey, that was surfaced with permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each surface type has four equally sized, lined sections that direct all infiltrate to separate 5.7 m(3) collection tanks. The USEPA acute criterion for aquatic life (860 mg/l) was exceeded in events immediately following a snow event. Concentrations of the infiltrate exceeded the detection limit (5 mg/l) year round but did not exceed the USEPA chronic toxicity (230 mg/l) after April. The chloride concentration decreased with cumulative rainfall since previous snow event, and a power regression described this relationship. In the power regression, the coefficient (b) described the initial concentration following a snow event, and the exponent (m) described the rate in which chloride was flushed through the system with infiltrating water. PC had the largest coefficient (5,664) and largest absolute exponent (-0.92), followed closely by PICP (b = 4,943 and m = -0.87), and distantly by PA (b = 2,907 and m = -0.67). The differences in release rate were proportional to the measured surface infiltration rates of 4,000; 2,400; and 200 cm/h for PC, PICP, and PA, respectively. These results will assist those who manage or regulate stormwater where receiving waters are chloride impaired. C1 [Borst, Michael] US EPA, Oak Ridge Inst Sci & Educ, Edison, NJ 08837 USA. [Brown, Robert A.] US EPA, Off Res & Dev, Edison, NJ 08837 USA. RP Borst, M (reprint author), US EPA, Oak Ridge Inst Sci & Educ, 2890 Woodbridge Ave,MS-104, Edison, NJ 08837 USA. EM brown.robert-a@epa.gov FU PARS Environmental [EP-C-10-054]; National Risk Management Research Laboratory FX The authors thank Mr. Keith Kelty of the USEPA's Treatment Technology Evaluation Branch and PARS Environmental under contract EP-C-10-054 for analytical results and PARS Environmental for sample collection. This project was supported in part by an appointment to the Research Participation Program at the National Risk Management Research Laboratory administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and U.S. Environmental Protection Agency. NR 32 TC 6 Z9 6 U1 4 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD FEB PY 2014 VL 50 IS 1 BP 29 EP 41 DI 10.1111/jawr.12132 PG 13 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA AJ4IQ UT WOS:000337639100003 ER PT J AU Williams, PT AF Williams, Paul T. TI Reduced Risk of Incident Kidney Cancer from Walking and Running SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE PREVENTION; PROSPECTIVE COHORT STUDY; RENAL CANCER; EPIDEMIOLOGY ID RENAL-CELL CANCER; PHYSICAL-ACTIVITY; VIGOROUS EXERCISE; ENERGY-INTAKE; INSULIN-LIKE; BODY-MASS; CARCINOMA; WEIGHT; COHORT; RUNNERS AB Purpose: This study aimed to test whether incident kidney cancer risk is associated with exercise energy expenditure (i.e., metabolic equivalents, 1 MET) when calculated from distance walked or run. Methods: Hazard ratios (HR) and 95% confidence intervals (95% CI) from Cox proportional hazard analyses of self-reported physician-diagnosed incident kidney cancer versus MET-hours per week in 91,820 subjects recruited between 1991 and 1993 (7.7 yr follow-up of 42,833 subjects) and between 1998 and 1999 (6.4 yr follow-up of 33,053 subjects) as part of the National Runners' Health Study and between 1998 and 1999 as part of the National Walkers' Health Study (5.7 yr follow-up of 15,934 subjects). Results: Fifty-two incident cancers were reported. Age-and sex-adjusted risk declined 1.9% per MET-hour per week run or walked (HR = 0.981, 95% CI = 0.964-0.997, P = 0.02). Compared with walking or running below guidelines levels (<7.5MET.h.wk(-1)), the risk for incident kidney cancer was 61% lower for meeting the guidelines (HR = 0.39, 95% CI = 0.11-1.08, P = 0.07 for 7.5-12.5 MET.h.wk(-1)), 67% lower for exercising one to two times the recommended level (HR = 0.33; 95% CI = 0.15-0.72, P = 0.005 for 12.6-25.1 MET.h.wk(-1)), and 76.3% lower for exercising two times or more the recommended level (HR = 0.24, 95% CI = 0.11-0.52, P = 0.0005 for >= 25.2 MET.h.wk(-1)). Incident kidney cancer risk also increased in association with baseline body mass index (P = 0.002), smoking (P = 0.02), and hypertensive (P = 0.007) and diabetes medication use (P = 0.01); however, exercise-associated reductions in kidney cancer risk persisted for 12.6-25.1 MET.h.wk(-1) (HR = 0.35, P = 0.01) and >= 25.2 MET.h.wk(-1) (HR = 0.29, P = 0.004) vis-a-vis <7.5 MET.h.wk(-1) when also adjusted for body mass index, hypertension, diabetes, and pack-years smoked. Conclusion: Running and walking may reduce incident kidney cancer risk independent of its other known risk factors. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Heart, Lung, and Blood Institute [HL094717] FX This research was supported by the National Heart, Lung, and Blood Institute (grant no. HL094717) and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The author declared that no conflict of interest exists. NR 40 TC 3 Z9 3 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0195-9131 EI 1530-0315 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD FEB PY 2014 VL 46 IS 2 BP 312 EP 317 DI 10.1249/MSS.0b013e3182a4e89c PG 6 WC Sport Sciences SC Sport Sciences GA AJ4ZB UT WOS:000337688000013 PM 23863620 ER PT J AU Schlom, DG Chen, LQ Fennie, CJ Gopalan, V Muller, DA Pan, XQ Ramesh, R Uecker, R AF Schlom, Darrell G. Chen, Long-Qing Fennie, Craig J. Gopalan, Venkatraman Muller, David A. Pan, Xiaoqing Ramesh, Ramamoorthy Uecker, Reinhard TI Elastic strain engineering of ferroic oxides SO MRS BULLETIN LA English DT Article ID FERROELECTRIC THIN-FILMS; FIELD-EFFECT TRANSISTORS; PULSED-LASER DEPOSITION; LOW-LOSS SUBSTRATE; X-RAY-DIFFRACTION; SINGLE-CRYSTALS; MAGNETIC-PROPERTIES; EPITAXIAL-GROWTH; ROOM-TEMPERATURE; POLARIZATION ENHANCEMENT AB Using epitaxy and the misfit strain imposed by an underlying substrate, it is possible to elastically strain oxide thin films to percent levels-far beyond where they would crack in bulk. Under such strains, the properties of oxides can be dramatically altered. In this article, we review the use of elastic strain to enhance ferroics, materials containing domains that can be moved through the application of an electric field (ferroelectric), a magnetic field (ferromagnetic), or stress (ferroelastic). We describe examples of transmuting oxides that are neither ferroelectric nor ferromagnetic in their unstrained state into ferroelectrics, ferromagnets, or materials that are both at the same time (multiferroics). Elastic strain can also be used to enhance the properties of known ferroic oxides or to create new tunable microwave dielectrics with performance that rivals that of existing materials. Results show that for thin films of ferroic oxides, elastic strain is a viable alternative to the traditional method of chemical substitution to lower the energy of a desired ground state relative to that of competing ground states to create materials with superior properties. C1 [Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Schlom, Darrell G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA. [Chen, Long-Qing] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Fennie, Craig J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Gopalan, Venkatraman] Penn State Univ, University Pk, PA 16802 USA. [Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY USA. [Muller, David A.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA. [Pan, Xiaoqing] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Ramesh, Ramamoorthy] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Uecker, Reinhard] Leibniz Inst Crystal Growth, Berlin, Germany. RP Schlom, DG (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu; lqc3@psu.edu; fennie@cornell.edu; vgopalan@psu.edu; dm24@cornell.edu; panx@umich.edu; rameshr@ornl.gov; reinhard.uecker@ikz-berlin.de RI Albe, Karsten/F-1139-2011 FU National Science Foundation (NSF) [DMR-0820404, DMR-0948036]; US Department of Energy [DE-AC0205CH11231] FX We gratefully acknowledge our colleagues and collaborators for sharing their insights and helping us to explore and better understand the exciting area of elastically strained ferroic oxide films. We especially thank the groups of E. Arenholz, M. Bedzyk, M.D. Biegalski, D.H.A. Blank, D.A. Bonnell, J.C. Booth, J.D. Brock, L.E. Cross, C.B. Eom, J.W. Freeland, P. Ghosez, P.C. Hammel, M.E. Hawley, E. Johnston-Halperin, S. Kamba, S.W. Kirchoefer, J. Levy, Yulan Li, T.E. Mallouk, J. Mannhart, L.W. Martin, K. Peters, K.M. Rabe, J.M. Rondinelli, P.J. Ryan, P. Schiffer, J. Schubert, N.A. Spaldin, S.K. Streiffer, A.K. Tagantsev, I. Takeuchi, D.A. Tenne, J.-M. Triscone, S. Trolier-McKinstry, D. Vanderbilt, J.C. Woicik, and X.X.Xi. L.Q.C., C.J.F., V.G., X.Q.P., D.G.S., and R.R. gratefully acknowledge financial support from the National Science Foundation (NSF) under Grant No. DMR-0820404. D.G.S. also acknowledges NSF Grant DMR-0948036. R.R. acknowledges sustained support from the US Department of Energy under Contract No. DE-AC0205CH11231. NR 207 TC 79 Z9 79 U1 24 U2 183 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD FEB PY 2014 VL 39 IS 2 BP 118 EP 130 DI 10.1557/mrs.2014.1 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AJ0TH UT WOS:000337368400010 ER PT J AU Black, JM Feng, G Fulvio, PF Hillesheim, PC Dai, S Gogotsi, Y Cummings, PT Kalinin, SV Balke, N AF Black, Jennifer M. Feng, Guang Fulvio, Pasquale F. Hillesheim, Patrick C. Dai, Sheng Gogotsi, Yury Cummings, Peter T. Kalinin, Sergei V. Balke, Nina TI Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes SO ADVANCED ENERGY MATERIALS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; IONIC LIQUID ELECTROLYTES; SCANNING PROBE MICROSCOPY; ELECTRICAL DOUBLE-LAYERS; NITROGEN ADSORPTION; MICROPOROUS CARBONS; MOLECULAR INSIGHTS; THICKNESS CHANGES; ENERGY-STORAGE; CAPACITANCE C1 [Black, Jennifer M.; Kalinin, Sergei V.; Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Feng, Guang; Cummings, Peter T.] Vanderbilt Univ, Nashville, TN 37235 USA. [Fulvio, Pasquale F.; Hillesheim, Patrick C.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gogotsi, Yury] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Gogotsi, Yury] Univ Penn, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA. RP Feng, G (reprint author), Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. EM guang.feng@vanderbilt.edu; balken@ornl.gov RI Fulvio, Pasquale/B-2968-2014; Feng, Guang/D-8989-2011; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Dai, Sheng/K-8411-2015; OI Fulvio, Pasquale/0000-0001-7580-727X; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Dai, Sheng/0000-0002-8046-3931; Feng, Guang/0000-0001-6659-9181 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Palmetto Cluster at Clemson University; National Energy Research Scientific Computing Center; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center FX The experiments, modeling, and sample preparation in this work were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The facilities to perform the experiments were provided by the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Modeling was additionally supported by the Palmetto Cluster at Clemson University and the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to acknowledge the help of H. Bei and S. Kalnaus for help with the mechanical sample characterization and S. Li for help with running some of MD simulations. NR 56 TC 5 Z9 5 U1 9 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB PY 2014 VL 4 IS 3 AR 1300683 DI 10.1002/aenm.201300683 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AB3SG UT WOS:000331709900005 ER PT J AU Jiao, Y Zheng, Y Smith, SC Du, AJ Zhu, ZH AF Jiao, Yan Zheng, Yao Smith, Sean C. Du, Aijun Zhu, Zhonghua TI Electrocatalytically Switchable CO2 Capture: First Principle Computational Exploration of Carbon Nanotubes with Pyridinic Nitrogen SO CHEMSUSCHEM LA English DT Article DE CO2 capture; density functional theory; nanocarbon functionalization; nanostructures; nanotubes ID GENERALIZED GRADIENT APPROXIMATION; CORRELATION-ENERGY; OXYGEN REDUCTION; BORON-NITRIDE; SURFACE-AREA; DENSITY; GAS; SEPARATION; DIOXIDE; ADSORPTION AB Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in compar-ison with N-2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered. C1 [Smith, Sean C.] Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37831 USA. [Du, Aijun] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia. [Jiao, Yan; Zhu, Zhonghua] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia. [Jiao, Yan; Zheng, Yao] Univ Queensland, AIBN, Brisbane, Qld 4072, Australia. RP Smith, SC (reprint author), Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37831 USA. EM smithsc@ornl.gov; aijun.du@qut.edu.au; z.zhu@uq.edu.au RI Zheng, Yao/J-5317-2012; Jiao, Yan/J-5322-2012; Zheng, Yao/C-8327-2016; Smith, Sean/H-5003-2015; Du, Aijun/C-5759-2009; Zheng, Yao/F-2588-2017 OI Jiao, Yan/0000-0003-1329-4290; Smith, Sean/0000-0002-5679-8205; Du, Aijun/0000-0002-3369-3283; Zheng, Yao/0000-0002-2411-8041 FU Australian Research Council (LIEF) [LE0882357]; Australian Commonwealth Government; ARC; UQ Graduate School International Travel Award (GSITA) at the Centre for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory (ORNL); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We acknowledge generous grants of high-performance computer time from the AIBN cluster computing facility at The University of Queensland and the Australian Research Council (LIEF grant LE0882357: A Computational Facility for Multiscale Modeling in Computational Bio and Nanotechnology), Queensland Cyber Infrastructure Foundation (QCIF), and from NCI National Facility in Australia which is supported by the Australian Commonwealth Government. The authors also greatly appreciate financial support from the ARC Discovery Project grant scheme. Y.J. also acknowledges a UQ Graduate School International Travel Award (GSITA) to undertake research at the Centre for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory (ORNL). Part of the work was carried out at the CNMS, which is supported at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 57 TC 15 Z9 15 U1 6 U2 45 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2014 VL 7 IS 2 BP 435 EP 441 DI 10.1002/cssc.201300624 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AI3ZG UT WOS:000336804000013 PM 24488677 ER PT J AU Dathar, GKP Tsai, YT Gierszal, K Xu, Y Liang, CD Rondinone, AJ Overbury, SH Schwartz, V AF Dathar, Gopi Krishna Phani Tsai, Yu-Tung Gierszal, Kamil Xu, Ye Liang, Chengdu Rondinone, Adam J. Overbury, Steven H. Schwartz, Viviane TI Identifying Active Functionalities on Few-Layered Graphene Catalysts for Oxidative Dehydrogenation of Isobutane SO CHEMSUSCHEM LA English DT Article DE density functional calculations; carbon graphene; nanostructures; oxidative dehydrogenation ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON CATALYSTS; HETEROGENEOUS CATALYSIS; ELECTRO-CATALYSIS; OXYGEN REDUCTION; N-BUTANE; OXIDE; ETHYLBENZENE; CHEMISTRY AB The general consensus in the studies of nanostructured carbon catalysts for oxidative dehydrogenation (ODH) of alkanes to olefins is that the oxygen functionalities generated during synthesis and reaction are responsible for the catalytic activity of these nanostructured carbons. Identification of the highly active oxygen functionalities would enable engineering of nanocarbons for ODH of alkanes. Few-layered graphenes were used as model catalysts in experiments to synthesize reduced graphene oxide samples with varying oxygen concentrations, to characterize oxygen functionalities, and to measure the activation energies for ODH of isobutane. Periodic density functional theory calculations were performed on graphene nanoribbon models with a variety of oxygen functionalities at the edges to calculate their thermal stability and to model reaction mechanisms for ODH of isobutane. Comparing measured and calculated thermal stability and activation energies leads to the conclusion that dicarbonyls at the zigzag edges and quinones at armchair edges are appropriately balanced for high activity, relative to other model functionalities considered herein. In the ODH of isobutane, both dehydrogenation and regeneration of catalytic sites are relevant at the dicarbonyls, whereas regeneration is facile compared with dehydrogenation at quinones. The catalytic mechanism involves weakly adsorbed isobutane reducing functional oxygen and leaving as isobutene, and O-2 in the feed, weakly adsorbed on the hydrogenated functionality, reacting with that hydrogen and regenerating the catalytic sites. C1 [Dathar, Gopi Krishna Phani; Tsai, Yu-Tung; Gierszal, Kamil; Xu, Ye; Liang, Chengdu; Rondinone, Adam J.; Overbury, Steven H.; Schwartz, Viviane] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Schwartz, V (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM schwartzv@ornl.gov RI Xu, Ye/B-5447-2009; Rondinone, Adam/F-6489-2013; Overbury, Steven/C-5108-2016 OI Xu, Ye/0000-0002-6406-7832; Rondinone, Adam/0000-0003-0020-4612; Overbury, Steven/0000-0002-5137-3961 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (US-DOE); US-DOE Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; US-DOE FX This work was conducted at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory (ORNL), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (US-DOE). Computing resources provided by the National Energy Research Scientific Computing Center, which is supported by US-DOE Office of Science under Contract DE-AC02-05CH11231; by the Oak Ridge Leadership Computing Facility, which is supported by US-DOE Office of Science under Contract DE-AC05-00OR22725; and by the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for US-DOE, were used and are gratefully acknowledged. We thank Dr. Zili Wu for helpful discussions related to characterization of graphene samples and the catalytic mechanism of ODH. NR 55 TC 26 Z9 26 U1 9 U2 68 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2014 VL 7 IS 2 BP 483 EP 491 DI 10.1002/cssc.201301006 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AI3ZG UT WOS:000336804000019 PM 24464945 ER PT J AU Shui, JL Okasinski, JS Chen, C Almer, JD Liu, DJ AF Shui, Jiang-Lan Okasinski, John S. Chen, Chen Almer, Jonathan D. Liu, Di-Jia TI In Operando Spatiotemporal Study of Li2O2 Grain Growth and its Distribution Inside Operating Li-O-2 Batteries SO CHEMSUSCHEM LA English DT Article DE batteries; electrochemistry; energy conversion; lithium; synchrotron X-ray ID LITHIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; X-RAY; ELECTROLYTE; CATALYSTS; GRAPHENE; CATHODE AB Nanocrystalline lithium peroxide (Li2O2) is considered to play a critical role in the redox chemistry during the discharge-charge cycling of the Li-O-2 batteries. In this report, a spatially resolved, real-time synchrotron X-ray diffraction technique was applied to study the cyclic formation/decomposition of Li2O2 crystallites in an operating Li-O-2 cell. The evaluation of Li2O2 grain size, concentration, and spatial distribution inside the cathode is demonstrated under the actual cycling conditions. The study not only unambiguously proved the reversibility of the Li2O2 redox reaction during reduction and evolution of O-2, but also allowed for the concentration and dimension growths of the peroxide nanocrystallites to be accurately measured at different regions within the cathode. The results provide important insights for future investigation on mass and charge transport properties in Li2O2 and improvement in cathode structure and material design. C1 [Shui, Jiang-Lan; Chen, Chen; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Okasinski, John S.; Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, X Ray Sci Div, Argonne, IL 60439 USA. RP Shui, JL (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov FU Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory FX The authors thank Howard A. Dobbs for his support on data analysis. This work and the use of the Advanced Photon Source and Electron Microscopy Center are supported by Office of Science, U.S. Department of Energy under contract DE-AC02-06CH11357. The financial support by the Grand Challenge program of Argonne National Laboratory is gratefully acknowledged. NR 36 TC 13 Z9 13 U1 5 U2 47 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2014 VL 7 IS 2 BP 543 EP 548 DI 10.1002/cssc.201300822 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AI3ZG UT WOS:000336804000026 PM 24399807 ER PT J AU Chen, XL Li, XL Mei, DH Feng, J Hu, MY Hu, JZ Engelhard, M Zheng, JM Xu, W Xiao, J Liu, J Zhang, JG AF Chen, Xilin Li, Xiaolin Mei, Donghai Feng, Ju Hu, Mary Y. Hu, Jianzhi Engelhard, Mark Zheng, Jianming Xu, Wu Xiao, Jie Liu, Jun Zhang, Ji-Guang TI Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode SO CHEMSUSCHEM LA English DT Article DE anode materials; electrochemistry; fluoroethylene carbonate; lithium-ion batteries; NMR; solid-electrolyte interphase ID LITHIUM-ION BATTERIES; LONG CYCLE LIFE; VINYLENE CARBONATE; PERFORMANCE; NANOWIRES; CAPACITY; ADDITIVES; NMR AB Fluoroethylene carbonate (FEC) is an effective electrolyte additive that can significantly improve the cycling ability of silicon and other anode materials. However, the fundamental mechanism of this improvement is still not well understood. Based on the results obtained from Li-6 NMR and X-ray photoelectron spectroscopy studies, we propose a molecular-level mechanism for how FEC affects the formation of solid electrolyte interphase (SEI) film: 1) FEC is reduced through the opening of the five-membered ring leading to the formation of lithium poly(vinyl carbonate), LiF, and some dimers; 2) the FEC-derived lithium poly(vinyl carbonate) enhances the stability of the SEI film. The proposed reduction mechanism opens a new path to explore new electrolyte additives that can improve the cycling stability of silicon-based electrodes. C1 [Chen, Xilin; Li, Xiaolin; Zheng, Jianming; Xu, Wu; Xiao, Jie; Liu, Jun; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Mei, Donghai; Hu, Mary Y.; Hu, Jianzhi] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Feng, Ju; Engelhard, Mark] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Chen, XL (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM jun.liu@pnnl.gov; Jiguang.zhang@pnnl.gov RI Chen, Xilin/A-1409-2012; Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; Hu, Jian Zhi/F-7126-2012; Zheng, Jianming/F-2517-2014; OI Mei, Donghai/0000-0002-0286-4182; Zheng, Jianming/0000-0002-4928-8194; Engelhard, Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 18769]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769 under the Batteries for Advanced Transportation Technologies (BATT) program. A portion of the research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 44 TC 29 Z9 29 U1 5 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2014 VL 7 IS 2 BP 549 EP 554 DI 10.1002/cssc.201300770 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AI3ZG UT WOS:000336804000027 PM 24634952 ER PT J AU Li, B Luo, QT Wei, XL Nie, ZM Thomsen, E Chen, BW Sprenkle, V Wang, W AF Li, Bin Luo, Qingtao Wei, Xiaoliang Nie, Zimin Thomsen, Edwin Chen, Baowei Sprenkle, Vincent Wang, Wei TI Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and its Recovery SO CHEMSUSCHEM LA English DT Article DE electrochemistry; energy conversion; membranes; redox chemistry; vanadium ID RESEARCH-AND-DEVELOPMENT; ENERGY-STORAGE; MEMBRANE; PROGRESS; CELL; ELECTROLYTE; PERFORMANCE AB The results of the investigation of the capacity decay mechanism of vanadium redox flow batteries with microporous separators as membranes are reported. The investigation focuses on the relationship between the electrochemical performance and electrolyte compositions at both the positive and negative half-cells. Although the concentration of total vanadium ions remains nearly constant at both sides over cycling, the net transfer of solution from one side to the other and thus the asymmetrical valance of vanadium ions caused by the subsequent disproportionate self-discharge reactions at both sides lead to capacity fading. Through in situ monitoring of the hydraulic pressure of the electrolyte during cycling at both sides, the convection was found to arise from differential hydraulic pressures at both sides of the separators and plays a dominant role in capacity decay. A capacity-stabilizing method is developed and was successfully demonstrated through the regulation of gas pressures in both electrolyte tanks. C1 [Li, Bin; Luo, Qingtao; Wei, Xiaoliang; Nie, Zimin; Thomsen, Edwin; Chen, Baowei; Sprenkle, Vincent; Wang, Wei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, B (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) [57558]; DOE [DE-AC05-76L01830] FX The authors would like to acknowledge the financial support provided by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558). We are grateful for the discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage Program. We also are grateful to Daramic LLC, in Owensboro, Kentucky, for providing the PE/Silica separator and SEM image of the separator structure. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76L01830. NR 29 TC 17 Z9 17 U1 11 U2 76 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2014 VL 7 IS 2 BP 577 EP 584 DI 10.1002/cssc.201300706 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AI3ZG UT WOS:000336804000031 PM 24488680 ER PT J AU Polyansky, DE Hurst, JK Lymar, SV AF Polyansky, Dmitry E. Hurst, James K. Lymar, Sergei V. TI Application of Pulse Radiolysis to Mechanistic Investigations of Water Oxidation Catalysis SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Water chemistry; Reaction mechanisms; Pulse radiolysis; Oxidation; Radicals ID RUTHENIUM DIIMINE COMPLEXES; PORPHYRIN RADICAL CATIONS; OXYGEN-EVOLVING COMPLEX; ONE-ELECTRON REDUCTION; MU-OXO DIMER; AQUEOUS-SOLUTION; REDOX PROPERTIES; HYDROXYL RADICALS; PHOTOSYSTEM-II; MOLECULAR CATALYSTS AB Radiolysis is a powerful technique capable of generating both inorganic and organic strong one-electron oxidants over a wide range of aqueous medium conditions. Accordingly, current pulse radiolysis methods are quite advanced and have been productively used to study dynamics of many types of redox reactions for several decades. Nonetheless, despite its apparent usefulness for gaining mechanistic insights into water oxidation catalysis through probing normally inaccessible oxidation states of the catalysts, pulse radiolysis has only infrequently been applied to this purpose. In this paper, we identify those oxidizing radicals deemed most suited to these types of studies and describe methods for their radiolytic generation, review the scant literature on pulse radiolysis studies of both heterogeneous and homogeneous water oxidation catalysts, and discuss results of our own investigations of two dimeric and one monomeric ruthenium-based catalysts, each of which appears to oxidize water by a distinct pathway. The optical spectra and redox dynamics of transient species determined have in each case provided information central to evaluating proposed catalytic mechanisms. Moreover, quantitative "over-oxidation" by generating a stoichiometric excess amount of radicals has permitted investigation of an intermediate formed from a highly reactive precursor, demonstrating the unique capability of the pulse radiolysis method. As illustrated by these examples, this technique is broadly applicable to investigations of catalyzed water oxidation, which has the potential to become a method of choice for detecting and characterizing reaction transients. C1 [Polyansky, Dmitry E.; Lymar, Sergei V.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hurst, James K.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Lymar, SV (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM lymar@bnl.gov RI Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-98CH10886, DE-FG02-06ER 15820] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract DE-AC02-98CH10886 (at Brookhaven National Laboratory) and through grant DE-FG02-06ER 15820 (at Washington State University). NR 97 TC 4 Z9 4 U1 3 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD FEB PY 2014 IS 4 SI SI BP 619 EP 634 DI 10.1002/ejic.201300753 PG 16 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AI3ED UT WOS:000336741600006 ER PT J AU Li, KY Yang, YC Gu, ZJ Howe, JY Eres, G Zhang, LT Li, XD Pan, ZW AF Li, Kaiyuan Yang, Yingchao Gu, Zhanjun Howe, Jane Y. Eres, Gyula Zhang, Litong Li, Xiaodong Pan, Zhengwei TI Approaching Carbon Nanotube Reinforcing Limit in B4C Matrix Composites Produced by Chemical Vapor Infiltration SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID MECHANICAL-PROPERTIES; BORON-CARBIDE; ELECTRICAL-PROPERTIES; MICROSTRUCTURE; CERAMICS; NANOCOMPOSITES; STRENGTH; PHASE; FILMS; TIO2 C1 [Li, Kaiyuan; Gu, Zhanjun; Pan, Zhengwei] Univ Georgia, Coll Engn, Dept Phys & Astron, Athens, GA 30602 USA. [Yang, Yingchao; Li, Xiaodong] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Gu, Zhanjun] Chinese Acad Sci, Inst High Energy Phys, Lab Bio Environm Effects Nanomat & Nanosafe, Beijing 100049, Peoples R China. [Li, Kaiyuan; Zhang, Litong] NW Polytechn Univ, Natl Key Lab Thermostruct Composite Mat, Xian 710072, Cleveland, Peoples R China. [Howe, Jane Y.; Eres, Gyula] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Li, KY (reprint author), Univ Georgia, Coll Engn, Dept Phys & Astron, Athens, GA 30602 USA. EM panz@uga.edu RI Howe, Jane/G-2890-2011; Yang, Yingchao/B-1546-2013; Gu, Zhanjun/A-7592-2013; Eres, Gyula/C-4656-2017; OI Gu, Zhanjun/0000-0003-3717-2423; Eres, Gyula/0000-0003-2690-5214; Pan, Zhengwei/0000-0002-3854-958X FU NSF [CAREER DMR-0955908]; China Scholarship Council; Materials Science Division, Office of Basic Energy Science, U.S. Department of Energy (DOE); Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, U.S. DOE FX Z.W.P. acknowledges funding by NSF (CAREER DMR-0955908). K.Y.L. thanks the financial support from the China Scholarship Council. G. E. acknowledges funding by the Materials Science Division, Office of Basic Energy Science, U.S. Department of Energy (DOE). The microscopy work was sponsored by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. DOE. Supporting Information is available from the Wiley Online Library or from the author. NR 38 TC 3 Z9 3 U1 0 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD FEB PY 2014 VL 16 IS 2 BP 161 EP 166 DI 10.1002/adem.201300303 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA AB7JE UT WOS:000331965000006 ER PT J AU Hoerling, M Eischeid, J Kumar, A Leung, R Mariotti, A Mo, K Schubert, S Seager, R AF Hoerling, M. Eischeid, J. Kumar, A. Leung, R. Mariotti, A. Mo, K. Schubert, S. Seager, R. TI CAUSES AND PREDICTABILITY OF THE 2012 GREAT PLAINS DROUGHT SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID UNITED-STATES; DUST-BOWL; PRECIPITATION; TEMPERATURE; VARIABILITY; SUMMER; OCEAN AB Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in the summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in sum mertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability of the severe summer Great Plains drought occurring may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. The implications of this study's findings for U.S. seasonal drought forecasting are discussed. C1 [Hoerling, M.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Eischeid, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Kumar, A.; Mo, K.] NOAA, Climate Predict Ctr, Camp Springs, MD USA. [Leung, R.] Pacific NW Natl Lab, Dept Energy, Richland, WA 99352 USA. [Mariotti, A.] NOAA, Climate Program Off, Silver Spring, MD USA. [Schubert, S.] NASA, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Seager, R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. RP Hoerling, M (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM martin.hoerling@noaa.gov FU MAPP; National Integrated Drought Information System (NIDIS) Program FX The authors acknowledge resources and organizational support for the Drought Task Force from the Modeling, Analysis, Predictions and Projections Program (MAPP) of NOAA's Climate Program Office; activities are supported by MAPP in partnership with the National Integrated Drought Information System (NIDIS) Program. The authors also gratefully acknowledge support from their home institutions and various funding agencies, which help sustain their work. NR 24 TC 66 Z9 66 U1 4 U2 35 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD FEB PY 2014 VL 95 IS 2 BP 269 EP 282 DI 10.1175/BAMS-D-13-00055.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AE1JK UT WOS:000333725400009 ER PT J AU Miller, SD Forsythe, JM Partain, PT Haynes, JM Bankert, RL Sengupta, M Mitrescu, C Hawkins, JD Vonder Haar, TH AF Miller, Steven D. Forsythe, John M. Partain, Philip T. Haynes, John M. Bankert, Richard L. Sengupta, Manajit Mitrescu, Cristian Hawkins, Jeffrey D. Vonder Haar, Thomas H. TI Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID A-TRAIN; CIRRUS CLOUDS; ALGORITHM; MISSION; TEMPERATURE; THICKNESS; SCIENCE; HEIGHT; MODELS; SPACE AB The launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of vertically resolved cloud information. However, CloudSat's nonscanning W-band (94 GHz) Cloud Profiling Radar (CPR) provides only a nadir cross section, or "curtain,'' of the atmosphere along the satellite ground track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of the same type (e. g., cirrus, cumulus, and stratocumulus) often share geometric and microphysical properties as well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals of cloud-top height, result in a 3D structure for the topmost cloud layer. The technique was developed on multiyear CloudSat data and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) swath data from the NASA Aqua satellite. Data-exclusion experiments along the CloudSat ground track show improved predictive skill over both climatology and type-independent nearest-neighbor estimates. More important, the statistical methods, which employ a dynamic range-dependent weighting scheme, were also found to outperform type-dependent near-neighbor estimates. Application to the 3D cloud rendering of a tropical cyclone is demonstrated. C1 [Miller, Steven D.; Forsythe, John M.; Partain, Philip T.; Haynes, John M.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Bankert, Richard L.; Hawkins, Jeffrey D.] Naval Res Lab, Monterey, CA USA. [Sengupta, Manajit] Natl Renewable Energy Lab, Golden, CO USA. [Mitrescu, Cristian] Sci Syst & Applicat Inc, Hampton, VA USA. [Vonder Haar, Thomas H.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Miller, SD (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. EM steven.miller@colostate.edu RI vonderhaar, thomas/N-6724-2015 OI vonderhaar, thomas/0000-0002-1962-7757 FU Naval Research Laboratory [N00173-10-C-2003]; Program Executive Office [C4I/PMW-120, PE-0603207N]; DoD Center for Geosciences/Atmospheric Research at Colorado State University [W911NF-06-2-0015]; Army Research Laboratory; NASA [NNX09AN79G] FX We gratefully acknowledge the time invested by our reviewers in helping us to improve this manuscript. This research was supported by the Naval Research Laboratory through Contract N00173-10-C-2003, the Oceanographer of the Navy through the Program Executive Office C4I/PMW-120 under Program Element PE-0603207N, the DoD Center for Geosciences/Atmospheric Research at Colorado State University under Cooperative Agreement W911NF-06-2-0015 with the Army Research Laboratory, and NASA Grant NNX09AN79G. NR 46 TC 7 Z9 7 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2014 VL 53 IS 2 BP 437 EP 455 DI 10.1175/JAMC-D-13-070.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AH9FU UT WOS:000336448000017 ER PT J AU Protat, A Young, SA McFarlane, SA L'Ecuyer, T Mace, GG Comstock, JM Long, CN Berry, E Delanoe, J AF Protat, A. Young, S. A. McFarlane, S. A. L'Ecuyer, T. Mace, G. G. Comstock, J. M. Long, C. N. Berry, E. Delanoe, J. TI Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID RADAR-LIDAR OBSERVATIONS; K-DISTRIBUTION METHOD; MULTIPLE-SCATTERING; HEATING RATES; A-TRAIN; ACCURATE PARAMETERIZATION; TROPICAL TROPOPAUSE; MEASUREMENT PROGRAM; PROFILING RADAR; CLIMATE MODELS AB The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well-instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (because of limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar-Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2-km height because of instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of-atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and radiative transfer calculations are also found above 10 km (up to 0.35 K day(-1) for the shortwave and 0.8 K day(-1) for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models, and limitations of each set of instrumentation should be considered when interpreting model-observation differences. C1 [Protat, A.; Young, S. A.] Ctr Australian Weather & Climate Res CAWCR, Melbourne, Vic 3008, Australia. [McFarlane, S. A.; Comstock, J. M.; Long, C. N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [L'Ecuyer, T.] Univ Wisconsin, Madison, WI USA. [Mace, G. G.; Berry, E.] Univ Utah, Salt Lake City, UT USA. [Delanoe, J.] Lab Atmosphere, Guyancourt, France. RP Protat, A (reprint author), Ctr Australian Weather & Climate Res CAWCR, 700 Collins St, Melbourne, Vic 3008, Australia. EM a.protat@bom.gov.au RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU U.S. Department of Energy (DOE); NASA Energy and Water Cycle Study (NEWS) program FX This work was partly supported by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR) Programs. The PNNL authors were also partially supported by the NASA Energy and Water Cycle Study (NEWS) program. The Darwin radar, lidar, and radiation data were obtained from the ARM Program Archive (www.arm.gov). The CloudSat-CALIPSO data and products were obtained from the CloudSat Data Processing Center run by the Cooperative Institute for Research in the Atmosphere (CIRA). CALIPSO cloud frequencies in Fig. 3 were calculated from vertical feature mask data downloaded from the NASA Langley Atmospheric Science Data Center. NR 67 TC 12 Z9 13 U1 0 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2014 VL 53 IS 2 BP 456 EP 478 DI 10.1175/JAMC-D-13-072.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AH9FU UT WOS:000336448000018 ER PT J AU Bhattacharia, SK Maiti, A Gee, RH Nunley, J Weeks, BL AF Bhattacharia, Sanjoy K. Maiti, Amitesh Gee, Richard H. Nunley, Jay Weeks, Brandon L. TI Effect of Homolog Doping on Surface Morphology and Mass-Loss Rates from PETN Crystals: Studies using Atomic Force Microscope and Thermogravimetric Analysis SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Single crystal; PETN; Doping; Impurities; Mass-Loss rate; Morphology ID PENTAERYTHRITOL TETRANITRATE CRYSTALS; GROWTH-KINETICS; SINGLE-CRYSTALS; CALCITE GROWTH; KDP CRYSTALS; IMPURITY; MECHANISM AB Pentaerythritol tetranitrate (PETN) is an important energetic material, whose performance as a secondary explosive depends strongly on the density as well as flow porosity of powdered material, which in turn is governed by the size and surface properties of the PETN crystallite particles. Historically there has been evidence that the surface properties of PETN particles can be strongly influenced by the presence of homolog impurities of PETN, in particular, dipentaerythritol hexanitrate (diPEHN) and tripentaerythritol octanitrate (triPEON), although not many systematic studies characterizing such influence exist. In this work we employ thermogravimetric analysis (TGA) to measure mass-loss rates at elevated temperatures and show that doping with a small amount of diPEHN and triPEON can reduce the mass-loss rate from PETN single-crystal surfaces by as much as 35% as compared to undoped crystals. Arrhenius plots of mass-loss rates as a function of temperature suggest that the reduction in evaporation is not due to the change in activation barrier of the molecular evaporation process, but perhaps due to the impedance to the receding motion of the steps by the immobile impurities on the surface. Removal of surface impurities through gentle washing with ethanol leads to enhanced mass-loss rate relative to pure PETN suggesting a roughened surface morphology. Some surface roughening in doped crystals is supported by Atomic force microscopy (AFM) images of growth layers that show evidences of growth layer stacking and rough edges. We also find that a larger amount of impurity added to the original solution does not necessarily lead to a more highly doped crystal, which could perhaps be interpreted as PETN crystals being able to accommodate only up to a certain weight percent of homolog impurities. C1 [Bhattacharia, Sanjoy K.; Nunley, Jay; Weeks, Brandon L.] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. [Maiti, Amitesh; Gee, Richard H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bhattacharia, SK (reprint author), Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. EM sanjoy.bhattacharia@ttu.edu RI Weeks, Brandon/P-6331-2014 OI Weeks, Brandon/0000-0003-2552-4129 FU Office of Naval Research [N00014-06-1-0922]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DEAC52-07NA27344] FX This work was performed under the auspices of the Office of Naval Research under the project number N00014-06-1-0922. The work at LLNL was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344. NR 22 TC 2 Z9 2 U1 0 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2014 VL 39 IS 1 BP 24 EP 29 DI 10.1002/prep.201200213 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA AB7NQ UT WOS:000331977700005 ER PT J AU Terrell, TR Cox, CB Bielak, K Casmus, R Laskowitz, D Nichols, G AF Terrell, Thomas R. Cox, Conrad B. Bielak, Ken Casmus, Robert Laskowitz, Daniel Nichols, Gregory TI Sports Concussion Management: Part II SO SOUTHERN MEDICAL JOURNAL LA English DT Review DE concussion research; minimal traumatic brain injury; neuroimaging; risk factors; sports-related concussion ID TRAUMATIC BRAIN-INJURY; PREDICT PROTRACTED RECOVERY; SCHOOL FOOTBALL PLAYERS; DIFFUSE AXONAL INJURY; WHITE-MATTER INJURY; HEAD-INJURY; DESCRIPTIVE EPIDEMIOLOGY; SURVEILLANCE SYSTEM; COLLEGE FOOTBALL; ENCEPHALOPATHY AB Millions of concussions occur every year in the United States. The public interest in concussion has increased after a number of high-profile deaths in high school athletes from sports-related head trauma and in some professional athletes from chronic traumatic encephalopathy. One of the most active areas of research in sports medicine during the last decade has been the evaluation and management of concussion. In this second article of a two-part series, we provide an overview of the latest scientific advances in concussion research. This overview includes an update on the pathobiological changes that occur during concussion and the results of biomechanical studies. In addition, to aid the practicing clinician, we review the literature on proven and currently studied concussion risk factors, including a history of concussion, fatigue, and age. Genetic polymorphisms and biomarkers may provide risk-prediction capability, but at present the research remains inconclusive. Diffusion tensor imaging and functional magnetic resonance imaging are promising technologies that reveal more sophisticated data about the impact of concussion on the brain. We review the existing literature on the application of these neuroimaging modalities to sports concussion. An update from the Fourth International Conference on Concussion in Sport, with highlights of new recommendations, and the presentation of the third edition of the Sports Concussion Assessment Tool to evaluate acute concussion, concludes our review. C1 Univ Tennessee, Knoxville, TN 37920 USA. James A Quillen Sch Med, Johnson City, TN USA. Catawba Coll, Dept Phys Educ & Athlet, Salisbury, NC USA. Duke Univ, Sch Med, Durham, NC USA. Oak Ridge Associated Univ, Occupat Exposure Program, Oak Ridge, TN USA. Oak Ridge Associated Univ, Worker Hlth Program, Oak Ridge, TN USA. RP Terrell, TR (reprint author), Univ Tennessee, Grad Sch Med, Dept Family Med, 1924 Alcoa Hwy,U-71, Knoxville, TN 37920 USA. EM tterrell@utmck.edu FU National Operating Committee on Standards for Athletic Equipment; American Medical Society for Medicine Foundation; University of Tennessee Physician's Medical Education Research Fund FX T.R.T. received grant funding from the National Operating Committee on Standards for Athletic Equipment, the American Medical Society for Medicine Foundation, and the University of Tennessee Physician's Medical Education Research Fund. The opinions expressed in this article are those of the authors and not those of these organizations. NR 65 TC 2 Z9 2 U1 4 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0038-4348 EI 1541-8243 J9 SOUTH MED J JI South.Med.J. PD FEB PY 2014 VL 107 IS 2 BP 126 EP 135 DI 10.1097/SMJ.0000000000000064 PG 10 WC Medicine, General & Internal SC General & Internal Medicine GA AH6TV UT WOS:000336264600014 PM 24926680 ER PT J AU Ishikawa, R Lupini, AR Findlay, SD Pennycook, SJ AF Ishikawa, Ryo Lupini, Andrew R. Findlay, Scott D. Pennycook, Stephen J. TI Quantitative Annular Dark Field Electron Microscopy Using Single Electron Signals SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE STEM; ADF; quantitative microscopy; counting atoms; single electron; image simulation; EELS; aberration correction ID IMAGES; ATOMS; STEM AB One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms. C1 [Ishikawa, Ryo; Lupini, Andrew R.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Findlay, Scott D.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RP Ishikawa, R (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM ishikawa@sigma.t.u-tokyo.ac.jp RI Ishikawa, Ryo/M-4206-2014; OI Ishikawa, Ryo/0000-0001-5801-0971; Findlay, Scott/0000-0003-4862-4827 FU Japan Society for the Promotion of Science (JSPS); Australian Research Council [DP110101570]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Takashi Taniguchi (National Institute for Materials Science, Japan) for preparation of high purity w-AlN single crystals. R. I. acknowledges support from the Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad. S. D. F acknowledges support under the Discovery Projects funding scheme of the Australian Research Council (Project No. DP110101570). A. R. L. and S.J.P. acknowledge support by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We partly used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 18 Z9 18 U1 2 U2 35 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2014 VL 20 IS 1 BP 99 EP 110 DI 10.1017/S1431927613013664 PG 12 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA AG4GU UT WOS:000335378400014 PM 24168987 ER PT J AU Romps, DM AF Romps, David M. TI Rayleigh Damping in the Free Troposphere SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Convective-scale processes; Diffusion; Friction; Momentum; Large eddy simulations ID PRESSURE-GRADIENT APPROXIMATION; CONVECTIVE MOMENTUM TRANSPORT; VERTICAL WIND SHEAR; TROPICAL CIRCULATION; CUMULUS CONVECTION; RESOLVING MODEL; GRAVITY-WAVES; ATMOSPHERE; BUDGET; INSTABILITY AB This paper explores whether cumulus drag (i.e., the damping of winds by convective momentum transport) can be described by an effective Rayleigh drag (i.e., the damping of winds on a constant time scale). Analytical expressions are derived for the damping time scale and descent speed of wind profiles as caused by unorganized convection. Unlike Rayleigh drag, which has a constant damping time scale and zero descent speed, the theory predicts a damping time scale and a descent speed that both depend on the vertical wavelength of the wind profile. These results predict that short wavelengths damp faster and descend faster than long wavelengths, and these predictions are confirmed using large-eddy simulations. Both theory and simulations predict that the convective damping of large-scale circulations occurs on a time scale of O(1-10) days for vertical wavelengths in the range of 2-10 km. C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 377 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu RI Romps, David/F-8285-2011 FU U.S. Department of Energy's Atmospheric System Research-an Office of Science, Office of Biological and Environmental Research program [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [OCI-1053575] FX This work was supported by the U.S. Department of Energy's Atmospheric System Research-an Office of Science, Office of Biological and Environmental Research program under Contract DE-AC02-05CH11231. This research used computing resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and computing resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant OCI-1053575. The feedback from three anonymous reviewers significantly improved the manuscript. NR 46 TC 5 Z9 5 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2014 VL 71 IS 2 BP 553 EP 565 DI 10.1175/JAS-D-13-062.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AG5XG UT WOS:000335491400006 ER PT J AU Solomon, A Shupe, MD Persson, O Morrison, H Yamaguchi, T Caldwell, PM de Boer, G AF Solomon, Amy Shupe, Matthew D. Persson, Ola Morrison, Hugh Yamaguchi, Takanobu Caldwell, Peter M. de Boer, Gijs TI The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Arctic; Mixed layer; Stratiform clouds; Energy budget; balance; Water budget; Large eddy simulations ID RADIATIVE FLUXES; BOUNDARY-LAYER; ANNUAL CYCLE; WATER-VAPOR; SHEBA; OCEAN; MICROPHYSICS; ENTRAINMENT; SCHEMES; MODELS AB In this study, a series of idealized large-eddy simulations is used to understand the relative impact of cloud-top and subcloud-layer sources of moisture on the microphysical-radiative-dynamical feedbacks in an Arctic mixed-phase stratocumulus (AMPS) cloud system. This study focuses on a case derived from observations of a persistent single-layer AMPS cloud deck on 8 April 2008 during the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Moisture and moist static energy budgets are used to examine the potential impact of ice in mixed-phase clouds, specific humidity inversions coincident with temperature inversions as a source of moisture for the cloud system, and the presence of cloud liquid water above the mixed-layer top. This study demonstrates that AMPS have remarkable insensitivity to changes in moisture source. When the overlying air is dried initially, radiative cooling and turbulent entrainment increase moisture import from the surface layer. When the surface layer is dried initially, the system evolves to a state with reduced mixed-layer water vapor and increased surface-layer moisture, reducing the loss of water through precipitation and entrainment of near-surface air. Only when moisture is reduced both above and below the mixed layer does the AMPS decay without reaching a quasi-equilibrium state. A fundamental finding of this study is that, with or without cloud ice and with or without a specific humidity inversion, the cloud layer eventually extends into the temperature inversion producing a precipitation flux as a source of water into the mixed layer. C1 [Solomon, Amy; Shupe, Matthew D.; Persson, Ola; Yamaguchi, Takanobu; de Boer, Gijs] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Solomon, Amy; Shupe, Matthew D.; Persson, Ola; Yamaguchi, Takanobu; de Boer, Gijs] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Morrison, Hugh] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Caldwell, Peter M.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Solomon, A (reprint author), 325 Broadway,R-PSD3, Boulder, CO 80305 USA. EM amy.solomon@noaa.gov RI Shupe, Matthew/F-8754-2011; Caldwell, Peter/K-1899-2014; Solomon, Amy/L-8988-2013; Yamaguchi, Takanobu/H-9169-2013 OI Shupe, Matthew/0000-0002-0973-9982; Yamaguchi, Takanobu/0000-0001-8059-0757 FU Office of Science (BER), U.S. Department of Energy [DE-FG01-05ER63965]; National Science Foundation [ARC-1023366] FX The authors thank Graham Feingold and three anonymous reviewers for constructive comments. This research was supported by the Office of Science (BER), U.S. Department of Energy (DE-FG01-05ER63965) and the National Science Foundation (ARC-1023366). NR 56 TC 15 Z9 15 U1 1 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2014 VL 71 IS 2 BP 574 EP 595 DI 10.1175/JAS-D-13-0179.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AG5XG UT WOS:000335491400008 ER PT J AU Froidevaux, P Schlemmer, L Schmidli, J Langhans, W Schar, C AF Froidevaux, Paul Schlemmer, Linda Schmidli, Juerg Langhans, Wolfgang Schaer, Christoph TI Influence of the Background Wind on the Local Soil Moisture-Precipitation Feedback SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Convective-scale processes; Atmosphere-land interaction; Feedback; Heat budgets; fluxes; Soil moisture; Cloud resolving models ID NUMERICAL WEATHER PREDICTION; MESOSCALE CONVECTIVE SYSTEM; BOUNDARY LAYER INTERACTIONS; REGIONAL CLIMATE MODEL; LAND-SURFACE; ATMOSPHERIC CONTROLS; UNITED-STATES; WEST-AFRICA; RAINFALL; SCALE AB The importance of soil moisture anomalies on airmass convection over semiarid regions has been recognized in several studies. The underlying mechanisms remain partly unclear. An open question is why wetter soils can result in either an increase or a decrease of precipitation (positive or negative soil moisture-precipitation feedback, respectively). Here an idealized cloud-resolving modeling framework is used to explore the local soil moisture-precipitation feedback. The approach is able to replicate both positive and negative feedback loops, depending on the environmental parameters.The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the midtropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection) and high CAPE over wet patches (for the generation of precipitation). C1 [Froidevaux, Paul; Schmidli, Juerg; Schaer, Christoph] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Froidevaux, Paul] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland. [Froidevaux, Paul] Univ Bern, Inst Geog, CH-3012 Bern, Switzerland. [Schlemmer, Linda] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Langhans, Wolfgang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Langhans, Wolfgang] Ctr Climate Syst Modeling C2SM, Zurich, Switzerland. RP Froidevaux, P (reprint author), Univ Bern, Inst Geog, Hallerstr 12, CH-3012 Bern, Switzerland. EM paul.froidevaux@giub.unibe.ch RI Schar, Christoph/A-1033-2008; Schmidli, Juerg/G-9282-2012; Langhans, Wolfgang/J-6437-2014 OI Schar, Christoph/0000-0002-4171-1613; Schmidli, Juerg/0000-0002-6322-6512; NR 59 TC 14 Z9 14 U1 0 U2 24 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2014 VL 71 IS 2 BP 782 EP 799 DI 10.1175/JAS-D-13-0180.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AG5XG UT WOS:000335491400019 ER PT J AU Alessi, J Beebe, E Carlson, C McCafferty, D Pikin, A Ritter, J AF Alessi, James Beebe, Edward Carlson, Charles McCafferty, Daniel Pikin, Alexander Ritter, John TI A hollow cathode ion source for production of primary ions for the BNL electron beam ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented. (C) 2014 AIP Publishing LLC. C1 [Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Alessi, J (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM alessi@bnl.gov NR 4 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02C107 DI 10.1063/1.4852235 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900214 PM 24593637 ER PT J AU Alonso, JR Barletta, WA Toups, MH Conrad, J Liu, Y Bannister, ME Havener, CC Vane, R AF Alonso, Jose R. Barletta, William A. Toups, Matthew H. Conrad, Janet Liu, Y. Bannister, Mark E. Havener, C. C. Vane, Randy TI Ion source issues for the DAE delta ALUS neutrino experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The DAE delta ALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H2+ ions will be accelerated. Loosely bound vibrationally excited H2+ ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R&D effort towards a suitable ion source for these high-power cyclotrons. (c) 2014 AIP Publishing LLC. C1 [Alonso, Jose R.; Barletta, William A.; Toups, Matthew H.; Conrad, Janet] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Alonso, JR (reprint author), MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. EM JRAlonso@LBL.gov NR 11 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A509 DI 10.1063/1.4826608 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900010 PM 24593432 ER PT J AU Benitez, JY Franzen, KY Hodgkinson, A Lyneis, CM Strohmeier, M Thullier, T Todd, D Xie, D AF Benitez, J. Y. Franzen, K. Y. Hodgkinson, A. Lyneis, C. M. Strohmeier, M. Thullier, T. Todd, D. Xie, D. TI Production of high intensity Ca-48 for the 88-Inch Cyclotron and other updates SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity Ca-48(11+) beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 e mu A of Ca-48(11+) beam current was impressive. The consumption of Ca-48 in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 p mu A of Ca-48(11+), with a VENUS output beam current of 219 e mu A. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system. (C) 2014 AIP Publishing LLC. C1 [Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Franzen, K. Y.] Mev Med Syst, Littleton, MA 01460 USA. RP Benitez, JY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jybenitez@lbl.gov NR 4 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A961 DI 10.1063/1.4854896 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900117 PM 24593540 ER PT J AU Bollinger, DS AF Bollinger, D. S. TI Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor. (C) 2013 AIP Publishing LLC. C1 Fermilab Natl Accelerator Lab, Proton Source Dept, Batavia, IL 60510 USA. RP Bollinger, DS (reprint author), Fermilab Natl Accelerator Lab, Proton Source Dept, POB 500, Batavia, IL 60510 USA. EM bollinger@fnal.gov NR 6 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B121 DI 10.1063/1.4833023 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900138 PM 24593561 ER PT J AU Dowden, PC Bi, Z Jia, QX AF Dowden, P. C. Bi, Z. Jia, Q. X. TI Method for controlling energy density for reliable pulsed laser deposition of thin films SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID OXIDE SUPERCONDUCTOR; ABLATION AB We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple "lens-focus." To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a "constant voltage" mode to eliminate changes in the lasers' beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films. (C) 2014 AIP Publishing LLC. C1 [Dowden, P. C.; Bi, Z.; Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. RP Dowden, PC (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Div Mat Phys & Applicat, POB 1663, Los Alamos, NM 87545 USA. EM dowden@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008 FU Department of Energy, Office of Basic Energy Sciences; NNSA's Laboratory Directed Research and Development Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility and under the auspices of the Department of Energy, Office of Basic Energy Sciences. It was also partially supported by the NNSA's Laboratory Directed Research and Development Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 8 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 025111 DI 10.1063/1.4865716 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900299 PM 24593400 ER PT J AU Dudnikov, V Johnson, RP Murrey, S Pinnisi, T Piller, C Santana, M Stockli, M Welton, R Johnson, C Turvey, M AF Dudnikov, V. Johnson, R. P. Murrey, S. Pinnisi, T. Piller, C. Santana, M. Stockli, M. Welton, R. Johnson, C. Turvey, M. TI Improving efficiency of negative ion production in ion source with saddle antenna SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SURFACE-PLASMA SOURCE AB Extraction of negative ions from a saddle antenna radio-frequency surface plasma source is considered. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in the small Oak Ridge National Laboratory Spallation Neutron Source Test Stand. The efficiency of positive ion generation in plasma has been improved to 200 mA/cm(2) kW from 2.5 mA/cm(2) kW. A small oven was developed for cesiation by cesium compounds and alloy decomposition. After cesiation, a current of negative ions to the collector was increased from 1 mA to 10 mA with 1.5 kW RF power in the plasma and longitudinal magnetic field B-1 similar to 250 G. The specific efficiency of H-production was increased to 20 mA/cm(2) kW from 2.5 mA/cm(2) kW. (C) 2013 AIP Publishing LLC. C1 [Dudnikov, V.; Johnson, R. P.] Muons Inc, Batavia, IL 60510 USA. [Murrey, S.; Pinnisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Johnson, C.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Turvey, M.] Univ Florida, Dept Engn, Gainesville, FL 32611 USA. RP Dudnikov, V (reprint author), Muons Inc, Batavia, IL 60510 USA. EM vadim@muonsinc.com OI Piller, Chip/0000-0003-4729-9364; Johnson, Rolland/0000-0001-7205-1913 NR 9 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B111 DI 10.1063/1.4833021 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900128 PM 24593551 ER PT J AU Fuwa, Y Ikeda, S Kumaki, M Sekine, M Cinquegrani, D Romanelli, M Kanesue, T Okamura, M Iwashita, Y AF Fuwa, Y. Ikeda, S. Kumaki, M. Sekine, M. Cinquegrani, D. Romanelli, M. Kanesue, T. Okamura, M. Iwashita, Y. TI Interaction of plasmas in laser ion source with double laser system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Multiple laser shots could be used to elongate an ion beam pulse width or to intensify beam current from laser ion sources. In order to confirm the feasibility of the multiple shot scheme, we investigated the properties of plasmas produced by double laser shots. We found that when the interval of the laser shots is shorter than 10 mu s, the ion current profile had a prominent peak, which is not observed in single laser experiments. The height of this peak was up to five times larger than that of single laser experiment. (C) 2013 AIP Publishing LLC. C1 [Fuwa, Y.] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Fuwa, Y.; Ikeda, S.; Kumaki, M.; Sekine, M.] RIKEN, Wako, Saitama, Japan. [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Tokyo, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo, Japan. [Cinquegrani, D.] Tokyo Inst Technol, Dept Nucl Engn, Meguro Ku, Tokyo 152, Japan. [Cinquegrani, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Romanelli, M.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA. [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Iwashita, Y.] Kyoto Univ, Inst Chem Res, Uji, Kyoto, Japan. RP Fuwa, Y (reprint author), Kyoto Univ, Grad Sch Sci, Kyoto, Japan. EM yasuhiro.fuwa@riken.jp NR 4 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B916 DI 10.1063/1.4854255 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900198 PM 24593621 ER PT J AU Fuwa, Y Ikeda, S Kumaki, M Sekine, M Munemoto, N Cinquegrani, D Romanelli, M Kanesue, T Okamura, M Iwashita, Y AF Fuwa, Y. Ikeda, S. Kumaki, M. Sekine, M. Munemoto, N. Cinquegrani, D. Romanelli, M. Kanesue, T. Okamura, M. Iwashita, Y. TI Comparison of graphite materials for targets of laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB To investigate efficient graphite material for carbon ion production in laser ion source, the plasma properties produced from these materials are measured. Comparing acquired current profile and charge state distribution, the distributions of ions in laser induced plasma from isotropic graphite and single crystal of graphite are different. The produced quantity of C6+ from isotropic materials is larger than that from single crystal. (C) 2014 AIP Publishing LLC. C1 [Fuwa, Y.] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Fuwa, Y.; Ikeda, S.; Kumaki, M.; Sekine, M.] RIKEN, Wako, Saitama, Japan. [Ikeda, S.; Munemoto, N.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 227, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo, Japan. [Sekine, M.] Tokyo Inst Technol, Dept Nucl Engn, Meguro Ku, Tokyo 152, Japan. [Cinquegrani, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Romanelli, M.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Iwashita, Y.] Kyoto Univ, Inst Chem Res, Uji, Kyoto, Japan. RP Fuwa, Y (reprint author), Kyoto Univ, Grad Sch Sci, Kyoto, Japan. EM yasuhiro.fuwa@riken.jp NR 3 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B924 DI 10.1063/1.4862210 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900206 PM 24593629 ER PT J AU Gushenets, VI Oks, EM Bugaev, AS Kulevoy, TV Hershcovitch, A AF Gushenets, V. I. Oks, E. M. Bugaev, A. S. Kulevoy, T. V. Hershcovitch, A. TI Gas feeding molecular phosphorous ion source for semiconductor implanters SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID BEAM EPITAXY; PH3; ASH3 AB Phosphorus is a much used dopant in semiconductor technology. Its vapors represent a rather stable tetratomic molecular compound and are produced from one of the most thermodynamically stable allotropic forms of phosphorus-red phosphorus. At vacuum heating temperatures ranging from 325 degrees C, red phosphorus evaporates solely as P-4 molecules (P-4/P-2 similar to 2 x 10(5), P-4/P similar to 10(21)). It is for this reason that red phosphorus is best suited as a source of polyatomic molecular ion beams. The paper reports on experimental research in the generation of polyatomic phosphorus ion beams with an alternative P vapor source for which a gaseous compound of phosphorus with hydrogen - phosphine - is used. The ion source is equipped with a specially designed dissociator in which phosphine heated to temperatures close to 700 degrees C decomposes into molecular hydrogen and phosphorus (P-4) and then the reaction products are delivered through a vapor line to the discharge chamber. Experimental data are presented reflecting the influence of the discharge parameters and temperature of the dissociator heater on the mass-charge state of the ion beam. (C) 2013 AIP Publishing LLC. C1 [Gushenets, V. I.; Oks, E. M.; Bugaev, A. S.] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia. [Kulevoy, T. V.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gushenets, VI (reprint author), Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia. EM gvi@opee.hcei.tsc.ru OI Oks, Efim/0000-0002-9323-0686 NR 7 TC 1 Z9 1 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02C304 DI 10.1063/1.4826604 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900218 PM 24593641 ER PT J AU Han, BX Welton, RF Murray, SN Pennisi, TR Santana, M Stockli, MP AF Han, B. X. Welton, R. F. Murray, S. N., Jr. Pennisi, T. R. Santana, M. Stockli, M. P. TI Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H- ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A RF-driven, Cs-enhanced H- ion source feeds the SNS accelerator with a high current (typically >50 mA), similar to 1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a means for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN (aluminum nitrite) chamber and an external RF antenna are also briefly discussed. (C) 2014 AIP Publishing LLC. C1 [Han, B. X.; Welton, R. F.; Murray, S. N., Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM hanb@ornl.gov NR 6 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B130 DI 10.1063/1.4858055 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900147 PM 24593570 ER PT J AU Ikeda, S Romanelli, M Cinquegrani, D Sekine, M Kumaki, M Fuwa, Y Kanesue, T Okamura, M Horioka, K AF Ikeda, Shunsuke Romanelli, Mark Cinquegrani, David Sekine, Megumi Kumaki, Masafumi Fuwa, Yasuhiro Kanesue, Takeshi Okamura, Masahiro Horioka, Kazuhiko TI Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FIELD AB A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface. (C) 2014 AIP Publishing LLC. C1 [Ikeda, Shunsuke; Sekine, Megumi; Horioka, Kazuhiko] Tokyo Inst Technol, Yokohama, Kanagawa 227, Japan. [Ikeda, Shunsuke; Sekine, Megumi] RIKEN, Wako, Saitama, Japan. [Romanelli, Mark] Cornell Univ, Ithaca, NY 14850 USA. [Cinquegrani, David] Univ Michigan, Ann Arbor, MI 48109 USA. [Kumaki, Masafumi] Waseda Univ, Shinjuku Ku, Tokyo, Japan. [Fuwa, Yasuhiro] Kyoto Univ, Uji, Kyoto, Japan. [Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Yokohama, Kanagawa 227, Japan. EM shunsuke.ikeda@riken.jp RI Horioka, Kazuhiko/B-9844-2015 OI Horioka, Kazuhiko/0000-0002-4524-0775 NR 7 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B919 DI 10.1063/1.4860650 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900201 PM 24593624 ER PT J AU Ikeda, S Romanelli, M Cinquegrani, D Sekine, M Kumaki, M Fuwa, Y Munemoto, N Kanesue, T Jin, QY Okamura, M Horioka, K AF Ikeda, Shunsuke Romanelli, Mark Cinquegrani, David Sekine, Megumi Kumaki, Masafumi Fuwa, Yasuhiro Munemoto, Naoya Kanesue, Takeshi Jin, Qianyu Okamura, Masahiro Horioka, Kazuhiko TI Creation of mixed beam from alloy target and couple of pure targets with laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB To create mixed species ion beam with laser pulses, we investigated charge state distributions of plasma formed from both Al-Fe alloy targets and pure Al and Fe targets placed close together. With two targets, we observed that the two kinds of atoms were mixed when the interval of two laser pulses was large enough (40 mu s). On the other hand, when the interval was 0.0 mu s, we observed fewer Fe ions and they did not mix well with the Al ions. The two species were mixed well in the plasma from the alloy target. Furthermore, we observed that specific charge states of Fe ions increased. From the results, it was determined that we can use two pure targets to mix two species whose difference of the drift velocity is large. On the other hand, we must use an alloy target when the drift velocities of the species are close. (C) 2013 AIP Publishing LLC. C1 [Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya; Horioka, Kazuhiko] Tokyo Inst Technol, Yokohama, Kanagawa 227, Japan. [Ikeda, Shunsuke; Sekine, Megumi] RIKEN, Wako, Saitama, Japan. [Romanelli, Mark] Cornell Univ, Ithaca, NY 14850 USA. [Cinquegrani, David] Univ Michigan, Ann Arbor, MI 48109 USA. [Kumaki, Masafumi] Waseda Univ, Shinjuku Ku, Tokyo, Japan. [Fuwa, Yasuhiro] Kyoto Univ, Uji, Kyoto, Japan. [Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Upton, NY 11973 USA. [Jin, Qianyu] Inst Modern Phys, Lanzhou, Gansu, Peoples R China. RP Ikeda, S (reprint author), Tokyo Inst Technol, Yokohama, Kanagawa 227, Japan. EM shunsuke.ikeda@riken.jp RI Horioka, Kazuhiko/B-9844-2015 OI Horioka, Kazuhiko/0000-0002-4524-0775 NR 2 TC 3 Z9 3 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B913 DI 10.1063/1.4833015 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900195 PM 24593618 ER PT J AU Kojima, A Hanada, M Yoshida, M Tobari, H Kashiwagi, M Umeda, N Watanabe, K Grisham, LR AF Kojima, A. Hanada, M. Yoshida, M. Tobari, H. Kashiwagi, M. Umeda, N. Watanabe, K. Grisham, L. R. TI 100 s extraction of negative ion beams by using actively temperature-controlled plasma grid SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CESIUM AB Long pulse beam extraction with a current density of 120 A/m(2) for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m(2) (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which was mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source. (C) 2013 AIP Publishing LLC. C1 [Kojima, A.; Hanada, M.; Yoshida, M.; Tobari, H.; Kashiwagi, M.; Umeda, N.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kojima, A (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. EM kojima.atsushi@jaea.go.jp NR 15 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B312 DI 10.1063/1.4830216 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900166 PM 24593589 ER PT J AU Kolmogorov, A Atoian, G Davydenko, V Ivanov, A Ritter, J Stupishin, N Zelenski, A AF Kolmogorov, A. Atoian, G. Davydenko, V. Ivanov, A. Ritter, J. Stupishin, N. Zelenski, A. TI Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The RHIC polarized H-ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H-2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of similar to 0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench. (C) 2014 AIP Publishing LLC. C1 [Kolmogorov, A.; Davydenko, V.; Ivanov, A.; Stupishin, N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Atoian, G.; Ritter, J.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Davydenko, V.; Ivanov, A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. RP Kolmogorov, A (reprint author), Budker Inst Nucl Phys, Novosibirsk 630090, Russia. EM anton.kolmogorov@gmail.com NR 3 TC 1 Z9 1 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A734 DI 10.1063/1.4857195 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900045 PM 24593468 ER PT J AU Kondrashev, S Barcikowski, A Dickerson, C Fischer, R Ostroumov, PN Vondrasek, R Pikin, A AF Kondrashev, S. Barcikowski, A. Dickerson, C. Fischer, R. Ostroumov, P. N. Vondrasek, R. Pikin, A. TI EBIS charge breeder for CARIBU SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) >= 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed. (C) 2013 AIP Publishing LLC. C1 [Kondrashev, S.; Barcikowski, A.; Dickerson, C.; Fischer, R.; Ostroumov, P. N.; Vondrasek, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Pikin, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kondrashev, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kondrashev@anl.gov NR 6 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B901 DI 10.1063/1.4824645 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900183 PM 24593606 ER PT J AU Kulevoy, TV Seleznev, DN Kozlov, AV Kuibeda, RP Kropachev, GN Alexeyenko, OV Dugin, SN Oks, EM Gushenets, VI Hershcovitch, A Jonson, B Poole, HJ AF Kulevoy, T. V. Seleznev, D. N. Kozlov, A. V. Kuibeda, R. P. Kropachev, G. N. Alexeyenko, O. V. Dugin, S. N. Oks, E. M. Gushenets, V. I. Hershcovitch, A. Jonson, B. Poole, H. J. TI Development of the ion source for cluster implantation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described. (C) 2013 AIP Publishing LLC. C1 [Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Oks, E. M.; Gushenets, V. I.] OOO Plasma Sources, Tomsk, Russia. [Alexeyenko, O. V.; Dugin, S. N.] Russian Federat State Res Inst Chem & Technol Org, State Sci Ctr, Moscow, Russia. [Oks, E. M.; Gushenets, V. I.] Inst High Current Elect SB RAS, Tomsk, Russia. [Hershcovitch, A.; Jonson, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Poole, H. J.] PVI, Oxnard, CA 93030 USA. RP Kulevoy, TV (reprint author), Inst Theoret & Expt Phys, Moscow 117259, Russia. EM kulevoy@itep.ru OI Oks, Efim/0000-0002-9323-0686 NR 7 TC 0 Z9 0 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A501 DI 10.1063/1.4825075 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900002 PM 24593424 ER PT J AU Kumaki, M Ikeda, S Fuwa, Y Cinquegrani, D Sekine, M Munemoto, N Kanesue, T Okamura, M Washio, M AF Kumaki, Masafumi Ikeda, Shunsuke Fuwa, Yasuhiro Cinquegrani, David Sekine, Megumi Munemoto, Naoya Kanesue, Takeshi Okamura, Masahiro Washio, Masakazu TI Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma. (C) 2014 AIP Publishing LLC. C1 [Kumaki, Masafumi; Washio, Masakazu] Waseda Univ, Shinjuku Ku, Tokyo, Japan. [Kumaki, Masafumi; Ikeda, Shunsuke; Fuwa, Yasuhiro; Sekine, Megumi; Munemoto, Naoya] RIKEN, Wako, Saitama, Japan. [Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya] Tokyo Inst Technol, Dept Energy Sci, Meguro Ku, Tokyo 152, Japan. [Fuwa, Yasuhiro] Kyoto Univ, Dept Phys & Astron, Uji, Kyoto, Japan. [Cinquegrani, David] Univ Michigan, Amer Nucl Soc, Ann Arbor, MI 48109 USA. [Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Kumaki, M (reprint author), Waseda Univ, Shinjuku Ku, Tokyo, Japan. EM masafumi.kumaki@riken.jp NR 4 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B925 DI 10.1063/1.4862660 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900207 PM 24593630 ER PT J AU Lyneis, C Benitez, J Hodgkinson, A Plaum, B Strohmeier, M Thuillier, T Todd, D AF Lyneis, C. Benitez, J. Hodgkinson, A. Plaum, B. Strohmeier, M. Thuillier, T. Todd, D. TI A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID 28 GHZ; WAVE-GUIDES; CONVERSION; ECRIS AB A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE01 circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE10 mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE01-HE11 mode conversion system has been built to test launching HE11 microwave power into the plasma chamber. The HE11 mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long "snake" converts the TE01 mode to the TE11 mode. Second, a corrugated circular waveguide excites the HE11 mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below. (C) 2013 AIP Publishing LLC. C1 [Lyneis, C.; Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Plaum, B.] Inst Grenzflachenverfahrenstech & Plasmatechnol I, Stuttgart, Germany. [Thuillier, T.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subat & Cosmol,Inst Polytech Grenoble, F-38026 Grenoble, France. RP Lyneis, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM CMLyneis@lbl.gov NR 23 TC 4 Z9 4 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A932 DI 10.1063/1.4832064 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900088 PM 24593511 ER PT J AU McJunkin, TR Trowbridge, TL Wright, KE Scott, JR AF McJunkin, Timothy R. Trowbridge, Tammy L. Wright, Karen E. Scott, Jill R. TI Integrated fiducial sample mount and software for correlated microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TRANSFORM MASS-SPECTROMETER; 3-DIMENSIONAL REGISTRATION; ELECTRON-MICROSCOPE; MARKERS; SURFACE; IMAGES; LIGHT AB A novel sample mount design with integrated fiducial marks and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location. (C) 2014 AIP Publishing LLC. C1 [McJunkin, Timothy R.; Trowbridge, Tammy L.; Wright, Karen E.; Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Scott, JR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jill.scott@inl.gov RI McJunkin, Timothy/G-8385-2011; OI McJunkin, Timothy/0000-0002-4987-9170; Wright, Karen/0000-0003-4504-929X FU United States Department of Energy (DOE) through the Idaho National Laboratory (INL), Laboratory Directed Research & Development (LDRD) program under the DOE Idaho Operations Office [DE-AC07-05ID1417] FX The authors would like to thank Dawn E. Janney for her constructive contribution related to the user interface design. This work was supported by the United States Department of Energy (DOE) through the Idaho National Laboratory (INL), Laboratory Directed Research & Development (LDRD) program under the DOE Idaho Operations Office Contract No. DE-AC07-05ID1417. NR 22 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 023701 DI 10.1063/1.4862935 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900264 PM 24593365 ER PT J AU Munemoto, N Takayama, K Takano, S Okamura, M Kumaki, M AF Munemoto, Naoya Takayama, Ken Takano, Susumu Okamura, Masahiro Kumaki, Masahumi TI Development of the C6+ laser ablation ion source for the KEK digital accelerator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 15th International Conference on Ion Sources CY SEP, 2013 CL Chiba, JAPAN AB A laser ion source that provides a fully ionized carbon ion beam is under joint development at the High Energy Accelerator Research Organization and Brookhaven National Laboratory. Long-pulse (6 ns) and short-pulse (500 ps) laser systems were tested by using them to irradiate a graphite target. Notable differences between the systems were observed in these experiments. Preliminary experimental results, such as the charge-state spectrum, beam intensity, and stability, are discussed. (C) 2014 AIP Publishing LLC. C1 [Munemoto, Naoya; Takayama, Ken] Tokyo Inst Technol, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Munemoto, Naoya; Takayama, Ken; Takano, Susumu] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Takayama, Ken] Grad Univ Adv Studies, Miura, Kanagawa 2408550, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okamura, Masahiro; Kumaki, Masahumi] RIKEN, Wako, Saitama 3510198, Japan. [Kumaki, Masahumi] Waseda Univ, Shinjuku Ku, Tokyo 1690072, Japan. RP Munemoto, N (reprint author), Tokyo Inst Technol, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268503, Japan. EM munemoto.n.ad@m.titech.ac.jp NR 10 TC 3 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B922 DI 10.1063/1.4862211 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900204 PM 24593627 ER PT J AU Okamura, M Kanesue, T Yamamoto, T Fuwa, Y AF Okamura, M. Kanesue, T. Yamamoto, T. Fuwa, Y. TI Iron beam acceleration using direct plasma injection scheme SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC. (C) 2013 AIP Publishing LLC. C1 [Okamura, M.; Kanesue, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okamura, M.] RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Yamamoto, T.] Waseda Univ, Shinjuku Ku, Tokyo 1698555, Japan. [Fuwa, Y.] Kyoto Univ, Uji, Kyoto 6110011, Japan. [Fuwa, Y.] RIKEN, Wako, Saitama 3510198, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM okamura@bnl.gov NR 5 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B907 DI 10.1063/1.4825163 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900189 PM 24593612 ER PT J AU Salvadori, MC Teixeira, FS Sgubin, LG Araujo, WWR Spirin, RE Cattani, M Oks, EM Brown, IG AF Salvadori, M. C. Teixeira, F. S. Sgubin, L. G. Araujo, W. W. R. Spirin, R. E. Cattani, M. Oks, E. M. Brown, I. G. TI Gold ion implantation into alumina using an "inverted ion source" configuration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DYNAMIC COMPOSITION CHANGES; FILTERED VACUUM-ARC; DEPOSITION; SIMULATION; CERAMICS; TRIDYN; FILMS AB We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an "inverted ion implanter" of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3-9) x 10(16) cm(-2). Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory. (C) 2013 AIP Publishing LLC. C1 [Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Oks, E. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Oks, E. M.] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalvadori@if.usp.br RI Teixeira, Fernanda/A-9395-2013; Salvadori, Maria Cecilia/A-9379-2013; OI Oks, Efim/0000-0002-9323-0686 NR 21 TC 2 Z9 2 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B502 DI 10.1063/1.4824755 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900176 PM 24593599 ER PT J AU Scott, R Palchan, T Pardo, R Vondrasek, R Kondev, F Nusair, O Peters, C Paul, M Bauder, W Collon, P AF Scott, R. Palchan, T. Pardo, R. Vondrasek, R. Kondev, F. Nusair, O. Peters, C. Paul, M. Bauder, W. Collon, P. TI Progress of laser ablation for accelerator mass spectroscopy at ATLAS utilizing an ECRIS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPECTROMETRY AB Beams of ions from the laser ablation method of solid materials into an electron cyclotron resonance ion source (ECRIS) plasma have been used for the first time in experiments at ATLAS. Initial accelerator mass spectroscopy experiments using laser ablation for actinides and samarium have been performed. Initial results of coupling the laser system to the ECR source have guided us in making a number of changes to the original design. The point of laser impact has been moved off axis from the center of the ECR injection side. Motor control of the laser positioning mirror has been replaced with a faster and more reliable piezo-electric system, and different raster scan patterns have been tested. The use of the laser system in conjunction with a multi-sample changer has been implemented. Two major problems that are being confronted at this time are beam stability and total beam intensity. The status of the development will be presented and ideas for further improvements will be discussed. (C) 2013 AIP Publishing LLC. C1 [Scott, R.; Palchan, T.; Pardo, R.; Vondrasek, R.; Kondev, F.; Nusair, O.; Peters, C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Paul, M.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Bauder, W.; Collon, P.] Univ Notre Dame, Nucl Struct Lab, Notre Dame, IN 46556 USA. RP Scott, R (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM scott@phy.anl.gov NR 4 TC 1 Z9 1 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A901 DI 10.1063/1.4824756 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900057 PM 24593480 ER PT J AU Sekine, M Ikeda, S Hayashizaki, N Kanesue, T Okamura, M AF Sekine, M. Ikeda, S. Hayashizaki, N. Kanesue, T. Okamura, M. TI Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 pi mm mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance. (C) 2014 AIP Publishing LLC. C1 [Sekine, M.; Hayashizaki, N.] Tokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo, Japan. [Sekine, M.; Ikeda, S.] RIKEN, Wako, Saitama, Japan. [Ikeda, S.] Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 227, Japan. [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Sekine, M (reprint author), Tokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo, Japan. EM sekine.m.ae@m.titech.ac.jp RI Hayashizaki, Noriyosu/C-3448-2015 OI Hayashizaki, Noriyosu/0000-0002-8245-7869 NR 9 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B920 DI 10.1063/1.4854876 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900202 PM 24593625 ER PT J AU Stockli, MP Ewald, KD Han, BX Murray, SN Pennisi, TR Piller, C Santana, M Tang, J Welton, R AF Stockli, Martin P. Ewald, K. D. Han, B. X. Murray, S. N., Jr. Pennisi, T. R. Piller, C. Santana, M. Tang, J. Welton, R. TI Recent performance of the SNS H- ion source and low-energy beam transport system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Recent measurements of the H- beam current show that SNS is injecting about 55 mA into the RFQ compared to similar to 45 mA in 2010. Since 2010, the H- beam exiting the RFQ dropped from similar to 40 mA to similar to 34 mA, which is sufficient for 1 MW of beam power. To minimize the impact of the RFQ degradation, the service cycle of the best performing source was extended to 6 weeks. The only degradation is fluctuations in the electron dump voltage towards the end of some service cycles, a problem that is being investigated. Very recently, the RFQ was retuned, which partly restored its transmission. In addition, the electrostatic low-energy beam transport system was reengineered to double its heat sinking and equipped with a thermocouple that monitors the temperature of the ground electrode between the two Einzel lenses. The recorded data show that emissions from the source at high voltage dominate the heat load. Emissions from the partly Cs-covered first lens cause the temperature to peak several hours after starting up. On rare occasions, the temperature can also peak due to corona discharges between the center ground electrode and one of the lenses. (C) 2014 AIP Publishing LLC. C1 [Stockli, Martin P.; Ewald, K. D.; Han, B. X.; Murray, S. N., Jr.; Pennisi, T. R.; Piller, C.; Santana, M.; Tang, J.; Welton, R.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM stockli@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 7 TC 10 Z9 10 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B137 DI 10.1063/1.4862205 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900154 PM 24593577 ER PT J AU Sun, L Lu, W Feng, YC Zhang, WH Zhang, XZ Cao, Y Zhao, YY Wu, W Yang, TJ Zhao, B Zhao, HW Ma, LZ Xia, JW Xie, D AF Sun, L. Lu, W. Feng, Y. C. Zhang, W. H. Zhang, X. Z. Cao, Y. Zhao, Y. Y. Wu, W. Yang, T. J. Zhao, B. Zhao, H. W. Ma, L. Z. Xia, J. W. Xie, D. TI Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 e mu A Xe27+, 236 e mu A Xe30+, and 64 e mu A Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 e mu A Bi30+ and 202 e mu A U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation. (C) 2013 AIP Publishing LLC. C1 [Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Zhao, Y. Y.] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Xie, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Sun, L (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. EM sunlt@impcas.ac.cn NR 3 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A942 DI 10.1063/1.4825164 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900098 PM 24593521 ER PT J AU VanGordon, JA Kovaleski, SD Norgard, P Gall, BB Dale, GE AF VanGordon, James A. Kovaleski, Scott D. Norgard, Peter Gall, Brady B. Dale, Gregory E. TI Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test. (C) 2014 AIP Publishing LLC. C1 [VanGordon, James A.; Kovaleski, Scott D.; Norgard, Peter; Gall, Brady B.] Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA. [Dale, Gregory E.] Los Alamos Natl Lab, High Power Electrodynam Grp, Los Alamos, NM 87545 USA. RP VanGordon, JA (reprint author), Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA. EM kovaleskis@missouri.edu OI Norgard, Peter/0000-0002-5332-5998 FU Office of Naval Research; Los Alamos National Laboratory FX This work was supported by the Office of Naval Research and Los Alamos National Laboratory. NR 30 TC 2 Z9 2 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 023101 DI 10.1063/1.4864052 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900242 PM 24593343 ER PT J AU Volegov, P Danly, CR Fittinghoff, DN Grim, GP Guler, N Izumi, N Ma, T Merrill, FE Warrick, AL Wilde, CH Wilson, DC AF Volegov, P. Danly, C. R. Fittinghoff, D. N. Grim, G. P. Guler, N. Izumi, N. Ma, T. Merrill, F. E. Warrick, A. L. Wilde, C. H. Wilson, D. C. TI Neutron source reconstruction from pinhole imaging at National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAXIMUM-LIKELIHOOD; STOPPING RULE; ALGORITHM AB The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (similar to 100 mu m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-mu m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics. (C) 2014 AIP Publishing LLC. C1 [Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Volegov, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Ma, Tammy/F-3133-2013; IZUMI, Nobuhiko/J-8487-2016; OI Ma, Tammy/0000-0002-6657-9604; IZUMI, Nobuhiko/0000-0003-1114-597X; Merrill, Frank/0000-0003-0603-735X FU U.S. Department of Energy for NNSA Campaign [10] FX Additional credit goes to the dedicated staff and technicians of NIF, whose hard work and operational expertise resulted in the data that are shown here. The authors wish to acknowledge D. Jedlovec, M. A. Talison, O. Drury, D. Kalantar, and R. Wood for their hard work and expertise in fielding and aligning the neutron imaging system. This work has been performed under the auspices of the U.S. Department of Energy for NNSA Campaign 10 (Inertial Confinement Fusion) with Steve Batha as program manager. NR 20 TC 20 Z9 22 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 023508 DI 10.1063/1.4865456 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900261 PM 24593362 ER PT J AU Vondrasek, R Clark, J Levand, A Palchan, T Pardo, R Savard, G Scott, R AF Vondrasek, R. Clark, J. Levand, A. Palchan, T. Pardo, R. Savard, G. Scott, R. TI Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PROJECT; ATLAS AB The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi Cf-252 source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for Na-23(7+), 17.9% for K-39(10+), 15.6% for Kr-84(17+), and 12.4% for Cs-133(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for Cs-143(27+) and 14.7% for Ba-143(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices. (C) 2013 AIP Publishing LLC. C1 [Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. RP Vondrasek, R (reprint author), Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. EM vondrasek@anl.gov NR 10 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B903 DI 10.1063/1.4826329 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900185 PM 24593608 ER PT J AU Vondrasek, R Palchan, T Pardo, R Peters, C Power, M Scott, R AF Vondrasek, R. Palchan, T. Pardo, R. Peters, C. Power, M. Scott, R. TI A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ION-SOURCE; BEAMS AB A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples. (C) 2013 AIP Publishing LLC. C1 [Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. RP Vondrasek, R (reprint author), Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. EM vondrasek@anl.gov NR 7 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A908 DI 10.1063/1.4826327 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900064 PM 24593487 ER PT J AU Welton, RF Dudnikov, VG Han, BX Murray, SN Pennisi, TR Pillar, C Santana, M Stockli, MP Turvey, MW AF Welton, R. F. Dudnikov, V. G. Han, B. X. Murray, S. N. Pennisi, T. R. Pillar, C. Santana, M. Stockli, M. P. Turvey, M. W. TI Improvements to the internal and external antenna H- ion sources at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects similar to 55 mA of H- beam current (similar to 1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H- yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented. (C) 2014 AIP Publishing LLC. C1 [Welton, R. F.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Pillar, C.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Dudnikov, V. G.] Muons Inc, Batavia, IL 60510 USA. [Turvey, M. W.] Villanova Univ, Villanova, PA 19085 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. EM welton@ornl.gov NR 5 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B135 DI 10.1063/1.4858177 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900152 PM 24593575 ER PT J AU Xie, DZ Benitez, JY Caspi, S Hodgkinson, A Lyneis, CM Phair, LW Prestemon, SO Strohmeier, MM Thuillier, TP Todd, DS AF Xie, D. Z. Benitez, J. Y. Caspi, S. Hodgkinson, A. Lyneis, C. M. Phair, L. W. Prestemon, S. O. Strohmeier, M. M. Thuillier, T. P. Todd, D. S. TI Development of a new superconducting electron cyclotron resonance ion source for operations up to 18 GHz at LBNL SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A new superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is under development at LBNL to harness the winding techniques of a closed-loop sextupole coil for the next generation ECRIS and to enhance the capability of the 88-in. cyclotron facility. The proposed ECRIS will use a superconducting closed-loop sextupole coil to produce the radial field and a substantial portion of the axial field. The field strengths of the injection, central and extraction regions are adjusted by a three solenoids outside the closed-loop sextupole coil. In addition to maintaining the typical ECRIS magnetic field configuration, this new source will also be able to produce a dustpan-like minimum-B field to explore possible ECRIS performance enhancement. The dustpan-like minimum-B field configuration has about the same strengths for the maximum axial field at the injection region and the maximum radial pole fields at the plasma chamber walls but it can be substantially lower at the extraction region. The dustpan-like minimum-B will have a field maximum B-max >= 2.6 T for operations up to 18 GHz with a ratio of B-max/B-res >= 4 and higher ratios for lower frequencies. The field maxima of this new source can reach over 3 T both at the injection and the plasma chamber walls which could also support operation at 28 GHz. The source will be built of cryogen-free with the magnets directly cooled by cryo-coolers to simplify the cryostat structure. The source design features will be presented and discussed. (C) 2013 AIP Publishing LLC. C1 [Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Phair, L. W.; Strohmeier, M. M.; Thuillier, T. P.; Todd, D. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Caspi, S.; Prestemon, S. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Accelerator Fus Res Div, Berkeley, CA 94720 USA. RP Xie, DZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM zqxie@lbl.gov NR 5 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02A922 DI 10.1063/1.4829737 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900078 PM 24593501 ER PT J AU Yoshida, M Hanada, M Kojima, A Kashiwagi, M Grisham, LR Akino, N Endo, Y Komata, M Mogaki, K Nemoto, S Ohzeki, M Seki, N Sasaki, S Shimizu, T Terunuma, Y AF Yoshida, Masafumi Hanada, Masaya Kojima, Atsushi Kashiwagi, Mieko Grisham, Larry R. Akino, Noboru Endo, Yasuei Komata, Masao Mogaki, Kazuhiko Nemoto, Shuji Ohzeki, Masahiro Seki, Norikazu Sasaki, Shunichi Shimizu, Tatsuo Terunuma, Yuto TI Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID OPERATION; NBI AB Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to similar to 10% without a reduction of the negative ion production. (C) 2013 AIP Publishing LLC. C1 [Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, Larry R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Yoshida, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. EM yoshida.masafumi@jaea.go.jp NR 11 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 02B314 DI 10.1063/1.4830365 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900168 PM 24593591 ER PT J AU Zuo, GZ Hu, JS Ren, J Sun, Z Yang, QX Li, JG Zakharov, LE Mansfield, DK AF Zuo, G. Z. Hu, J. S. Ren, J. Sun, Z. Yang, Q. X. Li, J. G. Zakharov, L. E. Mansfield, D. K. TI Methods and preliminary measurement results of liquid Li wettability SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CONTACT-ANGLE AB A test of lithium wettability was performed in high vacuum (< 3 x 10(-4) Pa). High magnification images of Li droplets on stainless steel substrates were produced and processed using the MATLAB (R) program to obtain clear image edge points. In contrast to the more standard "theta/2" or polynomial fitting methods, ellipse fitting of the complete Li droplet shape resulted in reliable contact angle measurements over a wide range of contact angles. Using the ellipse fitting method, it was observed that the contact angle of a liquid Li droplet on a stainless steel substrate gradually decreased with increasing substrate temperature. The critical wetting temperature of liquid Li on stainless steel was observed to be about 290 degrees C. (C) 2014 AIP Publishing LLC. C1 [Zuo, G. Z.; Hu, J. S.; Ren, J.; Sun, Z.; Yang, Q. X.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Zakharov, L. E.; Mansfield, D. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zuo, GZ (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM zuoguizh@ipp.ac.cn FU National Magnetic confinement Fusion Science Program [2013GB114004, 2011GB10700]; National Nature Science Foundation of China [11075185, 11021565]; JSPS-NRF-NSFC (NSFC) [11261140328] FX This research was funded by the National Magnetic confinement Fusion Science Program under Contract Nos. 2013GB114004 and 2011GB10700, the National Nature Science Foundation of China under Contract Nos. 11075185 and 11021565, and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC No. 11261140328). NR 11 TC 4 Z9 4 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2014 VL 85 IS 2 AR 023506 DI 10.1063/1.4865118 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AH1ZG UT WOS:000335919900259 PM 24593360 ER PT J AU Ramage, JG Prentice, KW Morse, SA Carter, AJ Datta, S Drumgoole, R Gargis, SR Griffin-Thomas, L Hastings, R Masri, HP Reed, MS Sharma, SK Singh, AK Swaney, E Swanson, T Gauthier, C Toney, D Pohl, J Shakamuri, P Stuchlik, O Elder, IA Estacio, PL Garber, EAE Hojvat, S Kellogg, RB Kovacs, G Stanker, L Weigel, L Hodge, DR Pillai, SP AF Ramage, Jason G. Prentice, Kristin Willner Morse, Stephen A. Carter, Andrew J. Datta, Shomik Drumgoole, Rahsaan Gargis, Shaw R. Griffin-Thomas, LaToya Hastings, Rebecca Masri, Heather P. Reed, Matthew S. Sharma, Shashi K. Singh, Ajay K. Swaney, Erin Swanson, Tanya Gauthier, Cheryl Toney, Denise Pohl, Jan Shakamuri, Priyanka Stuchlik, Olga Elder, Ian A. Estacio, Peter L. Garber, Eric A. E. Hojvat, Sally Kellogg, Richard B. Kovacs, Gerald Stanker, Larry Weigel, Linda Hodge, David R. Pillai, Segaran P. TI Comprehensive Laboratory Evaluation of a Specific Lateral Flow Assay for the Presumptive Identification of Abrin in Suspicious White Powders and Environmental Samples SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Article ID RIBOSOME-INACTIVATING PROTEINS; LINKED-IMMUNOSORBENT-ASSAY; SITE-DIRECTED MUTAGENESIS; A A-CHAIN; ABRUS-PRECATORIUS; IN-VITRO; RICIN; AGGLUTININ; EXPRESSION; TOXICITY AB Abrin is a heterodimeric toxin present in the seeds of the Abrus precatorius plant. The easily obtainable seeds can yield a highly toxic product that can be used in various types of biocrimes and terrorism-related activities, including "white-powder" letters. Although the vast majority of these threats are hoaxes, the lack of rapid and reliable detection assays for abrin, such as lateral flow assays (LFAs), can be an impediment to accurate and rapid hazard assessment. One of the complicating factors associated with LFAs is the use of antibodies of poor affinity and specificity that cross-react with near neighbors or that bind to plant lectins, which are capable of nonspecifically cross-linking the capture and detector antibodies. Because of the critical need to promote public safety and public health, we conducted a comprehensive laboratory evaluation of a commercial LFA for the rapid detection of abrin. This study was conducted using comprehensive inclusivity and exclusivity panels of abrin and near-neighbor plant materials, along with panels of lectins, related proteins, white powders, and environmental background material, to determine the sensitivity, specificity, limit of detection, dynamic range, and repeatability of the assay for the specific intended use of evaluating suspicious white powders and environmental samples for the presumptive presence of abrin. C1 [Ramage, Jason G.; Prentice, Kristin Willner] Booz Allen Hamilton Inc, Mclean, VA USA. [Hodge, David R.; Pillai, Segaran P.] US Dept Homeland Secur, Chem & Biol Def Div, Sci & Technol Directorate, Washington, DC 20528 USA. [Morse, Stephen A.; Carter, Andrew J.] Ctr Dis Control & Prevent, Div Foodborne Waterborne & Environm Dis, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA USA. [Datta, Shomik; Sharma, Shashi K.; Singh, Ajay K.; Garber, Eric A. E.] US FDA, Off Regulatory Sci, Ctr Food Safety & Appl Nutr, College Pk, MD USA. [Drumgoole, Rahsaan; Swaney, Erin] Texas Dept State Hlth Serv, Emergency Preparedness Branch, Austin, TX USA. [Gargis, Shaw R.] CDC, Div Select Agents & Toxins, Atlanta, GA 30333 USA. [Griffin-Thomas, LaToya; Masri, Heather P.; Toney, Denise] Div Consolidated Lab Serv, Richmond, VA USA. [Hastings, Rebecca; Swanson, Tanya; Gauthier, Cheryl] Massachusetts Dept Publ Hlth, State Lab Inst, Bioterrorism Response Lab, Jamaica Plain, MA USA. [Reed, Matthew S.; Shakamuri, Priyanka] CDC, Div Sci Resources, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [Pohl, Jan] CDC, Biotechnol Core Facil Branch, Div Sci Resources, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [Elder, Ian A.] US Dept Homeland Secur, Washington, DC USA. [Estacio, Peter L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hojvat, Sally] US FDA, Div Microbiol Devices, Silver Spring, MD USA. [Kellogg, Richard B.; Weigel, Linda] CDC, Lab Preparedness & Response Branch, Div Preparedness & Emerging Infect, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [Kovacs, Gerald] ABL Inc, Rockville, MD USA. [Stanker, Larry] USDA ARS, Foodborne Toxin Detect & Control Res Unit, Albany, CA USA. RP Pillai, SP (reprint author), US Dept Homeland Secur, Chem & Biol Def Div, Sci & Technol Directorate, Washington, DC 20528 USA. EM Segaran.Pillai@HQ.DHS.GOV NR 33 TC 6 Z9 6 U1 1 U2 9 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 EI 1557-850X J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD FEB 1 PY 2014 VL 12 IS 1 BP 49 EP 62 DI 10.1089/bsp.2013.0080 PG 14 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA AB0EA UT WOS:000331463400006 PM 24552362 ER PT J AU Rodland, KD AF Rodland, Karin D. TI As If Biomarker Discovery Isn't Hard Enough: The Consequences of Poorly Characterized Reagents SO CLINICAL CHEMISTRY LA English DT Editorial Material ID OVARIAN-CANCER; PROTEINS C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP Rodland, KD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. EM Karin.Rodland@pnnl.gov FU NCI NIH HHS [U24 CA160019] NR 14 TC 2 Z9 2 U1 1 U2 2 PU AMER ASSOC CLINICAL CHEMISTRY PI WASHINGTON PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA SN 0009-9147 EI 1530-8561 J9 CLIN CHEM JI Clin. Chem. PD FEB PY 2014 VL 60 IS 2 BP 290 EP 291 DI 10.1373/clinchem.2013.216382 PG 2 WC Medical Laboratory Technology SC Medical Laboratory Technology GA AG1AD UT WOS:000335146300002 PM 24305687 ER PT J AU Levy, O Ball, BA Bond-Lamberty, B Cheruvelil, KS Finley, AO Lottig, NR Punyasena, SW Xiao, JF Zhou, JZ Buckley, LB Filstrup, CT Keitt, TH Kellner, JR Knapp, AK Richardson, AD Tcheng, D Toomey, M Vargas, R Voordeckers, JW Wagner, T Williams, JW AF Levy, Ofir Ball, Becky A. Bond-Lamberty, Ben Cheruvelil, Kendra S. Finley, Andrew O. Lottig, Noah R. Punyasena, Surangi W. Xiao, Jingfeng Zhou, Jizhong Buckley, Lauren B. Filstrup, Christopher T. Keitt, Tim H. Kellner, James R. Knapp, Alan K. Richardson, Andrew D. Tcheng, David Toomey, Michael Vargas, Rodrigo Voordeckers, James W. Wagner, Tyler Williams, John W. TI Approaches to advance scientific understanding of macrosystems ecology SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Article ID SPECIES DISTRIBUTION MODELS; CROSS-SCALE INTERACTIONS; DATA-INTENSIVE SCIENCE; LAND-COVER DATA; COMBINING MODIS; CLIMATE-CHANGE; GLOBAL CHANGE; CHALLENGES; DYNAMICS; SYSTEMS AB The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them. C1 [Levy, Ofir] Arizona State Univ, Tempe, AZ 85287 USA. [Ball, Becky A.] Arizona State Univ, Glendale, AZ USA. [Bond-Lamberty, Ben] Pacific NW Natl Lab, JGCRI, College Pk, MD USA. [Cheruvelil, Kendra S.; Finley, Andrew O.] Michigan State Univ, E Lansing, MI 48824 USA. [Lottig, Noah R.] Univ Wisconsin, Ctr Limnol, Boulder Jct, WI USA. [Punyasena, Surangi W.; Tcheng, David] Univ Illinois, Urbana, IL 61801 USA. [Xiao, Jingfeng] Univ New Hampshire, Durham, NH 03824 USA. [Zhou, Jizhong; Voordeckers, James W.] Univ Oklahoma, Norman, OK 73019 USA. [Buckley, Lauren B.] Univ N Carolina, Chapel Hill, NC USA. [Filstrup, Christopher T.] Iowa State Univ, Ames, IA USA. [Keitt, Tim H.] Univ Texas Austin, Austin, TX 78712 USA. [Kellner, James R.] Brown Univ, Providence, RI 02912 USA. [Knapp, Alan K.] Colorado State Univ, Ft Collins, CO 80523 USA. [Richardson, Andrew D.; Toomey, Michael] Harvard Univ, Cambridge, MA 02138 USA. [Vargas, Rodrigo] Univ Delaware, Newark, DE USA. [Wagner, Tyler] Penn State Univ, US Geol Survey, Penn Cooperat Fish & Wildlife Res Unit, University Pk, PA 16802 USA. [Williams, John W.] Univ Wisconsin, Madison, WI USA. RP Levy, O (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. EM levyofi@gmail.com RI Bond-Lamberty, Ben/C-6058-2008; Ball, Becky/E-6573-2011; Richardson, Andrew/F-5691-2011; Levy, Ofir/H-6217-2013; Vargas, Rodrigo/C-4720-2008 OI Bond-Lamberty, Ben/0000-0001-9525-4633; Richardson, Andrew/0000-0002-0148-6714; Levy, Ofir/0000-0003-0920-1207; Vargas, Rodrigo/0000-0001-6829-5333 FU MacroSystems Biology program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF FX This paper is the result of the efforts of Working Group 2 at the MacroSystems Biology PI meeting (March 2012) in Boulder, CO. We thank the MacroSystems Biology program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF for support, as well as all of the meeting and working group participants for their valuable input. Use of trade names does not imply endorsement by the US Government. For author contributions, see WebPanel 6. NR 38 TC 24 Z9 24 U1 3 U2 61 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD FEB PY 2014 VL 12 IS 1 BP 15 EP 23 DI 10.1890/130019 PG 9 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AG4DX UT WOS:000335370600003 ER PT J AU Ruegg, J Gries, C Bond-Lamberty, B Bowen, GJ Felzer, BS McIntyre, NE Soranno, PA Vanderbilt, KL Weathers, KC AF Rueegg, Janine Gries, Corinna Bond-Lamberty, Ben Bowen, Gabriel J. Felzer, Benjamin S. McIntyre, Nancy E. Soranno, Patricia A. Vanderbilt, Kristin L. Weathers, Kathleen C. TI Completing the data life cycle: using information management in macrosystems ecology research SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Article ID CONTERMINOUS UNITED-STATES; CARBON SEQUESTRATION; MODEL; METAANALYSES; SCIENCES; OZONE AB An important goal of macrosystems ecology (MSE) research is to advance understanding of ecological systems at both fine and broad temporal and spatial scales. Our premise in this paper is that MSE projects require integrated information management at their inception. Such efforts will lead to improved communication and sharing of knowledge among diverse project participants, better science outcomes, and more transparent and accessible (ie open) science. We encourage researchers to complete the data life cycle by publishing well-documented datasets, thereby facilitating re-use of the data to answer new and different questions from the ones conceived by those involved in the original projects. The practice of documenting and submitting datasets to data repositories that are publicly accessible ensures that research results and data are available to and use-able by other researchers, thus fostering open science. However, ecologists are often unfamiliar with the requirements and information management tools for effectively preserving data and receive little institutional or professional incentive to do so. Here, we provide recommendations for achieving these ends and give examples from current MSE projects to demonstrate why information management is critical for ensuring that scientific results can be reproduced and that data can be shared for future use. C1 [Rueegg, Janine] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Gries, Corinna] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA. [Bond-Lamberty, Ben] Pacific NW Natl Lab, JGCRI, College Pk, MD USA. [Bowen, Gabriel J.] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Bowen, Gabriel J.] Univ Utah, Global Change & Sustainabil Ctr, Salt Lake City, UT USA. [Felzer, Benjamin S.] Lehigh Univ, Dept Earth & Environm Sci, Bethlehem, PA 18015 USA. [McIntyre, Nancy E.] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA. [Soranno, Patricia A.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Vanderbilt, Kristin L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Weathers, Kathleen C.] Cary Inst Ecosyst Studies, Millbrook, NY USA. RP Ruegg, J (reprint author), Kansas State Univ, Div Biol, Ackert Hall, Manhattan, KS 66506 USA. EM jrueegg@ksu.edu RI Bond-Lamberty, Ben/C-6058-2008 OI Gries, Corinna/0000-0002-9091-6543; Soranno, Patricia/0000-0003-1668-9271; Bond-Lamberty, Ben/0000-0001-9525-4633 FU MacroSystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF FX We thank all participants at the NSF-MacroSystems Biology PI meeting in Boulder, CO (March 2012), for fruitful discussions that led to this Special Issue and this paper. In particular, J O'Neil-Dunne provided comments on the inception and outlines of this manuscript. We also thank H Gholz and L Blood (NSF) for helpful discussions, as well as the MacroSystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at NSF for support. For author contributions, see WebPanel 2. NR 35 TC 22 Z9 23 U1 2 U2 45 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD FEB PY 2014 VL 12 IS 1 BP 24 EP 30 DI 10.1890/120375 PG 7 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AG4DX UT WOS:000335370600004 ER PT J AU Donnald, SB Tyagi, M Rothfuss, HE Hayward, JP Koschan, M Zhuravleva, M Meng, F Melcher, CL AF Donnald, Samuel B. Tyagi, Mohit Rothfuss, Harold E. Hayward, Jason P. Koschan, Merry Zhuravleva, Mariya Meng, Fang Melcher, Charles L. TI Sample-to-Sample Variation in Single Crystal YAP:Ce Non-Proportionality SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Luminescence; non-proportionality; scintillation detector; YAP:Ce ID SCINTILLATION PROPERTIES; CE SCINTILLATOR AB In this paper, nine different samples of YAIO(3) : Ce have been collected and analyzed. The light yield non-proportionality of each sample was measured and used to classify each sample as proportional or non-proportional. A variety of scintillation and optical measurements were conducted on each sample, and the proportional samples were generally found to have a higher light output and better energy resolution. In addition, a strong linear correlation was found between scintillation decay time and the degree of non-proportionality. Based on absorption measurements as well as radioluminescence data, it was determined that the non-proportional samples all shared a range of increased absorption near the cerium 5d absorption edge between about 325 and 400 nm. The increased absorption has been reported in literature, and it is believed to be the result of a material defect introduced during growth. Thermoluminescence glow curves were measured for two representative YAIO(3) : Ce samples, one from each proportionality grouping, and it was determined that there was an observable change in defect structure, but there were no additional traps visible in the glow curves of either the proportional or non-proportional samples. However, the intensity of the 105 K thermoluminescence peak was found to be approximately a factor of two greater in the non-proportional samples. Since the lifetime of this peak is known to be between 25 and 81 ns, it was determined to be the likely cause of the slower decay in the non-proportional samples. C1 [Donnald, Samuel B.; Tyagi, Mohit; Koschan, Merry; Zhuravleva, Mariya; Meng, Fang; Melcher, Charles L.] Univ Tennessee, Scintillat Mat Res Ctr, Knoxville, TN 37920 USA. [Hayward, Jason P.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37920 USA. [Hayward, Jason P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rothfuss, Harold E.] Siemens Mol Imaging, Knoxville, TN 37932 USA. RP Donnald, SB (reprint author), Univ Tennessee, Scintillat Mat Res Ctr, Knoxville, TN 37920 USA. EM sdonnald@utk.edu; mtyagi@utk.edu; harold.rothfuss@siemens.com; jhayward@utk.edu; mkoschan@utk.edu; mzhuravl@utk.edu; fmeng@utk.edu; cmelcher@utk.edu RI Melcher, Charles/E-9818-2012; OI Melcher, Charles/0000-0002-4586-4764; Koschan, Merry/0000-0002-8686-8657; Zhuravleva, Mariya/0000-0002-7809-5404 FU U.S. Department of Energy [DE-NA0000473] FX This work was supported in part by the U.S. Department of Energy under Grant DE-NA0000473. NR 12 TC 4 Z9 4 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2014 VL 61 IS 1 BP 332 EP 338 DI 10.1109/TNS.2013.2277860 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AF7WR UT WOS:000334926500020 ER PT J AU Wu, X Harkonen, J Kalliopuska, J Tuominen, E Maenpaa, T Luukka, P Tuovinen, E Karadzhinova, A Spiegel, L Eranen, S Oja, A Haapalinna, A AF Wu, X. Harkonen, J. Kalliopuska, J. Tuominen, E. Maenpaa, T. Luukka, P. Tuovinen, E. Karadzhinova, A. Spiegel, L. Eranen, S. Oja, A. Haapalinna, A. TI Strip Detectors Processed on High-Resistivity 6-inch Diameter Magnetic Czochralski Silicon (MCz-Si) Substrates SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE High energy physics; radiation hardness; silicon radiation sensors; strip detector ID SEMICONDUCTOR-DETECTORS; MICROSTRIP DETECTORS; THERMAL DONORS; LHC; POSITION; NEUTRON; COLLABORATION; UPGRADE AB Tracking detectors for future high-luminosity particle physics experiments have to be simultaneously radiation hard and cost efficient. This paper describes processing and characterization of p(+)/n(-)/n(+) (n-type silicon bulk) detectors made of high-resistivity Magnetic Czochralski silicon (MCz-Si) substrates with 6-inch wafer diameter. The processing was carried out on a line used for large-scale production of sensors using standard fabrication methods, such as implanting polysilicon resistors to bias individual sensor strips. Special care was taken to avoid the creation of Thermal Donors (TD) during processing. The sensors have a full depletion voltage of 120-150 V which are uniform over the investigated sensors. All of the leakage current densities were below 55 nA/cm(2) at 200 V bias voltage. A strip sensor with 768 channels was attached to readout electronics and tested in particle beam with a data acquisition (DAQ) similar to the system used by the CMS experiment at the CERN LHC. The test beam results show a signal-to-noise ratio greater than 40 for the test beam sensor. The results demonstrate that MCz-Si detectors can reliably be manufactured in the industrial scale semiconductor process. C1 [Wu, X.; Kalliopuska, J.; Eranen, S.; Oja, A.] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland. [Harkonen, J.; Tuominen, E.; Maenpaa, T.; Luukka, P.; Tuovinen, E.; Karadzhinova, A.] Univ Helsinki, Helsinki Inst Phys, CMS Upgrade Project, SF-00100 Helsinki, Finland. [Spiegel, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Haapalinna, A.] Okmet Oyj, FI-01510 Vantaa, Finland. RP Wu, X (reprint author), VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland. EM xiaopeng.wu@vtt.fi; jaakko.haerkoenen@cern.ch; juha.kalliopuska@vtt.fi; eija.tuominen@helsinki.fi; teppo.maenpaa@cern.ch; panja.luukka@cern.ch; esa.tuovinen@helsinki.fi; aneliya.karadzhinova@helsinki.fi; lenny@fnal.gov; simo.eranen@vtt.fi; aarne.oja@vtt.fi; atte.haapalinna@okmetic.com RI Tuominen, Eija/A-5288-2017; OI Tuominen, Eija/0000-0002-7073-7767; Karadzhinova-Ferrer, Aneliya Georgieva/0000-0002-4786-0134; Luukka, Panja/0000-0003-2340-4641 FU Academy of Finland; High-Performance-Microsystem Innovation Program of VTT; VTT Graduate School FX This work was supported in part by the Academy of Finland, VTT Graduate School and High-Performance-Microsystem Innovation Program of VTT. NR 43 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2014 VL 61 IS 1 BP 611 EP 618 DI 10.1109/TNS.2013.2295430 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AF7XQ UT WOS:000334929200014 ER PT J AU Deptuch, GW Carini, G Grybos, P Kmon, P Maj, P Trimpl, M Siddons, DP Szczygiel, R Yarema, R AF Deptuch, Grzegorz W. Carini, Gabriella Grybos, Pawel Kmon, Piotr Maj, Piotr Trimpl, Marcel Siddons, David P. Szczygiel, Robert Yarema, Raymond TI Design and Tests of the Vertically Integrated Photon Imaging Chip SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE 3D-IC technology; CMOS; integrated circuits; pixel detector; radiation imaging detectors; readout electronics; TSV; vertically integrated circuits; X-rays imaging detectors ID DETECTORS; CIRCUITS AB The Vertically Integrated Photon Imaging Chip (VIPIC) project explores opportunities of the three-dimensional integration for imaging of X-rays. The design details of the VIPIC1 chip are presented and are followed by results of testing of the chip. The VIPIC1 chip was designed in a 130 nm process, in which through silicon vias are embedded right after the front-end-of-line processing. The integration of tiers is achieved by the Cu-Cu thermo-compression or Cu-based oxide-oxide bonding. The VIPIC1 readout integrated circuit was designed for high timing resolution, pixel based, X-ray Photon Correlation Spectroscopy experiments typically using 8 keV X-rays at a synchrotron radiation facility. The design was done for bonding a Silicon pixel detector, however other materials can be serviced as long as the positive polarity of charge currents is respected. C1 [Deptuch, Grzegorz W.; Trimpl, Marcel; Yarema, Raymond] Fermilab Natl Accelerator Lab, ASIC Dev Grp, Dept Elect Engn, Particle Phys Div, Batavia, IL 60510 USA. [Siddons, David P.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Carini, Gabriella] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert] AGH Univ Sci & Technol, Dept Measurement & Elect, Fac Elect Engn Automat Comp Sci & Biomed Engn, PL-30059 Krakow, Poland. RP Deptuch, GW (reprint author), Fermilab Natl Accelerator Lab, ASIC Dev Grp, Dept Elect Engn, Particle Phys Div, POB 500, Batavia, IL 60510 USA. EM dep-tuch@ieee.org; carini@SLAC.stanford.edu; pawel.grybos@agh.edu.pl; kmon@agh.edu.pl; piotr.maj@agh.edu.pl; trimpl@fnal.gov; siddons@bnl.gov; robert.szczygiel@agh.edu.pl; yarema@fnal.gov RI Maj, Piotr/H-1069-2014 FU U.S. Department of Energy [DE-AC02-07CH11359]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Center [DEC-2011/01/B/ST7/05155]; EU FP7 AIDA program [262025]; Polish Ministry of Science and Higher Education [2225/7.PR/2011/2] FX Date of current version February 06, 2014. Fermilab is operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. BNL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. AGH-UST was supported by National Science Center, under Contract DEC-2011/01/B/ST7/05155 and by EU FP7 AIDA program (Grant Agreement Number 262025) and Polish Ministry of Science and Higher Education (Project number 2225/7.PR/2011/2). NR 12 TC 14 Z9 14 U1 1 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2014 VL 61 IS 1 BP 663 EP 674 DI 10.1109/TNS.2013.2294673 PN 3 PG 12 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AF7XQ UT WOS:000334929200020 ER PT J AU Smith, HM Haegel, NM Phillips, DJ Cirignano, L Ciampi, G Kim, H Chrzan, DC Haller, EE AF Smith, Holland M., III Haegel, Nancy M. Phillips, David J. Cirignano, Leonard Ciampi, Guido Kim, Hadong Chrzan, Daryl C. Haller, Eugene E. TI Electrical and Optical Studies of Deep Levels in Nominally Undoped Thallium Bromide SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Cathodoluminescence; deep levels; photo-induced conductivity transient spectroscopy; semiconductor impurities; thallium bromide ID CURRENT TRANSIENT SPECTROSCOPY; RESISTIVITY BULK MATERIALS; PLASTICALLY DEFORMED SILICON; TRANSPORT-PROPERTIES; THALLOUS HALIDES; SINGLE-CRYSTALS; POINT-DEFECTS; TLBR CRYSTALS; HOLE PLASMA; LUMINESCENCE AB Photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL) measurements were performed on nominally undoped detector grade samples of TlBr. In PICTS measurements, nine traps were detected in the temperature range 80-250 K using four-gate analysis. Five of the traps are tentatively identified as electron traps, and four as hole traps. CL measurements yielded two broad peaks common to all samples and most likely associated with defects. Correlations between the optically and electrically detected deep levels are considered. Above 250 K, the photoconductivity transients measured in the PICTS experiments exhibited anomalous transient behavior, indicated by non-monotonic slope variations as a function of time. The origin of the transients is under further investigation, but their presence precludes the accurate determination of trap parameters in TlBr above 250 K with traditional PICTS analysis. Their discovery was made possible by the use of a PICTS system that records whole photoconductivity transients, as opposed to reduced and processed signals. C1 [Smith, Holland M., III; Chrzan, Daryl C.; Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smith, Holland M., III; Chrzan, Daryl C.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Haegel, Nancy M.; Phillips, David J.] Naval Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. [Cirignano, Leonard; Ciampi, Guido; Kim, Hadong] Radiat Monitoring Devices Inc, Watertown, MA 02472 USA. RP Smith, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hollands@berkeley.edu; nmhaegel@nps.edu; david.john.phillips@us.army.mil; lcirignano@rmdinc.com; gciampi@rmdinc.com; hkim@rmdinc.com; dcchrzan@berkeley.edu; eehaller@lbl.gov FU U.S. Department of Homeland Security [2009-DN-077-ARI-026-04]; Naval Postgraduate School by ARI/DHS [HSHQDC-11-X-001]; US Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-08-C-00140]; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program FX This work was supported by the U.S. Department of Homeland Security under the Grant Award number 2009-DN-077-ARI-026-04, as well as at the Naval Postgraduate School by ARI/DHS Interagency Agreement HSHQDC-11-X-001. Work at Radiation Monitoring Devices Inc. was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under the competitively awarded contract HSHQDC-08-C-00140. This support does not constitute an express or implied endorsement on the part of the Government. Some of the equipment used at LBNL was funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The work of H. M Smith III was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. NR 36 TC 0 Z9 0 U1 3 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2014 VL 61 IS 1 BP 689 EP 694 DI 10.1109/TNS.2013.2291819 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AF7XQ UT WOS:000334929200023 ER PT J AU Shang, JY Liu, CX Wang, ZM Zachara, J AF Shang, Jianying Liu, Chongxuan Wang, Zheming Zachara, John TI Long-term kinetics of uranyl desorption from sediments under advective conditions SO WATER RESOURCES RESEARCH LA English DT Article DE Uranyl Desorption; Kinetics; Long-term; additivity approach; heterogeneous ID CONTAMINATED SEDIMENTS; DISTRIBUTION COEFFICIENTS; URANIUM(VI) ADSORPTION; REACTIVE TRANSPORT; SORPTION; AQUIFER; U(VI); MODEL AB Long-term (>4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge site at the U.S. Department of Energy Hanford 300 Area. The experimental results were used to evaluate alternative multirate surface complexation reaction (MRSCR) approaches to describe the short and long-term kinetics of U(VI) desorption under flow conditions. The surface complexation reaction (SCR) stoichiometry and equilibrium constants and multirate parameters in the MRSCR models were independently characterized in batch and stirred flow-cell reactors. MRSCR models that were either additively constructed using the MRSCRs for individual size fractions, or composite in nature, could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using the labile U concentration measured by carbonate extraction underestimated desorbable U(VI) and the long-term rate of U(VI) desorption. This study also found that the gravel size fraction (2-8 mm), which is typically treated as nonreactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application and identifies important parameters and uncertainties affecting model predictions. C1 [Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, CX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Chongxuan.Liu@pnnl.gov RI Shang, jianying/E-3787-2013; Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010 OI Shang, jianying/0000-0002-2498-9699; Wang, Zheming/0000-0002-1986-4357 FU U.S. Department of Energy (DOE), Biological and Environmental Research (BER) Division through the Subsurface Biogeochemical Research Program (SBR) Science Focus Area (SFA) at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC06-76RLO 1830]; DOE Office of Biological and Environmental Research FX This research was supported by the U.S. Department of Energy (DOE), Biological and Environmental Research (BER) Division through the Subsurface Biogeochemical Research Program (SBR) Science Focus Area (SFA) at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Part of this research was performed using the Environmental Molecular Science Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the PNNL. NR 30 TC 8 Z9 8 U1 7 U2 36 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2014 VL 50 IS 2 BP 855 EP 870 DI 10.1002/2013WR013949 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AD9DC UT WOS:000333563900006 ER PT J AU Guo, JL Li, HY Leung, LR Guo, SL Liu, P Sivapalan, M AF Guo, Jiali Li, Hong-Yi Leung, L. Ruby Guo, Shenglian Liu, Pan Sivapalan, Murugesu TI Links between flood frequency and annual water balance behaviors: A basis for similarity and regionalization SO WATER RESOURCES RESEARCH LA English DT Article DE flood frequency; annual water balance; aridity index ID HYDROLOGIC SIMILARITY; BASEFLOW INDEX; COEFFICIENT; SEASONALITY; SEPARATION; AUSTRALIA; RAINFALL; RECHARGE; CURVE; AREA AB This paper presents the results of a data-based comparative study of several hundred catchments across continental United States belonging to the MOPEX data set to systematically explore the connection between the flood frequency curve and mean annual water balance. Mean annual water balance is expressed in terms of two similarity measures: (i) the climatic aridity index, AI, which is a measure of the competition between energy and water availability and (ii) the base flow index, BFI, which is a measure of total runoff partitioning into surface and subsurface components at the annual time scale. The data analyses showed that the aridity index, AI, has a first-order control on the shape of the flood frequency curve (also known as the growth curve), as expressed in terms of both the mean and coefficient of variation (C-v) of the annual maximum floods, once normalized by catchment size (i.e., specific flood discharge) While the mean annual (specific) flood discharge decreases with increasing aridity, C-v increases with increasing aridity. On the other hand, the BFI was found to be a second-order control on the flood frequency curve. Higher BFI, meaning higher contributions of subsurface flow to total streamflow, leads to a decrease of the mean annual (specific) flood discharge, and vice versa. The statistically significant relationship between AI and the flood frequency curve and the consistent shift of the growth curves with AI support the use of AI as a similarity measure for regionalization of flood frequency. Key Points Linking flood frequency curve to annual water balance by analyzing MOPEX data set Aridity index has a first-order control on mean and C-v of annual maximum floods Base flow index is secondary control on shape/magnitude of flood frequency curve C1 [Guo, Jiali; Guo, Shenglian; Liu, Pan] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China. [Guo, Jiali; Li, Hong-Yi; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sivapalan, Murugesu] Univ Illinois, Dept Civil & Environm Engn, Hydrosyst Lab, Urbana, IL USA. [Sivapalan, Murugesu] Univ Illinois, Dept Geog & Geog Informat Sci, Urbana, IL USA. RP Li, HY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Hongyi.li@pnnl.gov RI Li, Hong-Yi/C-9143-2014; Sivapalan, Murugesu/A-3538-2008 OI Li, Hong-Yi/0000-0001-5690-3610; Sivapalan, Murugesu/0000-0003-3004-3530 FU Office of Science of the U.S. Department of Energy; DOE [DE-AC05-76RLO 1830] FX This study was supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling Program and Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RLO 1830. NR 42 TC 7 Z9 7 U1 2 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2014 VL 50 IS 2 BP 937 EP 953 DI 10.1002/2013WR014374 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AD9DC UT WOS:000333563900011 ER PT J AU Ma, R Zheng, CM Liu, CX Greskowiak, J Prommer, H Zachara, JM AF Ma, Rui Zheng, Chunmiao Liu, Chongxuan Greskowiak, Janek Prommer, Henning Zachara, John M. TI Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions SO WATER RESOURCES RESEARCH LA English DT Article DE uranium; reactive transport modeling; aquifer heterogeneity; field scale model; Hanford 300 Area IFRC site ID CONTAMINATED SEDIMENTS; AQUIFER SEDIMENTS; GROUNDWATER; ADSORPTION; DESORPTION; BOUNDARY; KINETICS; URANYL; RATES AB This paper presents the results of a comprehensive model-based analysis of a uranyl [U(VI)] tracer test conducted at the U.S. DOE Hanford 300 Area (300A) IFRC. Despite the highly complex field conditions the numerical three-dimensional multicomponent reactive transport model was able to capture most of the spatiotemporal variations of the observed U(VI) concentrations. A multimodel analysis was performed to interrogate the relative importance of various processes and factors for controlling field-scale reactive transport during the uranyl tracer test. The results indicate that multirate sorption/desorption, surface complexation reactions, and initial concentration distributions were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes played less important roles under the prevailing field-test conditions. Further analysis of the modeling results demonstrates that these findings are conditioned to the relatively stable groundwater chemistry and the selected length of the field experimental duration (16 days). The model analysis also revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus affected both field measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and dynamic flow conditions. This study provides the first highly data-constrained uranium transport simulations under highly dynamic flow conditions. It illustrates the value of reactive transport modeling for elucidating the relative importance of individual processes in controlling uranium transport under specific field-scale conditions. C1 [Ma, Rui] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. [Zheng, Chunmiao] Peking Univ, Ctr Water Res, Beijing 100871, Peoples R China. [Zheng, Chunmiao] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL USA. [Liu, Chongxuan; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Greskowiak, Janek] Carl von Ossietzky Univ Oldenburg, Dept Biol & Environm Sci, D-26111 Oldenburg, Germany. [Prommer, Henning] CSIRO Land & Water, Perth, WA, Australia. [Prommer, Henning] Univ Western Australia, Sch Earth & Environm, Perth, WA 6009, Australia. [Prommer, Henning] Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA 5001, Australia. RP Ma, R (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. EM rma@cug.edu.cn RI Prommer, Henning/A-4555-2008; Zheng, Chunmiao/I-5257-2014; Liu, Chongxuan/C-5580-2009; Greskowiak, Janek/F-4198-2012 OI Prommer, Henning/0000-0002-8669-8184; Zheng, Chunmiao/0000-0001-5839-1305; FU National Natural Science Foundation of China [41002081, 41330632]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) FX The senior author was supported by the National Natural Science Foundation of China (41002081 and 41330632). The research was performed as part of the Hanford 300 Area Integrated Field Research Challenge (IFRC) and PNNL Subsurface Biogeochemistry (SBR) Science Focus Area (SFA) projects supported the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER). We are grateful to the data support provided by the members of the Hanford IFRC field experimental team at the Pacific Northwest National Laboratory. NR 54 TC 4 Z9 4 U1 4 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2014 VL 50 IS 2 BP 1006 EP 1024 DI 10.1002/2013WR013835 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AD9DC UT WOS:000333563900015 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaitia, Y Acharya, BS Adamczyka, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Aefsky, S Agatonovic-Jovinb, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahmadov, F Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimontia, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjosa, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Atlay, NB Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F Da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodova, OL Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Bittner, B Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bolda, T Boldea, V Boldyrev, AS Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J De Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Brunia, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Budaa, SI Budagov, IA Budick, B Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Bunse, M Burckhart, H Burdin, S Burgess, T Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Caso, C Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Christidi, IA Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connelly, IA Consonni, M Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Pedro, RCB Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Ortuzar, MC Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K Asmundis, R De Castro, S De Cecco, S De Graat, J De Groot, N De Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliot, F Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T Do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Dwuznik, M Ebke, J Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Hernandez, CM Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Ideal, E Iengoa, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Plante, IJL Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Joffe, D Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczkab, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubuab, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstica, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Langa, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Luehring, F Lukas, W Luminari, L Lund, E Lundberg, J Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzicb, J Mandellia, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Filho, LMDA Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mazzanti, M Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meiera, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindura, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidzeb, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Ntekas, K Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Cavalcanti, TP Codina, EP Garcia-Esta, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisin, H Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A De Lima, JGR Roda, C Dos Santos, DR Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarkisyan-Grinbaum, E Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schramm, S Schreyer, M Schroeder, C Schroer, N Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Socher, F Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zobernig, G Zoccoli, A Zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaitia, Y. Acharya, B. S. Adamczyka, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Aefsky, S. Agatonovic-Jovinb, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahmadov, F. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimontia, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Ammosov, V. V. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjosa, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodova, O. L. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bolda, T. Boldea, V. Boldyrev, A. S. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. De Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Brunia, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Budaa, S. I. Budagov, I. A. Budick, B. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Bunse, M. Burckhart, H. Burdin, S. Burgess, T. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Caso, C. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Christidi, I. A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Pedro, R. Costa Batalha Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Ortuzar, M. Crispin Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. De Graat, J. De Groot, N. De Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliot, F. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Dwuznik, M. Ebke, J. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. De la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Ideal, E. Iengoa, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G. -Y. Plante, I. Jen-La Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczkab, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubuab, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstica, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Langa, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzicb, J. Mandellia, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Filho, L. Manhaes De Andrade Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Mattig, P. Mattig, S. Mattmann, J. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mazzanti, M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meiera, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindura, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Molfetas, A. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidzeb, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Ntekas, K. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Cavalcanti, T. Perez Codina, E. Perez Garcia-Esta, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisin, H. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. De Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarkisyan-Grinbaum, E. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schramm, S. Schreyer, M. Schroeder, C. Schroer, N. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Socher, F. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Su, J. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zobernig, G. Zoccoli, A. Zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Standalone vertex finding in the ATLAS muon spectrometer SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Muon spectrometers; Performance of High Energy Physics Detectors ID SUPERSYMMETRY AB A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to b (b) over bar final states, and pp collision data at root s = 7 TeV collected with the ATLAS detector at the LHC during 2011. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; O'grady, F.; Ruhr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Lewis, G. H.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Demirkoz, B.; Curull, X. Espinal; Parra, G. Gonzalez; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Casado, M. P.; Cortes-Gonzalez, A.; Demirkoz, B.; Curull, X. Espinal; Giangiobbe, V.; Parra, G. Gonzalez; Le Menedeu, E.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Krstica, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovinb, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzicb, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Dube, S.; Haber, C.; Heinemann, B.; Holmes, T. R.; Lavrijsen, W.; Leggett, C.; Madaras, R. J.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Sood, A.; Tsulaia, V.; Varouchas, D.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Ciocio, A.; Haber, C.; Heinemann, B.; Holmes, T. R.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ovcharova, A.; Pranko, A.; Sood, A.; Tsulaia, V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Nikiforov, A.; Wendland, D.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Borer, C.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Kruker, T.; Schneider, B.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Brunia, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Arslan, O.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Hageboeck, S.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; Filho, L. Manhaes De Andrade] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [Do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Budaa, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Backes, M.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Mad, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] IN2P3, CNRS, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Perepelitsa, D. V.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Willis, W.; Wulf, E.; Zhou, L.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Hoffmann, M. Dano; Galster, G.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Kadlecik, P.; Loevschall-Jensen, A. E.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyka, L.; Bolda, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindura, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Haleem, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Gaur, B.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Katzy, J.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Mattig, S.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Peschke, R.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Gaur, B.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Katzy, J.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Mattig, S.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Peschke, R.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Bunse, M.; Burmeister, I.; Esch, H.; Gossling, C.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Socher, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Finelli, K. D.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Kuday, S.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Jenni, P.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Puldon, D.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubuab, J.; Mchedlidze, G.; Mosidzeb, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Nadal, J.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Iliadis, D.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; Della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Khomich, A.; Kluge, E. -E.; Laier, H.; Langa, V. S.; Lendermann, V.; Meiera, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Farrell, S.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Milov, A.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Gibson, S. M.; Goncalo, R.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Demers, S.; Dobson, E.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.] IN2P3, CNRS, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.; Wielers, M.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buscher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Hulsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Kopke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Price, D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] IN2P3, CNRS, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chelstowska, M. A.; Cirilli, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Stelzer, H. J.; Ta, D.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimontia, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandellia, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Giovannini, P.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; Vanadia, M.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengoa, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; De Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Beloborodova, O. L.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, Inst Natl Phys Nucl & Phys Particules, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Donati, S.; Dotti, A.; Giannetti, P.; Roda, C.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Donati, S.; Dotti, A.; Giannetti, P.; Roda, C.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Dos Santos, S. P. Amor; Amorim, A.; Anjosa, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Pedro, R. Costa Batalha; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Dos Santos, D. Roda; Ruzicka, P.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Kuna, M.; Lacava, F.; Luci, C.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Ahmad, A.; Aracena, I.; Mayes, J. Backus; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Kagan, M.; Kocian, M.; Lowe, A. J.; Malone, C.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Silverstein, S. B.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Carrillo-Montoya, G. D.; Huang, Y.; Leney, K. J. C.; Garcia, B. R. Mellado; Quayle, W. B.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaitia, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaitia, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Chen, K.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Chen, K.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Farooque, T.; Fatholahzadeh, B.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia & CSIC, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia & CSIC, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia & CSIC, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Esta, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia & CSIC, IMB CNM, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Schaarschmidt, J.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Hard, A. S.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Sturm, P.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Ahmadov, F.; Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O. L.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Ge, P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] IN2P3, CNRS, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. Univ Minho, Dept Fis, Braga, Portugal. Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Peters, R. F. Y.] DESY, Hamburg, Germany. [Peters, R. F. Y.] DESY, Zeuthen, Germany. [Pinamonti, M.] SISSA, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tikhomirov, V. O.; Vickey, T.] MEPhI, Moscow, Russia. Univ Oxford, Dept Phys, Oxford, England. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, C.] CEA Saclay, IRFU, DSM, F-91191 Gif Sur Yvette, France. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Ferrando, James/A-9192-2012; Hejbal, Jiri/H-1358-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Villa, Mauro/C-9883-2009; Brooks, William/C-8636-2013; Boyko, Igor/J-3659-2013; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Jakoubek, Tomas/G-8644-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Fullana Torregrosa, Esteban/A-7305-2016; Doyle, Anthony/C-5889-2009; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Juste, Aurelio/I-2531-2015; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Kuleshov, Sergey/D-9940-2013; Lokajicek, Milos/G-7800-2014; Castro, Nuno/D-5260-2011; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Lysak, Roman/H-2995-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Staroba, Pavel/G-8850-2014; Warburton, Andreas/N-8028-2013; Turchikhin, Semen/O-1929-2013; Boldyrev, Alexey/K-6303-2012; Moraes, Arthur/F-6478-2010; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014 OI Walsh, Brian/0000-0003-1689-2309; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Ferrando, James/0000-0002-1007-7816; Mikestikova, Marcela/0000-0003-1277-2596; Villa, Mauro/0000-0002-9181-8048; Brooks, William/0000-0001-6161-3570; Boyko, Igor/0000-0002-3355-4662; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Doyle, Anthony/0000-0001-6322-6195; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Thomson, Mark/0000-0002-2654-9005; Dell'Asta, Lidia/0000-0002-9601-4225; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Chromek-Burckhart, Doris/0000-0003-4243-3288; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Chen, Hucheng/0000-0002-9936-0115; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Camarri, Paolo/0000-0002-5732-5645; Kuleshov, Sergey/0000-0002-3065-326X; Castro, Nuno/0000-0001-8491-4376; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Warburton, Andreas/0000-0002-2298-7315; Turchikhin, Semen/0000-0001-6506-3123; Moraes, Arthur/0000-0002-5157-5686; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 14 TC 0 Z9 0 U1 4 U2 99 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR P02001 DI 10.1088/1748-0221/9/02/P02001 PG 39 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400036 ER PT J AU Ambrosino, F Anastasio, A Basta, D Bonechi, L Brianzi, M Bross, A Callier, S Caputo, A Ciaranfi, R Cimmino, L D'Alessandro, R D'Auria, L de La Taille, C Energico, S Garufi, F Giudicepietro, F Lauria, A Macedonio, G Martini, M Masone, V Mattone, C Montesi, MC Noli, P Orazi, M Passeggio, G Peluso, R Pla-Dalmau, A Raux, L Rubinov, P Saracino, G Scarlini, E Scarpato, G Sekhniaidze, G Starodubtsev, O Strolin, P Taketa, A Tanaka, HKM Vanzanella, A Viliani, L AF Ambrosino, F. Anastasio, A. Basta, D. Bonechi, L. Brianzi, M. Bross, A. Callier, S. Caputo, A. Ciaranfi, R. Cimmino, L. D'Alessandro, R. D'Auria, L. de La Taille, C. Energico, S. Garufi, F. Giudicepietro, F. Lauria, A. Macedonio, G. Martini, M. Masone, V. Mattone, C. Montesi, M. C. Noli, P. Orazi, M. Passeggio, G. Peluso, R. Pla-Dalmau, A. Raux, L. Rubinov, P. Saracino, G. Scarlini, E. Scarpato, G. Sekhniaidze, G. Starodubtsev, O. Strolin, P. Taketa, A. Tanaka, H. K. M. Vanzanella, A. Viliani, L. TI The MU-RAY project: detector technology and first data from Mt. Vesuvius SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 13th Topical Seminar on Innovative Particle and Radiation Detectors CY OCT 07-10, 2013 CL Siena, ITALY DE Particle tracking detectors; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ID RADIOGRAPHY; VOLCANOS; MUONS AB Muon Radiography allows to map the density of a volcanic cone. It is based on the measurement of the attenuation of the flux of muons present in the cosmic radiation on the ground. The MU-RAY project has developed an innovative detector designed for the muon radiography. The main features are the low electric power consumption, robustness and transportability, good spatial resolution and muon time of flight measurement. A 1 m(2) detector prototype has been constructed. and collected data at Mt. Vesuvius for approximately 1 month in spring 2013. A second campaign of measurement has been performed at the Puy de Dome, France, in the last four months of 2013. In this article the principles of muon radiography, the MU-RAY detector and the first results from the collected data will be described. C1 [Ambrosino, F.; Cimmino, L.; Garufi, F.; Lauria, A.; Masone, V.; Mattone, C.; Montesi, M. C.; Noli, P.; Saracino, G.; Strolin, P.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Ambrosino, F.; Anastasio, A.; Basta, D.; Cimmino, L.; Energico, S.; Garufi, F.; Lauria, A.; Mattone, C.; Montesi, M. C.; Noli, P.; Passeggio, G.; Saracino, G.; Sekhniaidze, G.; Strolin, P.; Vanzanella, A.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [D'Alessandro, R.; Scarlini, E.; Viliani, L.] Univ Florence, Dipartimento Fis, Florence, Italy. [Bonechi, L.; Brianzi, M.; Ciaranfi, R.; D'Alessandro, R.; Scarlini, E.; Starodubtsev, O.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Bross, A.; Pla-Dalmau, A.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Callier, S.; de La Taille, C.; Raux, L.] Ecole Polytech, CNRS, IN2P3, OMEGA, F-91128 Palaiseau, France. [Caputo, A.; D'Auria, L.; Giudicepietro, F.; Macedonio, G.; Martini, M.; Orazi, M.; Peluso, R.; Scarpato, G.] Osserv Vesuviano, INGV, Naples, Italy. [Taketa, A.; Tanaka, H. K. M.] Univ Tokyo, Earthquake Res Inst, Tokyo 113, Japan. [Energico, S.] SPIN, CNR, Naples, Italy. RP Saracino, G (reprint author), Univ Naples Federico II, Dipartimento Fis, Naples, Italy. EM saracino@na.infn.it RI Macedonio, Giovanni/G-3855-2011; D'Alessandro, Raffaello/F-5897-2015; Giudicepietro, Flora/I-5387-2015; Garufi, Fabio/K-3263-2015; Peluso, Rosario/L-2463-2015; D'Auria, Luca/A-2023-2010; Orazi, Massimo/P-7308-2015; OI Viliani, Lorenzo/0000-0002-1909-6343; Macedonio, Giovanni/0000-0001-6604-1479; D'Alessandro, Raffaello/0000-0001-7997-0306; Giudicepietro, Flora/0000-0001-6198-8655; Garufi, Fabio/0000-0003-1391-6168; Peluso, Rosario/0000-0001-6276-5832; D'Auria, Luca/0000-0002-7664-2216; Orazi, Massimo/0000-0003-2772-2989; Starodubtsev, Oleksandr/0000-0002-5321-4884 NR 15 TC 5 Z9 5 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR C02029 DI 10.1088/1748-0221/9/02/C02029 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400029 ER PT J AU Bodmer, M Phan, N Gold, M Loomba, D Matthews, JAJ Rielage, K AF Bodmer, M. Phan, N. Gold, M. Loomba, D. Matthews, J. A. J. Rielage, K. TI Measurement of optical attenuation in acrylic light guides for a dark matter detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Dark Matter detectors (WIMPs, axions, etc.); Neutrino detectors AB Acrylic is a common material used in dark matter and neutrino detectors for light guides, transparent vessels, and neutron shielding, creating an intermediate medium between the target volume and photodetectors. Acrylic has low absorption within the visible spectrum and has a high capture cross section for neutrons. The natural radioactivity in photodetectors is a major source of background neutrons for low background detectors making the use of acrylic attractive for shielding and background reduction. To test the optical properties of acrylic we measured the transmittance and attenuation length of fourteen samples of acrylic from four different manufacturers. Samples were evaluated at five different wavelengths between 375 nm and 632 nm. We found that all samples had excellent transmittance at wavelengths greater than 550 nm. Transmittance was found to decrease below 550 nm. As expected, UV-absorbing samples showed a sharp decrease in transmittance below 425 nm compared to UV-transmitting samples. We report attenuation lengths for the three shortest wavelengths for comparison and discuss how the acrylic was evaluated for use in the MiniCLEAN single-phase dark matter detector. C1 [Bodmer, M.; Phan, N.; Gold, M.; Loomba, D.; Matthews, J. A. J.; Rielage, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Rielage, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rielage, K (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM rielagek@lanl.gov OI Rielage, Keith/0000-0002-7392-7152 FU Los Alamos National Laboratory's Laboratory Directed Research and Development program; Department of Energy Office of Science High Energy Physics program FX We gratefully acknowledge the University of New Mexico Physics and Astronomy machine shop for their assistance in machining and polishing the acrylic samples and constructing the roller apparatus. This work was funded by the Los Alamos National Laboratory's Laboratory Directed Research and Development program and the Department of Energy Office of Science High Energy Physics program. NR 9 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR P02002 DI 10.1088/1748-0221/9/02/P02002 PG 15 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400037 ER PT J AU Gonzalez-Sevilla, S Affolder, AA Allport, PP Anghinolfi, F Barbier, G Bates, R Beck, G Benitez, V Bernabeu, J Blanchot, G Bloch, I Blue, A Booker, P Brenner, R Buttar, C Cadoux, F Casse, G Carroll, J Church, I Civera, JV Clark, A Dervan, P Diez, S Endo, M Fadeyev, V Farthouat, P Favre, Y Ferrere, D Friedrich, C French, R Gallop, B Garcia, C Gibson, M Greenall, A Gregor, I Grillo, A Haber, CH Hanagaki, K Hara, K Hauser, M Haywood, S Hessey, N Hill, J Hommels, LBA Iacobucci, G Ikegami, Y Jones, T Kaplon, J Kuehn, S Lacasta, C La Marra, D Lynn, D Mahboubin, K Marco, R Marti-Garcia, S Martinez-McKinney, F Matheson, J McMahon, S Nelson, D Newcomer, FM Parzefall, U Phillips, PW Sadrozinski, HFW Santoyo, D Seiden, A Soldevila, U Spencer, E Stanitzki, M Sutcliffe, P Takubo, Y Terada, S Tipton, P Tsurin, I Ullan, M Unno, Y Villani, EG Warren, M Weber, M Wilmut, I Wonsak, S Witharm, R Wormald, M AF Gonzalez-Sevilla, S. Affolder, A. A. Allport, P. P. Anghinolfi, F. Barbier, G. Bates, R. Beck, G. Benitez, V. Bernabeu, J. Blanchot, G. Bloch, I. Blue, A. Booker, P. Brenner, R. Buttar, C. Cadoux, F. Casse, G. Carroll, J. Church, I. Civera, J. V. Clark, A. Dervan, P. Diez, S. Endo, M. Fadeyev, V. Farthouat, P. Favre, Y. Ferrere, D. Friedrich, C. French, R. Gallop, B. Garcia, C. Gibson, M. Greenall, A. Gregor, I. Grillo, A. Haber, C. H. Hanagaki, K. Hara, K. Hauser, M. Haywood, S. Hessey, N. Hill, J. Hommels, L. B. A. Iacobucci, G. Ikegami, Y. Jones, T. Kaplon, J. Kuehn, S. Lacasta, C. La Marra, D. Lynn, D. Mahboubin, K. Marco, R. Marti-Garcia, S. Martinez-McKinney, F. Matheson, J. McMahon, S. Nelson, D. Newcomer, F. M. Parzefall, U. Phillips, P. W. Sadrozinski, H. F-W. Santoyo, D. Seiden, A. Soldevila, U. Spencer, E. Stanitzki, M. Sutcliffe, P. Takubo, Y. Terada, S. Tipton, P. Tsurin, I. Ullan, M. Unno, Y. Villani, E. G. Warren, M. Weber, M. Wilmut, I. Wonsak, S. Witharm, R. Wormald, M. TI A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors; Si microstrip and pad detectors; Performance of High Energy Physics Detectors ID TRACKER; SENSORS; BULK AB The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail. C1 [Gonzalez-Sevilla, S.; Barbier, G.; Cadoux, F.; Clark, A.; Favre, Y.; Ferrere, D.; Iacobucci, G.; La Marra, D.; Weber, M.] DPNC Univ Geneva, Geneva, Switzerland. [Affolder, A. A.; Allport, P. P.; Casse, G.; Carroll, J.; Dervan, P.; Greenall, A.; Jones, T.; Sutcliffe, P.; Tsurin, I.; Wonsak, S.; Wormald, M.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Anghinolfi, F.; Blanchot, G.; Farthouat, P.; Kaplon, J.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bates, R.; Blue, A.; Buttar, C.] Univ Glasgow, Glasgow, Lanark, Scotland. [Beck, G.] Univ London, London WC1E 7HU, England. [Benitez, V.; Ullan, M.] Ctr Nacl Microelect IMB CNM, CSIC, Barcelona, Spain. [Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Santoyo, D.; Soldevila, U.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia, Spain. [Bloch, I.; Friedrich, C.; Gregor, I.; Stanitzki, M.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Booker, P.; Church, I.; Gallop, B.; Gibson, M.; Haywood, S.; Hill, J.; Matheson, J.; McMahon, S.; Phillips, P. W.; Villani, E. G.; Wilmut, I.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Brenner, R.] Uppsala Univ, Uppsala, Sweden. [Diez, S.; Haber, C. H.; Witharm, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Endo, M.; Hanagaki, K.; Sadrozinski, H. F-W.] Osaka Univ, Osaka, Japan. [Fadeyev, V.; Grillo, A.; Martinez-McKinney, F.; Seiden, A.; Spencer, E.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA USA. [French, R.] Univ Sheffield, Sheffield, S Yorkshire, England. [Hara, K.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Hauser, M.; Kuehn, S.; Mahboubin, K.; Parzefall, U.; Wonsak, S.] Univ Freiburg, D-79106 Freiburg, Germany. [Hessey, N.] Natl Inst Nucl & High Energy Phys NIKHEF, Amsterdam, Netherlands. [Hommels, L. B. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Lynn, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Nelson, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Newcomer, F. M.] Univ Penn, Philadelphia, PA 19104 USA. [Tipton, P.] Yale Univ, New Haven, CT USA. [Warren, M.] UCL, London, England. RP Gonzalez-Sevilla, S (reprint author), DPNC Univ Geneva, Geneva, Switzerland. EM rgio.Gonzalez.Sevilla@cern.ch RI Marco Hernandez, Ricardo/H-3213-2015; Bernabeu, Jose/H-6708-2015; Ullan, Miguel/P-7392-2015; Buttar, Craig/D-3706-2011; Blue, Andrew/C-9882-2016 OI Lacasta, Carlos/0000-0002-2623-6252; Marco Hernandez, Ricardo/0000-0002-4885-5708; Bernabeu, Jose/0000-0002-0296-9988; Blue, Andrew/0000-0002-7716-5626 FU State Secretariat for Education, Research and Innovation; Swiss National Science Foundation; Canton of Geneva, Switzerland; [20244038]; [20540291]; [20025007] FX This research was partly supported by the Grant-in-Aid for Scientific Research (A) (Grant no. 20244038), Research (C) (Grant no. 20540291) and Research on Priority Area (Grant no. 20025007), in Japan. We also acknowledge the financial support of the State Secretariat for Education, Research and Innovation, the Swiss National Science Foundation and the Canton of Geneva, Switzerland. NR 22 TC 2 Z9 2 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR P02003 DI 10.1088/1748-0221/9/02/P02003 PG 37 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400038 ER PT J AU Guo, D Liu, C Chen, J Chramowicz, J Deng, B Gong, D Hou, S Jin, G Kwan, S Liang, F Li, X Liu, G Liu, T Prosser, A Su, DS Teng, PK Xu, T Ye, J Zhao, X Xiang, AC Liang, H AF Guo, D. Liu, C. Chen, J. Chramowicz, J. Deng, B. Gong, D. Hou, S. Jin, G. Kwan, S. Liang, F. Li, X. Liu, G. Liu, T. Prosser, A. Su, D-S Teng, P-K Xu, T. Ye, J. Zhao, X. Xiang, A. C. Liang, H. TI The 120Gbps VCSEL Array Based Optical Transmitter (ATx) development for the High-Luminosity LHC (HL-LHC) experiments SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 23-27, 2013 CL Perugia, ITALY DE Optical detector readout concepts; Radiation-hard electronics; Front-end electronics for detector readout; Lasers AB The integration of a Verticle Cavity Surface-Emitting Laser (VCSEL) array and a driving Application-Specific Integrated Circuit (ASIC) in a custom optical array transmitter module (ATx) for operation in the detector front-end is constructed, assembled and tested. The ATx provides 12 parallel channels with each channel operating at 10 Gbps. The optical transmitter eye diagram passes the eye mask and the bit-error rate (BER) less than 10(-12) transmission is achieved at 10 Gbps/ch. The overall insertion loss including the radiation induced attenuation is sufficiently low to meet the proposed link budget requirement. C1 [Guo, D.; Jin, G.; Liang, F.; Liang, H.] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Anhui, Peoples R China. [Guo, D.; Liu, C.; Deng, B.; Gong, D.; Li, X.; Liu, G.; Liu, T.; Ye, J.; Zhao, X.; Xiang, A. C.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Chen, J.] So Methodist Univ, Dept Elect Engn, Dallas, TX 75275 USA. [Chramowicz, J.; Kwan, S.; Prosser, A.] Fermilab Natl Accelerator Lab, Elect Syst Engn Dept, Batavia, IL 60510 USA. [Deng, B.] Hubei Polytech Univ, Huangshi 435003, Hubei, Peoples R China. [Hou, S.; Su, D-S; Teng, P-K] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Li, X.] Cent China Normal Univ, Dept Phys, Wuhan 430079, Hubei, Peoples R China. [Liu, G.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Xu, T.] Shandong Univ, MOE Key Lab Particle Phys & Particle Irradiat, Jinan 250100, Peoples R China. RP Xiang, AC (reprint author), So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. EM cxiang@smu.edu; simonlh@ustc.edu.cn NR 11 TC 3 Z9 3 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR C02007 DI 10.1088/1748-0221/9/02/C02007 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400007 ER PT J AU Pangaud, P Arutinov, D Barbero, M Bompard, F Breugnon, P Clemens, JC Fougeron, D Garcia-Sciveres, M Godiot, S Hemperek, T Kruger, H Obermann, T Rozanov, S Wermes, N AF Pangaud, P. Arutinov, D. Barbero, M. Bompard, F. Breugnon, P. Clemens, J. -C. Fougeron, D. Garcia-Sciveres, M. Godiot, S. Hemperek, T. Krueger, H. Obermann, T. Rozanov, S. Wermes, N. TI Test results of the first 3D-IC prototype chip developed in the framework of HL-LHC/ATLAS hybrid pixel upgrade SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 23-27, 2013 CL Perugia, ITALY DE VLSI circuits; Analogue electronic circuits; Electronic detector readout concepts (solid-state); Front-end electronics for detector readout AB To face new challenges brought by the upgrades of the Large Hadron Collider at CERN and of the ATLAS pixels detector, for which high spatial resolution, very good signal to noise ratio and high radiation hardness is needed, 3D integrated technologies are investigated. In the years to come, the Large Hadron Collider will be upgraded to Higher Luminosity (HL-LHC). The ATLAS pixel detector needs to handle this new challenging environment. As a consequence, 3D integrated technologies are pursued with the target of offering higher spatial resolution, very good signal to noise ratio and unprecedented radiation hardness. We present here the test results of the first 3D prototype chip developed in the GlobalFoundries 130 nm technology processed by the Tezzaron Company, submitted within the 3D-IC consortium for which a qualification program was developed. Reliability and influence on the behavior of the integrated devices due to the presence of the Bond Interface (BI) and of the Through Silicon Via (TSV) connections, both needed for the 3D integration process, have also been addressed by the tests. C1 [Pangaud, P.; Barbero, M.; Bompard, F.; Breugnon, P.; Clemens, J. -C.; Fougeron, D.; Godiot, S.; Rozanov, S.] Aix Marseille Univ, IN2P3, CNRS, Ctr Phys Particules Marseille, Marseille, France. [Arutinov, D.; Hemperek, T.; Krueger, H.; Obermann, T.; Wermes, N.] Univ Bonn, Inst Phys, Bonn, Germany. [Garcia-Sciveres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Pangaud, P (reprint author), Aix Marseille Univ, IN2P3, CNRS, Ctr Phys Particules Marseille, Marseille, France. EM pangaud@cppm.in2p3.fr NR 7 TC 0 Z9 0 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2014 VL 9 AR C02031 DI 10.1088/1748-0221/9/02/C02031 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AC2FL UT WOS:000332314400031 ER PT J AU Choi, SCT Saunders, MA AF Choi, Sou-Cheng T. Saunders, Michael A. TI Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Krylov subspace method; Lanczos process; conjugate-gradient method; singular least-squares; linear equations; minimum-residual method; pseudoinverse solution; ill-posed problem; regression; sparse matrix; data encapsulation ID LANCZOS-ALGORITHM; SYSTEMS; INDEFINITE; LSQR AB We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite preconditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. C1 [Choi, Sou-Cheng T.] Univ Chicago, Argonne Natl Lab, Chicago, IL 60637 USA. [Saunders, Michael A.] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA. RP Choi, SCT (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM sctchoi@uchicago.edu; saunders@stanford.edu FU Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357]; National Science Foundation [CCR-0306662]; Office of Naval Research [N00014-02-1-0076, N00014-08-1-0191]; US Army Research Laboratory through the Army High Performance Computing Research Center FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy contract DE-AC02-06CH11357; National Science Foundation grant CCR-0306662; Office of Naval Research grants N00014-02-1-0076 and N00014-08-1-0191; and US Army Research Laboratory through the Army High Performance Computing Research Center. NR 26 TC 3 Z9 3 U1 0 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 EI 1557-7295 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD FEB PY 2014 VL 40 IS 2 AR 16 DI 10.1145/2527267 PG 12 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA AE0KK UT WOS:000333653400008 ER PT J AU Satula, W Dobaczewski, J Konieczka, M Nazarewicz, W AF Satula, W. Dobaczewski, J. Konieczka, M. Nazarewicz, W. TI ISOSPIN MIXING WITHIN THE SYMMETRY RESTORED DENSITY FUNCTIONAL THEORY AND BEYOND SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID SKYRME INTERACTION; NUCLEI; PROJECTION; ENERGIES AB We present results of systematic calculations of the isospin-symmetry-breaking corrections to the superallowed I = 0(+), T = 1 -> I = 0(+), T = 1 beta-decays, based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT). We discuss theoretical uncertainties of the formalism related to the basis truncation, parametrization of the underlying energy density functional, and ambiguities related to determination of Slater determinants in odd odd nuclei. A generalization of the double-projected DFT model towards a no core shell-model-like configuration-mixing approach is formulated and implemented. We also discuss new opportunities in charge-symmetry- and charge-independence-breaking studies offered by the newly developed DFT formalism involving proton neutron mixing in the particle-hole channel. C1 [Satula, W.; Dobaczewski, J.; Konieczka, M.; Nazarewicz, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Satula, W (reprint author), Univ Warsaw, Fac Phys, Hoza 69, PL-00681 Warsaw, Poland. EM satula@fuw.edu.pl; Jacek.Dobaczewski@fuw.edu.pl; witek@utk.edu NR 39 TC 3 Z9 3 U1 1 U2 17 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 167 EP 179 DI 10.5506/APhysPolB.45.167 PG 13 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100006 ER PT J AU Cieplicka, N Fornal, B Maier, KH Szpak, B Broda, R Krolas, W Pawlat, T Wrzesinski, J Janssens, RVF Carpenter, MP Chiara, CJ Hoffman, CR Kondev, FG Lauritsen, T Zhu, S Podolyak, Z Bowry, M Bunce, M Gelletly, W Kempley, R Reed, M Regan, P Walker, P Wilson, E Deo, AY Dracoulis, G Lane, G Rodriguez-Triguero, C AF Cieplicka, N. Fornal, B. Maier, K. H. Szpak, B. Broda, R. Krolas, W. Pawlat, T. Wrzesinski, J. Janssens, R. V. F. Carpenter, M. P. Chiara, C. J. Hoffman, C. R. Kondev, F. G. Lauritsen, T. Zhu, S. Podolyak, Zs Bowry, M. Bunce, M. Gelletly, W. Kempley, R. Reed, M. Regan, P. Walker, P. Wilson, E. Deo, A. Y. Dracoulis, G. Lane, G. Rodriguez-Triguero, C. TI ANGULAR DISTRIBUTIONS OF gamma RAYS FROM Bi-210 PRODUCED IN Pb-208+Pb-208 DEEP-INELASTIC REACTIONS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND AB The high-spin yrast structure of the Bi-210 nucleus was investigated using gamma-ray coincidence spectroscopy following deep-inelastic reactions in the (208)pb+Pb-208 system. Cascades of gamma rays following the decay of a new isomer were identified. Spin-parity assignments to the states known from previous studies as well as to newly located excitations were made based on the measured angular distributions of gamma rays combined with a transition conversion coefficient analysis. C1 [Cieplicka, N.; Fornal, B.; Maier, K. H.; Szpak, B.; Broda, R.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Podolyak, Zs; Bowry, M.; Bunce, M.; Gelletly, W.; Kempley, R.; Reed, M.; Regan, P.; Walker, P.; Wilson, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Deo, A. Y.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Dracoulis, G.; Lane, G.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Rodriguez-Triguero, C.] Univ Brighton, Brighton BN2 4GL, E Sussex, England. RP Cieplicka, N (reprint author), Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland. EM natalia.cieplicka@ifj.edu.pl; bogdan.fornal@ifj.edu.pl; wojciech.krolas@ifj.edu.pl RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015; Hoffman, Calem/H-4325-2016 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734; Hoffman, Calem/0000-0001-7141-9827 NR 6 TC 2 Z9 2 U1 1 U2 5 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 205 EP 210 DI 10.5506/APhysPolB.45.205 PG 6 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100010 ER PT J AU Grzywacz, R Rykaczewski, KP Gross, CJ Madurga, M Miernik, K Miller, DT Paulauskas, SV Padgett, SW Rasco, C Wolinska-Cichocka, M Zganjar, EF AF Grzywacz, R. Rykaczewski, K. P. Gross, C. J. Madurga, M. Miernik, K. Miller, D. T. Paulauskas, S. V. Padgett, S. W. Rasco, C. Wolinska-Cichocka, M. Zganjar, E. F. TI HYBRID-3HEN-NEW DETECTOR FOR GAMMAS AND NEUTRONS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND AB Recently, a unique detector system for beta-delayed neutron spectroscopy, Hybrid-3Hen, was constructed and used in an experiment. This detector is a modification of the neutron detector 3Hen array, which uses He-3-filled tubes at 10 atm and high density polyethylene moderator. In Hybrid-3Hen the gamma-ray detection capability was implemented by adding two large HPGe clover-type detectors from the CLARION/CARDS array. This modification of 3Hen enabled efficient studies of beta-delayed neutron emission by using neutron gamma coincidences. The system is equipped with full-digital readout for easy implementation of the slow and fast coincidences between various parts of the entire detection system. This new array was used in measurements at the Holifield Radioactive Ion Beam Facility and proven to be an essential tool to measure the large beta delayed two neutron emission branching ratio from the exotic isotope Ga-86. C1 [Grzywacz, R.; Madurga, M.; Miller, D. T.; Paulauskas, S. V.; Padgett, S. W.] Univ Tennessee, Dept Phys & Astr, Knoxville, TN 37996 USA. [Grzywacz, R.; Rykaczewski, K. P.; Gross, C. J.; Miernik, K.; Wolinska-Cichocka, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Miernik, K.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Rasco, C.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astr, Baton Rouge, LA 70803 USA. [Wolinska-Cichocka, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. RP Grzywacz, R (reprint author), Univ Tennessee, Dept Phys & Astr, Knoxville, TN 37996 USA. EM rgrzywac@utk.edu; rykaczewski@ornl.gov; crasco@lsu.edu RI Miller, David/B-5372-2012 OI Miller, David/0000-0002-0426-974X NR 10 TC 4 Z9 4 U1 0 U2 5 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 217 EP 222 DI 10.5506/APhysPolB.45.217 PG 6 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100012 ER PT J AU Korgul, A Grzywacz, R Rykaczewski, KP AF Korgul, A. Grzywacz, R. Rykaczewski, K. P. TI STRUCTURE OF NEUTRON-RICH NUCLEI BEYOND N=50 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND AB The measurement of the beta-decay scheme of Ga-85 triggered questions on the properties of the low-lying states in Ge-85. In order to inspect the sensitivity of the results to the neutron d(5/2) and s(1/2) single-particle states, we performed an analysis of the level structure in the N = 51 Ge-83 and N = 53 Ge-85 isotopes. C1 [Korgul, A.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Grzywacz, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Grzywacz, R.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Korgul, A (reprint author), Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. EM rgrzywac@utk.edu; rykaczewskik@ornl.gov NR 18 TC 0 Z9 0 U1 1 U2 4 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 223 EP 228 DI 10.5506/APhysPolB.45.223 PG 6 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100013 ER PT J AU Rudolph, D Forsberg, U Golubev, P Sarmiento, LG Yakushev, A Andersson, LL Di Nitto, A Dullmann, CE Gates, JM Gregorich, KE Gross, CJ Herzberg, RD Hessberger, FP Khuyagbaatar, J Kratz, JV Rykaczewski, K Schadel, M Aberg, S Ackermann, D Block, M Brand, H Carlsson, BG Cox, D Derkx, X Eberhardt, K Even, J Fahlander, C Gerl, J Jager, E Kindler, B Krier, J Kojouharov, I Kurz, N Lommel, B Mistry, A Mokry, C Nitsche, H Omtvedt, JP Papadakis, P Ragnarsson, I Runke, J Schaffner, H Schausten, B Thorle-Pospiech, P Torres, T Traut, T Trautmann, N Turler, A Ward, A Ward, DE Wiehl, N AF Rudolph, D. Forsberg, U. Golubev, P. Sarmiento, L. G. Yakushev, A. Andersson, L-L. Di Nitto, A. Duellmann, Ch E. Gates, J. M. Gregorich, K. E. Gross, C. J. Herzberg, R-D Hessberger, F. P. Khuyagbaatar, J. Kratz, J. V. Rykaczewski, K. Schaedel, M. Aberg, S. Ackermann, D. Block, M. Brand, H. Carlsson, B. G. Cox, D. Derkx, X. Eberhardt, K. Even, J. Fahlander, C. Gerl, J. Jaeger, E. Kindler, B. Krier, J. Kojouharov, I. Kurz, N. Lommel, B. Mistry, A. Mokry, C. Nitsche, H. Omtvedt, J. P. Papadakis, P. Ragnarsson, I. Runke, J. Schaffner, H. Schausten, B. Thoerle-Pospiech, P. Torres, T. Traut, T. Trautmann, N. Tuerler, A. Ward, A. Ward, D. E. Wiehl, N. TI ALPHA-PHOTON COINCIDENCE SPECTROSCOPY ALONG ELEMENT 115 DECAY CHAINS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID CA-48-INDUCED REACTIONS; GSI; CHEMISTRY; NUCLEI; TASCA AB Produced in the reaction Ca-48+Am-243, thirty correlated alpha-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum fur Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, gamma rays as well as X-ray candidates were observed in prompt coincidence with the alpha-decay chains of element 115. C1 [Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Aberg, S.; Carlsson, B. G.; Fahlander, C.; Ragnarsson, I.; Ward, D. E.] Lund Univ, Lund, Sweden. [Yakushev, A.; Duellmann, Ch E.; Hessberger, F. P.; Schaedel, M.; Ackermann, D.; Block, M.; Brand, H.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Runke, J.; Schaffner, H.; Schausten, B.; Torres, T.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. [Andersson, L-L.; Duellmann, Ch E.; Hessberger, F. P.; Khuyagbaatar, J.; Derkx, X.; Eberhardt, K.; Even, J.; Mokry, C.; Thoerle-Pospiech, P.; Wiehl, N.] Helmholtz Inst Mainz, Mainz, Germany. [Di Nitto, A.; Duellmann, Ch E.; Kratz, J. V.; Derkx, X.; Eberhardt, K.; Mokry, C.; Thoerle-Pospiech, P.; Traut, T.; Trautmann, N.; Wiehl, N.] Johannes Gutenberg Univ Mainz, D-55122 Mainz, Germany. [Gates, J. M.; Gregorich, K. E.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gross, C. J.; Rykaczewski, K.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Herzberg, R-D; Cox, D.; Mistry, A.; Papadakis, P.; Ward, A.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Schaedel, M.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan. [Omtvedt, J. P.] Univ Oslo, Oslo, Norway. [Tuerler, A.] Paul Scherrer Inst, Villigen, Switzerland. [Tuerler, A.] Univ Bern, Villigen, Switzerland. RP Rudolph, D (reprint author), Lund Univ, Lund, Sweden. EM Dirk.Rudolph@nuclear.lu.se; a.yakushev@gsi.de; a.dinitto@gsi.de; c.e.duellmann@gsi.de; kegregorich@lbl.gov; R.Herzberg@Liverpool.ac.uk; rykaczewskik@ornl.gov; d.ackermann@gsi.de; m.block@gsi.de; j.even@gsi.de RI Block, Michael/I-2782-2015; Di Nitto, Antonio/C-5069-2011; Even, Julia/K-1186-2016; Turler, Andreas/D-3913-2014; OI Papadakis, Philippos/0000-0001-7509-4257; Block, Michael/0000-0001-9282-8347; Di Nitto, Antonio/0000-0002-9319-366X; Even, Julia/0000-0002-6314-9094; Turler, Andreas/0000-0002-4274-1056; Ward, Andrew/0000-0002-6288-7327; Cox, Daniel/0000-0002-2790-8348 NR 27 TC 13 Z9 13 U1 0 U2 18 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 263 EP 272 DI 10.5506/APhysPolB.45.263 PG 10 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100019 ER PT J AU Okolowicz, J Nazarewicz, W Ploszajczak, M AF Okolowicz, J. Nazarewicz, W. Ploszajczak, M. TI NEAR-THRESHOLD CORRELATIONS OF NEUTRONS SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID SHELL-MODEL; CONTINUUM; SCATTERING; ORIGIN AB The emergence of charged-particle clustering in near-threshold configuration is a phenomenon which can be explained in the Open Quantum System (OQS) description of the atomic nucleus. In this work, we apply the realistic Shell Model Embedded in the Continuum (SMEC) to elucidate emergence of neutron correlations in near-threshold many-body states coupled to l = 1,2 neutron decay channels. Consequences of continuum coupling for spectra and the emergence of complex multi-neutron correlations are briefly discussed. C1 [Okolowicz, J.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Ploszajczak, M.] IN2P3, CNRS, CEA, GANIL,DSM, F-14076 Caen, France. RP Okolowicz, J (reprint author), Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland. EM witek@utk.edu; ploszajczak@ganil.fr NR 25 TC 1 Z9 1 U1 0 U2 3 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 331 EP 342 DI 10.5506/APhysPolB.45.331 PG 12 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100026 ER PT J AU Orrigo, SEA Rubio, B Agramunt, J Algora, A Molina, F Fujita, Y Blank, B Ascher, P Gerbaux, M Giovinazzo, J Grevy, S Kurtukian-Nieto, T Gelletly, W Bilgier, B Cakirli, RB Ganioglu, E Kozer, HC Kucuk, L Susoy, G Caceres, L Kamalou, O Stodel, C Thomas, JC Fujita, H Suzuki, T Tamii, A Popescu, L Rogers, AM AF Orrigo, S. E. A. Rubio, B. Agramunt, J. Algora, A. Molina, F. Fujita, Y. Blank, B. Ascher, P. Gerbaux, M. Giovinazzo, J. Grevy, S. Kurtukian-Nieto, T. Gelletly, W. Bilgier, B. Cakirli, R. B. Ganioglu, E. Kozer, H. C. Kucuk, L. Susoy, G. Caceres, L. Kamalou, O. Stodel, C. Thomas, J. C. Fujita, H. Suzuki, T. Tamii, A. Popescu, L. Rogers, A. M. TI BETA DECAY OF THE EXOTIC T-z =-2, Zn-56 NUCLEUS AND HALF-LIFE OF VARIOUS PROTON-RICH T-z =-1 NUCLEI SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID STATES; CO-56 AB Preliminary results of an experimental study of the beta-decay of the exotic T-z = -2, Zn-56 nucleus and other proton-rich T-z = 1 nuclei are presented. The ions were produced at GANIL using fragmentation reactions, separated by the LISE3 spectrometer and implanted in a double-sided silicon strip detector surrounded by Ge detectors. The half-lives of Zn-56 and four T-z= - 1 nuclei in the fp-shell have been measured. While the decay of the Tz = 1 nuclei proceeds essentially by beta-delayed gamma emission, in the case of 56Zn beta-delayed proton emission is also observed. Moreover, the exotic beta-delayed gamma-proton decay is seen for the first time. The information from the decay study has been used to determine the absolute Fermi and Gamow Teller transition strengths. The results for Zn-56 have been compared with the mirror Charge Exchange process, the (He-3,t) reaction on the Tz = +2, Fe-56 target nucleus. This comparison is important for understanding the Zn-56 decay data. C1 [Orrigo, S. E. A.; Rubio, B.; Agramunt, J.; Algora, A.; Molina, F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain. [Fujita, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Blank, B.; Ascher, P.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kurtukian-Nieto, T.] Univ Bordeaux 1, IN2P3, CNRS, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Gelletly, W.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Bilgier, B.; Cakirli, R. B.; Ganioglu, E.; Kozer, H. C.; Kucuk, L.; Susoy, G.] Istanbul Univ, Dept Phys, Istanbul, Turkey. [Caceres, L.; Kamalou, O.; Stodel, C.; Thomas, J. C.] Grand Accelerateur Natl Ions Lourds, F-14076 Caen, France. [Fujita, H.; Suzuki, T.; Tamii, A.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Popescu, L.] SCK CEN, B-2400 Mol, Belgium. [Rogers, A. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Orrigo, SEA (reprint author), Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain. EM orrigo@ific.uv.es; blank@cenbg.in2p3.fr RI Popescu, Lucia/F-9964-2011; Kurtukian-Nieto, Teresa/J-1707-2014; Rubio, Berta/M-1060-2014; Algora, Alejandro/E-2960-2015; Molina, Francisco/D-5319-2014 OI Popescu, Lucia/0000-0003-1678-4260; Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Rubio, Berta/0000-0002-9149-4151; Algora, Alejandro/0000-0002-5199-1794; Molina, Francisco/0000-0002-9459-1336 NR 13 TC 1 Z9 1 U1 1 U2 31 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 355 EP 362 DI 10.5506/APhysPolB.45.355 PG 8 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100029 ER PT J AU Pesudo, V Borge, MJG Moro, AM Nacher, E Acosta, L Alcorta, M Alvarez, MAG Ball, GC Bender, PC Braid, R Cubero, M di Pietro, A Fernandez-Garcia, JP Figuera, P Fisichella, M Fulton, BR Garnsworthy, AB Gomez-Camacho, J Hackman, G Kirsebom, OS Kuhn, K Kruecken, R Lattuada, M Lay, JA Marquinez-Duran, G Martel, I Miller, D Moukaddam, M O'Malley, PD Perea, A Rajabali, MM Sanchez-Benitez, AM Sarazin, F Scuderi, V Svensson, CE Tengblad, O Unsworth, C Wang, ZM AF Pesudo, V. Borge, M. J. G. Moro, A. M. Nacher, E. Acosta, L. Alcorta, M. Alvarez, M. A. G. Ball, G. C. Bender, P. C. Braid, R. Cubero, M. di Pietro, A. Fernandez-Garcia, J. P. Figuera, P. Fisichella, M. Fulton, B. R. Garnsworthy, A. B. Gomez-Camacho, J. Hackman, G. Kirsebom, O. S. Kuhn, K. Krueecken, R. Lattuada, M. Lay, J. A. Marquinez-Duran, G. Martel, I. Miller, D. Moukaddam, M. O'Malley, P. D. Perea, A. Rajabali, M. M. Sanchez-Benitez, A. M. Sarazin, F. Scuderi, V. Svensson, C. E. Tengblad, O. Unsworth, C. Wang, Z. M. TI REACTION OF THE HALO NUCLEUS Be-11 ON HEAVY TARGETS AT ENERGIES AROUND THE COULOMB BARRIER SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID CHANNELS CALCULATIONS; PHYSICS; MODELS AB New data for the reaction Be-11 on Au-197 at E-lab = 31.9 MeV are presented. The angular distributions of the inelastically scattered Be-11 and the Be-10 fragments coming from the Be-11 dissociation have been extracted and compared with semiclassical and coupled-channels calculations in an angular range theta(lab) = 13 degrees-46 degrees for the detected Be fragment. C1 [Pesudo, V.; Borge, M. J. G.; Nacher, E.; Cubero, M.; Perea, A.; Tengblad, O.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Moro, A. M.; Alvarez, M. A. G.; Fernandez-Garcia, J. P.; Gomez-Camacho, J.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain. [Acosta, L.; Marquinez-Duran, G.; Martel, I.; Sanchez-Benitez, A. M.] Univ Huelva, Dept Fis Aplicada, Huelva 21071, Spain. [Fernandez-Garcia, J. P.; Gomez-Camacho, J.] U Sevilla, CN Aceleradores, J Andalucia, CSIC, Seville 41092, Spain. [di Pietro, A.; Figuera, P.; Fisichella, M.; Lattuada, M.; Scuderi, V.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy. [Cubero, M.] Univ Costa Rica, CICANUM, San Jose, Costa Rica. [Ball, G. C.; Bender, P. C.; Garnsworthy, A. B.; Hackman, G.; Kirsebom, O. S.; Krueecken, R.; Miller, D.; Moukaddam, M.; Rajabali, M. M.; Unsworth, C.; Wang, Z. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Braid, R.; Kuhn, K.; O'Malley, P. D.; Sarazin, F.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Alcorta, M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Fernandez-Garcia, J. P.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Lay, J. A.] Univ Padua, Dipart Fis & Astr Galileo Galilei, I-35131 Padua, Italy. [Lay, J. A.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Sanchez-Benitez, A. M.] CNRS, IN2P3, CEA, GANIL,DSM, F-14076 Caen, France. [Lattuada, M.] Dipart Fis & Astron, I-95123 Catania, Italy. [Alvarez, M. A. G.] Univ Sao Paulo, Inst Fis, BR-66318 Sao Paulo, Brazil. [Wang, Z. M.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Svensson, C. E.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Krueecken, R.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. RP Pesudo, V (reprint author), CSIC, Inst Estruct Mat, Serrano 119, E-28006 Madrid, Spain. EM vicente.pesudo@csic.es; hackman@triumf.ca; imartel@uhu.es; mrajabali@triumf.ca RI Nacher, Enrique/G-2257-2010; Lay, Jose A./P-1689-2014; Fernandez-Garcia, Juan Pablo/C-1351-2016; Sanchez-Benitez, Angel-Miguel/K-7216-2014; Kruecken, Reiner/A-1640-2013; Pesudo, Vicente/B-5575-2017; Acosta, Luis/M-1838-2014; Alcorta, Martin/G-7107-2011; Gomez-Camacho, Joaquin/L-5625-2014; Tengblad, Olof/O-5852-2015; Miller, David/B-5372-2012 OI Lay, Jose A./0000-0002-8457-1649; Fernandez-Garcia, Juan Pablo/0000-0001-7798-5678; Sanchez-Benitez, Angel-Miguel/0000-0002-5779-3502; Kruecken, Reiner/0000-0002-2755-8042; Pesudo, Vicente/0000-0002-8753-6013; Acosta, Luis/0000-0001-9136-1909; Alcorta, Martin/0000-0002-6217-5004; Gomez-Camacho, Joaquin/0000-0003-0925-5037; Miller, David/0000-0002-0426-974X NR 16 TC 4 Z9 4 U1 0 U2 27 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 375 EP 382 DI 10.5506/APhysPolB.45.375 PG 8 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100031 ER PT J AU Fijalkowska, A Karny, M Rykaczewski, KP Wolinska-Cichocka, M Grzywacz, R Gross, CJ Johnson, JW Rasco, BC Zganjar, EF Stracener, DW Cartegni, L Goetz, KC Goans, R Jost, C Madurga, M Miernik, K Miller, D Padgett, SW Paulauskas, SV Al-Shudifat, M Spejewski, E Hamilton, JH Ramayya, AV AF Fijalkowska, A. Karny, M. Rykaczewski, K. P. Wolinska-Cichocka, M. Grzywacz, R. Gross, C. J. Johnson, J. W. Rasco, B. C. Zganjar, E. F. Stracener, D. W. Cartegni, L. Goetz, K. C. Goans, R. Jost, C. Madurga, M. Miernik, K. Miller, D. Padgett, S. W. Paulauskas, S. V. Al-Shudifat, M. Spejewski, E. Hamilton, J. H. Ramayya, A. V. TI FIRST RESULTS FROM THE MODULAR TOTAL ABSORPTION SPECTROMETER AT THE HRIBF SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 33rd Mazurian Lakes Conference on Physics CY SEP 01-07, 2013 CL Piaski, POLAND ID BETA-DECAY AB A Modular Total Absorption Spectrometer (MTAS) has been recently constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The main goal of MTAS is to determine the true beta-decay feeding and following gamma radiation pattern for the decays of fission products. In this contribution, we would like to present the results of the measurement of Br-86. The preliminary analysis yields an average energy of emitted gamma-radiation of about 4110 keV. It represents an increase of over 26% (850 keV), when compared to the average EM energies deduced using the ENSDF database. C1 [Fijalkowska, A.; Karny, M.; Miernik, K.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Fijalkowska, A.; Grzywacz, R.; Cartegni, L.; Goetz, K. C.; Jost, C.; Madurga, M.; Miller, D.; Padgett, S. W.; Paulauskas, S. V.; Al-Shudifat, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karny, M.; Wolinska-Cichocka, M.; Goans, R.; Spejewski, E.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Rykaczewski, K. P.; Wolinska-Cichocka, M.; Grzywacz, R.; Gross, C. J.; Johnson, J. W.; Stracener, D. W.; Miernik, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Rasco, B. C.; Zganjar, E. F.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Hamilton, J. H.; Ramayya, A. V.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Fijalkowska, A (reprint author), Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. EM aleksandra.kuzniak@gmail.com; karny@mimuw.edu.pl; rykaczewskik@ornl.gov; mwmala@gmail.com; rgrzywac@utk.edu; crasco@lsu.edu NR 8 TC 3 Z9 3 U1 1 U2 5 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 BP 545 EP 552 DI 10.5506/APhysPolB.45.545 PG 8 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100053 ER PT J AU Rusek, K Rykaczewski, K AF Rusek, Krzysztof Rykaczewski, Krzysztof TI FRONTIERS IN NUCLEAR PHYSICS PREFACE SO ACTA PHYSICA POLONICA B LA English DT Editorial Material C1 [Rusek, Krzysztof] Univ Warsaw, Heavy Ion Lab, PL-00325 Warsaw, Poland. [Rykaczewski, Krzysztof] ORNL, Oak Ridge, TN USA. RP Rusek, K (reprint author), Univ Warsaw, Heavy Ion Lab, PL-00325 Warsaw, Poland. EM rusek@fuw.edu.pl; rykaczewskik@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2014 VL 45 IS 2 PG 2 WC Physics, Multidisciplinary SC Physics GA AE1JR UT WOS:000333726100001 ER PT J AU Kim, H Lee, WH Galazka, JM Cate, JHD Jin, YS AF Kim, Heejin Lee, Won-Heong Galazka, Jonathan M. Cate, Jamie H. D. Jin, Yong-Su TI Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Cellulosic ethanol; Cellodextrin transporters; Intracellular beta-glucosidase; Engineered S. cerevisiae ID BETA-GLUCOSIDASE; YEAST; SECRETION; KINETICS AB Saccharomyces cerevisiae can be engineered to ferment cellodextrins produced by cellulases as a product of cellulose hydrolysis. Direct fermentation of cellodextrins instead of glucose is advantageous because glucose inhibits cellulase activity and represses the fermentation of non-glucose sugars present in cellulosic hydrolyzates. To facilitate cellodextrin utilization by S. cerevisiae, a fungal cellodextrin-utilizing pathway from Neurospora crassa consisting of a cellodextrin transporter and a cellodextrin hydrolase has been introduced into S. cerevisiae. Two cellodextrin transporters (CDT-1 and CDT-2) were previously identified in N. crassa, but their kinetic properties and efficiency for cellobiose fermentation have not been studied in detail. In this study, CDT-1 and CDT-2, which are hypothesized to transport cellodextrin with distinct mechanisms, were introduced into S. cerevisiae along with an intracellular beta-glucosidase (GH1-1). Cellobiose transport assays with the resulting strains indicated that CDT-1 is a proton symporter while CDT-2 is a simple facilitator. A strain expressing CDT-1 and GH1-1 (DCDT-1G) showed faster cellobiose fermentation than the strain expressing CDT-2 and GH1-1 (DCDT-2G) under various culture conditions with different medium compositions and aeration levels. While CDT-2 is expected to have energetic benefits, the expression levels and kinetic properties of CDT-1 in S. cerevisiae appears to be optimum for cellobiose fermentation. These results suggest CDT-1 is a more effective cellobiose transporter than CDT-2 for engineering S. cerevisiae to ferment cellobiose. C1 [Kim, Heejin; Lee, Won-Heong; Jin, Yong-Su] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. [Kim, Heejin; Lee, Won-Heong; Jin, Yong-Su] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Jin, YS (reprint author), Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. EM ysjin@illinois.edu OI Galazka, Jonathan/0000-0002-4153-0249 FU Energy Biosciences Institute (EBI) FX This work was supported by funding from the Energy Biosciences Institute (EBI) to Yong-Su Jin and Jamie Cate. NR 22 TC 13 Z9 14 U1 2 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD FEB PY 2014 VL 98 IS 3 BP 1087 EP 1094 DI 10.1007/s00253-013-5339-2 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AD9VF UT WOS:000333612000010 PM 24190499 ER PT J AU Zhang, WR Chen, AP Bi, ZK Jia, QX MacManus-Driscoll, JL Wang, HY AF Zhang, Wenrui Chen, Aiping Bi, Zhenking Jia, Quanxi MacManus-Driscoll, Judith L. Wang, Haiyan TI Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Vertically aligned nanocomposite (VAN); Epitaxy; Strain engineering; Ferroelectricity; Magnetoresistance; Magnetoelectric coupling ID LOW-FIELD MAGNETORESISTANCE; MAGNETIC TUNNEL-JUNCTIONS; OXIDE FUEL-CELLS; MAGNETOTRANSPORT PROPERTIES; EPITAXIAL-FILMS; STRAIN CONTROL; EXCHANGE BIAS; BUFFER LAYER; NANOSTRUCTURES; BIFEO3 AB Very recently, vertically aligned nanocomposite (VAN) thin films have served as an intriguing platform to obtain significant insights of the fundamental physics and achieve novel functionalities for potential technological applications. In this review article, we have investigated the lattice mismatch and vertical interfacial coupling in representative VAN systems for probing strain engineering in the vertical direction. Systematic studies of ferroelectricity, low field magnetoresistance and magnetoelectric coupling in VAN architectures have been reviewed and compared. The enhancement and tunability of the physical properties are attributed to the effective strain-, phase- and interface- couplings in VAN films. In the end, important and promising research directions in this field are proposed, including understanding the growth mechanisms of VAN structures, and creating more effective couplings for enhanced functionalities and ultimate device applications. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhang, Wenrui; Wang, Haiyan] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Chen, Aiping; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Bi, Zhenking; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Wang, HY (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; Chen, Aiping/F-3212-2011; Zhang, Wenrui/D-1892-2015 OI Wang, Haiyan/0000-0002-7397-1209; Chen, Aiping/0000-0003-2639-2797; Zhang, Wenrui/0000-0002-0223-1924 FU U.S. National Science Foundation [NSF-1007969, NSF-0846504]; ERC [ERC-2009-AfG-247276]; Office of Graduate Studies through the Texas A&M University Dissertation Fellowship FX The work was supported by the U.S. National Science Foundation (Ceramic Program, NSF-1007969 and NSF-0846504). The work at Los Alamos was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. J.L.M. D gratefully acknowledges funding from the ERC Advanced Investigator Grant, Novox, ERC-2009-AfG-247276. A. Chen thanks the Office of Graduate Studies for support through the Texas A&M University Dissertation Fellowship. NR 88 TC 22 Z9 22 U1 12 U2 84 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2014 VL 18 IS 1 SI SI BP 6 EP 18 DI 10.1016/j.cossms.2013.07.007 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AE3EH UT WOS:000333859300002 ER PT J AU Wang, J Misra, A AF Wang, J. Misra, A. TI Strain hardening in nanolayered thin films SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Strain hardening; Dislocation; Three-dimensional crystal elastic-plastic model; Metal-ceramic multilayers ID TRANSMISSION ELECTRON-MICROSCOPY; NANOSCALE METALLIC MULTILAYERS; MICROPILLAR COMPRESSION; DEFORMATION MECHANISMS; INDENTATION BEHAVIOR; MISFIT DISLOCATIONS; WEAK INTERFACES; EPITAXIAL LAYER; COMPOSITES; MODEL AB Experimental results indicate that metal-ceramic multilayered thin films have unusual properties such as high strength, measurable plasticity and high strain hardening rate when both layers are nanoscale. Furthermore, the strength and strain hardening rate show a pronounced size effect, depending not only on the layer thickness but also on the layer thickness ratio. We analyze the strain hardening behavior of nanoscale multilayers using a three-dimensional crystal elastic-plastic model (3DCEPM) that describes plastic deformation based on the evolution of dislocation density in metal and ceramic layers according to confined layer slip mechanism. These glide dislocations nucleate at interfaces, glide inside layers and are deposited at interfaces that impede slip transmission. The high strain hardening rate is ascribed to the closely spaced dislocation arrays deposited at interfaces and the load transfer that is related to the layer thickness ratio of metal and ceramic layers. The measurable plasticity implies the plastically deformable ceramic layer in which the dislocation activity is facilitated by the interaction force among the deposited dislocations within interface and in turn is strongly related to the ceramic layer thickness. Published by Elsevier Ltd. C1 [Wang, J.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU DOE, Office of Science, Office of Basic Energy Sciences FX This research is sponsored by DOE, Office of Science, Office of Basic Energy Sciences. The authors acknowledge collaborations with D. Bhattacharyya, N.A. Mara, J.P. Hirth, R.G. Hoagland, N. Li, X.Y. Liu for the research conducted at LANL that is reviewed here. NR 50 TC 24 Z9 24 U1 5 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2014 VL 18 IS 1 SI SI BP 19 EP 28 DI 10.1016/j.cossms.2013.10.003 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AE3EH UT WOS:000333859300003 ER PT J AU Giencke, JE Folkman, CM Baek, SH Eom, CB AF Giencke, Jon E. Folkman, Chad M. Baek, Seung-Hyub Eom, Chang-Beom TI Tailoring the domain structure of epitaxial BiFeO3 thin films SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Domain structure; BiFeO3; Miscut; Substrate symmetry; Multiferroic; Ferroelectric; Ferroelastic ID RHOMBOHEDRAL FERROELECTRIC-FILMS; POLARIZATION; SILICON; DEVICES; GROWTH; GDSCO3; DYSCO3; OXIDE AB Control of the ferroelastic and ferroelectric domain structure of BiFeO3 through the use of epitaxial growth on substrates with reduced symmetry is reviewed. The first approach presented utilizes orthoscandate substrates, specifically TbScO3, to reduce the number of possible ferroelastic domains from 4 to 2. Experimental results and phase field simulations are presented which are in agreement with the theory of anisotropic strain relaxation, due to differing in-plane lattice parameters of the orthorhombic substrate, causing a reduction in the possible domains. The second approach that is presented involves the use of miscut cubic substrates, such as SrTiO3, to tailor the domain structure from 4-domain to 2- or single-domain is presented, the former being achieved with a miscut in the [100] direction and the latter with a miscut in the [110] direction, assuming a film normal orientation of [001]. The use of these techniques in understanding the fundamental nature of the ferroelastic and ferroelectric properties in BiFeO3, and the use of these methods in tailoring BiFeO3 to meet the needs of future device applications is discussed. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Giencke, Jon E.; Eom, Chang-Beom] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Folkman, Chad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baek, Seung-Hyub] Korea Inst Sci & Technol, Elect Mat Res Ctr, Seoul 136791, South Korea. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014 FU Army Research Office [W911NF-10-1-0362] FX This work is supported by the Army Research Office under Grant No. W911NF-10-1-0362. NR 40 TC 6 Z9 6 U1 19 U2 85 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2014 VL 18 IS 1 SI SI BP 39 EP 45 DI 10.1016/j.cossms.2013.11.003 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AE3EH UT WOS:000333859300005 ER PT J AU Zhou, H Chisholm, MF Gupta, A Pennycook, SJ Narayan, J AF Zhou, H. Chisholm, M. F. Gupta, A. Pennycook, S. J. Narayan, J. TI Two-dimensional metamaterials for epitaxial heterostructures SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Vanadium oxide; Epitaxy; Scanning transmission electron microscopy (STEM) ID ENERGY-LOSS SPECTROSCOPY; TRANSITION-METAL OXIDES; THIN-FILMS; INSULATOR-TRANSITION; VANADIUM-OXIDES; TEMPERATURE; FERROELECTRICITY; PEROVSKITE; STRAIN; ELNES AB We review the use of two-dimensional psuedomorphic materials to accommodate an extraordinary range of misfit and allow novel new phases to be grown epitaxially. These materials assume the structure of the substrate and can thus be regarded as metamaterials. We illustrate these principles through a number of systems, including a detailed structural and spectroscopic study of epitaxial VO2/NiO heterostructures. In this case the metamaterial is VO1+x which is structurally and electronically distinct from the bulk of the VO2 film. In the transition region the crystal structure adopts that of the NiO layer, while the oxidation state of vanadium increases from similar to 3+ to similar to 4+ with thickness, accompanied by increasing lattice disorder. The formation and evolution of this interfacial phase, VO1+x, accommodates the change in crystal symmetry across the interface from the rock-salt structure of NiO to the rutile structure of VO2. The use of two-dimensional metamaterials opens a wealth of new opportunities for the growth of new materials with novel properties. (C) 2014 Published by Elsevier Ltd. C1 [Zhou, H.; Gupta, A.; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Chisholm, M. F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pennycook, S. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Pennycook, SJ (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 328 Ferris Hall, Knoxville, TN 37996 USA. EM hhzhou@illinois.edu; spennyco@utk.edu; j_narayan@ncsu.edu FU National Science Foundation [DMR-0803663]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences & Engineering Division FX This research was supported by the National Science Foundation (Grant No. DMR-0803663) (HZ, AG, JN) and the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences & Engineering Division (MFC, SJP). Schematic drawings presented in this paper were produced using Vesta [43]. NR 43 TC 0 Z9 0 U1 9 U2 95 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2014 VL 18 IS 1 SI SI BP 46 EP 52 DI 10.1016/j.cossms.2014.01.001 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AE3EH UT WOS:000333859300006 ER PT J AU Yang, H Song, YT Wang, ZW Titus, PH Kalish, M AF Yang, Hong Song, Yuntao Wang, Zhongwei Titus, Peter H. Kalish, Michael TI Thermal stress and relieving method of the ITER lower vertical stabilization coil SO FUSION ENGINEERING AND DESIGN LA English DT Article DE VS coil; Thermal stress; Analysis; Optimization AB Structural analysis of the ITER lower vertical stabilization (VS) coil has concluded thermal stress concentration is a serious issue obstructing the coil design. To optimize the lower VS coil, its structural performance has been studied in detail to find methods of solving the stress concentration issues. Apparently, increasing filet radius and decreasing the notch depth are the means commonly used to deal with stress concentrations in the singular regions. However, the real effects are not so simple due to very limited optimization space of the coil geometry. Larger filet radius will significant mitigate the stress concentration but still not enough if the material keeps original. On the other hand, stress concentration at the interface between the conductor jacket and clamp also needs to be mitigated. Changing the clamp size or distance is an obvious and effective way to solve this issue. However, introducing sliding contact at the interface is more effective and simpler. It requires the jacket and clamp are not tightly welded together but connected by bolts or other analogous means with which local sliding is permitted. Additionally, the effect of gap between conductor, spine and clamp is also researched. All in all, the stress concentrations of ITER lower VS coil can be mitigated to meet the acceptance criteria based on the specific optimizations and combining them together. (C) 2013 Elsevier B.V. All rights reserved. C1 [Yang, Hong] Univ Sci & Technol China, Hefei 230027, Peoples R China. [Song, Yuntao; Wang, Zhongwei] Chinese Acad Sci, Inst Plasma Phys, Hefei 200031, Peoples R China. [Titus, Peter H.; Kalish, Michael] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Yang, H (reprint author), Univ Sci & Technol China, Hefei 230027, Peoples R China. EM yanghong@mail.ustc.edu.cn NR 9 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD FEB PY 2014 VL 89 IS 2 BP 109 EP 114 DI 10.1016/j.fusengdes.2013.12.051 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AE2GQ UT WOS:000333791700006 ER PT J AU Dewers, T Newell, P Broome, S Heath, J Bauer, S AF Dewers, Thomas Newell, Pania Broome, Scott Heath, Jason Bauer, Steve TI Geomechanical behavior of Cambrian Mount Simon Sandstone reservoir lithofacies, Iowa Shelf, USA SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geomechanics; Sandstone; Mount Simon; Elasto-plasticity ID POROUS ROCKS; STORAGE; MODEL; 3-INVARIANT; VELOCITIES; INJECTION; FAILURE; STRESS; BASIN; FLOW AB The Mount Simon Sandstone (Mt. Simon), a basal Cambrian sandstone underlying much of Midwestern US, is a target for underground CO2 storage and waste injection which requires an assessment of geomechanical behavior. The range of depositional environments yields a heterogeneous formation with varying porosity, permeability, and mechanical properties. Experimental deformational behavior of three distinct Mt. Simon lithofacies was examined via axisymmetric compressional testing of core samples. Initial yielding was confirmed with acoustic emissions in many tests and failure envelopes were determined for each lithofacies. Evolution of elastic moduli with stress and plastic strain was determined by use of unload reload cycles, which permit separation of total measured strains into elastic and plastic strains. The Upper Mt. Simon lithofacies yields at higher shear stresses compared to two "Lower" lithofacies, with little modulus degradation with plastic strain. Lower Mt. Simon lithofacies are weaker and deform plastically with modulus degradation. This range in constitutive response is quantified with an elasto-plasticity model. Based on these results, Mount Simon Sandstone would likely deform elastically during CO2 injection and storage, with large pore pressure increases (similar to 8-9 MPa above hydrostatic) predicted to initiate plastic yielding. Nonetheless, near-wellbore damage could result in weaker lithofacies during injection and/or brine extraction. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Dewers, Thomas; Broome, Scott; Heath, Jason; Bauer, Steve] Geomech Dept, Albuquerque, NM 87185 USA. [Newell, Pania] Dept Mech Engn, Albuquerque, NM 87185 USA. RP Dewers, T (reprint author), Sandia Natl Labs, POB 5800,MS 0751, Albuquerque, NM 87185 USA. EM tdewers@sandia.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001114]; Department of Energy, Office of Electricity; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Randy Everett for support on the experimental portions of this work, and Joe Bishop and Tim Fuller (all from Sandia National Laboratories) for helpful discussions with the modeling aspects and editing initial versions of the manuscript. Scott Frailey from the Illinois Geologic Survey is thanked for sharing his expertise on Mt. Simon depositional environments. The Mt. Simon Sandstone core from which we obtained samples was provided by the Iowa Stored Energy Plant Agency and Iowa Geological Survey (IGS). We thank Ray Anderson and Robert McCay of the IGS, and Peter Mozley for discussions on lithofacies and diagenesis of the Mt. Simon, and for his editing suggestions, and James Evans and Elizabeth Petri for discussions on dynamic moduli. Analysis and modeling was supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001114. Experimental testing and interpretation was funded by the Department of Energy, Office of Electricity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 33 TC 3 Z9 3 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2014 VL 21 BP 33 EP 48 DI 10.1016/j.ijggc.2013.11.010 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AE2DC UT WOS:000333782500004 ER PT J AU Zhong, L Cantrell, KJ Bacon, DH Shewell, J AF Zhong, L. Cantrell, K. J. Bacon, D. H. Shewell, J. TI Transport of organic contaminants mobilized from coal through sandstone overlying a geological carbon sequestration reservoir SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological carbon sequestration; Organic contaminants; BTEX; Naphthalene; Transport ID DEEP SALINE AQUIFERS; HENRYS LAW CONSTANTS; CLIMATE-CHANGE; CO2; STORAGE; GROUNDWATER; INJECTION; HYDROCARBONS; EXTRACTION; SORPTION AB Successful implementation of large scale carbon capture and storage within deep geologic reservoirs will require public acceptance of the associated environmental risks. In order for this to occur, a better understanding of these risks must be developed. An important risk factor associated with deep geologic storage of CO2 is the potential for leakage of fluids from the storage reservoir that could potentially impact valuable groundwater resources that overlie the storage reservoir. The research described here is focused on the transport and fate of toxic organic compounds mobilized by supercritical carbon dioxide (scCO(2)) from organic rich storage reservoirs such as unmineable coal seams and depleted oil reservoirs. Column experiments were conducted using a water wetted sandstone core installed in a tri-axial core holder to study the potential for toxic organic compounds mobilized from coal by scCO(2) under simulated geologic carbon storage (GCS) conditions to impact groundwater. Rock core effluent pressures were set at 0,500, or 1000 psig and the core temperature was set at 20 or 50 degrees C to simulate the transport at different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the pore water. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhong, L.; Cantrell, K. J.; Bacon, D. H.; Shewell, J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Zhong, L (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99354 USA. EM lirong.zhong@pnnl.gov FU National Risk Assessment Partnership (NRAP) in the U.S. DOE Office of Fossil Energy's Carbon Sequestration Program; U.S. DOE [DE-AC06-76RLO 1830] FX Funding of this research is provided by the National Risk Assessment Partnership (NRAP) in the U.S. DOE Office of Fossil Energy's Carbon Sequestration Program. PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830. NR 32 TC 6 Z9 7 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2014 VL 21 BP 158 EP 164 DI 10.1016/j.ijggc.2013.12.014 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AE2DC UT WOS:000333782500014 ER PT J AU Bacon, DH Ramanathan, R Schaef, HT McGrail, BP AF Bacon, Diana H. Ramanathan, Ramya Schaef, H. Todd McGrail, B. Peter TI Simulating geologic co-sequestration of carbon dioxide and hydrogen sulfide in a basalt formation SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Co-sequestration; Hydrogen sulfide; Carbon dioxide; Simulation; STOMP ID EQUATION-OF-STATE; PURE WATER; ROCK INTERACTIONS; SW ICELAND; H2S; INJECTION; GAS; DISSOLUTION; MODEL; MINERALIZATION AB Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (water, multiple components, salt and energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bacon, Diana H.; Ramanathan, Ramya; Schaef, H. Todd; McGrail, B. Peter] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bacon, DH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM diana.bacon@pnnl.gov OI Bacon, Diana/0000-0001-9122-5333 FU Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative; U.S. Department of Energy's Big Sky Regional Carbon Sequestration Partnership FX The development of STOMP-COMP was funded by the Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative. Development of the conceptual model for geologic sequestration in basalt was funded by The U.S. Department of Energy's Big Sky Regional Carbon Sequestration Partnership. We wish to thank Stefan Bachu (Alberta Innovates) and Mehran Pooladi-Darvish (Fekete Associates Inc.) for providing the raw data from dynamic partitioning experiments that were used for model validation. We also wish to thank Mark White (PNNL) for developing the STOMP family of codes and his advice during the development of this new mode of STOMP, and to Fred Zhang and Yilin Fang (PNNL) for inspiration provided by their unpublished work on another mode of STOMP that simulates two-phase flow of ideal gas mixtures in fresh water. NR 70 TC 10 Z9 10 U1 2 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2014 VL 21 BP 165 EP 176 DI 10.1016/j.ijggc.2013.12.012 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AE2DC UT WOS:000333782500015 ER PT J AU Judi, DR Burian, SJ McPherson, TN AF Judi, David R. Burian, Steven J. McPherson, Timothy N. TI Impacts of Elevation Data Spatial Resolution on Two-Dimensional Dam Break Flood Simulation and Consequence Assessment SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article DE Floods; Computation; Dam failures; Simulation; Two-dimensional analysis; United States; Flood modeling; Multicore computing; Dam failure; Grid resolution ID MODEL; INUNDATION; TOPOGRAPHY AB In the United States, there are approximately 84,000 dams including approximately 14,000 dams that are classified as high hazard. Approximately 50% of high hazard dams do not have an emergency action plan (EAP), a document describing potential emergency conditions and potential areas at risk of flooding. A critical data set required for identifying flood risk regions through modeling and simulation is digital elevation models (DEM). These data have become increasingly available at high resolution. The difficulty in utilizing the higher resolution data is that model computation time is increased drastically and becomes, in the case of wide-area (regional) analyses, infeasible to use. The tendency for modelers, therefore, is to use lower resolution data for these model applications. It is clear that when using the lower resolution data that topographic features are not represented as well, but it is not as clear what impact this has on two-dimensional modeling and flood risk estimation. Additionally, there is no rule of thumb as to which resolution should be used. This paper evaluates the impact grid resolution has on estimating the flood risk area resulting from dam failures using two-dimensional models. Results indicate that while flood extent, depths, and flood wave timing are sensitive to grid resolution, socioeconomic metrics such as population at risk and economic loss are less sensitive to simulation grid resolution. This observed socioeconomic insensitivity validates the potential of using coarse resolution simulation as a flood screening tool or in emergency response situations. C1 [Judi, David R.; McPherson, Timothy N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burian, Steven J.] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. RP Judi, DR (reprint author), Los Alamos Natl Lab, MS C933, Los Alamos, NM 87545 USA. EM djudi@lanl.gov; burian@eng.utah.edu; tmac@lanl.gov OI Burian, Steven/0000-0003-0523-4968 NR 29 TC 0 Z9 0 U1 1 U2 17 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD FEB 1 PY 2014 VL 140 IS 2 BP 194 EP 200 DI 10.1061/(ASCE)WR.1943-5452.0000274 PG 7 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA AD7OO UT WOS:000333453700007 ER PT J AU LaFleur, AM Ahn, SK Menlove, HO Browne, MC Kim, HD AF LaFleur, Adrienne M. Ahn, Seong-Kyu Menlove, Howard O. Browne, Michael C. Kim, Ho-Dong TI Characterization and performance evaluation of a new passive neutron albedo reactivity counter for safeguards measurements SO RADIATION MEASUREMENTS LA English DT Article DE U-235 measurements; Nuclear safeguards; Neutron detector; Non-destructive assay AB A prototype He-3-based Passive Neutron Albedo Reactivity (PNAR) counter was developed and tested at Los Alamos National Laboratory (LANL) in collaboration with the Korea Atomic Energy Research Institute (KAERI) to measure the fissile content in electrochemical recycling (ER) product materials. The counter consists of 16 He-3 cylindrical gas-filled proportional counters at 4 atm of pressure embedded in high-density polyethylene. In this work, experimental measurements were performed at LANL to characterize the performance of the PNAR counter using surrogate materials for the uranium metal ingot. The purpose of these experiments was to: 1) measure the operating and calibration parameters of the PNAR counter (e.g. efficiency profiles, coincidence gate fractions, die-away time) and 2) evaluate the accuracy and sensitivity of the PNAR method and the time correlated induced fission (TCIF) method for quantifying the U-235 mass in PWR fresh LEU fuel rods and Materials Testing Reactor (MTR) HEU fuel plates. A small Cm-244 reference source (13,373 n/s) was placed in the center of the fuel rods and fuel plates to simulate spontaneous fission from sub-ppm (parts per million) levels of Cm contamination in the U ingot. In order to compare the relative accuracy of the PNAR and TCIF methods for quantifying U-235 mass, calibration curves were generated for the net doubles rate and the doubles Cd ratio using the Deming software. The results from this experiment will be used to obtain a better understanding of the sensitivity of the PNAR and TCIF methods for samples with low neutron multiplication. Furthermore, this experimental measurement data will also help inform safeguards research and development (R&D) efforts on the viability of nondestructive assay (NDA) techniques and detector designs for quantifying fissile content in ER product materials. Future work will include performing measurements with the PNAR counter on small samples of U/TRU materials. (C) 2014 Elsevier Ltd. All rights reserved. C1 [LaFleur, Adrienne M.; Menlove, Howard O.; Browne, Michael C.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87545 USA. [Ahn, Seong-Kyu; Kim, Ho-Dong] Korea Atom Energy Res Inst, Taejon 305353, South Korea. RP LaFleur, AM (reprint author), Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, POB 1663 MS E540, Los Alamos, NM 87545 USA. EM alafleur@lanl.gov; skahn76@kaeri.re.kr; hmenlove@lanl.gov; mcbrowne@lanl.gov; khd@kaeri.re.kr FU Department of Energy National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI) in the Office of Nonproliferation and International Security; National Research Foundation of Korea (NRF); Ministry of Science, ICT & Future Planning, Republic of Korea [2012M2A8A5025944, 2012M2A8A5025947] FX We would like to acknowledge the Department of Energy National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI) in the Office of Nonproliferation and International Security and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning, Republic of Korea (No. 2012M2A8A5025944, No. 2012M2A8A5025947) for supporting this work. NR 19 TC 2 Z9 2 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD FEB PY 2014 VL 61 BP 83 EP 93 DI 10.1016/j.radmeas.2013.12.012 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AE3CJ UT WOS:000333854300010 ER PT J AU Romano, P Krimm, HA Palmer, DM Ducci, L Esposito, P Vercellone, S Evans, PA Guidorzi, C Mangano, V Kennea, JA Barthelmy, SD Burrows, DN Gehrels, N AF Romano, P. y Krimm, H. A. Palmer, D. M. Ducci, L. Esposito, P. Vercellone, S. Evans, P. A. Guidorzi, C. Mangano, V. Kennea, J. A. Barthelmy, S. D. Burrows, D. N. Gehrels, N. TI The 100-month Swift catalogue of supergiant fast X-ray transients SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: binaries; catalogs; binaries: close; stars: neutron ID XMM-NEWTON OBSERVATIONS; BURST ALERT TELESCOPE; CLUMPY STELLAR WINDS; XTE J1739-302; IGR J17544-2619; ORBITAL PERIOD; SAX J1818.6-1703; MULTIWAVELENGTH OBSERVATIONS; INTEGRAL OBSERVATIONS; OPTICAL COUNTERPART AB Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray, binaries (HMXBs) that are defined by their hard X-ray flaring behaviour. During these flares they reach peak luminosities of 10(36)-10(37) erg s(-1) for a few hours On the hard X-ray), which are much shorter ti mescales than those characterizing Be/X-ray binaries. Aims. We investigate the characteristics of bright flares (detections in excess of 5 sigma.) for a sample of SFXTs and their relation to the orbital phase. Methods. We have retrieved all Swift/BAT Transient Monitor light curves and collected all detections in excess of 5 sigma from both dailyand orbital-averaged light curves in the time range of 2005 February 12 to 2013 May 31 (MID 53 413-56 443). We also considered all on-board detections as recorded in the same time span and selected those in excess of 5cr and within 4 arcmin of each source in our sample. Results. We present a catalogue of over a thousand BAT flares from 11 SIATs, down to 15-150 keV fluxes of similar to 6 x 10(-1) erg cm(-2) S-1 (daily timescale) and similar to 1.5 x 10(-9) erg cm(2) s(-1) (orbital timescale, averaging similar to 800 5); the great majority of these :flares are unpublished. The catalogue spans 100 months. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100 mCrab, 15-50 keV) events. In the hard X-ray, these flares last generally much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of.flares, of their significance (in terms of sigma), and of their flux as a function of orbital phase to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as P-orb increases, which is consistent with a progression from tight circular or mildly eccentric orbits at short periods to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the expected number of flares for a given source for our limiting flux and provide the recipe for calculating them for the limiting :flux of future hard X-ray observatories. C1 [Romano, P. y; Vercellone, S.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, I-90146 Palermo, Italy. [Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ducci, L.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Esposito, P.] INAF, Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Evans, P. A.] Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. [Guidorzi, C.] Univ Ferrara, Dept Phys & Earth Sci, I-44122 Ferrara, Italy. [Mangano, V.; Kennea, J. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Romano, P (reprint author), INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U La Malfa 153, I-90146 Palermo, Italy. EM romano@ifc.inaf.it FU NASA [NAS5-00136]; NASA Swift GO [NNX09AU85G, NNX12AD32G, NNX12AE57G, NNX13AC756] FX We thank W. Baumgartner and C. Markwardt for support with the BAT survey products, and E. Bozzo and M. Capalbi, for helpful discussions. We also thank the anonymous referee for constructive comments that helped improve the paper. We acknowledge financial contribution from NASA contract NAS5-00136 at PSU. FIAK acknowledges NASA Swift GO grants NNX09AU85G, NNX12AD32G, NNX12AE57G, and NNX13AC756. This work made use of the results of the Swift/BAT hard X-ray transient monitor: http://swift.gsfc.nasa.gov/docs/swift/results/transients/. NR 140 TC 20 Z9 20 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2014 VL 562 AR A2 DI 10.1051/0004-6361/201322516 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AC0CG UT WOS:000332161800082 ER PT J AU Cwik, JA Reja, S Littlewood, PB Keeling, J AF Cwik, Justyna A. Reja, Sahinur Littlewood, Peter B. Keeling, Jonathan TI Polariton condensation with saturable molecules dressed by vibrational modes SO EPL LA English DT Article ID BOSE-EINSTEIN CONDENSATION; EXCITON-POLARITONS; PHASE-TRANSITIONS; QUANTUM COHERENCE; RADIATION-FIELD; MICROCAVITY; TEMPERATURE; COMPLEXES; LASERS; LIGHT AB Polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this, we calculate the phase diagram and spectrum of a modified Tavis-Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode. Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence with decreasing temperature and can drive the transition first-order. Copyright (C) EPLA, 2014 C1 [Cwik, Justyna A.; Keeling, Jonathan] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Reja, Sahinur] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Littlewood, Peter B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Littlewood, Peter B.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Littlewood, Peter B.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Cwik, JA (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. RI Littlewood, Peter/B-7746-2008; OI Keeling, Jonathan/0000-0002-4283-552X FU EPSRC [EP/I031014/1, EP/G004714/2]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Cambridge Commonwealth trust FX We acknowledge discussions with S. YARLAGADDA, B. LOVETT and R. GOMEZ-BOMBARELLI. JAC acknowledges support from EPSRC, SR from the Cambridge Commonwealth trust, JK from EPSRC program "TOPNES" (EP/I031014/1) and EPSRC (EP/G004714/2). Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract No. DE-AC02-06CH11357. JAC performed the numerical calculations, and SR performed the variational calculations. All authors contributed to the conception of the project, and the preparation of the manuscript. NR 53 TC 8 Z9 8 U1 1 U2 15 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2014 VL 105 IS 4 AR 47009 DI 10.1209/0295-5075/105/47009 PG 6 WC Physics, Multidisciplinary SC Physics GA AD1TO UT WOS:000333016700024 ER PT J AU Tang, XZ McDevitt, CJ Guo, ZH Berk, HL AF Tang, Xian-Zhu McDevitt, C. J. Guo, Zehua Berk, H. L. TI Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer SO EPL LA English DT Article AB Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process. Copyright (c) EPLA, 2014 C1 [Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Berk, H. L.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI guo, zehua/E-4454-2014; OI McDevitt, Christopher/0000-0002-3674-2909 FU Laboratory Directed Research and Development program of Los Alamos National Laboratory [DE-AC52-06NA25396]; U. S. Department of Energy FX This research was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy. NR 12 TC 5 Z9 5 U1 0 U2 0 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2014 VL 105 IS 3 AR 32001 DI 10.1209/0295-5075/105/32001 PG 5 WC Physics, Multidisciplinary SC Physics GA AC8FO UT WOS:000332769100012 ER PT J AU Kamireddy, SR Kozliak, EI Tucker, M Ji, Y AF Kamireddy, Srinivas Reddy Kozliak, Evguenii I. Tucker, Melvin Ji, Yun TI Determining the kinetics of sunflower hulls using dilute acid pretreatment in the production of xylose and furfural SO GREEN PROCESSING AND SYNTHESIS LA English DT Article DE Arrhenius parameters; hemicellulose; kinetic model; pretreatment; sunflower hulls ID ENZYMATIC SACCHARIFICATION; ETHANOL-PRODUCTION; HYDROLYSIS; FERMENTATION; CONVERSION; SORGHUM; STRAW AB Pretreatment of sunflower hulls was conducted under varied dilute acid concentrations (0.5-2.0 wt%), reaction temperatures ranging between 140 degrees C and 160 degrees C and the reaction time up to 30 min. The conversion of xylan into xylose and furfural was investigated. The maximum xylose and furfural recoveries, 54.5 +/- 0.7 and 24.0 +/- 1.1 wt%, respectively, were obtained at different reaction times with 2.0 wt% acid concentration at 160 degrees C. The experimental data were fitted into a two-step kinetic model based on irreversible pseudo-first-order kinetics at each step. The model was successfully validated using the F-test. Sunflower hulls showed a greater recalcitrance to acid pretreatment than other agricultural crops, such as kenaf, sorghum and sunn hemp. This feature was ascribed to the occurrence of a wax layer on the cell wall surface with a high lignin content, which may act as a barrier hindering the acid access to acetyl linkages in xylan. C1 [Kamireddy, Srinivas Reddy; Ji, Yun] Univ N Dakota, Dept Chem Engn, Grand Forks, ND 58202 USA. [Kozliak, Evguenii I.] Univ N Dakota, Dept Chem, Grand Forks, ND 58202 USA. [Tucker, Melvin] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Ji, Y (reprint author), Univ N Dakota, Dept Chem Engn, 241 Centennial Dr, Grand Forks, ND 58202 USA. EM yun.ji@engr.und.edu FU ND EPSCoR FX We gratefully acknowledge ND EPSCoR for funding and Dr. Wayne Seames from University of North Dakota Chemical Engineering Department for his support towards the project. We thank Dahlgren & Company Inc. (Crookston, MN, USA) for providing sunflower hulls. NR 23 TC 4 Z9 4 U1 1 U2 13 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 2191-9542 EI 2191-9550 J9 GREEN PROCESS SYNTH JI Green Process. Synth. PD FEB PY 2014 VL 3 IS 1 BP 69 EP 75 DI 10.1515/gps-2013-0095 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA AD7MR UT WOS:000333448700007 ER PT J AU Rubel, O Geddes, CGR Chen, M Cormier-Michel, E Bethel, EW AF Ruebel, Oliver Geddes, Cameron G. R. Chen, Min Cormier-Michel, Estelle Bethel, E. Wes TI Feature-Based Analysis of Plasma-Based Particle Acceleration Data SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Feature detection; feature-based analysis; visualization; plasma-based particle acceleration ID ELECTRON-BEAMS; CODE AB Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss. C1 [Ruebel, Oliver; Bethel, E. Wes] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Visualizat Grp, Berkeley, CA 94720 USA. [Geddes, Cameron G. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Opt Accelerator Syst Integrated Studies LOASIS Pr, Accelerator & Fus Res Div, Berkeley, CA 94720 USA. [Chen, Min] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Cormier-Michel, Estelle] Tech X Corp, Boulder, CO 80303 USA. RP Rubel, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Visualizat Grp, 1 Cyclotron Rd,Mail Stop 50F1650, Berkeley, CA 94720 USA. EM oruebel@lbl.gov; cgrgeddes@lbl.gov; mincheng@lbl.gov; ecormier@txcorp.com; ewbethel@lbl.gov RI Chen, Min/A-9955-2010 OI Chen, Min/0000-0002-4290-9330 FU Office of Science, Offices of High Energy Physics and Advanced Scientific Computing Research of the US Department of Energy (DOE) through Visualization and Analytics Center for Enabling Technologies (VACET) [DE-AC02-04CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Offices of High Energy Physics and Advanced Scientific Computing Research of the US Department of Energy (DOE) under Contract No. DE-AC02-04CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET) and the COMPASS project. The colliding pulse simulations were supported by DOE, NNSA, NA-22. This research used resources of NERSC which is supported by the Office of Science of the US Department of Energy under Contract NO. DE-AC02-05CH11231. The authors thank the FastBit, H5Part, VORPAL, and VisIt team for ongoing development and maintenance efforts. NR 25 TC 1 Z9 1 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD FEB PY 2014 VL 20 IS 2 BP 196 EP 210 DI 10.1109/TVCG.2013.107 PG 15 WC Computer Science, Software Engineering SC Computer Science GA AD7QM UT WOS:000333459600004 PM 24356363 ER PT J AU Vilarrasa, V AF Vilarrasa, Victor TI Impact of CO2 injection through horizontal and vertical wells on the caprock mechanical stability SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Geologic carbon storage; Pressure buildup; Hydro-mechanical coupling; Induced microseismicity; Noordbergum effect ID DEEP SALINE AQUIFERS; INDUCED SEISMICITY; PRESSURE BUILDUP; STORAGE; BRINE; SEQUESTRATION; FLOW; PERMEABILITY; DEFORMATION; SIMULATION AB Subsurface injection of carbon dioxide (CO2) may induce large overpressures that may put caprock integrity at risk. This overpressure may induce microseismic events if the rock yields. Yielding of the caprock could open up a leakage path for CO2. Rock mechanical integrity is strongly related to fluid pressure evolution, which is significantly different for vertical and horizontal wells. While CO2 pressure builds up sharply at the beginning of injection, but afterwards drops, when injecting a constant CO2 mass flow rate through a vertical well, a horizontal well leads to a continuous CO2 pressure increase. Thus, for a vertical well, the less stable situation in the saline aquifer occurs at the beginning of injection. However, the changes induced in the effective stress field are small, so unstable conditions are unlikely both in a normal faulting and a reverse faulting stress regimes in extensive saline aquifers such as the one considered in this study. By contrast, fluid pressure becomes larger than that of a vertical well for a common length of horizontal wells (around 2 km), which causes a significant increase in horizontal total stresses that improves the reservoir and caprock mechanical stability in a NF stress regime, but worsens it in a RE stress regime. Though in general the caprock integrity is unlikely to be compromised, fluid pressure evolution should be always monitored and mitigation measures should be carried out if it deviates from its expected evolution. Published by Elsevier Ltd. C1 [Vilarrasa, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vilarrasa, Victor] CSIC, Inst Environm Assessment & Water Res IDAEA, GHS, ES-08034 Barcelona, Spain. RP Vilarrasa, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vvilarrasa@lbl.gov RI Vilarrasa, Victor/A-1700-2016 OI Vilarrasa, Victor/0000-0003-1169-4469 FU Fundacion Ciudad de la Energia (Spanish Government) [ALM/09/018]; European Union [OXYCFB300]; European Community's Seventh Framework Programme [227286, 282900] FX This work has been funded by Fundacion Ciudad de la Energia (Spanish Government) (www.ciuden.es) through the project ALM/09/018 and by the European Union through the "European Energy Programme for Recovery" and the Compostilla OXYCFB300 project. We also want to acknowledge the financial support received from the 'MUSTANG' (www.co2mustang.eu) and 'PANACEA' (www.panacea-co2.org) projects (from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreements no. 227286 and no. 282900, respectively). NR 50 TC 10 Z9 10 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD FEB PY 2014 VL 66 BP 151 EP 159 DI 10.1016/j.ijrmms.2014.01.001 PG 9 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AD8HB UT WOS:000333506000018 ER PT J AU Cai, HS Fu, GY Lin, L Liu, DY Ding, WX Brower, DL Hu, YJ AF Cai, Huishan Fu, Guoyong Lin, Liang Liu, D. Y. Ding, Weixing Brower, D. L. Hu, Y. J. TI Effects of pressure gradient on global Alfven eigenmodes in reversed field pinch SO PHYSICS OF PLASMAS LA English DT Article ID ALPHA-PARTICLES; FREQUENCY MODES; TOKAMAK PLASMA; WAVE; EXCITATION; STELLARATOR; STABILITY; TFTR AB The effects of pressure gradient on the existence of global Alfven eigenmodes (GAE) in Reversed Field Pinch are studied by numerical calculation. It is found that GAEs near the plasma core can exist when pressure gradient is sufficiently large. The calculated mode frequency and structure are consistent with the experimental results in the Madison Symmetric Torus. (C) 2014 AIP Publishing LLC. C1 [Cai, Huishan] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. [Fu, Guoyong] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lin, Liang; Ding, Weixing; Brower, D. L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Liu, D. Y.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Hu, Y. J.] Chinese Acad Sci, Inst Plasma Phys, Beijing, Peoples R China. RP Cai, HS (reprint author), Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. EM hscai@mail.ustc.edu.cn; fu@pppl.gov RI Lin, Liang/H-2255-2011; Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 FU National Science Foundation of China [2014GB106004, 2013GB111000, 11375189]; US Department of Energy [DE-AC02-76CH03073, DE-FG02-01ER54615]; National Magnetic Confinement Fusion Science Program FX This work was supported by National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Gants Nos. 2014GB106004, 2013GB111000, 11375189, and supported by the US Department of Energy under DE-AC02-76CH03073 and DE-FG02-01ER54615. NR 23 TC 2 Z9 2 U1 5 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022513 DI 10.1063/1.4866602 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400051 ER PT J AU Delzanno, GL Tang, XZ AF Delzanno, Gian Luca Tang, Xianzhu TI Survivability of dust in tokamaks: Dust transport in the divertor sheath SO PHYSICS OF PLASMAS LA English DT Article ID HELIUM PLASMA IRRADIATION; TUNGSTEN SURFACE; LOW-ENERGY; DYNAMICS; DISCHARGES; DEPENDENCE; PARTICLES AB The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the desired balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate q(0) similar or equal to 1 MW/m(2) typical of current short-pulse tokamaks. The second has q(0) similar or equal to 10MW/m(2) and is relevant to long-pulse machines like ITER or Demonstration Power Plant. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with q(0) similar or equal to 1MW/m(2) because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when q(0) similar or equal to 10MW/m(2). Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius similar to 0.1 mu m) cannot survive near the divertor and redeposit their material locally. Bigger particle (with radius similar to 10 mu m) can instead survive partially and move outside the divertor strike points, thus causing a net loss of divertor material to dust accumulation inside the chamber and some non-local redeposition. The implications of these results for ITER are discussed. (C) 2014 AIP Publishing LLC. C1 [Delzanno, Gian Luca; Tang, Xianzhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Delzanno, Gian Luca/0000-0002-7030-2683 FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was funded by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 39 TC 5 Z9 5 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022502 DI 10.1063/1.4864190 PG 16 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400040 ER PT J AU Dong, CF AF Dong, Chuanfei TI Minor ion heating in spectra of linearly and circularly polarized Alfven waves: Thermal and non-thermal motions associated with perpendicular heating SO PHYSICS OF PLASMAS LA English DT Article ID SOLAR-WIND; CYCLOTRON-RESONANCE; TEMPERATURE RATIO; FREQUENCY; TURBULENCE; DISTRIBUTIONS; PROTONS; MODELS; SPEED AB Minor ion (such as He2+) heating via nonresonant interaction with spectra of linearly and circularly polarized Alfven waves (LPAWs and CPAWs hereafter) is studied. The obtained analytic solutions are in good agreement with the simulation results, indicating that newborn ions are heated by low-frequency Alfven waves with finite amplitude in low-beta plasmas such as the solar corona. The analytic solutions also reproduce the preferential heating of heavy ions in the solar wind. In the presence of parallel propagating Alfven waves, turbulence-induced particle motion is clearly observed in the wave (magnetic field) polarized directions. After the waves diminish, the newborn ions are heated, which is caused by the phase difference (randomization) between ions due to their different parallel thermal motions. The heating is dominant in the direction perpendicular to the ambient magnetic field. The perpendicular heating, eta = (T-i perpendicular to(R) - T-i0 perpendicular to(R))/T-i0 perpendicular to(R) (where T-i0 perpendicular to(R) and T-i perpendicular to(R) are the perpendicular temperature of species i before and after genuine heating, respectively), in the spectrum of CPAWs is a factor of two stronger than that of LPAWs. Moreover, we also study the effect of field-aligned differential flow speed of species i relative to H+, delta nu(ip) = (v(i) - v(p)) . B/vertical bar B vertical bar (where v(i) and v(p) denote vector velocities of the H+ and species i, respectively), on the perpendicular heating. It reveals that large drift speed, nu(d) = delta nu(ip), has an effect on reducing the efficiency of perpendicular heating, which is consistent with observations. (C) 2014 AIP Publishing LLC. C1 [Dong, Chuanfei] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Dong, Chuanfei] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Dong, CF (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM dcfy@umich.edu RI Dong, Chuanfei/E-6485-2010 OI Dong, Chuanfei/0000-0002-8990-094X NR 43 TC 2 Z9 2 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022302 DI 10.1063/1.4863833 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400029 ER PT J AU Gueroult, R Rax, JM Fisch, NJ AF Gueroult, Renaud Rax, Jean-Marcel Fisch, Nathaniel J. TI The double well mass filter SO PHYSICS OF PLASMAS LA English DT Article AB Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a "double-well" in effective radial potential in rotating plasma with a sheared rotation profile. (C) 2014 AIP Publishing LLC. C1 [Gueroult, Renaud; Fisch, Nathaniel J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Rax, Jean-Marcel] Ecole Polytech, LOA, F-91761 Palaiseau, France. RP Gueroult, R (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FG02-06ER54851] FX This manuscript has been authored by Princeton University under Contract Nos. DE-AC02-09CH11466 and DE-FG02-06ER54851 with the U.S. Department of Energy. NR 11 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 020701 DI 10.1063/1.4864325 PG 3 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400002 ER PT J AU Hohenberger, M Theobald, W Hu, SX Anderson, KS Betti, R Boehly, TR Casner, A Fratanduono, DE Lafon, M Meyerhofer, DD Nora, R Ribeyre, X Sangster, TC Schurtz, G Seka, W Stoeckl, C Yaakobi, B AF Hohenberger, M. Theobald, W. Hu, S. X. Anderson, K. S. Betti, R. Boehly, T. R. Casner, A. Fratanduono, D. E. Lafon, M. Meyerhofer, D. D. Nora, R. Ribeyre, X. Sangster, T. C. Schurtz, G. Seka, W. Stoeckl, C. Yaakobi, B. TI Shock-ignition relevant experiments with planar targets on OMEGA SO PHYSICS OF PLASMAS LA English DT Article ID LASER; FACILITY; FUSION AB We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of similar to 70 keV at intensities of 1.4 x 10(15) W/cm(2) with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of similar to 10(16) W/cm(2), the hot electron temperature will likely exceed 100 keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock. (C) 2014 AIP Publishing LLC. C1 [Hohenberger, M.; Theobald, W.; Hu, S. X.; Anderson, K. S.; Betti, R.; Boehly, T. R.; Lafon, M.; Meyerhofer, D. D.; Nora, R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Theobald, W.; Betti, R.; Lafon, M.; Meyerhofer, D. D.; Nora, R.] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14627 USA. [Casner, A.] CEA, DAM, DIF, Arpajon, France. [Fratanduono, D. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ribeyre, X.; Schurtz, G.] Univ Bordeaux 1, CEA, CNRS, Ctr Lasers Intenses & Applicat,CELIA, F-33405 Talence, France. RP Hohenberger, M (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Hu, Suxing/A-1265-2007; CASNER, Alexis/B-7458-2014 OI Hu, Suxing/0000-0003-2465-3818; CASNER, Alexis/0000-0003-2176-1389 FU U.S. Department of Energy [DE-FC02-04ER54789, DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX This work has been supported by the U.S. Department of Energy under Cooperative Agreement Nos. DE-FC02-04ER54789 and DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. We acknowledge useful discussions with P. M. Celliers. NR 36 TC 15 Z9 15 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022702 DI 10.1063/1.4865373 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400057 ER PT J AU Kagan, G Tang, XZ AF Kagan, Grigory Tang, Xian-Zhu TI Thermodynamic evaluation of mass diffusion in ionic mixtures SO PHYSICS OF PLASMAS LA English DT Article AB The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant. (C) 2014 AIP Publishing LLC. C1 [Kagan, Grigory; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kagan, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU Laboratory Directed Research and Development program of Los Alamos National Laboratory [DE- AC52-06NA2-5396]; U.S. Department of Energy FX This research was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Contract No. DE- AC52-06NA2-5396 with the U.S. Department of Energy. NR 10 TC 4 Z9 4 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022708 DI 10.1063/1.4866147 PG 4 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400063 ER PT J AU Lindl, J Landen, O Edwards, J Moses, E AF Lindl, John Landen, Otto Edwards, John Moses, Ed CA NIC Team TI Review of the National Ignition Campaign 2009-2012 SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR INSTABILITY; INDIRECT-DRIVE TARGETS; OMEGA LASER FACILITY; NOVA LASER; CAPSULE IMPLOSION; PHYSICS BASIS; ICF CAPSULES; ENERGY; GAIN AB The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC. (C) 2014 AIP Publishing LLC. C1 [Lindl, John; Landen, Otto; Edwards, John; Moses, Ed] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Sandia Natl Labs, Albuquerque, NM 87123 USA. Gen Atom, San Diego, CA 92186 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Atom Weap Estab, Reading RG7 4PR, Berks, England. [NIC Team] CEA, DAM, DIF, F-91297 Arpajon, France. RP Lindl, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Kline, John/0000-0002-2271-9919; Merrill, Frank/0000-0003-0603-735X; /0000-0003-4969-5571 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 188 TC 112 Z9 121 U1 15 U2 84 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 020501 DI 10.1063/1.4865400 PG 72 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400001 ER PT J AU Liu, YH Daughton, W Karimabadi, H Li, H Gary, SP AF Liu, Yi-Hsin Daughton, W. Karimabadi, H. Li, H. Gary, S. Peter TI Do dispersive waves play a role in collisionless magnetic reconnection? SO PHYSICS OF PLASMAS LA English DT Article ID HIGH-TEMPERATURE PLASMAS; GUIDE-FIELD; IMPULSIVE RECONNECTION; SIMULATIONS; TURBULENCE; CHALLENGE AB Using fully kinetic simulations, we demonstrate that the properly normalized reconnection rate is fast similar to 0.1 for guide fields up to 80x larger than the reconnecting field and is insensitive to both the system size and the ion to electron mass ratio. These results challenge conventional explanations of reconnection based on fast dispersive waves, which are completely absent for sufficiently strong guide fields. In this regime, the thickness of the diffusion layer is set predominantly by the electron inertial length with an inner sublayer that is controlled by finite gyro-radius effects. As the Alfven velocity becomes relativistic for very strong guide fields, the displacement current becomes important and strong deviations from charge neutrality occur, resulting in the build-up of intense electric fields which absorb a portion of the magnetic energy release. Over longer time scales, secondary magnetic islands are generated near the active x-line while an electron inertial scale Kelvin-Helmholtz instability is driven within the outflow. These secondary instabilities give rise to time variations in the reconnection rate but do not alter the average value. (C) 2014 AIP Publishing LLC. C1 [Liu, Yi-Hsin; Daughton, W.; Li, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] SciberQuest, Del Mar, CA 92014 USA. [Karimabadi, H.] UCSD, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Gary, S. Peter] Space Sci Inst, Boulder, CO 80301 USA. RP Liu, YH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013 FU NASA [NNH11CC65C]; DoE/OFES/CMSO; NSF EAGER [1105084]; LDRD at LANL FX The authors thank J. D. Scudder and L. Comisso for helpful discussions. We are grateful for support from NASA through the Heliophysics Theory program and NASA Grant No. NNH11CC65C, from DoE/OFES/CMSO, NSF EAGER 1105084, and from the LDRD program at LANL. Simulations were performed at the National Center for Computational Sciences at ORNL and with LANL institutional computing. Additional simulations were supported by an allocation of advanced computing resources provided by the NSF at the National Institute for Computational Sciences and Pleiades which is provided by the NASA High-End Computing Program. NR 57 TC 23 Z9 23 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022113 DI 10.1063/1.4865579 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400022 ER PT J AU Makita, M Nersisyan, G McKeever, K Dzelzainis, T White, S Kettle, B Dromey, B Doria, D Zepf, M Lewis, CLS Robinson, APL Hansen, SB Riley, D AF Makita, M. Nersisyan, G. McKeever, K. Dzelzainis, T. White, S. Kettle, B. Dromey, B. Doria, D. Zepf, M. Lewis, C. L. S. Robinson, A. P. L. Hansen, S. B. Riley, D. TI Fast electron propagation in Ti foils irradiated with sub-picosecond laser pulses at I lambda(2)> 10(18) Wcm(-2) mu m(2) SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY K-ALPHA; FEMTOSECOND LASER; PLASMA; BREMSSTRAHLUNG; DIAGNOSTICS; ABSORPTION; INTENSITY; EMISSION; TARGETS; SOLIDS AB We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-alpha radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effects of refluxing. (C) 2014 AIP Publishing LLC. C1 [Makita, M.; Nersisyan, G.; McKeever, K.; Dzelzainis, T.; White, S.; Kettle, B.; Dromey, B.; Doria, D.; Zepf, M.; Lewis, C. L. S.; Riley, D.] Queens Univ Belfast, Sch Math & Phys, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland. [Robinson, A. P. L.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Hansen, S. B.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Makita, M (reprint author), Queens Univ Belfast, Sch Math & Phys, Ctr Plasma Phys, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland. EM d.riley@qub.ac.uk RI Zepf, Matt/M-1232-2014; Doria, Domenico/C-9556-2016 OI Doria, Domenico/0000-0001-8776-5791 FU UK Engineering and Physical Sciences Research Council [EP/C003586/1, EP/G007462/01, EP/I029206/1] FX This work was supported by the UK Engineering and Physical Sciences Research Council (Grant Nos. EP/C003586/1, EP/G007462/01, and EP/I029206/1). NR 41 TC 4 Z9 4 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 023113 DI 10.1063/1.4865825 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400077 ER PT J AU McDevitt, CJ Tang, XZ Guo, ZH AF McDevitt, C. J. Tang, Xian-Zhu Guo, Zehua TI A quasilinear formulation of turbulence driven current SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL CONFINEMENT SYSTEMS; TRAPPED-ELECTRON MODE; BOOTSTRAP CURRENT; NEOCLASSICAL TRANSPORT; ASPECT-RATIO; ARBITRARY COLLISIONALITY; KINETIC EQUATION; PLASMA TRANSPORT; TOKAMAK; SIMULATION AB Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude. (C) 2014 AIP Publishing LLC. C1 [McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP McDevitt, CJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI guo, zehua/E-4454-2014; OI McDevitt, Christopher/0000-0002-3674-2909 FU Department of Energy Office of Fusion Energy Sciences [DE-AC52-06NA25396] FX We wish to thank Allen Boozer, Patrick Diamond, Taik Soo Hahm, Per Helander, Felix Parra, Ron Waltz, and Weixing Wang for useful discussions. This work was supported by Department of Energy Office of Fusion Energy Sciences for support under Contract No. DE-AC52-06NA25396. NR 54 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022310 DI 10.1063/1.4866605 PG 16 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400037 ER PT J AU Paz-Soldan, C Eidietis, NW Granetz, R Hollmann, EM Moyer, RA Wesley, JC Zhang, J Austin, ME Crocker, NA Wingen, A Zhu, Y AF Paz-Soldan, C. Eidietis, N. W. Granetz, R. Hollmann, E. M. Moyer, R. A. Wesley, J. C. Zhang, J. Austin, M. E. Crocker, N. A. Wingen, A. Zhu, Y. TI Growth and decay of runaway electrons above the critical electric field under quiescent conditions SO PHYSICS OF PLASMAS LA English DT Article ID STOCHASTIC MAGNETIC-FIELDS; DIII-D TOKAMAK; DIFFUSION; PLASMAS; AVALANCHE; EMISSION; BEAM; JET; RECONNECTION; DISRUPTIONS AB Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3-5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude. (C) 2014 AIP Publishing LLC. C1 [Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Eidietis, N. W.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. [Granetz, R.] MIT, Cambridge, MA 02139 USA. [Hollmann, E. M.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Zhang, J.; Crocker, N. A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhu, Y.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Paz-Soldan, C (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. EM paz-soldan@fusion.gat.com OI Wingen, Andreas/0000-0001-8855-1349 FU U.S. Department of Energy [FG02-99ER54527, DE-AC0506OR23100, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-08ER54984, DE-FG01-08ER54984, DE-FG0397ER54415, DE-AC05-00OR22725, SC-G903402] FX This work was supported by the U.S. Department of Energy under DE-FG02-99ER54527, DE-AC0506OR23100, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-08ER54984, DE-FG01-08ER54984, DE-FG0397ER54415, DE-AC05-00OR22725, and SC-G903402. The authors would like to thank D. Eldon for Thomson scattering calibrations; R. J. La Haye, D. C. Pace, and E. J. Strait for assistance with scenario development; V. A. Izzo for useful discussions; W. W. Heidbrink for diagnostic support; and M. Landreman for sharing the CODE program for use by the authors. NR 57 TC 14 Z9 15 U1 5 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022514 DI 10.1063/1.4866912 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400052 ER PT J AU Perez, F Patterson, JR May, M Colvin, JD Biener, MM Wittstock, A Kucheyev, SO Charnvanichborikarn, S Satcher, JH Gammon, SA Poco, JF Fujioka, S Zhang, Z Ishihara, K Tanaka, N Ikenouchi, T Nishimura, H Fournier, KB AF Perez, F. Patterson, J. R. May, M. Colvin, J. D. Biener, M. M. Wittstock, A. Kucheyev, S. O. Charnvanichborikarn, S. Satcher, J. H., Jr. Gammon, S. A. Poco, J. F. Fujioka, S. Zhang, Z. Ishihara, K. Tanaka, N. Ikenouchi, T. Nishimura, H. Fournier, K. B. TI Bright x-ray sources from laser irradiation of foams with high concentration of Ti SO PHYSICS OF PLASMAS LA English DT Article ID SILICA AEROGELS; OMEGA LASER; PLASMAS AB Low-density foams irradiated by a 20 kJ laser at the Omega laser facility (Laboratory for Laser Energetics, Rochester, NY, USA) are shown to convert more than 5% of the laser energy into 4.6 to 6.0 keV x rays. This record efficiency with foam targets is due to novel fabrication techniques based on atomic-layer-deposition of Ti atoms on an aerogel scaffold. A Ti concentration of 33 at.% was obtained in a foam with a total density of 5mg/cm(3). The dynamics of the ionization front through these foams were investigated at the 1 kJ laser of the Gekko XII facility (Institute for Laser Engineering, Osaka, Japan). Hydrodynamic simulations can reproduce the average electron temperature but fail to predict accurately the heat front velocity in the foam. This discrepancy is shown to be unrelated to the possible water adsorbed in the foam but could be attributed to effects of the foam micro-structure. (C) 2014 AIP Publishing LLC. C1 [Perez, F.; Patterson, J. R.; May, M.; Colvin, J. D.; Biener, M. M.; Wittstock, A.; Kucheyev, S. O.; Charnvanichborikarn, S.; Satcher, J. H., Jr.; Gammon, S. A.; Poco, J. F.; Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fujioka, S.; Zhang, Z.; Ishihara, K.; Tanaka, N.; Ikenouchi, T.; Nishimura, H.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. RP Perez, F (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM perez75@llnl.gov RI Nishimura, Hiroaki/I-4908-2015; Fujioka, Shinsuke/J-5530-2015; Zhang, Zhe/J-2655-2014 OI Fujioka, Shinsuke/0000-0001-8406-1772; Zhang, Zhe/0000-0001-8076-5094 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Chuck Sorce, Jim Emig, Swanee Shin, and the crews from the Omega and Gekko XII facilities for their support. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 38 TC 3 Z9 3 U1 4 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 023102 DI 10.1063/1.4864330 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400066 ER PT J AU Ramshaw, JD Cook, AW AF Ramshaw, John D. Cook, Andrew W. TI Approximate equations of state in two-temperature plasma mixtures SO PHYSICS OF PLASMAS LA English DT Article ID DENSE MATTER; MODEL; HOT AB Approximate thermodynamic state relations for multicomponent atomic and molecular gas mixtures are often constructed by artificially partitioning the mixture into its constituent materials and requiring the separated materials to be in temperature and pressure equilibrium. Iterative numerical algorithms have been employed to enforce this equilibration and compute the resulting approximate state relations in single-temperature mixtures. In partially ionized gas mixtures, there is both theoretical and empirical evidence that equilibrating the chemical potentials, number densities, or partial pressures of the free electrons is likely to produce more accurate results than equilibrating the total pressures. Moreover, in many situations of practical interest the free electrons and heavy particles have different temperatures. In this paper, we present a generalized algorithm for equilibrating the heavy-particle and electron temperatures and a third user-specified independent thermodynamic variable in a two-temperature plasma mixture. Test calculations based on the equilibration of total pressure vs. electron pressure are presented for three different mixtures. (C) 2014 AIP Publishing LLC. C1 [Ramshaw, John D.; Cook, Andrew W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ramshaw, John D.] Portland State Univ, Dept Phys, Portland, OR 97207 USA. RP Ramshaw, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We are grateful to Bill Cabot, John Castor, C. H. Chang, Jeff Greenough, Rob Managan, Phil Sterne, Heather Whitley, Mark Ulitsky, and George Zimmerman for many helpful discussions, and to C. H. Chang for calling our attention to Refs. 3 and 4. This paper is dedicated to the memory of Charles W. Cranfill (April 24, 1945-April 15, 2013). NR 25 TC 1 Z9 1 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022706 DI 10.1063/1.4866149 PG 9 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400061 ER PT J AU Robey, HF Celliers, PM Moody, JD Sater, J Parham, T Kozioziemski, B Dylla-Spears, R Ross, JS LePape, S Ralph, JE Hohenberger, M Dewald, EL Hopkins, LB Kroll, JJ Yoxall, BE Hamza, AV Boehly, TR Nikroo, A Landen, OL Edwards, MJ AF Robey, H. F. Celliers, P. M. Moody, J. D. Sater, J. Parham, T. Kozioziemski, B. Dylla-Spears, R. Ross, J. S. LePape, S. Ralph, J. E. Hohenberger, M. Dewald, E. L. Hopkins, L. Berzak Kroll, J. J. Yoxall, B. E. Hamza, A. V. Boehly, T. R. Nikroo, A. Landen, O. L. Edwards, M. J. TI Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS; DRIVEN AB Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing. (C) 2014 AIP Publishing LLC. C1 [Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Hopkins, L. Berzak; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hohenberger, M.; Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Nikroo, A.] Gen Atom Co, San Diego, CA 92196 USA. RP Robey, HF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI lepape, sebastien/J-3010-2015 FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract DE-AC52-07NA27344. NR 29 TC 13 Z9 13 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022703 DI 10.1063/1.4863975 PG 13 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400058 ER PT J AU Simakov, AN Molvig, K AF Simakov, Andrei N. Molvig, Kim TI Electron transport in a collisional plasma with multiple ion species SO PHYSICS OF PLASMAS LA English DT Article AB A generalization of the Braginskii electron fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. A description of the plasma ions with disparate masses is also discussed. (C) 2014 AIP Publishing LLC. C1 [Simakov, Andrei N.; Molvig, Kim] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM simakov@lanl.gov OI Simakov, Andrei/0000-0001-7064-9153 FU Thermonuclear Burn Initiative at Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of the Thermonuclear Burn Initiative at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We acknowledge discussions with G. Kagan. NR 6 TC 5 Z9 5 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 024503 DI 10.1063/1.4867183 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400108 ER PT J AU Simakov, AN Wilson, DC Yi, SA Kline, JL Clark, DS Milovich, JL Salmonson, JD Batha, SH AF Simakov, Andrei N. Wilson, Douglas C. Yi, Sunghwan A. Kline, John L. Clark, Daniel S. Milovich, Jose L. Salmonson, Jay D. Batha, Steven H. TI Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID PHYSICS BASIS; NIF; SIMULATIONS AB For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e. g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer. (C) 2014 AIP Publishing LLC. C1 [Simakov, Andrei N.; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM simakov@lanl.gov OI Simakov, Andrei/0000-0001-7064-9153; Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy [DE-AC52-06NA25396, DE-AC52-07NA27344] FX We wish to thank LLNL NIF designers D. A. Callahan, S. W. Haan, B. A. Hammel, O. S. Jones, B. J. Kozioziemski, M. M. Marinak, and many others for multiple enlightening discussions. This work was performed at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory, operated by Lawrence Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. NR 38 TC 21 Z9 22 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022701 DI 10.1063/1.4864331 PG 10 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400056 ER PT J AU Startsev, EA Lee, WW AF Startsev, Edward A. Lee, W. W. TI Finite-beta simulation of microinstabilities SO PHYSICS OF PLASMAS LA English DT Article ID GYROKINETIC PARTICLE SIMULATION; KINETIC ELECTRONS; ALFVEN WAVES; PLASMAS; TURBULENCE; MODEL AB A new split-weight perturbative particle simulation scheme for finite-beta plasmas in the presence of background inhomogeneities is presented. The scheme is an improvement over the original split-weight scheme, which splits the perturbed particle response into adiabatic and non-adiabatic parts to improve numerical properties. In the new scheme, by further separating out the adiabatic response of the particles associated with the quasi-static bending of the magnetic field lines in the presence of background inhomogeneities of the plasma, we are able to demonstrate the finite-beta stabilization of drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. However, for beta m(i)/m(e) >> 1, it becomes necessary to use the electron skin-depth as the grid size of the simulation to achieve accuracy in solving the resulting equations, unless special numerical arrangement is made for the cancelling of the two large terms on the either side of the governing equation. The proposed scheme is most suitable for studying shear-Alfven physics in general geometry using straight field line coordinates for microturbulence and magnetic reconnection problems. (C) 2014 AIP Publishing LLC. C1 [Startsev, Edward A.; Lee, W. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU MSG project at PPPL through the Multiscale Mathematics Research and Education (MMRE) grant by DoE ASCR; LDRD at PPPL; US DoE [DE-AC02-09CH11466] FX The present work was first supported by the MSG project at PPPL funded through the Multiscale Mathematics Research and Education (MMRE) grant by DoE ASCR and, more recently, by the LDRD funding at PPPL and by US DoE Contract Number DE-AC02-09CH11466. One of us (W.W.L.) would also like to thank Professor David Keyes of Columbia University and Dr. Jay Z. Hsu of University of California at Santa Cruz for useful discussions on singularly perturbed equations. The Fortran code utilized in the present study, before being modified to the electromagnetic double split-weight scheme, was used by Tom Jenkins for his Ph.D. thesis.27 NR 28 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 022505 DI 10.1063/1.4863847 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400043 ER PT J AU TenBarge, JM Daughton, W Karimabadi, H Howes, GG Dorland, W AF TenBarge, J. M. Daughton, W. Karimabadi, H. Howes, G. G. Dorland, W. TI Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations SO PHYSICS OF PLASMAS LA English DT Article ID GENERAL PLASMA EQUILIBRIA; MAGNETIC RECONNECTION; ASTROPHYSICAL GYROKINETICS; INSTABILITIES; EQUATIONS; TURBULENCE AB Results of the first validation of large guide field, B-g/delta B-0 >> 1, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant beta(i) = 0.01 and solar wind relevant beta(i) = 1 are presented, where delta B-0 is the reconnecting field. Particle- in- cell (PIC) simulations scan a wide range of guide magnetic field strength to test for convergence to the gyrokinetic limit. The gyrokinetic simulations display a high degree of morphological symmetry, to which the PIC simulations converge when beta B-i(g)/delta B-0 greater than or similar to 1 and B-g/delta B-0 >> 1. In the regime of convergence, the reconnection rate, relative energy conversion, and overall magnitudes are found to match well between the PIC and gyrokinetic simulations, implying that gyrokinetics is capable of making accurate predictions well outside its regime of formal applicability. These results imply that in the large guide field limit many quantities resulting from the nonlinear evolution of reconnection scale linearly with the guide field. (C) 2014 AIP Publishing LLC. C1 [TenBarge, J. M.; Dorland, W.] Univ Maryland, IREAP, College Pk, MD 20742 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] SciberQuest, Del Mar, CA 92014 USA. [Karimabadi, H.] UCSD, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Howes, G. G.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP TenBarge, JM (reprint author), Univ Maryland, IREAP, College Pk, MD 20742 USA. EM jtenbarg@umd.edu RI Daughton, William/L-9661-2013 FU US DOE [DEFG0293ER54197]; NSF [AGS-1054061, PHY090084, OCI-1053575]; NASA [NNH11CC65C] FX The authors thank James Drake for helpful discussions. This work was supported by the US DOE Grant No. DEFG0293ER54197, NSF CAREER AGS-1054061, NASA Grant No. NNH11CC65C, and NASA's Heliophysics Theory Program. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by NSF Grant Nos. PHY090084 and OCI-1053575, with runs performed on Kraken at the National Institute for Computational Sciences, Stampede at the Texas Advanced Computing Center. Additional simulations were performed on Pleiades provided by NASAs HEC Program and with Los Alamos Institutional Computing resources. NR 32 TC 17 Z9 17 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2014 VL 21 IS 2 AR 020708 DI 10.1063/1.4867068 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AC2IJ UT WOS:000332323400009 ER PT J AU Mohagheghi, A Linger, J Smith, H Yang, SH Dowe, N Pienkos, PT AF Mohagheghi, Ali Linger, Jeff Smith, Holly Yang, Shihui Dowe, Nancy Pienkos, Philip T. TI Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Zymomonas; Xylose; 2-deoxyglucose; Pretreated corn stover; Adaptation; Simultaneous saccharification and fermentation; Next generation sequencing (NGS) ID ACID PRETREATMENT; KINETICS; METABOLISM; FRUCTOSE; GLUCOSE; PATHWAY; GROWTH; SUGAR AB Background: Numerous attempts have been made to improve xylose utilization in Z. mobilis including adaptive approaches. However, no one has yet found a way to overcome the reduced xylose utilization observed in fermentations carried out in the presence of glucose as well as the inhibitory compounds found within pretreated and saccharified biomass. Our goal was to generate Z. mobilis strains that are more robust than the wildtype strain with increased productivity in fermenting the glucose and xylose present in PCS. Through adaptation in the presence of 2-deoxyglucose, we have generated Zymomonas mobilis strain #7, which is better suited to utilizing xylose in pretreated corn stover (PCS) fermentations in the presence of both glucose and model inhibitory compounds of acetate and furfural. Strain #7 over performed the parent strain 8b both on simultaneous saccharification and fermentation (SFF) of PCS and fermentation of saccharified PCS slurry. At 65% neutralized PCS liquor level, strain #7 used 86% of the xylose present in the liquor while strain 8b was not able to ferment the liquor under similar conditions. Similarly, under SSF process conditions with 20% total solids loading of PCS, strain #7 used more than 50% of the xylose present, while strain 8b did not utilize any xylose under this condition. We have further identified genetic alterations in strain #7 in relation to the parental strain 8b that may be responsible for these phenotypic enhancements. Results: We performed an extended lab-directed evolution of Z. mobilis strain 8b in the presence of acetate and a non-hydrolyzable glucose analogue 2-deoxyglucose. Following the adaptation, we identified and characterized numerous candidate strains and found a dramatic increase in xylose usage not only in shake flask, but also in a controlled PCS fermentation. We re-sequenced the genomes of evolved strains to identify genetic alterations responsible for these improved phenotypes, and identified two mutations that may be key to the improved xylose usage in these strains. Conclusion: We have generated Z. mobilis strain #7, which can ferment xylose efficiently in the presence of toxins present in pretreated corn stover. Genetic alterations responsible for the improvement have been identified. C1 [Mohagheghi, Ali; Linger, Jeff; Smith, Holly; Yang, Shihui; Dowe, Nancy; Pienkos, Philip T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Mohagheghi, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Ali.Mohagheghi@nrel.gov OI Yang, Shihui/0000-0002-9394-9148 FU BioEnergy Technologies Office (BETO), a subdivision within the Department of Energy's office of Energy Efficiency and Renewable Energy (EERE) FX We would like to acknowledge funding support from the BioEnergy Technologies Office (BETO), a subdivision within the Department of Energy's office of Energy Efficiency and Renewable Energy (EERE). We would also like to thank Mary Ann Franden for her help on Bioscreen evaluation. NR 23 TC 11 Z9 11 U1 6 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 1 PY 2014 VL 7 AR 19 DI 10.1186/1754-6834-7-19 PG 9 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AD1RN UT WOS:000333011200001 PM 24485299 ER PT J AU Domen, JK Stringfellow, WT Camarillo, MK Gulati, S AF Domen, Jeremy K. Stringfellow, William T. Camarillo, Mary Kay Gulati, Shelly TI Fog water as an alternative and sustainable water resource SO CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY LA English DT Review DE Fog water harvesting; Reforestation; Sustainable water resource ID COLLECTION EFFICIENCY; MECHANICAL-BEHAVIOR; AGRICULTURAL NETS; CANARY-ISLANDS; EXPLORING FOG; SUMMER FOG; DENSE FOG; CALIFORNIA; REGION; FOREST AB As the world's population and demand for fresh water increases, new water resources are needed. One commonly overlooked aspect of the water cycle is fog, which is an important part of the hydrology of coastal, high-altitude, and forested regions. Fog water harvesting is being investigated as a sustainable alternative water resource for drinking water and reforestation. Fog water harvesting involves using mesh nets to collect water as fog passes through them. The materials of these nets, along with environmental factors such as wind speed, influence the volume of water collected. In this article, a review of current models for fog collection, designs, and applications of fog water harvesting is provided. Aspects of fog water harvesting requiring further research and development are identified. In regions with frequent fog events, fog water harvesting is a sustainable drinking water resource for rural communities with low per capita water usage. However, an analysis of fog water harvesting potential for the coastal areas of northern California (USA) showed that fog yields are too small for use as domestic water in areas with higher household water demands. Fog water shows particular promise for application in reforestation. Fog water irrigation can increase growth rates and survivability of saplings in reforestation efforts in regions with frequent fog events. Using fog collectors, denuded areas once dependent on natural fog drip can be restored, benefiting local hydrology and ecosystem recovery. Improvement in fog collector designs, materials, and models to increase collection efficiency, perhaps by inclusion of ideas from natural systems, will expand the regions where fog harvesting can be applied. C1 [Domen, Jeremy K.; Stringfellow, William T.; Camarillo, Mary Kay; Gulati, Shelly] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA. [Stringfellow, William T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Stringfellow, WT (reprint author), Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, 3601 Pacific Ave, Stockton, CA 95211 USA. EM wstringfellow@lbl.gov RI Stringfellow, William/O-4389-2015 OI Stringfellow, William/0000-0003-3189-5604 FU University of the Pacific School of Engineering & Computer Science; Ecological Engineering Research Program; U.S. Department of Energy [DE-AC02-05CH11231] FX Jeremy Domen was supported by a graduate fellowship from the University of the Pacific School of Engineering & Computer Science, and research funding from the Ecological Engineering Research Program. Part of William Stringfellow's effort was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 8 Z9 8 U1 15 U2 64 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1618-954X EI 1618-9558 J9 CLEAN TECHNOL ENVIR JI Clean Technol. Environ. Policy PD FEB PY 2014 VL 16 IS 2 BP 235 EP 249 DI 10.1007/s10098-013-0645-z PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AC9PY UT WOS:000332867800005 ER PT J AU Hamedani, HA Baniassadi, M Sheidaei, A Pourboghrat, F Remond, Y Khaleel, M Garmestani, H AF Hamedani, H. Amani Baniassadi, M. Sheidaei, A. Pourboghrat, F. Remond, Y. Khaleel, M. Garmestani, H. TI Three-Dimensional Reconstruction and Microstructure Modeling of Porosity-Graded Cathode Using Focused Ion Beam and Homogenization Techniques SO FUEL CELLS LA English DT Article DE Cathode; Electrode; Mathematical Modeling; Oxide Thin Films; Solid Oxide Fuel Cell ID OXIDE FUEL-CELLS; HETEROGENEOUS MATERIALS; PARAMETERS; ANODE AB In this study, microstructure of a porosity-graded lanthanum strontium manganite (LSM) cathode of solid oxide fuel cells (SOFCs) has been characterized using focused ion beam (FIB) and scanning electron microscopy (SEM) combined with image processing. Two-point correlation functions of the two-dimensional (2D) images taken along the direction of porosity gradient are used to reconstruct a three-dimensional (3D) microstructure. The effective elastic modulus of the two-phase porosity-graded cathode is predicted using strong contrast (SC) and composite inclusion (CI) homogenization techniques. The effectiveness of the two methods in predicting the effective elastic properties of the porosity-graded LSM cathode is investigated in comparison with the results obtained from the finite element model (FEM). C1 [Hamedani, H. Amani; Garmestani, H.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Baniassadi, M.; Remond, Y.] Univ Strasbourg, IMFS CNRS, F-67000 Strasbourg, France. [Sheidaei, A.; Pourboghrat, F.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Khaleel, M.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Hamedani, HA (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr NW, Atlanta, GA 30332 USA. EM hamani3@gatech.edu OI khaleel, mohammad/0000-0001-7048-0749 NR 17 TC 4 Z9 4 U1 2 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD FEB PY 2014 VL 14 IS 1 BP 91 EP 95 DI 10.1002/fuce.201300170 PG 5 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA AB6MV UT WOS:000331904000011 ER PT J AU Tatsuta, T Hosono, M Takahashi, K Omoto, T Kariya, Y Sugawara, S Hakomori, S Nitta, K AF Tatsuta, Takeo Hosono, Masahiro Takahashi, Kohta Omoto, Takashi Kariya, Yukiko Sugawara, Shigeki Hakomori, Senitiroh Nitta, Kazuo TI Sialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL SO INTERNATIONAL JOURNAL OF ONCOLOGY LA English DT Article DE malignant mesothelioma; synergistic antitumor effect; TRAIL; leczyme; lectin; ribonuclease; Bid ID RANA-CATESBEIANA BULLFROG; NF-KAPPA-B; LIGAND TRAIL; TUMOR-CELLS; DEPENDENT APOPTOSIS; UP-REGULATION; LUNG-CANCER; DEATH; PATHOGENESIS; PROTEASES AB Malignant mesothelioma is a highly aggressive tumor with poor prognosis. An effective drug for treatment of malignant mesothelioma is greatly needed. Sialic acid-binding lectin (SBL) isolated from oocytes of Rana catesbeiana is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity, so it could be developed as a new type of anticancer drug. The validity of SBL for treatment of malignant mesothelioma was assessed using three malignant mesotheliomas and a non-malignant mesothlial cell line. Effectiveness of combinatorial treatment of SBL and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) was also elucidated and characterized. SBL induced tumor-selective cytotoxicity that was attributed to induction of apoptosis. Combinatorial treatment of SBL and TRAIL showed synergistic apoptosis-inducing effect. Additional experiments revealed that Bid was the mediating molecule for the synergistic effect in SBL and TRAIL. These results suggested that SBL could be a promising candidate for the therapeutics for malignant mesothelioma. Furthermore, the combinatorial treatment of SBL and TRAIL could be an effective regimen against malignant mesothelioma. C1 [Tatsuta, Takeo; Hosono, Masahiro; Takahashi, Kohta; Omoto, Takashi; Sugawara, Shigeki; Nitta, Kazuo] Tohoku Pharmaceut Univ, Inst Mol Biomembrane & Glycobiol, Div Cell Recognit Study, Aoba Ku, Sendai, Miyagi 9818558, Japan. [Kariya, Yukiko] Fukushima Med Univ, Fukushima 9601295, Japan. [Hakomori, Senitiroh] Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA 98122 USA. RP Nitta, K (reprint author), Tohoku Pharmaceut Univ, Inst Mol Biomembrane & Glycobiol, Aoba Ku, 4-4-1 Komatsushima, Sendai, Miyagi 9818558, Japan. EM knitta@tohoku-pharm.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology of Japan FX This study was supported in part by Grant-in-Aid of the 'Academic Frontier' Project (2006-2011) and the "Strategic Research' Project (2012-2017) for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan. NR 38 TC 6 Z9 6 U1 0 U2 5 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1019-6439 EI 1791-2423 J9 INT J ONCOL JI Int. J. Oncol. PD FEB PY 2014 VL 44 IS 2 BP 377 EP 384 DI 10.3892/ijo.2013.2192 PG 8 WC Oncology SC Oncology GA AC7DM UT WOS:000332687400004 PM 24297392 ER PT J AU Brax, P Upadhye, A AF Brax, Philippe Upadhye, Amol TI Chameleon fragmentation SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE modified gravity; particle physics - cosmology connection ID COSMOLOGICAL CONSTANT; GRAVITY; CONSTRAINTS; FIELDS; TESTS AB A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an "afterglow" experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for phi(4) and 1/phi potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments. C1 [Brax, Philippe] CEA, Inst Phys Theor, IPhT, CNRS,URA 2306, F-91191 Gif Sur Yvette, France. [Upadhye, Amol] Ewha Womans Univ, Inst Early Univ, Seoul 120750, South Korea. [Upadhye, Amol] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Upadhye, Amol] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Brax, P (reprint author), CEA, Inst Phys Theor, IPhT, CNRS,URA 2306, F-91191 Gif Sur Yvette, France. EM philippe.brax@cea.fr; aupadhye@anl.gov NR 66 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2014 IS 2 AR 018 DI 10.1088/1475-7516/2014/02/018 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AC7LU UT WOS:000332711400018 ER PT J AU Cholis, I Hooper, D McDermott, SD AF Cholis, Ilias Hooper, Dan McDermott, Samuel D. TI Dissecting the gamma-ray background in search of dark matter SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; gamma ray theory ID LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; STARBURST GALAXIES M82; LUMINOSITY FUNCTION; MILLISECOND PULSARS; MILKY-WAY; NGC 253; X-RAY; FERMI; BLAZARS AB Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of similar to 5-10. C1 [Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [McDermott, Samuel D.] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48105 USA. RP Cholis, I (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM cholis@fnal.gov; dhooper@fnal.gov; mcdermod@umich.edu FU US Department of Energy; Kavli Institute for Cosmological Physics; NSF [1066293] FX We would like to thank Shin'ichiro Ando and Andrew Hearin for helpful discussion. This work has been supported by the US Department of Energy and by the Kavli Institute for Cosmological Physics. IC and DH would like to thank the Aspen Center for Physics and the NSF Grant 1066293 for hospitality during the earlier stages of this project. NR 110 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2014 IS 2 AR 014 DI 10.1088/1475-7516/2014/02/014 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AC7LU UT WOS:000332711400014 ER PT J AU Kalinin, SV Morozovska, AN AF Kalinin, Sergei V. Morozovska, Anna N. TI Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit SO JOURNAL OF ELECTROCERAMICS LA English DT Article DE Scanning probemicroscopy; Chemical expansion; Electrochemical strainmicroscopy ID ION BATTERY CATHODE; I-V RELATIONS; FORCE MICROSCOPY; NANOMETER RESOLUTION; GRAPHITE-ELECTRODES; THIN-FILMS; TRANSPORT; NANOSCALE; LITHIUM; SURFACE AB Changes in ionic concentration and electrochemical processes in solids are invariably associated with changes in molar volume. Correspondingly, materials with mobile ions develop strain in response to applied electric bias. This electromechanical coupling mediated by mobile ions lays the foundation for the electrochemical strain microscopy (ESM) of energy storage and conversion materials. Here, we analyze the imaging and spectroscopic mechanism in ESM in the diffusion limit and discuss the similarities between ESM and macroscopic current-based electrochemical measurements. The theoretical challenges in ESM are formulated. C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 FU Fluid Interface, Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported as part of the Fluid Interface, Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A.N.M. gratefully acknowledges multiple discussions and critical remarks from Eugene Eliseev (NAS Ukraine). The authors are grateful to A. Belianinov (ORNL) for valuable advice. NR 69 TC 6 Z9 6 U1 4 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1385-3449 EI 1573-8663 J9 J ELECTROCERAM JI J. Electroceram. PD FEB PY 2014 VL 32 IS 1 BP 51 EP 59 DI 10.1007/s10832-013-9819-7 PG 9 WC Materials Science, Ceramics SC Materials Science GA AD1XC UT WOS:000333026000006 ER PT J AU Hoffman, FM Randerson, JT Arora, VK Bao, Q Cadule, P Ji, D Jones, CD Kawamiya, M Khatiwala, S Lindsay, K Obata, A Shevliakova, E Six, KD Tjiputra, JF Volodin, EM Wu, T AF Hoffman, F. M. Randerson, J. T. Arora, V. K. Bao, Q. Cadule, P. Ji, D. Jones, C. D. Kawamiya, M. Khatiwala, S. Lindsay, K. Obata, A. Shevliakova, E. Six, K. D. Tjiputra, J. F. Volodin, E. M. Wu, T. TI Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE Intergovernmental Panel on Climate Change (IPCC); greenhouse gases; terrestrial and oceanic carbon sinks; climate-carbon cycle feedbacks; climate warming; uncertainty quantification ID GENERAL-CIRCULATION MODEL; LINE SIMULATION CHARACTERISTICS; CLIMATE-CHANGE; ANTHROPOGENIC CO2; SOUTHERN-OCEAN; COUPLED MODEL; TROPICAL CARBON; LAND BIOSPHERE; VERSION 2; EMISSIONS AB The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulationsin which atmospheric CO(2)levels were computed prognosticallyfor historical (1850-2005) and future periods (Representative Concentration Pathway (RCP)8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO(2)levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO(2)estimates of 60014ppm at 2060 and 94735ppm at 2100, which were 21ppm and 32ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO(2)from Mauna Loa, our analysis suggests that uncertainties in future climate projections can be reduced. Key Points We analyzed emission-driven simulations from 15 Earth System Models (ESMs) Most ESMs had a small positive bias in contemporary atmospheric CO2 predictions We used a linear relationship to create a trajectory of future atmospheric CO2 C1 [Hoffman, F. M.; Randerson, J. T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Hoffman, F. M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Hoffman, F. M.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN USA. [Arora, V. K.] Meteorol Serv Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada. [Bao, Q.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China. [Cadule, P.] Inst Pierre Simon Laplace, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Ji, D.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Jones, C. D.] Hadley Ctr, UK Met Off, Exeter, Devon, England. [Kawamiya, M.] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanagawa, Japan. [Khatiwala, S.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Lindsay, K.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Obata, A.] Japan Meteorol Agcy, Meteorol Res Inst, Ibaraki, Japan. [Shevliakova, E.] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA. [Six, K. D.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Tjiputra, J. F.] Uni Res, Uni Climate, Bergen, Norway. [Volodin, E. M.] Russian Acad Sci, Inst Numer Math, Moscow, Russia. [Wu, T.] China Meteorol Adm, Beijing Climate Ctr, Climate Syst Modeling Div, Beijing, Peoples R China. RP Hoffman, FM (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM forrest@climatemodeling.org RI Shevliakova, Elena/J-5770-2014; Bao, Qing/A-7765-2012; Hoffman, Forrest/B-8667-2012; Jones, Chris/I-2983-2014; OI Hoffman, Forrest/0000-0001-5802-4134; Tjiputra, Jerry/0000-0002-4600-2453 FU Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science; National Science Foundation [AGS-1048890]; U. S. Department of Energy [DE-AC05-00OR22725]; Joint DECC/Defra Met Office Hadley Center Climate Program [GA01101] FX The authors wish to thank R. J. Stouffer for his thoughtful comments on an early draft of the paper, which lead to improvements in the discussion of our results. In addition, the authors gratefully acknowledge the careful reviews of T. A. Boden, R. J. Norby, and S. Denning. This research was sponsored by the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science and the National Science Foundation (AGS-1048890). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. CDJ was supported by the Joint DECC/Defra Met Office Hadley Center Climate Program (GA01101). This is a contribution to the BIOFEEDBACK project of the Center for Climate Dynamics (SKD) at the Bjerknes Center for Climate Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We acknowledge the World Climate Research Program's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table1 of this paper) for producing and making available their model output. For CMIP, the U. S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 101 TC 30 Z9 30 U1 5 U2 63 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB PY 2014 VL 119 IS 2 BP 141 EP 162 DI 10.1002/2013JG002381 PG 22 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AD4SU UT WOS:000333241600002 ER PT J AU Bernardo, B Cheyns, D Verreet, B Schaller, RD Rand, BP Giebink, NC AF Bernardo, B. Cheyns, D. Verreet, B. Schaller, R. D. Rand, B. P. Giebink, N. C. TI Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells SO NATURE COMMUNICATIONS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; SOLAR-CELLS; TRANSFER EXCITONS; SEPARATION; DISSOCIATION; BLENDS; FILMS; ELECTROABSORPTION; CRYSTALLIZATION; ENERGY AB Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C-60 crystallite size of similar to 4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C-60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process. C1 [Bernardo, B.; Giebink, N. C.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Cheyns, D.; Verreet, B.; Rand, B. P.] IMEC, B-3001 Leuven, Belgium. [Schaller, R. D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Schaller, R. D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Rand, B. P.] Princeton Univ, Andlinger Ctr Energy & Environm, Dept Elect Engn, Princeton, NJ 08544 USA. RP Giebink, NC (reprint author), Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. EM ncg2@psu.edu RI Cheyns, David/B-9157-2008 FU DARPA Young Faculty Award; DOE SunShot program [DE-EE0005798]; Center for Nanoscale Materials; US Department of Energy, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was supported in part by the DARPA Young Faculty Award and the DOE SunShot program under award number DE-EE0005798. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 33 TC 81 Z9 81 U1 17 U2 114 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3245 DI 10.1038/ncomms4245 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6WP UT WOS:000332666700003 PM 24488203 ER PT J AU Dhital, C Hogan, T Zhou, WW Chen, X Ren, ZS Pokharel, M Okada, Y Heine, M Tian, W Yamani, Z Opeil, C Helton, JS Lynn, JW Wang, ZQ Madhavan, V Wilson, SD AF Dhital, Chetan Hogan, Tom Zhou, Wenwen Chen, Xiang Ren, Zhensong Pokharel, Mani Okada, Yoshinori Heine, M. Tian, Wei Yamani, Z. Opeil, C. Helton, J. S. Lynn, J. W. Wang, Ziqiang Madhavan, Vidya Wilson, Stephen D. TI Carrier localization and electronic phase separation in a doped spin-orbit-driven Mott phase in Sr-3(Ir1-xRux)(2)O-7 SO NATURE COMMUNICATIONS LA English DT Article ID MANGANITES; SR3RU2O7; SR2IRO4; CRYSTAL; STATE AB Interest in many strongly spin-orbit-coupled 5d-transition metal oxide insulators stems from mapping their electronic structures to a J(eff) = 1/2 Mott phase. One of the hopes is to establish their Mott parent states and explore these systems' potential of realizing novel electronic states upon carrier doping. However, once doped, little is understood regarding the role of their reduced Coulomb interaction U relative to their strongly correlated 3d-electron cousins. Here we show that, upon hole-doping a candidate J(eff) = 1/2 Mott insulator, carriers remain localized within a nanoscale phase-separated ground state. A percolative metal-insulator transition occurs with interplay between localized and itinerant regions, stabilizing an anti-ferromagnetic metallic phase beyond the critical region. Our results demonstrate a surprising parallel between doped 5d- and 3d-electron Mott systems and suggest either through the near-degeneracy of nearby electronic phases or direct carrier localization that U is essential to the carrier response of this doped spin-orbit Mott insulator. C1 [Dhital, Chetan; Hogan, Tom; Zhou, Wenwen; Chen, Xiang; Ren, Zhensong; Pokharel, Mani; Okada, Yoshinori; Heine, M.; Opeil, C.; Wang, Ziqiang; Madhavan, Vidya; Wilson, Stephen D.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Tian, Wei] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Yamani, Z.] CNR, Canadian Neutron Beam Ctr, Chalk River Labs, Chalk River, ON K0J 1P0, Canada. [Helton, J. S.; Lynn, J. W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Wilson, SD (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM stephen.wilson@bc.edu RI Okada, Yoshinori/A-1731-2014; Zhou, Wenwen/K-9854-2016; Dhital, Chetan/O-5634-2016; yamani, zahra/B-7892-2012; Tian, Wei/C-8604-2013 OI Dhital, Chetan/0000-0001-8125-6048; Tian, Wei/0000-0001-7735-3187 FU NSF CAREER-Award [DMR-1056625]; DOE [DE-SC0002554]; NSF [DMR-1305647]; Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE FX The work at Boston College was supported by NSF CAREER-Award DMR-1056625 (S.D.W), DOE DE-SC0002554 (Z.W.) and NSF DMR-1305647 (V.M.). The work at the ORNLs High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. NR 32 TC 15 Z9 15 U1 7 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3377 DI 10.1038/ncomms4377 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6XT UT WOS:000332670400003 PM 24566714 ER PT J AU Jesche, A McCallum, RW Thimmaiah, S Jacobs, JL Taufour, V Kreyssig, A Houk, RS Bud'ko, SL Canfield, PC AF Jesche, A. McCallum, R. W. Thimmaiah, S. Jacobs, J. L. Taufour, V. Kreyssig, A. Houk, R. S. Bud'ko, S. L. Canfield, P. C. TI Giant magnetic anisotropy and tunnelling of the magnetization in Li-2(Li1-xFex)N SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE-MOLECULE MAGNET; LANTHANIDE COMPLEXES; CRYSTAL-STRUCTURE; TEMPERATURE; RELAXATION; TRANSITION; EXCHANGE; BLOCKING; BEHAVIOR; CLUSTER AB Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li-2(Li1-xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x << 1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li-2(Li1-xFex) N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials. C1 [Jesche, A.; McCallum, R. W.; Thimmaiah, S.; Jacobs, J. L.; Kreyssig, A.; Houk, R. S.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Jacobs, J. L.; Houk, R. S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Taufour, V.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Jesche, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM jesche@ameslab.gov RI Canfield, Paul/H-2698-2014 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Bruce Harmon, Yongbin Lee, Natalia Perkins, Yuriy Sizyuk, Vladimir Antropov, Makariy Tanatar, Hyunsoo Kim, Ruslan Prozorov and Yuji Furukawa are acknowledged for comments and discussions. The authors thank Gregory Tucker for assistance with recording Laue-back-reflection pattern, Jakoah Brgoch for assistance with early X-ray powder diffraction measurements and Jim Anderegg for discussions and first attempts of performing Auger spectroscopy on these samples. Kevin Dennis is acknowledged for assistance with magnetization measurements. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 42 TC 20 Z9 20 U1 7 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3333 DI 10.1038/ncomms4333 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6XG UT WOS:000332668900003 PM 24566374 ER PT J AU Jia, CJ Nowadnick, EA Wohlfeld, K Kung, YF Chen, CC Johnston, S Tohyama, T Moritz, B Devereaux, TP AF Jia, C. J. Nowadnick, E. A. Wohlfeld, K. Kung, Y. F. Chen, C. -C. Johnston, S. Tohyama, T. Moritz, B. Devereaux, T. P. TI Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-SCATTERING; J MODEL; SUPERCONDUCTORS; SYSTEMS AB How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L-3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of T-c, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors. C1 [Jia, C. J.; Nowadnick, E. A.; Wohlfeld, K.; Kung, Y. F.; Moritz, B.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Jia, C. J.; Nowadnick, E. A.; Wohlfeld, K.; Kung, Y. F.; Moritz, B.; Devereaux, T. P.] Stanford Univ, Menlo Pk, CA 94025 USA. [Jia, C. J.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Nowadnick, E. A.; Kung, Y. F.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chen, C. -C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Johnston, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Johnston, S.] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada. [Tohyama, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. RP Devereaux, TP (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM tpd@stanford.edu RI Wohlfeld, Krzysztof/B-4489-2014; Moritz, Brian/D-7505-2015; Johnston, Steven/J-7777-2016; OI Wohlfeld, Krzysztof/0000-0002-6524-8264; Moritz, Brian/0000-0002-3747-8484; Jia, Chunjing/0000-0001-7999-1932 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-76SF00515]; Computational Materials and Chemical Sciences Network (CMCSN) [DE-SC0007091]; Aneesur Rahman Postdoctoral Fellowship at Argonne National Laboratory, operated under the U.S. Department of Energy [DE-AC02-06CH11357]; Strategic Programs for Innovative Research (SPIRE); MEXT; National Science Foundation Graduate Research Fellowship [1147470]; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231]; [22340097] FX thank G. Ghiringhelli, R. Hackl, J.P. Hill, B.J. Kim, M. Le Tacon, W.-S. Lee and J. Tranquada for discussions. This work was supported at SLAC and Stanford University by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE-AC02-76SF00515 and by the Computational Materials and Chemical Sciences Network (CMCSN) under Contract No. DE-SC0007091. C.J.J. is also supported by the Stanford Graduate Fellows in Science and Engineering. C.-C.C. is supported by the Aneesur Rahman Postdoctoral Fellowship at Argonne National Laboratory, operated under the U.S. Department of Energy Contract No. DE-AC02-06CH11357. T.T. is supported by the Grant-in-Aid for Scientific Research (Grant No. 22340097) and Strategic Programs for Innovative Research (SPIRE), the Computational Materials Science Initiative (CMSI) from MEXT. Y.F.K. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1147470. T.T. and T.P.D. acknowledge the YIPQS program of YITP, Kyoto University. A portion of the computational work was performed using the resources of the National Energy Research Scientific Computing Center (NERSC) supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-05CH11231. NR 36 TC 33 Z9 33 U1 1 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3314 DI 10.1038/ncomms4314 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6XC UT WOS:000332668300007 PM 24577074 ER PT J AU Jiang, BY Harlow, GE Wohletz, K Zhou, ZH Meng, J AF Jiang, Baoyu Harlow, George E. Wohletz, Kenneth Zhou, Zhonghe Meng, Jin TI New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota SO NATURE COMMUNICATIONS LA English DT Article ID NORTHEASTERN CHINA; VOLCANIC-ERUPTIONS; YIXIAN FORMATION; NE-CHINA; FOSSILS; EVOLUTION; DINOSAUR; BIRDS; DECAY; MINERALIZATION AB The lower Cretaceous Yixian and Jiufotang formations contain numerous exceptionally well-preserved invertebrate, vertebrate and plant fossils that comprise the Jehol Biota. Freshwater and terrestrial fossils of the biota usually occur together within some horizons and have been interpreted as deposits of mass mortality events. The nature of the events and the mechanisms behind the exceptional preservation of the fossils, however, are poorly understood. Here, after examining and analysing sediments and residual fossils from several key horizons, we postulate that the causal events were mainly phreatomagmatic eruptions. Pyroclastic density currents were probably responsible for the major causalities and for transporting the bulk of the terrestrial vertebrates from different habitats, such as lizards, birds, non-avian dinosaurs and mammals, into lacustrine environments for burial. Terrestrial vertebrate carcasses transported by and sealed within the pyroclastic flows were clearly preserved as exceptional fossils through this process. C1 [Jiang, Baoyu] Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210046, Jiangsu, Peoples R China. [Harlow, George E.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Wohletz, Kenneth] Los Alamos Natl Lab, Geophys Grp, EES 17, MS F665, Los Alamos, NM 87545 USA. [Zhou, Zhonghe] Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing 100044, Peoples R China. [Meng, Jin] Amer Museum Nat Hist, Div Paleontol, New York, NY 10024 USA. RP Jiang, BY (reprint author), Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Mineral Deposits Res, 163th Xianlin Ave, Nanjing 210046, Jiangsu, Peoples R China. EM byjiang@nju.edu.cn; jmeng@amnh.org FU 973 Program [2012CB821905]; National Science Foundation of China [41172033] FX We thank K. Nemeth, J. Webster, M. A. Norell, B. Wang, X.-L. Wang, L.-H., Chen, A. Durant, M. Hethke, and X.-L. Wang for discussions; J. Thostenson, B. A. Goldoff, M. Hill, A. Balcarcel and A. Davidson for laboratorial assistance; and F. T. Fursich for improving the manuscript. This work was supported by the 973 Program grant 2012CB821905 and National Science Foundation of China (41172033). NR 48 TC 9 Z9 9 U1 2 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3151 DI 10.1038/ncomms4151 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6UM UT WOS:000332660500001 PM 24495913 ER PT J AU King, PDC Walker, SM Tamai, A de la Torre, A Eknapakul, T Buaphet, P Mo, SK Meevasana, W Bahramy, MS Baumberger, F AF King, P. D. C. Walker, S. McKeown Tamai, A. de la Torre, A. Eknapakul, T. Buaphet, P. Mo, S. -K. Meevasana, W. Bahramy, M. S. Baumberger, F. TI Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas SO NATURE COMMUNICATIONS LA English DT Article ID LAALO3/SRTIO3 INTERFACE; OXIDE INTERFACES; SUPERCONDUCTIVITY; SUPERLATTICES; INSULATOR; SURFACE; STATE AB Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties. C1 [King, P. D. C.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [King, P. D. C.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Walker, S. McKeown; Tamai, A.; de la Torre, A.; Baumberger, F.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Eknapakul, T.; Buaphet, P.; Meevasana, W.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Eknapakul, T.; Buaphet, P.; Meevasana, W.] Suranaree Univ Technol, NANOTEC, Ctr Excellence Adv Funct Nanomat, Nakhon Ratchasima 30000, Thailand. [Mo, S. -K.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bahramy, M. S.] Univ Tokyo, Quantum Phase Elect Ctr, Dept Appl Phys, Tokyo 1138656, Japan. [Bahramy, M. S.] RIKEN, CEMS, Wako, Saitama 3510198, Japan. [Baumberger, F.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP King, PDC (reprint author), Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. EM philip.king@st-andrews.ac.uk RI Bahramy, Mohammad/B-2865-2013; Baumberger, Felix/A-5170-2008; King, Philip/D-3809-2014; Tamai, Anna/B-9219-2014; Mo, Sung-Kwan/F-3489-2013 OI Bahramy, Mohammad/0000-0001-9024-6335; Baumberger, Felix/0000-0001-7104-7541; King, Philip/0000-0002-6523-9034; Tamai, Anna/0000-0001-5239-6826; Mo, Sung-Kwan/0000-0003-0711-8514 FU UK EPSRC [EP/I031014/1]; ERC [207901]; SNSF [200021-146995]; Scottish Funding Council; Thailand Research Fund [RSA5680052]; Office of the Higher Education Commission, Suranaree Univerisity of Technology; Japan Society for the promotion of Science (JSPS), through the 'Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program); council for Science and Technology policy (CSTP); Royal Society through a University Research Fellowship [UF120096]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the UK EPSRC (EP/I031014/1), the ERC (207901), the SNSF (200021-146995), the Scottish Funding Council, The Thailand Research Fund (RSA5680052), Office of the Higher Education Commission, Suranaree Univerisity of Technology and the Japan Society for the promotion of Science (JSPS), through the 'Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)', initiated by the council for Science and Technology policy (CSTP). P.D.C.K. acknowledges support from the Royal Society through a University Research Fellowship (UF120096). We acknowledge SOLEIL (beamline CASSIOPEE), the ALS (beamline 10.0.1) and SLS (SIS beamline) for provision of synchrotron radiation facilities, and in particular N.C. Plumb, M. Radovic and M. Shi (SLS) and P. Le Fevre, F. Bertran and A. Taleb-Ibrahimi (SOLEIL) for technical assistance. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We gratefully acknowledge C. Bell. C. Berthod, V. Cooper, A. Fete, H.Y. Hwang, M. Kim, J. Mannhart, D. van der Marel and J.-M. Triscone for useful discussions. NR 46 TC 41 Z9 41 U1 4 U2 85 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3414 DI 10.1038/ncomms4414 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6YK UT WOS:000332672400001 PM 24572991 ER PT J AU Lin, F Nordlund, D Weng, TC Zhu, Y Ban, CM Richards, RM Xin, HL AF Lin, Feng Nordlund, Dennis Weng, Tsu-Chien Zhu, Ye Ban, Chunmei Richards, Ryan M. Xin, Huolin L. TI Phase evolution for conversion reaction electrodes in lithium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID ANODE MATERIAL; ELECTROCHEMICAL LITHIATION; NEGATIVE-ELECTRODE; HIGH-CAPACITY; NICKEL-OXIDE; STORAGE; NANOPARTICLES; TRANSPORT; NANOSCALE; INSERTION AB The performance of battery materials is largely governed by structural and chemical evolutions during electrochemical reactions. Therefore, resolving spatially dependent reaction pathways could enlighten mechanistic understanding, and enable rational design for rechargeable battery materials. Here, we present a phase evolution panorama via spectroscopic and three-dimensional imaging at multiple states of charge for an anode material (that is, nickel oxide nanosheets) in lithium-ion batteries. We reconstruct the three-dimensional lithiation/delithiation fronts and find that, in a fully electrolyte immersion environment, phase conversion can nucleate from spatially distant locations on the same slab of material. In addition, the architecture of a lithiated nickel oxide is a bent porous metallic framework. Furthermore, anode-electrolyte interphase is found to be dynamically evolving upon charging and discharging. The present study has implications for resolving the inhomogeneity of the general electrochemically driven phase transition (for example, intercalation reactions) and for the origin of inhomogeneous charge distribution in large-format battery electrodes. C1 [Lin, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Lin, Feng; Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Mat Sci Program, Golden, CO 80401 USA. [Nordlund, Dennis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94025 USA. [Zhu, Ye] Monash Univ, Monash Ctr Elect Microscopy, Clayton, Vic 3800, Australia. [Zhu, Ye] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Ban, Chunmei] Chem & Mat Sci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Xin, Huolin L.] Ctr Funct Nanomat, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lin, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM flin@lbl.gov; hxin@bnl.gov RI Richards, Ryan/B-3513-2008; Nordlund, Dennis/A-8902-2008; Zhu, Ye/A-1844-2011; Foundry, Molecular/G-9968-2014; Xin, Huolin/E-2747-2010 OI Nordlund, Dennis/0000-0001-9524-6908; Zhu, Ye/0000-0002-5217-493X; Xin, Huolin/0000-0002-6521-868X FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL); US Department of Energy (DOE) [DE-AC02-05CH11231]; Colorado School of Mines FX The synchrotron X-ray portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. S/TEM, tomography and EELS experiments were performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886, and at National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL), which is supported by the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. R. M. R. thanks the Colorado School of Mines for financial support. F. L. and H. L. X. would like to acknowledge Dr Marca Doeff (LBNL) for her generosity in providing equipments for some portion of the study, and Hao Zou (Hella) for the coin cell artwork. H. L. X. also would like to thank Robert Hovden and Julia Mundy for their input. NR 55 TC 56 Z9 56 U1 13 U2 184 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3358 DI 10.1038/ncomms4358 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6XN UT WOS:000332669600013 PM 24561888 ER PT J AU Liu, BY Wang, J Li, B Lu, L Zhang, XY Shan, ZW Li, J Jia, CL Sun, J Ma, E AF Liu, Bo-Yu Wang, Jian Li, Bin Lu, Lu Zhang, Xi-Yan Shan, Zhi-Wei Li, Ju Jia, Chun-Lin Sun, Jun Ma, Evan TI Twinning-like lattice reorientation without a crystallographic twinning plane SO NATURE COMMUNICATIONS LA English DT Article ID CLOSE-PACKED CRYSTALS; HCP METALS; COMPUTER-SIMULATION; DEFORMATION TWINS; DISLOCATIONS; BOUNDARIES; MAGNESIUM; GROWTH; INTERFACES AB Twinning on the {10 (1) over bar2} plane is a common mode of plastic deformation for hexagonal-closepacked metals. Here we report, by monitoring the deformation of submicron-sized single-crystal magnesium compressed normal to its prismatic plane with transmission electron microscopy, the reorientation of the parent lattice to a 'twin' lattice, producing an orientational relationship akin to that of the conventional {10 (1) over bar2} winning, but without a crystallographic mirror plane, and giving plastic strain that is not simple shear. Aberrationcorrected transmission electron microscopy observations reveal that the boundary between the parent lattice and the ` twin' lattice is composed predominantly of semicoherent basal/prismatic interfaces instead of the {10 (1) over bar2} winning plane. The migration of this boundary is dominated by the movement of these interfaces undergoing basal/prismatic transformation via local rearrangements of atoms. This newly discovered deformation mode by boundary motion mimics conventional deformation twinning but is distinct from the latter and, as such, broadens the known mechanisms of plasticity. C1 [Liu, Bo-Yu; Shan, Zhi-Wei; Sun, Jun; Ma, Evan] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China. [Liu, Bo-Yu; Shan, Zhi-Wei; Sun, Jun; Ma, Evan] Xi An Jiao Tong Univ, HARCC, Lab Mech Behav Mat, Xian 710049, Peoples R China. [Wang, Jian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Li, Bin] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39762 USA. [Lu, Lu; Jia, Chun-Lin] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. [Zhang, Xi-Yan] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400044, Peoples R China. [Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Ma, Evan] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Shan, ZW (reprint author), Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China. EM zwshan@mail.xjtu.edu.cn RI Li, Ju/A-2993-2008; Ma, En/A-3232-2010; xjtu, campnano/Q-1904-2015; Shan, Zhiwei/B-8799-2014; Wang, Jian/F-2669-2012 OI Li, Ju/0000-0002-7841-8058; Wang, Jian/0000-0001-5130-300X FU NSFC [50925104, 11132006, 51231005, 51321003, 50890170, 51071183, 51271208]; 973 Program of China [2010CB631003]; 111 Project of China [B06025]; Office of Basic Energy Sciences [FWP 06SCPE401]; US DOE [W-7405-ENG-36]; Center for Advanced Vehicular Systems, Mississippi State University; NSF [DMR-1240933, DMR-1120901] FX This work was supported by Grants from NSFC (50925104, 11132006, 51231005 and 51321003) and 973 Program of China (2010CB631003). We also appreciate the support from the 111 Project of China (B06025). J.W. was supported by Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DOE Contract number W-7405-ENG-36. B.L. gratefully acknowledges the support from Center for Advanced Vehicular Systems, Mississippi State University. J.L. acknowledges the support by NSF DMR-1240933 and DMR-1120901. E.M. acknowledges an adjunct professorship at XJTU. X.Y.Z. thanks the support from NSFC under Grant numbers 50890170, 51071183 and 51271208. We thank J.C. Wan, C.S. Ma and G. Yang for assistance in TEM experiments. NR 33 TC 37 Z9 38 U1 18 U2 152 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3297 DI 10.1038/ncomms4297 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6WX UT WOS:000332667600044 PM 24522756 ER PT J AU Lu, JL Low, KB Lei, Y Libera, JA Nicholls, A Stair, PC Elam, JW AF Lu, Junling Low, Ke-Bin Lei, Yu Libera, Joseph A. Nicholls, Alan Stair, Peter C. Elam, Jeffrey W. TI Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition SO NATURE COMMUNICATIONS LA English DT Article ID CATALYSTS; PLATINUM; TEMPERATURE; RUTHENIUM; FILMS; NANOCATALYSTS; MORPHOLOGY; OXIDATION; SURFACES; HYDROGEN AB Multi-metallic nanoparticles constitute a new class of materials offering the opportunity to tune the properties via the composition, atomic ordering and size. In particular, supported bimetallic nanoparticles have generated intense interest in catalysis and electrocatalysis. However, traditional synthesis methods often lack precise control, yielding a mixture of monometallic and bimetallic particles with various compositions. Here we report a general strategy for synthesizing supported bimetallic nanoparticles by atomic layer deposition, where monometallic nanoparticle formation is avoided by selectively growing the secondary metal on the primary metal nanoparticle but not on the support; meanwhile, the size, composition and structure of the bimetallic nanoparticles are precisely controlled by tailoring the precursor pulse sequence. Such exquisite control is clearly demonstrated through in situ Fourier transform infrared spectroscopy of CO chemisorption by mapping the gradual atomic-scale evolution in the surface composition, and further confirmed using aberration-corrected scanning transmission electron microscopy. C1 [Lu, Junling] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Peoples R China. [Low, Ke-Bin; Nicholls, Alan] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA. [Lei, Yu; Libera, Joseph A.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Lu, JL (reprint author), Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Peoples R China. EM jelam@anl.gov RI Lu, Junling/F-3791-2010; OI Lu, Junling/0000-0002-7371-8414; Lei, Yu/0000-0002-4161-5568 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Science; NSF MRI-R2 [DMR-0959470 ARRA] FX J.L., Y.L., J.A.L. and J.W.E. were supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Science. The UIC RRC JEOL JEM-ARM200CF was partially funded by NSF MRI-R2 award no. DMR-0959470 ARRA. NR 49 TC 47 Z9 47 U1 26 U2 211 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3264 DI 10.1038/ncomms4264 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6WX UT WOS:000332667600011 PM 24513581 ER PT J AU Mondav, R Woodcroft, BJ Kim, EH McCalley, CK Hodgkins, SB Crill, PM Chanton, J Hurst, GB VerBerkmoes, NC Saleska, SR Hugenholtz, P Rich, VI Tyson, GW AF Mondav, Rhiannon Woodcroft, Ben J. Kim, Eun-Hae McCalley, Carmody K. Hodgkins, Suzanne B. Crill, Patrick M. Chanton, Jeffrey Hurst, Gregory B. VerBerkmoes, Nathan C. Saleska, Scott R. Hugenholtz, Philip Rich, Virginia I. Tyson, Gene W. TI Discovery of a novel methanogen prevalent in thawing permafrost SO NATURE COMMUNICATIONS LA English DT Article ID MICROBIAL COMMUNITY; ANAEROBIC OXIDATION; NORTHERN SWEDEN; CO2 PRODUCTION; DATABASE; GENERATION; ENVIRONMENTS; ECOSYSTEMS; SEQUENCES; REDUCTION AB Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype Candidatus 'Methanoflorens stordalenmirensis' gen. nov. sp. nov. belonging to the uncultivated lineage 'Rice Cluster II' (Candidatus 'Methanoflorentaceae' fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands 'Methanoflorentaceae' are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost Candidatus 'M. stordalenmirensis' appears to be a key mediator of methane-based positive feedback to climate warming. C1 [Mondav, Rhiannon; Woodcroft, Ben J.; Hugenholtz, Philip; Tyson, Gene W.] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, Brisbane, Qld 4072, Australia. [Kim, Eun-Hae; Rich, Virginia I.] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [McCalley, Carmody K.; Saleska, Scott R.] Univ Arizona, Ecol & Evolutionary Biol Dept, Tucson, AZ 85721 USA. [Hodgkins, Suzanne B.; Chanton, Jeffrey] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Crill, Patrick M.] Stockholm Univ, Dept Geol Sci, S-10691 Stockholm, Sweden. [Hurst, Gregory B.; VerBerkmoes, Nathan C.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Tyson, GW (reprint author), Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, Brisbane, Qld 4072, Australia. EM g.tyson@uq.edu.au RI Tyson, Gene/C-6558-2013; Hugenholtz, Philip/G-9608-2011; OI Hurst, Gregory/0000-0002-7650-8009; Mondav, Rhiannon/0000-0002-5574-5531; Crill, Patrick/0000-0003-1110-3059 FU Australian Postgraduate Award Scholarship; ARC Discovery Outstanding Researcher Award [DP120103498]; ARC Queen Elizabeth II fellowship [DP1093175]; Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research [DE-SC0004632] FX We are grateful to Abisko Naturvetenskapliga Station staff for their support and Tyler Logan for sampling. We thank Margaret Butler, Fiona May and Serene Low for assistance with library preparation and sequencing, Manesh Shah and Robert Jones for assistance with metaproteomics, as well as Michael Imelfort, Connor Skennerton and Jason Steen for helpful discussion. We are grateful to J. Euzeby for etymological advice. R.M. was supported by an Australian Postgraduate Award Scholarship. P.H. was supported by an ARC Discovery Outstanding Researcher Award (DP120103498). G.W.T. was supported by an ARC Queen Elizabeth II fellowship (DP1093175). This study was funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grant DE-SC0004632. NR 58 TC 37 Z9 40 U1 8 U2 80 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3212 DI 10.1038/ncomms4212 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6VM UT WOS:000332663500003 PM 24526077 ER PT J AU Wang, W Haberer, G Gundlach, H Glasser, C Nussbaumer, T Luo, MC Lomsadze, A Borodovsky, M Kerstetter, RA Shanklin, J Byrant, DW Mockler, TC Appenroth, KJ Grimwood, J Jenkins, J Chow, J Choi, C Adam, C Cao, XH Fuchs, J Schubert, I Rokhsar, D Schmutz, J Michael, TP Mayer, KFX Messing, J AF Wang, W. Haberer, G. Gundlach, H. Glaesser, C. Nussbaumer, T. Luo, M. C. Lomsadze, A. Borodovsky, M. Kerstetter, R. A. Shanklin, J. Byrant, D. W. Mockler, T. C. Appenroth, K. J. Grimwood, J. Jenkins, J. Chow, J. Choi, C. Adam, C. Cao, X. -H. Fuchs, J. Schubert, I. Rokhsar, D. Schmutz, J. Michael, T. P. Mayer, K. F. X. Messing, J. TI The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle SO NATURE COMMUNICATIONS LA English DT Article ID EXPANSIN GENE-EXPRESSION; BRACHYPODIUM-DISTACHYON; ARABIDOPSIS-THALIANA; SUBSTITUTION RATE; DNA-SEQUENCES; PLANTS; RICE; PREDICTION; IDENTIFICATION; EVOLUTION AB The subfamily of the Lemnoideae belongs to a different order than other monocotyledonous species that have been sequenced and comprises aquatic plants that grow rapidly on the water surface. Here we select Spirodela polyrhiza for whole-genome sequencing. We show that Spirodela has a genome with no signs of recent retrotranspositions but signatures of two ancient whole-genome duplications, possibly 95 million years ago (mya), older than those in Arabidopsis and rice. Its genome has only 19,623 predicted protein-coding genes, which is 28% less than the dicotyledonous Arabidopsis thaliana and 50% less than monocotyledonous rice. We propose that at least in part, the neotenous reduction of these aquatic plants is based on readjusted copy numbers of promoters and repressors of the juvenile-to-adult transition. The Spirodela genome, along with its unique biology and physiology, will stimulate new insights into environmental adaptation, ecology, evolution and plant development, and will be instrumental for future bioenergy applications. C1 [Wang, W.; Kerstetter, R. A.; Michael, T. P.; Messing, J.] Rutgers State Univ, Waksman Inst Microbiol, Piscataway, NJ 08854 USA. [Haberer, G.; Gundlach, H.; Glaesser, C.; Nussbaumer, T.; Mayer, K. F. X.] German Res Ctr Environm Hlth GmbH, Inst Bioinformat & Syst Biol, Helmholtz Ctr Munich, MIPS IBIS, D-85764 Neuherberg, Germany. [Luo, M. C.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Lomsadze, A.; Borodovsky, M.] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA. [Shanklin, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Byrant, D. W.; Mockler, T. C.] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA. [Appenroth, K. J.] Univ Jena, Dept Plant Physiol, D-07743 Jena, Germany. [Grimwood, J.; Chow, J.; Choi, C.; Adam, C.; Rokhsar, D.; Schmutz, J.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Grimwood, J.; Jenkins, J.; Schmutz, J.] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Cao, X. -H.; Fuchs, J.; Schubert, I.] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Cytogenet & Genome Anal, D-06466 Stadt Seeland, Germany. RP Messing, J (reprint author), Rutgers State Univ, Waksman Inst Microbiol, 190 Frelinghuysen Rd, Piscataway, NJ 08854 USA. EM messing@waksman.rutgers.edu RI Cao, Hieu/Q-2457-2015; Mockler, Todd/L-2609-2013; Mayer, Klaus/M-7941-2015; Schmutz, Jeremy/N-3173-2013; OI Cao, Hieu/0000-0003-1230-4127; Mockler, Todd/0000-0002-0462-5775; Mayer, Klaus/0000-0001-6484-1077; Schmutz, Jeremy/0000-0001-8062-9172; Wang, Wenqin/0000-0001-6427-6338 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Selman Waksman Chair in Molecular Genetics FX This work was supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231 and the Selman Waksman Chair in Molecular Genetics. We thank Qinghua Wang for her assistance with BAC library construction. NR 70 TC 40 Z9 41 U1 6 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3311 DI 10.1038/ncomms4311 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6XC UT WOS:000332668300004 PM 24548928 ER PT J AU Zhang, KW Novak, OR Wei, ZY Gou, MY Zhang, XB Yu, Y Yang, HJ Cai, YH Strnad, M Liu, CJ AF Zhang, Kewei Novak, Ondrej Wei, Zhaoyang Gou, Mingyue Zhang, Xuebin Yu, Yong Yang, Huijun Cai, Yuanheng Strnad, Miroslav Liu, Chang-Jun TI Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins SO NATURE COMMUNICATIONS LA English DT Article ID EQUILIBRATIVE NUCLEOSIDE TRANSPORTER; EXPRESSION ANALYSIS; MERISTEM ACTIVITY; LEAF SENESCENCE; IN-PLANTA; GENE; FAMILY; BIOSYNTHESIS; METABOLISM; RECEPTOR AB Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant's growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C-14 or C-13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta. C1 [Zhang, Kewei; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yang, Huijun; Cai, Yuanheng; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Novak, Ondrej; Strnad, Miroslav] Palacky Univ, Fac Sci, Lab Growth Regulators, CZ-78371 Olomouc, Czech Republic. [Novak, Ondrej; Strnad, Miroslav] Inst Expt Bot AS CR, CZ-78371 Olomouc, Czech Republic. [Yu, Yong] St Johns Univ, Dept Biol Sci, New York, NY 11439 USA. [Strnad, Miroslav] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, CZ-78371 Olomouc, Czech Republic. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM cliu@bnl.gov RI Novak, Ondrej/F-7031-2014; Strnad, Miroslav/H-1858-2014; zhang, xuebin/K-3361-2015 OI Novak, Ondrej/0000-0003-3452-0154; FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) [DEAC0298CH10886]; National Science Foundation [MCB-1051675]; Office of Basic Energy Sciences, US Department of Energy [DEAC02-98CH10886]; Centre of the Region Hana for Biotechnological and Agricultural Research [ED0007/01/01]; Internal Grant Agency of Palacky University [PrF_2013_012] FX We thank Drs Thomas Schmulling (Free University of Berlin) and Peter Doerner (University of Edinburgh) for kindly providing the ARR5::GUS and CYCB1;1::uidA transgenic seeds, and Dr Angus Murphy (Purdue University) for sharing his fission yeast expression system and for thorough discussion. We thank Drs Zhiyang Zai and Jilian Fan (Brookhaven National Laboratory) for assistance in the paraffin section. This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) through Grant DEAC0298CH10886 (for genetic studies by K.Z., X.Z., G.M. and Y.C.), and by the National Science Foundation grant MCB-1051675 (for in vitro assays by Z.W and H.Y.) to C.-J.L. The use of confocal microscopy in the Centre for Nanosciences was supported by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DEAC02-98CH10886. Cytokinin profiling by LC-MS was supported by the Centre of the Region Hana for Biotechnological and Agricultural Research (ED0007/01/01) and the Internal Grant Agency of Palacky University (PrF_2013_012). NR 44 TC 34 Z9 35 U1 7 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2014 VL 5 AR 3274 DI 10.1038/ncomms4274 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AC6WX UT WOS:000332667600021 PM 24513716 ER PT J AU Liao, C Liu, R Hou, XS Sun, XG Dai, S AF Liao Chen Liu Rui Hou Xi-sen Sun Xiao-guang Dai Sheng TI Easy synthesis of poly(ionic liquid) for use as a porous carbon precursor SO NEW CARBON MATERIALS LA English DT Article DE Poly(ionic liquid); Carbon precursor; Porosity ID IONIC LIQUIDS AB A novel poly(ionic liquid) which can be used as a carbon precursor was synthesized using a one pot reaction using 1, 2-dimethylimidazole and epichlorohydrin as starting materials. The unique features of this poly (ionic liquid) include: no additional initiator is required; anions can be metathesized to regulate the micropore size of the carbonaceous materials. Carbonaceous materials derived from the poly(ionic liquid) with chloride anions (C1(-)) as counter ions have a low surface area of 47m(2)/g. However, by replacing Cl with a bulky bis(trifluoromethylsulfonyl) imide (TFSI-) anion, the carbonaceous materials produced have a high surface area of.595m(2)/g, while replacing a-with dicyanoimide (N(CN)2(-)) anion results in a reduced surface area of 30 m(2)/g. C1 [Liao Chen; Liu Rui; Hou Xi-sen; Sun Xiao-guang; Dai Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Liao, Chen/0000-0001-5168-6493 FU U. S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering, under contract with UT-Battelle, LLC. FX This research was supported by the U. S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering, under contract with UT-Battelle, LLC. NR 9 TC 1 Z9 1 U1 9 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1007-8827 J9 NEW CARBON MATER JI New Carbon Mater. PD FEB PY 2014 VL 29 IS 1 BP 78 EP 80 DI 10.1016/S1872-5805(14)60127-X PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA AC2RA UT WOS:000332350400010 ER PT J AU Socol, Y Cuttler, JM Dobrzynski, L Doss, M Feinendegen, LE Fornalski, KW Janiak, MK Miller, ML Rithidech, KN Sanders, CL Scott, BR Ulsh, B Vaiserman, A Welsh, J AF Socol, Yehoshua Cuttler, Jerry M. Dobrzynski, Ludwik Doss, Mohan Feinendegen, Ludwig E. Fornalski, Krzysztof W. Janiak, Marek K. Miller, Mark L. Rithidech, Kanokporn Noy Sanders, Charles L. Scott, Bobby R. Ulsh, Brant Vaiserman, Alexander Welsh, James TI Comment on " NAIRAS aircraft radiation model development, dose climatology, and initial validation" by Mertens et al. SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Editorial Material DE low dose radiation; LNT model; radiophobia C1 [Socol, Yehoshua] Falcon Analyt, Karney Shomron, Israel. [Cuttler, Jerry M.] Cuttler & Associates Inc, Mississauga, ON, Canada. [Dobrzynski, Ludwik] Natl Ctr Nucl Res, Educ Training Div, Otwock, Poland. [Doss, Mohan] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Feinendegen, Ludwig E.] Univ Dusseldorf, Dusseldorf, Germany. [Fornalski, Krzysztof W.] Polish Nucl Soc, Warsaw, Poland. [Janiak, Marek K.] Mil Inst Hyg & Epidemiol, Dept Radiobiol & Radiat Protect, Warsaw, Poland. [Miller, Mark L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rithidech, Kanokporn Noy] SUNY Stony Brook, Dept Pathol, Stony Brook, NY 11794 USA. [Sanders, Charles L.] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon 305701, South Korea. [Scott, Bobby R.] Lovelace Resp Res Inst, Albuquerque, NM USA. [Ulsh, Brant] MH Chew & Associates, Cincinnati, OH USA. [Vaiserman, Alexander] Ukraine Acad Med Sci, Inst Gerontol, Lab Epigenet, UA-252655 Kiev, Ukraine. [Welsh, James] No Illinois Univ, De Kalb, IL 60115 USA. [Welsh, James] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Socol, Y (reprint author), Falcon Analyt, Karney Shomron, Israel. EM socol@FalconAnalytics.com NR 9 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD FEB PY 2014 VL 12 IS 2 BP 120 EP 121 DI 10.1002/2013SW001021 PG 2 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA AD1HU UT WOS:000332985800003 ER PT J AU Zhao, D Shui, JL Grabstanowicz, LR Chen, C Commet, SM Xu, T Lu, J Liu, DJ AF Zhao, Dan Shui, Jiang-Lan Grabstanowicz, Lauren R. Chen, Chen Commet, Sean M. Xu, Tao Lu, Jun Liu, Di-Jia TI Highly Efficient Non-Precious Metal Electrocatalysts Prepared from One-Pot Synthesized Zeolitic Imidazolate Frameworks SO ADVANCED MATERIALS LA English DT Article DE metal-organic frameworks; solid-state synthesis; fuel cells; catalysis; oxygen reduction reactions ID OXYGEN REDUCTION REACTION; NITROGEN-DOPED CARBON; MEMBRANE FUEL-CELLS; ORGANIC FRAMEWORKS; SURFACE-AREA; NANOPOROUS CARBONS; AZOLATE FRAMEWORKS; CATHODE CATALYSTS; IRON; NANOTUBES C1 [Zhao, Dan; Shui, Jiang-Lan; Chen, Chen; Commet, Sean M.; Lu, Jun; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Grabstanowicz, Lauren R.; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov RI Zhao, Dan/D-5975-2011 OI Zhao, Dan/0000-0002-4427-2150 FU U.S. Department of Energy's the Office of Science; U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office FX This work was supported by U.S. Department of Energy's the Office of Science and the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office. The authors wish to thank Dr. Hsien Hau Wang and Mr. Howard Dobbs for their assistance in Raman spectroscopy, Ms Briana Reprogle and Dr. Deborah J. Myers for their assistance in electrochemical test. D. Zhao and J.-L. Shui contributed equally to this work. NR 54 TC 100 Z9 100 U1 42 U2 290 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2014 VL 26 IS 7 BP 1093 EP 1097 DI 10.1002/adma.201304238 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB6OR UT WOS:000331909800014 PM 24357431 ER PT J AU Fister, TT Zhou, H Luo, Z Seo, SSA Hruszkewycz, SO Proffit, DL Eastman, JA Fuoss, PH Baldo, PM Lee, HN Fong, DD AF Fister, T. T. Zhou, H. Luo, Z. Seo, S. S. A. Hruszkewycz, S. O. Proffit, D. L. Eastman, J. A. Fuoss, P. H. Baldo, P. M. Lee, H. N. Fong, D. D. TI Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures SO APL MATERIALS LA English DT Article ID OXIDE HETEROSTRUCTURES; SRTIO3/LAALO3 INTERFACES; PHASE-TRANSITION; ELECTRON-GAS; THIN-FILMS; SUPERLATTICES; PEROVSKITES; LA2CUO4+Y; LAALO3; GD2O3 AB Many complex oxides display an array of structural instabilities often tied to altered electronic behavior. For oxide heterostructures, several different interfacial effects can dramatically change the nature of these instabilities. Here, we investigate LaAlO3/SrTiO3 (001) heterostructures using synchrotron x-ray scattering. We find that when cooling from high temperature, LaAlO3 transforms from the Pm(3) over bar m to the Imma phase due to strain. Furthermore, the first 4 unit cells of the film adjacent to the substrate exhibit a gradient in rotation angle that can couple with polar displacements in films thinner than that necessary for 2D electron gas formation. (C) 2014 Author(s). C1 [Fister, T. T.; Hruszkewycz, S. O.; Proffit, D. L.; Eastman, J. A.; Fuoss, P. H.; Baldo, P. M.; Fong, D. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zhou, H.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Luo, Z.] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Seo, S. S. A.; Lee, H. N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Fister, TT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI luo, zhenlin/G-2662-2013; Seo, Sung Seok/B-6964-2008; Lee, Ho Nyung/K-2820-2012 OI Seo, Sung Seok/0000-0002-7055-5314; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors thank J. M. Rondinelli and P. Zapol for valuable discussions. This work was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 57 TC 15 Z9 15 U1 4 U2 77 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2014 VL 2 IS 2 AR 021102 DI 10.1063/1.4865160 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1US UT WOS:000332282800002 ER PT J AU Ghosh, K Balog, ERM Sista, P Williams, DJ Kelly, D Martinez, JS Rocha, RC AF Ghosh, Koushik Balog, Eva Rose M. Sista, Prakash Williams, Darrick J. Kelly, Daniel Martinez, Jennifer S. Rocha, Reginaldo C. TI Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides SO APL MATERIALS LA English DT Article ID CALCIUM-PHOSPHATE CERAMICS; SYSTEM; POLYPENTAPEPTIDE; MINERALIZATION; NANOMATERIALS; TRANSITIONS; SEQUENCE AB We report a method for creating hybrid organic-inorganic "nanoflowers" using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis. (C) 2014 Author(s). C1 [Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash; Williams, Darrick J.; Martinez, Jennifer S.; Rocha, Reginaldo C.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Kelly, Daniel] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Martinez, JS (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM jenm@lanl.gov; rcrocha@lanl.gov RI Balog, Eva Rose/P-7661-2014 OI Balog, Eva Rose/0000-0001-6792-6914 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U. S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (nanocomposite assembly and characterization) and by LANL's Directed Research and Development program (elastin engineering, and a Director's postdoctoral fellowship (K. G.)). This work was performed at the Center for Integrated Nanotechnologies (CINT), a U. S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). We gratefully acknowledge the assistance of Antonya Sanders with the preparation of our article's cover art (an artificially colored SEM image of a nanoflower). NR 43 TC 8 Z9 8 U1 5 U2 50 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2014 VL 2 IS 2 AR 021101 DI 10.1063/1.4863235 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1US UT WOS:000332282800001 ER PT J AU Lu, P Chandross, M Boyle, TJ Clark, BG Vianco, P AF Lu, Ping Chandross, Michael Boyle, Timothy J. Clark, Blythe G. Vianco, Paul TI Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments SO APL MATERIALS LA English DT Article ID THIN-FILMS; AU ALLOYS; NANOPARTICLES; CLUSTERS AB Using in situ scanning transmission electron microscopy heating experiments, we observed the formation of a 3-dimensional (3D) epitaxial Cu-core and Ag-shell equilibrium structure of a Cu-Ag nanoalloy. The structure was formed during the thermal interaction of Cu(similar to 12 nm) and Ag NPs(similar to 6 nm) at elevated temperatures (150-300 degrees C) by the Ag NPs initially wetting the Cu NP along its {111} surfaces at one or multiple locations forming epitaxial Ag/Cu (111) interfaces, followed by Ag atoms diffusing along the Cu surface. This phenomenon was confirmed through Monte Carlo simulations to be a nanoscale effect related to the large surface-to-volume ratio of the NPs. (C) 2014 Author(s). C1 [Lu, Ping; Chandross, Michael; Boyle, Timothy J.; Clark, Blythe G.; Vianco, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM plu@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 25 TC 5 Z9 5 U1 4 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2014 VL 2 IS 2 AR UNSP 022107 DI 10.1063/1.4866052 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1US UT WOS:000332282800009 ER PT J AU Siemons, W Beekman, C Fowlkes, JD Balke, N Tischler, JZ Xu, R Liu, W Gonzales, CM Budai, JD Christen, HM AF Siemons, W. Beekman, C. Fowlkes, J. D. Balke, N. Tischler, J. Z. Xu, R. Liu, W. Gonzales, C. M. Budai, J. D. Christen, H. M. TI Focused-ion-beam induced damage in thin films of complex oxide BiFeO3 SO APL MATERIALS LA English DT Article ID FIB-INDUCED DAMAGE AB An unexpected, strong deterioration of crystal quality is observed in epitaxial perovskite BiFeO3 films in which microscale features have been patterned by focusedion- beam (FIB) milling. Specifically, synchrotron x-ray microdiffraction shows that the damaged region extends to tens of mu m, but does not result in measureable changes to morphology or stoichiometry. Therefore, this change would go undetected with standard laboratory equipment, but can significantly influence local material properties and must be taken into account when using a FIB to manufacture nanostructures. The damage is significantly reduced when a thin metallic layer is present on top of the film during the milling process, clearly indicating that the reduced crystallinity is caused by ion beam induced charging. (C) 2014 Author(s). C1 [Siemons, W.; Beekman, C.; Budai, J. D.; Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Fowlkes, J. D.; Balke, N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Tischler, J. Z.; Xu, R.; Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gonzales, C. M.] Univ Tennessee, Knoxville, TN 37996 USA. RP Siemons, W (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Xu, Ruqing/K-3586-2012; Christen, Hans/H-6551-2013; Balke, Nina/Q-2505-2015; Budai, John/R-9276-2016 OI Xu, Ruqing/0000-0003-1037-0059; Christen, Hans/0000-0001-8187-7469; Balke, Nina/0000-0001-5865-5892; Budai, John/0000-0002-7444-1306 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; DOE-BES [DE-AC02-06CH11357] FX Research supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Focused ion beam patterning (J.D.F.), and parts of the AFM work (N.B.) were performed at the Center for Nanophase Materials Sciences, which is sponsored by DOE-BES. Use of the Advanced Photon Source was supported by DOE-BES under Contract No. DE-AC02-06CH11357 (J.Z.T., R.X., and W.L.). NR 22 TC 1 Z9 1 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2014 VL 2 IS 2 AR 022109 DI 10.1063/1.4866051 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1US UT WOS:000332282800011 ER PT J AU Subramaniyan, A Perkins, JD O'Hayre, RP Lany, S Stevanovic, V Ginley, DS Zakutayev, A AF Subramaniyan, Archana Perkins, John D. O'Hayre, Ryan P. Lany, Stephan Stevanovic, Vladan Ginley, David S. Zakutayev, Andriy TI Non-equilibrium deposition of phase pure Cu2O thin films at reduced growth temperature SO APL MATERIALS LA English DT Article ID PULSED-LASER DEPOSITION; COPPER-OXIDE FILMS; CUPROUS-OXIDE; SOLAR-CELLS; SUBSTRATE; PHOTOVOLTAICS; EPITAXY AB Cuprous oxide (Cu2O) is actively studied as a prototypical material for energy conversion and electronic applications. Here we reduce the growth temperature of phase pure Cu2O thin films to 300 degrees C by intentionally controlling solely the kinetic parameter (total chamber pressure, P-tot) at fixed thermodynamic condition (0.25 mTorr pO(2)). A strong non-monotonic effect of P-tot on Cu-O phase formation is found using high-throughput combinatorial-pulsed laser deposition. This discovery creates new opportunities for the growth of Cu2O devices with low thermal budget and illustrates the importance of kinetic effects for the synthesis of metastable materials with useful properties. (C) 2014 Author(s). C1 [Subramaniyan, Archana; Perkins, John D.; Lany, Stephan; Stevanovic, Vladan; Ginley, David S.; Zakutayev, Andriy] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Subramaniyan, Archana; O'Hayre, Ryan P.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. RP Subramaniyan, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM asubrama@mymail.mines.edu OI Lany, Stephan/0000-0002-8127-8885; Zakutayev, Andriy/0000-0002-3054-5525 FU U.S. Department of Energy, office of Energy Efficiency and Renewable Energy, Next Generation PV II project within the SunShot initiative FX This work was funded by U.S. Department of Energy, office of Energy Efficiency and Renewable Energy, as a part of a Next Generation PV II project within the SunShot initiative. NR 34 TC 23 Z9 23 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2014 VL 2 IS 2 AR 022105 DI 10.1063/1.4865457 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1US UT WOS:000332282800007 ER PT J AU Ali, MQ Al-Shaer, E Samak, T AF Ali, Muhammad Qasim Al-Shaer, Ehab Samak, Taghrid TI Firewall Policy Reconnaissance: Techniques and Analysis SO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY LA English DT Article DE Security; reconnaissance; intrusion detection ID DECISION LISTS; DISCOVERY AB In the past decade, scanning has been widely used as a reconnaissance technique to gather critical network information to launch a follow up attack. To combat, numerous intrusion detectors have been proposed. However, scanning methodologies have shifted to the next-generation paradigm to be evasive. The next-generation reconnaissance techniques are intelligent and stealthy. These techniques use a low volume packet sequence and intelligent calculation for the victim selection to be more evasive. Previously, we proposed models for firewall policy reconnaissance that are used to set bound for learning accuracy as well as to put minimum requirements on the number of probes. We presented techniques for reconstructing the firewall policy by intelligently choosing the probing packets based on the responses of previous probes. In this paper, we show the statistical analysis of these techniques and discuss their evasiveness along with the improvement. First, we present the previously proposed two techniques followed by the statistical analysis and their evasiveness to current detectors. Based on the statistical analysis, we show that these techniques still exhibit a pattern and thus can be detected. We then develop a hybrid approach to maximize the benefit by combining the two heuristics. C1 [Ali, Muhammad Qasim; Al-Shaer, Ehab] Univ N Carolina, Dept Software & Informat Syst, Charlotte, NC 28223 USA. [Samak, Taghrid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Ali, MQ (reprint author), Univ N Carolina, Dept Software & Informat Syst, Charlotte, NC 28223 USA. EM mali12@uncc.edu; ealshaer@uncc.edu; tsamak@lbl.gov FU National Science Foundation [CNS-1023868] FX This work was supported by the National Science Foundation under Grant CNS-1023868. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. C.-C. Jay Kuo. NR 35 TC 2 Z9 2 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1556-6013 EI 1556-6021 J9 IEEE T INF FOREN SEC JI IEEE Trans. Inf. Forensic Secur. PD FEB PY 2014 VL 9 IS 2 BP 296 EP 308 DI 10.1109/TIFS.2013.2296874 PG 13 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AC3YX UT WOS:000332458800013 ER PT J AU Levine, F Kayea, RV Wexler, R Sadvary, DJ Melick, C La Scala, J AF Levine, Felicia Kayea, Ronald V., III Wexler, Robert Sadvary, D. J. Melick, Cory La Scala, John TI Heats of Combustion of Fatty Acids and Fatty Acid Esters SO JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY LA English DT Article DE JP-8; Biodiesel; Heat of combustion; Fatty acids; FAME; Group contribution method; Modeling ID BIODIESEL; STABILITY; FUELS AB The military uses JP-8, a kerosene type hydrocarbon, to fuel most of its vehicles and is seeking a renewable alternative fuel that meets strict JP-8 specifications. Biodiesel is typically a mixture of different alkyl esters produced from the transesterification of triglycerides readily available in plant oils and used cooking oil. To date, no traditional biodiesel meets the requirements for heat of combustion, freezing point, viscosity and oxidative stability to be a stand-alone replacement for JP-8. This work is a fundamental survey of the heat of combustion of single fatty acid esters and a predictive model for estimating the heat of combustion given a known molecular structure. The gross heat of combustion of various C6-C18 fatty acids and the methyl, propyl and isopropyl esters of these fatty acids was measured. This study sought to relate the effect of chain length, degree of unsaturation and branching to the critical fuel property of the gross heat of combustion (H-c). It was found that H-c (kJ/g) increased with chain length. A nearly linear relationship was found between wt% carbon and hydrogen, and H-c. Group contribution models previously published for hydrocarbons and polymers were modified to more accurately predict the heat of combustion of the fatty acids and esters. Modification of the molar heat values of carboxylic acid, methyl, and methylene groups improved correlation of the model with the experimental results. C1 [Levine, Felicia] US Army Res Lab, Data Matrix Solut Inc, RDRL WMM C, Aberdeen Proving Ground, MD 21005 USA. [Kayea, Ronald V., III; Wexler, Robert; Sadvary, D. J.; Melick, Cory] Drexel Univ, Oak Ridge Inst Sci & Educ ORISE, Philadelphia, PA 19104 USA. [La Scala, John] US Army Res Lab, RDRL WMM C, Aberdeen Proving Ground, MD 21005 USA. RP Levine, F (reprint author), US Army Res Lab, Data Matrix Solut Inc, RDRL WMM C, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 USA. EM felicia.levine.ctr@mail.mil FU US Army Research Laboratory FX This research was supported in part by an appointment to the Student Research Participation Program at the US Army Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USARL. NR 27 TC 4 Z9 4 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0003-021X EI 1558-9331 J9 J AM OIL CHEM SOC JI J. Am. Oil Chem. Soc. PD FEB PY 2014 VL 91 IS 2 BP 235 EP 249 DI 10.1007/s11746-013-2367-0 PG 15 WC Chemistry, Applied; Food Science & Technology SC Chemistry; Food Science & Technology GA AC6WQ UT WOS:000332666800005 ER PT J AU Lee, S Smith, DB Xu, J AF Lee, Sanghyun Smith, D. Barton Xu, Jun TI Characteristics of p-type ZnTe films grown on sputtered ZnO by using pulsed laser deposition SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE p-type zinc telluride (ZnTe); Zinc oxide (ZnO); Heterostructure; Pulsed laser deposition (PLD) ID MOLECULAR-BEAM EPITAXY; NITROGEN; DIODES; CDTE AB p-type ZnTe films were grown on a sputtered ZnO layer by using pulsed laser deposition in a nitrogen atmosphere. As the growth temperature was increased from 220 to 320 A degrees C, hole concentrations in the ZnTe films decreased significantly from 1.3 x 10(18) to 1.4 x 10(16) cm(-3) while the hole mobility increased slightly. The film growth at higher temperatures resulted in the loss of p-type behavior in the ZnTe films and on a deterioration in the film's crystallinity. The degradation of crystal quality and p-type characteristics of ZnTe are most likely due to instable nitrogen bonding in ZnTe at high temperatures and to the large lattice mismatch of similar to 25% between the ZnTe (111) and the ZnO (0001) crystal planes. C1 [Lee, Sanghyun; Smith, D. Barton; Xu, Jun] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lee, Sanghyun] Korea Inst Sci & Technol, Inst Adv Composite Mat, Wonju 565902, South Korea. RP Lee, S (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM sanghyun.lee@kist.re.kr FU National Nuclear Security Administration, U. S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Korea Institute of Science and Technology (KIST) Institutional Program FX This research at Oak Ridge National Laboratory was sponsored by the National Nuclear Security Administration, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. S. Lee acknowledges the financial support by the Korea Institute of Science and Technology (KIST) Institutional Program. NR 15 TC 1 Z9 1 U1 3 U2 18 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD FEB PY 2014 VL 64 IS 3 BP 461 EP 464 DI 10.3938/jkps.64.461 PG 4 WC Physics, Multidisciplinary SC Physics GA AC3WG UT WOS:000332451500022 ER PT J AU Barth, N George, D Ahzi, S Remond, Y Joulaee, N Khaleel, MA Bouyer, F AF Barth, N. George, D. Ahzi, S. Remond, Y. Joulaee, N. Khaleel, M. A. Bouyer, F. TI Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations SO MECHANICS OF TIME-DEPENDENT MATERIALS LA English DT Article DE Cooling process; Nuclear glass cast; FEM simulation; Viscoelasticity; Structural relaxation ID RESIDUAL-STRESSES; WASTE GLASS; RECOVERY; MODEL; RESPONSES; RESIN; JUMPS; EPOXY AB The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress build-up at ambient temperature. C1 [Barth, N.; George, D.; Ahzi, S.; Remond, Y.; Joulaee, N.] Univ Strasbourg, CNRS, ICube, F-67000 Strasbourg, France. [Khaleel, M. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Bouyer, F.] CEA, Ctr Marcoule DTCD, SECM, F-30207 Bagnols Sur Ceze, France. RP George, D (reprint author), Univ Strasbourg, CNRS, ICube, 2 Rue Boussingault, F-67000 Strasbourg, France. EM george@unistra.fr OI khaleel, mohammad/0000-0001-7048-0749; Barth, Nicolas/0000-0002-5519-0513 FU CEA (LCLT); ANDRA (French National Radioactive Waste Management Agency); AREVA NC FX The authors wish to acknowledge the CEA (LCLT) for its financial support as well as providing the experimental data. The ANDRA (French National Radioactive Waste Management Agency) and AREVA NC are also gratefully acknowledged for supporting this study. Finally, thanks are due to V. Doquet for fruitful discussions (Laboratoire de Mecanique des Solides, CNRS-Ecole Polytechnique, Palaiseau, France). NR 39 TC 4 Z9 4 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1385-2000 EI 1573-2738 J9 MECH TIME-DEPEND MAT JI Mech. Time-Depend. Mater. PD FEB PY 2014 VL 18 IS 1 BP 81 EP 96 DI 10.1007/s11043-013-9215-3 PG 16 WC Mechanics; Materials Science, Characterization & Testing SC Mechanics; Materials Science GA AC4JU UT WOS:000332488000005 ER PT J AU Law, JD Tripp, JL Smith, TE Svoboda, JM Rutledge, VJ Garn, TG Macaluso, L AF Law, Jack D. Tripp, Julia L. Smith, Tara E. Svoboda, John M. Rutledge, Veronica J. Garn, Troy G. Macaluso, Larry TI MICROFLUIDIC-BASED ROBOTIC SAMPLING SYSTEM FOR RADIOACTIVE SOLUTIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE microfluidics; sampling; nuclear ID SEPARATION; EXTRACTION AB A novel microfluidic-based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near-real-time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built, and tested. System testing demonstrated operability of the microfluidic-based sample system and identified,system modifications to optimize performance. C1 [Law, Jack D.; Tripp, Julia L.; Smith, Tara E.; Svoboda, John M.; Rutledge, Veronica J.; Garn, Troy G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Macaluso, Larry] Adv Machine Design, Carson City, NV 89703 USA. RP Law, JD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jack.law@inl.gov OI Law, Jack/0000-0001-7085-7542 FU U.S. Department of Energy, Office of Nuclear Energy, Science and Technology [DE-AC07-05ID14517] FX This work was performed under the auspices and financial support of the U.S. Department of Energy, Office of Nuclear Energy, Science and Technology, through contract DE-AC07-05ID14517. We wish to thank W. Bauer of the Idaho National Laboratory and D. Bowers, C. Pereira, and K. Nichols of Argonne National Laboratory and M. Harris and S. Lamont of Los Alamos National Laboratory for support in development and testing of the microfluidic sample chips. NR 11 TC 1 Z9 1 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2014 VL 185 IS 2 BP 216 EP 225 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AB9VG UT WOS:000332143200007 ER PT J AU Balaji, P Huang, ZY AF Balaji, Pavan Huang, Zhiyi TI Special issue on programming models and applications for multicores and manycores - Guest Editors' Introduction SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Huang, Zhiyi] Univ Otago, Dunedin, New Zealand. RP Balaji, P (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM balaji@mcs.anl.gov; hzy@cs.otago.ac.nz NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD FEB PY 2014 VL 40 IS 2 SI SI BP 33 EP 34 DI 10.1016/j.parco.2013.12.002 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA AC7ZD UT WOS:000332751900001 ER PT J AU Xu, W DeCroix, DS Sun, X AF Xu, Wei DeCroix, David S. Sun, Xin TI Mechanistic based DEM simulation of particle attrition in a jet cup SO POWDER TECHNOLOGY LA English DT Article DE Particle attrition; Fluidization system; Computational fluid dynamics; Discrete element model ID CIRCULATING FLUIDIZED-BED; IMPACT ATTRITION; CATALYST ATTRITION; SIZE DISTRIBUTION; LIME SORBENTS; SOLIDS; MODEL; GRANULATION; COMBUSTION; ABSORBER AB The attrition of particles is a major industrial concern in many fluidization systems as it can have undesired effects on the product quality and on the reliable operation of process equipment. Therefore, to accommodate the screening and selection of catalysts for a specific process in fluidized beds, risers, or cyclone applications, their attrition propensity is usually estimated through jet cup attrition testing, where the test material is subjected to high gas velocities in a jet cup. However, this method is far from perfect despite its popularity, largely due to its inconsistency in different testing set-ups. In order to better understand the jet cup testing results as well as their sensitivity to different operating conditions, a coupled computational fluid dynamic (CFD)-discrete element method (DEM) model has been developed in the current study to investigate the particle attrition in a jet cup and its dependence on various factors, e.g. jet velocity, initial particle size, particle density, and apparatus geometry. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xu, Wei; Sun, Xin] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [DeCroix, David S.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87545 USA. RP DeCroix, DS (reprint author), Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, POB 1663,MS C921, Los Alamos, NM 87545 USA. EM ddecroix@lanl.gov FU US DOE [DE-AC05-76RL01830, DE-AC52-06NA25396]; U.S. Department of Energy Office of Fossil Energy's Carbon Capture Simulation Initiative FX Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the US DOE under Contract No. DE-AC05-76RL01830. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the US DOE under Contract No. DE-AC52-06NA25396. This work was funded by the U.S. Department of Energy Office of Fossil Energy's Carbon Capture Simulation Initiative led by the National Energy Technology Laboratory. The authors thank Jeff Dietiker for his assistance in resolving MFIX program-structure questions. NR 52 TC 4 Z9 4 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2014 VL 253 BP 385 EP 392 DI 10.1016/j.powtec.2013.11.031 PG 8 WC Engineering, Chemical SC Engineering GA AC3OH UT WOS:000332430600051 ER PT J AU Lane, WA Storlie, CB Montgomery, CJ Ryan, EM AF Lane, William A. Storlie, Curtis B. Montgomery, Christopher J. Ryan, Emily M. TI Numerical modeling and uncertainty quantification of a bubbling fluidized bed with immersed horizontal tubes SO POWDER TECHNOLOGY LA English DT Article DE Carbon capture; Bayesian calibration; Fluidized beds; Hydrodynamics; Tube bundle; Uncertainty quantification ID EXPERIMENTAL VALIDATION; VARIABLE SELECTION; SIMULATION; BEHAVIOR; HYDRODYNAMICS; CALIBRATION; SOLIDS; FLOWS; CODES; BANKS AB Within the field of computational fluid dynamics (CFD), uncertainty quantification (UQ) is becoming increasingly important. Reporting simulation results without uncertainties can be misleading and potentially dangerous. In this paper we considered an isothermal, non-reacting bubbling fluidized bed with immersed horizontal tubes as a test problem for implementing a CFD UQ framework While all CFD model input parameters have some inherent uncertainties associated with them, we focused only on those that have been demonstrated as important in previous studies and are difficult to quantify. These include coefficients of restitution, friction angles, packed bed void fractions, and drag models. Statistical UQ techniques, including sensitivity analysis and Bayesian calibration, were used to analyze the system. The sensitivity analysis results suggested that the friction angles for solid-solid interactions and drag models had significant effects on bubble frequency and phase fraction. From the calibration procedure, a statistical response surface model (emulator) was developed to explore the state-space of the model parameters. The resulting posterior distributions of the model parameters identified low friction angles for solid-solid interactions and the Wen-Yu correlation for the drag model as the optimal model input parameters and values (i.e., values that could have plausibly reproduced the experimental results). The remaining parameters were found to be non-influential. These results are currently being implemented in simulations of a bench-scale carbon capture system. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lane, William A.; Ryan, Emily M.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [Storlie, Curtis B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Montgomery, Christopher J.] UPS Corp, Morgantown, WV 26505 USA. RP Ryan, EM (reprint author), Boston Univ, Dept Mech Engn, 110 Cummington Mall,ENG 416, Boston, MA 02215 USA. EM emryan@bu.edu RI Ryan, Emily/I-8183-2015 OI Ryan, Emily/0000-0001-6111-3269 FU U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory FX This work was funded by the U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory. The authors are grateful to Jeff Dietiker, Aytekin Gel, and Tingwen Li from MFIX for the useful discussions. NR 48 TC 7 Z9 7 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2014 VL 253 BP 733 EP 743 DI 10.1016/j.powtec2013.11.037 PG 11 WC Engineering, Chemical SC Engineering GA AC3OH UT WOS:000332430600093 ER PT J AU Lei, SD Ge, LH Najmaei, S George, A Kappera, R Lou, J Chhowalla, M Yamaguchi, H Gupta, G Vajtai, R Mohite, AD Ajayan, PM AF Lei, Sidong Ge, Liehui Najmaei, Sina George, Antony Kappera, Rajesh Lou, Jun Chhowalla, Manish Yamaguchi, Hisato Gupta, Gautam Vajtai, Robert Mohite, Aditya D. Ajayan, Pulickel M. TI Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe SO ACS NANO LA English DT Article DE photodetector; 2D layered materials; resonance Raman scattering; InSe; photoconductivity ID MONOLAYER MOS2; COMPOUND INSE; GRAPHENE; GASE; PHOTODETECTORS; GROWTH; TRANSISTORS; SEMICONDUCTORS; TRANSITIONS; NANOSHEETS AB Atomic layers of two-dimensional (2D) materials have recently been the focus of extensive research. This follows from the footsteps of graphene, which has shown great potential for ultrathin optoelectronic devices. In this paper, we present a comprehensive study on the synthesis, characterization, and thin film photodetector application of atomic layers of InSe. Correlation between resonance Raman spectroscopy and photoconductivity measurements allows us to systematically track the evolution of the electronic band structure of 2D InSe as its thickness approaches few atomic layers. Analysis of photoconductivity spectra suggests that few-layered InSe has an indirect band gap of 1.4 eV, which is 200 meV higher than bulk InSe due to the suppressed interlayer electron orbital coupling. Temperature-dependent photocurrent measurements reveal that the suppressed interlayer interaction also results in more localized p(2)-like orbitals, and these orbitals couple strongly with the in-plane E' and E '' phonons. Finally, we measured a strong photoresponse of 34.7 mA/W and fast response time of 488 mu s for a few layered InSe, suggesting that it is a good material for thin film optoelectronic applications. C1 [Lei, Sidong; Ge, Liehui; Najmaei, Sina; George, Antony; Lou, Jun; Vajtai, Robert; Ajayan, Pulickel M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Kappera, Rajesh; Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci, Piscataway, NJ 08854 USA. [Yamaguchi, Hisato; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. RP Mohite, AD (reprint author), Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, POB 1663, Los Alamos, NM 87545 USA. EM amohite@lanl.gov; ajayan@rice.edu RI Yamaguchi, Hisato/C-5571-2008; Ge, Liehui/N-7881-2015; Lei, Sidong/A-8600-2016; OI Yamaguchi, Hisato/0000-0002-6703-8826; Lei, Sidong/0000-0001-9129-2202; George, Antony/0000-0002-9317-5920; Ge, Liehui/0000-0002-1990-5681; Kappera, Rajesh/0000-0003-1792-4405 FU MURI ARO program [W911NF-11-1-0362]; FAME, one of six centers of STARnet, a Semiconductor Research Corporation program; MARCO; DARPA; Laboratory Directed Research and Development Program; CINT at LANL an affirmative action equal opportunity employer; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the MURI ARO program, grant no. W911NF-11-1-0362, and by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. The research was also supported by the Laboratory Directed Research and Development Program and by CINT at LANL an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract no. DE-AC52-06NA25396. NR 51 TC 76 Z9 76 U1 51 U2 249 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2014 VL 8 IS 2 BP 1263 EP 1272 DI 10.1021/nn405036u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB8SB UT WOS:000332059200020 PM 24392873 ER PT J AU Chang, SH Kim, J Phatak, C D'Aquila, K Kim, SK Kim, J Song, SJ Hwang, CS Eastman, JA Freeland, JW Hong, S AF Chang, Seo Hyoung Kim, Jungho Phatak, Charudatta D'Aquila, Kenneth Kim, Seong Keun Kim, Jiyoon Song, Seul Ji Hwang, Cheol Seong Eastman, Jeffrey A. Freeland, John W. Hong, Seungbum TI X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO2/Pt Cells SO ACS NANO LA English DT Article DE resistive switching; X-ray irradiation; photovoltaic effect; Magneli phase; Joule heating; defect generation ID MAGNETORESISTIVE MANGANITE; MEMRISTIVE DEVICES; MEMORY; TIO2; FILMS AB The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices. C1 [Chang, Seo Hyoung; D'Aquila, Kenneth; Kim, Jiyoon; Eastman, Jeffrey A.; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Kim, Jungho; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Phatak, Charudatta; D'Aquila, Kenneth; Hong, Seungbum] Argonne Natl Lab, Nanosci & Technol Div, Lemont, IL 60439 USA. [D'Aquila, Kenneth] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Kim, Seong Keun] Korea Inst Sci & Technol, Seoul 136791, South Korea. [Kim, Seong Keun; Song, Seul Ji; Hwang, Cheol Seong] Seoul Natl Univ, Dept Mat Sci & Engn, WCU Hybrid Mat Program, Seoul 151744, South Korea. [Kim, Seong Keun; Song, Seul Ji; Hwang, Cheol Seong] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul 151744, South Korea. [Kim, Jiyoon; Hong, Seungbum] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Kim, J (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM jhkim@aps.anl.gov; hong@anl.gov RI Kim, Seong Keun/D-3809-2011; Hong, Seungbum/B-7708-2009; Phatak, Charudatta/A-1874-2010; Hwang, Cheol Seong/C-8568-2009 OI Kim, Seong Keun/0000-0001-8712-7167; Hong, Seungbum/0000-0002-2667-1983; FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Global Research Laboratory program through the National Research Foundation of Korea [2012040157] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Use of the Advanced Photon Source and Electron Microscopy Center of Argonne National Laboratory is gratefully acknowledged. C.S.H. acknowledges the support of Global Research Laboratory program (2012040157) through the National Research Foundation of Korea. NR 32 TC 12 Z9 12 U1 4 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2014 VL 8 IS 2 BP 1584 EP 1589 DI 10.1021/nn405867p PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB8SB UT WOS:000332059200054 PM 24417284 ER PT J AU Subbaiyan, NK Cambre, S Parra-Vasquez, ANG Haroz, EH Doorn, SK Duque, JG AF Subbaiyan, Navaneetha K. Cambre, Sofie Parra-Vasquez, A. Nicholas G. Haroz, Erik H. Doorn, Stephen K. Duque, Juan G. TI Role of Surfactants and Salt in Aqueous Two-Phase Separation of Carbon Nanotubes toward Simple Chirality Isolation SO ACS NANO LA English DT Article DE carbon nanotubes; sorting; chirality; surfactant structure; phase separation; ATPE; one-pot separation ID ULTRACENTRIFUGATION; DISPERSION AB Aqueous two-phase extraction has recently been demonstrated as a new method to separate single-wall carbon nanotubes (SWCNTs). In this work, we determined that the mechanism of separation is driven by the hydrophobicity of the surfactant, or combination of surfactants, at the SWCNT surface. This knowledge allowed us to develop a simple approach for obtaining highly enriched single-chirality suspensions in only 1 or 2 steps. These results were obtained by strategically combining multiple surfactants with different diameter-dependent binding affinities for SWCNTs and salts that readjust the surfactant structure within the mixed micelle surrounding the SWCNTs. The procedure is successfully applied to SWCNTs from different sources (CoMoCAT and HiPco) with various diameter distributions (from 0.53 to 1.2 nm). Each separation step is characterized by optical absorption, resonant Raman, and photoluminescence excitation spectroscopies. By determining the SWCNT sorting mechanism, we were able to develop a new set of parameters that separated another chirality. C1 [Subbaiyan, Navaneetha K.; Cambre, Sofie; Parra-Vasquez, A. Nicholas G.; Haroz, Erik H.; Doorn, Stephen K.; Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp C PCS, Los Alamos, NM 87544 USA. [Subbaiyan, Navaneetha K.; Cambre, Sofie; Parra-Vasquez, A. Nicholas G.; Haroz, Erik H.; Doorn, Stephen K.; Duque, Juan G.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87544 USA. [Cambre, Sofie] Univ Antwerp, Expt Condensed Matter Phys Lab, Antwerp, Belgium. RP Duque, JG (reprint author), Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp C PCS, POB 1663, Los Alamos, NM 87544 USA. EM jduque@lanl.gov RI Cambre, Sofie/P-6277-2014; OI Cambre, Sofie/0000-0001-7471-7678; Subbaiyan, Navaneetha K/0000-0002-5767-4386 FU LANL LDRD program; fund for scientific research Flanders, Belgium (FWO-Vlaanderen); LANL Director's Postdoctoral Fellowship FX We acknowledge Jeffrey Fagan and Ming Zheng (NIST) for helpful discussion. This work was supported in part by the LANL LDRD program and was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. S.C. gratefully acknowledges the financial support from the fund for scientific research Flanders, Belgium (FWO-Vlaanderen) for providing a postdoctoral fellowship and a mobility grant for visiting the Los Alamos National Laboratory. E.H.H. and A.N.G.P.-V. gratefully acknowledge support from the LANL Director's Postdoctoral Fellowship. NR 27 TC 36 Z9 39 U1 5 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2014 VL 8 IS 2 BP 1619 EP 1628 DI 10.1021/nn405934y PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB8SB UT WOS:000332059200058 PM 24450507 ER PT J AU Beechem, TE Ohta, T Diaconescu, B Robinson, JT AF Beechem, Thomas E. Ohta, Taisuke Diaconescu, Bogdan Robinson, Jeremy T. TI Rotational Disorder in Twisted Bilayer Graphene SO ACS NANO LA English DT Article DE twisted bilayer graphene; interlayer coupling; rotational disorder; strain; Raman spectroscopy ID EPITAXIAL GRAPHENE; DIRAC FERMIONS; STRAIN; HETEROSTRUCTURES; SUPERLATTICES; SCATTERING; STACKING; LAYERS AB Conventional means of stacking two-dimensional (2D) crystals inevitably leads to imperfections. To examine the ramifications of these imperfections, rotational disorder and strain are quantified in twisted bilayer graphene (TBG) using a combination of Raman spectroscopic and low-energy electron diffraction imaging. The twist angle between TBG layers varies on the order of 2 degrees within large (50-100 mu m) single-crystalline grains, resulting in changes of the emergent Raman response by over an order of magnitude. Rotational disorder does not evolve continuously across the large grains but rather comes about by variations in the local twist angles between differing contiguous subgrains, similar to 1 mu m in size, that themselves exhibit virtually no twist angle variation (Delta Theta similar to 0.1 degrees). Owing to weak out-of-plane van der Waals bonding between azimuthally rotated graphene layers, these subgrains evolve in conjunction with the 0.3% strain variation observed both within and between the atomic layers. Importantly, the emergent Raman response is altered, but not removed, by these extrinsic perturbations. Inter layer interactions are therefore resilient to strain and rotational disorder, a fact that gives promise to the prospect of designer 2D solid heterostructures created via transfer processes. C1 [Beechem, Thomas E.; Ohta, Taisuke; Diaconescu, Bogdan] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Robinson, Jeremy T.] Naval Res Lab, Washington, DC USA. RP Beechem, TE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tebeech@sandia.gov RI Robinson, Jeremy/F-2748-2010 FU LORD program at Sandia National Laboratories (SNL); U.S. DOE Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering; U.S. DOE National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Naval Research; NRL's NanoScience Institute FX Special thanks to Jianyong Yang of WiTec Instruments GmBh for providing use of equipment and aid in the measurements presented herein. We are also grateful to R. Guild Copeland and Anthony McDonald for their respective efforts in the synthesis and characterization of these samples. This work was supported by the LORD program at Sandia National Laboratories (SNL) and the U.S. DOE Office of Basic Energy Sciences (BES), Division of Materials Science and Engineering. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The work at NRL was funded by the Office of Naval Research and NRL's NanoScience Institute. NR 60 TC 13 Z9 13 U1 6 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2014 VL 8 IS 2 BP 1655 EP 1663 DI 10.1021/nn405999z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB8SB UT WOS:000332059200062 PM 24460413 ER PT J AU Das, S Prakash, A Salazar, R Appenzeller, J AF Das, Saptarshi Prakash, Abhijith Salazar, Ramon Appenzeller, Joerg TI Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides SO ACS NANO LA English DT Article DE tunneling; transition metal dichalcogenides; transistor; low power ID FIELD-EFFECT TRANSISTORS; CARBON NANOTUBE ELECTRONICS; MOS I-MOS; MULTILAYER MOS2; BILAYER MOS2; MONOLAYER; SEMICONDUCTORS; CONTACTS; GRAPHENE AB In this article, we explore, experimentally, the impact of band-to-band tunneling on the electronic transport of double-gated WSe2 field-effect transistors (FETs) and Schottky barrier tunneling of holes in back-gated MoS2 FETs. We show that by scaling the flake thickness and the thickness of the gate oxide, the tunneling current can be increased by several orders of magnitude. We also perform numerical calculations based on Landauer formalism and WKB approximation to explain our experimental findings. Based on our simple model, we discuss the impact of band gap and effective mass on the band-to-band tunneling current and evaluate the performance limits for a set of dichalcogenides in the context of tunneling transistors for low-power applications. Our findings suggest that WTe2 is an excellent choice for tunneling field-effect transistors. C1 [Das, Saptarshi] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Das, Saptarshi; Prakash, Abhijith; Salazar, Ramon; Appenzeller, Joerg] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. RP Das, S (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA. EM das@anl.gov FU STARnet center LEAST, a Semiconductor Research Corporation program; MARCO; DARPA FX We would like to thank Professor Di Xiao for providing data on the effective masses for the transition metal dichalcogenides based on their DFT calculations (GGA method without spin orbit coupling). This work was in part supported by the STARnet center LEAST, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 40 TC 56 Z9 56 U1 14 U2 172 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2014 VL 8 IS 2 BP 1681 EP 1689 DI 10.1021/nn406603h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AB8SB UT WOS:000332059200065 PM 24392853 ER PT J AU Kulik, HJ Wong, SE Baker, SE Valdez, CA Satcher, JH Aines, RD Lightstone, FC AF Kulik, Heather J. Wong, Sergio E. Baker, Sarah E. Valdez, Carlos A. Satcher, Joe H., Jr. Aines, Roger D. Lightstone, Felice C. TI Developing an approach for first-principles catalyst design: application to carbon-capture catalysis SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article DE computational materials discovery; catalyst design; CO2 capture; carbonic anhydrase mimics; density functional theory; potential energy surfaces; reaction coordinates; zinc ID DENSITY-FUNCTIONAL THEORY; SELF-INTERACTION ERROR; CAMBRIDGE STRUCTURAL DATABASE; COMPUTATIONAL DESIGN; CRYSTAL-STRUCTURES; SMALL-MOLECULE; ZINC ENZYMES; CO2 CAPTURE; ANHYDRASE; COMPLEXES AB An approach to catalyst design is presented in which local potential energy surface models are first built to elucidate design principles and then used to identify larger scaffold motifs that match the target geometries. Carbon sequestration via hydration is used as the model reaction, and three-and four-coordinate sp(2) or sp(3) nitrogen-ligand motifs are considered for Zn-II metals. The comparison of binding, activation and product release energies over a large range of interaction distances and angles suggests that four-coordinate short Zn-II-Nsp(3) bond distances favor a rapid turnover for CO2 hydration. This design strategy is then confirmed by computationally characterizing the reactivity of a known mimic over a range of metal-nitrogen bond lengths. A search of existing catalysts in a chemical database reveals structures that match the target geometry from model calculations, and subsequent calculations have identified these structures C1 [Kulik, Heather J.; Wong, Sergio E.; Baker, Sarah E.; Valdez, Carlos A.; Satcher, Joe H., Jr.; Aines, Roger D.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Kulik, Heather J.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA. EM lightstone1@llnl.gov FU US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [10-ERD-035]; Burroughs-Wellcome Fund FX This work was partly performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This project was funded by Laboratory Directed Research and Development grant No. 10-ERD-035. HJK holds a Career Award at the Scientific Interface from the Burroughs-Wellcome Fund. The use of computer resources at the Lawrence Livermore National Laboratory is gratefully acknowledged. This document has been reviewed and released with IM No. LLNL-JRNL-579437. NR 55 TC 4 Z9 4 U1 2 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 EI 1600-5759 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD FEB PY 2014 VL 70 SI SI BP 123 EP 131 DI 10.1107/S2053229613027666 PN 2 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AC0XE UT WOS:000332218000006 PM 24508957 ER PT J AU Strunk, RJ Piemonte, KM Petersen, NM Koutsioulis, D Bouriotis, V Perry, K Cole, KE AF Strunk, Robert J. Piemonte, Katrina M. Petersen, Natasha M. Koutsioulis, Dimitris Bouriotis, Vassilis Perry, Kay Cole, Kathryn E. TI Structure determination of BA0150, a putative polysaccharide deacetylase from Bacillus anthracis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID N-ACETYLGLUCOSAMINE DEACETYLASE; CARBOHYDRATE ESTERASE; STREPTOCOCCUS-PNEUMONIAE; VIRULENCE FACTOR; PEPTIDOGLYCAN; REVEALS; ENZYMES; CEREUS; PHENIX AB Polysaccharide deacetylases are bacterial enzymes that catalyze the deacetylation of acetylated sugars on the membranes of Gram-positive bacteria, allowing them to be unrecognized by host immune systems. Inhibition of these enzymes would disrupt such pathogenic defensive mechanisms and therefore offers a promising route for the development of novel antibiotic therapeutics. Here, the first X-ray crystal structure of BA0150, a putative polysaccharide deacetylase from Bacillus anthracis, is reported to 2.0 angstrom resolution. The overall structure maintains the conserved (alpha/beta)(8) fold that is characteristic of this family of enzymes. The lack of a catalytic metal ion and a distinctive metal-binding site, however, suggest that this enzyme is not a functional polysaccharide deacetylase. C1 [Strunk, Robert J.; Piemonte, Katrina M.; Petersen, Natasha M.; Cole, Kathryn E.] Cornell Univ, Dept Chem, Ithaca, NY 14850 USA. [Koutsioulis, Dimitris; Bouriotis, Vassilis] Univ Crete, Dept Biol, Enzyme Biotechnol Grp, Iraklion 71409, Greece. [Bouriotis, Vassilis] Inst Mol Biol & Biotechnol, Iraklion 70019, Greece. [Perry, Kay] Cornell Univ, Argonne Natl Lab, Northeastern Collaborat Access Team NE CAT, Argonne, IL 60439 USA. [Perry, Kay] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA. RP Perry, K (reprint author), Cornell Univ, Argonne Natl Lab, Northeastern Collaborat Access Team NE CAT, Bldg 436E,9700 South Cass Ave, Argonne, IL 60439 USA. EM kperry@anl.gov; kathryn.cole@cnu.edu FU EU (ERDF); Greek funds through the 'THALIS' program; National Institute of General Medical Sciences of the National Institutes of Health [P41 GM103403]; US DOE [DE-AC02-06CH11357]; Ithaca College FX The work of DK and VB was co-financed by EU (ERDF) and Greek funds through the 'THALIS' program. This work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) of the National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. KEC and RJS would like to thank Ithaca College for funding. NR 20 TC 1 Z9 1 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2014 VL 70 BP 156 EP 159 DI 10.1107/S2053230X13034262 PN 2 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AC1BM UT WOS:000332229200002 PM 24637747 ER PT J AU Aguirre, JC Arntsen, C Hernandez, S Huber, R Nardes, AM Halim, M Kilbride, D Rubin, Y Tolbert, SH Kopidakis, N Schwartz, BJ Neuhauser, D AF Aguirre, Jordan C. Arntsen, Christopher Hernandez, Samuel Huber, Rachel Nardes, Alexandre M. Halim, Merissa Kilbride, Daniel Rubin, Yves Tolbert, Sarah H. Kopidakis, Nikos Schwartz, Benjamin J. Neuhauser, Daniel TI Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells: Time-Resolved Microwave Conductivity and Theory SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE electron mobility; solar cells; conjugated polymers; fullerene networks ID HETEROJUNCTION PHOTOVOLTAIC DEVICES; CHARGE-CARRIER TRANSPORT; SHORT-CIRCUIT CURRENT; BULK-HETEROJUNCTION; SEMICONDUCTING POLYMERS; C-60 SHUTTLECOCKS; HIGH-PERFORMANCE; LIQUID-CRYSTALS; EFFICIENCY; MORPHOLOGY AB The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called shuttlecock' molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C-60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM. C1 [Aguirre, Jordan C.; Arntsen, Christopher; Hernandez, Samuel; Huber, Rachel; Halim, Merissa; Kilbride, Daniel; Rubin, Yves; Tolbert, Sarah H.; Schwartz, Benjamin J.; Neuhauser, Daniel] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Nardes, Alexandre M.; Kopidakis, Nikos] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Aguirre, JC (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM schwartz@chem.ucla.edu RI Nardes, Alexandre/C-8556-2012; Kopidakis, Nikos/N-4777-2015; Tolbert, Sarah/L-2321-2016; OI Schwartz, Benjamin/0000-0003-3257-9152 FU US Department of Energy (DOE) Office of Biological and Environmental Research; DOE by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; Molecularly Engineered Energy Materials (MEEM), an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001342]; NSF IGERT: Materials Creation Training Program (MCTP) [DGE-0654431]; California NanoSystems Institute; National Science Foundation [CHE-1112569] FX A portion of the research was performed using the computing resources at EMSL, a national scientific user facility sponsored by the US Department of Energy (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by the Battelle Memorial Institute under contract DE-AC06-76RLO-1830. The work of the UCLA and NREL members was supported as part of the Molecularly Engineered Energy Materials (MEEM), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001342. J.C.A. acknowledges NSF IGERT: Materials Creation Training Program (MCTP), grant number DGE-0654431 and the California NanoSystems Institute. Support for the synthesis of the shuttlecock molecules was provided by the National Science Foundation under grant CHE-1112569. NR 64 TC 13 Z9 14 U1 3 U2 62 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2014 VL 24 IS 6 BP 784 EP 792 DI 10.1002/adfm.201301757 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB7FB UT WOS:000331953600009 ER PT J AU Huang, R Ding, HC Liang, WI Gao, YC Tang, XD He, Q Duan, CG Zhu, ZQ Chu, JH Fisher, CAJ Hirayama, T Ikuhara, Y Chu, YH AF Huang, Rong Ding, Hang-Chen Liang, Wen-I Gao, Yong-Chao Tang, Xiao-Dong He, Qing Duan, Chun-Gang Zhu, Ziqiang Chu, Junhao Fisher, Craig A. J. Hirayama, Tsukasa Ikuhara, Yuichi Chu, Ying-Hao TI Atomic-Scale Visualization of Polarization Pinning and Relaxation at Coherent BiFeO3/LaAlO3 Interfaces SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE bismuth ferrite; annular bright-field imaging; heterointerfaces ID TRANSMISSION ELECTRON-MICROSCOPY; FERROELECTRIC THIN-FILMS; OCTAHEDRAL TILTS; BIFEO3; CRYSTAL; HETEROSTRUCTURES; ROTATION; PHYSICS; OXYGEN AB Complex oxide heterointerfaces, which play host to an incredible variety of interface physical phenomena, are of great current interest in introducing new functionalities to systems. Here, coherent super-tetragonal BiFeO3/LaAlO3 and rhombohedral BiFeO3/LaAlO3 heterointerfaces are investigated by using a combination of high-angle annular dark-field (HAADF) imaging and annular bright-field (ABF) imaging in a spherical aberration (Cs) corrected scanning transmission electron microscope (STEM), and first-principles calculations. The complicated ferroelectric polarization pinning and relaxation that occurs at both interfaces is revealed with atomic resolution, with a dramatic change in structure of BiFeO3, from cubic to super-tetragonal-like. The results enable a detailed explanation to be given of how non-bulk phase structures are stabilized in thin films of this material. C1 [Huang, Rong; Ding, Hang-Chen; Gao, Yong-Chao; Tang, Xiao-Dong; Duan, Chun-Gang; Zhu, Ziqiang; Chu, Junhao; Chu, Ying-Hao] E China Normal Univ, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200062, Peoples R China. [Huang, Rong; Fisher, Craig A. J.; Hirayama, Tsukasa; Ikuhara, Yuichi] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan. [Liang, Wen-I; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [He, Qing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Duan, Chun-Gang; Chu, Junhao] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China. [Ikuhara, Yuichi] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan. RP Huang, R (reprint author), E China Normal Univ, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200062, Peoples R China. EM cgduan@clpm.ecnu.edu.cn; yinghaochu@gmail.com RI Ying-Hao, Chu/A-4204-2008; Duan, Chun-Gang/D-2755-2013; He, Qing/E-3202-2010; Ikuhara, Yuichi/N-1001-2015; Ikuhara, Yuichi/F-3066-2010; Huang, Rong/A-9684-2008 OI Ying-Hao, Chu/0000-0002-3435-9084; Ikuhara, Yuichi/0000-0003-3886-005X; FU National Key Project for Basic Research of China [2013CB922301]; NSFC [61125403]; PCSIRT; NCET; Shanghai Pujiang talents plan [11PJ1402900]; Program of Shanghai Subject Chief Scientist; Fundamental Research Funds for the central universities (ECNU); National Science Council, R.O.C. [NSC 101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science of National Chiao Tung University; Japan Society for the Promotion of Science FX The authors thank Dr. Takeharu Kato and Ryuji Yoshida at the Japan Fine Ceramics Center (JFCC) for their help in preparing TEM samples. This work was supported by the National Key Project for Basic Research of China (Grants No. 2013CB922301), NSFC under Grants No. 61125403, PCSIRT, NCET, Shanghai Pujiang talents plan (Grant No. 11PJ1402900), Program of Shanghai Subject Chief Scientist and Fundamental Research Funds for the central universities (ECNU). Computations were performed at the ECNU computing centre. The work at National Chiao Tung University was supported by the National Science Council, R.O.C., under contract No. NSC 101-2119-M-009-003-MY2, Ministry of Education, under grant No. MOE-ATU 101W961, and Center for Interdisciplinary Science of National Chiao Tung University. C.A.J.F. was supported by the Grant-in-Aid for Scientific Research (KAKENHI) "Theoretical Characterization of Heterointerfaces in Thin Films" from the Japan Society for the Promotion of Science. NR 52 TC 10 Z9 10 U1 7 U2 117 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2014 VL 24 IS 6 BP 793 EP 799 DI 10.1002/adfm.201301470 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB7FB UT WOS:000331953600010 ER PT J AU Lv, DP Gordin, ML Yi, R Xu, T Song, JX Jiang, YB Choi, D Wang, DH AF Lv, Dongping Gordin, Mikhail L. Yi, Ran Xu, Terrence Song, Jiangxuan Jiang, Ying-Bing Choi, Daiwon Wang, Donghai TI GeOx/Reduced Graphene Oxide Composite as an Anode for Li-Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE Li-ion batteries; germanium oxide; reduced graphene oxide; anodes; rate capability ID RECHARGEABLE LITHIUM BATTERIES; LONG CYCLING LIFE; OXYGEN REDUCTION; STORAGE MATERIAL; GRAPHITE OXIDE; C COMPOSITE; GERMANIUM; NANOPARTICLES; FILMS; GE AB A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles are grown directly on reduced graphene oxide sheets, is synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAh g(-1) at a current density of 100 mA g(-1), and still maintains a capacity of 410 mAh g(-1) at a high current density of 20 A g(-1). Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite is also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode is successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which shows good cycling and rate performance. C1 [Lv, Dongping; Gordin, Mikhail L.; Yi, Ran; Xu, Terrence; Song, Jiangxuan; Wang, Donghai] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Jiang, Ying-Bing] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Choi, Daiwon] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Lv, DP (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. EM dwang@psu.edu RI Wang, Donghai/L-1150-2013; Xu, Terrence/M-8741-2014; Choi, Daiwon/B-6593-2008; Yi, Ran/E-1535-2012; Song, Jiangxuan/G-8536-2015 OI Wang, Donghai/0000-0001-7261-8510; Xu, Terrence/0000-0002-9385-6881; FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) [57558] FX The authors would like to acknowledge financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558). The authors are also grateful for beneficial discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage Program. NR 52 TC 64 Z9 64 U1 15 U2 178 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2014 VL 24 IS 8 BP 1059 EP 1066 DI 10.1002/adfm.201301882 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB7XV UT WOS:000332005300006 ER PT J AU Checco, A Rahman, A Black, CT AF Checco, Antonio Rahman, Atikur Black, Charles T. TI Robust Superhydrophobicity in Large-Area Nanostructured Surfaces Defined by Block-Copolymer Self Assembly SO ADVANCED MATERIALS LA English DT Article DE superhydrophobicity; wetting; nanostructured surfaces; block-copolymer lithography; self assembly ID SEQUENTIAL INFILTRATION SYNTHESIS; THIN-FILMS; ROUGH SURFACES; TRANSITIONS; IMPALEMENT; FILTRATION; TEMPLATES; MEMBRANES; ARRAYS; SCALE C1 [Checco, Antonio] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Rahman, Atikur; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Checco, A (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM checco@bnl.gov; ctblack@bnl.gov OI Rahman, Atikur/0000-0002-1275-7129 FU U.S. Department of Energy, Basic Energy Sciences in the Materials Sciences and Engineering Division; Center for Functional Nanomaterials [DE AC02 98CH10886] FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences in the Materials Sciences and Engineering Division (A. C.) and at the Center for Functional Nanomaterials (A. R. and C. B.) under Contract No. DE AC02 98CH10886. The authors acknowledge Dr. M. Diwan for kindly providing the high-speed camera. NR 47 TC 47 Z9 49 U1 10 U2 96 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2014 VL 26 IS 6 BP 886 EP 891 DI 10.1002/adma.201304006 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB6OU UT WOS:000331910200006 PM 24142578 ER PT J AU Strelcov, E Ievlev, AV Jesse, S Kravchenko, II Shur, VY Kalinin, SV AF Strelcov, Evgheni Ievlev, Anton V. Jesse, Stephen Kravchenko, Ivan I. Shur, Vladimir Y. Kalinin, Sergei V. TI Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces SO ADVANCED MATERIALS LA English DT Article DE ferroelectric; LiNbO3; surface charge; potential mapping; KPFM ID FORCE MICROSCOPY; HETEROSTRUCTURES; KINETICS; FUTURE C1 [Strelcov, Evgheni; Jesse, Stephen; Kravchenko, Ivan I.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ievlev, Anton V.; Shur, Vladimir Y.] Ural Fed Univ, Inst Nat Sci, Ferroelect Lab, Ekaterinburg 620083, Russia. RP Strelcov, E (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM strelcove@ornl.gov; sergei2@ornl.gov RI Strelcov, Evgheni/H-1654-2013; Kravchenko, Ivan/K-3022-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Ievlev, Anton/H-3678-2012 OI Kravchenko, Ivan/0000-0003-4999-5822; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Ievlev, Anton/0000-0003-3645-0508 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Government of Sverdlovsk region [13-02-96041-r-Ural-a]; RFBR [11-02-91066-CNRS-a, 13-02-01391-a] FX SVK would like to thank Nick Lavrick for fruitful discussions. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. V. Y. S. and A. V. I. would like to thank RFBR and the Government of Sverdlovsk region (Grant 13-02-96041-r-Ural-a) and RFBR (Grants 11-02-91066-CNRS-a, 13-02-01391-a). NR 52 TC 12 Z9 12 U1 1 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2014 VL 26 IS 6 BP 958 EP 963 DI 10.1002/adma.201304002 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB6OU UT WOS:000331910200017 PM 24277472 ER PT J AU Zhang, Y Hanifi, D Lim, E Chourou, S Alvarez, S Pun, A Hexemer, A Ma, BW Liu, Y AF Zhang, Yue Hanifi, David Lim, Eunhee Chourou, Slim Alvarez, Steven Pun, Andrew Hexemer, Alexander Ma, Biwu Liu, Yi TI Enhancing the Performance of Solution-Processed n-Type Organic Field-Effect Transistors by Blending with Molecular "Aligners" SO ADVANCED MATERIALS LA English DT Article DE blending; charge transport; electron acceptor; field-effect transistor; structural ordering ID THIN-FILM TRANSISTORS; ACTIVE-MATRIX DISPLAYS; LIGHT-EMITTING-DIODES; CHARGE-TRANSPORT; SOLAR-CELLS; ELECTRONIC DISPLAYS; SEMICONDUCTORS; FABRICATION; EFFICIENCY; DEVICES C1 [Zhang, Yue; Hanifi, David; Pun, Andrew; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ma, Biwu] Florida State Univ, Mat Sci Program, FAMU FSU Coll Engn, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA. [Lim, Eunhee; Chourou, Slim; Alvarez, Steven; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Florida State Univ, Mat Sci Program, FAMU FSU Coll Engn, Dept Chem & Biomed Engn, 2525 Pottsdamer St,A131, Tallahassee, FL 32310 USA. EM bma@fsu.edu; yliu@lbl.gov RI Liu, yi/A-3384-2008; Foundry, Molecular/G-9968-2014 OI Liu, yi/0000-0002-3954-6102; FU Self-Assembly of Organic/Inorganic Nanocomposite Materials program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by Self-Assembly of Organic/Inorganic Nanocomposite Materials program (D. H. and Y. L.), and was performed at the Molecular Foundry, with the X-ray scattering experiment conducted at the Advanced Light Source, Lawrence Berkeley National Laboratory, all supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 11 Z9 11 U1 3 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2014 VL 26 IS 8 BP 1223 EP 1228 DI 10.1002/adma.201304032 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB6OS UT WOS:000331909900006 PM 24591009 ER PT J AU Narang, P Chen, SY Coronel, NC Gul, S Yano, J Wang, LW Lewis, NS Atwater, HA AF Narang, Prineha Chen, Shiyou Coronel, Naomi C. Gul, Sheraz Yano, Junko Wang, Lin-Wang Lewis, Nathan S. Atwater, Harry A. TI Bandgap Tunability in Zn(Sn,Ge)N-2 Semiconductor Alloys SO ADVANCED MATERIALS LA English DT Article DE Zn(Sn; Ge)N-2 semiconductor alloys; miscibility; bandgap ID X-RAY-EMISSION; HIGH-RESOLUTION; SPECTROSCOPY; PARAMETERS C1 [Narang, Prineha; Coronel, Naomi C.; Atwater, Harry A.] CALTECH, TJ Watson Labs Appl Phys, Pasadena, CA 91125 USA. [Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Narang, Prineha; Chen, Shiyou; Yano, Junko; Wang, Lin-Wang; Lewis, Nathan S.; Atwater, Harry A.] Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Gul, Sheraz; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chen, Shiyou; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chen, SY (reprint author), Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM haa@caltech.edu; haa@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Dow Chemical Company; National Science Foundation Graduate Research Fellowship; Resnick Sustainability Institute; Advanced Light Source (ALS, BL), Berkeley [DE-AC02-05CH11231] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993, and was also supported by the Dow Chemical Company. P. N. acknowledges support from a National Science Foundation Graduate Research Fellowship and from the Resnick Sustainability Institute. X-ray spectroscopy work was performed at the Advanced Light Source (ALS, BL 10.3.2 and 7.0.1), Berkeley, under Contract DE-AC02-05CH11231. The authors thank Drs. Jinghua Guo and Per-Anders Glans-Suzuki for their support at BL 7.0.1. NR 31 TC 10 Z9 10 U1 7 U2 54 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2014 VL 26 IS 8 BP 1235 EP 1241 DI 10.1002/adma.201304473 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AB6OS UT WOS:000331909900008 PM 24307317 ER PT J AU Nowroozi, FF Baidoo, EEK Ermakov, S Redding-Johanson, AM Batth, TS Petzold, CJ Keasling, JD AF Nowroozi, Farnaz F. Baidoo, Edward E. K. Ermakov, Simon Redding-Johanson, Alyssa M. Batth, Tanveer S. Petzold, Christopher J. Keasling, Jay D. TI Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Metabolic engineering; Mevalonate pathway; Ribosome binding site; Amorphadiene; FPP toxicity; Escherichia coli ID HETEROLOGOUS MEVALONATE PATHWAY; ENGINEERED ESCHERICHIA-COLI; ISOPRENOID PRODUCTION; MICROBIAL-PRODUCTION; MESSENGER-RNA; EXPRESSION; PROTEIN; 1,3-PROPANEDIOL; AMORPHA-4,11-DIENE; BIOSYNTHESIS AB The genes encoding the mevalonate-based farnesyl pyrophosphate (FPP) biosynthetic pathway were encoded in two operons and expressed in Escherichia coli to increase the production of sesquiterpenes. Inefficient translation of several pathway genes created bottlenecks and led to the accumulation of several pathway intermediates, namely, mevalonate and FPP, and suboptimal production of the sesquiterpene product, amorphadiene. Because of the difficulty in choosing ribosome binding sites (RBSs) to optimize translation efficiency, a combinatorial approach was used to choose the most appropriate RBSs for the genes of the lower half of the mevalonate pathway (mevalonate to amorphadiene). RBSs of various strengths, selected based on their theoretical strengths, were cloned 5' of the genes encoding mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate decarboxylase, and amorphadiene synthase. Operons containing one copy of each gene and all combinations of RBSs were constructed and tested for their impact on growth, amorphadiene production, enzyme level, and accumulation of select pathway intermediates. Pathways with one or more inefficiently translated enzymes led to the accumulation of pathway intermediates, slow growth, and low product titers. Choosing the most appropriate RBS combination and carbon source, we were able to reduce the accumulation of toxic metabolic intermediates, improve growth, and improve the production of amorphadiene approximately fivefold. This work demonstrates that balancing flux through a heterologous pathway and maintaining steady growth are key determinants in optimizing isoprenoid production in microbial hosts. C1 [Nowroozi, Farnaz F.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Nowroozi, Farnaz F.; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Petzold, Christopher J.; Keasling, Jay D.] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Petzold, Christopher J.; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ermakov, Simon] Univ Calif Berkeley, Dept Mol Cell Biol, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint Bioenergy Inst, 5885 Hollis Ave,4th Floor, Emeryville, CA 94608 USA. EM Keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Joint BioEnergy Institute through Lawrence Berkeley National Laboratory; Joint BioEnergy Institute through US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Synthetic Biology Engineering Research Center through a grant from the National Science Foundation [BES-0439124] FX This work was supported by the Joint BioEnergy Institute (http://www.jbei.org) through a contract between Lawrence Berkeley National Laboratory and the US Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-AC02-05CH11231) and the Synthetic Biology Engineering Research Center (http://www.synberc.org) through a grant from the National Science Foundation (BES-0439124). We thank Chris Anderson (Department of Bioengineering, University of California, Berkeley, CA, USA) for the gift of pBca9145. NR 34 TC 25 Z9 27 U1 0 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD FEB PY 2014 VL 98 IS 4 BP 1567 EP 1581 DI 10.1007/s00253-013-5361-4 PG 15 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AB9IN UT WOS:000332106000010 PM 24257840 ER PT J AU Perfect, E Cheng, CL Kang, M Bilheux, HZ Lamanna, JM Gragg, MJ Wright, DM AF Perfect, E. Cheng, C. -L. Kang, M. Bilheux, H. Z. Lamanna, J. M. Gragg, M. J. Wright, D. M. TI Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review SO EARTH-SCIENCE REVIEWS LA English DT Review DE Neutron imaging; Porous media; Radiography; Tomography; Water; Hydrocarbons ID ELECTROLYTE-FUEL-CELL; PLANE WATER DISTRIBUTION; HEAT-PIPE; SOIL-WATER; COMPUTED-TOMOGRAPHY; BUILDING-MATERIALS; ROCK SAMPLES; X-RAY; MOISTURE DISTRIBUTIONS; SPONTANEOUS IMBIBITION AB Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Perfect, E.; Cheng, C. -L.; Kang, M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Cheng, C. -L.; Wright, D. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Kang, M.; Bilheux, H. Z.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Lamanna, J. M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Gragg, M. J.] Altamont Environm Inc, Asheville, NC 28801 USA. RP Perfect, E (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM eperfect@utk.edu RI Bilheux, Hassina/H-4289-2012; Cheng, Chu-Lin/G-3471-2013 OI Bilheux, Hassina/0000-0001-8574-2449; Cheng, Chu-Lin/0000-0002-1900-463X FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); Joint Directed Research and Development Program of the UT-ORNL Science Alliance at UTK FX This review is based in part on assignments prepared by graduate students participating in a seminar course (GEOL 685) on imaging water in porous media taught by the first author at the University of Tennessee - Knoxville (UTK) in the spring semester of 2012. Funding was provided by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) and the Joint Directed Research and Development Program of the UT-ORNL Science Alliance at UTK. NR 208 TC 21 Z9 21 U1 8 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-8252 EI 1872-6828 J9 EARTH-SCI REV JI Earth-Sci. Rev. PD FEB PY 2014 VL 129 BP 120 EP 135 DI 10.1016/j.earscirev.2013.11.012 PG 16 WC Geosciences, Multidisciplinary SC Geology GA AB6SJ UT WOS:000331919500007 ER PT J AU Qin, PW Yu, DM Zuo, XB Cornish, PV AF Qin, Peiwu Yu, Dongmei Zuo, Xiaobing Cornish, Peter V. TI Structured mRNA induces the ribosome into a hyper-rotated state SO EMBO REPORTS LA English DT Article DE helicase; ribosome; smFRET ID SINGLE RIBOSOMES; PROTEIN-SYNTHESIS; CRYSTAL-STRUCTURE; E-SITE; TRANSLATION; DYNAMICS; TRANSLOCATION; MOVEMENT; TIME; SUBUNIT AB During protein synthesis, mRNA and tRNA are moved through the ribosome by the process of translocation. The small diameter of the mRNA entrance tunnel only permits unstructured mRNA to pass through. However, there are structured elements within mRNA that present a barrier for translocation that must be unwound. The ribosome has been shown to unwind RNA in the absence of additional factors, but the mechanism remains unclear. Here, we show using single molecule Forster resonance energy transfer and small angle X-ray scattering experiments a new global conformational state of the ribosome. In the presence of the frameshift inducing dnaX hairpin, the ribosomal subunits are driven into a hyper-rotated state and the L1 stalk is predominantly in an open conformation. This previously unobserved conformational state provides structural insight into the helicase activity of the ribosome and may have important implications for understanding the mechanism of reading frame maintenance. C1 [Qin, Peiwu; Cornish, Peter V.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Yu, Dongmei; Cornish, Peter V.] Univ Missouri, Dept Biol Engn, Columbia, MO USA. [Yu, Dongmei; Cornish, Peter V.] Univ Missouri, Inst Informat, Columbia, MO USA. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Cornish, PV (reprint author), Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. EM cornishp@missouri.edu OI Zuo, Xiaobing/0000-0002-0134-4804 FU MU research board; NSF CAREER award [MCB-115343]; U.S. DOE [DE-AC02-06CH11357] FX The work was supported by the MU research board and NSF CAREER award MCB-115343 to P. V. C. P. V. C. is a Pew Scholar in the Biomedical Sciences. The use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The authors thank Harry Noller and Dmitri Ermolenko for providing fluorescently labeled ribosome constructs, L1/L33 knock out strain and expression plasmids for L1 and L33. We thank Mario Pennella for helpful discussions on the manuscript. NR 28 TC 18 Z9 18 U1 0 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-221X EI 1469-3178 J9 EMBO REP JI EMBO Rep. PD FEB PY 2014 VL 15 IS 2 BP 185 EP 190 DI 10.1002/embr.201337762 PG 6 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AA8ST UT WOS:000331365900012 PM 24401932 ER PT J AU Ruth, MF Zinaman, OR Antkowiak, M Boardman, RD Cherry, RS Bazilian, MD AF Ruth, Mark F. Zinaman, Owen R. Antkowiak, Mark Boardman, Richard D. Cherry, Robert S. Bazilian, Morgan D. TI Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs SO ENERGY CONVERSION AND MANAGEMENT LA English DT Article DE Hybrid energy systems; Nuclear power; Polygeneration systems ID HYDROGEN-PRODUCTION; FISCHER-TROPSCH; COMBINED HEAT; POWER; FUEL; GENERATION; METHANOL; GAS; OPTIMIZATION; ECONOMIES AB As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity such as nuclear power plants can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity - nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Boardman, Richard D.; Cherry, Robert S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Bazilian, Morgan D.] Joint Inst Strateg Energy Anal, Golden, CO 80401 USA. RP Ruth, MF (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Mark.Ruth@nrel.gov; Owen.Zinaman@nrel.gov; markantkowiak@yahoo.com; richard.boardman@inl.gov; robertcherry@inl.gov; Morgan.Bazilian@jisea.org FU National Renewable Energy Laboratory (NREL); Idaho National Laboratory (INL); Joint Institute for Strategic Energy Analysis (JISEA) FX This study was cooperatively supported by the National Renewable Energy Laboratory (NREL), Idaho National Laboratory (INL), and the Joint Institute for Strategic Energy Analysis (JISEA). We acknowledge Shannon Bragg-Sitton, Humberto Garcia, and Steve Aumeier of INL for technical contributions and review of the paper. We also acknowledge Doug Arent of JISEA for his helpful review and input, as well as Dana Christensen of NREL for his support of nuclear-renewable hybrid energy systems. NR 87 TC 11 Z9 11 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0196-8904 EI 1879-2227 J9 ENERG CONVERS MANAGE JI Energy Conv. Manag. PD FEB PY 2014 VL 78 BP 684 EP 694 DI 10.1016/j.enconman.2013.11.030 PG 11 WC Thermodynamics; Energy & Fuels; Mechanics SC Thermodynamics; Energy & Fuels; Mechanics GA AB9SN UT WOS:000332136100074 ER PT J AU Jensen, AE Lohse, KA Crosby, BT Mora, CI AF Jensen, A. E. Lohse, K. A. Crosby, B. T. Mora, C. I. TI Variations in soil carbon dioxide efflux across a thaw slump chronosequence in northwestern Alaska SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE climate change; CO2 efflux; arctic; thaw slump; thermokarst; chronosequence; controls on CO2 efflux; soil temperature; soil moisture; bulk density; soil organic matter; thermal erosion ID BLACK SPRUCE FORESTS; CLIMATE-CHANGE; PERMAFROST CARBON; ARCTIC ALASKA; TUNDRA; TEMPERATURE; FLUX; CO2; VULNERABILITY; RESPIRATION AB Warming of the arctic landscape results in permafrost thaw, which causes ground subsidence or thermokarst. Thermokarst formation on hillslopes leads to the formation of thermal erosion features that dramatically alter soil properties and likely affect soil carbon emissions, but such features have received little study in this regard. In order to assess the magnitude and persistence of altered emissions, we use a space-for-time substitution (thaw slump chronosequence) to quantify and compare peak growing season soil carbon dioxide (CO2) fluxes from undisturbed tundra, active, and stabilized thermal erosion features over two seasons. Measurements of soil temperature and moisture, soil organic matter, and bulk density are used to evaluate the factors controlling soil CO2 emissions from each of the three chronosequence stages. Soil CO2 efflux from the active slump is consistently less than half that observed in the undisturbed tundra or stabilized slump (1.8 versus 5.2 g CO2-C m(-2) d(-1) in 2011; 0.9 versus 3.2 g CO2-C m(-2) d(-1) in 2012), despite soil temperatures on the floor of the active slump that are 10-15 degrees C warmer than the tundra and stabilized slump. Environmental factors such as soil temperature and moisture do not exert a strong control on CO2 efflux, rather, local soil physical and chemical properties such as soil organic matter and bulk density, are strongly and inversely related among these chronosequence stages (r(2) = 0.97), and explain similar to 50% of the variation in soil CO2 efflux. Thus, despite profound soil warming and rapid exposure of buried carbon in the active slump, the low organic matter content, lack of stable vegetation, and large increases in the bulk densities in the uppermost portion of active slump soils (up to similar to 2.2 g(-1) cm(-3)) appear to limit CO2 efflux from the active slump. Future studies should assess seasonal fluxes across these features and determine whether soil CO2 fluxes from active features with high organic content are similarly low. C1 [Jensen, A. E.; Crosby, B. T.] Idaho State Univ, Dept Geosci, Pocatello, ID 83201 USA. [Lohse, K. A.] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83201 USA. [Mora, C. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jensen, AE (reprint author), Idaho State Univ, Dept Geosci, Pocatello, ID 83201 USA. EM aejensen02@gmail.com RI Mora, Claudia/B-5511-2017 OI Mora, Claudia/0000-0003-2042-0208 FU Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory (LANL IGPP Minigrant) [166259]; Selawik National Wildlife Refuge [USFWS - CESU 84320-9-J306R]; NSF's Arctic System Science (ARCSS) Program [OPP - 0806399]; NSF Idaho EPSCoR Program in Water Resources in a Changing Climate [EPS 0814387] FX This research received financial and logistic support from the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory (LANL IGPP Minigrant 166259), the Selawik National Wildlife Refuge (USFWS - CESU 84320-9-J306R) as well as financial support from the NSF's Arctic System Science (ARCSS) Program (OPP - 0806399) and the NSF Idaho EPSCoR Program in Water Resources in a Changing Climate (EPS 0814387). Benjamin Abbott provided inspiration, guidance and feedback for the study design, methods and interpretation. Meteorological data were provided by Joel Rowland of LANL. The authors thank Tina Moran, Theo Barnhart, Pat Calhoun, Kelsey Lanan and Joel Rowland for field and logistical support. Reviews from Keith Reinhart and three anonymous reviewers significantly improved manuscript quality and readability. NR 48 TC 6 Z9 6 U1 2 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD FEB PY 2014 VL 9 IS 2 AR 025001 DI 10.1088/1748-9326/9/2/025001 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AB8XA UT WOS:000332072100020 ER PT J AU McGregor, D Burton-Pye, BP Lukens, WW Howell, RC Francesconi, LC AF McGregor, Donna Burton-Pye, Benjamin P. Lukens, Wayne W. Howell, Robertha C. Francesconi, Lynn C. TI Insights into Stabilization of the (TcO)-Tc-99-O-V Core for Synthesis of (TcO)-Tc-99-O-V Compounds SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Technetium; Polyoxometalates; Synthesis design; Ethylene glycol; Transfer ligand; Photoreduction ID TECHNETIUM; SEDIMENTS; PERTECHNETATE; REDUCTION; AQUIFER; IFEFFIT; TC-99; IRON AB Synthesis of technetium-99 (Tc-99; t(1/2): 2.1x10(5) years, (max): 253 keV) materials is of importance in studies of the nuclear fuel cycle where Tc is a major fission product (6% thermal yield from U-235 and Pu-239), in understanding radioactive tank waste composition, and in identifying Tc-99m compounds for nuclear medicine imaging. One of the most useful synthetic starting materials, (NBu4)TcOCl4, is susceptible to disproportionation in water to form TcO4- and Tc-IV species, especially TcO(2)2H2O. This unwanted reaction is especially problematic when working with ligands bearing hard donor atoms, such as oxygen, where the stability with the soft Tc-V=O3+ core may be low. Polyoxometalates (POMs) are such ligands. They possess defect sites with four hard oxygen atoms and show low (ca. 10(8)) stability constants with transition metals. Tc complexes of POMs are molecular-level models for Tc metal oxide solid-state materials and can provide information on coordination and redox environments of metal oxides that stabilize low-valent Tc. In order to synthesize pure Tc POM complexes [(TcO)-O-V((1)-P2W17O61)](7-) ((TcO)-O-V-1) and [(TcO)-O-V((2)-P2W17O61)](7-) ((TcO)-O-V-2) from (NBu4)TcOCl4, we have identified strategies that minimize formation of Tc-IV species and optimize the formation of pure Tc-V species. The parameters that we consider are the amount of ethylene glycol, which is employed as a transfer ligand to prevent hydrolysis of (NBu4)TcOCl4, and the precipitating agent. The Tc-IV species that contaminates the non-optimized syntheses is likely a Tc-IV -oxido-bridged dimer [Tc-IV-(-O)(2)-Tc-IV]. We also employ a novel procedure where the (2) ligand is photoactivated and reduced (in the presence of a sacrificial electron donor) to subsequently reduce (TcO4-)-O-VII to an isolatable (TcO)-O-V-2 product that is remarkably free of Tc-IV. C1 [McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Francesconi, Lynn C.] CUNY Hunter Coll, Dept Chem, New York, NY 10065 USA. [McGregor, Donna; Francesconi, Lynn C.] CUNY, Grad Ctr, Dept Chem, New York, NY 10016 USA. [Lukens, Wayne W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Actinide Chem Grp, Berkeley, CA 94720 USA. RP Francesconi, LC (reprint author), CUNY Hunter Coll, Dept Chem, 695 Pk Ave, New York, NY 10065 USA. EM lfrances@hunter.cuny.edu FU National Science Foundation (NSF) [CHE 0414218, CHE 0750118, CHE 0959617]; Office of Science (BER)-U.S. Department of Energy (DOE) [DE-SC0002456]; Office of Science, Department of Energy [DE-FG02-09ER16097]; National Center for Research Resources (NCRR) a component of the National Institutes of Health (NIH) [RR003037]; Heavy Element Chemistry, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX We are grateful to the National Science Foundation (NSF) (grant nos. CHE 0414218 and CHE 0750118), the Office of Science (BER)-U.S. Department of Energy (DOE) (award DE-SC0002456), and to Heavy Element Chemistry, Office of Science, Department of Energy (DE-FG02-09ER16097) for support of this work. We are grateful to the National Science Foundation (NSF) (CHE 0959617) for the purchase of the 400 MHz NMR instrument used in this research. The research infrastructure at Hunter College is partially supported by the National Center for Research Resources (NCRR) (grant number RR003037), a component of the National Institutes of Health (NIH). Part of this work was performed at Lawrence Berkeley National Laboratory and was also supported by Heavy Element Chemistry, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231. EXAFS data were obtained at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the U.S. DOE, Office of Basic Energy Sciences. NR 24 TC 0 Z9 0 U1 3 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD FEB PY 2014 VL 2014 IS 6 BP 1082 EP 1089 DI 10.1002/ejic.201301034 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AB0WE UT WOS:000331512000015 ER PT J AU Birkholzer, J Cihan, A Bandilla, K AF Birkholzer, Jens Cihan, Abdullah Bandilla, Karl TI A tiered area-of-review framework for geologic carbon sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE geologic carbon sequestration; area of review; pressure impact ID INDUCED SEISMICITY; CO2 STORAGE; DIOXIDE INJECTION; PRESSURE BUILDUP; LEAKAGE; IMPACT; WELLS; MANAGEMENT; AQUIFERS; GAS AB This paper discusses the current guidance given by the United States Environmental Protection Agency (EPA) on delineating the so-called Area of Review (AoR) for the permitting of geologic carbon sequestration (GCS) projects. According to the EPA's regulatory framework for GCS, the AoR refers to the region surrounding the CO2 injection well(s) wherein leakage of CO2 and/or the migration of formation fluids could possibly endanger overlying groundwater resources. Our evaluation of the current framework for delineating the size of this area finds unnecessary conservatism in the definition of the critical pressure, which could lead to a heavy burden on permit applicants that seek to get regulatory compliance, in particular for very large GCS projects. We propose a risk-based re-interpretation of this framework, separating the total Area of Review into different sub-areas with different regulatory requirements depending on whether the concern is about free-phase CO2 or pressure-driven brine migration. This leads to a tiered AoR definition in which the projected region of CO2 plume extent would have the highest regulatory standards regarding site characterization, monitoring, and corrective action. The requirements in the AoR outside this central region would be less burdensome because of a narrower focus on major pathways for brine leakage such as unplugged wellbores and large faults. We expect that this revised framework would allow for a reduction in the cost of regulatory compliance for projects with very large injection volumes, while ensuring that the objective of protecting valuable groundwater resources is preserved. C1 [Birkholzer, Jens] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Birkholzer, Jens; Cihan, Abdullah] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bandilla, Karl] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP Birkholzer, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Birkholzer, Jens/C-6783-2011; Cihan, Abdullah/D-3704-2015 OI Birkholzer, Jens/0000-0002-7989-1912; FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the US Department of Energy [DE-AC02-05CH11231]; DOE Office of Fossil Energy's Crosscutting Research program; National Science Foundation [EAR-0934722]; Department of Energy [DE-FE0009563]; Carbon Mitigation Initiative at Princeton University FX The authors wish to thank the two anonymous reviewers, as well as Curtis M. Oldenburg of Lawrence Berkeley National Laboratory (LBNL), for their careful review of the manuscript and the suggestion of improvements. The major part of this work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the US Department of Energy under Contract No. DE-AC02-05CH11231. Supplementary funding was provided to LBNL as part of the National Risk Assessment Partnership (NRAP). Support for NRAP came from the DOE Office of Fossil Energy's Crosscutting Research program. Additional support was provided by the National Science Foundation under Grant EAR-0934722, the Department of Energy under Award No. DE-FE0009563, and the Carbon Mitigation Initiative at Princeton University. NR 49 TC 13 Z9 13 U1 1 U2 16 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2014 VL 4 IS 1 BP 20 EP 35 DI 10.1002/ghg.1393 PG 16 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AB7GS UT WOS:000331958300004 ER PT J AU Rinaldi, AP Jeanne, P Rutqvist, J Cappa, F Guglielmi, Y AF Rinaldi, Antonio P. Jeanne, Pierre Rutqvist, Jonny Cappa, Frederic Guglielmi, Yves TI Effects of fault-zone architecture on earthquake magnitude and gas leakage related to CO2 injection in a multi-layered sedimentary system SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE carbon sequestration; fault architecture; geomechanics; induced seismicity; leakage ID INTERNAL STRUCTURE; DEFORMATION BANDS; CARBON-DIOXIDE; GEOLOGIC STORAGE; PUNCHBOWL FAULT; DYNAMIC RUPTURE; SOUTHWEST JAPAN; SEEPAGE FORCES; THRUST BELT; FLUID-FLOW AB The presence of fluid within a fault zone can cause overpressure and trigger earthquakes. In this work, we study the influence of fault-zone architecture on pore pressure distribution and on the resulting fault reactivation caused by CO2 injection. In particular, we investigate the effect of the variation and distribution of lithological and rock physical properties within a fault zone embedded in a multi-layer sedimentary system. Through numerical analysis, we compare several models where the complexity of the fault-zone architecture and different layers (such as caprock and injection reservoir) are incrementally included. Results show how the presence of hydraulic and mechanical heterogeneity along the fault influences the pressure diffusion, as well as the effective normal and shear stress evolution. Hydromechanical heterogeneities (i) strengthen the fault zone resulting in earthquakes of small magnitude, and (ii) impede fluid migration upward along the fault. We also study the effects of the caprock and aquifer thickness on the resulting induced seismicity and CO2 leakage, both in heterogeneous and homogeneous fault zones. Results show that a thin caprock or aquifer allows smaller events, but a much higher percentage of leakage through the caprock and into the upper aquifer. The amount of leakage reduces drastically in the case of a multi-caprock, multi-aquifer system. C1 [Rinaldi, Antonio P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Jeanne, Pierre; Rutqvist, Jonny; Cappa, Frederic] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cappa, Frederic] Univ Nice Sophia Antipolis, Observ Cote Azur, GeoAzur, Nice, France. [Guglielmi, Yves] Aix Marseille Univ, CNRS, IRD, CEREGE,UMR7330, Marseille, France. RP Rinaldi, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aprinaldi@lbl.gov RI Rinaldi, Antonio Pio/N-3284-2013; Rutqvist, Jonny/F-4957-2015; Jeanne, Pierre/I-2996-2015; Cappa, Frederic/B-4014-2017 OI Rinaldi, Antonio Pio/0000-0001-7052-8618; Rutqvist, Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Cappa, Frederic/0000-0003-4859-8024 FU Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US Department of Energy Contract No. DE-AC02-05CH11231. Technical review comments by Curt Oldenburg at the Berkeley Lab are greatly appreciated. We would like to thank two anonymous reviewers for their very useful comments. NR 72 TC 12 Z9 15 U1 3 U2 26 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2014 VL 4 IS 1 BP 99 EP 120 DI 10.1002/ghg.1403 PG 22 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AB7GS UT WOS:000331958300009 ER PT J AU Palaniappan, KK Francis, MB Pines, A Wemmer, DE AF Palaniappan, Krishnan K. Francis, Matthew B. Pines, Alexander Wemmer, David E. TI Molecular Sensing Using Hyperpolarized Xenon NMR Spectroscopy SO ISRAEL JOURNAL OF CHEMISTRY LA English DT Review DE imaging agents; magnetic properties; natural products; NMR spectroscopy; xenon ID MRI CONTRAST AGENTS; NUCLEAR-MAGNETIC-RESONANCE; LASER-POLARIZED XE-129; FUNCTIONALIZED XENON; VIRAL NANOPARTICLES; NOBLE-GASES; BIOSENSOR; CRYPTOPHANE; COMPLEXES; BLOOD AB Molecular imaging is the determination of the spatial location and concentration of specific molecules in a sample of interest. Sophisticated modern magnetic resonance imaging machines can collect NMR spectra from small-volume elements within a sample, enabling local chemical analysis. However, abundant water and fat signals limit detection of metabolites to near mM concentrations. Alternatively, targeted relaxation contrast agents enhance the relaxation of the strong water signal where they bind. A comparison of images with and without a contrast agent shows the target distribution, but high mu M concentrations are needed. We have developed an approach that exploits the strong signals of hyperpolarized Xe-129 (an inert reporter introduced for imaging). The imaging contrast agents are composed of a biological recognition motif to localize the agent (antibodies or aptamers) and covalently tethered cryptophane cages. Xenon binds to the cryptophane and though chemical exchange saturation transfer creates contrast in a xenon image. Imaging agents can deliver many cages per target, giving detection limits in the pM concentration range. The evolution and principles of this approach are described herein. C1 [Palaniappan, Krishnan K.; Francis, Matthew B.; Pines, Alexander; Wemmer, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Palaniappan, Krishnan K.; Francis, Matthew B.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Palaniappan, KK (reprint author), Univ Calif Berkeley, Dept Chem, Stanley Hall,MC 3220, Berkeley, CA 94720 USA. EM dewemmer@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; DOD Breast Cancer Research Program [BC061995] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 (A.P). K.K.P. was supported by a grant from the DOD Breast Cancer Research Program (BC061995). This work was taken in part from the Ph.D. dissertation of K.K.P. at U.C. Berkeley. NR 64 TC 8 Z9 8 U1 3 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0021-2148 EI 1869-5868 J9 ISR J CHEM JI Isr. J. Chem. PD FEB PY 2014 VL 54 IS 1-2 SI SI BP 104 EP 112 DI 10.1002/ijch.201300128 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AB7ZI UT WOS:000332009500011 ER PT J AU Yuzawa, S Eng, CH Katz, L Keasling, JD AF Yuzawa, Satoshi Eng, Clara H. Katz, Leonard Keasling, Jay D. TI Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic alpha-lipomycin SO JOURNAL OF ANTIBIOTICS LA English DT Article DE broad substrate specificity; isoleucine; lipomycin synthase ID BIOSYNTHETIC GENE-CLUSTER C1 [Yuzawa, Satoshi; Eng, Clara H.; Katz, Leonard; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Eng, Clara H.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Eng, Clara H.; Katz, Leonard; Keasling, Jay D.] Synthet Biol Engn Res Ctr, Emeryville, CA USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0000091]; National Science Foundation [EEC-0540879]; Joint BioEnergy Institute (JBEI); U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was funded by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under award number DE-AR0000091, by the National Science Foundation, award No. EEC-0540879 to the Synthetic Biology Research Center and by the Joint BioEnergy Institute (JBEI), which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract number DE-AC02-05CH11231. We thank Andreas Bechthold for providing us S. aureofaciens Tu117 and Jeffrey Pelton for assistance with NMR analysis. NR 7 TC 1 Z9 1 U1 1 U2 3 PU JAPAN ANTIBIOTICS RESEARCH ASSOC PI TOKYO PA 2 20 8 KAMIOSAKI SHINAGAWA KU, TOKYO, 141, JAPAN SN 0021-8820 J9 J ANTIBIOT JI J. Antibiot. PD FEB PY 2014 VL 67 IS 2 BP 199 EP 201 DI 10.1038/ja.2013.110 PG 3 WC Biotechnology & Applied Microbiology; Immunology; Microbiology; Pharmacology & Pharmacy SC Biotechnology & Applied Microbiology; Immunology; Microbiology; Pharmacology & Pharmacy GA AB9BT UT WOS:000332084800015 PM 24169801 ER PT J AU Liu, D Wang, GL Mei, R Yu, ZB Gu, HH AF Liu, Di Wang, Guiling Mei, Rui Yu, Zhongbo Gu, Huanghe TI Diagnosing the Strength of Land-Atmosphere Coupling at Subseasonal to Seasonal Time Scales in Asia SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Coupled models; Climate models; Time series; Regional models ID SOIL-MOISTURE ANOMALIES; REGIONAL CLIMATE MODEL; UNITED-STATES; NORTH-AMERICA; SUMMER PRECIPITATION; RAINFALL FEEDBACK; GREAT-PLAINS; 1988 DROUGHT; PART II; VARIABILITY AB This paper focuses on diagnosing the strength of soil moisture-atmosphere coupling at subseasonal to seasonal time scales over Asia using two different approaches: the conditional correlation approach [applied to the Global Land Data Assimilation System (GLDAS) data, the Climate Forecast System Reanalysis (CFSR) data, and output from the regional climate model, version 4 (RegCM4)] and the Global Land-Atmosphere Coupling Experiment (GLACE) approach applied to the RegCM4. The conditional correlation indicators derived from the model output and the two observational/reanalysis datasets agree fairly well with each other in the spatial pattern of the land-atmosphere coupling signal, although the signal in CFSR data is stronger and spatially more extensive than the GLDAS data and the RegCM4 output. Based on the impact of soil moisture on 2-m air temperature, the land-atmosphere coupling hotspots common to all three data sources include the Indochina region in spring and summer, the India region in summer and fall, and north-northeastern China and southwestern Siberia in summer. For precipitation, all data sources produce a weak and spatially scattered signal, indicating the lack of any strong coupling between soil moisture and precipitation, for both precipitation amount and frequency. Both the GLACE approach and the conditional correlation approach (applied to all three data sources) identify evaporation and evaporative fraction as important links for the coupling between soil moisture and precipitation/temperature. Results on soil moisture-temperature coupling strength from the GLACE-type experiment using RegCM4 are in good agreement with those from the conditional correlation analysis applied to output from the same model, despite substantial differences between the two approaches in the terrestrial segment of the land-atmosphere coupling. C1 [Liu, Di; Yu, Zhongbo; Gu, Huanghe] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China. [Liu, Di; Wang, Guiling; Mei, Rui] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Liu, Di; Wang, Guiling; Mei, Rui] Univ Connecticut, Ctr Environm Sci & Engn, Storrs, CT 06269 USA. [Mei, Rui] Oak Ridge Natl Lab, Comp Sci & Math Div, Climate Change Sci Inst, Oak Ridge, TN USA. [Yu, Zhongbo] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. RP Wang, GL (reprint author), Univ Connecticut, Dept Civil & Environm Engn, 261 Glenbrook St, Storrs, CT 06269 USA. EM gwang@engr.uconn.edu RI Mei, Rui/A-6774-2013 FU China Scholarship Council FX This study was made possible by a scholarship from the China Scholarship Council that supported Di Liu's visit to the University of Connecticut. Contribution from the University of Connecticut was supported by the NOAA CPPA (NA08OAR4310871) and the NSF (AGS-1063986), and contribution from Hohai University was supported by the National Basic Research Program of China (2010CB951101, 2013CBA01806) and the National Natural Science Foundation of China (Grant 41101015). The GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The authors thank the two anonymous reviewers for very thorough and constructive reviews on an earlier version of this paper. NR 61 TC 10 Z9 10 U1 4 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2014 VL 15 IS 1 BP 320 EP 339 DI 10.1175/JHM-D-13-0104.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AC2BI UT WOS:000332301900018 ER PT J AU O'Donoughue, PR Heath, GA Dolan, SL Vorum, M AF O'Donoughue, Patrick R. Heath, Garvin A. Dolan, Stacey L. Vorum, Martin TI Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas Systematic Review and Harmonization SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE combined cycle; combustion turbine; fossil fuels; industrial ecology; life cycle assessment (LCA); meta-analysis ID SHALE GAS; POWER-PLANTS; COAL; TECHNOLOGIES; FOOTPRINT; METHANE; ENERGY AB This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from natural gas-fired combustion turbine (NGCT) and combined-cycle (NGCC) systems. The smaller set of LCAs of liquefied natural gas power systems and natural gas plants with carbon capture and storage were also collected, but analyzed to a lesser extent. A meta-analytical process we term harmonization was employed to align several system boundaries and technical performance parameters to better allow for cross-study comparisons, with the aim of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. Of over 250 references identified, 42 passed screens for technological relevance and study quality, providing a total of 69 estimates for NGCT and NGCC. Harmonization increased the median estimates in each category as a result of several factors not typically considered in the previous research, including the regular clearing of liquids from a well, and consolidated the interquartile range for NGCC to 420 to 480grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh) and for NGCT to 570 to 750g CO2-eq/kWh, with medians of 450 and 670 CO2-eq/kWh, respectively. Harmonization of thermal efficiency had the largest effect in reducing variability; methane leakage rate is likely similarly influential, but was unharmonized in this assessment as a result of the significant current uncertainties in its estimation, an area that is justifiably receiving significant research attention. C1 [O'Donoughue, Patrick R.; Heath, Garvin A.; Dolan, Stacey L.; Vorum, Martin] NREL, Golden, CO 80401 USA. RP Heath, GA (reprint author), NREL, 15053 Denver West Blvd, Golden, CO 80401 USA. EM garvin.heath@nrel.gov FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory (NREL) FX This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory (NREL). Many NREL and DOE staff members helped guide this project, most importantly Margaret Mann (NREL), and also Austin Brown (formerly at the DOE, now at the NREL), Ookie Ma (DOE), and Gian Porro (NREL). Additional insight for natural gas systems has come from Jeff Logan and Douglas Arent (NREL). Contributors to the LCA Harmonization Project include Pamala Sawyer, Elliot Cohen, John Burkhardt, and Ethan Warner, all of the NREL, Vasilis Fthenakis and Hyung-Chul Kim of Brookhaven National Laboratory, and Michael Whitaker (now at ICF International). The authors are grateful for the assistance of Mr. Whitaker on revisions to the manuscript. NR 60 TC 17 Z9 17 U1 6 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2014 VL 18 IS 1 BP 125 EP 144 DI 10.1111/jiec.12084 PG 20 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AA9WE UT WOS:000331442900017 ER PT J AU Li, FY Jiang, DE Chen, ZF AF Li, Fengyu Jiang, De-en Chen, Zhongfang TI Computational quest for spherical C12B68 fullerenes with "magic" pi-electrons and quasi-planar tetra-coordinated carbon SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE C12B68 clusters; Density functional theory; Spherical aromaticity; Stability ID DENSITY-FUNCTIONAL THEORY; INDEPENDENT CHEMICAL-SHIFTS; HYDROGEN STORAGE MATERIALS; AB-INITIO; TETRACOORDINATE CARBON; 2-DIMENSIONAL BORON; 3-DIMENSIONAL AROMATICITY; HEXACOORDINATE CARBON; MIXED CLUSTERS; 10 K AB Inspired by the exciting properties of B80 clusters and the novel chemical bonding of planar tetra-coordinated carbon (ptC), we computationally investigated C12B68 clusters by substituting 12 boron atoms to 12 carbon in the B80 framework. Three types of C12B68 configurations, namely core-shell, boron-trapped and fullerene-like, were examined. The fullerene-like C12B68 clusters are featured with multiple quasi-planar tetra-coordinated carbon moieties; though with "magic" (72) number of electrons, they are not highly aromatic due to the limitations of Hirsch's rule for clusters with more than 50 p electrons. These C12B68 fullerenes are not global minima, but the appreciable HOMO-LUMO gaps, spherical aromaticity, and the thermal stability indicate their reasonable stabilities. C1 [Li, Fengyu] Univ Puerto Rico, Dept Phys, San Juan, PR 00923 USA. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Chen, Zhongfang] Univ Puerto Rico, Inst Funct Nanomat, Dept Chem, San Juan, PR 00923 USA. RP Chen, ZF (reprint author), Univ Puerto Rico, Inst Funct Nanomat, Dept Chem, San Juan, PR 00923 USA. EM zhongfangchen@gmail.com RI Jiang, De-en/D-9529-2011; Li, Fengyu/G-9433-2012; Chen, Zhongfang/A-3397-2008 OI Jiang, De-en/0000-0001-5167-0731; FU National Science Foundation [EPS-1010094]; DoD [W911NF-12-1-0083]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation Grants EPS-1010094 and DoD Grant W911NF-12-1-0083. Work at ORNL (DFT-based basin-hopping search) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; this research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 89 TC 2 Z9 2 U1 2 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 EI 0948-5023 J9 J MOL MODEL JI J. Mol. Model. PD FEB PY 2014 VL 20 IS 2 AR 2085 DI 10.1007/s00894-014-2085-z PG 8 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA AC0IW UT WOS:000332179000008 PM 24526377 ER PT J AU Pint, BA Thomson, JK AF Pint, B. A. Thomson, J. K. TI Effect of oxy- firing on corrosion rates at 600-650 8C SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION LA English DT Article DE carbon dioxide; coal ash corrosion; coal-fired boilers; oxy-firing; sulfur; water vapor ID HIGH-TEMPERATURE CORROSION; COAL-FIRED BOILERS; OXIDATION BEHAVIOR; POWER-PLANTS; WATER-VAPOR; STAINLESS-STEELS; MODEL ALLOYS; FE-CR; COMBUSTION; CO2 AB Because of higher CO2, and possibly H2O and SO2, levels in the boiler, there are concerns about increased corrosion rates after retrofitting current coal fired boilers from air-firing to oxy-firing to assist in CO2 capture. The oxidation behavior of a combination of commercial and model alloys were investigated both with and without the presence of synthetic coal ash at 600 and 650 degrees C. At 600 degrees C, a CO2-H2O environment showed the most rapid oxidation rate for Fe-based alloys with <20% Cr and varying the CO2 content or adding a 0.15% O-2 buffer had little effect on the mass change. However, at 650 degrees C, the O-2-buffered CO2-H2O environment showed a similar rate of oxidation as 100% H2O, again requiring more than 20% Cr for a thin protective Cr-rich oxide to form. With synthetic coal ash, increasing the CO2, H2O, and/or SO2 levels in the gas phase tended to show a lower oxide thickness after a 500h exposure at 600 degrees C, compared to the base line air-firing condition. At 650 degrees C, no systematic increase in the reaction rate was observed when switching from the air firing to the oxy-firing gas. These simulations suggest that higher CO2 contents with oxy-firing do not increase the rate of oxidation. C1 [Pint, B. A.; Thomson, J. K.] Oak Ridge Natl Lab, Corros Sci & Technol Grp, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Corros Sci & Technol Grp, Mat Sci & Technol Div, ORNL 1 Bethel Valley Rd,MS 6156, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU U.S. Department of Energy, Fossil Energy Advanced Research Materials Program FX The authors would like to thank G. Garner, M. Howell, T. Lowe, D. Leonard, K. Perry, T. Jordan, and H. Longmire for assistance with the experimental work. The research was sponsored by the U.S. Department of Energy, Fossil Energy Advanced Research Materials Program (V. Cedro, project monitor). M. P. Brady and P. F. Tortorelli provided helpful comments on the manuscript. NR 35 TC 2 Z9 2 U1 1 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-5117 EI 1521-4176 J9 MATER CORROS JI Mater. Corros. PD FEB PY 2014 VL 65 IS 2 BP 132 EP 140 DI 10.1002/maco.201307194 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AB7VS UT WOS:000331999600005 ER PT J AU Mayyas, A Qasaimeh, A Borgesen, P Meilunas, M AF Mayyas, Ahmad Qasaimeh, Awni Borgesen, Peter Meilunas, Michael TI Effects of latent damage of recrystallization on lead free solder joints SO MICROELECTRONICS RELIABILITY LA English DT Article; Proceedings Paper CT Workshop on Reliability of Compound Semiconductors (ROCS) CY MAY 13, 2013 CL New Orleans, LA SP JEDEC JC 14 7 Comm GaAs Reliabil & Qual Stand ID THERMOMECHANICAL FATIGUE; SN; RELIABILITY; BEHAVIOR; INTERCONNECTIONS; MICROSTRUCTURE; ORIENTATION; STRAIN; MODEL; LIFE AB Recrystallization behavior and microstructure evolution during liquid-liquid thermal shock of lead free solder alloys have been investigated in this study. SAC305 (Sn-3.0Ag-0.5Cu) solder alloy was used as the base solder alloy in which 5 different pitch sizes of ball grid array (BGA) were cycled in liquid-liquid thermal shock with (0/100 degrees C) profile and almost zero dwell time. The results show that recrystallization takes place in all BGA assemblies regardless of pitch size, but at different times. However, the larger the pitch sizes the sooner recrystallization will take place. This partially due to strain magnitude difference between central and outer joints. Thus larger pitch size coupons were subjected to higher strain magnitude, especially corner joints and hence recrystallization takes place on these coupons earlier. Moreover, it was found that cracks usually start and extend along the recrystallized regions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mayyas, Ahmad] Univ Calif Berkeley, TSRC, Berkeley, CA 94704 USA. [Mayyas, Ahmad] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Sustainable Energy Syst Grp, Berkeley, CA 94720 USA. [Qasaimeh, Awni] Tennessee Technol Univ, Dept Mfg & Engn Technol, Cookeville, TN 38505 USA. [Borgesen, Peter] SUNY Binghamton, Dept Syst Sci & Ind Engn, Binghamton, NY 13902 USA. [Meilunas, Michael] Universal Instruments Corp, Conklin, NY 13748 USA. RP Mayyas, A (reprint author), Univ Calif Berkeley, TSRC, 2150 Allston Way 280, Berkeley, CA 94704 USA. EM amayyas@berkeley.edu RI Mayyas, Ahmad/J-3671-2014 NR 30 TC 7 Z9 7 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0026-2714 J9 MICROELECTRON RELIAB JI Microelectron. Reliab. PD FEB PY 2014 VL 54 IS 2 BP 447 EP 456 DI 10.1016/j.microrel.2013.10.006 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AC3PL UT WOS:000332433600017 ER PT J AU Sigdel, TK Salomonis, N Nicora, CD Ryu, S He, JT Dinh, V Orton, DJ Moore, RJ Hsieh, SC Dai, H Minh, TV Xiao, WZ Smith, RD Qian, WJ Camp, DG Sarwal, MM AF Sigdel, Tara K. Salomonis, Nathan Nicora, Carrie D. Ryu, Soyoung He, Jintang Van Dinh Orton, Daniel J. Moore, Ronald J. Hsieh, Szu-Chuan Dai, Hong Minh Thien-Vu Xiao, Wenzhong Smith, Richard D. Qian, Wei-Jun Camp, David G., II Sarwal, Minnie M. TI The Identification of Novel Potential Injury Mechanisms and Candidate Biomarkers in Renal Allograft Rejection by Quantitative Proteomics SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID DIPEPTIDYL PEPTIDASE-IV; MASS-SPECTROMETRY; MESSENGER-RNA; TRANSPLANTATION; PROTEIN; CELLS; EXPRESSION; URINE; TOOL; CLASSIFICATION AB Early transplant dysfunction and failure because of immunological and nonimmunological factors still presents a significant clinical problem for transplant recipients. A critical unmet need is the noninvasive detection and prediction of immune injury such that acute injury can be reversed by proactive immunosuppression titration. In this study, we used iTRAQ -based proteomic discovery and targeted ELISA validation to discover and validate candidate urine protein biomarkers from 262 renal allograft recipients with biopsy-confirmed allograft injury. Urine samples were randomly split into a training set of 108 patients and an independent validation set of 154 patients, which comprised the clinical biopsy-confirmed phenotypes of acute rejection (AR) (n = 74), stable graft (STA) (n = 74), chronic allograft injury (CAI) (n = 58), BK virus nephritis (BKVN) (n = 38), nephrotic syndrome (NS) (n = 8), and healthy, normal control (HC) (n = 10). A total of 389 proteins were measured that displayed differential abundances across urine specimens of the injury types (p < 0.05) with a significant finding that SUMO2 (small ubiquitin-related modifier 2) was identified as a hub protein for graft injury irrespective of causation. Sixty-nine urine proteins had differences in abundance (p < 0.01) in AR compared with stable graft, of which 12 proteins were up-regulated in AR with a mean fold increase of 2.8. Nine urine proteins were highly specific for AR because of their significant differences (p < 0.01; fold increase >1.5) from all other transplant categories (HLA class II protein HLA-DRB1, KRT14, HIST1H4B, FGG, ACTB, FGB, FGA, KRT7, DPP4). Increased levels of three of these proteins, fibrinogen beta (FGB; p = 0.04), fibrinogen gamma (FGG; p = 0.03), and HLA DRB1 (p = 0.003) were validated by ELISA in AR using an independent sample set. The fibrinogen proteins further segregated AR from BK virus nephritis (FGB p = 0.03, FGG p = 0.02), a finding that supports the utility of monitoring these urinary proteins for the specific and sensitive noninvasive diagnosis of acute renal allograft rejection. C1 [Sigdel, Tara K.; Salomonis, Nathan; Van Dinh; Hsieh, Szu-Chuan; Dai, Hong; Minh Thien-Vu; Sarwal, Minnie M.] Calif Pacific Med Ctr, Res Inst, San Francisco, CA USA. [Nicora, Carrie D.; He, Jintang; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.; Qian, Wei-Jun; Camp, David G., II] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ryu, Soyoung; Xiao, Wenzhong] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. RP Sarwal, MM (reprint author), Calif Pacific Med Ctr, Res Inst, BIOMARC Program, 475 Brannan St,Ste 220, San Francisco, CA 94107 USA. EM MSarwal@psg.ucsf.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIDDK [R01DK083447, DP2OD006668, P41GM103493]; DOE [DE-AC05-76RL01830] FX The authors acknowledge the funding support from NIDDK R01DK083447 (to M. M. S. and D. G. C.), DP2OD006668 (to W.J.Q.), and P41GM103493 (to R. D. S.). The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy (DOE) national scientific user facility located at PNNL in Richland, Washington and in the Sarwal Lab at Stanford University and California Pacific Medical Center Research Institute. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 49 TC 16 Z9 19 U1 1 U2 15 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD FEB PY 2014 VL 13 IS 2 BP 621 EP 631 DI 10.1074/mcp.M113.030577 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AA8TX UT WOS:000331369000018 PM 24335474 ER PT J AU Xu, T Li, YC He, ZL Zhou, JZ AF Xu, Tao Li, Yongchao He, Zhili Zhou, Jizhong TI Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum SO MOLECULAR MICROBIOLOGY LA English DT Article ID CRYSTAL-STRUCTURE; THERMOCELLUM; COMPLEX; GENE; CELLULOVORANS; DEGRADATION; PROTEINASE; EXPRESSION; BACTERIA; DOMAIN AB Cellulosomes are key for lignocellulosic biomass degradation in cellulolytic Clostridia. Better understanding of the mechanism of cellulosome regulation would allow us to improve lignocellulose hydrolysis. It is hypothesized that cellulosomal protease inhibitors would regulate cellulosome architecture and then lignocellulose hydrolysis. Here, a dockerin-containing protease inhibitor gene (dpi) in Clostridium cellulolyticum H10 was characterized by mutagenesis and physiological analyses. The dpi mutant had a decreased cell yield on glucose, cellulose and xylan, lower cellulose utilization efficiency, and a 70% and 52% decrease of the key cellulosomal components, Cel48F and Cel9E respectively. The decreased cellulolysis is caused by the proteolysis of major cellulosomal components, such as Cel48F and Cel9E. Disruption of cel9E severely impaired cell growth on cellulose while loss of cel48F completely abolished cellulolytic activity. These observations are due to the combinational results of gene inactivation and polar effects caused by intron insertion. Purified recombinant Dpi showed inhibitory activity against cysteine protease. Taken together, Dpi protects key cellulosomal cellulases from proteolysis in H10. This study identified the physiological importance of cellulosome-localized protease inhibitors in Clostridia. C1 [Xu, Tao; Li, Yongchao; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73071 USA. [Xu, Tao; Li, Yongchao] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73071 USA. [He, Zhili; Zhou, Jizhong] Virtual Inst Microbial Stress & Survival, Berkeley, CA USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73071 USA. EM jzhou@ou.edu FU NSF EPSCoR award [EPS 0814361] FX We thank Professor Laura E. Bartley for suggestions on proteolytic activity test, Dr Chris Hemme and Dr Joy D. Van Nostrand for revising the English in the manuscript and Yue Huang for helpful comments. This work was supported by the NSF EPSCoR award EPS 0814361. NR 45 TC 3 Z9 3 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD FEB PY 2014 VL 91 IS 4 BP 694 EP 705 DI 10.1111/mmi.12488 PG 12 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA AA8ZI UT WOS:000331383100006 PM 24330350 ER PT J AU Miller, EC Mattingly, JK Clarke, SD Solomon, CJ Dennis, B Meldrum, A Pozzi, SA AF Miller, E. C. Mattingly, J. K. Clarke, S. D. Solomon, C. J. Dennis, B. Meldrum, A. Pozzi, S. A. TI Computational Evaluation of Neutron Multiplicity Measurements of Polyethylene-Reflected Plutonium Metal SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID MONTE-CARLO-SIMULATION; DISTRIBUTIONS; FISSION AB Simulations of neutron multiplicity measurements of a highly multiplicative plutonium sphere measured with a moderated array of He-3 proportional counters have consistently overpredicted the mean and variance of the measured multiplicity distribution. In contrast, identical experiments using a Cf-252 source have been accurately simulated. This paper outlines a sensitivity analysis of several key parameters that could account for the overprediction in the simulation of the plutonium sphere. Parameters that were analyzed include source-detector distance, detector dead time, variations in density and volume of the plutonium, and the value of (v) over bar for Pu-239-induced fission. Of these parameters, the only factor that accounted for the overprediction within reasonable bounds was a change in the value of the Pu-239 (v) over bar. The sensitivity analysis showed that a small change (1.14% reduction) in the value of (v) over bar dramatically improved the simulated results. C1 [Miller, E. C.; Clarke, S. D.; Dennis, B.; Meldrum, A.; Pozzi, S. A.] Univ Michigan, Ann Arbor, MI 48109 USA. [Mattingly, J. K.] N Carolina State Univ, Raleigh, NC 27695 USA. [Solomon, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Miller, EC (reprint author), Univ Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA. EM ericcm@umich.edu FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office; U.S. Department of Defense, Defense Threat Reduction Agency FX This research was performed in part under the Nuclear Forensics Graduate Fellowship Program, which is sponsored by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office and the U.S. Department of Defense, Defense Threat Reduction Agency. NR 22 TC 2 Z9 2 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2014 VL 176 IS 2 BP 167 EP 185 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AB9UH UT WOS:000332140700004 ER PT J AU Wang, YQ Zhang, HB Martineau, RC AF Wang, Yaqi Zhang, Hongbin Martineau, Richard C. TI Diffusion Acceleration Schemes for Self-Ad joint Angular Flux Formulation with a Void Treatment SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SYNTHETIC ACCELERATION; UNSTRUCTURED GRIDS; ITERATIVE METHODS; TRANSPORT; EQUATIONS; SYSTEMS; MESHES AB A Galerkin weak form for the monoenergetic neutron transport equation with a continuous finite element method and discrete ordinate method is developed based on self-adjoint angular flux formulation. This weak form is modified for treating void regions. A consistent diffusion scheme is developed with P-0 projection. Correction terms of the diffusion scheme are derived to reproduce the transport scalar flux. A source iteration that decouples the solution of all directions with both linear and nonlinear diffusion accelerations is developed and demonstrated. One-dimensional Fourier analysis is conducted to demonstrate the stability of the linear and nonlinear diffusion accelerations. Numerical results of these schemes are presented. C1 [Wang, Yaqi; Zhang, Hongbin; Martineau, Richard C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wang, YQ (reprint author), Idaho Natl Lab, 2525 Fremont Ave,POB 1625, Idaho Falls, ID 83415 USA. EM yaqi.wang@inl.gov FU U.S. Department of Energy (DOE) under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy (DOE) under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 26 TC 3 Z9 3 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2014 VL 176 IS 2 BP 201 EP 225 PG 25 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AB9UH UT WOS:000332140700006 ER PT J AU Colloms, SD Merrick, CA Olorunniji, FJ Stark, WM Smith, MCM Osbourn, A Keasling, JD Rosser, SJ AF Colloms, Sean D. Merrick, Christine A. Olorunniji, Femi J. Stark, W. Marshall Smith, Margaret C. M. Osbourn, Anne Keasling, Jay D. Rosser, Susan J. TI Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination SO NUCLEIC ACIDS RESEARCH LA English DT Article ID VIOLACEIN BIOSYNTHETIC-PATHWAY; ESCHERICHIA-COLI; IN-VITRO; PHI-C31 INTEGRASE; DNA FRAGMENTS; ONE-STEP; HOMOLOGOUS RECOMBINATION; FUNCTIONAL-ANALYSIS; CLONING METHOD; ONE-POT AB Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by phi C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. phi C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. C1 [Colloms, Sean D.; Merrick, Christine A.; Olorunniji, Femi J.; Stark, W. Marshall; Rosser, Susan J.] Univ Glasgow, Inst Mol Cell & Syst Biol, Glasgow G12 8QQ, Lanark, Scotland. [Smith, Margaret C. M.] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England. [Osbourn, Anne] John Innes Ctr, Dept Metab Biol, Norwich NR4 7UH, Norfolk, England. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Colloms, SD (reprint author), Univ Glasgow, Inst Mol Cell & Syst Biol, Bower Bldg,Univ Ave, Glasgow G12 8QQ, Lanark, Scotland. EM Sean.Colloms@glasgow.ac.uk; Susan.Rosser@ed.ac.uk RI Keasling, Jay/J-9162-2012; OI Keasling, Jay/0000-0003-4170-6088; Colloms, Sean/0000-0003-2369-8168; Smith, Maggie/0000-0002-4150-0496; Stark, Marshall/0000-0001-8086-2572 FU UK Engineering and Physical Sciences Research Council [EP/H019154/1]; UK Biotechnology and Biological Sciences Research Council [BB/K003356/1, BB/H005277/1, BB/J004561/1]; National Science Foundation [0943392]; John Innes Foundation; University of Glasgow FX UK Engineering and Physical Sciences Research Council [EP/H019154/1 to S.J.R.]; the UK Biotechnology and Biological Sciences Research Council [BB/K003356/1 to W.M.S., BB/H005277/1 to M.C.M.S. and BB/J004561/1 to A.O.]; the National Science Foundation [0943392 to J.K.]; and the John Innes Foundation (to A.O.). Funding for open access charge: University of Glasgow. NR 43 TC 24 Z9 25 U1 5 U2 35 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD FEB PY 2014 VL 42 IS 4 AR e23 DI 10.1093/nar/gkt1101 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AC2YA UT WOS:000332381000002 PM 24225316 ER PT J AU Franko, KJ Lele, S AF Franko, Kenneth J. Lele, Sanjiva TI Effect of adverse pressure gradient on high speed boundary layer transition SO PHYSICS OF FLUIDS LA English DT Article ID SIMULATION; RESOLUTION; STABILITY; BREAKDOWN; ZERO AB The effect of adverse pressure gradients (APG) on boundary layer stability, breakdown, and heat-transfer overshoot is investigated. Flat plate isothermal boundary layers initially at Mach 6 with APG imposed through the freestream boundary condition are simulated using suction and blowing to produce boundary layer instabilities. The three different transition mechanisms compared are first mode oblique breakdown, second mode oblique breakdown, and second mode fundamental resonance. For all of the transition mechanisms, an adverse pressure gradient increases the linear growth rates and quickens the transition to turbulence. However, the nonlinear breakdown for all three transition mechanisms is qualitatively the same as for a zero pressure gradient boundary layer. First mode oblique breakdown leads to the earliest transition location and an overshoot in heat transfer in the transitional region. Both types of Mack second mode forcing lead to a transitional boundary layer but even with the increased growth rates and N factors produced by the adverse pressure gradient, the breakdown process is still more gradual than first mode oblique breakdown because the primary Mack second mode instabilities saturate and produce streaks that breakdown further downstream. (C) 2014 AIP Publishing LLC. C1 Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Franko, KJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kjfrank@sandia.gov; lele@stanford.edu FU Phase-I STTR at Stanford University; Cascade Technologies, Mountain View, CA; AFOSR; Department of Defense [AFOSR FA9550-10-C-0174]; Fannie and John Hertz Foundation Fellowship; Stanford Graduate Fellowship FX Support was provided by a Phase-I STTR at Stanford University in partnership with Cascade Technologies, Mountain View, CA with support from AFOSR (Dr. John Schmisseur, Program Manager). It is now continuing as Phase-II effort under a subaward to Stanford University (Cascade Technologies, prime contractor) with support from AFOSR. We appreciate technical discussion and help from Professor G. Iaccarino, Dr. Olaf Marxen, and Dr. R Bhaskaran. We appreciate technical discussions with Dr. Michael Holden of CUBRC and with Dr. O Ramesh of IISc, Bangalore, regarding heat-transfer overshoot. The presentation in the paper benefitted from this discussion. Computational resources were provided by the Department of Defense through Contract No. AFOSR FA9550-10-C-0174. K. J. Franko thanks the Fannie and John Hertz Foundation Fellowship and Stanford Graduate Fellowship for support. NR 39 TC 3 Z9 3 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2014 VL 26 IS 2 AR 024106 DI 10.1063/1.4864337 PG 26 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AC2HZ UT WOS:000332322000025 ER PT J AU Martin, JL Yates, PA Soysa, R Alfaro, JF Yang, F Burnum-Johnson, KE Petyuk, VA Weitz, KK Camp, DG Smith, RD Wilmarth, PA David, LL Ramasamy, G Myler, PJ Carter, NS AF Martin, Jessica L. Yates, Phillip A. Soysa, Radika Alfaro, Joshua F. Yang, Feng Burnum-Johnson, Kristin E. Petyuk, Vladislav A. Weitz, Karl K. Camp, David G., II Smith, Richard D. Wilmarth, Phillip A. David, Larry L. Ramasamy, Gowthaman Myler, Peter J. Carter, Nicola S. TI Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani SO PLOS PATHOGENS LA English DT Article ID CLASS-I NUCLEASE; ANTIMONY-RESISTANT LEISHMANIA; TRANSPORT-DEFICIENT MUTANT; DE-NOVO SYNTHESIS; SURFACE-MEMBRANE; GENE-EXPRESSION; MESSENGER-RNA; TRYPANOSOMA-CRUZI; 3'-NUCLEOTIDASE NUCLEASE; PARASITIC PROTOZOA AB The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms. Author SummaryLeishmania, the cause of a deadly spectrum of diseases in humans, surmounts a number of environmental challenges, including changes in the availability of salvageable nutrients, to successfully colonize its host. Adaptation to environmental stress is clearly of significance in parasite biology, but the underlying mechanisms are not well understood. To simulate the response to periodic nutrient scarcity in vivo, we have induced purine starvation in vitro. Purines are essential for growth and viability, and serve as the major energy currency of cells. Leishmania cannot synthesize purines and must salvage them from the surroundings. Extracellular purine depletion in culture induces a robust survival response in Leishmania, whereby growth arrests, but parasites persist for months. To profile the events that enable endurance of purine starvation, we used shotgun proteomics. Our data suggest that purine starvation induces extensive proteome remodeling, tailored to enhance purine capture and recycling, reduce energy expenditures, and maintain viability of the metabolically active, non-dividing population. Through global and targeted approaches, we reveal that proteome remodeling is multifaceted, and occurs through an array of responses at the mRNA, translational, and post-translational level. Our data provide one of the most inclusive views of adaptation to microenvironmental stress in Leishmania. C1 [Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Wilmarth, Phillip A.; David, Larry L.; Carter, Nicola S.] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97201 USA. [Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Wilmarth, Phillip A.; David, Larry L.] Oregon Hlth & Sci Univ, Prote Shared Resource Core, Portland, OR 97201 USA. [Ramasamy, Gowthaman; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA 98195 USA. RP Martin, JL (reprint author), Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97201 USA. EM cartern@ohsu.edu RI Smith, Richard/J-3664-2012; Burnum, Kristin/B-1308-2011; OI Smith, Richard/0000-0002-2381-2349; Burnum, Kristin/0000-0002-2722-4149; Petyuk, Vladislav/0000-0003-4076-151X FU Oregon Clinical and Translational Research Institute (OCTRI); National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH) [UL1TR000128]; National Institute of Neurological Disorders and Stroke [NS065405]; National Institute of Allergy and Infectious Diseases [AI023682, AI044138]; NIH/NIAID [T32 AI007472]; NIH [T32 GM071338-06, P30EY010572, P30CA069533]; N.L. Tartar Trust Fellowship; National Center for Research Resources [5P41RR018522-10]; National Institute of General Medical Sciences from the National Institutes of Health for Proteomics [8 P41 GM103493-10]; DOE [DE-AC05-76RL01830] FX This publication was supported in part by the Oregon Clinical and Translational Research Institute (OCTRI), grant number (UL1TR000128) from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), by the grants NS065405 from the National Institute of Neurological Disorders and Stroke, and AI023682 and AI044138 from the National Institute of Allergy and Infectious Diseases. JLM was supported by fellowships made available through the grants NIH/NIAID T32 AI007472 and NIH T32 GM071338-06, as well as by a N.L. Tartar Trust Fellowship. The proteomic work at Pacific Northwest National Laboratory (PNNL) was supported by grants from the National Center for Research Resources (5P41RR018522-10) and the National Institute of General Medical Sciences (8 P41 GM103493-10) from the National Institutes of Health for Proteomics. Additional support for the proteomics analyses was also through the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research (OBER) Pan-Omics program at PNNL and performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the PNNL campus. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RL01830. The proteomic work at the Oregon Health & Science University Proteomics Shared Resource was partially supported by NIH grants P30EY010572 and P30CA069533. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 149 TC 14 Z9 14 U1 2 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD FEB PY 2014 VL 10 IS 2 AR e1003938 DI 10.1371/journal.ppat.1003938 PG 21 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA AB9CC UT WOS:000332085900023 PM 24586154 ER PT J AU de Graaff, MA Jastrow, JD Gillette, S Johns, A Wullschleger, SD AF de Graaff, Marie-Anne Jastrow, Julie D. Gillette, Shay Johns, Aislinn Wullschleger, Stan D. TI Differential priming of soil carbon driven by soil depth and root impacts on carbon availability SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Switchgrass cultivars; Specific root length; Soil depth; Decomposition; Priming; Carbon-13 ID MICROBIAL COMMUNITY COMPOSITION; ORGANIC-MATTER; ELEVATED CO2; DECOMPOSITION RATES; POPLAR PLANTATION; BRANCH ORDER; FOREST SOILS; PINE FOREST; FINE ROOTS; RHIZOSPHERE AB Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labile soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0-10, 20-30, and 40-60 cm and incubated with addition of either: (1) water or (2) C-13-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in C-13 signature between C-3 soils and C-4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with C-13-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil c and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil. (C) 2013 Elsevier Ltd. All rights reserved. C1 [de Graaff, Marie-Anne; Gillette, Shay; Johns, Aislinn] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. [Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP de Graaff, MA (reprint author), Boise State Univ, Dept Biol Sci, 1910 Univ Dr, Boise, ID 83725 USA. EM Marie-annedegraaff@boisestate.edu RI Wullschleger, Stan/B-8297-2012 OI Wullschleger, Stan/0000-0002-9869-0446 FU National Science Foundation EPSCoR Program; US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division [DE-AC02-06CH11357] FX We thank Xochi Campos, Ian Duvall, Jaron Adkins and Jamie Hicks for assisting with root architecture and CO2 respiration measurements and microbial analyses. Thanks to Timothy Vugteveen for collecting soil and root samples. This work was supported by the National Science Foundation EPSCoR Program and by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division under contract DE-AC02-06CH11357 to Argonne National Laboratory, which is managed for the U.S. Department of Energy by Chicago Argonne, LLC, and it was conducted in collaboration with Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 59 TC 21 Z9 22 U1 14 U2 159 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD FEB PY 2014 VL 69 BP 147 EP 156 DI 10.1016/j.soilbio.2013.10.047 PG 10 WC Soil Science SC Agriculture GA AC1MV UT WOS:000332261600019 ER PT J AU Steven, B Gallegos-Graves, LV Yeager, C Belnap, J Kuske, CR AF Steven, Blaire Gallegos-Graves, La Verne Yeager, Chris Belnap, Jayne Kuske, Cheryl R. TI Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Dryland soil; Soil fungi; Soil bacteria; Biological soil crust; Shrub root zone; Arid land soil; Fungal large subunit rRNA; Bacterial 16S rRNA; Shotgun metagenome; Soil metagenome ID ELEVATED ATMOSPHERIC CO2; RIBOSOMAL-RNA GENES; SP-NOV.; MICROBIAL BIOMASS; MOJAVE DESERT; EMENDED DESCRIPTION; COLORADO PLATEAU; SONORAN DESERT; NITROGEN; ECOSYSTEM AB Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes. Published by Elsevier Ltd. C1 [Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Belnap, Jayne] US Geol Survey, Southwest Biol Sci Ctr, Moab, UT 84532 USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, M888, Los Alamos, NM 87545 USA. EM kuske@lanl.gov FU U.S. Department of Energy (DOE), Biological and Environmental Science Division [2009LANLF260]; JGI; U.S. Geological Survey FX This study was supported by the U.S. Department of Energy (DOE), Biological and Environmental Science Division, through a Science Focus Area grant to CRK (2009LANLF260). Sanger DNA sequencing was conducted at Los Alamos National Laboratory, by the DOE Joint Genome Institute (JGI). The 454 Titanium shotgun metagenome sequencing was provided by JGI through a Community Sequencing Program grant to CRK. JB was supported by the Ecosystems Program of the U.S. Geological Survey. The authors gratefully acknowledge Cedar Hesse for helpful comments regarding fungal community composition and Rebecca Mueller for assistance with statistical analysis. We also acknowledge the DOE Terrestrial Carbon Processes Program for operation of the Nevada Desert FACE facility (DE-FG02-03ER63650, DEFG02-03ER63651), and the DOE National Nuclear Security Administration for providing utility services and undisturbed land at the Nevada National Security Site (formerly Nevada Test Site) to conduct the FACE experiment. This is LANL unclassified report LA-UR 13-24126. Any use of trade names is only for descriptive purposes and does not imply endorsement by the US government. NR 71 TC 15 Z9 16 U1 9 U2 95 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD FEB PY 2014 VL 69 BP 302 EP 312 DI 10.1016/j.soilbio.2013.11.008 PG 11 WC Soil Science SC Agriculture GA AC1MV UT WOS:000332261600035 ER PT J AU Knizek, K Jirak, Z Novak, P de la Cruz, C AF Knizek, K. Jirak, Z. Novak, P. de la Cruz, Clarina TI Non-collinear magnetic structures of TbCoO3 and DyCoO3 SO SOLID STATE SCIENCES LA English DT Article DE Neutron diffraction; Crystal fields level splitting; TbCoO3; DyCoO3; Magnetic structure ID ENERGY-LEVELS; TBALO3 AB The orthoperovskites TbCoO3 and DyCoO3 with Co3+ in a non-magnetic low-spin state have been investigated by neutron diffraction down to 0.25 K. Magnetic ordering is evidenced below T-N = 3.3 K and 3.6 K, respectively, and the ordered arrangements are of canted type, A(x)G(y) for TbCoO3 and G(x)A(y) for DyCoO3 in Bertaut's notation. The experiments are confronted with the first-principle calculations of the crystal field and magnetism of Tb3+ and Dy3+ ions, located in the Pbnm structure on sites of C-s point symmetry. Both these ions exhibit an Ising behavior, which originates in the lowest energy levels, in particular in accidental doublet of non-Kramers Tb3+ (4f(8) configuration) and in ground Kramers doublet of Dy3+ (4f(9)) and it is the actual reason for the non-collinear AFM structures. Very good agreement between the experiment and theory is found. For comparison, calculations of the crystal field and magnetism for other systems with Kramers ions, NdCoO3 and SmCoO3, are also included. (C) 2013 Elsevier Masson SAS. All rights reserved. C1 [Knizek, K.; Jirak, Z.; Novak, P.] Inst Phys ASCR, Prague 16200 6, Czech Republic. [de la Cruz, Clarina] ORNL, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Knizek, K (reprint author), Inst Phys ASCR, Cukrovamicka 10, Prague 16200 6, Czech Republic. EM knizek@fzu.cz RI Knizek, Karel/G-5270-2014; Jirak, Zdenek/G-6281-2014; Novak, Pavel/G-6692-2014; dela Cruz, Clarina/C-2747-2013 OI Knizek, Karel/0000-0002-0725-0331; dela Cruz, Clarina/0000-0003-4233-2145 FU Grant Agency of the Czech Republic [P204/11/0713] FX This work was supported by Project No. P204/11/0713 of the Grant Agency of the Czech Republic. We acknowledge the Oak Ridge National Laboratory (Tennessee, United States) for providing access to the neutron beams and for all technical support during the experiments. NR 15 TC 7 Z9 7 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD FEB PY 2014 VL 28 BP 26 EP 30 DI 10.1016/j.solidstatesciences.2013.12.001 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA AC3SY UT WOS:000332442700005 ER PT J AU Welch, PM Welch, CF Henson, NJ AF Welch, P. M. Welch, C. F. Henson, N. J. TI Flattening of Dendrimers from Solutions onto Charged Surfaces SO ACS MACRO LETTERS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; POLY(AMIDOAMINE) DENDRIMERS; PAMAM DENDRIMERS; GOLD ELECTRODES; ADSORPTION; MONOLAYERS; DYNAMICS AB The adsorption of dendrimers onto charged surfaces plays a role in many emerging applications. Numerous studies found in the literature report that dendrimers flatten at these interfaces. Here, we provide a simple scaling theory that describes the height of the adsorbed layer, the fraction of segments within the dendrimer that touch the surface, and the total number of dendrimers adsorbed as a function of generation of growth, surface charge density, and concentration. We demonstrate that these predictions agree well with extensive molecular dynamics simulations. Combined, the simulations and scaling argument indicate that simultaneous adsorption and compression at the interface take place. C1 [Welch, P. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. RP Welch, PM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM pwelch@lanl.gov OI Henson, Neil/0000-0002-1842-7884; Welch, Cynthia/0000-0002-4638-6434; Welch, Paul/0000-0001-5614-2065 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Los Alamos National Laboratory Directed Research and Development program FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Financial support provided by the Los Alamos National Laboratory Directed Research and Development program. Computing time was provided by Los Alamos National Laboratory's Institutional Computing. NR 27 TC 1 Z9 1 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2014 VL 3 IS 2 BP 180 EP 184 DI 10.1021/mz400524c PG 5 WC Polymer Science SC Polymer Science GA AB4QE UT WOS:000331774200013 ER PT J AU Haitjema, CH Boock, JT Natarajan, A Dominguez, MA Gardner, JG Keating, DH Withers, ST DeLisa, MP AF Haitjema, Charles H. Boock, Jason T. Natarajan, Aravind Dominguez, Miguel A. Gardner, Jeffrey G. Keating, David H. Withers, Sydnor T. DeLisa, Matthew P. TI Universal Genetic Assay for Engineering Extracellular Protein Expression SO ACS SYNTHETIC BIOLOGY LA English DT Article DE bacterial expression; biarsenical FlAsH labeling; protein folding and export; secretion-pathway engineering; type II and type III protein secretion; YebF ID ESCHERICHIA-COLI; SECRETION SYSTEM; ERWINIA-CHRYSANTHEMI; CELLVIBRIO-JAPONICUS; II SECRETION; PATHWAY; CELLS; FLUORESCENCE; BACTERIA; STRAINS AB A variety of strategies now exist for the extracellular expression of recombinant proteins using laboratory strains of Escherichia coli. However, secreted proteins often accumulate in the culture medium at levels that are too low to be practically Useful for most synthetic biology and metabolic engineering applications. The situation is compounded by the lack of generalized screening tools for optimizing the secretion process. To address this challenge, we developed a genetic approach for studying and engineering protein-secretion pathways in E. coli. Using the YebF pathway as a model, we demonstrate that direct fluorescent labeling of tetracysteine-motif-tagged secretory proteins with the biarsenical compound FlAsH is possible in situ without the need to recover the cell-free supernatant. High-throughput screening of a bacterial strain library yielded superior YebF expression hosts capable of secreting higher titers of YebF and YebF-fusion proteins into the culture medium. We also show that the method can be easily extended to other secretory pathways, including type II and type III secretion, directly in E. coli. Thus, our FlAsH-tetracysteine-based genetic assay provides a convenient, high-throughput tool that can be applied generally to diverse secretory pathways. This platform should help to shed light on poorly understood aspects of these processes as well as to further assist in the construction of engineered E. coli strains for efficient secretory-protein production. C1 [Haitjema, Charles H.; Natarajan, Aravind; DeLisa, Matthew P.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. [Boock, Jason T.; DeLisa, Matthew P.] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. [Dominguez, Miguel A.; Gardner, Jeffrey G.; Keating, David H.; Withers, Sydnor T.] Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP DeLisa, MP (reprint author), Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. EM md255@cornell.edu OI DeLisa, Matthew/0000-0003-3226-1566 FU DOE Great Lakes Bioenergy Research Center (GLBRC) [3.2.8]; USDA NIFA [2009-02202]; NSF GK12 award [DGE-1045513] FX Funding was provided by the DOE Great Lakes Bioenergy Research Center (GLBRC) project 3.2.8 and USDA NIFA award no. 2009-02202 (both to M.P.D.) as well as NSF GK12 award no. DGE-1045513 "Grass Roots: Advancing education in renewable energy and cleaner fuels through collaborative graduate fellow/teacher/grade-school student interactions" (to J.T.B.). We are grateful to Doug Weibel for the gift of FlAsH-EDT2 and to Alan Collmer and Anthony Hay for generously supplying the T2S and T3S plasmids used in this study. NR 34 TC 4 Z9 5 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD FEB PY 2014 VL 3 IS 2 BP 74 EP 82 DI 10.1021/sb400142b PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AB6VH UT WOS:000331927100003 PM 24200127 ER PT J AU Luo, ZP Rajashankar, K Dauter, Z AF Luo, Zhipu Rajashankar, Kanagalaghatta Dauter, Zbigniew TI Weak data do not make a free lunch, only a cheap meal SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID X-RAY DATA; DATA QUALITY; RESOLUTION; CRYSTALLOGRAPHY; MODEL AB Four data sets were processed at resolutions significantly exceeding the criteria traditionally used for estimating the diffraction data resolution limit. The analysis of these data and the corresponding model-quality indicators suggests that the criteria of resolution limits widely adopted in the past may be somewhat conservative. Various parameters, such as R-merge and I/sigma(I), optical resolution and the correlation coefficients CC1/2 and CC*, can be used for judging the internal data quality, whereas the reliability factors R and R-free as well as the maximum-likelihood target values and real-space map correlation coefficients can be used to estimate the agreement between the data and the refined model. However, none of these criteria provide a reliable estimate of the data resolution cutoff limit. The analysis suggests that extension of the maximum resolution by about 0.2 angstrom beyond the currently adopted limit where the I/sigma(I) value drops to 2.0 does not degrade the quality of the refined structural models, but may sometimes be advantageous. Such an extension may be particularly beneficial for significantly anisotropic diffraction. Extension of the maximum resolution at the stage of data collection and structure refinement is cheap in terms of the required effort and is definitely more advisable than accepting a too conservative resolution cutoff, which is unfortunately quite frequent among the crystal structures deposited in the Protein Data Bank. C1 [Luo, Zhipu; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. [Rajashankar, Kanagalaghatta] Cornell Univ, NE CAT, Argonne Natl Lab, Argonne, IL 60439 USA. [Rajashankar, Kanagalaghatta] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov RI Luo, Zhipu/P-9168-2014 FU Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN261200800001]; National Institute of General Medical Sciences of the National Institutes of Health [8 P41 GM103403-10]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This project was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health (contract No. HHSN261200800001). KRR is supported by a grant from the National Institute of General Medical Sciences (8 P41 GM103403-10) of the National Institutes of Health. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. W-31-109-Eng-38. NR 24 TC 10 Z9 10 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2014 VL 70 BP 253 EP 260 DI 10.1107/S1399004713026680 PN 2 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AB1LY UT WOS:000331554500005 PM 24531460 ER PT J AU Sanson, B Wang, T Sun, J Wang, LQ Kaczocha, M Ojima, I Deutsch, D Li, HL AF Sanson, Benoit Wang, Tao Sun, Jing Wang, Liqun Kaczocha, Martin Ojima, Iwao Deutsch, Dale Li, Huilin TI Crystallographic study of FABP5 as an intracellular endocannabinoid transporter SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID ACID-BINDING PROTEIN; MOLECULAR-DYNAMICS SIMULATIONS; CRYSTAL-STRUCTURE; MACROMOLECULAR CRYSTALLOGRAPHY; LIGAND ENTRY; REFINEMENT; ANANDAMIDE; 2-ARACHIDONOYLGLYCEROL; INHIBITORS; PALMITATE AB In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5-endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels. C1 [Sanson, Benoit; Wang, Tao; Li, Huilin] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Sun, Jing; Wang, Liqun; Kaczocha, Martin; Deutsch, Dale; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Ojima, Iwao] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Ojima, Iwao; Deutsch, Dale; Li, Huilin] SUNY Stony Brook, Inst Chem Biol & Drug Discovery, Stony Brook, NY 11794 USA. RP Deutsch, D (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM dale.deutsch@stonybrook.edu; hli@bnl.gov OI Kaczocha, Martin/0000-0002-2527-1398 FU SBU/BNL Seed Grant from the Provost; Targeted Research Opportunity Fusion Award from the Medical School at Stony Brook University; NIH [DA016419, DA026953, DA032232]; Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy; National Center for Research Resources [P41RR012408]; National Institute of General Medical Sciences of the National Institutes of Health [P41GM103473] FX This work was partially supported by an SBU/BNL Seed Grant from the Provost and by the Targeted Research Opportunity Fusion Award from the Medical School at Stony Brook University. DGD was supported by NIH DA016419 and DA026953. MK was supported by NIH DA032232. Diffraction data for this study were collected on beamlines X25 and X29 of the National Synchrotron Light Source. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources (P41RR012408) and the National Institute of General Medical Sciences (P41GM103473) of the National Institutes of Health. NR 34 TC 11 Z9 12 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2014 VL 70 BP 290 EP 298 DI 10.1107/S1399004713026795 PN 2 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AB1LY UT WOS:000331554500008 PM 24531463 ER PT J AU Munshi, P Snell, EH van der Woerd, MJ Judge, RA Myles, DAA Ren, Z Meilleur, F AF Munshi, Parthapratim Snell, Edward H. van der Woerd, Mark J. Judge, Russell A. Myles, Dean A. A. Ren, Zhong Meilleur, Flora TI Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID SITE-DIRECTED MUTAGENESIS; MEDIATED HYDRIDE SHIFT; X-RAY; ACTINOPLANES-MISSOURIENSIS; AMINO-ACID; METAL-ION; MECHANISM; ENZYME; CRYSTALLOGRAPHY; DIFFRACTION AB Ketol-isomerases catalyze the reversible isomerization between aldoses and ketoses. D-Xylose isomerase carries out the first reaction in the catabolism of D-xylose, but is also able to convert D-glucose to D-fructose. The first step of the reaction is an enzyme-catalyzed ring opening of the cyclic substrate. The active-site amino-acid acid/base pair involved in ring opening has long been investigated and several models have been proposed. Here, the structure of the xylose isomerase E1860 mutant with cyclic glucose bound at the active site, refined against joint X-ray and neutron diffraction data, is reported. Detailed analysis of the hydrogen-bond networks at the active site of the enzyme suggests that His54, which is doubly protonated, is poised to protonate the glucose 05 position, while Lys289, which is neutral, promotes deprotonation of the glucose O1H hydroxyl group via an activated water molecule. The structure also reveals an extended hydrogen-bonding network that connects the conserved residues Lys289 and Lys183 through three structurally conserved water molecules and residue 186, which is a glutamic acid to glutamine mutation. C1 [Munshi, Parthapratim; Myles, Dean A. A.; Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Munshi, Parthapratim] Middle Tennessee State Univ, Dept Chem, Murfreesboro, TN 37132 USA. [Snell, Edward H.] SUNY Buffalo, Dept Biol Struct, Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA. [van der Woerd, Mark J.] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA. [Judge, Russell A.] AbbVie Inc, Struct Biol, N Chicago, IL 60064 USA. [Ren, Zhong] Renz Res Inc, Westmont, IL 60559 USA. [Meilleur, Flora] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. RP Meilleur, F (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM flora_meilleur@ncsu.edu RI myles, dean/D-5860-2016 OI myles, dean/0000-0002-7693-4964 FU National Science Foundation [0922719]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; US Department of Energy [DO-AC05-00OR22725] FX We thank Genencor International for providing the xylose isomerase. PM is supported by an award from the National Science Foundation (Award 0922719) to FM. We thank Pavel Afonine from Lawrence Berkeley National Laboratory for his instruction and help with phenix.refine. This research was sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, which is managed by UT-Battelle LLC for the US Department of Energy under contract No. DO-AC05-00OR22725. NR 29 TC 5 Z9 5 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2014 VL 70 BP 414 EP 420 DI 10.1107/S1399004713029684 PN 2 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AB1LY UT WOS:000331554500020 PM 24531475 ER PT J AU Sliwiak, J Jaskolski, M Dauter, Z McCoy, AJ Read, RJ AF Sliwiak, Joanna Jaskolski, Mariusz Dauter, Zbigniew McCoy, Airlie J. Read, Randy J. TI Likelihood-based molecular-replacement solution for a highly pathological crystal with tetartohedral twinning and sevenfold translational noncrystallographic symmetry SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID DIFFRACTION DATA; INTENSITY STATISTICS; X-RAY; REFINEMENT; SUPERSPACE; HYPERICIN; PROTEINS; SYSTEM AB Translational noncrystallographic symmetry (tNCS) is a pathology of protein crystals in which multiple copies of a molecule or assembly are found in similar orientations. Structure solution is problematic because this breaks the assumptions used in current likelihood-based methods. To cope with such cases, new likelihood approaches have been developed and implemented in Phaser to account for the statistical effects of tNCS in molecular replacement. Using these new approaches, it was possible to solve the crystal structure of a protein exhibiting an extreme form of this pathology with seven tetrameric assemblies arrayed along the c axis. To resolve space-group ambiguities caused by tetartohedral twinning, the structure was initially solved by placing 56 copies of the monomer in space group P1 and using the symmetry of the solution to define the true space group, C2. The resulting structure of Hyp-1, a pathogenesis-related class 10 (PR-10) protein from the medicinal herb St John's wort, reveals the binding modes of the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS), providing insight into the function of the protein in binding or storing hydrophobic ligands. C1 [Sliwiak, Joanna; Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, PL-61704 Poznan, Poland. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Argonne Natl Lab, Argonne, IL 60439 USA. [McCoy, Airlie J.; Read, Randy J.] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England. RP Jaskolski, M (reprint author), Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Noskowskiego 12-14, PL-61704 Poznan, Poland. EM mariuszj@amu.edu.pl; rjr27@cam.ac.uk RI Read, Randy/L-1418-2013 OI Read, Randy/0000-0001-8273-0047 FU European Union within the European Regional Developmental Fund; Polish Ministry of Science and Higher Education [NN 301 003739]; Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research; Wellcome Trust [082961/Z/07/Z] FX Financial support to MJ and JS was provided by the European Union within the European Regional Developmental Fund and by the Polish Ministry of Science and Higher Education (grant No. NN 301 003739). ZD was supported by funds from the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. RJR was supported by a Principal Research Fellowship from the Wellcome Trust (grant No. 082961/Z/07/Z). NR 30 TC 5 Z9 5 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2014 VL 70 BP 471 EP 480 DI 10.1107/S1399004713030319 PN 2 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AB1LY UT WOS:000331554500026 PM 24531481 ER PT J AU Chatani, S Morino, Y Shimadera, H Hayami, H Mori, Y Sasaki, K Kajino, M Yokoi, T Morikawa, T Ohara, T AF Chatani, Satoru Morino, Yu Shimadera, Hikari Hayami, Hiroshi Mori, Yasuaki Sasaki, Kansuke Kajino, Mizuo Yokoi, Takeshi Morikawa, Tazuko Ohara, Toshimasa TI Multi-Model Analyses of Dominant Factors Influencing Elemental Carbon in Tokyo Metropolitan Area of Japan SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Air quality model; Model intercomparison; PM2.5; EC; Sensitivity analyses ID PARTICULATE MATTER; EUROPEAN CITIES; DRY DEPOSITION; AIR-POLLUTION; MODEL; FINE; TRANSPORT; MASS; CHEMISTRY; CITYDELTA AB The first phase of the Urban air quality Model InterComparison Study in Japan (UMICS) has been conducted to find ways to improve model performance with regard to elemental carbon (EC). Common meteorology and emission datasets are used with eight different models. All the models underestimate the EC concentrations observed in Tokyo Metropolitan Area in the summer of 2007. Sensitivity analyses are conducted using these models to investigate the causes of this underestimation. The results of the analyses reveal that emissions and vertical diffusion are dominant factors that affect the simulated EC concentrations. A significant improvement in the accuracy of EC concentrations could be realized by applying appropriate scaling factors to EC emissions and boundary concentrations. Observation data from Lidar and radiosonde suggest the possible overestimation of planetary boundary layer height, which is a vital parameter representing vertical diffusion. The findings of this work can help to improve air quality models to that they can be used to develop more effective strategies for reducing PM2.5 concentrations. C1 [Chatani, Satoru] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan. [Morino, Yu; Ohara, Toshimasa] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Shimadera, Hikari; Hayami, Hiroshi] Cent Res Inst Elect Power Ind, Abiko, Chiba 2701194, Japan. [Mori, Yasuaki; Sasaki, Kansuke] Japan Weather Assoc, Toshima Ku, Tokyo 1706055, Japan. [Kajino, Mizuo] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Kajino, Mizuo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yokoi, Takeshi] Natl Maritime Res Inst, Mitaka, Tokyo 1810004, Japan. [Morikawa, Tazuko] Japan Automobile Res Inst, Tsukuba, Ibaraki 3050822, Japan. RP Chatani, S (reprint author), Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan. EM schatani@mosk.tytlabs.co.jp RI Chatani, Satoru/B-3697-2014 OI Chatani, Satoru/0000-0002-6272-574X FU Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [C-1001] FX This research was supported by the Environment Research and Technology Development Fund (C-1001) of the Ministry of the Environment, Japan. NR 32 TC 8 Z9 8 U1 0 U2 10 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD FEB PY 2014 VL 14 IS 1 BP 396 EP 405 DI 10.4209/aaqr.2013.02.0035 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA AB4WC UT WOS:000331789600037 ER PT J AU Mao, Z Lin, JF Yang, J Wu, JJ Watson, HC Xiao, YM Chow, P Zhao, JY AF Mao, Zhu Lin, Jung-Fu Yang, Jing Wu, Junjie Watson, Heather C. Xiao, Yuming Chow, Paul Zhao, Jiyong TI Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mossbauer and X-ray emission spectroscopy SO AMERICAN MINERALOGIST LA English DT Article DE Silicate glass; high pressure; synchrotron Mossbauer spectroscopy; X-ray emission spectroscopy; lower mantle ID EARTHS LOWER MANTLE; FERROUS IRON; MGSIO3 PEROVSKITE; REDOX EQUILIBRIA; OXIDATION-STATE; MAGMA OCEAN; ABSORPTION SPECTROSCOPY; LOWERMOST MANTLE; POST-PEROVSKITE; FE-57 MOSSBAUER AB High-pressure synchrotron Mossbauer (SMS) and X-ray emission (XES) spectroscopic measurements were conducted to investigate the spin and valence states of iron in (A1,Fe)-bearing magnesium silicate glass (Mg0.79Fe0.10Al0.10Si0.96O3) up to 126 GPa and 300 K. By analyzing the Fe K beta emission spectra using the integrated relative difference (IRD) method, which accounts for the spectral broadening effects, the derived total spin momentum (S) of the iron in the glass shows no observable changes with pressure within the experimental uncertainties. A two-doublet fitting model representing two diverse local iron atomic environments was used to satisfactorily simulate the high-pressure SMS spectra of iron in the glass. The doublet with an averaged quadrupole splitting (QS) value of 1.94(+/- 0.25) mm/s and chemical shift (CS) of 1.02(+/- 0.25) minis at ambient conditions was assigned to be high-spin Fe2+, whereas the second doublet with QS = 0.83(+/- 0.25) mm/s and CS = 0.49(+/- 0.25) mm/s was assigned to be high-spin Fe3+. Increasing pressure continuously elevates the QS of Fe2+ from similar to 2 mm/s at ambient pressure to 3.5 mm/s at 126 GPa, while Fe3+ only exhibits a slight increase in the QS to 1.34(+/- 0.25) mm/s. Comparing with previous experimental and theoretical studies on the local geometries and hyperfine parameters of silicate glasses and minerals, we conclude that the occurrence of the extremely high QS of Fe2+ in our glass above similar to 40-50 GPa can be associated with the enhanced density and diverse distortions and geometries of the local Fe2+ environments. Our combined XES and SMS results show that both Fe2+ and Fe3+ ions in Al-bearing silicate remain in the high-spin state, rather than undergoing a spin-pairing transition as proposed previously. Assuming that the silicate glass results can be used as an analog for understanding silicate melts, our results here indicate that iron ions likely experience significant changes in the local environments yet remain overall in the high-spin state in silicate melts at the extreme pressure and temperature conditions of the deep mantle. C1 [Mao, Zhu; Lin, Jung-Fu; Yang, Jing; Wu, Junjie] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. [Wu, Junjie] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wu, Junjie] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Watson, Heather C.] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY 12180 USA. [Xiao, Yuming; Chow, Paul] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Zhao, Jiyong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mao, Z (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. EM zhumao@ustc.edu.cn RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015; OI Watson, Heather/0000-0003-4307-6518 FU U.S. National Science Foundation [EAR-1053446, EAR-1056670]; Carnegie/DOE Alliance Center (CDAC); DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF FX We acknowledge E.E. Alp for experimental assistance, S.-K. Lee and C. McCammon for helpful discussions, and N. Seymour and L. Dafov for manuscript editing. S.F. Lin acknowledges support from the U.S. National Science Foundation (EAR-1053446 and EAR-1056670) and the Carnegie/DOE Alliance Center (CDAC). Synchrotron works of the study were performed at HPCAT of the APS, ANL. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. NR 88 TC 15 Z9 15 U1 3 U2 32 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2014 VL 99 IS 2-3 BP 415 EP 423 DI 10.2138/am.2014.4490 PG 9 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA AB3FN UT WOS:000331676800018 ER PT J AU Leyk, S Ruther, M Buttenfield, BP Nagle, NN Stum, AK AF Leyk, Stefan Ruther, Matt Buttenfield, Barbara P. Nagle, Nicholas N. Stum, Alexander K. TI Modeling residential developed land in rural areas: A size-restricted approach using parcel data SO APPLIED GEOGRAPHY LA English DT Article DE Small area estimation; Rural areas; Developed land; Land cover; Dasymetric mapping ID NEW-YORK; POPULATION; COVER; HETEROGENEITY; INTERPOLATION; BUILDINGS; ACCURACY; SYSTEMS; SURFACE; RISK AB In most land cover datasets, the classification of developed land is less accurate in rural areas than in urban areas, due to difficulties in identifying rural developed areas from remote sensing data. This inconsistency makes land cover data less reliable in rural settings, when employed for small area population estimation or for exploring processes such as urbanization. This research addresses this challenge, identifying rural developed land using ancillary variables such as terrain, road density and distance to roads. Predictive models are developed using residential parcel units as a spatial outcome variable. Although parcels are often the most spatially precise indicators of developed land, rural parcels can be very large, leading to high levels of heterogeneity within a parcel. To assess the effect of size on the relationships between the ancillary variables and the locations of rural residential land, parcels are categorized on size and size-restricted statistical models are run. Goodness-of-fit measures and the predictive power of the model improve with decreasing parcel size. A thorough model evaluation quantifies prediction accuracy and highlights rural residential areas with the highest probability of development. A subsequent validation using building footprints as indicators of actual development provides strong evidence that a size-restricted modeling approach improves the predictive power of the statistical model. This type of modeling framework thus has the potential to improve the accuracy of rural developed land classifications in land cover databases such as the U.S. National Land Cover Database (NLCD). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Leyk, Stefan; Ruther, Matt; Buttenfield, Barbara P.; Stum, Alexander K.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Nagle, Nicholas N.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. [Nagle, Nicholas N.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Leyk, S (reprint author), Univ Colorado, Dept Geog, UCB 260, Boulder, CO 80309 USA. EM stefan.leyk@colorado.edu; matthew.ruther@colorado.edu; babs@colorado.edu; nnagle@utk.edu; alexander.stum@colorado.edu NR 30 TC 7 Z9 7 U1 0 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-6228 EI 1873-7730 J9 APPL GEOGR JI Appl. Geogr. PD FEB PY 2014 VL 47 BP 33 EP 45 DI 10.1016/j.apgeog.2013.11.013 PG 13 WC Geography SC Geography GA AB6RX UT WOS:000331918300004 ER PT J AU Hodas, N Meng, QY Lunden, MM Turpin, BJ AF Hodas, Natasha Meng, Qingyu Lunden, Melissa M. Turpin, Barbara J. TI Toward refined estimates of ambient PM2.5 exposure: Evaluation of a physical outdoor-to-indoor transport model SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE PM2.5 exposure; Organic aerosol; Gas-particle partitioning; Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study; Aerosol Penetration and Persistence (APP) model ID POLYCYCLIC AROMATIC-HYDROCARBONS; AIR EXCHANGE-RATES; PARTICLE COMPOSITION; PARTICULATE MATTER; PERSONAL AIR; ORIGIN; US; DISTRIBUTIONS; INFILTRATION; PENETRATION AB Because people spend the majority of their time indoors, the variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of error in epidemiologic studies that use PM2.5 concentrations measured at central-site monitors as surrogates for ambient PM2.5 exposure. To reduce this error, practical methods to model indoor concentrations of ambient PM2.5 are needed. Toward this goal, we evaluated and refined an outdoor-to-indoor transport model using measured indoor and outdoor PM2.5 species concentrations and air exchange rates from the Relationships of Indoor, Outdoor, and Personal Air Study. Herein, we present model evaluation results, discuss what data are most critical to prediction of residential exposures at the individual-subject and populations levels, and make recommendations for the application of the model in epidemiologic studies. This paper demonstrates that not accounting for certain human activities (air conditioning and heating use, opening windows) leads to bias in predicted residential PM2.5 exposures at the individual-subject level, but not the population level. The analyses presented also provide quantitative evidence that shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport contribute significantly to variability in indoor ambient organic carbon concentrations and suggest that methods to account for these shifts will further improve the accuracy of outdoor-to-indoor transport models. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hodas, Natasha; Turpin, Barbara J.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Meng, Qingyu] Rutgers State Univ, Sch Publ Hlth, Piscataway, NJ 08854 USA. [Meng, Qingyu; Turpin, Barbara J.] Environm & Occupat Hlth Sci Inst, Piscataway, NJ 08854 USA. [Lunden, Melissa M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Turpin, BJ (reprint author), Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM turpin@envsci.rutgers.edu RI Turpin, Barbara /D-8346-2012 FU U.S. Environmental Protection Agency [CR-83407201-0]; NIEHS [NIEHS P30ES005022]; New Jersey Agricultural Experiment Station; EPA STAR Fellowship [FP-917336]; USDA-NIFA; Health Effects Institute [98-23-2]; Mickey Leland National Urban Air Toxics Center FX This research was funded, in part, by the U.S. Environmental Protection Agency (Cooperative Agreement CR-83407201-0), NIEHS-sponsored UMDNJ Center for Environmental Exposures and Disease (NIEHS P30ES005022), and the New Jersey Agricultural Experiment Station. Natasha Hodas was supported by EPA STAR Fellowship Assistance Agreement no. FP-917336 and Barbara Turpin was supported in part by USDA-NIFA. The RIOPA study was supported by the Health Effects Institute (#98-23-2) and the Mickey Leland National Urban Air Toxics Center. We gratefully acknowledge the RIOPA study investigators and field teams. NR 36 TC 5 Z9 5 U1 2 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2014 VL 83 BP 229 EP 236 DI 10.1016/j.atmosenv.2013.11.026 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AB3DB UT WOS:000331670400026 PM 25798047 ER PT J AU Choi, DS Jin, HE Yoo, SY Lee, SW AF Choi, Dong Shin Jin, Hyo-Eon Yoo, So Young Lee, Seung-Wuk TI Cyclic RGD Peptide Incorporation on Phage Major Coat Proteins for Improved Internalization by HeLa Cells SO BIOCONJUGATE CHEMISTRY LA English DT Article ID TARGETED GENE DELIVERY; FILAMENTOUS PHAGE; MAMMALIAN-CELLS; CANCER-THERAPY; ADENOASSOCIATED VIRUS; MASS-SPECTROMETRY; FOREIGN PEPTIDES; DISPLAY LIBRARY; COPY NUMBER; INTEGRIN AB Delivering therapeutic materials or imaging reagents into specific tumor tissues is critically important for development of novel cancer therapeutics and diagnostics. Genetically engineered phages possess promising structural features to develop cancer therapeutic materials. For cancer targeting purposes, we developed a novel engineered phage that expressed cyclic RGD (cRGD) peptides on the pVIII major coat protein using recombinant DNA technology. Using a type 88 phage engineering approach, which inserts a new gene to express additional major coat protein in the noncoding region of the phage genome, we incorporated an additional pVIII major coat protein with relatively bulky cRGD and assembled heterogeneous major coat proteins on the F88.4 phage surfaces. With IPTG control, we could tune different numbers of cRGD peptide displayed on the phage particles up to 140 copies. The resulting phage with cRGD on the recombinant pVIII protein exhibited enhanced internalization efficiency into He La cells in a ligand density and conformational structure dependent manner when comparing with the M13 phages modified with either linear RGD on pVIII or cRGD on pill. Our cRGD peptide engineered phage could be useful for cancer therapy or diagnostic purposes after further modifying the phage with drug molecules or contrast reagents in the future. C1 [Choi, Dong Shin; Jin, Hyo-Eon; Yoo, So Young; Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Choi, Dong Shin; Jin, Hyo-Eon; Yoo, So Young; Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Yoo, So Young] Pusan Natl Univ, Sch Med, Convergence Stem Cell Res Ctr, Yangsan 626870, South Korea. RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM leesw@berkeley.edu FU Kwanjung Educational Foundation; Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [NRF-2011-357-E00083]; Ministry of Science, ICT and Future Planning [2013R1A1A3008484] FX We thank Dr. George Smith group for providing F88.4 genome. D.S.C. was supported by the fellowship from Kwanjung Educational Foundation. H.E.J. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2011-357-E00083). S.Y.Y. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013R1A1A3008484). NR 69 TC 11 Z9 11 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD FEB PY 2014 VL 25 IS 2 BP 216 EP 223 DI 10.1021/bc4003234 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA AB4SH UT WOS:000331779700004 PM 24328047 ER PT J AU Yoon, JH Lee, Y Kang, SH Byun, TS Hoelzer, DT AF Yoon, Ji-Hyun Lee, Yongbok Kang, Suk-Hoon Byun, Thak S. Hoelzer, David T. TI Effects of Partial Phase Transformation on Characteristics of 9Cr Nanostructured Ferritic Alloy SO CURRENT NANOSCIENCE LA English DT Article DE Fracture toughness; nanostructured ferritic alloy; nuclear; ODS; strength. ID HIGH-TEMPERATURE; ODS-EUROFER; STEELS AB The core structures of future nuclear systems require tolerance to extreme irradiation, and some critical components, for example, the fuel cladding in Sodium-cooled Fast Reactors (SFRs), have to maintain mechanical integrity to very high doses of 200 -400 dpa at high temperatures up to 700 degrees C. The high Cr nanostructured ferritic alloys (NFAs) are under intense research worldwide as a candidate core material. Although the NFAs have some admirable characteristics for high-temperature applications, their crack sensitivity is very high at high temperatures. The fracture toughness of high strength NFAs is unacceptably low above 300 degrees C. The objective of this study is to develop processes and microstructures with improved high temperature fracture toughness and ductility. To optimize the afterextrusion heat treatment condition, both the computational simulation technique on phase equilibrium and the basic microstructural and mechanical characterization have been carried out. 9 Cr-NFA was produced by the mechanical alloying of pre-alloyed Fe-9Cr base metallic powder and yttria particles, and subsequent extrusion. The post-extrusion heat-treatments of various conditions were applied to the asextruded NFA. The tensile and fracture toughness tests were conducted for as-extruded and heat-treated samples at up to 700 degrees C. Fracture toughness of the NFA has increased by more than 40% at every testing temperature after heat-treatment in the inter-critical temperature range. The increment of fracture toughness of the NFA after post-extrusion heat-treatment is attributed to the increased strength at below 500 degrees C, and an increased ductility at 700 degrees C. C1 [Yoon, Ji-Hyun; Lee, Yongbok; Kang, Suk-Hoon] Korea Atom Energy Res Inst, Nucl Mat Dev Div, Taejon 305353, South Korea. [Byun, Thak S.; Hoelzer, David T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Yoon, JH (reprint author), Korea Atom Energy Res Inst, Nucl Mat Dev Div, Taejon 305353, South Korea. EM jhyoon4@kaeri.re.kr RI Hoelzer, David/L-1558-2016 NR 11 TC 2 Z9 2 U1 0 U2 7 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1573-4137 EI 1875-6786 J9 CURR NANOSCI JI Curr. Nanosci. PD FEB PY 2014 VL 10 IS 1 BP 47 EP 50 PG 4 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics; Materials Science GA AB6IW UT WOS:000331892100013 ER PT J AU Vahey, MD Fletcher, DA AF Vahey, Michael D. Fletcher, Daniel A. TI The biology of boundary conditions: cellular reconstitution in one, two, and three dimensions SO CURRENT OPINION IN CELL BIOLOGY LA English DT Article ID PHASE-TRANSITIONS; MEMBRANE SCISSION; ACTIN-FILAMENTS; GIANT VESICLES; PROTEIN; SPINDLE; FORCE; RNA; DNA; AGGREGATION AB Reconstituting cellular behavior outside the complex environment of the cell allows the study of biological processes in simplified and controlled settings. Making the leap from cells to test tubes, however, carries the inevitable risk of removing too much context and therefore sacrificing the important biochemical, mechanical, or geometrical constraints that guide the system's behavior. In response to this challenge, reconstitution experiments have recently begun to focus not only on including the right molecules but also on faithfully recapitulating the constraints that are present within a cell. By setting the appropriate biological boundary conditions, these experiments are uncovering how dimensional constraints within the cellular environment guide biological processes. C1 [Vahey, Michael D.; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Vahey, Michael D.; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fletcher, DA (reprint author), Univ Calif Berkeley, Dept Bioengn, 648 Stanley Hall, Berkeley, CA 94720 USA. EM fletch@berkeley.edu FU NIGMS NIH HHS [R01 GM074751] NR 53 TC 7 Z9 8 U1 2 U2 26 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0955-0674 EI 1879-0410 J9 CURR OPIN CELL BIOL JI Curr. Opin. Cell Biol. PD FEB PY 2014 VL 26 BP 60 EP 68 DI 10.1016/j.ceb.2013.10.001 PG 9 WC Cell Biology SC Cell Biology GA AB5WW UT WOS:000331860400009 PM 24529247 ER PT J AU Mai, T Mulcahy, D Hand, MM Baldwin, SF AF Mai, Trieu Mulcahy, David Hand, M. Maureen Baldwin, Samuel F. TI Envisioning a renewable electricity future for the United States SO ENERGY LA English DT Article DE Grid integration; Renewable electricity; Scenario analysis; Optimization model ID ENERGY-SYSTEMS; WIND POWER; SCENARIOS AB This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49-55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69-82% annual greenhouse gas emission reductions and 3%-30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mai, Trieu; Mulcahy, David; Hand, M. Maureen] Solar Energy Res Inst, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Baldwin, Samuel F.] US DOE, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. RP Mai, T (reprint author), Solar Energy Res Inst, Natl Renewable Energy Lab, 15013 Denver West Pkwy,RSF 300, Golden, CO 80401 USA. EM trieu.mai@nrel.gov; david.mulcahy@nrel.gov; maureen.hand@nrel.gov; sam.baldwin@ee.doe.gov OI Mulcahy, David/0000-0002-7960-2762 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Office of Energy Efficiency and Renewable Energy FX We thank Stuart Cohen, Paul Denholm, Kelly Eurek, Eduardo Ibanez, David Kline, Jenny Melius, Patrick Sullivan, Laura Vimmerstedt, and Owen Zinaman for valuable comments and input. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by the Office of Energy Efficiency and Renewable Energy. The opinions represented in this article are the authors' own and do not reflect the view of the U.S. Department of Energy or the U.S. Government. Any and all errors are the responsibility of the authors. NR 64 TC 21 Z9 21 U1 0 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD FEB 1 PY 2014 VL 65 BP 374 EP 386 DI 10.1016/j.energy.2013.11.029 PG 13 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AB3CO UT WOS:000331669100037 ER PT J AU Splitter, DA Szybist, JP AF Splitter, Derek A. Szybist, James P. TI Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity SO ENERGY & FUELS LA English DT Article ID GASOLINE; ETHANOL; NUMBERS AB The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with lambda = 1, using both 0% and 15% external cooled EGR Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at lambda = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at lambda = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g.CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions. C1 [Splitter, Derek A.; Szybist, James P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Splitter, DA (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM splitterda@ornl.gov; szybistjp@ornl.gov OI Splitter, Derek/0000-0001-7404-4047 FU U.S. Department of Energy FX The authors gratefully acknowledge the support of the U.S. Department of Energy, particularly Kevin Stork and Steve Przesmitzki of the Office of Vehicle Technologies. Additionally, the authors would like to acknowledge John Thomas for his assistance with road load calculations and Vicki Kalaskar for assistance with the engine test laboratory. NR 35 TC 5 Z9 5 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2014 VL 28 IS 2 BP 1418 EP 1431 DI 10.1021/ef401574p PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AB5XK UT WOS:000331861800078 ER PT J AU Splitter, DA Szybist, JP AF Splitter, Derek A. Szybist, James P. TI Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed SO ENERGY & FUELS LA English DT Article ID ETHANOL; GASOLINE; BUTANOL; NUMBERS; BLENDS AB The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with lambda = 1, using both 0% and 15% external-cooled EGR Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at lambda = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 degrees CA of CA50 timing advance with E30, whereas up to 5 degrees CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30. C1 [Splitter, Derek A.; Szybist, James P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Splitter, DA (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM splitterda@ornl.gov; szybistjp@ornl.gov OI Splitter, Derek/0000-0001-7404-4047 FU U.S. Department of Energy FX The authors gratefully acknowledge the support of the U.S. Department of Energy, particularly Kevin Stork and Steve Przesmitzki of the Vehicle Technologies Office. Additionally, the authors would like to acknowledge Vicki Kalaskar for assistance with the engine test laboratory. NR 42 TC 8 Z9 8 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2014 VL 28 IS 2 BP 1432 EP 1445 DI 10.1021/ef401575e PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AB5XK UT WOS:000331861800079 ER PT J AU Zeng, XS Ji, JJ Kwon, Y Wang, SD Bai, J AF Zeng, Xian-Si Ji, Jin-Jing Kwon, Yongwon Wang, Sheng-Dong Bai, Jie TI The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Parkinson disease; MPP+/MPTP; ER stress; Thioredoxin-1; Free radicals ID UNFOLDED-PROTEIN RESPONSE; P38 MAP KINASE; ER STRESS; PC12 CELLS; TRANSCRIPTION FACTOR; DEATH; IRE1; APOPTOSIS; NEUROTOXICITY; ACTIVATION AB Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein (GRP78), inositol-requiring enzyme 1 alpha (IRE1 alpha), tumor necrosis factor receptor-associated factor (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress repressed the expression of the above molecules induced by MPP+. More importantly, the expression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation GRP78, IRE1 alpha, TRAF2, JNK, caspase-12, and CHOP. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights C1 [Zeng, Xian-Si] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650500, Peoples R China. [Zeng, Xian-Si; Ji, Jin-Jing; Wang, Sheng-Dong; Bai, Jie] Kunming Univ Sci & Technol, Fac Med, Mol Neurobiol Lab, Kunming 650500, Peoples R China. [Kwon, Yongwon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bai, J (reprint author), Kunming Univ Sci & Technol, Fac Med, Mol Neurobiol Lab, Kunming 650500, Peoples R China. EM jiebai662001@126.com FU National Natural Science Foundation of China [81160162, U1202227]; Key Laboratory of Medical Neurobiology, Kunming University of Science and Technology, China FX This study was supported by the National Natural Science Foundation of China (Nos. 81160162, U1202227) and a grant from the Key Laboratory of Medical Neurobiology, Kunming University of Science and Technology, China. NR 44 TC 18 Z9 19 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD FEB PY 2014 VL 67 BP 10 EP 18 DI 10.1016/j.freeradbiomed.2013.10.013 PG 9 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA AB5UM UT WOS:000331854200002 PM 24140863 ER PT J AU Su, D Gaffrey, MJ Guo, J Hatchell, KE Chu, RK Clauss, TRW Aldrich, JT Wu, S Purvine, S Camp, DG Smith, RD Thrall, BD Qian, WJ AF Su, Dian Gaffrey, Matthew J. Guo, Jia Hatchell, Kayla E. Chu, Rosalie K. Clauss, Therese R. W. Aldrich, Joshua T. Wu, Si Purvine, Sam Camp, David G., II Smith, Richard D. Thrall, Brian D. Qian, Wei-Jun TI Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE S-Glutathionylation; Redox regulation; Resin-assisted enrichment; Macrophage; Proteomics; Hydrogen peroxide; Protein thiols ID REDOX-BASED REGULATION; NF-KAPPA-B; PROTEIN GLUTATHIONYLATION; MASS-SPECTROMETRY; OXIDATIVE STRESS; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; SIGNAL-TRANSDUCTION; CELLULAR-PROTEINS; ACTIVATES SERCA; NITRIC-OXIDE AB S-Glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols, and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys sites from 690 proteins were identified in response to diamide treatment, with similar to 90% of the sites displaying > 2-fold increases in SSG modification compared to controls. This approach was extended to identify potential SSG-modified Cys sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible to S-glutathionylation under stress conditions. (C) 2014 Elsevier Inc. All rights reserved. C1 [Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Clauss, Therese R. W.; Camp, David G., II; Smith, Richard D.; Thrall, Brian D.; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Chu, Rosalie K.; Aldrich, Joshua T.; Wu, Si; Purvine, Sam; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Thrall, BD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Brian.Thrall@pnnl.gov; Weijun.qian@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [DP2OD006668]; DOE [P41 GM103493, DE-AC05-76RLO-1830]; PNNL LDRD program; DOE Office of Biological and Environmental Research Genome Sciences Program FX This work was supported by NIH Director's New Innovator Award Program DP2OD006668, a DOE Early Career Research Award, P41 GM103493, the PNNL LDRD program, and the DOE Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. This work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility at PNNL in Richland, Washington. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 61 TC 36 Z9 36 U1 2 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD FEB PY 2014 VL 67 BP 460 EP 470 DI 10.1016/j.freeradbiomed.2013.12.004 PG 11 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA AB5UM UT WOS:000331854200044 PM 24333276 ER PT J AU Angluin, D Aspnes, J Bazzi, RA Chen, J Eisenstat, D Konjevod, G AF Angluin, Dana Aspnes, James Bazzi, Rida A. Chen, Jiang Eisenstat, David Konjevod, Goran TI Effective storage capacity of labeled graphs SO INFORMATION AND COMPUTATION LA English DT Article; Proceedings Paper CT 12th International Symposium on Stabilization, Safety, and Security of Distributed Systems CY SEP 20-22, 2010 CL Columbia Univ, New York, NY HO Columbia Univ AB We consider the question of how much information can be stored by labeling the vertices of a connected undirected graph G using a constant-size set of labels, when isomorphic labelings are not distinguishable. Specifically, we are interested in the effective capacity of members of some class of graphs, the number of states distinguishable by a Turing machine that uses the labeled graph itself in place of the usual linear tape. We show that the effective capacity is related to the information-theoretic capacity which we introduce in the paper. It equals the information-theoretic capacity of the graph up to constant factors for trees, random graphs with polynomial edge probabilities, and bounded-degree graphs. (C) 2013 Elsevier Inc. All rights reserved. C1 [Angluin, Dana; Aspnes, James] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA. [Bazzi, Rida A.] Arizona State Univ, SCIDSE, Tempe, AZ 85287 USA. [Chen, Jiang] Google, Mountain View, CA 94043 USA. [Eisenstat, David] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA. [Konjevod, Goran] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Aspnes, J (reprint author), Yale Univ, Dept Comp Sci, POB 2158, New Haven, CT 06520 USA. EM angluin@cs.yale.edu; aspnes@cs.yale.edu; bazzi@asu.edu; criver@gmail.com; eisenstatdavid@gmail.com; goran@llnl.gov NR 16 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0890-5401 EI 1090-2651 J9 INFORM COMPUT JI Inf. Comput. PD FEB PY 2014 VL 234 BP 44 EP 56 DI 10.1016/j.ic.2013.11.004 PG 13 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA AB1BU UT WOS:000331527100005 ER PT J AU Gupta, V Ganegoda, H Engelhard, MH Terry, J Linford, MR AF Gupta, Vipul Ganegoda, Hasitha Engelhard, Mark H. Terry, Jeff Linford, Matthew R. TI Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE First-Year Undergraduate/General; Second-Year Undergraduate; Upper-Division Undergraduate; Analytical Chemistry; Organic Chemistry; Physical Chemistry; Misconceptions/Discrepant Events; Textbooks/Reference Books; Oxidation State ID BINDING-ENERGIES; XPS; SURFACE; NUMBERS; CHEMISTRY; PLASMA; FILMS; REDUCTION; SIMS; ADSORPTION AB The traditional assignment of oxidation states to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation state of zero when bonded to carbon. Here, we show that X-ray photoelectron spectroscopy, a core electron spectroscopy that is sensitive to oxidation states of elements, generally agrees with his suggestion. We also list the typical (IUPAC) rules for assigning oxidation states, review recent suggestions of Loock and Steinborn that are based on Pauling's earlier approach, discuss the traditional (IUPAC and Pauling-Loock-Steinborn) assignments of oxidation states to organic molecules, review Calzaferri's suggestion, introduce X-ray photoelectron spectroscopy (XPS), show the general agreement of Calzaferri's suggestion with XPS results, provide supporting examples from the literature, and discuss the limitations of Calzaferri's recommendation vis-a-vis XPS results. We conclude by recommending that either (i) Calzaferri's suggestion be implemented into the current IUPAC rules or (ii) the Loock definition be explanded to deal specifically with atoms with similar electronegativities. C1 [Gupta, Vipul; Linford, Matthew R.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Ganegoda, Hasitha; Terry, Jeff] IIT, Dept Phys, Chicago, IL 60616 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, EMSL Environm Mol Sci Lab, Richland, WA 99354 USA. RP Linford, MR (reprint author), Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. EM mrlinford@chem.byu.edu RI Gupta, Vipul/B-6947-2015; OI Gupta, Vipul/0000-0003-1458-824X; Engelhard, Mark/0000-0002-5543-0812 FU Department of Chemistry and Biochemistry; College of Physical and Mathematical Sciences at Brigham Young University FX We acknowledge the Department of Chemistry and Biochemistry and the College of Physical and Mathematical Sciences at Brigham Young University for their support of this work. We similarly acknowledge EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 59 TC 11 Z9 11 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD FEB PY 2014 VL 91 IS 2 BP 232 EP 238 DI 10.1021/ed400401c PG 7 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA AB4QY UT WOS:000331776200012 ER PT J AU Wang, X Khafizov, M Szlufarska, I AF Wang, X. Khafizov, M. Szlufarska, I. TI Effect of surface strain on oxygen adsorption on Zr (0001) surface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LEED CRYSTALLOGRAPHIC ANALYSIS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ZR(0001) SURFACE; AB-INITIO; FILMS; LAYER; OXIDATION; ZIRCONIA; ALLOYS AB The effect of surface strain on oxygen adsorption on Zr (0001) surface is investigated by density functional theory (OFT) calculations. It is demonstrated that both surface strain and interactions between oxygen adsorbates influence the adsorption process. Oxygen binding to zirconium becomes stronger as the strain changes from compressive to tensile. When oxygen coverage is low and the oxygen interactions are negligible, surface face-centered cubic sites are the most stable for 0 binding. At high coverage and under compression, octahedral sites between second and third Zr layers become most favorable because the interactions between adsorbates are weakened by positive charge screening. Calculations with both single-layer adsorption model and multiple-layer adsorption model demonstrate that compressive strain at the Zr/oxide interface will provide a thermodynamic driving force for oxygen to incorporate from the surface into the bulk of Zr, while binding oxygen to the Zr surface will be easier when tensile strain is applied. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, X.; Szlufarska, I.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Khafizov, M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Szlufarska, I.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53705 USA. RP Szlufarska, I (reprint author), Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA. EM xwang348@wisc.edu; marat.khafizov@inl.gov; szlufarska@wisc.edu RI Khafizov, Marat/B-3744-2012 OI Khafizov, Marat/0000-0001-8171-3528 FU INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office [DE-AC07-05ID14517]; University of Wisconsin Materials Research Science and Engineering Center [DMR-1121288] FX This work was supported through INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The authors also gratefully acknowledge use of computational facilities supported by the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288). We would like to thank Dr. Chao Jiang from Computational Materials Group, UW-Madison for helpful discussions. NR 27 TC 2 Z9 2 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 1 EP 6 DI 10.1016/j.jnucmat.2013.10.046 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500001 ER PT J AU Kaoumi, D Adamson, J Kirk, M AF Kaoumi, D. Adamson, J. Kirk, M. TI Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0-2 dpa) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RESISTIVITY RECOVERY; ALLOYS; DAMAGE; IRON; FE AB Ferritic/martensitic steels are candidate materials for structural and cladding components designed for Generation IV reactors because of their superior resistance to radiation damage at the high operating temperatures envisioned in these reactors. To enable the development and optimization of such advanced alloys for in-reactor use, a fundamental understanding of radiation damage accumulation in materials is required. In this work, two model F/M steels (12Cr model alloy and 9Cr model alloy) were irradiated with 1 MeV Kr ions at 50 K, 180 K, 298 K, 473 K and 573 K in situ in a TEM. The microstructure evolution under irradiation was followed and characterized at successive doses in terms of irradiation-induced defect formation and evolution, defect density, size distribution and interaction with the as-fabricated microstructure (e.g. dislocation networks, lath boundaries) using weak-beam dark-field imaging. The effect of the irradiation temperature on the defect kinetics is assessed at doses up to 2 dpa. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kaoumi, D.; Adamson, J.] Univ S Carolina, Columbia, SC 29208 USA. [Kirk, M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kaoumi, D (reprint author), Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. EM djamelkaoumi@gmail.com; kirk@anl.gov FU DOE-NEUP FX This work was performed under DOE-NEUP funding. The authors would like to thank Pete Baldo and Ed Ryan at Argonne National Laboratory for assistance during the irradiation experiments, Arthur Motta and Cem Topbasi at the Pennsylvania State University, and Brian Wirth and Aaron Kohnert at the University of Tennessee-Knoxville for useful discussions. NR 11 TC 11 Z9 11 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 12 EP 19 DI 10.1016/j.jnucmat.2013.10.047 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500003 ER PT J AU Edmondson, PD Parish, CM Li, Q Miller, MK AF Edmondson, P. D. Parish, C. M. Li, Q. Miller, M. K. TI Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GRAIN-BOUNDARIES; IMPLANTATION; NUCLEATION; MOLYBDENUM; VACANCIES; KINETICS; GROWTH AB A 14YWT nanostructured ferritic alloy has been irradiated with 335 keV He to a total fluence of 6.75 x 10(20) He m(-2) at a temperature of 400 degrees C and subsequently thermally treated at 750 degrees C for up to 100 h. Transmission electron microscopy has been used to characterize the size and distribution of the resultant helium bubbles. The results indicate that the bubbles generally increase in size and the distribution becomes more inhomogeneous during the thermal treatment. The results are discussed in terms of the helium supply and vacancy supersaturation, Brownian motion and coalescence, and Ostwald ripening mechanisms. (C) 2013 Elsevier B.V. All rights reserved. C1 [Edmondson, P. D.; Parish, C. M.; Li, Q.; Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Edmondson, PD (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM philip.edmondson@materials.ox.ac.ok RI Parish, Chad/J-8381-2013; Edmondson, Philip/O-7255-2014; Li, Qian/A-8752-2015 OI Edmondson, Philip/0000-0001-8990-0870; FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; ORNL; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy, and by ORNL's Shared Research Equipment (ShaRE) user facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank Dr. D. T. Hoelzer of ORNL for providing the samples of the extruded 14YWT nanostructured ferritic alloy, Prof. A. Hallen of the Royal Institute of Technology, Kista, Sweden for performing the helium ion implantation, and Dr. Y. Zhang of ORNL for her assistance. NR 28 TC 12 Z9 12 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 84 EP 90 DI 10.1016/j.jnucmat.2013.10.024 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500014 ER PT J AU Tan, L Katoh, Y Snead, LL AF Tan, L. Katoh, Y. Snead, L. L. TI Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Nanoprecipitates; Radiation resistance; Dissolution; Reprecipitation; Displacement cascades ID FERRITIC/MARTENSITIC STEELS; PHASE INSTABILITY; DAMAGE; TRANSITION; IRON AB The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic-martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to similar to 49 dpa at 500 degrees C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tan, L.; Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), One Bethel Valley Rd,POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009 OI Tan, Lizhen/0000-0002-3418-2450 FU U.S. Department of Energy (DOE), Office of Fusion Energy Sciences [DE-AC05-00OR22725]; UT-Battelle, LLC; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517] FX Research supported by the U.S. Department of Energy (DOE), Office of Fusion Energy Sciences under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS) that is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Work also supported by the U.S. DOE, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517, as part of an ATR National Scientific User Facility experiment. Dr. G.S. Was is appreciated for his advice on the Fe2+ ion irradiation experiment. Mr. O. Toader and Mrs. D.W. Coffey are also appreciated for conducting the Fe2+ ion irradiation experiment and preparing the FIB specimens, respectively. NR 14 TC 4 Z9 4 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 104 EP 110 DI 10.1016/j.jnucmat.2013.11.003 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500017 ER PT J AU Field, KG Miller, BD Chichester, HJM Sridharan, K Allen, TR AF Field, Kevin G. Miller, Brandon D. Chichester, Heather J. M. Sridharan, Kumar Allen, Todd R. TI Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9 wt.% Cr model ferritic/martensitic steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FERRITIC-MARTENSITIC STEELS; INDUCED SOLUTE SEGREGATION; FOCUSED ION-BEAM; MICROSTRUCTURAL EVOLUTION; GRAIN-BOUNDARIES; ALLOYS; TEM; 304-STAINLESS-STEEL; MISORIENTATION; PROTONS AB Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloy steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy. (C) 2013 Elsevier B.V. All rights reserved. C1 [Field, Kevin G.] Oak Ridge Natl Lab, Oak Ridge, TN 37832 USA. [Miller, Brandon D.; Chichester, Heather J. M.; Allen, Todd R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Field, Kevin G.; Sridharan, Kumar; Allen, Todd R.] Univ Wisconsin, Madison, WI 53706 USA. RP Field, KG (reprint author), Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37832 USA. EM fieldkg@ornl.gov; brandon.miller@inl.gov; heather.chichester@inl.gov; kumar@engr.wisc.edu; todd.allen@inl.gov RI Field, Kevin/K-1942-2013; OI Field, Kevin/0000-0002-3105-076X; Allen, Todd/0000-0002-2372-7259 FU National Science Foundation (NSF); US DOE, Office of Nuclear Energy Nuclear Energy University Program (NEUP) [10-172]; US DOE, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517] FX A portion of this research utilized National Science Foundation (NSF) supported shared facilities at the University of Wisconsin. Experimental work was supported by the US DOE, Office of Nuclear Energy Nuclear Energy University Program (NEUP), award 10-172 and by the US DOE, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517, as part of an ATR-NSUF experiment. The authors would like to thank T.J. Gerczak for his thoughtful discussions on grain boundary theory. Research enclosed within this publication was completed while K.G. Field and T.R. Allen were affiliated with University of Wisconsin - Madison. NR 40 TC 10 Z9 10 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 143 EP 148 DI 10.1016/j.jnucmat.2013.10.056 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500021 ER PT J AU Li, Q Parish, CM Powers, KA Miller, MK AF Li, Qian Parish, C. M. Powers, K. A. Miller, M. K. TI Helium solubility and bubble formation in a nanostructured ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION-STRENGTHENED STEELS; MICROSTRUCTURAL EVOLUTION; IRRADIATED MATERIALS; NEUTRON-IRRADIATION; THERMAL-STABILITY; FUSION-REACTORS; ION-IRRADIATION; ODS STEELS; BCC IRON; RADIATION AB The response of a nanostructured ferritic alloy to He implantation and post-irradiation annealing (PIA) at 750 degrees C was characterized by atom probe tomography and transmission electron microscopy. The supersaturated He concentration in the ferrite at a dose of similar to 2.1 displacements per atom was similar for the as-implanted, 75 +/- 7 appm, and a 10 h PIA treatment, 71 +/- 7 appm, but decreased to 38 +/- 2 appm after a 100 h PIA treatment. Approximately 91-97% of the He bubbles were present as isolated bubbles in the ferrite and similar to 1-5% on the surface of the nanoclusters in the ferrite. The remainder were associated with the grain boundaries with a small fraction on the surface of Ti(N,C,O) precipitates. Their average size and number density were similar for the as-implanted and 10 h PIA treatment with a small increase in the size and a significant increase in the number density after the 100 h PIA treatment. Swelling in the high dose region increased from similar to 1% in the as-implanted and 10 h PIA conditions to similar to 5% after the 100 h PIA treatment but the estimated number of He atoms per unit volume in the He bubbles decreased by an order of magnitude. Number densities increased from similar to 8 x 10(23) m(-3) in the as-implanted to similar to 15 x 10(23) m(-3) in the 10 h PIA condition, with little change (to similar to 12 x 10(23) m(-3)) in the 100 h PIA condition. This trend may indicate nucleation of new bubbles up to 10 h, with growth and possible consumption of the smaller bubbles between 10 and 100 h. Published by Elsevier B.V. C1 [Li, Qian; Parish, C. M.; Powers, K. A.; Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS 6139, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov RI Parish, Chad/J-8381-2013; Li, Qian/A-8752-2015 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The microscopy was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank Dr. D.T. Hoelzer of ORNL for providing the samples of the extruded 14YWT nanostructured ferritic alloy, Prof. A. Hallen of the Royal Institute of Technology, Kista, Sweden for performing the helium ion implantation, and Drs. Y. Zhang and P.D. Edmondson of ORNL for their assistance. NR 75 TC 17 Z9 17 U1 6 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 165 EP 174 DI 10.1016/j.jnucmat.2013.10.048 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500024 ER PT J AU Pokorny, R Hrma, P AF Pokorny, Richard Hrma, Pavel TI Model for the conversion of nuclear waste melter feed to glass SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ALL-ELECTRIC FURNACES; COLD-CAP REACTIONS; MELTING PROCESS; MATHEMATICAL-MODEL; BATCH; VITRIFICATION; SIMULATION AB The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the melt, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)(3) to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pokorny, Richard] Prague Inst Chem Technol, Dept Chem Engn, CR-16628 Prague 6, Czech Republic. [Hrma, Pavel] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hrma, Pavel] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang, South Korea. RP Pokorny, R (reprint author), Prague Inst Chem Technol, Dept Chem Engn, CR-16628 Prague 6, Czech Republic. EM richard.pokorny@vscht.cz FU Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office; WCU (World Class University) program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31 - 30005]; MSMT [20/2013]; US Department of Energy by Battelle [DE-AC05-76RL01830] FX This work was supported by the Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of Dr. Albert, A. Kruger and by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005). Richard Pokorny acknowledges financial support from the specific university research (MSMT No 20/2013). The authors are grateful to Jaehun Chun and Dong-Sang Kim for insightful discussions, David A. Pierce for TGA and differential scanning calorimetry measurements, and Derek R. Dixon for providing cold cap images. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Under Contract DE-AC05-76RL01830. NR 34 TC 11 Z9 12 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 190 EP 199 DI 10.1016/j.jnucmat.2013.11.009 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500027 ER PT J AU Miao, YB Aidhy, D Chen, WY Mo, K Oaks, A Wolf, D Stubbins, JF AF Miao, Yinbin Aidhy, Dilpuneet Chen, Wei-Ying Mo, Kun Oaks, Aaron Wolf, Dieter Stubbins, James F. TI The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; INTERATOMIC POTENTIALS; CEO2; PART; UO2; BEHAVIOR; DIOXIDE; PROGRAM; FORCES; GULP AB Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b = 1/3 < 1 1 1 > interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments. (C) 2013 Elsevier B.V. All rights reserved. C1 [Miao, Yinbin; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Aidhy, Dilpuneet] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Wolf, Dieter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Miao, YB (reprint author), 216 Talbot Lab,104 South Wright St, Urbana, IL 61801 USA. EM miao2@illinois.edu OI Oaks, Aaron/0000-0001-8552-242X; Miao, Yinbin/0000-0002-3128-4275 FU DOE NERI [DE-FC07-07ID14838, DEFG-07-14891]; UChicago Argonne, LLC, Operator of Argonne National Laboratory; ANL, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by DOE NERI DE-FC07-07ID14838 and DOE NERI DEFG-07-14891, and the computation was supported by the Fusion cluster in Argonne National Laboratory and the Taub cluster in University of Illinois at Urbana-Champaign. Simulation results were visualized by the Open Visual Tool (OVITO) [38]. DW was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory; ANL, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 38 TC 11 Z9 11 U1 4 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 209 EP 217 DI 10.1016/j.jnucmat.2013.11.015 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500029 ER PT J AU Zhang, HK Yao, ZW Daymond, MR Kirk, MA AF Zhang, He K. Yao, Zhongwen Daymond, Mark R. Kirk, Marquis A. TI Elevated temperature irradiation damage in CANDU spacer material Inconel X-750 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STACKING-FAULT TETRAHEDRA; ION IRRADIATION; CASCADE DAMAGE; STABILITY; GROWTH; PRECIPITATION; DISSOLUTION; EVOLUTION; NICKEL; ORDER AB Heavy ion irradiation induced damage in Inconel X-750 at low temperatures (60-400 degrees C) has been reported in our previous study. In the current investigation, the microstructure evolution and phase change during heavy (1 MeV Kr2+) irradiation at elevated temperatures (500 C and 600 degrees C) were characterized under in situ observation of intermediate voltage electron microscope (IVEM) at Argonne National Laboratory. For each temperature, defect analyses using the weak beam dark field method were carried out at several doses, up to 5.4 dpa. Small defects (<5 nm) yielded from high temperature irradiation comprise mainly stacking fault tetrahedras (SFTs), small 1/3 < 1 1 1 > and 1/2 < 1 1 0 > type dislocation loops. Large interstitial Frank loops were observed and a clear characteristic for growth of loops was video-captured. Unfaulting of interstitial Frank loops was observed. The number density of the defects saturated at a relatively low dose of 0.68 dpa. No obvious change of defect fraction was found with increasing dose, but more complex dislocation structures formed at higher doses. In contrast to low temperature irradiation, the primary strengthening phase gamma' was found to be stable during irradiation at temperatures >500 degrees C and was not disordered up to 5.4 dpa. No cavities were observed after the irradiation even at 600 degrees C. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, He K.; Yao, Zhongwen; Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Kirk, Marquis A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yao, ZW (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM yaoz@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU U Chicago Argonne, LLC [DE-AC02-06CH11357]; National Science and Engineering Research Council (NSERC); NSERC Industrial Research Chair in Nuclear Materials FX The electron microscopy was accomplished at the Electron Microscopy Centre for Materials Research at Argonne National Laboratory supported by US Department of Energy Office of Science and operated under Contract No. DE-AC02-06CH11357 by U Chicago Argonne, LLC. We thank Mr. Pete Boldo and Mr. Ed Ryan of Argonne National Lab for their help on the microscopy and ion beam facility. This work is funded by National Science and Engineering Research Council (NSERC) and the NSERC Industrial Research Chair in Nuclear Materials. NR 32 TC 6 Z9 6 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 227 EP 234 DI 10.1016/j.jnucmat.2013.11.008 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500032 ER PT J AU Parish, CM White, RM LeBeau, JM Miller, MK AF Parish, Chad M. White, Ryan M. LeBeau, James M. Miller, Michael K. TI Response of nanostructured ferritic alloys to high-dose heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LOW-ACTIVATION MATERIALS; MATERIALS CHALLENGES; STRUCTURAL-MATERIALS; FUSION APPLICATIONS; RADIATION-DAMAGE; NEUTRON-IRRADIATION; ACCIDENT SAFETY; NUCLEAR-ENERGY; STEELS; ELEMENTS AB A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100 degrees C and 750 degrees C, as well as pre-irradiation reference material. Irradiation at -100 degrees C results in ballistic destruction of the beneficial microstructural features 'present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750 degrees C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Parish, Chad M.; Miller, Michael K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [White, Ryan M.; LeBeau, James M.] N Carolina State Univ, Mat Sci & Engn Dept, Raleigh, NC 27695 USA. RP Parish, CM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM parishcm@ornl.gov RI Parish, Chad/J-8381-2013 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; DOE-BES; Office of Biological and Environmental Research, US DOE; State of North Carolina; National Science Foundation FX Research supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division, and through a user project supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is also sponsored by DOE-BES. Ion irradiations performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility, which is sponsored at Pacific Northwest National Laboratory by the Office of Biological and Environmental Research, US DOE. We acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation. Thanks to Dr. Y. Zhang for performing the ion irradiations and to Drs. D.A. Cullen and K.G. Field, ORNL, for critiquing the manuscript. Thanks to Dr. R.E. Stoller, ORNL, for help implementing the method of Ref. [25]. NR 64 TC 18 Z9 18 U1 3 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 251 EP 260 DI 10.1016/j.jnucmat.2013.11.002 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500035 ER PT J AU Setyawan, W Gerboth, M Yao, B Henager, CH Devaraj, A Vemuri, VRSR Thevuthasan, S Shutthanandan, V AF Setyawan, Wahyu Gerboth, Matthew Yao, Bo Henager, Charles H. Devaraj, Arun Vemuri, Venkata R. S. R. Thevuthasan, Suntharampillai Shutthanandan, Vaithiyalingam TI Asymmetry of radiation damage properties in Al-Ti nanolayers SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; NANOSTRUCTURED FERRITIC ALLOY; HELIUM ION-IRRADIATION; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; HE; MULTILAYERS; COMPOSITES; TOLERANCE; GROWTH AB Molecular dynamics (MD) simulations were employed with empirical potentials to study the effects of multilayer interfaces and interface spacing in Al-Ti nanolayers. Several model interfaces derived from stacking of close-packed layers or face-centered cubic (100) layers were investigated. The simulations reveal significant and important asymmetries in defect production with similar to 60% of vacancies created in Al layers compared to Ti layers within the Al-Ti multilayer system. The asymmetry in the creation of interstitials is even more pronounced. The asymmetries cause an imbalance in the ratio of vacancies and interstitials in films of dissimilar materials leading to >90% of the surviving interstitials located in the Al layers. While in the close-packed nanolayers the interstitials migrate to the atomic layers adjacent to the interface of the Al layers, in the (100) nanolayers the interstitials migrate to the center of the Al layers and away from the interfaces. The degree of asymmetry and defect ratio imbalance increases as the layer spacing decreases in the multilayer films. Underlying physical processes are discussed including the interfacial strain fields and the individual elemental layer stopping power in nanolayered systems. In addition, experimental work was performed on low-dose (1016 atoms/cm(2)) helium (He) irradiation on Al/Ti nanolayers (5 nm per film), resulting in He bubble formation 1 nm in diameter in the Ti film near the interface. The correlation between the preferential flux of displaced atoms from Ti films to Al films during the defect production that is revealed in the simulations and the morphology and location of He bubbles from the experiments is discussed. Published by Elsevier B.V. C1 [Setyawan, Wahyu; Gerboth, Matthew; Yao, Bo; Henager, Charles H.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Devaraj, Arun; Vemuri, Venkata R. S. R.; Thevuthasan, Suntharampillai; Shutthanandan, Vaithiyalingam] Environm Mol Sci Lab, Richland, WA 99354 USA. RP Setyawan, W (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wahyu.setyawan@pnnl.gov OI Henager, Chuck/0000-0002-8600-6803 FU Defense Threat Reduction Agency (DTRA) [BRCALL08-Per4-E-1-0062]; Department of Energy's Office of Biological and Environmental Research FX This research was supported by the award BRCALL08-Per4-E-1-0062 from Defense Threat Reduction Agency (DTRA). A portion of this research was performed using Olympus supercomputer at EMSL (#44724), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank Dr. Tamas Varga for fruitful discussions. NR 45 TC 5 Z9 5 U1 1 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 261 EP 271 DI 10.1016/j.jnucmat.2013.11.012 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500036 ER PT J AU Kim, YS Cho, TW Sohn, DS AF Kim, Yeon Soo Cho, Tae Won Sohn, Dong-Seong TI Thermal conductivities of actinides (U, Pu, Np, Cm, Am) and uranium-alloys (U-Zr, U-Pu-Zr and U-Pu-TRU-Zr) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CONSTITUENT REDISTRIBUTION; ELECTRICAL-CONDUCTIVITY; METALLIC FUEL; TEMPERATURE; RESISTIVITY; ZIRCONIUM; BODIES; HEAT AB The thermal conductivity correlations of actinides (U, Pu, Np, Cm, Am) and alloys of U-Zr, U-Pu-Zr and U-Pu-TRU-Zr were developed for the use in TRU burning reactors as a function of temperature and alloy composition, using the available data in the literature and extrapolating information obtained in the literature. Because of the scarcity in the measured data for thermal conductivities of TRU elements in the literature, estimations for the thermal conductivities of Pu, Am, Np, and Cm were made. A correlation for U-Zr alloy was also developed and extended to U-Pu-Zr and U-Pu-TRU-Zr alloys. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, Tae Won; Sohn, Dong-Seong] UNIST, Ulsan, South Korea. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU U.S. Department of Energy, Office of Global Threat Reduction [NA-21]; National Nuclear Security Administration [DE-AC-02-06CH11357]; National Research Foundation of Korea (NRF); Korean government (Ministry of Education, Science and Technology) [2011-0031771] FX This work was supported by the U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration, under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department of Energy and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Education, Science and Technology) (No. 2011-0031771). NR 46 TC 2 Z9 2 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 272 EP 280 DI 10.1016/j.jnucmat.2013.11.018 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500037 ER PT J AU Leonard, KJ Jellison, GE Kumar, NAPK Snead, LL AF Leonard, Keith J. Jellison, Gerald E. Kumar, N. A. P. Kiran Snead, Lance L. TI The role of microstructure on the optical performance of neutron irradiated dielectric mirrors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ATOMIC LAYER DEPOSITION; THIN-FILMS; MULTILAYER COATINGS; VACUUM-ULTRAVIOLET; REFRACTIVE-INDEX; HAFNIUM OXIDE; LASER DAMAGE; SILICA; ELLIPSOMETRY; TEMPERATURE AB Dielectric mirrors of HfO2/SiO2 and Al2O3/SiO2 designed for optimum reflectivity at 248 nm with 11 and 30 bi-layer coatings, respectively, survived irradiation to 0.1 dpa at 448 K without film cracking or delamination from their sapphire substrates. Subsequent annealing of the irradiated samples resulted in a loss of reflectivity in the HfO2/SiO2 mirror, while the Al2O3/SiO2 type remained unaffected. Microstructural changes that correlate to optical property changes of the mirror are investigated. The amorphous layers of the Al2O3/SiO2 mirror provide greater stability despite increased Al and Si interdiffusion across the film interfaces with increasing dose and post-irradiation annealing temperature. This interdiffusion may have limited the densification of SiO2 in the Al2O3/SiO2 mirror, but no interdiffusion was observed for the HfO2/SiO2 mirror. The thickness changes in the SiO2 layers of the HfO2/SiO2 mirror resulted in a shifting of the peak reflectivity to lower wavelengths. The formation of an amorphous Al-O layer within the substrate is observed in the 0.1 dpa irradiated HfO2/SiO2 mirror, which on further annealing at 573 and 673 K resulted in a buckling-type delamination failures in the mirrors producing a loss in reflectivity. (C) 2013 Elsevier B.V. All rights reserved. C1 [Leonard, Keith J.; Jellison, Gerald E.; Kumar, N. A. P. Kiran; Snead, Lance L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Leonard, KJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM leonardk@ornl.gov OI Nimishakavi, Anantha Phani Kiran Kumar/0000-0002-2876-4083 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences, U.S. Department of Energy FX Special thanks to Joel McDuffee and Bob Sitterson for their help in setting up the irradiation experiments, Marie Williams, Janie Myers and Patricia Tedder for their assistance in the LAMDA laboratory for post-irradiation examinations. Use of the CM200 TEM was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Irradiations were carried out in the High Flux Isotope Reactor, also sponsored through the Office of Basic Energy Sciences, U.S. Department of Energy. NR 51 TC 3 Z9 3 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2014 VL 445 IS 1-3 BP 281 EP 290 DI 10.1016/j.jnucmat.2013.11.022 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AB0PV UT WOS:000331495500038 ER PT J AU den Toom, M Dijkstra, HA Weijer, W Hecht, MW Maltrud, ME van Sebille, E AF den Toom, Matthijs Dijkstra, Henk A. Weijer, Wilbert Hecht, Matthew W. Maltrud, Mathew E. van Sebille, Erik TI Response of a Strongly Eddying Global Ocean to North Atlantic Freshwater Perturbations SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article DE Eddies; Meridional overturning circulation; Circulation/ Dynamics; Nonlinear dynamics; Feedback ID MERIDIONAL OVERTURNING CIRCULATION; MULTIPLE EQUILIBRIA REGIME; GREENLAND ICE-SHEET; THERMOHALINE CIRCULATION; CONVEYOR BELT; MODEL; STRATIFICATION; TEMPERATURE; STABILITY; TRANSPORT AB The strongly eddying version of the Parallel Ocean Program (POP) is used in two 45-yr simulations to investigate the response of the Atlantic meridional overturning circulation (AMOC) to strongly enhanced freshwater input due to Greenland melting, with an integrated flux of 0.5 Sverdrups (Sv; 1 Sv equivalent to 10(6) m(3) s(-1)). For comparison, a similar set of experiments is performed using a noneddying version of POP. The aim is to identify the signature of the salt advection feedback in the two configurations. For this reason, surface salinity is not restored in these experiments. The freshwater input leads to a quantitatively comparable reduction of the overturning strength in the two models. To examine the importance of transient effects in the relation between AMOC strength and density distribution, the results of the eddy-resolving model are related to water mass transformation theory. The freshwater forcing leads to a reduction of the rate of light to dense water conversion in the North Atlantic, but there is no change in dense to light transformation elsewhere, implying that high density layers are continuously deflating. The main focus of the paper is on the effect of the AMOC reduction on the basinwide advection of freshwater. The low-resolution model results show a change of the net freshwater advection that is consistent with the salt advection feedback. However, for the eddy-resolving model, the net freshwater advection into the Atlantic basin appears to be unaffected, despite the significant change in the large-scale velocity structure. C1 [den Toom, Matthijs; Dijkstra, Henk A.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3584 CC Utrecht, Netherlands. [den Toom, Matthijs; Dijkstra, Henk A.] Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Weijer, Wilbert; Hecht, Matthew W.; Maltrud, Mathew E.] Los Alamos Natl Lab, Los Alamos, NM USA. [van Sebille, Erik] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia. [van Sebille, Erik] Univ New S Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia. RP Dijkstra, HA (reprint author), Univ Utrecht, Dept Phys & Astron, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. EM h.a.dijkstra@uu.nl RI van Sebille, Erik/F-6781-2010; Weijer, Wilbert/A-7909-2010; Dijkstra , Henk /H-2559-2016; OI van Sebille, Erik/0000-0003-2041-0704; Hecht, Matthew/0000-0003-0946-4007 FU Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science; National Computing Facilities Foundation (NCF) [SH084-11]; Netherlands Organization for Scientific Research (NWO); NWO; Australian Research Council FX This work was supported in part by the Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science. The computations were done on the Huygens IBM Power6 at SARA in Amsterdam, on the Institutional Computing facilities at Los Alamos National Laboratory, and on the Jaguar supercomputer at the National Center for Computational Sciences at Oak Ridge National Laboratory. Use of the SARA computing facilities was sponsored by the National Computing Facilities Foundation (NCF) under the Project SH084-11 with financial support from the Netherlands Organization for Scientific Research (NWO). Research for MdT was supported by a NWO Toptalent Grant. EvS was supported by the Australian Research Council. We thank three anonymous reviewers for suggesting substantial improvements to the manuscript. NR 45 TC 5 Z9 5 U1 1 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD FEB PY 2014 VL 44 IS 2 BP 464 EP 481 DI 10.1175/JPO-D-12-0155.1 PG 18 WC Oceanography SC Oceanography GA AA3VY UT WOS:000331024500004 ER PT J AU Korneev, VA Demcenko, A AF Korneev, V. A. Demcenko, A. TI Possible second-order nonlinear interactions of plane waves in an elastic solid SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID 3-PHONON INTERACTIONS; HARMONIC GENERATION; ULTRASONIC-DETECTION; MICROWAVE PHONONS; CRYSTAL; ROCK; STRESS; SANDSTONE; MEDIA AB There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system. C1 [Korneev, V. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Demcenko, A.] Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands. RP Korneev, VA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM vakorneev@lbl.gov FU Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy [DE-ACO2-05CH11231]; Dutch Ministry of Economic Affairs [IWA-08019] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. This work was also carried out in partial collaboration with Vitens and Applus RTD within the "Innowator" project IWA-08019, as funded by the Dutch Ministry of Economic Affairs, by means of Agentschap NL. Tania Vulfs helped to verify some analytical results from Table II. NR 32 TC 11 Z9 11 U1 5 U2 19 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD FEB PY 2014 VL 135 IS 2 BP 591 EP 598 DI 10.1121/1.4861241 PG 8 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AB5RL UT WOS:000331846000014 PM 25234869 ER PT J AU Henderson, SA Tetzlaff, MT Pattanaprichakul, P Fox, PS Torres-Cabala, CA Bassett, RL Prieto, VG Richards, HW Curry, JL AF Henderson, S. A. Tetzlaff, M. T. Pattanaprichakul, P. Fox, P. S. Torres-Cabala, C. A. Bassett, R. L. Prieto, V. G. Richards, H. W. Curry, J. L. TI Immunohistochemistry for Histone H3K79me3T80ph Is Superior to PHH3 in the Detection of Mitotic Chromatin and G2 Positive Nuclei in Merkel Cell Carcinoma SO LABORATORY INVESTIGATION LA English DT Meeting Abstract CT 103rd Annual Meeting of the United-States-and-Canadian-Academy-of-Pathology (USCAP) CY MAR 01-07, 2014 CL San Diego, CA SP US & Canadian Acad Pathol, Dako, Biocare Med, Leica Biosystems, LabCorp Specialty Testing Grp, Integrated Oncol, GenomOncology, Nephropath, Ventana, Diagnost BioSystems C1 MDACC, Houston, TX USA. Mahidol Univ, Bangkok 10700, Thailand. Berkeley Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0023-6837 EI 1530-0307 J9 LAB INVEST JI Lab. Invest. PD FEB PY 2014 VL 94 SU 1 MA 541 BP 134A EP 135A PG 2 WC Medicine, Research & Experimental; Pathology SC Research & Experimental Medicine; Pathology GA AA5QX UT WOS:000331155800542 ER PT J AU Stevens, A Yang, H Carin, L Arslan, I Browning, ND AF Stevens, Andrew Yang, Hao Carin, Lawrence Arslan, Ilke Browning, Nigel D. TI The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images SO MICROSCOPY LA English DT Article DE STEM; low dose; Bayesian dictionary learning; compressive sensing ID MICROSCOPY; NANOPARTICLES; NOISY AB The use of high-resolution imaging methods in scanning transmission electron microscopy (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example, in the study of organic systems, in tomography and during in situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high-resolution STEM images. These computational algorithms have been applied to a set of images with a reduced number of sampled pixels in the image. For a reduction in the number of pixels down to 5% of the original image, the algorithms can recover the original image from the reduced data set. We show that this approach is valid for both atomic-resolution images and nanometer-resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these postacquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or the alignment of the microscope itself. C1 [Stevens, Andrew] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Yang, Hao] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Carin, Lawrence] Duke Univ, Dept Elect & Computat Engn, Durham, NC 27708 USA. [Arslan, Ilke; Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Browning, ND (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 902 Battelle Blvd,POB 999,MSIN K8-87, Richland, WA 99352 USA. EM nigel.browning@pnnl.gov OI Stevens, Andrew/0000-0002-8474-8483; Browning, Nigel/0000-0003-0491-251X FU United States Department of Energy [DE-FG02-03ER46057]; LDRD; Chemical Imaging Initiative program at PNNL; Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan FX This work was supported in part by the United States Department of Energy Grant No. DE-FG02-03ER46057 and in part by the LDRD and Chemical Imaging Initiative program at PNNL. Part of the work was conducted in the Research Hub for Advanced NanoCharacterization, The University of Tokyo, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. NR 27 TC 15 Z9 15 U1 4 U2 41 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2050-5698 EI 2050-5701 J9 MICROSCOPY-JPN JI Microscopy PD FEB PY 2014 VL 63 IS 1 BP 41 EP 51 DI 10.1093/jmicro/dft042 PG 11 WC Microscopy SC Microscopy GA AB6CQ UT WOS:000331875600006 PM 24151325 ER PT J AU Wang, C Duscher, G Paddison, SJ AF Wang, Chen Duscher, Gerd Paddison, Stephen J. TI Electron energy loss spectroscopy of polytetrafluoroethylene: experiment and first principles calculations SO MICROSCOPY LA English DT Article DE PTFE; EELS; TEM; DFT; polymer; conformation ID RAY PHOTOELECTRON-SPECTROSCOPY; HELIX REVERSAL DEFECTS; FINE-STRUCTURE; THIN-FILMS; SURFACE-STRUCTURE; NEXAFS SPECTRA; PTFE FILMS; POLY(TETRAFLUOROETHYLENE); MICROSCOPY; POLYMERS AB We have performed electron energy-loss spectroscopy (EELS) on a 200 kV transmission electron microscope (TEM) equipped with a monochromator to investigate molecular conformation of polytetrafluoroethylene (PTFE). The experimental spectra show several unique features in the low-loss region and the onset of carbon K-edge for PTFE. Density function theory (DFT) methods are employed to calculate the low-loss and core-loss spectra of PTFE with consideration of the effects of phase transitions, chain orientation and polarization. The shape and width of the characteristic peaks of the experimental spectra are well reproduced in DFT calculations. By comparing the spectra from experiments and theory, the detailed information about the conformational dependence of EEL spectra for PTFE can be obtained. In the present work, we have demonstrated an application of combining high-resolution EELS and DFT calculations in both low-loss and core-loss regions to discriminate changes of chain conformation and orientation for the polymer with complex phase transition behavior. C1 [Wang, Chen; Paddison, Stephen J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Duscher, Gerd] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Duscher, Gerd] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Duscher, G (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM gduscher@utk.edu RI Duscher, Gerd/G-1730-2014; Wang, Chen/I-3748-2014 OI Duscher, Gerd/0000-0002-2039-548X; Wang, Chen/0000-0002-2343-339X FU Sustainable Energy and Education Research Center (SEERC); Joint Institute for Advanced Materials (JIAM) at the University of Tennessee; Oak Ridge National Laboratory FX The authors are grateful for partial support from the Sustainable Energy and Education Research Center (SEERC) and the Joint Institute for Advanced Materials (JIAM) at the University of Tennessee and Oak Ridge National Laboratory. NR 43 TC 3 Z9 3 U1 4 U2 31 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2050-5698 EI 2050-5701 J9 MICROSCOPY-JPN JI Microscopy PD FEB PY 2014 VL 63 IS 1 BP 73 EP 83 DI 10.1093/jmicro/dft046 PG 11 WC Microscopy SC Microscopy GA AB6CQ UT WOS:000331875600009 PM 24296695 ER PT J AU Henderson, SA Tetzlaff, MT Pattanaprichakul, P Fox, PS Torres-Cabala, CA Bassett, RL Prieto, VG Richards, HW Curry, JL AF Henderson, S. A. Tetzlaff, M. T. Pattanaprichakul, P. Fox, P. S. Torres-Cabala, C. A. Bassett, R. L. Prieto, V. G. Richards, H. W. Curry, J. L. TI Immunohistochemistry for Histone H3K79me3T80ph Is Superior to PHH3 in the Detection of Mitotic Chromatin and G2 Positive Nuclei in Merkel Cell Carcinoma SO MODERN PATHOLOGY LA English DT Meeting Abstract CT 103rd Annual Meeting of the United-States-and-Canadian-Academy-of-Pathology (USCAP) CY MAR 01-07, 2014 CL San Diego, CA SP US & Canadian Acad Pathol, Dako, Biocare Med, Leica Biosystems, LabCorp Specialty Testing Grp, Integrated Oncol, GenomOncology, Nephropath, Ventana, Diagnost BioSystems C1 MDACC, Houston, TX USA. Mahidol Univ, Bangkok 10700, Thailand. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0893-3952 EI 1530-0285 J9 MODERN PATHOL JI Mod. Pathol. PD FEB PY 2014 VL 27 SU 2 MA 541 BP 134A EP 135A PG 2 WC Pathology SC Pathology GA AB0SK UT WOS:000331502200540 ER PT J AU Seo, S Lu, X Zhu, JX Urbano, RR Curro, N Bauer, ED Sidorov, VA Pham, LD Park, T Fisk, Z Thompson, JD AF Seo, S. Lu, Xin Zhu, J-X. Urbano, R. R. Curro, N. Bauer, E. D. Sidorov, V. A. Pham, L. D. Park, Tuson Fisk, Z. Thompson, J. D. TI Disorder in quantum critical superconductors SO NATURE PHYSICS LA English DT Article ID RELAXATION; PRESSURE; CERHIN5; CECOIN5; METALS; SPIN AB In four classes of materials the layered copper oxides, organics, iron pnictides and heavy-fermion compounds an unconventional superconducting state emerges as a magnetic transition is tuned towards absolute zero temperature, that is, towards a magnetic quantum critical point(1) (QCP). In most materials, the QCP is accessed by chemical substitution or applied pressure. CeColn(5) is one of the few materials that are 'born' as a quantum critical superconductor(2-4) and, therefore, offers the opportunity to explore the consequences of chemical disorder. Cadmium-doped crystals of CeColn(5) are a particularly interesting case where Cd substitution induces long-range magnetic order(5), as in Zn-doped copper oxides(6,7). Applied pressure globally suppresses the Cd-induced magnetic order and restores bulk superconductivity. Here we show, however, that local magnetic correlations, whose spatial extent decreases with applied pressure, persist at the extrapolated QCP. The residual droplets of impurity-induced magnetic moments prevent the reappearance of conventional signatures of quantum criticality, but induce a heterogeneous electronic state. These discoveries show that spin droplets can be a source of electronic heterogeneity and emphasize the need for caution when interpreting the effects of tuning a correlated system by chemical substitution. C1 [Seo, S.; Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Lu, Xin; Zhu, J-X.; Urbano, R. R.; Bauer, E. D.; Sidorov, V. A.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lu, Xin] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310027, Zhejiang, Peoples R China. [Lu, Xin] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Urbano, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil. [Curro, N.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Sidorov, V. A.] Russian Acad Sci, Inst High Pressure Phys, RU-142190 Troitsk, Moscow, Russia. [Pham, L. D.; Fisk, Z.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Park, T (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. EM tp8701@skku.edu; jdt@lanl.gov RI Lu, Xin/B-7358-2012; Curro, Nicholas/D-3413-2009; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Curro, Nicholas/0000-0001-7829-0237; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Office of Science, Division of Materials Science and Engineering; Los Alamos LDRD program; NRF; Korean Ministry of Education, Science & Technology (MEST) [2012R1A3A2048816, 220-2011-1-C00014]; RFBR Grant [12-02-00376] FX We thank F. Ronning, M. Vojta and J. Shim for helpful discussions. Work at Los Alamos was performed under the auspices of the US Department of Energy, Office of Science, Division of Materials Science and Engineering and supported in part by the Los Alamos LDRD program. Work at SKKU is supported by an NRF grant funded by the Korean Ministry of Education, Science & Technology (MEST) (No. 2012R1A3A2048816 & 220-2011-1-C00014). R.R.U. acknowledges FAPESP (No. 2012/05903-6). V.A.S. acknowledges support by RFBR Grant 12-02-00376. X.L. acknowledges NSFC (No. 11374257). NR 29 TC 20 Z9 20 U1 6 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2014 VL 10 IS 2 BP 120 EP 125 DI 10.1038/NPHYS2820 PG 6 WC Physics, Multidisciplinary SC Physics GA AB9US UT WOS:000332141800016 ER PT J AU Gerber, S Bartkowiak, M Gavilano, JL Ressouche, E Egetenmeyer, N Niedermayer, C Bianchi, AD Movshovich, R Bauer, ED Thompson, JD Kenzelmann, M AF Gerber, Simon Bartkowiak, Marek Gavilano, Jorge L. Ressouche, Eric Egetenmeyer, Nikola Niedermayer, Christof Bianchi, Andrea D. Movshovich, Roman Bauer, Eric D. Thompson, Joe D. Kenzelmann, Michel TI Switching of magnetic domains reveals spatially inhomogeneous superconductivity SO NATURE PHYSICS LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; CECOIN5 AB The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity(1,2), where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wavefunction in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density-wave (SDW) order(3,4). Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave in CeColn(5). We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeColn(5) thus represents an example where spatially modulated superconductivity is associated with SDW order. C1 [Gerber, Simon; Gavilano, Jorge L.; Egetenmeyer, Nikola; Niedermayer, Christof] Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland. [Bartkowiak, Marek; Kenzelmann, Michel] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Ressouche, Eric] UJF Grenoble 1, SPSMS, UMR E CEA, F-38054 Grenoble, France. [Bianchi, Andrea D.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Bianchi, Andrea D.] Univ Montreal, RQMP, Montreal, PQ H3C 3J7, Canada. [Movshovich, Roman; Bauer, Eric D.; Thompson, Joe D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kenzelmann, M (reprint author), Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. EM michel.kenzelmann@psi.ch RI Gerber, Simon/A-4566-2012; Niedermayer, Christof/K-4436-2014; Kenzelmann, Michel/A-8438-2008; Bianchi, Andrea/E-9779-2010; OI Gerber, Simon/0000-0002-5717-2626; Kenzelmann, Michel/0000-0001-7913-4826; Bianchi, Andrea/0000-0001-9340-6971; Bauer, Eric/0000-0003-0017-1937 FU Swiss NSF [200021-122054, 200020-140345]; NSERC; PUNT; Canada Research Chair Foundation; US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work is based on neutron scattering experiments performed at the Institut Laue-Langevin, Grenoble, France and the Swiss Spoliation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. We thank P. Fouilloux and M. Zolliker for technical assistance. Discussions with M. Sigrist as well as C. Batista, P. Coleman, K. Machida, K. Kumagai and J. S. White are acknowledged. This work was supported by the Swiss NSF (Contract No. 200021-122054, 200020-140345 and MaNEP). A.D.B. received support from NSERC, PUNT and the Canada Research Chair Foundation. Work at LANL was performed under the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 30 TC 22 Z9 22 U1 7 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2014 VL 10 IS 2 BP 126 EP 129 DI 10.1038/NPHYS2833 PG 4 WC Physics, Multidisciplinary SC Physics GA AB9US UT WOS:000332141800017 ER PT J AU Jones, AM Yu, HY Ross, JS Klement, P Ghimire, NJ Yan, JQ Mandrus, DG Yao, W Xu, XD AF Jones, Aaron M. Yu, Hongyi Ross, Jason S. Klement, Philip Ghimire, Nirmal J. Yan, Jiaqiang Mandrus, David G. Yao, Wang Xu, Xiaodong TI Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 SO NATURE PHYSICS LA English DT Article ID TOPOLOGICAL INSULATORS; VALLEY POLARIZATION; MONOLAYER MOS2; GRAPHENE; SEMICONDUCTOR; SPINTRONICS AB Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena(1-10). The recent emergence of layered materials(11-13) provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons(14,15). Here we report new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons by both circularly and linearly polarized excitation, with the trion spectrum splitting into a doublet at large vertical electrical field. These observations can be explained as a locking of spin and layer pseudospin in a given valley(15), where the doublet implies an electrically induced spin splitting. The observed distinctive behaviour of the trion doublet under polarized excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step towards optical manipulation in van der Waals heterostructures(16) through interlayer excitons. C1 [Jones, Aaron M.; Klement, Philip; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Ross, Jason S.; Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Klement, Philip] Univ Giessen, Dept Phys, D-35392 Giessen, Germany. [Ghimire, Nirmal J.; Mandrus, David G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ghimire, Nirmal J.; Yan, Jiaqiang; Mandrus, David G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang; Mandrus, David G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Xu, XD (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM xuxd@uw.edu RI Yao, Wang/C-1353-2008; Mandrus, David/H-3090-2014; OI Yao, Wang/0000-0003-2883-4528; Jones, Aaron/0000-0002-8326-1294 FU US DoE, BES, Division of Materials Sciences and Engineering [DE-SC0008145]; NSF graduate fellowship [DGE-0718124]; Research Grant Council of the government of Hong Kong [HKU705513P]; Croucher Foundation under the Croucher Innovation Award; US DoE, BES, Materials Sciences and Engineering Division FX The authors wish to acknowledge G. Liu and X. Wu for helpful information on the bilayer band structure, and D. Cobden for useful comments. This work is mainly supported by US DoE, BES, Division of Materials Sciences and Engineering (DE-SC0008145). A.M.J. is partially supported by a NSF graduate fellowship (DGE-0718124). H.Y. and W.Y. were supported by the Research Grant Council (HKU705513P) of the government of Hong Kong, and the Croucher Foundation under the Croucher Innovation Award. N.J.G., J.Y. and D.G.M. were supported by US DoE, BES, Materials Sciences and Engineering Division. Device fabrication was completed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. Second harmonic generation is done at Garvey Imaging Core of the Institute for Stem Cell and Regenerative Medicine. NR 31 TC 71 Z9 71 U1 15 U2 195 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2014 VL 10 IS 2 BP 130 EP 134 DI 10.1038/NPHYS2848 PG 5 WC Physics, Multidisciplinary SC Physics GA AB9US UT WOS:000332141800018 ER PT J AU Dumitru, A Lappi, T McLerran, L AF Dumitru, A. Lappi, T. McLerran, L. TI Are the angular correlations in pA collisions due to a Glasmion or Bose condensation? SO NUCLEAR PHYSICS A LA English DT Article DE Color glass condensate; Elliptic flow ID RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; PB COLLISIONS; HYDRODYNAMIC FLOW; ELLIPTIC FLOW; FLUX TUBES; TEV; PLASMA; SIDE; PPB AB Experiments at the LHC have recently reported results on the angular asymmetry coefficients v(n)[m], for various angular moments n and orders of cumulants m, in high multiplicity p + Pb collisions. These coefficients are large, and have both even and odd moments. We discuss here some of the implications of these results for our understanding of the initial state of the collision (Color Glass Condensate) and for the evolution in the final state (Glasma and thermalized Quark Gluon Plasma). We show the Color Glass Condensate predicts large even moments, v(n) with n an even integer. Odd moments are generated by final state interactions or fragmentation. For a multi-particle determination of v(2)[m], where m is the number of particles used to determine the correlation, we argue that if these coefficients approach equality for large m in high multiplicity events, this may imply the existence of either solitonic solutions or Bose condensation either for the JIMWLK action that describes the CGC, or for the Glasma that might be produced in such a collision. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dumitru, A.] Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, A.] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA. [Lappi, T.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Lappi, T.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [McLerran, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, L.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [McLerran, L.] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Lappi, T (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland. FU DOE [DE-AC02-98CH10886]; DOE Office of Nuclear Physics [DE-FG02-09ER41620]; City University of New York through the PSC-CUNY Research Award Program [66514-0044]; Academy of Finland [133005, 267321, 273464] FX The research of LM is supported under DOE Contract No. DE-AC02-98CH10886. LM thanks J. Berges, J. Pawlowski, B. Schenke and R. Venugopalan for informative discussions issues related to the results of this paper. He especially thanks Juergen Schukraft and Raju Venugopalan for provocative statements about higher order flow coefficients and their possible implications. He was supported as a Hans Jensen Professor of Theoretical Physics in the Theoretical Physics Institute during the time this research was initiated and completed. AD thanks T. Kodama for sharing his insight on coarse graining in hydrodynamics; he gratefully acknowledges support by the DOE Office of Nuclear Physics through Grant No. DE-FG02-09ER41620 and from The City University of New York through the PSC-CUNY Research Award Program, grant 66514-0044. TL is supported by the Academy of Finland, projects 133005, 267321 and 273464. NR 52 TC 7 Z9 7 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB PY 2014 VL 922 BP 140 EP 149 DI 10.1016/j.nuclphysa.2013.12.001 PG 10 WC Physics, Nuclear SC Physics GA AB0QY UT WOS:000331498400007 ER PT J AU Premrov, A Coxon, CE Hackett, R Kirwan, L Richards, KG AF Premrov, Alma Coxon, Catherine E. Hackett, Richard Kirwan, Laura Richards, Karl G. TI Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Nitrate; Cover crop; Natural regeneration; Tillage method; Mitigation measures ID CROPPING SYSTEMS; SANDY SOIL; CROPS; NITROGEN; MANAGEMENT; GROUNDWATER; LOSSES; ROTATION; DRAINAGE; IRELAND AB There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. (C) 2013 Elsevier B.V. All rights reserved. C1 [Premrov, Alma; Coxon, Catherine E.] Trinity Coll Dublin, Sch Nat Sci, Dept Geol, Dublin 2, Ireland. [Premrov, Alma; Kirwan, Laura; Richards, Karl G.] TEAGASC, Johnstown Castle Environm Res Ctr, Wexford, Ireland. [Hackett, Richard] TEAGASC, Oak Pk Res Ctr, Carlow, Ireland. [Kirwan, Laura] Waterford Inst Technol, Waterford, Ireland. RP Premrov, A (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dept Geol, Dublin 2, Ireland. EM premrova@tcd.ie; cecoxon@tcd.ie; karl.richards@teagasc.ie RI Richards, Karl/A-5606-2010; Coxon, Catherine/O-7368-2014 OI Richards, Karl/0000-0002-3703-3450; Coxon, Catherine/0000-0002-2911-9115 FU Teagasc Walsh Fellowship; Trinity College Dublin (TCD) FX The authors are grateful for funding provided by the Teagasc Walsh Fellowship and Trinity College Dublin (TCD). Special thanks go to staff from Teagasc (Johnstown Castle, Wexford and Oak Park, Carlow), especially to D. Brennan and M. Radford for laboratory support, P. Sills, V. Staples, J. Murphy and J. Hogan for their overall support with the field-experiments and field-work in Oak Park. The authors are grateful to Met Eireann, The Irish Meteorological Service, for the provision of meteorological data. NR 45 TC 9 Z9 9 U1 3 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 1 PY 2014 VL 470 BP 967 EP 974 DI 10.1016/j.scitotenv.2013.10.057 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA AA9LS UT WOS:000331415600103 PM 24239817 ER PT J AU Wang, YX Huq, A Lai, W AF Wang, Yuxing Huq, Ashfia Lai, Wei TI Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x=0-2) series SO SOLID STATE IONICS LA English DT Article DE Lithium-stuffed garnet oxides; Neutron diffraction; Atomistic simulation; Disorder; Solid-state ionic conductors ID HIGH IONIC-CONDUCTIVITY; TRANSPORT-PROPERTIES; LANTHANUM TITANATE; CRYSTAL-STRUCTURES; DISORDER; LI7LA3ZR2O12; LI5LA3NB2O12; CONDUCTORS; DEFECTS; PHASE AB Lithium-stuffed garnet oxides are promising candidates of lithium ion electrolyte materials due to their high ionic conductivities and good chemical stability. In this study, time-of-flight (TOF) neutron diffraction experiments and the Rietveld refinement were performed on four garnet compounds in the Li7-xLa3Zr2-xTaxO12 (x = 0-2) series to study their average structures. Different structural models (split-site and anisotropic displacement) for lithium disorder at tetrahedral (Td) and octahedral (Oh) sites were compared and results suggested possible lithium disorder around both ideal Oh and ideal Td sites. To study the local lithium distribution, atomistic simulations based on static energy minimization with interatomic potentials were carried out on a large number of configurations of eight compositions. We demonstrated that energy probability distribution plots were helpful in understanding the lithium disorder/order in these materials. Nuclear density maps provided a visual presentation of structural disorder at both Td and Oh lithium sites. Our simulation results suggested that Td lithium occupancy is generally lower than that obtained from the average structure (Rietveld refinement) and the exclusion principle (no nearest-neighbor Td-Oh-Td lithium triplets). In addition, the nearest-neighbor Td-Oh lithium pairs and (Oh,square)-Td-(Oh,square) lithium clusters appear to be the characteristic local features contributing to the structure and conduction of these lithium-stuffed garnet oxides. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Yuxing; Lai, Wei] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Huq, Ashfia] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lai, W (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM laiwei@msu.edu RI Lai, Wei/E-8942-2011; Huq, Ashfia/J-8772-2013; Wang, Yuxing/F-3195-2017 OI Lai, Wei/0000-0002-9258-5573; Huq, Ashfia/0000-0002-8445-9649; Wang, Yuxing/0000-0002-7828-9399 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Ceramics Program of National Science Foundation [DMR-1206356] FX The authors thank Julian D. Gale for providing the GULP package and helpful discussions. This research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We wish to acknowledge the Michigan State University High Performance Computing Center and the Institute for Cyber-Enabled Research for access to their computing resources. This work is supported by the Ceramics Program of National Science Foundation (DMR-1206356). NR 50 TC 9 Z9 9 U1 3 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 1 PY 2014 VL 255 BP 39 EP 49 DI 10.1016/j.ssi.2013.11.017 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA AB5WV UT WOS:000331860300006 ER PT J AU Althaus, SM Mao, KM Stringer, JA Kobayashi, T Pruski, M AF Althaus, Stacey M. Mao, Kanmi Stringer, John A. Kobayashi, Takeshi Pruski, Marek TI Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant N-15 nuclei SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Solid-state N-15 NMR; FastMAS; J-coupling; HETCOR; INEPT; Indirect detection; Mesoporous silica ID MAGNETIC-RESONANCE-SPECTROSCOPY; FAST-MAS; INVERSE DETECTION; CHEMICAL-SHIFT; SENSITIVITY ENHANCEMENT; CROSS-POLARIZATION; ROTARY RESONANCE; QUANTUM NMR; H-1; RESOLUTION AB Two-dimensional indirectly detected through-space and through-bond H-1{N-15} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse H-1 decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieve data MAS rate of 40kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D H-1{N-15} HETCOR spectrum of natural abundance surface species is also reported. (C) 2013 Elsevier Inc. All rights reserved. C1 [Althaus, Stacey M.; Mao, Kanmi; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Althaus, Stacey M.; Mao, Kanmi; Kobayashi, Takeshi; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Stringer, John A.] Agilent Technol, Loveland, CO 80537 USA. RP Pruski, M (reprint author), Iowa State Univ, Ames Lab, 230 Spedding Hall, Ames, IA 50011 USA. EM mpruski@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX This research was supported at the Ames Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract no. DE-AC02-07CH11358. We thank Dr. Tommy Hung-Ting Chen for preparing the PUP-MSN material, and Prof. Mei Hong and Jonathan Williams for providing the sample of 15N-enriched histidine. NR 54 TC 18 Z9 18 U1 7 U2 52 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 EI 1527-3326 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD FEB-APR PY 2014 VL 57-58 BP 17 EP 21 DI 10.1016/j.ssnmr.2013.11.001 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA AB3RL UT WOS:000331707800003 PM 24287060 ER PT J AU Sarkar, A Mao, XL Russo, RE AF Sarkar, Arnab Mao, Xianglei Russo, Richard E. TI Advancing the analytical capabilities of laser ablation molecular isotopic spectrometry for boron isotopic analysis SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE LAMIS: Boron; Isotopic ratio; Precision; PLSR ID IONIZATION MASS-SPECTROMETRY; RATIO MEASUREMENT; PRECISE; SAMPLES; PLASMA; FRACTIONATION; SPECTROSCOPY; MICROPROBE; SEAWATER; ELEMENTS AB Laser ablation molecular isotopic spectrometry (LAMIS) recently has been investigated for analysis of the boron isotopic composition in ambient air at atmospheric pressure. The initial precision of 100-400 parts per thousand. (2 sigma) for the B-10/B-11 isotopic ratio was less than results obtained from other analytical methods like TIMS or ICP-MS. This paper describes how accuracy and precision for boron isotopic ratio using LAMIS can be improved to the few per mil level. Several optimization procedures, viz., spectral region of analysis, effect of flicker noise from matrix, spectral normalization and pre-treatment procedures, were studied. This paper reports a precision of 9 parts per thousand. (2 sigma) for the B-10/B-11 ratio using alternative spectral normalization and pretreatment procedures. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sarkar, Arnab; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Mumbai 400085, Maharashtra, India. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov OI Sarkar, Arnab/0000-0003-3783-8299 FU Chemical Science Division, Office of Basic Energy Sciences; Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Indo-US Science & Technology Forum FX This work was supported by the Chemical Science Division, Office of Basic Energy Sciences and the Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. Arnab Sarkar also gratefully acknowledges the Indo-US Science & Technology Forum for providing him IUSSTF -2012 fellowship. NR 42 TC 15 Z9 15 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD FEB 1 PY 2014 VL 92 BP 42 EP 50 DI 10.1016/j.sab.2013.12.001 PG 9 WC Spectroscopy SC Spectroscopy GA AB3FF UT WOS:000331676000006 ER PT J AU Woo, HL Hazen, TC Simmons, BA DeAngelis, KM AF Woo, Hannah L. Hazen, Terry C. Simmons, Blake A. DeAngelis, Kristen M. TI Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils SO SYSTEMATIC AND APPLIED MICROBIOLOGY LA English DT Article DE Soil lignocellulolytic bacteria; Cellulose; Lignin; Tropical forest; Biomass degradation; Biofuels ID CELLULOSE-DECOMPOSING BACTERIA; SP NOV.; DEGRADING BACTERIA; WASTE-WATER; GEN. NOV.; LIGNIN; CELLULASES; DIVERSITY; ACTINOBACTERIA; BIOTECHNOLOGY AB Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, beta-D-glucosidase, cellobiohydrolase, beta-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated beta-D-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. (C) 2013 Elsevier GmbH. All rights reserved. C1 [Woo, Hannah L.; Hazen, Terry C.; Simmons, Blake A.] Joint BioEnergy Inst, Deconstruct Div, Microbial Commun Grp, Emeryville, CA USA. [Woo, Hannah L.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Hazen, Terry C.; DeAngelis, Kristen M.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. [Woo, Hannah L.; Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Simmons, Blake A.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94550 USA. [DeAngelis, Kristen M.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP DeAngelis, KM (reprint author), Univ Massachusetts, Dept Microbiol, Morrill Sci Ctr IVN 203, 639 North Pleasant St, Amherst, MA 01003 USA. EM kristen@post.harvard.edu RI Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; Woo, Hannah/0000-0002-9342-6072; DeAngelis, Kristen/0000-0002-5585-4551; Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was performed at the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 68 TC 18 Z9 19 U1 5 U2 53 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0723-2020 J9 SYST APPL MICROBIOL JI Syst. Appl. Microbiol. PD FEB PY 2014 VL 37 IS 1 BP 60 EP 67 DI 10.1016/j.syapm.2013.10.001 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA AB4SW UT WOS:000331781200008 PM 24238986 ER PT J AU Dietrich, PJ Akatay, MC Sollberger, FG Stach, EA Miller, JT Delgass, WN Ribeiro, FH AF Dietrich, Paul J. Akatay, M. Cem Sollberger, Fred G. Stach, Eric A. Miller, Jeffrey T. Delgass, W. Nicholas Ribeiro, Fabio H. TI Effect of Co Loading on the Activity and Selectivity of PtCo Aqueous Phase Reforming Catalysts SO ACS CATALYSIS LA English DT Article DE glycerol aqueous phase reforming; bimetallic catalysis; operando X-ray absorption spectroscopy; scanning transmission electron microscopy; elemental line scans; hydrogen production from biomass ID WATER-GAS SHIFT; SUPPORTED PLATINUM CATALYSTS; DENSITY-FUNCTIONAL THEORY; ETHYLENE-GLYCOL; OXYGENATED HYDROCARBONS; LIQUID FUELS; RHENIUM CATALYSTS; CARBON NANOTUBES; METAL-CATALYSTS; BOND SCISSION AB The reaction site time yields (STYs, normalized to CO chemisorption sites) and product selectivity were measured for a series of bimetallic, multiwalled carbon nanotube supported PtCo catalysts with varying Pt/Co ratios for aqueous phase glycerol reforming. The STYs for all products increased by factors of around 2 for PtCo 1:0.5 and 1:1, and a factor of 4 for PtCo 1:5 relative to a monometallic Pt catalyst. The PtCo catalysts had similar hydrogen selectivity (>85%) at glycerol conversions up to 60%. X-ray absorption spectroscopy and scanning transmission electron microscopy characterization revealed that PtCo catalysts adopt monometallic Pt, mixed PtCo alloy, and Pt shell/Co core particle configurations. A linear correlation between the fraction of mixed PtCo alloy particles and the STY was found, indicating that higher Co loading resulted in a higher fraction of mixed PtCo alloy particles (the promoted phase) that provided the STY increase. C1 [Dietrich, Paul J.; Sollberger, Fred G.; Delgass, W. Nicholas; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Akatay, M. Cem] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Akatay, M. Cem] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM fabio@purdue.edu RI Stach, Eric/D-8545-2011; ID, MRCAT/G-7586-2011; OI Stach, Eric/0000-0002-3366-2153; Ribeiro, Fabio/0000-0001-7752-461X FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Scanning transmission electron microscopy was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank Yanran Cui and Kaiwalya Sabnis for their assistance in collecting the WGS reaction data. NR 42 TC 9 Z9 9 U1 4 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2014 VL 4 IS 2 BP 480 EP 491 DI 10.1021/cs4008705 PG 12 WC Chemistry, Physical SC Chemistry GA AA5UB UT WOS:000331164000014 ER PT J AU Soykal, II Sohn, H Singh, D Miller, JT Ozkan, US AF Soykal, I. Ilgaz Sohn, Hyuntae Singh, Deepika Miller, Jeffrey T. Ozkan, Umit S. TI Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Effect of the Particle Size SO ACS CATALYSIS LA English DT Article DE ceria; cerium; XANES; ethanol; solvothermal; nanoparticles ID SUPPORTED COBALT CATALYSTS; WATER-GAS SHIFT; FUEL-CELL APPLICATIONS; HYDROGEN-PRODUCTION; CO/CEO2 CATALYSTS; BIO-ETHANOL; CEO2; NI; PERFORMANCE; OXIDE AB Reducibility of ceria under steam reforming conditions and the effect of particle size on its reducibility was examined using two ceria samples with distinctly different mean particle sizes (3.5 nm versus 120 nm), but with similar polyhedral morphologies. The degree of reduction from Ce4+ to Ce3+ was characterized by temperature programmed reduction (TPR) and in situ X-ray absorption near edge structure spectroscopy (XANES) where the nanopolyhedra were observed to reduce much more readily compared to the larger particle-size sample. There was also significant reduction of the nanopolyhedra under ethanol steam reforming conditions. Ceria nanopolyhedra exhibited significantly more Ce3+ sites which contributed to a lower occurrence of surface acidic sites. The acidic/basic sites were probed by probe molecules such as pyridine and CO2 through in situ diffuse reflectance infrared spectroscopy (DRIFTS). The particle size also showed major differences in the steam reforming activity of ceria, with nanopolyhedra with a 3.5-nm mean particle size exhibiting significantly higher carbon cleavage and ethanol dehydration activity than its counterpart of 120 nm mean particle size. C1 [Soykal, I. Ilgaz; Sohn, Hyuntae; Singh, Deepika; Ozkan, Umit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, 140 W 19th Ave, Columbus, OH 43210 USA. EM ozkan.1@osu.edu FU U.S. Department of Energy [DE-FG36-05GO15033]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357] FX We gratefully acknowledge the U.S. Department of Energy for the Grant DE-FG36-05GO15033 for our funding. XANES experiments were performed at the Dupont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). E.I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois supported DND-CAT. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-ACO2-06CH11357. The authors acknowledge Hendrik E. Colijn for his invaluable help in taking and analyzing the digital micrographs. NR 53 TC 30 Z9 30 U1 7 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2014 VL 4 IS 2 BP 585 EP 592 DI 10.1021/cs400908h PG 8 WC Chemistry, Physical SC Chemistry GA AA5UB UT WOS:000331164000026 ER PT J AU Appel, AM Helm, ML AF Appel, Aaron M. Helm, Monte L. TI Determining the Overpotential for a Molecular Electrocatalyst SO ACS CATALYSIS LA English DT Editorial Material ID ELECTROCHEMICAL MEASUREMENTS; ACETONITRILE SOLUTIONS; ELECTRODE-POTENTIALS; H-2 EVOLUTION; PROTON SOURCE; HYDROGEN; COMPLEXES; OXIDATION; SCALE; RATES C1 [Appel, Aaron M.; Helm, Monte L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Appel, AM (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999,K2-57, Richland, WA 99352 USA. EM aaron.appel@pnnl.gov; monte.helm@pnnl.gov OI Appel, Aaron/0000-0002-5604-1253; Helm, Monte/0000-0003-4728-8833 NR 28 TC 51 Z9 51 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2014 VL 4 IS 2 BP 630 EP 633 DI 10.1021/cs401013v PG 4 WC Chemistry, Physical SC Chemistry GA AA5UB UT WOS:000331164000032 ER PT J AU Xiang, CX Suram, SK Haber, JA Guevarra, DW Soedarmadji, E Jin, J Gregoire, JM AF Xiang, Chengxiang Suram, Santosh K. Haber, Joel A. Guevarra, Dan W. Soedarmadji, Ed Jin, Jian Gregoire, John M. TI High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting SO ACS COMBINATORIAL SCIENCE LA English DT Article DE high-throughput screening; electrocatalyst; water-splitting; oxygen evolution reaction; inkjet printing ID OXYGEN EVOLUTION REACTION; METAL-OXIDES; THIN-FILMS; PHOTOCATALYSTS AB Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening. Parallel screening methods can yield much higher throughput and generally require the use of an indirect measurement of catalytic activity. In a water-splitting reaction, the change of local pH or the presence of oxygen and hydrogen in the solution can be utilized for parallel screening of active electrocatalysts. Previously reported techniques for measuring these signals typically function in a narrow pH range and are not suitable for both strong acidic and basic environments. A simple approach to screen the electrocatalytic activities by imaging the oxygen and hydrogen bubbles produced by the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is reported here. A custom built electrochemical cell was employed to record the bubble evolution during the screening, where the testing materials were subject to desired electrochemical potentials. The transient of the bubble intensity obtained from the screening was quantitatively analyzed to yield a bubble figure of merit (FOM) that represents the reaction rate. Active catalysts in a pseudoternary material library, (Ni-Fe-Co)O-x, which contains 231 unique compositions, were identified in less than one minute using the bubble screening method. An independent, serial screening method on the same material library exhibited excellent agreement with the parallel bubble screening. This general approach is highly parallel and is independent of solution pH. C1 [Xiang, Chengxiang; Suram, Santosh K.; Haber, Joel A.; Guevarra, Dan W.; Soedarmadji, Ed; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Xiang, CX (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM cxx@caltech.edu; gregoire@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC000499] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC000499. NR 20 TC 32 Z9 32 U1 2 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD FEB PY 2014 VL 16 IS 2 BP 47 EP 52 DI 10.1021/co400151h PG 6 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA AA8JP UT WOS:000331342100001 PM 24372547 ER PT J AU Li, N Wang, YD Liu, WJ An, ZN Liu, JP Su, R Li, J Liaw, PK AF Li, N. Wang, Y. D. Liu, W. J. An, Z. N. Liu, J. P. Su, R. Li, J. Liaw, P. K. TI In situ X-ray microdiffraction study of deformation-induced phase transformation in 304 austenitic stainless steel SO ACTA MATERIALIA LA English DT Article DE 304 Stainless steel; Synchrotron X-ray microdiffraction; Martensitic variant selection; epsilon-Martensite; alpha '-Martensite ID ALLOYED TRIP STEELS; PLASTIC-DEFORMATION; INDUCED MARTENSITE; VARIANT SELECTION; RETAINED AUSTENITE; C ALLOYS; DIFFRACTION; NUCLEATION; 304-STAINLESS-STEEL; STABILITY AB The traditional phenomenological crystallographic theory of martensitic transformations can only explain the change in the shape and crystallographic orientation of a martensitic plate within a single parent crystal. It cannot predict the detailed transformation scenario for preferred selections of martensitic variants or the contributions of partial slip/twinning to local lattice distortion, especially in polycrystalline metals/alloys that exhibit grain-to-grain interactions throughout deformation-induced phase transformation. In this work, synchrotron-based X-ray microdiffraction was used to characterize changes in the local orientation, morphology and strain distribution inside individual martensitic plates, as well as the effect of parent orientation on variant selection in bulk polycrystalline 304 stainless steel (SS) during in situ uniaxial tensile loading at the low temperature of 210 K. It was directly verified that the martensitic phase transformation in the studied 304 SS has two stages, transformation first from gamma to alpha in the nanoscaled lamella, and then from epsilon to alpha ' in the microbands. The selection of martensitic variants was predicted well by the minimum strain work criterion. Phase transformation-induced stress relaxation was evidenced by fluctuations in the (1 1 1) plane lattice strain accompanied by a strain gradient inside the martensitic plate, indicating a load transfer from the transformed grain to its neighbor. This leads to good stress/strain accommodation, as stresses can dissipate from the matrix into martensitic plates and nearby grains. Our experimental observations and theoretical analysis provide an in-depth understanding of the micromechanical behavior, particularly phase transformation-induced plasticity enhancement, of metals containing the metastable phase. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, N.; Liu, J. P.; Su, R.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 10081, Peoples R China. [Wang, Y. D.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 10081, Peoples R China. [Wang, Y. D.] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 10081, Peoples R China. [Liu, W. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [An, Z. N.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Li, J.] Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. RP Wang, YD (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 10081, Peoples R China. EM ydwang@mail.neu.edu.cn RI wang, yandong/G-9404-2013 FU National Science Foundation of China (NSFC) [51231002]; Fundamental Research Funds for the Central Universities [06111020]; NPL [2012BA02]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge the financial support of the National Science Foundation of China (NSFC) under Contract No. 51231002 and of the Fundamental Research Funds for the Central Universities (Grant No. 06111020). This project is also supported by NPL under Contract No. 2012BA02. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 35 TC 14 Z9 14 U1 4 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 12 EP 23 DI 10.1016/j.actamat.2013.11.001 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800002 ER PT J AU Ormsby, RW McNally, T Mitchell, CA Musumeci, A Schiller, T Halley, P Gahan, L Martin, D Smith, SV Dunne, NJ AF Ormsby, Ross W. McNally, Tony Mitchell, Christina A. Musumeci, Anthony Schiller, Tara Halley, Peter Gahan, Lawrence Martin, Darren Smith, Suzanne V. Dunne, Nicholas J. TI Chemical modification of multiwalled carbon nanotube with a bifunctional caged ligand for radioactive labelling SO ACTA MATERIALIA LA English DT Article DE Multi-walled carbon nanotube; Radioactive labelling; Bifunctional caged ligand; Nanoparticle tracking ID IN-VIVO; CANCER-THERAPY; COMPOSITES; COMPLEXES; BIODISTRIBUTION; NANOMATERIALS; THERAPEUTICS; COBALT(III); CHALLENGES AB Carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs) have been successfully radiolabelled with cobalt-57 (Co-57) (T-1/2 = 270 days) via the attachment of the bifunctional caged ligand MeAMN(3)S(3)sar. In this study MeAMN(3)S(3)sar has been synthesized and coupled to MWCNTs to form the conjugate MWCNT MeAMN(3)S(3)sar. Synthesis was confirmed with nuclear magnetic resonance. X-ray photoelectron spectroscopy (XPS) confirmed the conjugation. Non-radioactive labelling of this conjugate was completed with Cu(II) ions to confirm the stability of the MeAMN(3)S(3)sar after coupling with the MWCNTs. The complexation of the Cu(II) was also confirmed with XPS. Transmission electron microscopy was used to demonstrate that the coupling reaction had a negligible effect on the size and shape of the MWCNTs. Radiolabelling of the MWCNT MeAMN(3)S(3)sar conjugate and pristine (untreated) MWCNTs (nonspecific) with the gamma-emitting radioactive isotope Co-57 were compared. The radiolabelling efficiency of the MWCNT MeAMN(3)S(3-)sar conjugate was significantly higher (95% vs. 0.1%) (P <= 0.001) than for the unconjugated pristine MWCNTs. This will allow for the potential tracking of nanoparticle movement in vitro and in vivo. Crown Copyright (C) 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved. C1 [Ormsby, Ross W.; Dunne, Nicholas J.] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland. [McNally, Tony] Univ Warwick, Int Mfg Ctr, Coventry CV4 7AL, W Midlands, England. [Mitchell, Christina A.] Queens Univ Belfast, Sch Med Dent & Biomed Sci, Belfast BT12 6BP, Antrim, North Ireland. [Musumeci, Anthony] Qutbluebox Ltd, ABN, Kelvin Grove, Qld 4059, Australia. [Schiller, Tara] Monash Univ, Clayton, Vic 3800, Australia. [Halley, Peter; Gahan, Lawrence; Martin, Darren] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia. [Smith, Suzanne V.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Dunne, NJ (reprint author), Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg,Stranmillis Rd, Belfast BT9 5AH, Antrim, North Ireland. EM n.dunne@qub.ac.uk RI Schiller, Tara/C-5675-2009; Halley, Peter/F-8435-2014 OI Schiller, Tara/0000-0002-3973-1308; Halley, Peter/0000-0001-8014-6613 FU Department of Education and Learning, Northern Ireland FX The authors thank Nanocyl SA, Belgium for kindly supplying the MWCNT powders for this study. This research was financially supported by the Department of Education and Learning, Northern Ireland. The authors also acknowledge the formal exchange agreement between the University of Queensland and Queen's University of Belfast that facilitates ongoing academic and research collaborations. NR 38 TC 7 Z9 7 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 54 EP 61 DI 10.1016/j.actamat.2013.10.047 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800006 ER PT J AU Lee, SY Kim, GS Lim, J Han, S Li, BW Thong, JTL Yoon, YG Lee, SK AF Lee, Seung-Yong Kim, Gil-Sung Lim, Jongwoo Han, Seungwoo Li, Baowen Thong, John T. L. Yoon, Young-Gui Lee, Sang-Kwon TI Control of surface morphology and crystal structure of silicon nanowires and their coherent phonon transport characteristics SO ACTA MATERIALIA LA English DT Article DE Silicon nanowires; Thermal conductivity; Stacking fault; Phonon boundary scattering; Coherent phonon transport ID THERMAL-CONDUCTIVITY; SI NANOWIRES; DEPENDENCE; GROWTH; GOLD; MIGRATION; DIAMETER; DENSITY AB We report on the first experimental observation of coherent phonon transport characteristics in silicon nanowires (SiNWs) synthesized by a one-step surface reconstruction growth mechanism. As-grown SiNWs taper down along the growth direction alongside a decrease in both roughness and stacking fault density. Furthermore, by systematically measuring the temperature-dependent thermal conductivity using a conventional thermal bridge method, we found that the measured thermal conductivity values of surface-reconstructed (SR)-SiNWs (13-20W m(-1) K-1) at room temperature are markedly lower than that predicted from the conventional diffuse phonon transport model for given NW diameters. We also observed that the thermal conductivities of SR-SiNWs exhibit an unexpected power law of similar to T-alpha (1.6 <= alpha <= 1.9) in the temperature range of 25-60 K, which cannot be explained by the typical similar to Debye T-3 behavior. Interestingly, our experimental results are consistent with a frequency-dependent model, which can be induced by coherence in the diffuse reflection and backscattering of phonons at the rough surface and stacking faults on SR-SiNWs, resulting in the suppressed thermal conductivity. Therefore, the demonstrated rational synthesis model and measurement technique promise great potential for improving the performance of a wide range of one-dimensional NW-based thermoelectric devices. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yoon, Young-Gui; Lee, Sang-Kwon] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Lee, Seung-Yong; Kim, Gil-Sung] Chonbuk Natl Univ, Semicond Phys Res Ctr, Dept Semicond Sci & Technol, Jeonju 561756, South Korea. [Lee, Seung-Yong; Li, Baowen] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Lim, Jongwoo] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lim, Jongwoo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Han, Seungwoo] Korea Inst Machinery & Mat, Dept Nano Mech, Taejon 305343, South Korea. [Thong, John T. L.] Natl Univ Singapore, Dept Elect & Comp Engn, Ctr Integrated Circuit Failure Anal & Reliabil, Singapore 117576, Singapore. RP Lee, SK (reprint author), Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. EM sangkwonlee@cau.ac.kr RI Thong, John/B-9327-2008; Li, Baowen/G-3003-2011 OI Thong, John/0000-0001-6954-9331; Li, Baowen/0000-0002-8728-520X FU Priority Research Centers Program; Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0019694, NRF-2013R1A1A2012685]; Chonbuk National University; Global Excellent Technology Innovation RD Program; Ministry of Knowledge Economy, Republic of Korea [10038702-2010-01]; Ministry of Education Tier-2 grant [MOE2011-T2-1-052] FX This study was supported by the Priority Research Centers Program and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0019694 and NRF-2013R1A1A2012685, PI: S.K.L.). This work was also supported by the international collaborative research funds of Chonbuk National University in 2010 and by a grant from the Global Excellent Technology Innovation R&D Program funded by the Ministry of Knowledge Economy, Republic of Korea (10038702-2010-01). The part of the work carried out at the National University of Singapore was supported by a Ministry of Education Tier-2 grant (MOE2011-T2-1-052). We also thank Prof. Peidong Yang at UC Berkeley for his fruitful discussion. NR 33 TC 11 Z9 11 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 62 EP 71 DI 10.1016/j.actamat.2013.11.042 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800007 ER PT J AU Fu, EG Fang, Y Zhuo, MJ Zheng, SJ Bi, ZX Wang, YQ Tang, M Ding, X Han, WZ Luo, HM Baldwin, JK Misra, A Nastasi, M AF Fu, E. G. Fang, Y. Zhuo, M. J. Zheng, S. J. Bi, Z. X. Wang, Y. Q. Tang, M. Ding, X. Han, W. Z. Luo, H. M. Baldwin, J. K. Misra, A. Nastasi, M. TI Interface structure of Nb films on single crystal MgO(100) and MgO(111) substrates SO ACTA MATERIALIA LA English DT Article DE Interface structure; TEM and HRTEM; First principles; Lattice mismatch; Work of separation ID METAL-CERAMIC INTERFACES; ELECTRON-MICROSCOPY; RADIATION-DAMAGE; ION IRRADIATION; MGO INTERFACES; AB-INITIO; MULTILAYERS; SIMULATION; REDUCTION; CHEMISTRY AB This study systematically investigates the interface structure of Nb films grown on MgO substrates with different orientations ((1 0 0) and (1 1 1)) by experiments and simulations. X-ray diffraction, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to characterize the structure of Nb films and the structure of interfaces between Nb films and MgO substrates. The results show that thin films exhibit different preferred planes on different orientations of MgO substrates. First-principles calculations were used to understand the interface configuration through a coherent interface model. The combination of experiments and simulations shows that the work of separation, together with substrate orientation and lattice mismatch, determines the interface structure between films and substrates. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Fu, E. G.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Fu, E. G.; Wang, Y. Q.; Tang, M.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. [Fang, Y.; Ding, X.] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Zhuo, M. J.; Zheng, S. J.; Bi, Z. X.; Han, W. Z.; Baldwin, J. K.; Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87544 USA. [Luo, H. M.] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA. [Nastasi, M.] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68508 USA. RP Fu, EG (reprint author), Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM efu@pku.edu.cn; dingxd@mail.xjtu.edu.cn RI Han, Weizhong/C-9963-2011; zheng, shijian/F-2453-2012; Ding, Xiangdong/K-4971-2013; Misra, Amit/H-1087-2012 OI Ding, Xiangdong/0000-0002-1220-3097; FU Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC); US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Center for Integrated Nanotechnologies (CINT); US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (LANL); Recruitment Program of Global Youth Experts in China; NSFC [11375018, 51171140, 51231008, 51320105014, 51321003]; 973 Program of China [2010CB631003, 2012CB619402]; 111 project [B06025] FX The authors thank Dr. J.P. Hirth for insightful discussion, and thank Prof. Y.H. Chen for calculation assistance. This work was supported by the Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. The X-ray analysis portion of this work was supported by the Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (LANL). E.F. appreciates the support from The Recruitment Program of Global Youth Experts in China and the support of NSFC (11375018), and X.D. appreciates the support of NSFC (51171140, 51231008, 51320105014, and 51321003), the 973 Program of China (2010CB631003, 2012CB619402) and 111 project (B06025). NR 47 TC 6 Z9 6 U1 5 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 100 EP 112 DI 10.1016/j.actamat.2013.11.031 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800011 ER PT J AU Fensin, SJ Escobedo-Diaz, JP Brandl, C Cerreta, EK Gray, GT Germann, TC Valone, SM AF Fensin, S. J. Escobedo-Diaz, J. P. Brandl, C. Cerreta, E. K. Gray, G. T., III Germann, T. C. Valone, S. M. TI Effect of loading direction on grain boundary failure under shock loading SO ACTA MATERIALIA LA English DT Article DE Copper; Grain boundary structure; Dynamic phenomena; Molecular dynamics; Loading direction ID CRACK-GROWTH RESISTANCE; MOLECULAR-DYNAMICS; FRACTURE; DUCTILE; COPPER; SOLIDS; DAMAGE; NUCLEATION; PLASTICITY; BEHAVIOR AB We investigate the effect of grain boundary inclination with respect to the loading direction on void nucleation at a boundary, using plate impact experiments on polycrystalline copper. Examination of damaged specimens reveals that boundaries perpendicular to the loading direction are an order of magnitude more susceptible to failure than those parallel to the loading direction. We investigate the mechanisms and reasons behind this experimental observation through molecular dynamics (MD) simulations, as a function of loading direction, in a copper bicrystal. Two extremes of loading directions are considered, either parallel or perpendicular to the grain boundary plane, spanning the range that grain boundaries within a polycrystalline sample will ordinarily experience under uniaxial strain conditions. Using MD simulations, we demonstrate that, during shock compression, the ability of a boundary to undergo plastic deformation is altered measurably by changing the loading direction with respect to the boundary plane. This change in the plastic response of the GB affects the development of stress concentrations believed to be responsible for void nucleation. MD simulations show that boundaries perpendicular to the loading direction do not undergo as much plastic deformation, by dislocation emission, as those parallel to the loading direction. The lack of plastic deformation at the GB, in the perpendicular loading case, can decrease the stress required for void nucleation. The MD results are consistent with experimental observations, and support the contention that plastic response of a grain boundary under shock compression can be a contributing, or even dominating, factor in determining the stress for void nucleation. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Fensin, S. J.; Cerreta, E. K.; Gray, G. T., III; Germann, T. C.; Valone, S. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Escobedo-Diaz, J. P.] Univ New South Wales Canberra, Canberra, ACT 2600, Australia. [Brandl, C.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. RP Fensin, SJ (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. EM saryuj@lanl.gov; J.Escobedo-Diaz@adfa.edu.au RI Brandl, Christian/D-4013-2015; OI Brandl, Christian/0000-0003-1587-4678; Escobedo-Diaz, Juan/0000-0003-2413-7119; Germann, Timothy/0000-0002-6813-238X FU US Department of Energy [DE-AC52-06NA25396]; Center for Materials at Irradiation and Mechanical Extremes; Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026] FX Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA and the US Department of Energy under contract DE-AC52-06NA25396. The work of S.J.F., C.B., E.K.C., T.C.G. and S.M.V. was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. The authors would also like to thank Jian Wang for helpful discussions. NR 39 TC 17 Z9 17 U1 8 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 113 EP 122 DI 10.1016/j.actamat.2013.11.026 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800012 ER PT J AU Li, SF Mason, JK Lind, J Kumar, M AF Li, S. F. Mason, J. K. Lind, J. Kumar, M. TI Quadruple nodes and grain boundary connectivity in three dimensions SO ACTA MATERIALIA LA English DT Article DE Stereology; Diffraction; 3D microstructure ID CHARACTER-DISTRIBUTION; POLYCRYSTALS; CORROSION; NETWORKS; FRACTURE; PERCOLATION; TOPOLOGY; SURFACES; BEHAVIOR; NUMBER AB Recent high-energy diffraction microscopy experiments allow a microstructure to be reconstructed as a 3-D volume mesh at a resolution significantly smaller than the characteristic grain size. This presents an opportunity to evaluate the performance of the stereological predictors of the distribution of quadruple node types. The reconstructed microstructures of two materials with different processing histories are found to contain different distributions of quadruple node types, and provide reference points for a comparison of the stereological predictors. While none of the predictors considered here is completely satisfactory, one based on the examination of triangular grains on planar sections and one based on the identification of topological transitions in the grain boundary network on adjacent planar sections perform well enough to be of some practical use. Some of the sources of statistical and systematic error that cause the predictors to deviate from the observed distribution of quadruple node types are explored, and the Hellinger distance is proposed as a means to compare distributions of quadruple node types in practice. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, S. F.; Mason, J. K.; Kumar, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mason, J. K.] Bogazici Univ, TR-34342 Istanbul, Turkey. [Lind, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Li, SF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM li31@llnl.gov; jeremy.mason@boun.edu.tr; jlind@andrew.cmu.edu; kumar3@llnl.gov RI Mason, Jeremy/P-8188-2014; Mason, Jeremy/P-9567-2015; Li, Shiu Fai/B-2605-2014 OI Mason, Jeremy/0000-0002-0425-9816; Mason, Jeremy/0000-0002-0425-9816; Li, Shiu Fai/0000-0001-9805-5621 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering; Lawrence Postdoctoral Fellowship; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation through XSEDE; Texas Advanced Computing Center [DMR080072] FX The authors would like to thank Dr. B.W. Reed for suggesting the use of Voronoi tessellation of a body-centered tetragonal lattice to validate our 3-D quadruple node reconstruction method. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. S.F.L., J.K.M. and M.K. were supported by US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. Additional support for J.K.M. in the form of a Lawrence Postdoctoral Fellowship is also acknowledged. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Research was also supported in part by the National Science Foundation through XSEDE resources provided by Texas Advanced Computing Center under Grant No. DMR080072. LLNL NR 38 TC 4 Z9 4 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 220 EP 230 DI 10.1016/j.actamat.2013.10.033 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800022 ER PT J AU Liu, X Nuhfer, NT Rollett, AD Sinha, S Lee, SB Carpenter, JS LeDonne, JE Darbal, A Barmak, K AF Liu, X. Nuhfer, N. T. Rollett, A. D. Sinha, S. Lee, S. -B. Carpenter, J. S. LeDonne, J. E. Darbal, A. Barmak, K. TI Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping SO ACTA MATERIALIA LA English DT Article DE Transmission electron microscopy (TEM); Interface structure; Orientation relation (OR); Accumulative roll bonding (ARB); Heterophase interface character distribution (HICD) ID BOUNDARY-CHARACTER-DISTRIBUTION; BONDING ARB PROCESS; BACKSCATTER DIFFRACTION; NANOLAYERED COMPOSITES; MULTILAYER COMPOSITES; SPATIAL-RESOLUTION; GIBEON METEORITE; CUBIC CRYSTALS; HIGH-STRENGTH; INTENSITIES AB A transmission-electron-microscope-based orientation mapping technique that makes use of beam precession to achieve near-kinematical conditions was used to map the phase and crystal orientations in nanolamellar Cu/Nb composites with average layer thicknesses of 86, 30 and 18 nm. Maps of high quality and reliability were obtained by comparing the recorded diffraction patterns with pre-calculated templates. Particular care was taken in optimizing the dewarping parameters and in calibrating the frames of reference. Layers with thicknesses as low as 4 nm were successfully mapped. Heterophase interface plane and character distributions (HIPD and HICD, respectively) of Cu and Nb phases from the samples were determined from the orientation maps. In addition, local orientation relation stereograms of the Cu/Nb interfaces were calculated, and these revealed the detailed layer-to-layer texture information. The results are in agreement with previously reported neutron-diffraction-based and precession-electron-diffraction-based measurements on an accumulated roll bonding (ARB)-fabricated Cu/Nb sample with an average layer thickness of 30 nm as well as scanning-electron-microscope-based electron backscattered diffraction HIPD/HICD plots of ARB-fabricated Cu/Nb samples with layer thicknesses between 200 and 600 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, X.; Nuhfer, N. T.; Rollett, A. D.; Sinha, S.; LeDonne, J. E.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Mat Res Sci & Engn Ctr, Pittsburgh, PA 15213 USA. [Lee, S. -B.] Ulsan Natl Inst Sci & Technol, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Carpenter, J. S.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Darbal, A.] NanoMEGAS USA, Tempe, AZ 85281 USA. [Barmak, K.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Barmak, K (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 500 West 120 St, New York, NY 10027 USA. EM xuanliu@andrew.cmu.edu; katayun.barmak@columbia.edu RI Barmak, Katayun/A-9804-2008; LEE, SUKBIN/A-4936-2012; Rollett, Anthony/A-4096-2012; OI Barmak, Katayun/0000-0003-0070-158X; Rollett, Anthony/0000-0003-4445-2191; Carpenter, John/0000-0001-8821-043X; Sinha, Subhasis/0000-0002-0321-1888 FU Semiconductor Research Corporation [2121.001]; MRSEC program of the NSF [DMR-0520425]; Los Alamos National Laboratory Directed Research and Development Project [DR20110029]; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (EFRC) [2008LANL1026]; Los Alamos National Security, LLC under DOE [DE AC52 06NA25396] FX Funding support from the Semiconductor Research Corporation Task Number 2121.001, the MRSEC program of the NSF under DMR-0520425, Los Alamos National Laboratory Directed Research and Development Project DR20110029 and the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (EFRC) under Award No. 2008LANL1026 is gratefully acknowledged. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC under DOE Contract DE AC52 06NA25396. NR 49 TC 17 Z9 17 U1 2 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2014 VL 64 BP 333 EP 344 DI 10.1016/j.actamat.2013.10.046 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AA3TW UT WOS:000331017800032 ER PT J AU Brenneman, LW Madejski, G Fuerst, F Matt, G Elvis, M Harrison, FA Ballantyne, DR Boggs, SE Christensen, FE Craig, WW Fabian, AC Grefenstette, BW Hailey, CJ Madsen, KK Marinucci, A Rivers, E Stern, D Walton, DJ Zhang, WW AF Brenneman, L. W. Madejski, G. Fuerst, F. Matt, G. Elvis, M. Harrison, F. A. Ballantyne, D. R. Boggs, S. E. Christensen, F. E. Craig, W. W. Fabian, A. C. Grefenstette, B. W. Hailey, C. J. Madsen, K. K. Marinucci, A. Rivers, E. Stern, D. Walton, D. J. Zhang, W. W. TI MEASURING THE CORONAL PROPERTIES OF IC 4329A WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; galaxies: active; galaxies: individual (IC 4329A); galaxies: nuclei galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRA; SEYFERT-GALAXIES; COMPTONIZATION MODELS; BEPPOSAX OBSERVATIONS; IC-4329A; EMISSION; CATALOG; SUZAKU AB We present an analysis of a similar to 160 ks NuSTAR observation of the nearby bright Seyfert galaxy IC 4329A. The high-quality broadband spectrum enables us to separate the effects of distant reflection from the direct coronal continuum, and to therefore accurately measure the high-energy cutoff to be E-cut = 178(-40)(+74) keV. The coronal emission arises from accretion disk photons Compton up-scattered by a thermal plasma, with the spectral index and cutoff being due to a combination of the finite plasma temperature and optical depth. Applying standard Comptonization models, we measure both physical properties independently using the best signal to noise obtained to date in an active galactic nucleus over the 3-79 keV band. We derive kTe = 37+ 6 keV with tau = 1.25(-0.10)(+0.20) assuming a slab geometry for the plasma, and kT(e) = 33(-6)(+6) keV with tau = 3.41(-0.38)(+0.58) for a spherical geometry, with both having an equivalent goodness-of-fit. C1 [Brenneman, L. W.; Elvis, M.] Harvard Smithsonian CfA, Cambridge, MA 02138 USA. [Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Fuerst, F.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Rivers, E.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Matt, G.; Marinucci, A.] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brenneman, LW (reprint author), Harvard Smithsonian CfA, 60 Garden St MS-67, Cambridge, MA 02138 USA. RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C, NNX13AE90G]; National Aeronautics and Space Administration; Italian Space Agency [ASI/INAF 1/037/12/0-011/13] FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). L. B. gratefully acknowledges funding from NASA grant NNX13AE90G. G. M. and A. M. acknowledge financial support from the Italian Space Agency under contract ASI/INAF 1/037/12/0-011/13. NR 40 TC 17 Z9 17 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2014 VL 781 IS 2 AR 83 DI 10.1088/0004-637X/781/2/83 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AA5WV UT WOS:000331171200027 ER PT J AU Krivonos, RA Tomsick, JA Bauer, FE Baganoff, FK Barriere, NM Bodaghee, A Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Hailey, CJ Harrison, FA Hong, J Madsen, KK Mori, K Nynka, M Stern, D Zhang, WW AF Krivonos, Roman A. Tomsick, John A. Bauer, Franz E. Baganoff, Frederick K. Barriere, Nicolas M. Bodaghee, Arash Boggs, Steven E. Christensen, Finn E. Craig, William W. Grefenstette, Brian W. Hailey, Charles J. Harrison, Fiona A. Hong, JaeSub Madsen, Kristin K. Mori, Kaya Nynka, Melania Stern, Daniel Zhang, William W. TI FIRST HARD X-RAY DETECTION OF THE NON-THERMAL EMISSION AROUND THE ARCHES CLUSTER: MORPHOLOGY AND SPECTRAL STUDIES WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays - Galaxy; center - ISM; general - X-rays; individual (Arches cluster) ID SGR-A-ASTERISK; XMM-NEWTON OBSERVATION; GALACTIC-CENTER REGION; MOLECULAR CLOUDS; LINE EMISSION; STELLAR CLUSTERS; BRIGHTEST FLARE; MASSIVE STARS; DISCOVERY; CHANDRA AB The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. C1 [Krivonos, Roman A.; Tomsick, John A.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hailey, Charles J.; Mori, Kaya; Nynka, Melania] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hong, JaeSub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Krivonos, RA (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM krivonos@ssl.berkeley.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891; Krivonos, Roman/0000-0003-2737-5673 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). F. E. B. acknowledges support from Basal-CATA (PFB- 06/2007) and CONICYT- Chile (FONDECYT 1101024 and Anillo ACT1101). R. K. thanks Eugene Churazov for fruitful discussions and valuable suggestions to the paper. Facility: NuSTAR NR 50 TC 10 Z9 10 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2014 VL 781 IS 2 DI 10.1088/0004-637X/781/2/107 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AA5WV UT WOS:000331171200051 ER PT J AU Roig, B Blanton, MR Ross, NP AF Roig, Benjamin Blanton, Michael R. Ross, Nicholas P. TI UNUSUAL BROAD-LINE Mg II EMITTERS AMONG LUMINOUS GALAXIES IN THE BARYON OSCILLATION SPECTROSCOPIC SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: Seyfert; quasars: emission lines ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; BLACK-HOLE MASSES; EMISSION-LINE; DATA RELEASE; EVOLUTION; SPECTRA; OBJECTS AB Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II lambda 2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line H alpha, H beta, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad H alpha/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (similar or equal to 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions. C1 [Roig, Benjamin; Blanton, Michael R.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Ross, Nicholas P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94270 USA. RP Roig, B (reprint author), NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. FU NSF-AST [12211644, NSF-AST-0908354]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX We thank Renbin Yan and Mike Eracleous for useful conversations during the preparation of this paper. This work was partially supported by NSF-AST 12211644 and NSF-AST-0908354.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. NR 30 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2014 VL 781 IS 2 AR 72 DI 10.1088/0004-637X/781/2/72 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AA5WV UT WOS:000331171200016 ER PT J AU Shaw, JR Sigurdson, K Pen, UL Stebbins, A Sitwell, M AF Shaw, J. Richard Sigurdson, Kris Pen, Ue-Li Stebbins, Albert Sitwell, Michael TI ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark energy; large-scale structure of universe; methods: data analysis; radio continuum: general ID ANGULAR POWER SPECTRUM; EIGENMODE ANALYSIS; REIONIZATION; FLUCTUATIONS; COSMOLOGY; EMISSION; SENSITIVITY; CALIBRATION; TOMOGRAPHY; SIGNAL AB In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural realworld data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science. C1 [Shaw, J. Richard; Pen, Ue-Li] Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Sigurdson, Kris; Sitwell, Michael] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Stebbins, Albert] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, Batavia, IL 60510 USA. RP Shaw, JR (reprint author), Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. EM jrs65@cita.utoronto.ca NR 39 TC 36 Z9 36 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2014 VL 781 IS 2 AR 57 DI 10.1088/0004-637X/781/2/57 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AA5WV UT WOS:000331171200001 ER PT J AU Whalen, DJ Smidt, J Even, W Woosley, SE Heger, A Stiavelli, M Fryer, CL AF Whalen, Daniel J. Smidt, Joseph Even, Wesley Woosley, S. E. Heger, Alexander Stiavelli, Massimo Fryer, Chris L. TI FINDING THE FIRST COSMIC EXPLOSIONS. III. PULSATIONAL PAIR-INSTABILITY SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; cosmology: theory; early universe; galaxies: high redshift; stars: early-type; supernovae: general ID SUPERMASSIVE BLACK-HOLES; GAMMA-RAY BURSTS; METAL-POOR STARS; HIGH-REDSHIFT GALAXIES; WEBB-SPACE-TELESCOPE; POPULATION-III; EARLY UNIVERSE; MASSIVE STARS; PROTOSTELLAR FEEDBACK; CHEMICAL ENRICHMENT AB Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M-circle dot pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z similar to 15-20 and can probe the earliest stellar populations at cosmic dawn. C1 [Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Woosley, S. E.] UCSC, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Stiavelli, Massimo] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Whalen, DJ (reprint author), Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. OI Even, Wesley/0000-0002-5412-3618 NR 120 TC 13 Z9 13 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2014 VL 781 IS 2 AR 106 DI 10.1088/0004-637X/781/2/106 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AA5WV UT WOS:000331171200050 ER PT J AU Wolfe, AK Bjornstad, DJ Shumpert, BL Wang, SA Lenhardt, WC Campa, MF AF Wolfe, Amy K. Bjornstad, David J. Shumpert, Barry L. Wang, Stephanie A. Lenhardt, W. Christopher Campa, Maria Fernanda TI Insiders' Views of the Valley of Death: Behavioral and Institutional Perspectives SO BIOSCIENCE LA English DT Article DE behavioral science; policy and ethics; technology transfer ID TECHNOLOGY-TRANSFER; UNITED-STATES; POLICY; ENTREPRENEURSHIP; LESSONS; SCIENCE AB Valley of death describes the metaphorical depths to which promising science and technology too often plunge, never to emerge and reach their full potential. Behavioral and institutional perspectives help in understanding the implications of choices-characterized by Field of Dreams imagery-that inadvertently lead into rather than over the valley of death. A workshop conducted among a diverse set of scientists, managers, and technology-transfer staff at a US national laboratory is a point of departure for discussing behavioral and institutional elements that promote or impede the pathway between research and use and for suggesting actionable measures that can facilitate the flow of information and products from research toward use. In the complex systems that constitute research institutions, where competing pressures can create barriers to information or technology transfer, one recommendation is to reframe the process as a more active ushering toward use. C1 [Wolfe, Amy K.; Bjornstad, David J.; Shumpert, Barry L.; Lenhardt, W. Christopher] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wang, Stephanie A.; Campa, Maria Fernanda] Oak Ridge Natl Lab, Soc Technol Interact Team, Oak Ridge, TN USA. RP Wolfe, AK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wolfeak@ornl.gov RI Lenhardt, W Christopher/H-3257-2016 OI Lenhardt, W Christopher/0000-0001-9677-784X FU US Department of Energy, Office of Science, Office of Biological and Environmental Research; UT Battelle [DE-AC05-00OR22725]; US Department of Energy; US Department of Energy [DE-AC05-06OR23100]; Oak Ridge Associated Universities [DE-AC05-06OR23100] FX This research was funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research. This manuscript has been supported by UT Battelle, under contract no. DE-AC05-00OR22725, and the US Department of Energy. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or to allow others to do so, for US government purposes. This research was also performed under two appointments to the Higher Education Research Experiences program at the Oak Ridge National Laboratory, administered by the Oak Ridge Institute for Science and Education under contract no. DE-AC05-06OR23100 between the US Department of Energy and Oak Ridge Associated Universities. We thank both in-house and anonymous reviewers for their thoughtful comments and suggestions, which improved the article. NR 36 TC 0 Z9 0 U1 0 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD FEB PY 2014 VL 64 IS 2 BP 138 EP 144 DI 10.1093/biosci/bit015 PG 7 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AA8LY UT WOS:000331348200010 ER PT J AU Bhat, SSM Swain, D Narayana, C Feygenson, M Neuefeind, JC Sundaram, NG AF Bhat, Swetha S. M. Swain, Diptikanta Narayana, Chandrabhas Feygenson, Mikhail Neuefeind, Joerg C. Sundaram, Nalini G. TI Polymorphism in Photoluminescent KNdW2O8: Synthesis, Neutron Diffraction, and Raman Study SO CRYSTAL GROWTH & DESIGN LA English DT Article ID COMBUSTION SYNTHESIS; DOUBLE MOLYBDATES; LUMINESCENCE PROPERTIES; OPTICAL-PROPERTIES; CRYSTAL-STRUCTURE; LOCAL-STRUCTURE; PHOSPHORS; METAL; TUNGSTATES; IONS AB Polymorphs of KNdW2O8 (alpha-KNdW2O8 and beta-KNdW2O8) phosphors were synthesized by an efficient solution combustion technique for the first time. The crystal structure of the polymorphs analyzed from Rietveld refinement of neutron diffraction data confirms that alpha-KNdW2O8 crystallizes in the tetragonal system (space group I (4) over bar), and beta-KNdW2O8 crystallizes in the monoclinic system (space group C2/m). The local structure of both polymorphs was elucidated using combined neutron pair distribution function (PDF) and Raman scattering techniques. Photoluminescence measurements of the polymorphs showed broadened emission line width and increased intensity for beta-KNdW2O8 in the visible region compared to alpha-KNdW2O8 . This phenomenon is attributed to the increased distortion in the coordination environment of the luminescing Nd3+ ion. Combined PDF, Rietveld, and Raman measurements reveal distortions of the WO6 octahedra and NdO8 polyhedra in beta-KNdW2O8 . This crystal structure-photoluminescence study suggests that this class of tungstates can be exploited for visible light emitting devices by tuning the crystal symmetry. C1 [Bhat, Swetha S. M.; Sundaram, Nalini G.] Poornaprajna Inst Sci Res, Div Mat Sci, Bengaluru, Karnataka, India. [Swain, Diptikanta; Narayana, Chandrabhas] Jawaharlal Nehru Ctr Adv Sci Res, CPMU, Bengaluru, Karnataka, India. [Feygenson, Mikhail; Neuefeind, Joerg C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Sundaram, NG (reprint author), Poornaprajna Inst Sci Res, Div Mat Sci, Bengaluru, Karnataka, India. EM nalini@poornaprajna.org RI Narayana, Chandrabhas/G-7248-2011; Feygenson, Mikhail /H-9972-2014; Bhat, Swetha/A-6152-2015; Neuefeind, Joerg/D-9990-2015 OI Narayana, Chandrabhas/0000-0001-6256-8994; Feygenson, Mikhail /0000-0002-0316-3265; Neuefeind, Joerg/0000-0002-0563-1544 FU UGC, Government of India; Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy FX S.S.M.B. thanks UGC, Government of India, for the award of a fellowship and is also thankful to Manipal University, India, for accepting this research as a part of a Ph.D. program. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. S.S.M.B. and N.G.S. are thankful to Prof. Satish Patil, IISc, Bangalore, India, for providing the photoluminescence measurement facility. S.S.M.B. and N.G.S. thank CENSE, IISc, Bangalore, India, for SEM measurements. NR 36 TC 4 Z9 4 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2014 VL 14 IS 2 BP 835 EP 843 DI 10.1021/cg4017068 PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AA3TG UT WOS:000331014600055 ER PT J AU Xu, W Wang, JL Ding, F Chen, XL Nasybutin, E Zhang, YH Zhang, JG AF Xu, Wu Wang, Jiulin Ding, Fei Chen, Xilin Nasybutin, Eduard Zhang, Yaohui Zhang, Ji-Guang TI Lithium metal anodes for rechargeable batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID BLOCK-COPOLYMER ELECTROLYTES; PROPYLENE CARBONATE SOLUTIONS; ATOMIC-FORCE MICROSCOPY; LI-ION BATTERIES; SITU CONCENTRATION CARTOGRAPHY; CYCLIC ETHER ELECTROLYTES; GEL POLYMER ELECTROLYTE; IN-SITU; ORGANIC ELECTROLYTE; DENDRITE FORMATION AB Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g(-1)), low density (0.59 g cm(-3)) and the lowest negative electrochemical potential (-3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed. C1 [Xu, Wu; Wang, Jiulin; Chen, Xilin; Nasybutin, Eduard; Zhang, Yaohui; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Wang, Jiulin] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China. [Ding, Fei] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300381, Peoples R China. [Zhang, Yaohui] Harbin Inst Technol, Coll Sci, Harbin 150001, Peoples R China. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Wang, Jiulin/G-2694-2010; OI Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research, an Energy Innovation Hub; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (the fundamental effect of cesium additive); preliminary work on the dendrite prevention was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of DOE. NR 239 TC 284 Z9 284 U1 215 U2 1059 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2014 VL 7 IS 2 BP 513 EP 537 DI 10.1039/c3ee40795k PG 25 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AA9KZ UT WOS:000331413700003 ER PT J AU Ding, D Li, XX Lai, SY Gerdes, K Liu, ML AF Ding, Dong Li, Xiaxi Lai, Samson Yuxiu Gerdes, Kirk Liu, Meilin TI Enhancing SOFC cathode performance by surface modification through infiltration SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID OXIDE FUEL-CELLS; YTTRIA-STABILIZED ZIRCONIA; INTERMEDIATE-TEMPERATURE SOFCS; OXYGEN REDUCTION KINETICS; LSM-BASED CATHODES; NANO-STRUCTURED ELECTRODES; FISCHER-TROPSCH SYNTHESIS; DOPED CERIA ELECTROLYTES; ZRO2 COMPOSITE CATHODES; ION-IMPREGNATION METHOD AB Solid oxide fuel cells (SOFCs) have the potential to be one of the cleanest and most efficient energy technologies for direct conversion of chemical fuels to electricity. Economically competitive SOFC systems appear poised for commercialization, but widespread market penetration will require continuous innovation of materials and fabrication processes to enhance system lifetime and reduce cost. One early technical opportunity is minimization of resistance to the oxygen reduction reaction (ORR) at the cathode, which contributes the most to performance degradation and efficiency loss in the existing SOFCs, especially at temperatures <700 degrees C. Detailed study over the past 15 years has revealed the positive impact of catalyst infiltration on SOFC cathode performance, both in power density and durability metrics. However, realizable performance improvements rely upon strongly-coupled relationships in materials and morphology between the infiltrate and the backbone, and therefore efficacious systems cannot be simply generated with a set of simple heuristics. This article reviews recent progress in enhancing SOFC cathode performance by surface modification through a solution-based infiltration process, focusing on two backbone architectures - inherently functional and skeletal - infiltrated using wet-chemistry processes. An efficient cathode consists of a porous mixed-conducting backbone and an active coating catalyst; the porous backbone provides excellent ionic and electronic conductivity, while the infiltrated surface coating possesses high catalytic activity and stability. As available, performance comparisons are emphasized and reaction schematics for specific infiltrate/backbone systems are summarized. While significant progress has been achieved in enhancing surface catalytic activity and durability, the detailed mechanisms of performance enhancement are insufficiently understood to obtain critical insights and a scientific basis for rational design of more efficient catalysts and novel electrode architectures. Recent progress in characterization of surfaces and interfaces is briefly discussed with challenges and perspectives in surface modification of SOFC electrodes. Surface modification through infiltration is expected to play an increasingly important role in current and next-generation commercial SOFC development, and this review illustrates the sophisticated technical considerations required to inform judicious selection of an infiltrate for a given SOFC system. C1 [Ding, Dong; Li, Xiaxi; Lai, Samson Yuxiu; Liu, Meilin] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA. [Gerdes, Kirk] US DOE, Natl Energy Technol Lab, Off Fossil Energy, Morgantown, WV 26506 USA. RP Ding, D (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, 771 Ferst Dr NW, Atlanta, GA 30332 USA. EM meilin.liu@mse.gatech.edu RI Ding, Dong/E-5154-2010; Liu, Meilin/E-5782-2010; Albe, Karsten/F-1139-2011; Ding, Dong/S-1973-2016; OI Ding, Dong/0000-0002-6921-4504; Liu, Meilin/0000-0002-6188-2372; Ding, Dong/0000-0002-6921-4504; Lai, Samson/0000-0002-8227-3250 FU U.S. Department of Energy (DOE) SECA Core Technology Program [DENT-0006557]; Heterogeneous Functional Material (HeteroFoaM) center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-SC0001061] FX This work was supported by the U.S. Department of Energy (DOE) SECA Core Technology Program under Grant no. DENT-0006557 and by the Heterogeneous Functional Material (HeteroFoaM) center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001061. D.D. would like to thank Dr. Wentao Qin for TEM work and Dr. Mingyang Gong, Dr. Mingfei Liu and Ms. Sophia Feng for fruitful discussions. NR 262 TC 135 Z9 137 U1 55 U2 425 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2014 VL 7 IS 2 BP 552 EP 575 DI 10.1039/c3ee42926a PG 24 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AA9KZ UT WOS:000331413700005 ER PT J AU Aubrey, ML Ameloot, R Wiers, BM Long, JR AF Aubrey, M. L. Ameloot, R. Wiers, B. M. Long, J. R. TI Metal-organic frameworks as solid magnesium electrolytes SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PROTON CONDUCTION; CARBON-DIOXIDE; BATTERIES; POLYMER; SALTS AB A series of solid magnesium electrolytes were synthesized via the transmetallation of magnesium phenolates to coordinatively unsaturated metal sites lining the pores of the metal-organic frameworks Mg-2(2,5-dioxidobenzene-1,4-dicarboxylate) and Mg-2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate). The resulting materials represent a new class of solid magnesium electrolytes that are both crystalline, and exhibit room-temperature ionic conductivities up to 0.25 mS cm(-1). The materials reported herein are one-hundred times more conductive at room temperature than any other solid magnesium electrolyte and represent the only class of materials sufficiently conductive for practical consideration in magnesium batteries. C1 [Aubrey, M. L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Aubrey, ML (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI Ameloot, Rob/C-9175-2013 OI Ameloot, Rob/0000-0003-3178-5480 FU United States Department of Energy, Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Program; Research Foundation Flanders (FWO - Vlaanderen) FX This research was supported by the United States Department of Energy, Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Program. R.A. thanks the Research Foundation Flanders (FWO - Vlaanderen) for a postdoctoral fellowship. We thank Mr David Gygi for experimental assistance and Prof. Nitash Balsara for experimental assistance and helpful discussion. NR 29 TC 29 Z9 29 U1 16 U2 125 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2014 VL 7 IS 2 BP 667 EP 671 DI 10.1039/c3ee43143f PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AA9KZ UT WOS:000331413700018 ER PT J AU Haber, JA Cai, Y Jung, SH Xiang, CX Mitrovic, S Jin, J Bell, AT Gregoire, JM AF Haber, Joel A. Cai, Yun Jung, Suho Xiang, Chengxiang Mitrovic, Slobodan Jin, Jian Bell, Alexis T. Gregoire, John M. TI Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID OXIDE ELECTRODES; METAL-OXIDES; COMBINATORIAL DISCOVERY; OXIDATION CATALYSIS; ELECTROCATALYSTS; NICKEL; COBALT; NI; REDUCTION; KINETICS AB We report a new Ce-rich family of active oxygen evolution reaction (OER) catalysts composed of earth abundant elements, discovered using high-throughput methods. High resolution inkjet printing was used to produce 5456 discrete oxide compositions containing the elements nickel, iron, cobalt and cerium. The catalytic performance of each of these compositions was measured under conditions applicable to distributed solar fuels generation using a three-electrode scanning drop electrochemical cell. The catalytic activity and stability of representative compositions (Ni0.5Fe0.3Co0.17Ce0.03Ox and Ni0.3Fe0.07Co0.2Ce0.43Ox) from 2 distinct regions were verified by resynthesizing these compositions on glassy carbon rods for electrochemical testing. The activity of the new Ce-rich catalysts was further verified using an unrelated synthetic method to electrodeposit a pseudo-ternary composition Ni0.2Co0.3Ce0.5Ox, which produced a catalyst with 10 mA cm(-2) oxygen evolution current at 310 mV over-potential. The unique Tafel behavior of these Ce-rich catalysts affords the opportunity for further improvement. C1 [Haber, Joel A.; Jung, Suho; Xiang, Chengxiang; Mitrovic, Slobodan; Jin, Jian; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Cai, Yun; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Haber, JA (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM gregoire@caltech.edu RI Mitrovic, Slobodan/E-7847-2010; OI Mitrovic, Slobodan/0000-0001-8913-8505; Bell, Alexis/0000-0002-5738-4645 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award no. DE-SC0004993). The authors thank Charles McCrory for assistance with acquisition, analysis and interpretation of traditional electrochemistry on rotating disc electrodes; Dan Guevarra for assistance with high throughput electrochemistry experiments; Paul Newhouse for assistance with preparation of glassy carbon rods for printing; William West and Chris Karp for assistance with electrolyzer testbed faradaic efficiency and headspace measurements; Martin Marcin for assistance with assembly of high throughput electrochemistry experiments; the Microanalytical Center in the College of Chemistry, UC Berkeley for ICP-OES measurements; Karl Walczak for preparation of the NiMo cathode used in the testbed system; and the U.S. Army Research Laboratory for providing the anion exchange membrane used in the testbed system. NR 32 TC 51 Z9 51 U1 23 U2 169 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2014 VL 7 IS 2 BP 682 EP 688 DI 10.1039/c3ee43683g PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AA9KZ UT WOS:000331413700021 ER PT J AU Varley, JB Viswanathan, V Norskov, JK Luntz, AC AF Varley, J. B. Viswanathan, V. Norskov, J. K. Luntz, A. C. TI Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O-2 batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID AUGMENTED-WAVE METHOD; AIR BATTERIES; PEROXIDE; FUNCTIONALS; SCHEMES AB It is now well accepted that charge transport through Li2O2 is a serious limitation in Li-O-2 batteries. We report formation energies for the different charge states of Li, O and O-2 vacancies in Li2O2 that could have important implications for charge transport through Li2O2. Charge transition levels are given as a function of the location of the Fermi level in Li2O2 relative to the valence band maximum (VBM). We argue that in Li-O-2 discharge/charge electrochemistry, the Fermi level is pinned by LiO2 interface states at similar to 0.35 eV above the VBM and this causes the vacancies to be in positively charged states (weakly violating local charge neutrality). We show by non-equilibrium Greens function calculations of charge transport through a Au vertical bar Li2O2 + V-Li(q) vertical bar Au metal-insulator-metal structure (with V-Li(q) a Li vacancy of charge state q), that the +1 and O charge state induces considerable scattering for tunneling holes. This tunneling is the previously proposed dominant mechanism of charge transport in Li-O-2 batteries at practical current densities at room temperature, although we also proposed a contribution from hole polaron migration at very low currents and higher temperatures. We suggest that scattering of the tunneling holes by the positively charged vacancies (and possibly hole polarons) is the origin of the resistive loss observed in Li-O-2 discharges in bulk electrolysis cells (where other forms of resistance are negligible). Thus, we argue that charged vacancies hinder charge transport through Li2O2 in Li-O-2 electrochemical discharges. C1 [Varley, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Varley, J. B.; Viswanathan, V.; Norskov, J. K.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Norskov, J. K.; Luntz, A. C.] SLAC Natl Accelerator Lab, SUNCAT, Menlo Pk, CA USA. [Luntz, A. C.] IBM Res Corp, Almaden Res Lab, San Jose, CA 95120 USA. RP Varley, JB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM acluntz@slac.stanford.edu RI Norskov, Jens/D-2539-2017; OI Norskov, Jens/0000-0002-4427-7728; Viswanathan, Venkatasubramanian/0000-0003-1060-5495 FU U. S. Department of Energy, Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-76SF00515]; U. S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344] FX The authors wish to thank Don Siegel, J. Hummelshoj and J. Voss for many useful conversations. The authors wish to acknowledge partial support of this work from the U. S. Department of Energy, Chemical Sciences, Geosciences and Biosciences Division under contract number DE-AC02-76SF00515. Part of this work was also performed under the auspices of the U. S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07A27344. NR 35 TC 35 Z9 35 U1 12 U2 123 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2014 VL 7 IS 2 BP 720 EP 727 DI 10.1039/c3ee42446d PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AA9KZ UT WOS:000331413700026 ER PT J AU Bergmann, JC Costa, OYA Gladden, JM Singer, S Heins, R D'haeseleer, P Simmons, BA Quirino, BF AF Bergmann, Jessica C. Costa, Ohana Yonara A. Gladden, John M. Singer, Steven Heins, Richard D'haeseleer, Patrik Simmons, Blake A. Quirino, Betania F. TI Discovery of two novel beta-glucosidases from an Amazon soil metagenomic library SO FEMS MICROBIOLOGY LETTERS LA English DT Article ID ACID/BASE CATALYST; ASPERGILLUS-NIGER; GEN. NOV.; HYDROLYSIS; STABILITY; HYDROLASE; CLONING; LIGNOCELLULOSE; IDENTIFICATION; GLYCOSIDASE C1 [Bergmann, Jessica C.; Costa, Ohana Yonara A.; Quirino, Betania F.] Univ Catolica Brasilia, Genom Sci & Biotechnol Program, Brasilia, DF, Brazil. [Gladden, John M.; Singer, Steven; Heins, Richard; D'haeseleer, Patrik; Simmons, Blake A.] Joint BioEnergy Inst, Emeryville, CA USA. [Gladden, John M.; Heins, Richard; Simmons, Blake A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA. [Singer, Steven] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [D'haeseleer, Patrik] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. [Quirino, Betania F.] Embrapa Agroenergy, BR-70770901 Brasilia, DF, Brazil. RP Quirino, BF (reprint author), Embrapa Agroenergy, Parque Estacao Biol S-N, BR-70770901 Brasilia, DF, Brazil. EM betania.quirino@embrapa.br FU FAP-DF; CNPq; CAPES; Embrapa Macroprograma 2; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research FX This work was supported by grants from FAP-DF, CNPq, CAPES, and Embrapa Macroprograma 2. Part of this work was conducted at the Joint BioEnergy Institute, supported by the Office of Science, Office of Biological and Environmental Research and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 1 Z9 1 U1 1 U2 22 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0378-1097 EI 1574-6968 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD FEB PY 2014 VL 351 IS 2 SI SI BP 147 EP 155 PG 9 WC Microbiology SC Microbiology GA AB4TO UT WOS:000331783000006 PM 24236615 ER PT J AU Iorio, M Liddicoat, J Budillon, F Incoronato, A Coe, RS Insinga, DD Cassata, WS Lubritto, C Angelino, A Tamburrino, S AF Iorio, Marina Liddicoat, Joseph Budillon, Francesca Incoronato, Alberto Coe, Robert S. Insinga, Donatella D. Cassata, William S. Lubritto, Carmine Angelino, Antimo Tamburrino, Stella TI Combined palaeomagnetic secular variation and petrophysical records to time-constrain geological and hazardous events: An example from the eastern Tyrrhenian Sea over the last 120 ka SO GLOBAL AND PLANETARY CHANGE LA English DT Article DE palaeomagnetism; tephrochronology; Tyrrhenian Sea; Pleistocene; Holocene ID CALIFORNIA CONTINENTAL BORDERLAND; INTER-HEMISPHERIC CORRELATION; MAGNETIZATION LOCK-IN; RELATIVE PALEOINTENSITY; GEOMAGNETIC PALEOINTENSITY; REMANENT MAGNETIZATION; VOLCANIC ACTIVITY; LATE QUATERNARY; MEDITERRANEAN SEA; MARINE-SEDIMENTS AB Long-term change of Earth's magnetic field (palaeomagnetic secular variation, PSV) during much of the last approximately 120 ka was recorded in cored sediment from the slope margin of the eastern Tyrrhenian Sea. The PSV record has been correlated to master curves of global palaeomagnetic field intensity and PSV records for western Europe. Tephrochronology and radiometric dating (C-14 and Ar-40/Ar-39) have also been used to constrain the age of the PSV record. The combination of the new data with prior PSV and petrophysical data from the area provides a chronological framework for geological events such as large-scale submarine slumps, stratigraphic gaps and short-term changes in deposition rate on the continental margin. These latter changes are linked to the combined action of relative sea-level oscillations, climate events, and consequent variations in land exposure through time. Moreover, new data concerning the thickness and dispersal of Campanian Plain pyroclastic deposits in the marine setting enable volcanic-hazard evaluation. Finally, a pyroclastic deposit (tephra X-6) found offshore in the Southern Campanian marine environment was Ar-40/Ar-39 dated for the first time at 108.9 +/- 1.8 ka BP. (C) 2013 Elsevier B.V. All rights reserved. C1 [Iorio, Marina; Budillon, Francesca; Insinga, Donatella D.; Angelino, Antimo; Tamburrino, Stella] CNR, IAMC, I-80133 Naples, Italy. [Liddicoat, Joseph] Columbia Univ, Dept Environm Sci, Barnard Coll, New York, NY 10027 USA. [Incoronato, Alberto] Univ Naples Federico II, Dipartimento Sci Terra, I-80138 Naples, Italy. [Coe, Robert S.] Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95064 USA. [Lubritto, Carmine] Univ Naples 2, Dipartimento Sci & Tecnol Ambientali, I-81100 Caserta, Italy. [Cassata, William S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iorio, M (reprint author), CNR, IAMC, I-80133 Naples, Italy. EM marina.iorio@iamc.cnr.it RI Iorio, Marina/I-2456-2013; OI Iorio, Marina/0000-0003-0278-0883; Budillon, Francesca/0000-0001-7451-4811; Insinga, Donatella Domenica/0000-0002-2147-0146; Tamburrino, Stella/0000-0002-8330-8590 FU Campania Region; National Research Council of Italy FX This research was supported by the Campania Region and the National Research Council of Italy. Petrophysical and sedimentological analyses were performed at the IAMC-CNR Petrophysical Laboratory. We thank Roberto De Gennaro for his assistance during microprobe measurements at CISAG, Oregon State University (TRIGA reactor) for 40Ar/39Ar dating, and Emanuela Petruccione for her help with drawing the figures. Finally, we thank A.P. Roberts and an anonymous reviewer for their critical comments and helpful suggestions. NR 98 TC 11 Z9 11 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8181 EI 1872-6364 J9 GLOBAL PLANET CHANGE JI Glob. Planet. Change PD FEB PY 2014 VL 113 BP 91 EP 109 DI 10.1016/j.gloplacha.2013.11.005 PG 19 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AB0RU UT WOS:000331500600009 ER EF