FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Silbernagel, R Burns, JD Reed, DT Hobbs, DT Clearfield, A AF Silbernagel, Rita Burns, Jonathan D. Reed, Donald T. Hobbs, David T. Clearfield, Abraham TI Tetravalent metal phosphonate-phosphate hybrids as ion exchange materials for the nuclear fuel cycle SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Silbernagel, Rita; Burns, Jonathan D.; Clearfield, Abraham] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Reed, Donald T.] Los Alamos Natl Lab Carlsbad Operat, Earth & Environm Sci Div, Carlsbad, NM 88220 USA. [Hobbs, David T.] Savannah River Natl Lab, Aiken, SC USA. EM Rita.Silbernagel@chem.tamu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 107-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402446 ER PT J AU Silva, CM Hunt, RD Snead, LL AF Silva, Chinthaka M. Hunt, Rodney D. Snead, Lance L. TI Synthesis of uranium mononitride microspheres via higher uranium nitrides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Silva, Chinthaka M.; Hunt, Rodney D.; Snead, Lance L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Silva, Chinthaka M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM silvagw@ornl.gov NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 110-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402449 ER PT J AU Simmonds, I Ketring, A Robertson, D Venzie, J Finck, M AF Simmonds, Isaac Ketring, Alan Robertson, David Venzie, J. Finck, Martha TI Attribution of Iridium-192 sources via QD-ICP-MS SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Simmonds, Isaac; Robertson, David] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Ketring, Alan] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [Venzie, J.] Savannah River Natl Lab, Aiken, SC 29803 USA. [Finck, Martha] Idaho Natl Lab, Idaho Falls, ID USA. EM idshxf@mail.missouri.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 29-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402373 ER PT J AU Sista, P Ghosh, K Balog, ERM Martinez, JS Rocha, RC AF Sista, Prakash Ghosh, Koushik Balog, Eva R. M. Martinez, Jennifer S. Rocha, Reginaldo C. TI Ligand-functionalized semiconducting polymers - towards integrated metallopolymer assemblies SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sista, Prakash; Ghosh, Koushik; Balog, Eva R. M.; Martinez, Jennifer S.; Rocha, Reginaldo C.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MPA CINT, Los Alamos, NM 87545 USA. EM prakash@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 537-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405652 ER PT J AU Skodje, RT Davis, M Kramer, Z Li, WX Bai, SR Gu, XK AF Skodje, Rex T. Davis, Michael Kramer, Zeb Li, Weixue Bai, Shirong Gu, Xiang Kui TI Sensitivity of chemical pathways in reactive networks SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Skodje, Rex T.; Kramer, Zeb; Bai, Shirong] Univ Colorado, Boulder, CO 80309 USA. [Davis, Michael] Argonne Natl Lab, Div Chem Sci, Argonne, IL 60439 USA. [Li, Weixue; Gu, Xiang Kui] Dalian Inst Chem Phys, Key State Inst Catalysis, Dalian, Peoples R China. EM rex.skodje@colorado.edu RI Gu, Xiangkui/H-3706-2014 NR 1 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 576-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105382 ER PT J AU Smith, JC AF Smith, Jeremy C. TI Progress and prospects in extreme scale supercomputing in biology, bioenergy, and medicine SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. EM cst@ornl.gov RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 226-BIOL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102123 ER PT J AU Smith, KE Callahan, MP Gerakines, PA Dworkin, JP House, CH AF Smith, Karen E. Callahan, Michael P. Gerakines, Perry A. Dworkin, Jason P. House, Christopher H. TI Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Smith, Karen E.; House, Christopher H.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Smith, Karen E.; House, Christopher H.] Penn State Univ, Penn State Astrobiol Res Ctr, University Pk, PA 16802 USA. [Smith, Karen E.] Oak Ridge Associated Univ, NASA Goddard Space Flight Ctr, Oak Ridge, TN 37831 USA. [Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.] NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM karen.e.smith@nasa.gov RI Dworkin, Jason/C-9417-2012 OI Dworkin, Jason/0000-0002-3961-8997 NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 120-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101571 ER PT J AU Smith, ZD Sandoval, CW Birdsell, SA AF Smith, Zachary D. Sandoval, Cynthia W. Birdsell, Stephen A. TI Assessment of service lives in polysiloxane foams using laboratory and field data SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Smith, Zachary D.; Sandoval, Cynthia W.; Birdsell, Stephen A.] Los Alamos Natl Lab, Dept Polymers & Coatings, Los Alamos, NM 87545 USA. EM zsmith@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 641-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405753 ER PT J AU Snow, MS Mann, NR Snyder, DC Clark, SB AF Snow, Mathew S. Mann, Nick R. Snyder, Darin C. Clark, Sue B. TI Cs isotopic ratio measurements from environmental samples using thermal ionization mass spectrometry: Applications to ultra-trace environmental analyses and nuclear forensics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Snow, Mathew S.; Mann, Nick R.; Snyder, Darin C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Clark, Sue B.] Washington State Univ, Dept Chem, Pullman, WA 99163 USA. EM mathew.snow@inl.gov RI Snyder, Darin/B-6863-2017 OI Snyder, Darin/0000-0001-8104-4248 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 116-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402455 ER PT J AU Snyder, RA Reig, AJ Butch, SE Betzu, J DeGrado, WF Solomon, EI AF Snyder, Rae Ana Reig, Amanda J. Butch, Susan E. Betzu, Justine DeGrado, William F. Solomon, Edward I. TI Structure and function studies of systematic perturbations on de novo Due Ferri proteins: Insights into oxygen-dependent reactivity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Snyder, Rae Ana; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Reig, Amanda J.; Butch, Susan E.; Betzu, Justine] Ursinus Coll, Dept Chem, Collegeville, PA 19460 USA. [DeGrado, William F.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Solomon, Edward I.] Stanford Univ, Stanford Linear Accelerator Ctr, Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. EM raeana@stanford.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 950-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401584 ER PT J AU Soled, SL Miseo, S Baumgartner, J Guzman, J Bolin, T Meyer, R AF Soled, Stuart L. Miseo, Sal Baumgartner, Joseph Guzman, Javier Bolin, Trudy Meyer, Randall TI Can nickel phosphides become viable hydroprocessing catalysts? SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Soled, Stuart L.; Miseo, Sal; Baumgartner, Joseph; Guzman, Javier] ExxonMobil Res & Engn Co, Corp Strateg Res, Annandale, NJ 08801 USA. [Bolin, Trudy] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Meyer, Randall] Univ Illinois, Chicago, IL USA. EM stu.soled@exxonmobil.com NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 96-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104821 ER PT J AU Sommer, SK Zakharov, LN Teat, SJ Pluth, MD AF Sommer, Samantha K. Zakharov, Lev N. Teat, Simon J. Pluth, Michael D. TI Design, synthesis, and characterization of hybrid metal-ligand hydrogen-bonded (MLHB) supramolecular architectures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sommer, Samantha K.; Zakharov, Lev N.; Pluth, Michael D.] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM ssommer@uoregon.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 711-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403288 ER PT J AU Somorjai, GA AF Somorjai, Gabor A. TI Molecular catalysis science, nanoparticle synthesis, and instrument development for characterization under reaction conditions: Conquering catalytic complexity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 372-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165103800 ER PT J AU Somorjai, GA AF Somorjai, Gabor A. TI Atomic scale foundations of covalent and acid-base catalysis in reaction selectivities and turnover rates SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 292-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102552 ER PT J AU Sonk, JA Weston, RE Barker, JR AF Sonk, Jason A. Weston, Ralph E. Barker, John R. TI Computed probability distributions for collisional energy and angular momentum transfer between HONO and Ar in the gas phase SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sonk, Jason A.; Barker, John R.] Univ Michigan, Ann Arbor, MI 48198 USA. [Weston, Ralph E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jsonk@umich.edu RI Barker, John/F-5904-2012 OI Barker, John/0000-0001-9248-2470 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 466-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404185 ER PT J AU Soong, Y Howard, BH Hedges, SW Dilmore, RM AF Soong, Yee Howard, Bret H. Hedges, Sheila W. Dilmore, Robert M. TI Potential impact of combustion contaminants in saline formation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Soong, Yee; Howard, Bret H.; Hedges, Sheila W.; Dilmore, Robert M.] US DOE, NETL, Pittsburgh, PA 15236 USA. EM soong@netl.doe.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 314-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105151 ER PT J AU Soykal, II Wang, H Liang, CD Schwartz, V AF Soykal, Ibrahim Ilgaz Wang, Hui Liang, Chengdu Schwartz, Viviane TI Investigation of silica supported fullerene catalysts for oxidative dehydrogenation of alkanes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Soykal, Ibrahim Ilgaz; Wang, Hui; Liang, Chengdu; Schwartz, Viviane] Oak Ridge Natl Lab, Ctr Nanophase Mat, Knoxville, TN 37831 USA. EM soykalii@ornl.gov NR 3 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 299-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105138 ER PT J AU Srivastava, S Stevenson, N AF Srivastava, Suresh Stevenson, Nigel TI Enabling personalized medicine: Simultaneous imaging and treatment with tin-117m based radiopharmaceuticals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Srivastava, Suresh] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Stevenson, Nigel] Clear Vasc Inc, The Woodlands, TX 77380 USA. EM suresh@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 59-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402400 ER PT J AU Stacchiola, DJ AF Stacchiola, Dario J. TI In-situ studies on the water gas shift reaction: From planar to powder catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stacchiola, Dario J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM djs@bnl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 484-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105296 ER PT J AU Stacchiola, DJ AF Stacchiola, Dario J. TI Tuning the activity and stability of copper based catalysts with reducible oxides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stacchiola, Dario J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM djs@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 109-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165103552 ER PT J AU Stoyer, MA AF Stoyer, Mark A. TI Importance of service and education to Frank Kinard SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stoyer, Mark A.] LLNL, Div Phys, Livermore, CA 94550 USA. EM mastoyer@llnl.gov NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 41-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402384 ER PT J AU Stringfellow, WT Domen, JK Camarillo, MK Sandelin, WL Tinnacher, R Jordan, P Houseworth, J Birkholzer, J AF Stringfellow, William T. Domen, Jeremy K. Camarillo, Mary Kay Sandelin, Whitney L. Tinnacher, Ruth Jordan, Preston Houseworth, James Birkholzer, Jens TI Characterizing compounds used in hydraulic fracturing: A necessary step for understanding environmental impacts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stringfellow, William T.; Tinnacher, Ruth; Jordan, Preston; Houseworth, James; Birkholzer, Jens] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Domen, Jeremy K.; Camarillo, Mary Kay; Sandelin, Whitney L.] Univ Pacific, Stockton, CA 95211 USA. EM wstringfellow@lbl.gov RI Tinnacher, Ruth/I-4845-2015; Stringfellow, William/O-4389-2015; Jordan, Preston/L-1587-2016; Birkholzer, Jens/C-6783-2011 OI Stringfellow, William/0000-0003-3189-5604; Jordan, Preston/0000-0001-5853-9517; Birkholzer, Jens/0000-0002-7989-1912 NR 0 TC 0 Z9 0 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 448-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165106015 ER PT J AU Stuck, D Head-Gordon, M AF Stueck, David Head-Gordon, Martin TI Regularizing orbital optimized perturbation theory SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stueck, David; Head-Gordon, Martin] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dstuck@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 454-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404173 ER PT J AU Stull, JA Welch, CF Lin, T Edwards, SL Hartung, VN AF Stull, Jamie A. Welch, Cindy F. Lin, Terri Edwards, Stephanie L. Hartung, Vaughn N. TI Stability of dendrimers in solution SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Stull, Jamie A.; Welch, Cindy F.; Lin, Terri; Edwards, Stephanie L.; Hartung, Vaughn N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jamie.stull@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 762-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406049 ER PT J AU Sullivan, RC Ahern, A Robinson, E Saleh, R Tkacik, D Presto, A Yokelson, R Thornton, J Saliba, G Mazzolini, C Sedlacek, A Subramanian, R Robinson, A Donahue, N AF Sullivan, Ryan C. Ahern, Adam Robinson, Ellis Saleh, Rawad Tkacik, Daniel Presto, Albert Yokelson, Robert Thornton, Joel Saliba, Georges Mazzolini, Claudio Sedlacek, Arthur Subramanian, R. Robinson, Allen Donahue, Neil TI Chemical evolution of combustion aerosol and its climate-forcing properties SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sullivan, Ryan C.; Ahern, Adam; Robinson, Ellis; Saleh, Rawad; Tkacik, Daniel; Presto, Albert; Saliba, Georges; Subramanian, R.; Robinson, Allen; Donahue, Neil] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. [Yokelson, Robert] Univ Montana, Dept Chem, Missolua, MT USA. [Thornton, Joel; Mazzolini, Claudio] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Sedlacek, Arthur] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. EM rsullivan@cmu.edu RI Yokelson, Robert/C-9971-2011; Tkacik, Daniel/G-5630-2011 OI Yokelson, Robert/0000-0002-8415-6808; NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 323-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404047 ER PT J AU Sun, J Balsara, NP Zuckermann, R AF Sun, Jing Balsara, Nitash P. Zuckermann, Ronald TI Self-assembly and crystallization in sequence-specific peptoid diblock copolymers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sun, Jing; Zuckermann, Ronald] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94706 USA. [Sun, Jing; Balsara, Nitash P.; Zuckermann, Ronald] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94706 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94706 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94706 USA. EM jingsun@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 165-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405297 ER PT J AU Sun, J Proulx, C Olivier, G Mannige, R Haxton, T Guo, L Gertler, G Connolly, M Jun, JM Su, J Garcia, R Yoo, S Whitelam, S Zuckermann, R AF Sun, Jing Proulx, Caroline Olivier, Gloria Mannige, Ranjan Haxton, Tom Guo, Li Gertler, Golan Connolly, Michael Jun, Joo Myung Su, Jessica Garcia, Rita Yoo, Stan Whitelam, Steve Zuckermann, Ronald TI Folding and assembly of sequence-defined peptoid polymers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sun, Jing; Proulx, Caroline; Olivier, Gloria; Mannige, Ranjan; Haxton, Tom; Guo, Li; Gertler, Golan; Connolly, Michael; Jun, Joo Myung; Su, Jessica; Garcia, Rita; Yoo, Stan; Whitelam, Steve; Zuckermann, Ronald] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 54-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405190 ER PT J AU Sun, J Zuckermann, R AF Sun, Jing Zuckermann, Ronald TI Sequence-specific block copolypeptoids for battery applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sun, Jing; Zuckermann, Ronald] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jingsun@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 75-AEI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165100070 ER PT J AU Sung, W Wang, WJ Anderson, NA Ao, MQ Vaknin, D Kim, D AF Sung, Woongmo Wang, Wenjie Anderson, Nathaniel A. Ao, Mingqi Vaknin, David Kim, Doseok TI Surface excess and structure of Gibbs monolayer of long-chain ionic liquids SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Sung, Woongmo; Ao, Mingqi; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 100611, South Korea. [Wang, Wenjie; Anderson, Nathaniel A.; Vaknin, David] Ames Lab, Dept Phys, Ames, IA USA. EM dandyswm@gmail.com RI Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 427-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404146 ER PT J AU Suseno, S Kaiser, J Tran, R McCrory, CCL Rittle, J Yano, J Agapie, T AF Suseno, Sandy Kaiser, Jens Tran, Rosalie McCrory, Charles C. L. Rittle, Jonathan Yano, Junko Agapie, Theodor TI Synthesis and characterization of a series of mixed transition metal oxido cubanes (MMnO4) SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Suseno, Sandy; Kaiser, Jens; McCrory, Charles C. L.; Rittle, Jonathan; Agapie, Theodor] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Tran, Rosalie; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM ssueno@caltech.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 542-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401204 ER PT J AU Suseno, S Kaiser, J Tran, R McCrory, CCL Rittle, J Yano, J Agapie, T AF Suseno, Sandy Kaiser, Jens Tran, Rosalie McCrory, Charles C. L. Rittle, Jonathan Yano, Junko Agapie, Theodor TI Synthesis of mixed-metal transition metal oxido cubanes (MMn3O4) and their potential as prescursors for water oxidation electrocatalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Suseno, Sandy; Kaiser, Jens; McCrory, Charles C. L.; Rittle, Jonathan; Agapie, Theodor] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Tran, Rosalie; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM ssueno@caltech.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 361-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401028 ER PT J AU Svec, F AF Svec, Frantisek TI Recent progress in preparation of thin layers for TLC-MS separations SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM fsvec@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 61-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101517 ER PT J AU Syed, A Lesoine, MD Bhattacharjee, U Petrich, JW Smith, EA AF Syed, Aleem Lesoine, Michael D. Bhattacharjee, Ujjal Petrich, Jacob W. Smith, Emily A. TI Sub-diffraction fluorescence lifetime imaging in cultured cells SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Syed, Aleem; Lesoine, Michael D.; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.] Iowa State Univ, Ames, IA 50010 USA. [Syed, Aleem; Lesoine, Michael D.; Bhattacharjee, Ujjal; Petrich, Jacob W.; Smith, Emily A.] US DOE, Ames Lab, Ames, IA 50010 USA. EM wrtaleem@iastate.edu RI Petrich, Jacob/L-1005-2015 NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 363-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101798 ER PT J AU Szybist, JP McLaughlin, S Iyer, S AF Szybist, James P. McLaughlin, Samuel Iyer, Suresh TI Emissions and performance benchmarking of a prototype dimethyl ether-fueled heavy-duty truck SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Szybist, James P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37922 USA. [McLaughlin, Samuel] Volvo Grp Trucks Technol, Adv Technol & Res, Hagerstown, MD 21742 USA. [Iyer, Suresh] Penn State Univ, Larson Inst, University Pk, PA 16802 USA. EM szybistjp@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 40-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104770 ER PT J AU Tang, ZJ Zawozdinski, T AF Tang, Zhijiang Zawozdinski, Thomas TI Electrolyte equilibrium in ion exchange polymer SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tang, Zhijiang; Zawozdinski, Thomas] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Zawozdinski, Thomas] Oak Ridge Natl Lab, Phys Chem Mat Grp, Oak Ridge, TN 37831 USA. [Zawozdinski, Thomas] King Abdulaziz Univ, Dept Chem, Jeddah, Saudi Arabia. EM ztang1@utk.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 380-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404740 ER PT J AU Taylor-Pashow, KML Hobbs, DT AF Taylor-Pashow, Kathryn M. L. Hobbs, David T. TI Large particle titanate sorbents for treatment of high level waste SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Taylor-Pashow, Kathryn M. L.; Hobbs, David T.] Savannah River Natl Lab, Aiken, SC 29808 USA. EM Kathryn.Taylor-Pashow@srnl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 101-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402440 ER PT J AU Taylor-Pashow, KML Fondeur, FF White, TL DiPrete, DP Milliken, CE AF Taylor-Pashow, Kathryn M. L. Fondeur, Fernando F. White, Thomas L. DiPrete, David P. Milliken, Charles E. TI Development of analytical methods for determining suppressor concentration in the MCU Next Generation Solvent (NGS) SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Taylor-Pashow, Kathryn M. L.; Fondeur, Fernando F.; White, Thomas L.; DiPrete, David P.; Milliken, Charles E.] Savannah River Natl Lab, Aiken, SC 29808 USA. EM Kathryn.Taylor-Pashow@srnl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 194-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101643 ER PT J AU Tepavcevic, S Zhou, DH Johnson, C Rajh, T AF Tepavcevic, Sanja Zhou, Dehua Johnson, Christopher Rajh, Tijana TI Nanostructured V2O5/Sn Mg-ion full batteries SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tepavcevic, Sanja] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60643 USA. [Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Zhou, Dehua; Johnson, Christopher] Argonne Natl Lab, Lemont, IL 60439 USA. EM sanja@anl.gov NR 0 TC 0 Z9 0 U1 4 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 325-ENFL PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105162 ER PT J AU Thompson, CM Somorjai, GA AF Thompson, Christopher M. Somorjai, Gabor A. TI Monitoring metal oxygen coverage with sum-frequency generation: Studies of surface oxygen coverage of platinum in liquid-phase heterogeneously catalyzed ethanol oxidation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Thompson, Christopher M.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Thompson, Christopher M.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM chris.thompson@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 131-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102403 ER PT J AU Thompson, T Wolfenstine, J Allen, J Johannes, M Huq, A Sakamoto, J AF Thompson, Travis Wolfenstine, Jeff Allen, Jan Johannes, Michelle Huq, Ashfia Sakamoto, Jeff TI Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 garnet Li ion solid electrolyte SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Thompson, Travis; Sakamoto, Jeff] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Wolfenstine, Jeff; Allen, Jan] Army Res Lab, RDRL SED C, Adelphi, MD 20783 USA. [Johannes, Michelle] Naval Res Lab, Ctr Computat Mat Sci, Anacostia, VA USA. [Huq, Ashfia] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. EM trthompson378@gmail.com NR 0 TC 0 Z9 0 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 561-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105368 ER PT J AU Thurmer, K AF Thuermer, Konrad TI Nucleation and growth of ice films on metal surfaces SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Thuermer, Konrad] Sandia Natl Labs, Livermore, CA 94550 USA. EM kthurme@sandia.gov RI Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 487-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104024 ER PT J AU Tinnacher, RM Holmboe, M Davis, JA Tournassat, C Bourg, I AF Tinnacher, Ruth M. Holmboe, Michael Davis, James A. Tournassat, Christophe Bourg, Ian TI Impacts of pore structure and diffusion-accessible porosity for calcium-bromide diffusion in sodium-montmorillonite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tinnacher, Ruth M.; Davis, James A.; Bourg, Ian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Holmboe, Michael] Royal Inst Technol, Dept Theoret Phys, S-10044 Stockholm, Sweden. [Tournassat, Christophe] Bur Rech Geol & Minieres, Water Environm & Ecotechnol Div, Orleans, France. EM rmtinnacher@lbl.gov RI Tinnacher, Ruth/I-4845-2015; Davis, James/G-2788-2015 NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 37-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400352 ER PT J AU Toberer, ES Stevanovic, V Ortiz, B Yan, J Lany, S Zakutayev, A Peng, HW AF Toberer, Eric S. Stevanovic, Vladan Ortiz, Brenden Yan, Jun Lany, Stephan Zakutayev, Andriy Peng, Haowei TI Computationally driven targeting of advanced thermoelectric materials SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Toberer, Eric S.; Stevanovic, Vladan; Ortiz, Brenden; Yan, Jun] Colorado Sch Mines, Golden, CO 80401 USA. [Toberer, Eric S.; Stevanovic, Vladan; Lany, Stephan; Zakutayev, Andriy; Peng, Haowei] Natl Renewable Energy Lab, Golden, CO 80401 USA. EM etoberer@mines.edu NR 0 TC 0 Z9 0 U1 3 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 505-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401167 ER PT J AU Toney, MF AF Toney, Michael F. TI In situ X-ray scattering and microscopy of energy materials processing and operation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Toney, Michael F.] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 610-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105410 ER PT J AU Tournassat, C Bourg, IC Steefel, CI AF Tournassat, Christophe Bourg, Ian C. Steefel, Carl I. TI Quantification of the breakdown of modified Gouy-Chapman model for 2:1 salt background electrolyte: A molecular dynamic study SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tournassat, Christophe] Bur Rech Geol & Minieres, Water Environm & Ecotechnol Div, Orleans, France. [Bourg, Ian C.; Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM c.tournassat@brgm.fr NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 46-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400361 ER PT J AU Trahey, L Yang, ZZ Thackeray, MM AF Trahey, Lynn Yang, Zhenzhen Thackeray, Michael M. TI Investigations of solid electrolyte interphase formation on high-capacity Li-ion battery anodes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Trahey, Lynn; Yang, Zhenzhen; Thackeray, Michael M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM trahey@anl.gov NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 79-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104805 ER PT J AU Troiano, JM Olenick, LL Kuech, TR Melby, E Lohse, SE Mensch, AC Ehimiaghe, E Walter, SR Murphy, CJ Orr, G Hamers, RJ Pedersen, JA Geiger, FM AF Troiano, Julianne M. Olenick, Laura L. Kuech, Thomas R. Melby, Eric Lohse, Samuel E. Mensch, Arielle C. Ehimiaghe, Eseohi Walter, Stephanie R. Murphy, Catherine J. Orr, Galya Hamers, Robert J. Pedersen, Joel A. Geiger, Franz M. TI Nanoparticle interactions with supported lipid bilayers studied by nonlinear optics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Troiano, Julianne M.; Olenick, Laura L.; Ehimiaghe, Eseohi; Walter, Stephanie R.; Geiger, Franz M.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kuech, Thomas R.; Melby, Eric; Pedersen, Joel A.] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA. [Lohse, Samuel E.; Murphy, Catherine J.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Mensch, Arielle C.; Hamers, Robert J.; Pedersen, Joel A.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM juliannetroiano2016@u.northwestern.edu NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 687-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104211 ER PT J AU Tsivion, E Head-Gordon, M AF Tsivion, Ehud Head-Gordon, Martin TI Increasing the hydrogen adsorption of MOFs: From principles to practice SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tsivion, Ehud; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tsivion, Ehud] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM tsivion.ehud@gmail.com NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 20-AEI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165100019 ER PT J AU Tsutakawa, SE Lafrance-Vanasse, J Tainer, JA AF Tsutakawa, Susan E. Lafrance-Vanasse, Julien Tainer, John A. TI DNA and RNA repair nucleases sculpt DNA to measure twice, cut once SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Tsutakawa, Susan E.; Lafrance-Vanasse, Julien; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. EM jatainer@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 140-TOXI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406290 ER PT J AU Udey, RN Corzett, TH Valdez, CA Williams, AM AF Udey, Ruth N. Corzett, Todd H. Valdez, Carlos A. Williams, Audrey M. TI Retrospective assessment of chemical warfare agent exposure in humans using LC-HRMS SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Udey, Ruth N.; Corzett, Todd H.; Valdez, Carlos A.; Williams, Audrey M.] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. EM udey1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 56-TOXI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406213 ER PT J AU Ung, H Daemen, L Morton, TH AF Ung, Hou Daemen, Luke Morton, Thomas Hellman TI Probing the i-motif using cytosine analogs SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Ung, Hou; Morton, Thomas Hellman] Univ Calif Riverside, Riverside, CA 92521 USA. [Daemen, Luke] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM hung001@ucr.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 567-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403154 ER PT J AU Uribe, EC Bruchet, A Wall, TF Shusterman, JA Nitsche, H AF Uribe, Eva C. Bruchet, Anthony Wall, Thomas F. Shusterman, Jennifer A. Nitsche, Heino TI From the ACS Nuclear Chemistry Summer School to actinide chemistry at UC Berkeley SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Uribe, Eva C.; Bruchet, Anthony; Wall, Thomas F.; Shusterman, Jennifer A.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM eva.uribe@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 38-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402381 ER PT J AU Utschig, LM AF Utschig, Lisa M. TI Nature-driven photochemistry for solar fuel production SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Utschig, Lisa M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM utschig@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 13-PRES PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406102 ER PT J AU Vaddula, BR Yalla, S Gonzalez, MA AF Vaddula, Buchi R. Yalla, Swathi Gonzalez, Michael A. TI Multicomponent flow approach for the efficient and more sustainable preparation of aminothiazole derivatives SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vaddula, Buchi R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Yalla, Swathi; Gonzalez, Michael A.] US EPA, Natl Risk Management Lab, Cincinnati, OH 45268 USA. EM reddy.buchi@epa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 829-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400144 ER PT J AU Vaddula, BR Anderson, L Yalla, S Gonzalez, M AF Vaddula, Buchi Reddy Anderson, Laura Yalla, Swathi Gonzalez, Michael TI Rapid synthesis of a-hydroxy acids and N-alkyl amides in the continuous-flow spinning tube-in-tube ( STT r) reactor SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Gonzalez, Michael] US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Vaddula, Buchi Reddy] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. EM reddy.buchi@epa.gov NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 863-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403426 ER PT J AU Vaddula, BR Yalla, S Gonzalez, M AF Vaddula, Buchi Reddy Yalla, Swathi Gonzalez, Michael TI Efficient and more sustainable one-step continuous-flow multicomponent synthesis of chromene derivatives SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Gonzalez, Michael] US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Cincinnati, OH 45220 USA. [Vaddula, Buchi Reddy] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. EM reddy.buchi@epa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 164-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402629 ER PT J AU Vaddula, BR Yalla, S Gonzalez, M AF Vaddula, Buchi Reddy Yalla, Swathi Gonzalez, Michael TI Rapid and benign approaches for addition and coupling reactions using flow chemistry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Gonzalez, Michael] US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Vaddula, Buchi Reddy] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. EM reddy.buchi@epa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 91-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400509 ER PT J AU Valdez, CA Mayer, BP Hok, S AF Valdez, Carlos A. Mayer, Brian P. Hok, Saphon TI Zinc-based catalysts for the destruction of organophosphorus-based compounds SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Valdez, Carlos A.; Mayer, Brian P.; Hok, Saphon] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94551 USA. EM valdez11@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 276-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400817 ER PT J AU Van Allsburg, KM Anzenberg, E Liu, WJ Yano, J Tilley, TD AF Van Allsburg, Kurt M. Anzenberg, Eitan Liu, Wenjun Yano, Junko Tilley, T. Don TI Materials for water oxidation prepared from Mn- and Co-oxo cubane molecular precursors SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Van Allsburg, Kurt M.; Anzenberg, Eitan; Liu, Wenjun; Yano, Junko; Tilley, T. Don] Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Van Allsburg, Kurt M.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Van Allsburg, Kurt M.; Anzenberg, Eitan; Liu, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM kvanallsburg@lbl.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 1026-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401655 ER PT J AU van Bibber, KA Bernstein, LA Bleuel, DL Cerjan, C Fortner, RJ Gostic, J Grant, PM Gharibyan, N Hagmann, CA Henry, EA Sayre, DB Schneider, DHG Shaughnessy, DA Brown, JA Daub, BH Brickner, NM Davis, PF Goldblum, BL Vujic, J Firestone, RB Rogers, AM AF van Bibber, Karl A. Bernstein, Lee A. Bleuel, Darren L. Cerjan, Charles Fortner, Richard J. Gostic, Julie Grant, Patrick M. Gharibyan, Narek Hagmann, Christian A. Henry, Eugene A. Sayre, Daniel B. Schneider, Dieter H. G. Shaughnessy, Dawn A. Brown, Joshua A. Daub, Brian H. Brickner, Nicholas M. Davis, Paul F. Goldblum, Bethany L. Vujic, Jasmina Firestone, Richard B. Rogers, Andrew M. TI High energy density nuclear physics at UC Berkeley, LLNL, and LBNL SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [van Bibber, Karl A.; Brown, Joshua A.; Daub, Brian H.; Brickner, Nicholas M.; Davis, Paul F.; Goldblum, Bethany L.; Vujic, Jasmina] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Bernstein, Lee A.; Bleuel, Darren L.; Cerjan, Charles; Fortner, Richard J.; Gostic, Julie; Grant, Patrick M.; Gharibyan, Narek; Hagmann, Christian A.; Henry, Eugene A.; Sayre, Daniel B.; Schneider, Dieter H. G.; Shaughnessy, Dawn A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Firestone, Richard B.; Rogers, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM karl.van.bibber@berkeley.edu NR 0 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 3-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402347 ER PT J AU Vander Wal, MN Lee, S Chang, CJ AF Vander Wal, Mark N. Lee, Sumin Chang, Christopher J. TI Selective fluorescent sensors for imaging sodium signaling in living cells SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vander Wal, Mark N.; Lee, Sumin; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Vander Wal, Mark N.; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chang, Christopher J.] Howard Hughes Med Inst, Chevy Chase, MD USA. EM mnvanderwal1@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 810-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403378 ER PT J AU Vardon, DR Ferguson, GA Strathmann, TJ Beckham, GT AF Vardon, Derek R. Ferguson, Glen A. Strathmann, Timothy J. Beckham, Gregg T. TI Integrated catalytic upgrading of muconic acid to adipic acid for renewable nylon precursor production SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vardon, Derek R.; Strathmann, Timothy J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Vardon, Derek R.; Ferguson, Glen A.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM derek.vardon@nrel.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 208-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102475 ER PT J AU Veauthier, JM AF Veauthier, Jacqueline M. TI Synthesis and characterization of new nitrogen-rich metal complexes. SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Veauthier, Jacqueline M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM veauthier@lanl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 938-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401573 ER PT J AU Velsko, C Cassata, W Jedlovec, D Tereshatov, E Stoeffl, W Yeamans, C Shaughnessy, D AF Velsko, Carol Cassata, William Jedlovec, Donald Tereshatov, Evgeny Stoeffl, Wolfgang Yeamans, Charles Shaughnessy, Dawn TI Demonstrating capability for radiochemical analysis of gaseous samples at NIF SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Velsko, Carol; Cassata, William; Stoeffl, Wolfgang; Shaughnessy, Dawn] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Tereshatov, Evgeny] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77840 USA. [Jedlovec, Donald; Yeamans, Charles] Lawrence Livermore Natl Lab, NIF Directorate, Livermore, CA 94550 USA. EM velsko1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 21-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402365 ER PT J AU Vericella, JJ Stolaroff, JK Baker, SE Duoss, EB Spadaccini, CM Lewis, JA Aines, RD AF Vericella, John J. Stolaroff, Joshuah K. Baker, Sarah E. Duoss, Eric B. Spadaccini, Christopher M. Lewis, Jennifer A. Aines, Roger D. TI Carbon dioxide capture using microencapsulation of high concentration capture media SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vericella, John J.; Duoss, Eric B.; Spadaccini, Christopher M.] Lawrence Livermore Natl Lab, Mat Engn Div, Livermore, CA 94551 USA. [Baker, Sarah E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stolaroff, Joshuah K.; Aines, Roger D.] Lawrence Livermore Natl Lab, Global Secur E Program, Livermore, CA 94551 USA. [Lewis, Jennifer A.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. [Lewis, Jennifer A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM vericella1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 252-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105099 ER PT J AU Villaluenga, I Chen, X Devaux, D Hallinan, DT Balsara, NP AF Villaluenga, Irune Chen, Xi Devaux, Didier Hallinan, Daniel T. Balsara, Nitash P. TI Nanoparticle-driven assembly of co-continuous block copolymer electrolytes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Villaluenga, Irune; Devaux, Didier; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, EETD, Berkeley, CA 94709 USA. [Chen, Xi; Balsara, Nitash P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hallinan, Daniel T.] Florida State Univ, Florida A&M Univ, Tallahassee, FL 32306 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94709 USA. EM ivillaluenga@lbl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 552-PMSE PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405041 ER PT J AU Visel, A AF Visel, Axel TI Introduction to the joint EMSL/JGI user program SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Visel, Axel] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. EM avisel@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 159-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101608 ER PT J AU Viswanathan, H AF Viswanathan, Hari TI Discovery science of hydraulic fracturing: Innovative working fluids and their interactions with rocks, fractures, and hydrocarbons SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Viswanathan, Hari] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM viswana@lanl.gov NR 0 TC 0 Z9 0 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 2-PRES PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406091 ER PT J AU Vjunov, A Fulton, JL Camaioni, DM Derewinski, M Lercher, JA AF Vjunov, Aleksei Fulton, John L. Camaioni, Donald M. Derewinski, Miroslaw Lercher, Johannes A. TI Development and application of Al EXAFS to characterize Al T-sites in zeolite: Effect of hot liquid water treatment on the HBEA zeolite framework SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Derewinski, Miroslaw; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Lercher, Johannes A.] TU Muenchen, Dept Chem, D-85747 Garching, Bavaria, Germany. EM aleksei.vjunov@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 459-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105274 ER PT J AU Vjunov, A Fulton, JL Camaioni, DM Derewinski, M Lercher, JA AF Vjunov, Aleksei Fulton, John L. Camaioni, Donald M. Derewinski, Miroslaw Lercher, Johannes A. TI Biomass conversion: Impact of zeolite stability on aquoeus phase catalysis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Derewinski, Miroslaw; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Lercher, Johannes A.] TU Muenchen, Dept Chem, D-85747 Garching, Bavaria, Germany. EM aleksei.vjunov@pnnl.gov NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 254-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102518 ER PT J AU Wang, HX Cramer, SP AF Wang, Hongxin Cramer, Stephen P. TI Iron specific nuclear resonant vibrational spectroscopy and practical issues in studying iron enzymes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Hongxin; Cramer, Stephen P.] Univ Calif Davis, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM hongxin@popper.lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 159-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403762 ER PT J AU Wang, HX Cramer, S Gee, LB Scott, AD Ogata, H Kramer, T Neese, F Lubitz, W Newton, W Dapper, C Lauterbach, L Pelmentschikov, V Yoda, Y Tanaka, Y AF Wang, Hongxin Cramer, Stephen Gee, Leland B. Scott, Aubrey D. Ogata, Hideaki Kraemer, Tobias Neese, Frank Lubitz, Wolfgang Newton, William Dapper, Christie Lauterbach, Lars Pelmentschikov, Vladimir Yoda, Yoshitaka Tanaka, Yoshihito TI Nuclear resonant vibrational spectroscopy in studying extremely weak features in hydrogenases and nitrogenases SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Hongxin; Cramer, Stephen; Gee, Leland B.; Scott, Aubrey D.] Univ Calif Davis, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ogata, Hideaki; Kraemer, Tobias; Neese, Frank; Lubitz, Wolfgang] Max Planck Inst Bioinorgan Chem, Mulheim, Germany. [Lauterbach, Lars; Pelmentschikov, Vladimir] Tech Univ Berlin, Inst Chem, Berlin, Germany. [Newton, William; Dapper, Christie] Virginia Tech Univ, Dept Chem & Biochem, Blacksburg, VA 24061 USA. [Yoda, Yoshitaka; Tanaka, Yoshihito] SPring 8, Res & Utilizat Div, Kouto, Hyogo 6795198, Japan. EM hongxin@popper.lbl.gov RI Ogata, Hideaki/J-4975-2013 NR 0 TC 0 Z9 0 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 705-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401354 ER PT J AU Wang, H Lu, Y Liu, L Alexoff, D Kim, SW Hooker, JM Fowler, JS Tonge, PJ AF Wang, Hui Lu, Yang Liu, Li Alexoff, David Kim, Sung Won Hooker, Jacob M. Fowler, Joanna S. Tonge, Peter J. TI Radiosynthesis and biological evaluation of a novel Enoyl-ACP reductase inhibitor for Staphylococcus aureus SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Hui; Lu, Yang; Liu, Li; Tonge, Peter J.] SUNY Stony Brook, Dept Chemsitry, Stony Brook, NY 11794 USA. [Wang, Hui; Lu, Yang; Liu, Li; Tonge, Peter J.] Inst Chem Biol & Drug Discovery, Stony Brook, NY 11794 USA. [Alexoff, David; Kim, Sung Won; Hooker, Jacob M.; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM hui.wang@stonybrook.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 377-MEDI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402178 ER PT J AU Wang, J AF Wang, Jun TI X-ray nano-imaging application on energy materials SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Jun] Brookhaven Natl Lab, Upton, NY 11973 USA. EM junwang@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 612-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105412 ER PT J AU Wang, LW AF Wang, Lin-Wang TI Ab initio calculations of charge transports in nanosystems SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM lwwang@lbl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 468-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105282 ER PT J AU Wang, YY Fan, F Agapov, A Saito, T Yang, J Yu, X Hong, KL Mays, J Sokolov, A AF Wang, Yangyang Fan, Fei Agapov, Alexander Saito, Tomonori Yang, Jun Yu, Xiang Hong, Kunlun Mays, Jimmy Sokolov, Alexei TI Relationship between ionic transport and segmental relaxation in polymer electrolytes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Yangyang; Fan, Fei; Agapov, Alexander; Mays, Jimmy; Sokolov, Alexei] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Saito, Tomonori; Yu, Xiang; Mays, Jimmy; Sokolov, Alexei] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yang, Jun; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yywang@utk.edu RI Hong, Kunlun/E-9787-2015; Saito, Tomonori/M-1735-2016 OI Hong, Kunlun/0000-0002-2852-5111; Saito, Tomonori/0000-0002-4536-7530 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 292-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405420 ER PT J AU Wang, Y Ramasamy, K AF Wang, Yong Ramasamy, Karthikeyan TI Biomass derived small oxygenates to fuel range hydrocarbons over HZSM-5 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Yong; Ramasamy, Karthikeyan] Pacific NW Natl Lab, Richland, WA 99354 USA. [Wang, Yong] Washington State Univ, Pullman, WA 99164 USA. EM yong.wang@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 258-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105105 ER PT J AU Wang, Y Hong, YC Hensley, AJR Sun, JM McEven, JS AF Wang, Yong Hong, Yongchun Hensley, Alyssa J. R. Sun, Junming McEven, Jean-Sabin TI Hydrodeoxygenation of phenolics via noble metal promoted Fe catalysts: A combined experimental and theoretical investigation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Yong; Hong, Yongchun; Hensley, Alyssa J. R.; Sun, Junming; McEven, Jean-Sabin] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Wang, Yong; Hong, Yongchun] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Hong, Yongchun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [McEven, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM wang42@wsu.edu RI Sun, Junming/B-3019-2011 OI Sun, Junming/0000-0002-0071-9635 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 105-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102378 ER PT J AU Wang, ZM Pan, DQ Yin, ZX Resch, TC Wu, WS AF Wang, Zheming Pan, Duo-Qiang Yin, Zhuo-Xin Resch, Tom C. Wu, Wangsuo TI Time resolved laser fluorescence spectroscopic study of uranium(VI) sorption on phlogopite: Effect of pH and temperature SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Zheming; Resch, Tom C.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Pan, Duo-Qiang; Yin, Zhuo-Xin; Wu, Wangsuo] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. EM zheming.wang@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 27-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400343 ER PT J AU Wang, Z Shen, JM Akatay, C Kung, MC Stach, E Kung, H AF Wang, Zhen Shen, Jingmei Akatay, Cem Kung, Mayfair C. Stach, Eric Kung, Harold TI New methods of synthesis of gold nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Zhen; Shen, Jingmei; Kung, Mayfair C.; Kung, Harold] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA. [Akatay, Cem; Stach, Eric] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM hkung@northwestern.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 83-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102356 ER PT J AU Wang, ZH Chen, YL Battaglia, V Liu, G AF Wang, Zhihui Chen, Yulin Battaglia, Vincent Liu, Gao TI Improving the performance of lithium-sulfur batteries using conductive polymer and micrometric sulfur powder SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wang, Zhihui; Chen, Yulin; Battaglia, Vincent; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM zhwang@lbl.gov NR 0 TC 0 Z9 0 U1 4 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 266-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105111 ER PT J AU Weber, RS AF Weber, Robert S. TI Modeling the kinetics of deactivation of catalysts during the upgrading of bio-oil SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Weber, Robert S.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM Robert.Weber@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 283-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105126 ER PT J AU Wei, ZW Martinez, B Zhou, HC Palakurthi, S Bashir, S Liu, JB AF Wei, Zhangwen Martinez, Baldemar Zhou, Hong-Cai Palakurthi, Srinath Bashir, Sajid Liu, Jingbo TI Investigation of nanostructured metal-organic frameworks used in cancer research SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Martinez, Baldemar; Bashir, Sajid; Liu, Jingbo] Texas A&M Univ Kingsville, Kingsville, TX USA. [Wei, Zhangwen; Zhou, Hong-Cai; Liu, Jingbo] Texas A&M Univ, College Stn, TX USA. [Bashir, Sajid; Liu, Jingbo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Palakurthi, Srinath] Texas A&M Hlth Sci Ctr, Kingsville, TX 78363 USA. EM jingbo.liu@tamuk.edu RI Wei, Zhangwen/D-2536-2016 OI Wei, Zhangwen/0000-0002-8378-2479 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 429-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165103853 ER PT J AU Wen, YH Liu, DM AF Wen, Youhai Liu, Danmin TI Electrochemistry based phase-field modeling of metal oxidation kinetics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wen, Youhai] Natl Energy Technol Lab, Albany, OR 97321 USA. [Liu, Danmin] Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing, Peoples R China. EM youhai.wen@netl.doe.gov NR 0 TC 0 Z9 0 U1 7 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 336-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105172 ER PT J AU White, MG Nakayama, M Yang, YX Zhou, J Liu, P AF White, Michael G. Nakayama, Miki Yang, Yixiong Zhou, Jia Liu, Ping TI Interfacial charge transfer and reactivity of supported metal oxide nanoclusters SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [White, Michael G.; Nakayama, Miki; Zhou, Jia; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [White, Michael G.; Yang, Yixiong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov NR 0 TC 0 Z9 0 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 421-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165103845 ER PT J AU Whittemore, S AF Whittemore, Sean TI Kinetic and thermodynamic study of the catalytic reduction of imines by a linked Lewis pair SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Whittemore, Sean] Pacific NW Natl Lab, Richland, WA 99352 USA. EM sean.whittemore@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 19-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102295 ER PT J AU Wichner, SM DeWitt, MA Yildiz, A Cohen, BE AF Wichner, Sara M. DeWitt, Mark A. Yildiz, Ahmet Cohen, Bruce E. TI Small quantum dot probes for single-molecule studies of motor proteins SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wichner, Sara M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94705 USA. [Yildiz, Ahmet] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94705 USA. [Yildiz, Ahmet] Univ Calif Berkeley, Dept Mol Biol, Berkeley, CA 94705 USA. [Cohen, Bruce E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [DeWitt, Mark A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM sarawichner@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 216-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403818 ER PT J AU Wiedner, SD Anderson, LN Sadler, NC Chrisler, WB Kodali, VK Smith, RD Wright, AT AF Wiedner, Susan D. Anderson, Lindsey N. Sadler, Natalie C. Chrisler, William B. Kodali, Vamsi K. Smith, Richard D. Wright, Aaron T. TI Organelle-specific activity-based protein profiling in live macrophage cells revealed by super-resolution imaging and proteomics SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wiedner, Susan D.; Anderson, Lindsey N.; Sadler, Natalie C.; Chrisler, William B.; Kodali, Vamsi K.; Smith, Richard D.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM natalie.sadler@pnnl.gov; aaron.wright@pnnl.gov RI Smith, Richard/J-3664-2012; Anderson, Lindsey /S-6375-2016 OI Smith, Richard/0000-0002-2381-2349; Anderson, Lindsey /0000-0002-8741-7823 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 72-BIOL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101879 ER PT J AU Wiegel, AA Wilson, KR Hinsberg, WD Houle, FA AF Wiegel, Aaron A. Wilson, Kevin R. Hinsberg, William D. Houle, Frances A. TI Using kinetics modeling to investigate the role of structure and phase on the functionalization and fragmentation of hydrocarbons in the heterogeneous oxidation by OH SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wiegel, Aaron A.; Wilson, Kevin R.; Houle, Frances A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94702 USA. [Hinsberg, William D.] Columbia Hill Tech Consulting, Fremont, CA 94539 USA. EM aawiegel@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 265-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403863 ER PT J AU Wills, AW Helms, BA AF Wills, Andrew W. Helms, Brett A. TI Beyond the jammed matter limit: Binary pore architectures for low-k dielectric applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wills, Andrew W.; Helms, Brett A.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94703 USA. EM awwills@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 423-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404777 ER PT J AU Wilson, JJ Radchenko, V John, KD Birnbaum, ER AF Wilson, Justin J. Radchenko, Valery John, Kevin D. Birnbaum, Eva R. TI From halogenated porphyrins to actinium SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wilson, Justin J.; Radchenko, Valery; John, Kevin D.; Birnbaum, Eva R.] Los Alamos Natl Lab, Dept Chem, Los Alamos, NM 87545 USA. EM eva@lanl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 342-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401009 ER PT J AU Wilson, KR AF Wilson, Kevin R. TI Multiphase chemistry of organic aerosols: The role of water, molecular structure, and viscosity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM krwilson@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 260-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403858 ER PT J AU Winter, ND Winter, NW AF Winter, Nicolas D. Winter, Nicholas W. TI Molecular dynamics simulations of the ligand exchange reaction for the aqueous beryllium(II) ion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Winter, Nicolas D.] Dominican Univ, Dept Phys Sci, River Forest, IL 60305 USA. [Winter, Nicholas W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geophys, Berkeley, CA 94720 USA. EM nwinter@dom.edu NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 542-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404253 ER PT J AU Wood, BC AF Wood, Brandon C. TI Towards simulations of electrochemical interfaces in graphene-based supercapacitors under realistic operating conditions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wood, Brandon C.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM brandonwood@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 127-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104366 ER PT J AU Wright, A Sadler, NC Nandhikonda, P Crowell, SR Smith, RD Corley, RA AF Wright, Aaron Sadler, Natalie C. Nandhikonda, Premchendar Crowell, Susan R. Smith, Richard D. Corley, Richard A. TI Activity-based protein profiling of cytochrome P450 enzyme ontogeny in the developing human fetus SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wright, Aaron; Sadler, Natalie C.; Nandhikonda, Premchendar; Crowell, Susan R.; Smith, Richard D.; Corley, Richard A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM aaron.wright@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 134-TOXI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167406284 ER PT J AU Wu, CH Velasco-Velez, JJ Fang, HT Guo, JH Salmeron, MB AF Wu, Chenghao Velasco-Velez, Juan J. Fang, Haitao Guo, Jinghua Salmeron, Miquel B. TI In-situ X-ray absorption spectroscopy study of metal/water interfaces SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wu, Chenghao] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wu, Chenghao; Velasco-Velez, Juan J.; Fang, Haitao; Salmeron, Miquel B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fang, Haitao] Harbin Inst Technol, Coll Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Salmeron, Miquel B.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM chenghaowu@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 117-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165103560 ER PT J AU Wu, MY Yuan, W Park, SJ Battaglia, V Liu, G AF Wu, Mingyan Yuan, Wen Park, Sang-Jae Battaglia, Vincent Liu, Gao TI Toward an ideal polymer binder design for high-capacity battery anodes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wu, Mingyan; Yuan, Wen; Park, Sang-Jae; Battaglia, Vincent; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, EETD, Berkeley, CA 94720 USA. EM GLiu@lbl.gov RI Yuan, Wen/G-7141-2015 OI Yuan, Wen/0000-0002-1812-9588 NR 0 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 540-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405030 ER PT J AU Wu, MY Yuan, W Park, SJ Battaglia, VS Liu, G AF Wu, Mingyan Yuan, Wen Park, Sang-Jae Battaglia, Vincent S. Liu, Gao TI In situ formed si nanoparticle network with micron-sized si particles for lithium-ion battery anodes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wu, Mingyan; Yuan, Wen; Park, Sang-Jae; Battaglia, Vincent S.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, EETD, Berkeley, CA 94720 USA. EM GLiu@lbl.gov RI Yuan, Wen/G-7141-2015 OI Yuan, Wen/0000-0002-1812-9588 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 20-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104754 ER PT J AU Wu, QY Cen, JJ Zhao, Y Su, D Zhao, S Shen, PC Worner, W White, M Orlov, A AF Wu, Qiyuan Cen, Jiajie Zhao, Yue Su, Dong Zhao, Shen Shen, Peichuan Worner, William White, Michael Orlov, Alexander TI Developing novel light activated composite nanomaterials based on perovskite structure for energy and environmental applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Wu, Qiyuan; Cen, Jiajie; Zhao, Yue; Zhao, Shen; Shen, Peichuan; White, Michael; Orlov, Alexander] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Worner, William] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [White, Michael] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM qiyuan.wu@stonybrook.edu; jiajie.cen@stonybrook.edu; yue.zhao.1@stonybrook.edu NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 686-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400013 ER PT J AU Wu, ZL Mann, AK Li, MJ Overbury, SH AF Wu, Zili Mann, Amanda K. Li, Meijun Overbury, Steven H. TI Understanding shape effect in catalysis: A case study of ceria nanoshapes as catalyst and catalyst support SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov RI Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 NR 0 TC 0 Z9 0 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 488-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105300 ER PT J AU Xantheas, SS Miliordos, E AF Xantheas, Sotiris S. Miliordos, Evangelos TI Efficient procedure for the numerical calculation of harmonic vibrational frequencies based on internal coordinates: CCSD(T) frequencies for (H2O)(n), n=2-8 and other aqueous complexes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xantheas, Sotiris S.; Miliordos, Evangelos] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Xantheas, Sotiris/L-1239-2015 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 315-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404039 ER PT J AU Xiao, DJ Bloch, ED Mason, JA Queen, WL Hudson, MR Brown, CM Long, JR AF Xiao, Dianne J. Bloch, Eric D. Mason, Jarad A. Queen, Wendy L. Hudson, Matthew R. Brown, Craig M. Long, Jeffrey R. TI Hydrocarbon oxidations using iron metal-organic frameworks SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Queen, Wendy L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Hudson, Matthew R.; Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Brown, Craig M.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. EM djxiao@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 437-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401100 ER PT J AU Xiao, J AF Xiao, Jie TI Graphene in Li-O-2 and Li-CFx batteries SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xiao, Jie] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99352 USA. EM jie.xiao@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 501-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105313 ER PT J AU Xiao, J AF Xiao, Jie TI Carbon in primary lithium air batteries SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc ID LI/AIR BATTERIES; ELECTRODE C1 [Xiao, Jie] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99352 USA. EM jie.xiao@pnnl.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 491-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105303 ER PT J AU Xu, M Kovarik, L Arey, BW Engelhard, MH Ilton, ES Perea, DE Felmy, AR Rosso, KM Kerisit, S AF Xu, Man Kovarik, Libor Arey, Bruce W. Engelhard, Mark H. Ilton, Eugene S. Perea, Daniel E. Felmy, Andrew R. Rosso, Kevin M. Kerisit, Sebastien TI Heteroepitaxial growth of carbonates at calcite-water interfaces: Effects of solution chemistry and crystal lattice mismatch SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xu, Man; Kovarik, Libor; Arey, Bruce W.; Engelhard, Mark H.; Ilton, Eugene S.; Perea, Daniel E.; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien] Pacific NW Natl Lab, Richland, WA 99352 USA. EM man.xu@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 9-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400326 ER PT J AU Xu, MZ Mukarakate, C Nimlos, M Trewyn, BG Richards, RM AF Xu, Mengze Mukarakate, Calvin Nimlos, Mark Trewyn, Brian G. Richards, Ryan M. TI Upgrading of biomass pyrolysis with sheet-like mesoporous MFI zeolite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xu, Mengze; Trewyn, Brian G.; Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Mukarakate, Calvin; Nimlos, Mark] Natl Renewable Energy Lab, Golden, CO 80401 USA. EM mxu@mines.edu RI Richards, Ryan/B-3513-2008 NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 376-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105207 ER PT J AU Xu, T AF Xu, Ting TI Toward using protein/peptide as material building block SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. EM tingxu@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 196-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105624 ER PT J AU Yaghi, OM AF Yaghi, Omar M. TI Multivariate metal-organic frameworks for carbon dioxide capture in the presence of water SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 375-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401040 ER PT J AU Yaghi, OM AF Yaghi, Omar M. TI High volumetric methane uptake in aluminum metal-organic frameworks SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 49-ENFL PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104777 ER PT J AU Yan, RX Yan, PD Sun, JW AF Yan, Ruoxue Yan, Peidong Sun, Jianwei TI Biomimic molysulfide co-catalyst for hydrogen photosynthesis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yan, Ruoxue] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Yan, Ruoxue; Yan, Peidong; Sun, Jianwei] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yan, Ruoxue; Yan, Peidong; Sun, Jianwei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yan, Ruoxue] Univ Calif Riverside, Riverside, CA 92521 USA. [Yan, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rxyan@engr.ucr.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 23-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102299 ER PT J AU Yang, DL Hubbard, KM Henderson, KC Devlin, DJ Pacheco, RM AF Yang, Dali Hubbard, Kevin M. Henderson, Kevin C. Devlin, David J. Pacheco, Robin M. TI Thermal stability of NP, VCE, and its composites at isothermal and non-isothermal conditions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.; Devlin, David J.; Pacheco, Robin M.] Los Alamos Natl Lab, MST 7, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 642-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405754 ER PT J AU Yang, PD AF Yang, Peidong TI Semiconductor nanowires for energy conversion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu NR 0 TC 0 Z9 0 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 286-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105128 ER PT J AU Yang, TR Lin, HT Wei, TY Honda, H Dai, M AF Yang, Tairan Lin, Hua-Tay Wei, Tsao-Yi Honda, Hiroshi Dai, Meng TI New functionalized tetracyanoquinodimethanes and precursors for synthetic metals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yang, Tairan] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada. [Lin, Hua-Tay] Oak Ridge Natl Lab, Dept Mat Sci, Oak Ridge, TN 37831 USA. [Wei, Tsao-Yi; Honda, Hiroshi; Dai, Meng] Northwestern Polytech Univ, Dept Bioengn, Fremont, CA 94539 USA. EM yangtairan@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 724-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401372 ER PT J AU Yao, R Laguisma, GAL Osborn, D Taatjes, C Meloni, G AF Yao, Rong Laguisma, Gabrielle Anne L. Osborn, David Taatjes, Craig Meloni, Giovanni TI Low temperature oxidation of furfural using synchrotron photoionization mass spectroscopy SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yao, Rong; Laguisma, Gabrielle Anne L.; Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Osborn, David; Taatjes, Craig] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM ryao4@usfca.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 537-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404248 ER PT J AU Yen, HJ Tsai, HH Kuo, CY Nie, WY Mohite, AD Gupta, G Wang, J Wu, JH Liou, GS Wang, HL AF Yen, Hung-Ju Tsai, Hsinhan Kuo, Cheng-Yu Nie, Wanyi Mohite, Aditya D. Gupta, Gautam Wang, Jian Wu, Jia-Hao Liou, Guey-Sheng Wang, Hsing-Lin TI Flexible nonvolatile polymer memory devices derived from donor-donor and donor-acceptor conjugated polymers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yen, Hung-Ju; Tsai, Hsinhan; Kuo, Cheng-Yu; Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Appl Spect C PCS, Div Chem, Los Alamos, NM 87545 USA. [Nie, Wanyi; Mohite, Aditya D.; Gupta, Gautam] Los Alamos Natl Lab, Mat Synth & Integrated Devices MPA 11, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, Jian] Los Alamos Natl Lab, Mat Sci Radiat & Dynam MST 8, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Wu, Jia-Hao; Liou, Guey-Sheng] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10764, Taiwan. EM hjyen@lanl.gov RI Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 392-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404752 ER PT J AU Yi, S Houtz, EF Harding, KC Field, JA Sedlak, DL Alvarez-Cohen, L AF Yi, Shan Houtz, Erika F. Harding, Katie C. Field, Jennifer A. Sedlak, David L. Alvarez-Cohen, Lisa TI Detection and identification of anaerobic biotransformation products of polyfluorochemicals in aqueous film-forming foams SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yi, Shan; Houtz, Erika F.; Harding, Katie C.; Sedlak, David L.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Field, Jennifer A.] Oregon State Univ, Dept Mol & Environm Toxicol, Corvallis, OR 97331 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM shan_yi@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 861-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400174 ER PT J AU Yoo, S Proulx, C Zuckermann, RN AF Yoo, Stan Proulx, Caroline Zuckermann, Ronald N. TI Improved synthesis of peptoids with electron-deficient side chains and their application in controlling chain conformation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yoo, Stan; Proulx, Caroline; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM SeungheeYoo@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 261-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402725 ER PT J AU Younes, W AF Younes, Walid TI Nuclear fission inside astrophysical plasmas SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Younes, Walid] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM younes1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 52-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402393 ER PT J AU Yu, CJ Aubrey, ML Wiers, BM Keitz, BK Long, JR AF Yu, Chung Jui Aubrey, Michael L. Wiers, Brian M. Keitz, Benjamin K. Long, Jeffrey R. TI Electrochemical cation insertion into metal-organic frameworks SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yu, Chung Jui; Aubrey, Michael L.; Wiers, Brian M.; Keitz, Benjamin K.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mat Sci, Berkeley, CA 94720 USA. EM raymond.yu@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 198-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400743 ER PT J AU Yuan, GB Frei, H AF Yuan, Guangbi Frei, Heinz TI Investigation of nanometer scale silica films as the robust proton conducting, gas impermeable membrane for artificial photosynthesis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yuan, Guangbi; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM gbyuan@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 602-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165106156 ER PT J AU Yuca, N Zhao, H Dogdu, MF Battaglia, VS Liu, G AF Yuca, Neslihan Zhao, Hui Dogdu, Murat Ferhat Battaglia, Vincent S. Liu, Gao TI Effect of flexible polymer binders on electrochemical performance of graphite negative electrode for lithium ion batteries SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yuca, Neslihan; Zhao, Hui; Battaglia, Vincent S.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yuca, Neslihan; Dogdu, Murat Ferhat] Istanbul Tech Univ, Energy Inst, Istanbul, Turkey. EM huizhao@lbl.gov NR 0 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 542-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405032 ER PT J AU Yung, MM Mukarakate, C Engtrakul, C Starace, A AF Yung, Matthew M. Mukarakate, Calvin Engtrakul, Chaiwat Starace, Anne TI Upgrading biomass-derived pyrolysis vapors on catalysts of varying acidity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Yung, Matthew M.; Mukarakate, Calvin; Engtrakul, Chaiwat; Starace, Anne] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM matthew.yung@nrel.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 137-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104860 ER PT J AU Zang, HD Routh, PK Cotlet, M AF Zang, Huidong Routh, Prahlad Kumar Cotlet, Mircea TI Regulating the intermittency of CdSe/ZnS quantum dots through controlled charge transfer SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zang, Huidong; Routh, Prahlad Kumar; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM hzang@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 712-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104236 ER PT J AU Zavarin, M Begg, JD Zhao, PH Boggs, MA Joseph, C Dai, ZR Kersting, AB AF Zavarin, Mavrik Begg, James D. Zhao, Pihong Boggs, Mark A. Joseph, Claudia Dai, Zurong Kersting, Annie B. TI Colloid-facilitated Pu transport mechanisms at the Nevada National Security Site: Linking field evidence, laboratory desorption kinetics, and Pu desorption from glass alteration products SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zavarin, Mavrik; Begg, James D.; Zhao, Pihong; Boggs, Mark A.; Joseph, Claudia; Dai, Zurong; Kersting, Annie B.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Glenn T Seaborg Inst, Livermore, CA 64551 USA. EM zavarin1@llnl.gov NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 95-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167402435 ER PT J AU Zelenay, P Chung, HT Holby, EF Taylor, CD Wu, G AF Zelenay, Piotr Chung, Hoon T. Holby, Edward F. Taylor, Christopher D. Wu, Gang TI Carbon composite non-precious metal catalysts for oxygen reduction in electrochemical energy conversion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zelenay, Piotr; Chung, Hoon T.; Wu, Gang] Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Holby, Edward F.; Taylor, Christopher D.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov RI Wu, Gang/E-8536-2010; Chung, Hoon/A-7916-2012 OI Wu, Gang/0000-0003-4956-5208; Chung, Hoon/0000-0002-5367-9294 NR 0 TC 0 Z9 0 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 543-ENFL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165105351 ER PT J AU Zhang, BA Azoulay, JD Foster, ME AF Zhang, Benjamin A. Azoulay, Jason D. Foster, Michael E. TI Elucidation of features relevant to structural control and band gap narrowing in donor acceptor copolymers using bridgehead imine substituted cyclopentadithiophene derivatives SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhang, Benjamin A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Benjamin A.; Azoulay, Jason D.; Foster, Michael E.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. EM bazhang@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 447-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167405571 ER PT J AU Zhang, GH Yi, H Zhang, GT Deng, Y Bai, RP Zhang, H Krentz, T Miller, JT Kropf, AJ Bunel, EE Lei, AW AF Zhang, Guanghui Yi, Hong Zhang, Guoting Deng, Yi Bai, Ruopeng Zhang, Heng Krentz, Timothy Miller, Jeffrey T. Kropf, A. Jeremy Bunel, Emilio E. Lei, Aiwen TI Direct observation of reduction of Cu(II) to Cu(I) by terminal alkynes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhang, Guanghui; Yi, Hong; Zhang, Guoting; Deng, Yi; Bai, Ruopeng; Zhang, Heng; Lei, Aiwen] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. [Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM guanghuizhang@whu.edu.cn RI ID, MRCAT/G-7586-2011 NR 0 TC 0 Z9 0 U1 3 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 162-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167400709 ER PT J AU Zhang, HF Worton, DR Shen, S Wilson, KR Goldstein, AH AF Zhang, Haofei Worton, David R. Shen, Steve Wilson, Kevin R. Goldstein, Allen H. TI Understanding the evolution of long-chain n-alkanes in the atmosphere using gas chromatography-vacuum ultraviolet-mass spectrometry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhang, Haofei; Worton, David R.; Goldstein, Allen H.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Zhang, Haofei; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Shen, Steve] Univ Calif Berk, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Goldstein, Allen H.] Univ Calif Berk, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM hfzhang@berkeley.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 145-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167403749 ER PT J AU Zhang, M Frei, H AF Zhang, Miao Frei, Heinz TI Direct observations of water oxidation intermediates on Co3O4 nanoparticle catalysts with time-resolved FTIR spectroscopy SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhang, Miao; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM MZhang@lbl.gov NR 1 TC 0 Z9 0 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 119-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102391 ER PT J AU Zhao, CQ Hwang, SH Buchholz, BA Yang, J Hammock, BD Casida, JE AF Zhao, Chunqing Hwang, Sung Hee Buchholz, Bruce A. Yang, Jun Hammock, Bruce D. Casida, John E. TI Determining the receptor target of tetramethylenedisulfotetramine SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhao, Chunqing; Casida, John E.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Hwang, Sung Hee; Yang, Jun; Hammock, Bruce D.] Univ Calif Davis, Dept Entomol & Nematol, Davis, CA 95616 USA. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. EM buchholz2@llnl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 145-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165101595 ER PT J AU Zheng, HM AF Zheng, Haimei TI Nanocrystal shape evolution during growth SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zheng, Haimei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM hmzheng@lbl.gov NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 409-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167401074 ER PT J AU Zheng, YL Giordano, AJ Cowan, SR Fleming, SR Shallcross, RC Gliboff, M Huang, YM Ginger, DS McGrath, DV Armstrong, NR Olson, DC Marder, SR Saavedra, SS AF Zheng, Yilong Giordano, Anthony J. Cowan, Sara R. Fleming, Sean R. Shallcross, R. Clayton Gliboff, Matthew Huang, Yiming Ginger, David S. McGrath, Dominic V. Armstrong, Neal R. Olson, Dana C. Marder, Seth R. Saavedra, S. Scott TI Surface modification of transparent conducting oxides with functionalized perylene diimide dyes: Characterization of orientation, charge-transfer kinetics, and related OPV performance SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zheng, Yilong; Fleming, Sean R.; Shallcross, R. Clayton; Huang, Yiming; McGrath, Dominic V.; Armstrong, Neal R.; Saavedra, S. Scott] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Giordano, Anthony J.; Marder, Seth R.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Giordano, Anthony J.; Marder, Seth R.] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Cowan, Sara R.; Olson, Dana C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gliboff, Matthew] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ginger, David S.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM zhengyl@email.arizona.edu RI Saavedra, Steven/K-6957-2014; Zhou, David/N-5367-2015 OI Saavedra, Steven/0000-0002-9946-2664; NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 473-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165104010 ER PT J AU Zhong, MJ Kim, EK Nulwala, H Star, A Kowalewski, T Matyjaszewski, K AF Zhong, Mingjiang Kim, Eun Kyung Nulwala, Hunaid Star, Alexander Kowalewski, Tomasz Matyjaszewski, Krzysztof TI Block copolymers for rational design of nitrogen-enriched nanocarbons suitable for sustainable energy applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhong, Mingjiang; Kim, Eun Kyung; Nulwala, Hunaid; Kowalewski, Tomasz; Matyjaszewski, Krzysztof] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Nulwala, Hunaid] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Star, Alexander] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM mj_zhong@mit.edu RI Zhong, Mingjiang/F-3470-2011 OI Zhong, Mingjiang/0000-0001-7533-4708 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 8-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404383 ER PT J AU Zhu, HY Sigdel, A Zhang, S Su, D Sun, SH AF Zhu, Huiyuan Sigdel, Aruna Zhang, Sen Su, Dong Sun, Shouheng TI Monodisperse MnAu nanoparticles and their phase segregation for high sensitive H2O2 detection SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhu, Huiyuan; Sigdel, Aruna; Zhang, Sen; Sun, Shouheng] Brown Univ, Providence, RI 02912 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM huiyuan_zhu@brown.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 313-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA CA8JN UT WOS:000349165102568 ER PT J AU Zhu, X Hu, J Liu, HL Dai, S AF Zhu, Xiang Hu, Jun Liu, Honglai Dai, Sheng TI Task-specific porous organic polymer for high CO2/N-2 selectivity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 248th National Meeting of the American-Chemical-Society (ACS) CY AUG 10-14, 2014 CL San Francisco, CA SP Amer Chem Soc C1 [Zhu, Xiang; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Zhu, Xiang; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Knoxville, TN 37831 USA. EM zhuxiang.ecust@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 10 PY 2014 VL 248 MA 456-PMSE PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA CA8KC UT WOS:000349167404802 ER PT J AU Bodaghee, A Tomsick, JA Krivonos, R Stern, D Bauer, FE Fornasini, FM Barriere, N Boggs, SE Christensen, FE Craig, WW Gotthelf, EV Hailey, CJ Harrison, FA Hong, J Mori, K Zhang, WW AF Bodaghee, Arash Tomsick, John A. Krivonos, Roman Stern, Daniel Bauer, Franz E. Fornasini, Francesca M. Barriere, Nicolas Boggs, Steven E. Christensen, Finn E. Craig, William W. Gotthelf, Eric V. Hailey, Charles J. Harrison, Fiona A. Hong, Jaesub Mori, Kaya Zhang, William W. TI INITIAL RESULTS FROM NuSTAR OBSERVATIONS OF THE NORMA ARM SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; novae, cataclysmic variables; stars: neutron; X-rays: binaries ID MAGNETIC CATACLYSMIC VARIABLES; X-RAY SURVEY; GALACTIC-CENTER; STAR-FORMATION; CATALOG; COMPLEX AB Results are presented for an initial survey of the Norma Arm gathered with the focusing hard X-Ray Telescope NuSTAR. The survey covers 0.2 deg(2) of sky area in the 3-79 keV range with a minimum and maximum raw depth of 15 ks and 135 ks, respectively. Besides a bright black-hole X-ray binary in outburst (4U 1630-47) and a new X-ray transient (NuSTAR J163433-473841), NuSTAR locates three sources from the Chandra survey of this region whose spectra are extended above 10 keV for the first time: CXOU J163329.5-473332, CXOU J163350.9-474638, and CXOU J163355.1-473804. Imaging, timing, and spectral data from a broad X-ray range (0.3-79 keV) are analyzed and interpreted with the aim of classifying these objects. CXOU J163329.5-473332 is either a cataclysmic variable or a faint low-mass X-ray binary. CXOU J163350.9-474638 varies in intensity on year-long timescales, and with no multi-wavelength counterpart, it could be a distant X-ray binary or possibly a magnetar. CXOU J163355.1-473804 features a helium-like iron line at 6.7 keV and is classified as a nearby cataclysmic variable. Additional surveys are planned for the Norma Arm and Galactic Center, and those NuSTAR observations will benefit from the lessons learned during this pilot study. C1 [Bodaghee, Arash; Tomsick, John A.; Krivonos, Roman; Barriere, Nicolas; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bodaghee, Arash] Georgia Coll & State Univ, Milledgeville, GA 31061 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Fornasini, Francesca M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gotthelf, Eric V.; Hailey, Charles J.; Mori, Kaya] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, Jaesub] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bodaghee, A (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C]; National Science Foundation Graduate Research Fellowship; BasalCATA [PFB-06/2007]; CONICYT-Chile [FONDECYT 1141218] FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology. This research has made use of: data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center; NASA's Astrophysics Data System Bibliographic Services; and the SIMBAD database operated at CDS, Strasbourg, France. F. M. F. acknowledges support from the National Science Foundation Graduate Research Fellowship. F. E. B. acknowledges support from BasalCATA PFB-06/2007, CONICYT-Chile (FONDECYT 1141218 and "EMBIGGEN" Anillo ACT1101), and Project IC120009 "Millennium Institute of Astrophysics (MAS)" of Iniciativa Cient ' ifica Milenio del Ministerio de Economia, Fomento y Turismo. NR 37 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2014 VL 791 IS 1 AR 68 DI 10.1088/0004-637X/791/1 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AM2CY UT WOS:000339657700068 ER PT J AU Degenaar, N Medin, Z Cumming, A Wijnands, R Wolff, MT Cackett, EM Miller, JM Jonker, PG Homan, J Brown, EF AF Degenaar, N. Medin, Z. Cumming, A. Wijnands, R. Wolff, M. T. Cackett, E. M. Miller, J. M. Jonker, P. G. Homan, J. Brown, E. F. TI PROBING THE CRUST OF THE NEUTRON STAR IN EXO 0748-676 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: eclipsing; stars: individual (EXO 0748-676); stars: neutron; X-rays: binaries ID X-RAY TRANSIENT; PHOTON IMAGING CAMERA; COOLING LIGHT CURVES; BINARY MXB 1659-29; XMM-NEWTON; CEN X-4; QUIESCENT STATE; XTE J1701-462; KS 1731-260; TERZAN 5 AB X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to similar or equal to 5 yr post-outburst. We find that the neutron star temperature remained at similar or equal to 117 eV between 2009 and 2011, but had decreased to similar or equal to 110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature (similar or equal to 95 eV) measured similar or equal to 4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star. C1 [Degenaar, N.; Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Medin, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cumming, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Wolff, M. T.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Cackett, E. M.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Jonker, P. G.] SRON Netherlands Inst Space Res, SRON, NL-3584 CA Utrecht, Netherlands. [Jonker, P. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Homan, J.] MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Brown, E. F.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Degenaar, N (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM degenaar@umich.edu OI Brown, Edward/0000-0003-3806-5339 FU NASA through Hubble Postdoctoral Fellowship from the Space Telescope Science Institute (STScI) [HST-HF-51287.01-A]; NASA through Chandra award [GO3-14050X]; National Aeronautics and Space Administration (NASA) [NAS8-03060, NAS 5-26555]; NSERC Discovery Grant; Office of Naval Research FX N.D. is supported by NASA through Hubble Postdoctoral Fellowship grant number HST-HF-51287.01-A from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Incorporated, under the National Aeronautics and Space Administration (NASA) contract NAS 5-26555. Support for this work was provided by the NASA through Chandra award No. GO3-14050X issued by the Chandra X-ray Observatory Center which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060. A.C. is supported by an NSERC Discovery Grant and is an Associate Member of the CIFAR Cosmology and Gravity program. M.T.W. is supported by the Office of Naval Research. The authors are grateful to Neil Gehrels and the Swift planning team for approving and scheduling the Swift TOO observations of EXO 0748-676. N.D., A.C., R.W., E.C., and E.B. acknowledge the hospitality of the International Space Science Institute in Bern, Switzerland, where part of this work was carried out. The authors are grateful to the anonymous referee and Joel Fridriksson for very useful comments. NR 78 TC 14 Z9 14 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2014 VL 791 IS 1 AR 47 DI 10.1088/0004-637X/791/1/47 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AM2CY UT WOS:000339657700047 ER PT J AU Zhai, X Li, H Bellan, PM Li, ST AF Zhai, Xiang Li, Hui Bellan, Paul M. Li, Shengtai TI THREE-DIMENSIONAL MHD SIMULATION OF THE CALTECH PLASMA JET EXPERIMENT: FIRST RESULTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: jets; ISM: jets and outflows; magnetohydrodynamics ( MHD); methods: numerical ID SCALE MAGNETIC-FIELDS; ACCRETION DISCS; YOUNG STARS; TOWER JETS; MODEL; DISKS; COLLIMATION; ROTATION; OUTFLOWS; DRIVEN AB Magnetic fields are believed to play an essential role in astrophysical jets with observations suggesting the presence of helical magnetic fields. Here, we present three-dimensional (3D) idealMHDsimulations of the Caltech plasma jet experiment using a magnetic tower scenario as the baseline model. Magnetic fields consist of an initially localized dipole-like poloidal component and a toroidal component that is continuously being injected into the domain. This flux injectionmimics the poloidal currents driven by the anode-cathode voltage drop in the experiment. The injected toroidal field stretches the poloidal fields to large distances, while forming a collimated jet along with several other key features. Detailed comparisons between 3D MHD simulations and experimental measurements provide a comprehensive description of the interplay among magnetic force, pressure, and flow effects. In particular, we delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. With suitably chosen parameters that are derived from experiments, the jet in the simulation agrees quantitatively with the experimental jet in terms of magnetic/kinetic/inertial energy, total poloidal current, voltage, jet radius, and jet propagation velocity. Specifically, the jet velocity in the simulation is proportional to the poloidal current divided by the square root of the jet density, in agreement with both the experiment and analytical theory. This work provides a new and quantitative method for relating experiments, numerical simulations, and astrophysical observation, and demonstrates the possibility of using terrestrial laboratory experiments to study astrophysical jets. C1 [Zhai, Xiang; Bellan, Paul M.] CALTECH, Pasadena, CA 91125 USA. [Li, Hui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhai, X (reprint author), CALTECH, Pasadena, CA 91125 USA. EM xzhai@caltech.edu; hli@lanl.gov; pbellan@caltech.edu; sli@lanl.gov OI Zhai, Xiang/0000-0001-6155-091X; Li, Shengtai/0000-0002-4142-3080 FU NSF/DOE; LANL/LDRD; Institutional Computing Programs at LANL; DOE/Office of Fusion Energy Science through CMSO FX The experimental program at Caltech is supported by the NSF/DOE Partnership in Plasma Science. H. L. is grateful to Stirling Colgate, Ken Fowler, and Ellen Zweibel for discussions. H. L. and S. L. are supported by the LANL/LDRD and Institutional Computing Programs at LANL and by DOE/Office of Fusion Energy Science through CMSO. NR 49 TC 6 Z9 6 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2014 VL 791 IS 1 AR 40 DI 10.1088/0004-637X/791/1/40 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AM2CY UT WOS:000339657700040 ER PT J AU Moresco, P Harris, TE Jodoin, V AF Moresco, P. Harris, T. E. Jodoin, V. TI Vorticity generation by the instantaneous release of energy near a reflective boundary SO PHYSICAL REVIEW E LA English DT Article ID SHOCK-BUBBLE INTERACTION; BLAST-WAVE; HOT CHANNELS; GAS; PROPAGATION; INTERFACE; DYNAMICS; REFRACTION; IGNITION; SPHERE AB The instantaneous release of energy in a localized area of a gas results in the formation of a low-density region and a series of shock and expansion waves. If this process occurs near a boundary, the shock reflections can interact with the density inhomogeneity, leading to the baroclinic generation of vorticity and the subsequent organization of the flow into several structures, including a vortex ring. By means of numerical simulations we illustrate the qualitative changes that occur in the pressure wave patterns and vorticity distribution as the distance from the area of energy release to the boundary is varied. Those changes are shown to be related to the combined effect of the shock waves that, respectively, initially move away and towards the center of the low-density region. In particular, we describe how for small enough offset distances the shocks internal to the inhomogeneity can make a substantial contribution to the vorticity field, influencing the circulation and characteristics of the resulting flow structures. C1 [Moresco, P.; Harris, T. E.] AWE, Reading RG7 4PR, Berks, England. [Jodoin, V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Moresco, P (reprint author), AWE, Reading RG7 4PR, Berks, England. FU US Department of Energy National Nuclear Security Administration's Office of Technical Nuclear Forensics; US Department of Energy National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation Research and Development FX Partial support from the US Department of Energy National Nuclear Security Administration's Offices of Technical Nuclear Forensics and Defense Nuclear Nonproliferation Research and Development is gratefully acknowledged. NR 39 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD AUG 8 PY 2014 VL 90 IS 2 AR 023002 DI 10.1103/PhysRevE.90.023002 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CB0GK UT WOS:000349303700004 PM 25215815 ER PT J AU Barton, PT Kemei, MC Gaultois, MW Moffitt, SL Darago, LE Seshadri, R Suchomel, MR Melot, BC AF Barton, Phillip T. Kemei, Moureen C. Gaultois, Michael W. Moffitt, Stephanie L. Darago, Lucy E. Seshadri, Ram Suchomel, Matthew R. Melot, Brent C. TI Structural distortion below the Neel temperature in spinel GeCo2O4 SO PHYSICAL REVIEW B LA English DT Article ID IRON-GERMANIUM SYSTEM; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; X-RAY; TRANSITION; OXIDES; GENI2O4; PHASE AB A structural phase transition from cubic Fd (3) over barm to tetragonal I4(1)/amd symmetry with c/a > 1 is observed at T-S = 16 K in spinel GeCo2O4 below the Neel temperature T-N = 21 K. Structural and magnetic ordering appear to be decoupled with the structural distortion occurring at 16 K while magnetic order occurs at 21 K as determined by magnetic susceptibility and heat capacity measurements. An elongation of CoO6 octahedra is observed in the tetragonal phase of GeCo2O4. We present the complete crystallographic description of GeCo2O4 in the tetragonal I4(1)/amd space group and discuss the possible origin of this distortion in the context of known structural transitions in magnetic spinels. GeCo2O4 exhibits magnetodielectric coupling below T-N. The related spinels GeFe2O4 and GeNi2O4 have also been examined for comparison. Structural transitions were not detected in either compound down to T approximate to 8 K. Magnetometry experiments reveal in GeFe2O4 a second antiferromagnetic transition, with T-N1 = 7.9 K and T-N2 = 6.2 K, that was previously unknown and that bears a similarity to the magnetism of GeNi2O4. C1 [Barton, Phillip T.; Kemei, Moureen C.; Gaultois, Michael W.; Moffitt, Stephanie L.; Darago, Lucy E.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Barton, Phillip T.; Kemei, Moureen C.; Gaultois, Michael W.; Moffitt, Stephanie L.; Darago, Lucy E.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Melot, Brent C.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RP Barton, PT (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM kemei@mrl.ucsb.edu; seshadri@mrl.ucsb.edu RI Seshadri, Ram/C-4205-2013; Gaultois, Michael/D-2867-2009; Barton, Phillip/H-3847-2011; Melot, Brent/B-6456-2008; OI Seshadri, Ram/0000-0001-5858-4027; Gaultois, Michael/0000-0003-2172-2507; Melot, Brent/0000-0002-7078-8206; Darago, Lucy/0000-0001-7515-5558 FU NSF [DMR 1105301]; Schlumberger Foundation; NSERC; International Fulbright Science & Technology Award; MRSEC of the NSF [DMR 1121053]; US Department of Energy, Office of Science [DE-AC02-06CH11357]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Gavin Lawes for preliminary measurements on GeCo2O4 and John Mitchell for helpful discussions. We thank Christina Birkel for SPS. This project was supported by the NSF through Grant No. DMR 1105301. P.T.B. was supported by the NSF Graduate Research Fellowship Program. M.C.K. was supported by the Schlumberger Foundation Faculty for the Future fellowship. M.W.G. was supported by a NSERC Postgraduate Scholarship and an International Fulbright Science & Technology Award. We acknowledge the use of the MRL Central Facilities, which are supported by the MRSEC Program of the NSF under Grant No. DMR 1121053, a member of the NSF-funded Materials Research Facilities Network (http://www.mrfn.org). Use of data from the 11-BM beamline at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Data were also collected on the ID31 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We thank Andy Fitch and Caroline Curfs for providing assistance in using beamline ID31. NR 46 TC 7 Z9 7 U1 7 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 8 PY 2014 VL 90 IS 6 AR 064105 DI 10.1103/PhysRevB.90.064105 PG 7 WC Physics, Condensed Matter SC Physics GA AU6UJ UT WOS:000345739300001 ER PT J AU Kraft, B Tegetmeyer, HE Sharma, R Klotz, MG Ferdelman, TG Hettich, RL Geelhoed, JS Strous, M AF Kraft, Beate Tegetmeyer, Halina E. Sharma, Ritin Klotz, Martin G. Ferdelman, Timothy G. Hettich, Robert L. Geelhoed, Jeanine S. Strous, Marc TI The environmental controls that govern the end product of bacterial nitrate respiration SO SCIENCE LA English DT Article ID REDUCTION; SEDIMENTS; DENITRIFICATION; AMMONIFICATION; ANAMMOX AB In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. We combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment. C1 [Kraft, Beate; Tegetmeyer, Halina E.; Ferdelman, Timothy G.; Geelhoed, Jeanine S.; Strous, Marc] Max Planck Inst Marine Mikrobiol, D-28359 Bremen, Germany. [Tegetmeyer, Halina E.; Strous, Marc] Univ Bielefeld, Ctr Biotechnol, Inst Genome Res & Syst Biol, D-33615 Bielefeld, Germany. [Sharma, Ritin; Hettich, Robert L.] Univ Tennessee, UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Sharma, Ritin; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Klotz, Martin G.] Univ N Carolina, Dept Biol Sci, Charlotte, NC 28223 USA. [Klotz, Martin G.] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. [Geelhoed, Jeanine S.] NIOZ Royal Netherlands Inst Sea Res, NL-4401 NT Yerseke, Netherlands. [Strous, Marc] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. RP Strous, M (reprint author), Max Planck Inst Marine Mikrobiol, D-28359 Bremen, Germany. EM mstrous@ucalgary.ca RI Klotz, Martin/D-2091-2009; Hettich, Robert/N-1458-2016; Strous, Marc/B-4064-2017; OI Klotz, Martin/0000-0002-1783-375X; Hettich, Robert/0000-0001-7708-786X; Strous, Marc/0000-0001-9600-3828; Kraft, Beate/0000-0003-0310-5206 FU European Research Council (ERC) [MASEM 242635]; ERC [StG 306933]; University of North Carolina at Charlotte; NSF [EF-0541797]; State Key Laboratory of Marine Environmental Science at Xiamen University, China; German Federal State Nordrhein-Westfalen; Max Planck Society FX Supported by European Research Council (ERC) starting grant MASEM 242635 (M.S.); ERC grant StG 306933 (J.S.G.); research incentive funds from the University of North Carolina at Charlotte, NSF grant EF-0541797, and a distinguished fellowship at the State Key Laboratory of Marine Environmental Science at Xiamen University, China (M.G.K.); the German Federal State Nordrhein-Westfalen; and the Max Planck Society. We thank I. Kattelmann and R. Vahrenhorst for their support in metagenomic sequencing and analysis, and T. Hargesheimer for CARD-FISH analysis. Raw sequencing data are publicly available under accession numbers SAMN02566827-30, SAMN02592751, SAMN02584197-8 (http://trace.ncbi.nlm.nih.gov/Traces/sra), JDSF00000000, JDSG00000000, and JDSH00000000 (www.ncbi.nlm.nih.gov/bioproject/231836). NR 17 TC 49 Z9 51 U1 26 U2 270 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 8 PY 2014 VL 345 IS 6197 BP 676 EP 679 DI 10.1126/science.1254070 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM6GW UT WOS:000339962800040 PM 25104387 ER PT J AU Kulshreshtha, PK Maruyama, K Kiani, S Blackwell, J Olynick, DL Ashby, PD AF Kulshreshtha, Prashant K. Maruyama, Ken Kiani, Sara Blackwell, James Olynick, Deirdre L. Ashby, Paul D. TI Harnessing entropic and enthalpic contributions to create a negative tone chemically amplified molecular resist for high-resolution lithography SO NANOTECHNOLOGY LA English DT Article DE EUV; cross linker; chemically amplified resist; high resolution; modulus ID EXTREME-ULTRAVIOLET LITHOGRAPHY; NANOMETER LITHOGRAPHY; PATTERN COLLAPSE; CYCLIC OLIGOMER; NORIA; POLYMERIZATION; DERIVATIVES; MECHANISM AB Here we present a new resist design concept. By adding dilute cross-linkers to a chemically amplified molecular resist, we synergize entropic and enthalpic contributions to dissolution by harnessing both changes to molecular weight and changes in intermolecular bonding to create a system that outperforms resists that emphasize one contribution over the other. We study patterning performance, resist modulus, solubility kinetics and material redistribution as a function of cross-linker concentration. Cross-linking varies from dilute oligomerization to creating a highly networked system. The addition of small amounts of cross-linker improves resist performance by reducing material diffusion and redistribution during development and stiffening the features to avoid pattern collapse. The new dilute cross-linking system achieves the highest resolution of a sensitive molecular glass resist at 20 nm half-pitch and line-edge roughness (LER) of 4.3 nm and can inform new resist design towards patterned feature control at the molecular level. C1 [Kulshreshtha, Prashant K.; Kiani, Sara; Olynick, Deirdre L.; Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Maruyama, Ken] JSR Micro INC, Sunnyvale, CA 94089 USA. [Kiani, Sara] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. [Blackwell, James] Intel Corp, Components Res, Hillsboro, OR 97124 USA. RP Kulshreshtha, PK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dlolynick@lbl.gov; pdashby@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Intel Corporation; JSR Micro; US Department of Energy [DE-AC02-05CH11231] FX The authors are greatly indebted to Prof. Tadatomi Nishikubo, Kanagawa University (Japan) for discussion about Noria and Dr Bill Hinsberg, Columbia Hill Technical Consulting (USA) for helpful discussions and suggestions related to this work and manuscript. We would like to thank Miquel Salmeron for the use of his Bruker Icon AFM. We would also like to thank Polina Babina, Pradeep Parera, Scott Dhuey, Erin Wood, Ed Wong (Molecular Foundry), Weilun Chao (CXRO), Sergey Babin (aBeam Technology) and EUV Beamline staff (Advanced Light Source) for their help and discussions. This work was supported by the Intel Corporation (PK, PA, DO and JB), JSR Micro (KM) and US Department of Energy through experiments performed at the Molecular Foundry and Advanced Light Source under Contract No. DE-AC02-05CH11231. NR 43 TC 4 Z9 4 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 8 PY 2014 VL 25 IS 31 AR 315301 DI 10.1088/0957-4484/25/31/315301 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AL8KN UT WOS:000339387500004 PM 25026410 ER PT J AU Piceno, YM Reid, FC Tom, LM Conrad, ME Bill, M Hubbard, CG Fouke, BW Graff, CJ Han, JB Stringfellow, WT Hanlon, JS Hu, P Hazen, TC Andersen, GL AF Piceno, Yvette M. Reid, Francine C. Tom, Lauren M. Conrad, Mark E. Bill, Markus Hubbard, Christopher G. Fouke, Bruce W. Graff, Craig J. Han, Jiabin Stringfellow, William T. Hanlon, Jeremy S. Hu, Ping Hazen, Terry C. Andersen, Gary L. TI Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE petroleum; reservoir; microbiology; phylochip; stable isotopes ID SUBSURFACE OIL-RESERVOIRS; CRUDE-OIL; PETROLEUM RESERVOIRS; DEEP SUBSURFACE; CLONE LIBRARY; SINGLE-CELL; BIODEGRADATION; SULFATE; FIELD; SEA AB A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24-27 degrees C), Kuparuk (47-70 degrees C), Sag River (80 degrees C), and lvishak (80-83 degrees C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and lvishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined delta D and delta C-13 values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured lvishak well compared to the non-soured well. In the non-soured lvishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences. C1 [Piceno, Yvette M.; Reid, Francine C.; Tom, Lauren M.; Conrad, Mark E.; Bill, Markus; Hubbard, Christopher G.; Stringfellow, William T.; Hanlon, Jeremy S.; Hu, Ping; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Piceno, Yvette M.; Reid, Francine C.; Tom, Lauren M.; Conrad, Mark E.; Bill, Markus; Hubbard, Christopher G.; Fouke, Bruce W.; Stringfellow, William T.; Hu, Ping; Andersen, Gary L.] Energy Biosci Inst, Berkeley, CA USA. [Fouke, Bruce W.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Graff, Craig J.; Han, Jiabin] BP Explorat Co Ltd, Prod Chem, Anchorage, AK USA. [Stringfellow, William T.; Hanlon, Jeremy S.] Univ Pacific, Ecol Engn Res Program, Stockton, CA 95211 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. RP Andersen, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Ctr Environm Biotechnol, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM glandersen@lbl.gov RI Tom, Lauren/E-9739-2015; Hu, Ping/G-2384-2015; Andersen, Gary/G-2792-2015; Conrad, Mark/G-2767-2010; Hubbard, Christopher/J-6150-2014; Stringfellow, William/O-4389-2015; Piceno, Yvette/I-6738-2016; Bill, Markus/D-8478-2013; Hazen, Terry/C-1076-2012 OI Andersen, Gary/0000-0002-1618-9827; Hubbard, Christopher/0000-0002-8217-8122; Stringfellow, William/0000-0003-3189-5604; Piceno, Yvette/0000-0002-7915-4699; Bill, Markus/0000-0001-7002-2174; Hazen, Terry/0000-0002-2536-9993 FU University of California at Berkeley, Energy Biosciences Institute under its U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Sharon Borglin for the suggestion of adding salt to the emulsified produced fluid sample to break the emulsion, allowing further processing. We thank the reviewers for constructive comments and suggestions. This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231. NR 73 TC 3 Z9 3 U1 1 U2 38 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD AUG 7 PY 2014 VL 5 AR 409 DI 10.3389/fmicb.2014.00409 PG 13 WC Microbiology SC Microbiology GA AO7EW UT WOS:000341515900001 PM 25147549 ER PT J AU Moseley, M Allerman, A Crawford, M Wierer, JJ Smith, M Biedermann, L AF Moseley, Michael Allerman, Andrew Crawford, Mary Wierer, Jonathan J., Jr. Smith, Michael Biedermann, Laura TI Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID REVERSE-BIAS LEAKAGE; MOLECULAR-BEAM EPITAXY; GAN SCHOTTKY DIODES; SCREW DISLOCATIONS; FORCE MICROSCOPY; UV DEVICES; NANOPIPES; OPERATION; NITRIDE; DENSITY AB Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations. (C) 2014 AIP Publishing LLC. C1 [Moseley, Michael; Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J., Jr.; Smith, Michael; Biedermann, Laura] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moseley, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mwmosel@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 52 TC 13 Z9 13 U1 7 U2 57 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2014 VL 116 IS 5 AR 053104 DI 10.1063/1.4891830 PG 7 WC Physics, Applied SC Physics GA AO2TM UT WOS:000341178900004 ER PT J AU Perry, WL Duque, ALH AF Perry, William Lee Duque, Amanda L. Higginbotham TI Micro to mesoscale temperature gradients in microwave heated energetic materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EXPLOSIVES; IGNITION; DECOMPOSITION AB Temperature gradients will appear in any microwave-heated heterogeneous system where there is contrast in the complex permittivity of the constituent materials. The magnitude of the gradients depends on several factors that include the permittivity, thermal conductivity, length scale, and thermal diffusivity. In general, it is challenging to measure the absolute temperature accurately in a strong microwave field; the presence of large gradients can further complicate the interpretation of temperature measurements. These issues are especially important during the microwave heating of highly exothermic chemical reaction systems, such as those containing explosives or propellants. It was therefore the intent of this work to theoretically and numerically investigate the nature of microwave-induced thermal gradients in energetic systems over a wide range of length scales, primarily for the purpose of interpreting temperature measurement. (C) 2014 AIP Publishing LLC. C1 [Perry, William Lee; Duque, Amanda L. Higginbotham] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perry, WL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wperry@lanl.gov OI Duque, Amanda/0000-0002-2023-1389; Perry, William/0000-0003-1993-122X FU Joint DoD-DOE Munitions Program FX We appreciate the support of the Joint DoD-DOE Munitions Program. We also appreciate many helpful discussions, and the insight of Dr. Bryan Henson and Dr. Laura Smilowitz of Los Alamos National Laboratory, LA-UR-14-23709. NR 26 TC 1 Z9 1 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2014 VL 116 IS 5 AR 054911 DI 10.1063/1.4892391 PG 9 WC Physics, Applied SC Physics GA AO2TM UT WOS:000341178900089 ER PT J AU Tringe, JW Glascoe, EA McClelland, MA Greenwood, D Chambers, RD Springer, HK Levie, HW AF Tringe, J. W. Glascoe, E. A. McClelland, M. A. Greenwood, D. Chambers, R. D. Springer, H. K. Levie, H. W. TI Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EXPLOSIVES; MODEL; SIMULATIONS; TRANSITION AB In thermal explosions of the nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based explosives LX-10 and PBX-9501, the pre-ignition spatial and temporal heating profile defines the ignition location. The ignition location then determines the extent of inertial confinement and the violence of the resulting deflagration. In this work, we present results of experiments in which similar to 23 g cylinders of LX-10 and PBX 9501 in thin-walled aluminum confinement vessels were subjected to identical heating profiles but which presented starkly different energy release signatures. Post-explosion LX-10 containment vessels were completely fragmented, while the PBX 9501 vessels were merely ruptured. Flash x-ray radiography images show that the initiation location for the LX-10 is a few mm farther from the end caps of the vessel relative to the initiation location of PBX 9501. This difference increases deflagration confinement for LX-10 at the time of ignition and extends the pressurization time during which the deflagration front propagates in the explosive. The variation in the initiation location, in turn, is determined by the thermal boundary conditions, which differ for these two explosives because of the larger coefficient of thermal expansion and greater thermal stability of the Viton binder in LX-10 relative to the estane and bis(2,2-dinitropropyl) acetal/formal binder of the PBX 9501. The thermal profile and initiation location were modeled for LX-10 using the hydrodynamics and structures code ALE3D; results indicate temperatures in the vicinity of the ignition location in excess of 274 degrees C near the time of ignition. The conductive burn rates for these two explosives, as determined by flash x-ray radiography, are comparable in the range 0.1-0.2 mm/mu s, somewhat faster than rates observed by strand burner experiments for explosives in the temperature range 150-180 degrees C and pressures up to 100 MPa. The thinnest-wall aluminum containment vessels presented here rupture at lower pressures, in the range 10 MPa, suggesting that moderately higher temperatures and pressures are present near the deflagration front. For these explosives, however the most important property for determining deflagration violence is the degree of inertial confinement. (C) 2014 AIP Publishing LLC. C1 [Tringe, J. W.; Glascoe, E. A.; McClelland, M. A.; Greenwood, D.; Chambers, R. D.; Springer, H. K.; Levie, H. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tringe, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tringe2@llnl.gov FU Joint DoD-DOE Munitions Technology Development Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We gratefully acknowledge helpful conversations with Jack Reaugh and Kevin Vandersall of LLNL. We also thank Clark Souers at LLNL for performing detonation simulations in ALE3D. This research was partially supported by the Joint DoD-DOE Munitions Technology Development Program. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 27 TC 0 Z9 0 U1 6 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2014 VL 116 IS 5 AR 054903 DI 10.1063/1.4891994 PG 10 WC Physics, Applied SC Physics GA AO2TM UT WOS:000341178900081 ER PT J AU Frischknecht, AL Halligan, DO Parks, ML AF Frischknecht, Amalie L. Halligan, Deaglan O. Parks, Michael L. TI Electrical double layers and differential capacitance in molten salts from density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FUNDAMENTAL-MEASURE-THEORY; FLUID-SOLID EQUILIBRIUM; HARD-SPHERE MODEL; IONIC LIQUIDS; MONTE-CARLO; STATISTICAL-MECHANICS; PRIMITIVE MODEL; DIMER MODEL; INTERFACE; ELECTROLYTE AB Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory. (C) 2014 AIP Publishing LLC. C1 [Frischknecht, Amalie L.; Parks, Michael L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Halligan, Deaglan O.] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. RP Frischknecht, AL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM alfrisc@sandia.gov RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU NNSA Advanced Simulation and Computation (ASC) Program; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program; U.S. Department of Energy [DE-AC04-94AL85000] FX We thank Professor S. Lamperski and Dr. J. Klos for sharing their MC simulation data shown in Figs. 1-5. This work was supported by the NNSA Advanced Simulation and Computation (ASC) Program and by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories (ALF). This work was also supported by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program (D.O.H. and M. L. P.). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 41 TC 3 Z9 3 U1 4 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2014 VL 141 IS 5 AR 054708 DI 10.1063/1.4891368 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN6OC UT WOS:000340713100044 PM 25106601 ER PT J AU Wagner, AF Dawes, R Continetti, RE Guo, H AF Wagner, Albert F. Dawes, Richard Continetti, Robert E. Guo, Hua TI Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; INFRARED-ABSORPTION SPECTRUM; HO PLUS CO; TRANS-HOCO; QUANTUM DYNAMICS; STATE; CHEMISTRY; DISSOCIATION; SPECTROSCOPY; CONSTANTS AB The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence experiments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D) + CO2 on several recent ab initio potential energy surfaces for the HOCO system. The tunneling calculations involve effective one-dimensional barriers based on steepest descent paths computed on each potential energy surface. The resulting tunneling probabilities are converted into H(D) OCO survival fractions using a model developed by the Continetti group in which every oscillation of the H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are examined with the best qualitative agreement with experiment occurring for the PIP-NN surface based on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical shape along their reaction paths. The PIP surface is a less accurate fit to a smaller ab initio data set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN. The LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible with experiment. This surface also has a small discontinuity that is easily repaired. On each surface, four different approximate tunneling methods are compared but only the small curvature tunneling method and the improved semiclassical transition state method produce useful results on all four surfaces. The results of these two methods are generally comparable and in qualitative agreement with experiment on the PIP-NN and CASPT2 surfaces. The original semiclassical transition state theory method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. The Eckart tunneling method uses the least amount of information about the reaction path and produces too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half their measured values. (C) 2014 AIP Publishing LLC. C1 [Wagner, Albert F.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Dawes, Richard] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Continetti, Robert E.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92093 USA. [Guo, Hua] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. RP Wagner, AF (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM wagner@anl.gov RI Guo, Hua/J-2685-2014; Dawes, Richard/C-6344-2015; OI Guo, Hua/0000-0001-9901-053X; Continetti, Robert/0000-0002-0685-4459 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-06CH11357, DE-SC0010616, DE-FG03-98ER14879, DE-FG02-05ER15694] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences under Contract No. DE-AC02-06CH11357 (A. F. W.) and Award Nos. DE-SC0010616 (R. D.), DE-FG03-98ER14879 (R. E. C.), and DE-FG02-05ER15694 (H.G.). NR 49 TC 6 Z9 6 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2014 VL 141 IS 5 AR 054304 DI 10.1063/1.4891675 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN6OC UT WOS:000340713100027 PM 25106584 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Dias, FA Tomei, TRFP Novaes, SF Padula, SS Bernardes, CA Gregores, EM Mercadante, PG Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Kramer, M Krucker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Ntomari, E Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Stein, M Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Goebel, K Gorner, M Gosselink, M Haller, J Hoing, R Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nurnberg, A Oberst, O Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Jones, J Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Dugad, S Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbrescia, M Barbone, L Calabria, C Chhibra, SS De Palma, M Marangelli, B Nuzzo, S Pompili, A Radogna, R Selvaggi, G Singh, G Venditti, R Creanza, D De Filippis, N Iaselli, G Maggi, G My, S Pugliese, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Albergo, S Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Ciulli, V D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S Ferretti, R Lo Vetere, M Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Dinardo, ME Fiorendi, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Manzoni, RA Martelli, A Marzocchi, B Paganoni, M Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Iorio, AOM Cavallo, N Fabozzi, F Di Guida, S Meola, S Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Zotto, P Zucchetta, A Zumerle, G Bisello, D Branca, A Carlin, R Galanti, M Gasparini, F Gasparini, U Giubilato, P Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Tosi, M Zotto, P Zucchetta, A Zumerle, G Kanishchev, K Lazzizzera, I Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Biasini, M Fano, L Lariccia, P Mantovani, G Romeo, F Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Martini, L Messineo, A Rizzi, A Tonelli, G Broccolo, G Donato, S Fiori, F Foa, L Ligabue, F Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Barone, L Del Re, D Grassi, M Longo, E Margaroli, F Micheli, F Nourbakhsh, S Organtini, G Rahatlou, S Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Amapane, N Argiro, S Bellan, R Casasso, S Costa, M Degano, A Migliore, E Monaco, V Ortona, G Pacher, L Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Arcidiacono, R Arneodo, M Obertino, MM Ruspa, M Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Umer, T Zanetti, A Candelise, V Della Ricca, G La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Ahmad, A Ahmad, M Asghar, MI Butt, J Hassan, Q Hoorani, HR Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Korenkov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C de Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Mulders, M Musella, P Orsini, L Cortezon, EP Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Treille, D Tsirou, A Veres, GI Vlimant, J Wohri, HK Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Ronga, FJ Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Favaro, C Hinzmann, A Hreus, T Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, D Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Richardson, C Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Incandela, J Justus, C Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Gray, J Kenny, R Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, P Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, W Woods, N AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Dias, F. A. Fernandez Perez Tomei, T. R. Novaes, S. F. Padula, Sandra S. Bernardes, C. A. Gregores, E. M. Mercadante, P. G. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Gosselink, M. Haller, J. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbruck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Jones, J. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Dugad, S. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. De Palma, M. Marangelli, B. Nuzzo, S. Pompili, A. Radogna, R. Selvaggi, G. Singh, G. Venditti, R. Creanza, D. De Filippis, N. Iaselli, G. Maggi, G. My, S. Pugliese, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Albergo, S. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Ciulli, V. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. Ferretti, R. Lo Vetere, M. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Dinardo, M. E. Fiorendi, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Manzoni, R. A. Martelli, A. Marzocchi, B. Paganoni, M. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Iorio, A. O. M. Cavallo, N. Fabozzi, F. Di Guida, S. Meola, S. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Zotto, P. Zucchetta, A. Zumerle, G. Bisello, D. Branca, A. Carlin, R. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Kanishchev, K. Lazzizzera, I. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Biasini, M. Fano, L. Lariccia, P. Mantovani, G. Romeo, F. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Martini, L. Messineo, A. Rizzi, A. Tonelli, G. Broccolo, G. Donato, S. Fiori, F. Foa, L. Ligabue, F. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Barone, L. Del Re, D. Grassi, M. Longo, E. Margaroli, F. Micheli, F. Nourbakhsh, S. Organtini, G. Rahatlou, S. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Amapane, N. Argiro, S. Bellan, R. Casasso, S. Costa, M. Degano, A. Migliore, E. Monaco, V. Ortona, G. Pacher, L. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Arcidiacono, R. Arneodo, M. Obertino, M. M. Ruspa, M. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Umer, T. Zanetti, A. Candelise, V. Della Ricca, G. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Ahmad, A. Ahmad, M. Asghar, M. I. Butt, J. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Beiro Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Korenkov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Mulders, M. Musella, P. Orsini, L. Cortezon, E. Palencia Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Favaro, C. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Richardson, C. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wurthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Gray, J. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Measurement of WZ and ZZ production in pp collisions at in final states with b-tagged jets SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID LHC AB Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either , or , , or ). The results are based on data corresponding to an integrated luminosity of 18.9 fb collected with the CMS detector at the Large Hadron Collider. The measured cross sections, and , are consistent with next-to-leading order quantum chromodynamics calculations. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst 3 A, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3 B, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kraemer, M.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Gosselink, M.; Haller, J.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbruck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beiro Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, Inst Fis Cantabria IFCA, CSIC, E-39005 Santander, Spain. [Genchev, V.; Iaydjiev, P.; Contardo, D.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Sharma, A.; Abdulsalam, A.; Mohanty, A. K.; Giordano, F.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Fiorendi, S.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Meola, S.; Galanti, M.; Galanti, M.; Palla, F.; Pelliccioni, M.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Cortezon, E. Palencia; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [CMS Collaboration] CERN, Geneva, Switzerland. [Jeitler, M.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Univ, Suez, Egypt. [Elgammal, S.] British Univ Egypt, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] Zewail City Sci & Technol, Zewail, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Brew, C.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Codispoti, Giuseppe/F-6574-2014; Yazgan, Efe/A-4915-2015; Cerrada, Marcos/J-6934-2014; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Novaes, Sergio/D-3532-2012; de la Cruz, Begona/K-7552-2014; Montanari, Alessandro/J-2420-2012; Manganote, Edmilson/K-8251-2013; Scodellaro, Luca/K-9091-2014; Lopez Virto, Amparo/K-9996-2014; Josa, Isabel/K-5184-2014; Lokhtin, Igor/D-7004-2012; Gonzalez Caballero, Isidro/E-7350-2010; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Dudko, Lev/D-7127-2012; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Flix, Josep/G-5414-2012; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Lo Vetere, Maurizio/J-5049-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Chinellato, Jose Augusto/I-7972-2012; Petrushanko, Sergey/D-6880-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Calderon, Alicia/K-3658-2014; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009 OI Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Novaes, Sergio/0000-0003-0471-8549; Montanari, Alessandro/0000-0003-2748-6373; Scodellaro, Luca/0000-0002-4974-8330; Lopez Virto, Amparo/0000-0002-8707-5392; Gonzalez Caballero, Isidro/0000-0002-8087-3199; Calvo Alamillo, Enrique/0000-0002-1100-2963; Dudko, Lev/0000-0002-4462-3192; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Flix, Josep/0000-0003-2688-8047; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Lo Vetere, Maurizio/0000-0002-6520-4480; Rovelli, Tiziano/0000-0002-9746-4842; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU, Regional Development Fund; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 43 TC 4 Z9 4 U1 7 U2 72 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD AUG 7 PY 2014 VL 74 IS 8 AR 2973 DI 10.1140/epjc/s10052-014-2973-5 PG 22 WC Physics, Particles & Fields SC Physics GA AN3JV UT WOS:000340484600001 ER PT J AU Kemper, TW Larsen, RE Gennett, T AF Kemper, Travis W. Larsen, Ross E. Gennett, Thomas TI Relationship between Molecular Structure and Electron Transfer in a Polymeric Nitroxyl-Radical Energy Storage Material SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RECHARGEABLE BATTERIES; FORCE-FIELD; CATHODES; SIMULATION; CHARGES; SYSTEMS AB In recent years, stable organic radical functional groups have been incorporated into a variety of polymeric materials for use as electrodes within energy storage devices, for example, batteries and capacitors. With the complex nature of the charge-transfer processes in a polymer matrix, the morphologies of the polymer films can have a significant impact on the redox behavior of the organic-based radical. To elucidate possible effects of packing on electron-transport mechanisms, theoretical modeling of the well-characterized cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA) was conducted. Polymer morphologies were modeled using classical molecular dynamics simulations, and subsequently, the electronic-coupling matrix element between each radical site was calculated. Building on a previously derived treatment of diffusion in inhomogeneous materials, an expression for an effective electron diffusion length and an effective electron diffusion rate was derived in terms of an electronic-coupling-weighted radial distribution function. Two primary distances were found to contribute to the effective electron transfer length of 5.5 angstrom with a majority of the electron transfer, nearly 85%, occurring between radical sites on different polymer chains. Finally, we point out that this analysis of charge transfer using an electronic-coupling-weighted radial distribution function has application beyond the specific system addressed here and that it may prove useful more generally for simulating electron-transfer processes in disordered molecular materials. C1 [Kemper, Travis W.; Larsen, Ross E.] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Gennett, Thomas] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Kemper, TW (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Travis.Kemper@nrel.gov; Ross.Larsen@nrel.gov RI Larsen, Ross/E-4225-2010 OI Larsen, Ross/0000-0002-2928-9835 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC36-08GO28308]; Department of Energy's Office of Energy Efficiency and Renewable Energy at the National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308. The research was performed using resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. NR 32 TC 16 Z9 16 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17213 EP 17220 DI 10.1021/jp501628z PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300005 ER PT J AU Davis, DJ Lambert, TN Vigil, JA Rodriguez, MA Brumbach, MT Coker, EN Limmer, SJ AF Davis, Danae J. Lambert, Timothy N. Vigil, Julian A. Rodriguez, Mark A. Brumbach, Michael T. Coker, Eric N. Limmer, Steven J. TI Role of Cu-Ion Doping in Cu-alpha-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOSTRUCTURED MANGANESE OXIDES; METAL-AIR BATTERIES; ELECTRODE MATERIALS; HYBRID MATERIALS; ALKALINE-MEDIUM; ENERGY-STORAGE; REACTION ORR; FUEL-CELLS; CATALYSTS; GRAPHENE AB The role of Cu-ion doping in alpha-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Cu-doped alpha-MnO2 nanowires (Cu-alpha-MnO2) were prepared with varying amounts (up to similar to 3%) of Cu2+ using a hydrothermal method. The electrocatalytic data indicate that Cu-alpha-MnO2 nanowires have up to 74% higher terminal current densities, 2.5 times enhanced kinetic rate constants, and 66% lower charge transfer resistances that trend with Cu content, exceeding values attained by alpha-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content at the surface of the Cu-alpha-MnO2 nanowires. The Mn3+/Mn4+ couple is the mediator for the rate-limiting redox-driven O-2/OH- exchange. O-2 adsorbs via an axial site (the e(g) orbital on the Mn3+ d(4) ion) at the surface or at edge defects of the nanowire, and the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O-2 adsorbates and faster rates of reduction. A smaller crystallite size (roughly half) for Cu-alpha-MnO2 leading to a higher density of (catalytic) edge defect sites was also observed. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline electrolyte and an increase in Mn3+ character at the surface of the oxide. C1 [Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.] Sandia Natl Labs, Dept Mat Devices & Energy Technol, Albuquerque, NM 87185 USA. [Rodriguez, Mark A.; Brumbach, Michael T.; Limmer, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Coker, Eric N.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. RP Lambert, TN (reprint author), Sandia Natl Labs, Dept Mat Devices & Energy Technol, POB 5800, Albuquerque, NM 87185 USA. EM tnlambe@sandia.gov FU Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 47 TC 21 Z9 21 U1 13 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17342 EP 17350 DI 10.1021/jp5039865 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300019 ER PT J AU Verdal, N Udovic, TJ Stavila, V Tang, WS Rush, JJ Skripov, AV AF Verdal, Nina Udovic, Terrence J. Stavila, Vitalie Tang, Wan Si Rush, John J. Skripov, Alexander V. TI Anion Reorientations in the Superionic Conducting Phase of Na2B12H12 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLVENT-FREE SYNTHESIS; LI2B12H12; NA; DECOMPOSITION; DESORPTION; SCATTERING; STABILITY; SYSTEM AB Quasielastic neutron scattering (QENS) methods were used to characterize the reorientational dynamics of the dodecahydro-closo-dodecaborate (B12H122-) anions in the high-temperature, superionic conducting phase of Na2B12H12. The icosahedral anions in this disordered cubic phase were found to undergo rapid reorientational motions, on the order of 10(11) jumps s(-1) above 530 K, consistent with previous NMR measurements and neutron elastic-scattering fixed-window scans. QENS measurements as a function of the neutron momentum transfer suggest a reorientational mechanism dominated by small-angle jumps around a single axis. The results show a relatively low activation energy for reorientation of 259 meV (25 kJ mol(-1)). C1 [Verdal, Nina; Udovic, Terrence J.; Tang, Wan Si; Rush, John J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Verdal, Nina; Tang, Wan Si; Rush, John J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Skripov, Alexander V.] Russian Acad Sci, Ural Branch, Inst Met Phys, Ekaterinburg 620990, Russia. RP Verdal, N (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RI Skripov, Alexander/K-4525-2013 OI Skripov, Alexander/0000-0002-0610-5538 FU DOE EERE [DE-EE0002978, DE-AI-01-05EE11104, DE-AC04-94AL85000]; Russian Foundation for Basic Research [12-03-00078]; U.S. Civilian Research & Development Foundation (CRDF Global) [RUP1-7076-EK-12]; National Science Foundation [OISE-9531011, DMR-0944772] FX This work was partially supported by the DOE EERE through Grant Nos. DE-EE0002978, DE-AI-01-05EE11104, and DE-AC04-94AL85000 and by the Russian Foundation for Basic Research under Grant No. 12-03-00078, the U.S. Civilian Research & Development Foundation (CRDF Global) under Award No. RUP1-7076-EK-12 and the National Science Foundation under Cooperative Agreement No. OISE-9531011. This work utilized facilities supported in part by the National Science Foundation under Agreement DMR-0944772. NR 27 TC 14 Z9 14 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17483 EP 17489 DI 10.1021/jp506252c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300034 ER PT J AU Masango, SS Peng, LX Marks, LD Van Duyne, RP Stair, PC AF Masango, Sicelo S. Peng, Lingxuan Marks, Laurence D. Van Duyne, Richard P. Stair, Peter C. TI Nucleation and Growth of Silver Nanoparticles by AB and ABC-Type Atomic Layer Deposition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DIRECT PROPYLENE EPOXIDATION; ETHYLENE EPOXIDATION; METAL NANOPARTICLES; DISTANCE-DEPENDENCE; SURFACE; CATALYSTS; NANOSTRUCTURES; MECHANISM; FILMS; PARTICLES AB In this work, we report synthesis strategies to produce Ag nanoparticles by AB-type and ABC-type atomic layer deposition (ALD) using trimethylphosphine-(hexafluoroacetylacetonato) silver(I) ((hfac)Ag(PMe3)) and formalin (AB-type) and (hfac)Ag(PMe3), trimethylaluminum, and H2O (ABC-type). In situ quartz crystal microbalance measurements reveal a Ag growth rate of 1-2 ng/cm(2)/cyde by ABC-type ALD at 110 degrees C and 2-10 ng/cm(2)/cyde for AB-type ALD at 170-200 degrees C. AB-type Ag ALD has a nucleation period before continuous linear growth that is shorter at 200 degrees C. Transmission electron microscopy reveals that AB-type Ag ALD particles have an average size of similar to 1.8 nrn after 10 cycles. ABC-type Ag ALD particles have an average size of similar to 2.2 run after 20 cycles. With increasing ALD cycles, ABC-type Ag ALD increases the metal loading while maintaining the particle size but AB-type Ag ALD results in the formation of bigger particles in addition to small particles. The ability to synthesize supported metal nanopartides with well-defined particle sizes and narrow size distributions makes ALD an attractive synthesis method compared to conventional wet chemistry techniques. C1 [Masango, Sicelo S.; Van Duyne, Richard P.; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Masango, Sicelo S.; Van Duyne, Richard P.; Stair, Peter C.] Argonne Natl Lab, Inst Catalysis Energy Proc, Argonne, IL 60439 USA. [Peng, Lingxuan; Marks, Laurence D.] Argonne Natl Lab, Dept Mat Sci & Engn, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pstair@northwestern.edu RI Marks, Laurence/B-7527-2009 FU Northwestern University Institute for Catalysis in Energy Processes (ICEP); US Department of Energy, Office of Basic Energy Science [DE-FG02-03-ER15457] FX The authors gratefully acknowledge financial support from the Northwestern University Institute for Catalysis in Energy Processes (ICEP). ICEP is funded through the US Department of Energy, Office of Basic Energy Science (Award Number DE-FG02-03-ER15457). NR 48 TC 11 Z9 11 U1 2 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17655 EP 17661 DI 10.1021/jp504067c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300055 ER PT J AU Achtyl, JL Vlassiouk, IV Dai, S Geiger, F AF Achtyl, Jennifer L. Vlassiouk, Ivan V. Dai, Sheng Geiger, Franz TI Interactions of Organic Solvents at Graphene/alpha-Al2O3 and Graphene Oxide/alpha-Al2O3 Interfaces Studied by Sum Frequency Generation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FUSED SILICA/AQUEOUS INTERFACES; DOWNSTREAM PLASMA TREATMENTS; VIBRATIONAL SPECTROSCOPY; RAMAN-SPECTROSCOPY; IONIC LIQUID; EPITAXIAL GRAPHENE; MONOLAYER GRAPHENE; ENVIRONMENTAL INTERFACES; MOLECULAR-ORIENTATION; ATOMIC-STRUCTURE AB The adsorption of 1-hexanol from cyclohexane-d(12) at single-layer graphene/alpha-Al2O3 interfaces was probed at mole percent values as low as 0.05 in the C H stretching region using vibrational sum frequency generation (SFG). The SFG spectra are indiscernible from those obtained in the absence of graphene, and from those obtained in the presence of graphene oxide films prepared via oxygen plasma treatment of pristine single-layer graphene. A Langmuir adsorption model yields observed free adsorption energies of -19.9(5) to -20.9(3) kJ/mol for the three interfaces. The results indicate that the molecular structure of the hexanol alkyl chain is subject to the same orientation distribution when graphene, oxidized or not, is present or absent at the alpha-Al2O3/cyclohexane-d(12) interface. Moreover, it appears that the adsorption of 1-hexanol in this binary mixture is driven by hexanol interactions with the underlying oxide support, and that a single layer of graphene does not influence the extent of this interaction, even when defects are introduced to it. Finally, our structural and quantitative thermodynamic data provide important benchmarks for theoretical calculations and atomistic simulations of liquid/graphene interfaces. We hypothesize that defects emerging in graphene during operation of any device application that relies on layered solvent/graphene/oxide interfaces have little impact on the interfacial structure or thermodynamics, at least for the binary mixture and over the range of defect densities probed in our studies. C1 [Achtyl, Jennifer L.; Geiger, Franz] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37931 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Geiger, F (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM geigerf@chem.northwestern.edu RI Vlassiouk, Ivan/F-9587-2010; Dai, Sheng/K-8411-2015 OI Vlassiouk, Ivan/0000-0002-5494-0386; Dai, Sheng/0000-0002-8046-3931 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; W. M. Keck Foundation, Northwestern's Institute for Nanotechnology's NSF [EEC-0118025/003]; National Science Foundation; State of Illinois; Northwestern University FX This work was supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. This work made use of the Keck-II facility (NUANCE Center - Northwestern University), which has received support from the W. M. Keck Foundation, Northwestern's Institute for Nanotechnology's NSF-sponsored Nanoscale Science & Engineering Center (EEC-0118025/003), both programs of the National Science Foundation, the State of Illinois, and Northwestern University. NR 110 TC 5 Z9 5 U1 8 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17745 EP 17755 DI 10.1021/jp5047547 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300065 ER PT J AU Chen, DL Wang, NW Wang, FF Xie, JW Zhong, YJ Zhu, WD Johnson, JK Krishna, R AF Chen, De-Li Wang, Ningwei Wang, Fang-Fang Xie, Jianwu Zhong, Yijun Zhu, Weidong Johnson, J. Karl Krishna, Rajamani TI Utilizing the Gate-Opening Mechanism in ZIF-7 for Adsorption Discrimination between N2O and CO2 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; METAL-ORGANIC FRAMEWORK; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NITROUS-OXIDE; SEPARATION; LIQUID; SELECTIVITY; MIXTURES; CRYSTALS AB N2O is a greenhouse gas with tremendous global warming potential, and more importantly it also causes ozone depletion; thus, the separation of N2O from industrial processes has gained significant attention. We have demonstrated that N2O can be selectively separated from CO2 using the zeolite imidazolate framework ZIF-7. The adsorption/desorption isotherms of both N2O and CO2 in ZIF-7 indicate the gate-opening mechanism of this material, and surprisingly, the threshold pressure for the gate opening with N2O is lower than that with CO2. Theoretical calculations indicate that both gas-host and gas-gas interaction energies for N2O are more favorable than those for CO2, giving rise to the difference in the threshold pressure between N2O and CO2 in ZIF-7. Breakthrough experiments for N2O/CO2 mixtures confirm that ZIF-7 is capable of separating N2O and CO2 mixtures under the optimized conditions, in reasonable agreement with simulation results, making it a promising material for industrial applications. C1 [Chen, De-Li; Wang, Ningwei; Wang, Fang-Fang; Xie, Jianwu; Zhong, Yijun; Zhu, Weidong] Zhejiang Normal Univ, Inst Phys Chem, Key Lab Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China. [Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Krishna, Rajamani] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands. RP Zhu, WD (reprint author), Zhejiang Normal Univ, Inst Phys Chem, Key Lab Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China. EM weidongzhu@zjnu.cn; r.krishna@contact.uva.nl RI Krishna, Rajamani/A-1098-2012; Chen, De-Li/H-6867-2012; Johnson, Karl/E-9733-2013 OI Krishna, Rajamani/0000-0002-4784-8530; Johnson, Karl/0000-0002-3608-8003 FU National Natural Science Foundation of China [21036006, 21303165] FX W.Z. and D.-L.C. gratefully acknowledge the support from the National Natural Science Foundation of China (Grants 21036006 and 21303165). Theoretical calculations were performed at the University of Pittsburgh Center for Simulation and Modeling. NR 45 TC 12 Z9 12 U1 9 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 17831 EP 17837 DI 10.1021/jp5056733 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300073 ER PT J AU Kovarik, L Bowden, M Genc, A Szanyi, J Peden, CHF Kwak, JH AF Kovarik, Libor Bowden, Mark Genc, Arda Szanyi, Janos Peden, Charles H. F. Kwak, Ja Hun TI Structure of delta-Alumina: Toward the Atomic Level Understanding of Transition Alumina Phases SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RIETVELD REFINEMENT SIMULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GAMMA-ALUMINA; GAMMA-AL2O3; DFT; MODELS; SPINEL; TRANSFORMATIONS; DIFFRACTION AB Transition Al2O3 derived from thermal decomposition of AlOOH Boehmite have complex structures and to a large extent remain poorly understood. Here, we report a detailed atomic level analysis of beta-Al2O3 for the first time using a combination of high-angle annular dark field electron microscopy imaging, X-ray diffraction refinement, and density functional theory calculations. We show that the structure of delta-Al2O3 represents a complex structural intergrowth from two main crystallographic variants, which are identified as delta-Al2O3 and delta-Al2O3. The two main variants are fully structurally described, and in addition, we also derive their energy of formation. On the basis of comparison with other relevant transition Al2O3 phases, it is shown how energetic degeneracy leads to the structural disorder and complex intergrowths among several transition Al2O3. The results of the work have important implications for understanding thermodynamic stability and transformation processes in transition alumina. C1 [Kovarik, Libor; Bowden, Mark] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Szanyi, Janos; Peden, Charles H. F.; Kwak, Ja Hun] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Genc, Arda] FEI Co, Hillsboro, OR 97124 USA. [Kwak, Ja Hun] UNIST, Sch Nanobiotechnol & Chem Engn, Ulsan 689798, South Korea. RP Kovarik, L (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM libor.kovarik@pnnl.gov; jhkwak@unist.ac.kr RI Kovarik, Libor/L-7139-2016 FU U.S. Department of Energy [DE-AC05-76RLO1830]; U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; DOE's Office of Biological and Environmental Research FX The research described in this paper is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract no. DE-AC05-76RLO1830. C.H.F.P., J.S., and J.H.K. were supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 43 TC 14 Z9 15 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 18051 EP 18058 DI 10.1021/jp500051j PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300098 ER PT J AU Jiang, WL Kovarik, L Zhu, ZH Varga, T Engelhard, MH Bowden, ME Nenoff, TM Garino, TJ AF Jiang, Weilin Kovarik, Libor Zhu, Zihua Varga, Tamas Engelhard, Mark H. Bowden, Mark E. Nenoff, Tina M. Garino, Terry J. TI Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROTHERMAL SYNTHESIS; WASTE FORM; SRTIO3; IMMOBILIZATION; RADIONUCLIDES; STORAGE; CESIUM; SR-90; O+ AB Radionuclide Cs-137 is one of the major fission products that dominate heat generation in spent fuels over the first 300 years. A durable waste form for Cs-137 that decays to Ba-137 is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi2O6 is selected as a model waste form to study the decay-induced structural effects. Whereas Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi2O6, they are found in Cs0.9Ba0.1AlSi2O6 and identified as monoclinic Ba2Si3O8. Pollucite is susceptible to electron-irradiation-induced amorphization. The threshold density of electronic energy deposition for amorphization was determined to be similar to 235 keV/nm(3). Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite occurs during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report. C1 [Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nenoff, Tina M.; Garino, Terry J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jiang, WL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM weilin.jiang@pnnl.gov RI Zhu, Zihua/K-7652-2012; Kovarik, Libor/L-7139-2016; OI Engelhard, Mark/0000-0002-5543-0812; Jiang, Weilin/0000-0001-8302-8313 FU Nuclear Energy Research AMP; Development, U.S. Department of Energy; U.S. DOE's Office of Biological and Environmental Research; U.S. DOE [DE-AC05-76RL01830]; U.S. DOE/NE/FCRD-SWG; U.S. DOE's NNSA [DE-AC04-94AL85000] FX This work was supported by Nuclear Energy Research & Development, U.S. Department of Energy. The research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, a multidisciplinary national laboratory operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. W.J. is grateful to John Vienna and Joseph Ryan at PNNL for stimulating discussions. T.M.N. and T.J.G. acknowledge support from the U.S. DOE/NE/FCRD-SWG and thank David Rademacher and Clay Newton at SNL for their assistance with sample preparation. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under Contract DE-AC04-94AL85000. NR 30 TC 2 Z9 2 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 7 PY 2014 VL 118 IS 31 BP 18160 EP 18169 DI 10.1021/jp5045223 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AM9SW UT WOS:000340222300111 ER PT J AU Torres, D Illas, F Liu, P AF Torres, Daniel Illas, Francesc Liu, Ping TI Theoretical Study of Hydrogen Permeation through Mixed NiO-MgO Films Supported on Mo(100): Role of the Oxide-Metal Interface SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AUGMENTED-WAVE METHOD; ULTRATHIN FILMS; MOLECULAR-DYNAMICS; SURFACES; DISSOCIATION; CATALYSTS; METHANE; WATER; NANOPARTICLES; DEFECTS AB This work presents a periodic density functional study of the adsorption and permeation of atomic H on Ni-doped MgO oxide thin films supported on a Mo(100) surface. We find that the binding of atomic H is affected by the presence of a metallic support. The chemisorption energies increase considerably when the oxide film is supported. The H permeation through the NiO-MgO oxide was also studied. H migration through the unsupported NiO-MgO oxide is thermodynamically inhibited, while the presence of the metallic Mo makes permeation thermodynamically favored. We attribute the promoting effect to the different character of adsorbed H at the unsupported Ni-doped MgO oxide and at the oxide-Mo interface. In the former case, H forms hydroxyl groups, whereas in the latter case it appears as hydride due to the formation of strong metal-hydrogen bonds. These results illustrate the important role that the oxide metal interface could play in the mechanism for pure and mixed oxides reduction. C1 [Torres, Daniel; Liu, Ping] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; COST, CM1104/I-8057-2015 OI Illas, Francesc /0000-0003-2104-6123; FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; US Department of Energy, Office of Science; Spanish MINECO [FIS2008-02238, CTQ2012-30751]; Generalitat de Catalunya [2009SGR1041, XRQTC]; ICREA Academia award for excellence in research FX This work was carried out at Brookhaven National Laboratory (BNL) under Contract No. DE-AC02-98CH10886 with the US Department of Energy, Office of Science. The calculations utilized resources at the BNL Center for Functional Nanomaterials (CFN) and the Centre de Supercomputacio de Catalunya (CESCA). Additional support from Spanish MINECO FIS2008-02238 and CTQ2012-30751 research grants and Generalitat de Catalunya grants 2009SGR1041 and XRQTC is accredited. F.I. acknowledges support from the 2009 ICREA Academia award for excellence in research. This work is also a part of COST Actions CM1104. NR 38 TC 2 Z9 2 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 7 PY 2014 VL 118 IS 31 BP 5756 EP 5761 DI 10.1021/jp408872x PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AM9SY UT WOS:000340222500004 PM 24446885 ER PT J AU Chellappa, RS Dattelbaum, DM Coe, JD Velisavljevic, N Stevens, LL Liu, ZX AF Chellappa, Raja S. Dattelbaum, Dana M. Coe, Joshua D. Velisavljevic, Nenad Stevens, Lewis L. Liu, Zhenxian TI Intermolecular Stabilization of 3,3 '-Diamino-4,4 '-azoxyfurazan (DAAF) Compressed to 20 GPa SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENERGETIC MATERIALS; THERMAL-DECOMPOSITION; FURAZANS; DIFFRACTION; DFT AB The room temperature stability of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) has been investigated using synchrotron far-infrared, mid-infrared, Raman spectroscopy, and synchrotron X-ray diffraction (XRD) up to 20 GPa. The as-loaded DAAF samples exhibited subtle pressure-induced ordering phenomena (associated with positional disorder of the azoxy "O" atom) resulting in doubling of the a-axis, to form a superlattice similar to the low-temperature polymorph. Neither high pressure synchrotron XRD, nor high pressure infrared or Raman spectroscopies indicated the presence of structural phase transitions up to 20 GPa. Compression was accommodated in the unit cell by a reduction of the c-axis between the planar DAAF layers, distortion of the beta-angle of the monoclinic lattice, and an increase in intermolecular hydrogen bonding. Changes in the ring and -NH2 deformation modes and increased intermolecular hydrogen bonding interactions with compression suggest molecular reorganizations and electronic transitions at similar to 5 GPa and similar to 10 GPa that are accompanied by a shifting of the absorption band edge into the visible. A fourth-order Birch-Murnaghan fit to the room temperature isotherm afforded an estimate of the zero-pressure isothermal bulk modulus, K-0 = 12.4 +/- 0.6 GPa and its pressure derivative K-0' = 7.7 +/- 0.3. C1 [Chellappa, Raja S.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Dattelbaum, Dana M.; Velisavljevic, Nenad; Stevens, Lewis L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Coe, Joshua D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Liu, Zhenxian] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Chellappa, RS (reprint author), Los Alamos Natl Lab, Lujan Ctr, MS H805, Los Alamos, NM 87545 USA. EM raja@lanl.gov; danadat@lanl.gov FU Laboratory Directed Research and Development program; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF; W. M. Keck Foundation FX Los Alamos National Laboratory is operated by LANS LLC for the Department of Energy and NNSA. We thank Elizabeth Francois and David Chavez of Los Alamos National Laboratory for providing the DAAF samples for this investigation. The authors acknowledge funding from the Laboratory Directed Research and Development program. We thank the Carnegie-DOE Alliance Center for beam time, and Sector 16 beamline scientists for their help with experimental measurements. HP-CAT is supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 47 TC 2 Z9 3 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 7 PY 2014 VL 118 IS 31 BP 5969 EP 5982 DI 10.1021/jp504935g PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AM9SY UT WOS:000340222500027 PM 25011055 ER PT J AU Samet, M Wang, XB Kass, SR AF Samet, Masoud Wang, Xue-Bin Kass, Steven R. TI A Preorganized Hydrogen Bond Network and Its Effect on Anion Stability SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; DENSITY FUNCTIONALS; ELECTRON-AFFINITY; ENZYME CATALYSIS; OXYANION HOLE; ACTIVE-SITE; BASIS-SETS; ENERGETICS; RADICALS; THERMOCHEMISTRY AB Rigid tricyclic locked in all axial 1,3,5-cydohexanetriol derivatives with 0-3 trifluoromethyl groups were synthesized and photoelectron spectra of their conjugate bases and chloride anion clusters are reported along with density functional computations. The resulting vertical and adiabatic detachment energies span 4.07-5.50 eV (VDE) and 3.75-5.00 (ADE) for the former ions and 5.60-6.23 eV (VDE) and 5.36-6.00 eV (ADE) for the latter species. These results provide measures of the anion stabilization due to the hydrogen bond network and inductive effects. The latter mechanism is found to be transmitted through space via hydrogen bonds, and the presence of three ring skeleton oxygen atoms and up to three trifluoromethyl groups enhance the ADEs by 1.61-2.88 eV for the conjugate bases and 1.01-1.60 eV for the chloride anion dusters. Computations indicate that the most favorable structures of the latter complexes have two hydrogen bonds to the chloride anion and one bifurcated interaction between the remote OH substituent and the two hydroxyl groups that directly bind to Cl-. C1 [Samet, Masoud; Kass, Steven R.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Wang, XB (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-88, Richland, WA 99352 USA. EM xuebin.wang@pnnl.gov; kass@umn.edu FU National Science Foundation; Petroleum Research Fund; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research FX Generous support from the National Science Foundation, the Petroleum Research Fund administered by the American Chemical Society, and the Minnesota Supercomputer Institute for Advanced Computational Research are gratefully acknowledged. The photoelectron spectroscopy work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for DOE. NR 34 TC 5 Z9 5 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 7 PY 2014 VL 118 IS 31 BP 5989 EP 5993 DI 10.1021/jp505308v PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AM9SY UT WOS:000340222500029 PM 25036443 ER PT J AU Ahmed, T Haraldsen, JT Zhu, JX Balatsky, AV AF Ahmed, Towfiq Haraldsen, Jason T. Zhu, Jian-Xin Balatsky, Alexander V. TI Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DNA METHYLATION; ELECTRONIC TRANSPORT; TRANSLOCATION; CANCER; BASE; NUCLEOTIDES; NUCLEOSIDES; MOLECULES AB DNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells. For adult somatic cells, the location and dynamics of methylation have been very precisely pinned down with the 5-cytosine markers on cytosine-phosphate-guanine (CpG) units. Unusual methylation on CpG islands is identified as one of the prime causes for silencing the tumor suppressant genes. Early detection of methylation changes can diagnose the potentially harmful oncogenic evolution of cells and provide promising guideline for cancer prevention. With this motivation, we propose a cytosine methylation detection technique. Our hypothesis is that electronic signatures of DNA acquired as a molecule translocates through a nanopore would be significantly different for methylated and nonmethylated bases. This difference in electronic fingerprints would allow for reliable real-time differentiation of methylated DNA. We calculate transport currents through a punctured graphene membrane while the cytosine and methylated cytosine translocate through the nanopore. We also calculate the transport properties for uracil and cyanocytosine for comparison. Our calculations of transmission, current, and tunneling conductance show distinct signatures in their spectrum for each molecular type. Thus, in this work, we provide a theoretical analysis that points to a viability of our hypothesis. C1 [Ahmed, Towfiq; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. [Haraldsen, Jason T.] James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA. [Balatsky, Alexander V.] KTH Royal Inst Technol, Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Balatsky, Alexander V.] Stockholm Univ, S-10691 Stockholm, Sweden. RP Ahmed, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM atowfiq@lanl.gov; avb@nordita.org RI Haraldsen, Jason/B-9809-2012 OI Haraldsen, Jason/0000-0002-8641-5412 FU U.S. Department of Energy [DE-AC52-06NA25396]; U.S. DOE Office of Basic Energy Sciences [VR 621-2012-2983, ERC 321031-DM]; Center for Integrated Nanotechnologies FX We are grateful to Los Alamos National Laboratory, an affirmative action equal opportunity employer, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. This work was supported by the U.S. DOE Office of Basic Energy Sciences, by VR 621-2012-2983 and ERC 321031-DM, and, in part, by the Center for Integrated Nanotechnologies, a U.S. DOE BES user facility. NR 42 TC 9 Z9 9 U1 5 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2601 EP 2607 DI 10.1021/jz501085e PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200019 PM 26277950 ER PT J AU Zhu, ZW Barroo, C Lichtenstein, L Eren, B Wu, CH Mao, BH de Bocarme, TV Liu, Z Kruse, N Salmeron, M Somorjai, GA AF Zhu, Zhongwei Barroo, Cedric Lichtenstein, Leonid Eren, Baran Wu, Cheng Hao Mao, Baohua de Bocarme, Thierry Visart Liu, Zhi Kruse, Norbert Salmeron, Miquel Somorjai, Gabor A. TI Influence of Step Geometry on the Reconstruction of Stepped Platinum Surfaces under Coadsorption of Ethylene and CO SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CARBON-MONOXIDE; PHOTOELECTRON-SPECTROSCOPY; DEUTERIUM-EXCHANGE; STRUCTURAL-CHANGES; OXYGEN REDUCTION; CRYSTAL-SURFACES; PT(111) SURFACE; MOLECULAR-BEAM; WORK FUNCTION AB We demonstrate the critical role of the specific atomic arrangement at step sites in the restructuring processes of low-coordinated surface atoms at high adsorbate coverage. By using high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we have investigated the reconstruction of Pt(332) (with (111)-oriented triangular steps) and Pt(557) surfaces (with (100)-oriented square steps) in the mixture of CO and C2H4 in the Torr pressure range at room temperature. CO creates Pt clusters at the step edges on both surfaces, although the dusters have different shapes and densities. A subsequent exposure to a similar partial pressure of C2H4 partially reverts the clusters on Pt(332). In contrast, the cluster structure is barely changed on Pt(557). These different reconstruction phenomena are attributed to the fact that the 3-fold (111)-step sites on Pt(332) allows for adsorption of ethylidyne-a strong adsorbate formed from ethylene-that does not form on the 4-fold (100)-step sites on Pt(557). C1 [Zhu, Zhongwei; Wu, Cheng Hao; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhu, Zhongwei; Barroo, Cedric; Lichtenstein, Leonid; Eren, Baran; Wu, Cheng Hao; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mao, Baohua; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Barroo, Cedric; de Bocarme, Thierry Visart; Kruse, Norbert] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Liu, Zhi] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China. [Kruse, Norbert] Washington State Univ, Dept Chem Engn & Bioengn, Pullman, WA 99163 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov; somorjai@berkeley.edu RI Wu, Cheng Hao/C-9565-2014; Eren, Baran/A-9644-2013; Liu, Zhi/B-3642-2009; Visart de Bocarme, Thierry/S-2824-2016; OI Liu, Zhi/0000-0002-8973-6561; Visart de Bocarme, Thierry/0000-0002-4041-7631; Barroo, Cedric/0000-0002-3085-4934 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Fonds de la Recherche Scientifique (F.R.S.-FNRS); Wallonie Bruxelles International WBI [SUB/2011/17971]; Federation Wallonie-Bruxelles [BV12-15]; Wallonia-Brussels Federation (Action de Recherches Concertees) [AUWB 2010-2015/ULB15]; Humboldt Foundation of Germany; Early Postdoctoral Mobility fellowship of the Swiss National Research Funds; National Natural Science Foundation of China [11227902] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.B. gratefully thanks the Fonds de la Recherche Scientifique (F.R.S.-FNRS) for the financial support (Ph.D. grant), as well as Wallonie Bruxelles International WBI (SUB/2011/17971) and the Federation Wallonie-Bruxelles (BV12-15) for the travel grants. C.B. and T.V.d.B. thank the Wallonia-Brussels Federation (Action de Recherches Concertees No. AUWB 2010-2015/ULB15). L.L. acknowledges the support from the Humboldt Foundation of Germany. B.E. acknowledges support from the Early Postdoctoral Mobility fellowship of the Swiss National Research Funds. B.M. and Z.L. thank the support of National Natural Science Foundation of China under Contract No. 11227902. We acknowledge Prof. Jeong Young Park for his help on coating STM tips with Au. NR 44 TC 4 Z9 4 U1 2 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2626 EP 2631 DI 10.1021/jz501341r PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200023 PM 26277954 ER PT J AU van der Poll, TS Zhugayevych, A Chertkov, E Bakus, RC Coughlin, JE Teat, SJ Bazan, GC Tretiak, S AF van der Poll, Thomas S. Zhugayevych, Andriy Chertkov, Eli Bakus, Ronald C., II Coughlin, Jessica E. Teat, Simon J. Bazan, Guillermo C. Tretiak, Sergei TI Polymorphism of Crystalline Molecular Donors for Solution-Processed Organic Photovoltaics SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID THIN-FILM TRANSISTORS; CONJUGATED POLYMERS; SOLAR-CELLS; DEVICES; CONFORMATIONS; TRANSPORT AB Using ab initio calculations and classical molecular dynamics simulations coupled to complementary experimental characterization, four molecular semiconductors were investigated in vacuum, solution, and crystalline form. Independently, the molecules can be described as nearly isostructural, yet in crystalline form, two distinct crystal systems are observed with characteristic molecular geometries. The minor structural variations provide a platform to investigate the subtlety of simple substitutions, with particular focus on polymorphism and rotational isomerism. Resolved crystal structures offer an exact description of intermolecular ordering in the solid state. This enables evaluation of molecular binding energy in various crystallographic configurations to fully rationalize observed crystal packing on a basis of first-principle calculations of intermolecular interactions. C1 [van der Poll, Thomas S.; Bakus, Ronald C., II; Coughlin, Jessica E.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Mat, Santa Barbara, CA 93106 USA. [van der Poll, Thomas S.; Bakus, Ronald C., II; Coughlin, Jessica E.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Zhugayevych, Andriy; Chertkov, Eli; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Zhugayevych, Andriy; Chertkov, Eli; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bazan, GC (reprint author), Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Dept Mat, Santa Barbara, CA 93106 USA. EM bazan@chem.ucsb.edu; serg@lanl.gov RI Tretiak, Sergei/B-5556-2009; Bazan, Guillermo/B-7625-2014 OI Tretiak, Sergei/0000-0001-5547-3647; FU Institute for Collaborative Biotechnologies through U.S. Army Research Office [W911NF-09-0001]; U.S. Department of Energy; Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (LANL); U.S. Department of Energy [DE-AC52-06NA25396]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge support from the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office. This work was also partially supported the U.S. Department of Energy and Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (LANL). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 5 Z9 5 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2700 EP 2704 DI 10.1021/jz5012675 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200035 PM 26277966 ER PT J AU Zhai, DY Wang, HH Lau, KC Gao, J Redfern, PC Kang, FY Li, BH Indacochea, E Das, U Sun, HH Sun, HJ Amine, K Curtiss, LA AF Zhai, Dengyun Wang, Hsien-Hau Lau, Kah Chun Gao, Jing Redfern, Paul C. Kang, Feiyu Li, Baohua Indacochea, Ernesto Das, Ujjal Sun, Ho-Hyun Sun, Ho-Jin Amine, Khalil Curtiss, Larry A. TI Raman Evidence for Late Stage Disproportionation in a Li-O-2 Battery SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LITHIUM-OXYGEN BATTERIES; LI2O2; ELECTROLYTE; MORPHOLOGY; STABILITY; OXIDATION; GRAPHITE; KINETICS AB Raman spectroscopy is used to characterize the composition of toroids formed in an aprotic Li-O-2 cell based on an activated carbon cathode. The trends in the Raman data as a function of discharge current density and charging cutoff voltage provide evidence that the toroids are made up of outer LiO2-like and inner Li2O2 regions, consistent with a disproportionation reaction occurring in the solid phase. The LiO2-like component is found to be associated with a new Raman peak identified in the carbon stretching region at similar to 1505 cm(-1), which appears only when the LiO2 peak at 1123 cm(-1) is present. The new peak is assigned to distortion of the graphitic ring stretching due to coupling with the LiO2-like component based on density functional calculations. These new results on the LiO2-like component from Raman spectroscopy provide evidence that a late stage disproportionation mechanism can occur during discharge and add new understanding to the complexities of possible processes occurring in Li-O-2 batteries. C1 [Zhai, Dengyun; Redfern, Paul C.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wang, Hsien-Hau; Lau, Kah Chun; Das, Ujjal; Sun, Ho-Hyun; Sun, Ho-Jin; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kang, Feiyu; Li, Baohua] Tsinghua Univ, Engn Lab Next Generat Power & Energy Storage Batt, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. [Indacochea, Ernesto] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov RI Lau, Kah Chun/A-9348-2013 OI Lau, Kah Chun/0000-0002-4925-3397 FU U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC0206CH11357] FX This work was supported by the U. S. Department of Energy under Contract DE-AC0206CH11357, Office of Energy Efficiency and Renewable Energy. The electron microscopy measurement was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, and part of the Raman measurements were performed at the Center for Nanoscale Materials at Argonne National Laboratory. We acknowledge a computer allocation on the CNM Carbon Cluster at Argonne National Laboratory. NR 23 TC 51 Z9 52 U1 4 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2705 EP 2710 DI 10.1021/jz501323n PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200036 PM 26277967 ER PT J AU Yao, Y Kanai, Y Berkowitz, ML AF Yao, Yi Kanai, Yosuke Berkowitz, Max L. TI Role of Charge Transfer in Water Diffusivity in Aqueous Ionic Solutions SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATIONS; 1ST PRINCIPLES SIMULATIONS; LIQUID WATER; ELECTRONIC-PROPERTIES; SALT-SOLUTIONS; TEMPERATURE; ALGORITHMS; INTERFACE; CHEMISTRY AB We performed molecular dynamics simulations on four types of systems containing ion and solvating water. Two systems contained a cation (Na+ or K+), and two other systems an anion (Cl- or I-). Classical molecular dynamics simulations were performed using three different force fields: a fixed charge force field, a polarizable force field that includes explicit polarization, and also a recently developed force field that includes polarization and charge transfer. These simulations were then compared to first-principles molecular dynamics simulations. While the first-principles simulations showed that the anions accelerated water translational diffusion, the cations slowed it down. In simulations with the classical force fields, only the force field that incorporates explicit charge transfer reproduced this ion-specific behavior. Additional simulations performed to understand the effect of charge transfer demonstrated that two competitive factors determine the behavior of water translational diffusion: the ions diminished charge accelerates water, while the net charge acquired by water either accelerates or slows down its dynamics. Our results show that charge transfer plays a crucial role in governing the water dynamics in aqueous ionic solutions. C1 [Yao, Yi; Kanai, Yosuke; Berkowitz, Max L.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Kanai, Y (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. EM ykanai@unc.edu; maxb@unc.edu RI Kanai, Yosuke/B-5554-2016 FU Petroleum Research Fund [52494-DNI6]; National Energy Research Computing Center - Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Naval Research [N000141010096] FX Y.K. and Y.Y. gratefully acknowledge support by the donors of the Petroleum Research Fund, Grant 52494-DNI6 and National Energy Research Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 for computational resources. The work of M.L.B. and Y.Y. was also partially supported by Grant N000141010096 from the Office of Naval Research. We thank Prof. S. Rick (LSU) for useful discussions and for providing the original code for our implementation of FQ-DCT model in the highly parallel LAMMPS code. We also thank Dr. T. Ikeda (JAEA) for providing us with the pseudopotential for iodide. NR 64 TC 13 Z9 14 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2711 EP 2716 DI 10.1021/jz501238v PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200037 PM 26277968 ER PT J AU Tamblyn, I Refaely-Abramson, S Neaton, JB Kronik, L AF Tamblyn, Isaac Refaely-Abramson, Sivan Neaton, Jeffrey B. Kronik, Leeor TI Simultaneous Determination of Structures, Vibrations, and Frontier Orbital Energies from a Self-Consistent Range-Separated Hybrid Functional SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID PI-CONJUGATED OLIGOMERS; AB-INITIO CALCULATION; DENSITY FUNCTIONALS; DERIVATIVE DISCONTINUITIES; ELECTRONIC EXCITATIONS; MOLECULAR-DYNAMICS; RATIONAL DESIGN; EXCHANGE; GRADIENT; SPECTRA AB A self-consistent optimally tuned range-separated hybrid density functional (scOT-RSH) approach is developed. It can simultaneously predict accurate geometries, vibrational modes, and frontier orbital energies. This is achieved by optimizing the range-separation parameter, gamma, to both satisfy the ionization energy theorem and minimize interatomic forces. We benchmark our approach against an established hybrid functional, B3LYP, using the G2 test set. scOT-RSH greatly improves the accuracy of occupied frontier orbital energies, with a mean absolute error (MAE) of only 0.2 eV relative to experimental ionization energies compared to 2.96 eV with B3LYP. Geometries do not change significantly compared to those obtained from B3LYP, with a bond length MAE of 0.012 angstrom compared to 0.008 angstrom for B3LYP, and a 6.5% MAE for zero-point energies, slightly larger than that of B3LYP (3.1%). scOT-RSH represents a new paradigm in which accurate geometries and ionization energies can be predicted simultaneously from a single functional approach. C1 [Tamblyn, Isaac] Univ Ontario Inst Technol, Dept Phys, Oshawa, ON L1H 7K4, Canada. [Refaely-Abramson, Sivan; Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. RP Tamblyn, I (reprint author), Univ Ontario Inst Technol, Dept Phys, Oshawa, ON L1H 7K4, Canada. EM isaac.tamblyn@uoit.ca RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; OI Neaton, Jeffrey/0000-0001-7585-6135; Tamblyn, Isaac/0000-0002-8146-6667 FU NSERC; Molecular Foundry; Israel Academy of Sciences and Humanities; European Research Council; Israel Science Foundation; United States Israel Binational Science Foundation; Helmsley Foundation; Wolfson Foundation; Lise Meitner Minerva Center for Computational Chemistry; U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Theory FWP) [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy FX We thank Roi Baer (Hebrew University, Jerusalem) for illuminating discussions. I.T. acknowledges support by NSERC and the Molecular Foundry. S.R.A. acknowledges support by an Adams fellowship of the Israel Academy of Sciences and Humanities. Work at the Weizmann Institute was supported by the European Research Council, the Israel Science Foundation, the United States Israel Binational Science Foundation, the Helmsley Foundation, the Wolfson Foundation, and the Lise Meitner Minerva Center for Computational Chemistry. J.B.N. was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Theory FWP) under Contract No. DE-AC02-05CH11231. The work performed at the Molecular Foundry was also supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. We thank the National Energy Research Scientific Computing Center for computational resources. NR 83 TC 19 Z9 19 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2734 EP 2741 DI 10.1021/jz5010939 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200041 PM 26277972 ER PT J AU Siefermann, KR Pemmaraju, CD Neppl, S Shavorskiy, A Cordones, AA Vura-Weis, J Slaughter, DS Sturm, FP Weise, F Bluhm, H Strader, ML Cho, H Lin, MF Bacellar, C Khurmi, C Guo, JH Coslovich, G Robinson, JS Kaindl, RA Schoenlein, RW Belkacem, A Neumark, DM Leone, SR Nordlund, D Ogasawara, H Krupin, O Turner, JJ Schlotter, WF Holmes, MR Messerschmidt, M Minitti, MP Gul, S Zhang, JZ Huse, N Prendergast, D Gessner, O AF Siefermann, Katrin R. Pemmaraju, Chaitanya D. Neppl, Stefan Shavorskiy, Andrey Cordones, Amy A. Vura-Weis, Josh Slaughter, Daniel S. Sturm, Felix P. Weise, Fabian Bluhm, Hendrik Strader, Matthew L. Cho, Hana Lin, Ming-Fu Bacellar, Camila Khurmi, Champak Guo, Jinghua Coslovich, Giacomo Robinson, Joseph S. Kaindl, Robert A. Schoenlein, Robert W. Belkacem, Ali Neumark, Daniel M. Leone, Stephen R. Nordlund, Dennis Ogasawara, Hirohito Krupin, Oleg Turner, Joshua J. Schlotter, William F. Holmes, Michael R. Messerschmidt, Marc Minitti, Michael P. Gul, Sheraz Zhang, Jin Z. Huse, Nils Prendergast, David Gessner, Oliver TI Atomic-Scale Perspective of Ultrafast Charge Transfer at a Dye-Semiconductor Interface SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SENSITIZED SOLAR-CELLS; RAY-ABSORPTION-SPECTROSCOPY; COMPACT EFFECTIVE POTENTIALS; ELECTRON-TRANSFER DYNAMICS; EXPONENT BASIS-SETS; EXCITED-STATE; TIO2 FILMS; THIN-FILMS; ZNO; INJECTION AB Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 +/- 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation. C1 [Siefermann, Katrin R.; Neppl, Stefan; Slaughter, Daniel S.; Sturm, Felix P.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Khurmi, Champak; Schoenlein, Robert W.; Belkacem, Ali; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Pemmaraju, Chaitanya D.; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Shavorskiy, Andrey; Bluhm, Hendrik; Strader, Matthew L.; Cho, Hana] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Cordones, Amy A.; Vura-Weis, Josh; Lin, Ming-Fu; Bacellar, Camila; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Coslovich, Giacomo; Robinson, Joseph S.; Kaindl, Robert A.; Schoenlein, Robert W.] Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Guo, Jinghua; Gul, Sheraz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Robinson, Joseph S.; Krupin, Oleg; Turner, Joshua J.; Schlotter, William F.; Holmes, Michael R.; Messerschmidt, Marc; Minitti, Michael P.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nordlund, Dennis; Ogasawara, Hirohito] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Krupin, Oleg] European XFEL GmbH, D-22761 Hamburg, Germany. [Gul, Sheraz; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Huse, Nils] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Huse, Nils] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. RP Gessner, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM ogessner@llbl.gov RI Messerschmidt, Marc/F-3796-2010; PEMMARAJU, DAS/O-8153-2014; Nordlund, Dennis/A-8902-2008; Foundry, Molecular/G-9968-2014; Ogasawara, Hirohito/D-2105-2009; Neumark, Daniel/B-9551-2009; Huse, Nils/A-5712-2017 OI Slaughter, Daniel/0000-0002-4621-4552; Messerschmidt, Marc/0000-0002-8641-3302; PEMMARAJU, DAS/0000-0002-9016-7044; Nordlund, Dennis/0000-0001-9524-6908; Ogasawara, Hirohito/0000-0001-5338-1079; Neumark, Daniel/0000-0002-3762-9473; Huse, Nils/0000-0002-3281-7600 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-05CH11231]; Department of Energy Office of Science Early Career Research Program; Alexander von Humboldt foundation; NSSEFF program of Department of Defense; Basic Energy Sciences Division of the U.S. DOE [DE-FG02-ER46232]; LCLS; Stanford University through Stanford Institute for Materials Energy Sciences (SIMES); LBNL; University of Hamburg through BMBF priority program FSP 301; Center for Free Electron Laser Science (CFEL) FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, through contract no. DE-AC02-05CH11231. O.G. was supported by the Department of Energy Office of Science Early Career Research Program. K.R.S. was supported by the Alexander von Humboldt foundation. S.R.L. and J.V.-W. were supported by the NSSEFF program of the Department of Defense. Ab initio modeling by C.D.P. and D.P. was performed as part of a user project at The Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL) and using high-performance computing resources of The Molecular Foundry and of the National Energy Research Scientific Computing Center (NERSC) at LBNL. J.Z.Z. is grateful for support by the Basic Energy Sciences Division of the U.S. DOE (DE-FG02-ER46232). Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), LBNL, University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). We appreciate the support received from T. Tyliszczak, M. P. Hertlein, P. A. Heimann, A. R. Nilsson, and M. Beye as well as the staff at LCLS and the Advanced Light Source (ALS) at LBNL. NR 48 TC 28 Z9 28 U1 8 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 7 PY 2014 VL 5 IS 15 BP 2753 EP 2759 DI 10.1021/jz501264x PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM9SV UT WOS:000340222200044 PM 26277975 ER PT J AU Gupta, S Chai, J Cheng, J D'Mello, R Chance, MR Fu, D AF Gupta, Sayan Chai, Jin Cheng, Jie D'Mello, Rhijuta Chance, Mark R. Fu, Dax TI Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport SO NATURE LA English DT Article ID MASS-SPECTROMETRY; METAL-BINDING; YIIP; SPECIFICITY; SELECTIVITY; MECHANISM; DYNAMICS; VESICLES; FAMILY; FIEF AB The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux(1,2). This membrane protein is a well characterized member3- 7 of the family of cation diffusion facilitators that occurs at all phylogenetic levels(8-10). Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn( II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Milli-secondtime-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a trans membrane helix, suggesting a rigid-body helical re-orientation linked to Zn( II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights intoaproton-coupled active-transport reaction. C1 [Gupta, Sayan; Cheng, Jie; D'Mello, Rhijuta] Case Western Reserve Univ, Ctr Synchrotron Biosci, Cleveland, OH 44109 USA. [Gupta, Sayan; D'Mello, Rhijuta; Chance, Mark R.] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44109 USA. [Chai, Jin; Fu, Dax] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Cheng, Jie; Fu, Dax] Johns Hopkins Sch Med, Dept Physiol, Baltimore, MD 21205 USA. RP Fu, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM mrc16@case.edu; dfu3@jhmi.edu OI chai, jin/0000-0002-4760-5811 FU National Institutes of Health [R01GM065137]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) [DE-AC02-98CH10886]; Physical Biosciences Program, Office of Basic Energy Sciences of the DOE; National Institute for Biomedical Imaging and Bioengineering [P30-EB-09998, R01-EB-09688]; DOE [DE-AC02-98CH10886] FX We dedicate this work to the memory of Peter C. Maloney, who read and commented on a version of the manuscript. This work was supported in part by the National Institutes of Health under grant R01GM065137(to D.F.), the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) under contract DE-AC02-98CH10886 (to D.F.); D.F. is primarily supported by the Physical Biosciences Program, Office of Basic Energy Sciences of the DOE and the National Institute for Biomedical Imaging and Bioengineering under grants P30-EB-09998 and R01-EB-09688 (to M.R.C.). The National Synchrotron Light Source at Brookhaven National Laboratory is supported by the DOE under contract DE-AC02-98CH10886. NR 27 TC 24 Z9 24 U1 0 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD AUG 7 PY 2014 VL 512 IS 7512 BP 101 EP + DI 10.1038/nature13382 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM5NX UT WOS:000339908000040 PM 25043033 ER PT J AU Kang, ZB Ma, YQ Qiu, JW Sterman, G AF Kang, Zhong-Bo Ma, Yan-Qing Qiu, Jian-Wei Sterman, George TI Heavy quarkonium production at collider energies: Factorization and evolution SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC PRODUCTION; J-PSI; PARTON DISTRIBUTION; POWER CORRECTIONS; SMALL VALUES; SCATTERING; GLUON; DISTRIBUTIONS; ANNIHILATION; UPSILON AB We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, p(T) at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in p(T). We demonstrate that both LP and NLP contributions can be factorized in terms of perturbativcly calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions. C1 [Kang, Zhong-Bo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ma, Yan-Qing; Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Qiu, Jian-Wei; Sterman, George] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Kang, ZB (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM zkang@lanl.gov; yqma@bnl.gov; jqiu@bnl.gov; sterman@insti.physics.sunysb.edu RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-AC52-06NA25396, DE-AC02-98CH10886]; National Science Foundation [PHY-0969739, PHY-1316617] FX We thank Geoff Bodwin, Eric Braaten, Sean Fleming, Adam Leibovich and Tom Mehen for helpful discussions. This work was supported in part by the U.S. Department of Energy under Contracts No. DE-AC52-06NA25396 and No. DE-AC02-98CH10886, and the National Science Foundation under Grants No. PHY-0969739 and No. PHY-1316617. NR 63 TC 24 Z9 24 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 7 PY 2014 VL 90 IS 3 AR 034006 DI 10.1103/PhysRcvD.90.034006 PG 37 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM6SN UT WOS:000339995200002 ER PT J AU Hong, T Chamlagain, B Lin, WZ Chuang, HJ Pan, MH Zhou, ZX Xu, YQ AF Hong, Tu Chamlagain, Bhim Lin, Wenzhi Chuang, Hsun-Jen Pan, Minghu Zhou, Zhixian Xu, Ya-Qiong TI Polarized photocurrent response in black phosphorus field-effect transistors SO NANOSCALE LA English DT Article ID SINGLE-LAYER MOS2; CARBON NANOTUBE TRANSISTORS; GRAPHENE TRANSISTORS; ELECTRICAL-PROPERTIES; TRANSPORT; CRYSTALS; MOBILITY; HYSTERESIS; CONTACTS AB We investigate electrical transport and optoelectronic properties of field effect transistors (FETs) made from few-layer black phosphorus (BP) crystals down to a few nanometers. In particular, we explore the anisotropic nature and photocurrent generation mechanisms in BP FETs through spatial-, polarization-, gate-, and bias-dependent photocurrent measurements. Our results reveal that the photocurrent signals at BP-electrode junctions are mainly attributed to the photovoltaic effect in the off-state and photothermoelectric effect in the on-state, and their anisotropic feature primarily results from the directional-dependent absorption of BP crystals. C1 [Hong, Tu; Xu, Ya-Qiong] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Chamlagain, Bhim; Chuang, Hsun-Jen; Zhou, Zhixian] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Lin, Wenzhi; Pan, Minghu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Xu, Ya-Qiong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Pan, MH (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM panm@ornl.gov; zxzhou@wayne.edu; yaqiong.xu@vanderbilt.edu RI Xu, Yaqiong/D-8649-2012; OI Chamlagain, Bhim/0000-0002-3412-8323 FU Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [ECCS-1055852, CBET-1264982, ECCS-1128297, DMR-1308436] FX The BP FETs were fabricated at Wayne State University. Part of this research (STM measurements) was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. This work was supported by the National Science Foundation (ECCS-1055852 and CBET-1264982 to YX; ECCS-1128297 and DMR-1308436 to ZZ). NR 41 TC 103 Z9 103 U1 22 U2 180 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PD AUG 7 PY 2014 VL 6 IS 15 BP 8978 EP 8983 DI 10.1039/c4nr02164a PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM4YG UT WOS:000339861500075 PM 24967826 ER PT J AU Agapov, RL Boreyko, JB Briggs, DP Srijanto, BR Retterer, ST Collier, CP Lavrik, NV AF Agapov, Rebecca L. Boreyko, Jonathan B. Briggs, Dayrl P. Srijanto, Bernadeta R. Retterer, Scott T. Collier, C. Patrick Lavrik, Nickolay V. TI Length scale of Leidenfrost ratchet switches droplet directionality SO NANOSCALE LA English DT Article ID SURFACES; NANOSTRUCTURES; MORPHOLOGIES; TEMPERATURE; ARRAYS; FILM AB Arrays of tilted pillars with characteristic heights spanning from hundreds of nanometers to tens of micrometers were created using wafer level processing and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct mechanisms controlling droplet motion on Leidenfrost ratchets with nanoscale and microscale features. In particular, asymmetric wettability of dynamic Leidenfrost droplets upon initial impact appears to be the dominant mechanism determining their directionality on tilted nanoscale pillar arrays. By contrast, asymmetric wetting does not provide a strong enough driving force compared to the forces induced by asymmetric vapour flow on arrays of much taller tilted microscale pillars. Furthermore, asymmetric wetting plays a role only in the dynamic Leidenfrost regime, for instance when droplets repeatedly jump after their initial impact. The point of crossover between the two mechanisms coincides with the pillar heights comparable to the values of the thinnest vapor layers still capable of cushioning Leidenfrost droplets upon their initial impact. The proposed model of the length scale dependent interplay between the two mechanisms points to the previously unexplored ability to bias movement of dynamic Leidenfrost droplets and even switch their directionality. C1 [Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Boreyko, Jonathan B.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN 37996 USA. [Srijanto, Bernadeta R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Lavrik, NV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM lavriknv@ornl.gov RI Retterer, Scott/A-5256-2011; Lavrik, Nickolay/B-5268-2011; Srijanto, Bernadeta/D-4213-2016; Collier, Charles/C-9206-2016 OI Retterer, Scott/0000-0001-8534-1979; Lavrik, Nickolay/0000-0002-9543-5634; Srijanto, Bernadeta/0000-0002-1188-1267; Collier, Charles/0000-0002-8198-793X FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 46 TC 8 Z9 8 U1 4 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PD AUG 7 PY 2014 VL 6 IS 15 BP 9293 EP 9299 DI 10.1039/c4nr02362e PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AM4YG UT WOS:000339861500113 PM 24986190 ER PT J AU Antropov, VP Antonov, VN Bekenov, LV Kutepov, A Kotliar, G AF Antropov, V. P. Antonov, V. N. Bekenov, L. V. Kutepov, A. Kotliar, G. TI Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet SO PHYSICAL REVIEW B LA English DT Article ID FULL-POTENTIAL CALCULATIONS; RANDOM-PHASE-APPROXIMATION; MAGNETOOPTICAL PROPERTIES; THIN-FILMS; AB-INITIO; MAGNETOCRYSTALLINE ANISOTROPY; INTERMETALLIC COMPOUND; LDA+U METHOD; BAND THEORY; BI AB The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U) included. We show that the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms, and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of the Fermi surface, the de Haas-van Alphen effect, and the x-ray magnetic circular dichroism in MnBi. C1 [Antropov, V. P.; Antonov, V. N.; Kutepov, A.] US DOE, Ames Lab, Ames, IA 50011 USA. [Antonov, V. N.; Bekenov, L. V.] Inst Met Phys, UA-03142 Kiev, Ukraine. [Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Antropov, VP (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy (DOE) ARPA-E [REACT 0472-1526]; Critical Materials Institute; Energy Innovation Hub - US DOE; Office of Basic Energy Science, Division of Materials Science and Engineering; Iowa State University [DE-AC02-07CH11358] FX This research is supported in part by the U.S. Department of Energy (DOE) ARPA-E (REACT 0472-1526); the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE and by the Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358. V. P. A. is thankful to S. V. Antropov for useful comments. V.N.A. gratefully acknowledges the hospitality at Ames Laboratory during his stay there. NR 97 TC 27 Z9 27 U1 10 U2 77 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 7 PY 2014 VL 90 IS 5 AR 054404 DI 10.1103/PhysRevB.90.054404 PG 18 WC Physics, Condensed Matter SC Physics GA AM6RH UT WOS:000339991800003 ER PT J AU Laguta, VV Buryi, M Rosa, J Savchenko, D Hybler, J Nikl, M Zazubovich, S Karner, T Stanek, CR McClellan, KJ AF Laguta, V. V. Buryi, M. Rosa, J. Savchenko, D. Hybler, J. Nikl, M. Zazubovich, S. Kaerner, T. Stanek, C. R. McClellan, K. J. TI Electron and hole traps in yttrium orthosilicate single crystals: The critical role of Si-unbound oxygen SO PHYSICAL REVIEW B LA English DT Article ID COMPLEX OXIDE SCINTILLATORS; SPIN-RESONANCE; RARE-EARTH; PARAMAGNETIC RESONANCE; HYPERFINE-STRUCTURE; ALKALI HALIDES; LSO-CE; X-RAY; CENTERS; LASER AB We studied the processes of hole and electron trapping in yttrium orthosilicate Y2SiO5 single crystals using continuous wave and pulse electron spin resonance methods. We show that holes created by x-ray irradiation at low temperatures (T < 80 K) are preferably self-trapped at Si-unbound oxygen ions in the form of O- centers. Under irradiation at higher temperatures (200-290 K), the holes are trapped at the Si-unbound oxygen ions in the vicinity of perturbing defects such as yttrium vacancies and impurity ions forming a variety of O- centers with thermal stability up to room and higher temperatures. We have also found that under x-ray irradiation at T < 60 K, electrons are preferably trapped in the vicinity of Si-unbound oxygen ion vacancies and partly trapped also at Mo impurity ions in the form of F+ -type and Mo5+ centers, respectively. The trapped electrons are thermally released from the F+ centers at 75-90 K, thus giving rise to a thermally stimulated luminescence peak at these temperatures. We assume that this process is realized without excitation of the electrons to the conduction band. The spectroscopic parameters (g and hyperfine tensors) of all the investigated centers have been determined as well. Electron spin resonance measurements of electron and hole traps in the related compound lutetium orthosilicate (Lu2SiO5) are discussed as well. C1 [Laguta, V. V.; Buryi, M.; Rosa, J.; Savchenko, D.; Hybler, J.; Nikl, M.] Inst Phys AS CR, Prague 16200, Czech Republic. [Zazubovich, S.; Kaerner, T.] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia. [Stanek, C. R.; McClellan, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Laguta, VV (reprint author), Inst Phys AS CR, Cukrovarnicka 10, Prague 16200, Czech Republic. RI Buryi, Maksym/H-1176-2014; Savchenko, Dariya/D-8476-2012; Laguta, Valentin/G-7302-2014 OI Savchenko, Dariya/0000-0002-0005-0732; FU Czech Science Foundation [P204/12/0805]; use of facilities of the large infrastructure SAFMAT project [CZ.2.13/3.1.00/22132]; Estonian Ministry of Education and Research [IUT02-26]; Estonian Science Foundation [8678] FX The authors gratefully acknowledge the financial support of the Czech Science Foundation (Project No. P204/12/0805) and use of facilities of the large infrastructure SAFMAT project CZ.2.13/3.1.00/22132. The work was also supported by institutional research funding IUT02-26 of the Estonian Ministry of Education and Research and the project of the Estonian Science Foundation (No. 8678). NR 51 TC 6 Z9 6 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 7 PY 2014 VL 90 IS 6 AR 064104 DI 10.1103/PhysRevB.90.064104 PG 12 WC Physics, Condensed Matter SC Physics GA AM6SE UT WOS:000339994200003 ER PT J AU May, AF McGuire, MA Sales, BC AF May, Andrew F. McGuire, Michael A. Sales, Brian C. TI Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SRMNBI2 AB The crystal structure and physical properties of the layered material EuMnBi2 have been characterized by measurements on single crystals. EuMnBi2 is isostructural with the Dirac material SrMnBi2 based on single-crystal x-ray diffraction, crystallizing in the I4/mmm space group (No. 139). Magnetic susceptibility measurements suggest antiferromagnetic (AFM) ordering of moments on divalent Eu ions near T-N = 22 K. For low fields, the ordered Eu moments are aligned along the c axis, and a spin flop is observed near 5.4 T at 5 K. The moment is not saturated in an applied field of 13 T at 5 K, which is uncommon for compounds containing Eu2+. The magnetic behavior suggests an anisotropy enhancement via interaction between Eu and the Mn moments that appear to be ordered antiferromagnetically below approximate to 310 K. A large increase in the magnetoresistance is observed across the spin flop, with absolute magnetoresistance reaching approximate to 650% at 5 K and 12 T. Hall effect measurements reveal a decrease in the carrier density belowT(N), which implies a manipulation of the Fermi surface by magnetism on the sites surrounding the Bi square nets that lead to Dirac cones in this family of materials. C1 [May, Andrew F.; McGuire, Michael A.; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP May, AF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mayaf@ornl.gov RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011 OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. We thank Radu Custelcean for assistance with single-crystal diffraction measurements. NR 27 TC 10 Z9 12 U1 10 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 7 PY 2014 VL 90 IS 7 AR 075109 DI 10.1103/PhysRevB.90.075109 PG 7 WC Physics, Condensed Matter SC Physics GA AM6SG UT WOS:000339994400001 ER PT J AU Parker, D Idrobo, JC Cantoni, C Sefat, AS AF Parker, D. Idrobo, J. C. Cantoni, C. Sefat, A. S. TI Evidence for superconductivity at T-c=12 K in oxygen-deficient MoO2-delta and properties of molybdenum arsenide and oxide binaries SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; METALLIC ELEMENTS; PHASES AB We find signatures of superconductivity at T-c = 12 K in a molybdenum arsenide sample containing similar to 4% of MoO2-delta impurity by weight. Below is a report on the electronic structure calculations, structures analyses, and thermodynamic and transport properties on Mo2As3, Mo5As4, and MoO2, in order to uncover the reasons for superconductivity for the sample that contains a mixture of these phases. The experimental and theoretical evidence suggest that superconductivity in the MoO2-delta phase is likely and may be caused by nesting- type fluctuations. C1 [Parker, D.; Cantoni, C.; Sefat, A. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Idrobo, J. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Idrobo, Juan/H-4896-2015; Sefat, Athena/R-5457-2016 OI Idrobo, Juan/0000-0001-7483-9034; Sefat, Athena/0000-0002-5596-3504 FU Oak Ridge National Laboratory LDRD; Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; ORNL; Scientific User Facility Division, office of Basic Energy Sciences, US Department of Energy FX This work was supported by the Oak Ridge National Laboratory LDRD funding program. A. S. also acknowledges support by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Part of this research was conducted at the Center for Nanophase Materials Sciences User Facility (JCI), which is sponsored at ORNL by the Scientific User Facility Division, office of Basic Energy Sciences, US Department of Energy. NR 23 TC 3 Z9 3 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 7 PY 2014 VL 90 IS 5 AR 054505 DI 10.1103/PhysRevB.90.054505 PG 7 WC Physics, Condensed Matter SC Physics GA AM6RH UT WOS:000339991800006 ER PT J AU Sandilands, LJ Reijnders, AA Su, AH Baydina, V Xu, Z Yang, A Gu, G Pedersen, T Borondics, F Burch, KS AF Sandilands, L. J. Reijnders, A. A. Su, A. H. Baydina, V. Xu, Z. Yang, A. Gu, G. Pedersen, T. Borondics, F. Burch, K. S. TI Origin of the insulating state in exfoliated high-T-c two-dimensional atomic crystals SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-PROPERTIES; ROOM-TEMPERATURE; THIN-FILMS; SUPERCONDUCTOR; ELECTRODYNAMICS; SPECTROSCOPY; GRAPHENE; BI2SE3; PLANE AB We present the results of an optical spectroscopic study of two- dimensional atomic crystals of the hightemperature superconductor Bi2Sr2CaCu2O8+delta. Our measurements reveal a pronounced suppression of the optical conductivity sigma(1)(omega) with thickness. Using an effective medium approximation, we interpret this in terms of an insulating surface layer. The surface layer explains the insulating behavior previously observed in exfoliated Bi2Sr2CaCu2O8+delta and has implications -for future studies and potential applications of these materials. C1 [Sandilands, L. J.; Reijnders, A. A.; Su, A. H.; Baydina, V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Xu, Z.; Yang, A.; Gu, G.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Pedersen, T.; Borondics, F.] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada. [Burch, K. S.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. RP Sandilands, LJ (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. RI xu, zhijun/A-3264-2013; Borondics, Ferenc/A-7616-2008; OI xu, zhijun/0000-0001-7486-2015; Borondics, Ferenc/0000-0001-9975-4301 FU Natural Sciences and Engineering Research Council of Canada; National Research Council Canada; Canadian Institutes of Health Research; Province of Saskatchewan; Western Economic Diversification Canada; University of Saskatchewan; US DOE [DE-AC02-98CH10886] FX The authors would like to acknowledge the input of Young-June Kim, Andreea Lupascu, and Zhiqiang Li, and thank M. C. Goh for use of her AFM. Research described in this work was performed at the Mid- IR beamline of the Canadian Light Source, which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Work at Brookhaven is supported by the US DOE under Contract No. DE-AC02-98CH10886. NR 33 TC 0 Z9 0 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 7 PY 2014 VL 90 IS 8 AR 081402 DI 10.1103/PhysRevB.90.081402 PG 5 WC Physics, Condensed Matter SC Physics GA AM6SI UT WOS:000339994600002 ER PT J AU Kang, ZB Vitev, I Xing, HX AF Kang, Zhong-Bo Vitev, Ivan Xing, Hongxi TI Next-to-Leading-Order Forward Hadron Production in the Small-x Regime: The Role of Rapidity Factorization SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLOR GLASS CONDENSATE; HIGH-ENERGY SCATTERING; COLLISIONS AB Single inclusive hadron production at forward rapidity in high energy p + A collisions is an important probe of the high gluon density regime of QCD and the associated small-x formalism. We revisit an earlier one-loop calculation to illustrate the significance of the "rapidity factorization" approach in this regime. Such factorization separates the very small-x unintegrated gluon density evolution and leads to a new correction term to the physical cross section at one-loop level. Importantly, this rapidity factorization formalism remedies the previous unphysical negative next-to-leading-order contribution to the cross section. It is much more stable with respect to "rapidity" variation when compared to the leading-order calculation and provides improved agreement between theory and experiment in the forward rapidity region. C1 [Kang, Zhong-Bo; Vitev, Ivan; Xing, Hongxi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Xing, Hongxi] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Kang, ZB (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy, Office of Science; LDRD program at LANL FX This research is supported by the U.S. Department of Energy, Office of Science, and in part by the LDRD program at LANL. NR 28 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 7 PY 2014 VL 113 IS 6 AR 062002 DI 10.1103/PhysRevLett.113.062002 PG 5 WC Physics, Multidisciplinary SC Physics GA AM6SV UT WOS:000339996100001 PM 25148318 ER PT J AU Masuda, S Nakamura, K del Campo, A AF Masuda, Shumpei Nakamura, Katsuhiro del Campo, Adolfo TI High-Fidelity Rapid Ground-State Loading of an Ultracold Gas into an Optical Lattice SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; DYNAMICS; ADIABATICITY; SHORTCUTS; BILLIARDS; TOOLBOX; PHYSICS AB A protocol is proposed for the rapid coherent loading of a Bose-Einstein condensate into the ground state of an optical lattice, without residual excitation associated with the breakdown of adiabaticity. The driving potential required to assist the rapid loading is derived using the fast-forward technique, and generates the ground state in any desired short time. We propose an experimentally feasible loading scheme using a bichromatic lattice potential, which approximates the fast-forward driving potential with high fidelity. C1 [Masuda, Shumpei] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Masuda, Shumpei] Tohoku Univ, Dept Phys, Sendai, Miyagi 980, Japan. [Nakamura, Katsuhiro] Turin Polytech Univ Tashkent, Tashkent 100095, Uzbekistan. [Nakamura, Katsuhiro] Osaka City Univ, Dept Appl Phys, Sumiyoshi Ku, Osaka 5588585, Japan. [del Campo, Adolfo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [del Campo, Adolfo] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Masuda, S (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI del Campo, Adolfo/B-8439-2009 OI del Campo, Adolfo/0000-0003-2219-2851 FU Japan Society for Promotion of Science; JSPS Postdoctoral Fellowships for Research Abroad; U.S Department of Energy; LANL J. Robert Oppenheimer Fellowship FX It is a pleasure to acknowledge discussions with V. Ahufinger, R. Onofrio, B. Rauer, and L. Tarruell. S. M. thanks Grants-in-Aid for Centric Research of Japan Society for Promotion of Science and JSPS Postdoctoral Fellowships for Research Abroad for its financial support. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer Fellowship (A.D.). NR 50 TC 22 Z9 22 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 7 PY 2014 VL 113 IS 6 AR 063003 DI 10.1103/PhysRevLett.113.063003 PG 5 WC Physics, Multidisciplinary SC Physics GA AM6SV UT WOS:000339996100003 PM 25148323 ER PT J AU Yilmaz, T Pletikosic, I Weber, AP Sadowski, JT Gu, GD Caruso, AN Sinkovic, B Valla, T AF Yilmaz, T. Pletikosic, I. Weber, A. P. Sadowski, J. T. Gu, G. D. Caruso, A. N. Sinkovic, B. Valla, T. TI Absence of a Proximity Effect for a Thin-Films of a Bi2Se3 Topological Insulator Grown on Top of a Bi2Sr2CaCu2O8+delta Cuprate Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID BI2TE3; STATE AB Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in situ on optimally doped Bi2Sr2CaCu2O8+delta substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state's Fermi surface, and adverse effects of a strong spin-orbit coupling in the topological material. C1 [Yilmaz, T.; Sinkovic, B.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Pletikosic, I.; Gu, G. D.; Valla, T.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Pletikosic, I.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Weber, A. P.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Caruso, A. N.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. RP Yilmaz, T (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM valla@bnl.gov RI Pletikosic, Ivo/A-5683-2010; Weber, Andrew/G-8148-2016 OI Pletikosic, Ivo/0000-0003-4697-8912; Weber, Andrew/0000-0002-7636-2572 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; ARO MURI program [W911NF-12-1-0461] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Contract No. DE-AC02-98CH10886, and the ARO MURI program, Grant No. W911NF-12-1-0461. NR 26 TC 12 Z9 12 U1 6 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 7 PY 2014 VL 113 IS 6 AR 067003 DI 10.1103/PhysRevLett.113.067003 PG 5 WC Physics, Multidisciplinary SC Physics GA AM6SV UT WOS:000339996100006 PM 25148345 ER PT J AU Zueva, EM Herchel, R Borshch, SA Govor, EV Sameera, WMC McDonald, R Singleton, J Krzystek, J Travnioek, Z Sanakis, Y McGrady, JE Raptis, RG AF Zueva, Ekaterina M. Herchel, Radovan Borshch, Serguei A. Govor, Evgen V. Sameera, W. M. C. McDonald, Ross Singleton, John Krzystek, Jurek Travnioek, Zdenek Sanakis, Yiannis McGrady, John E. Raptis, Raphael G. TI Double exchange in a mixed-valent octanuclear iron cluster, [Fe-8(mu(4)-O)(4)(mu-4-Cl-pz)(12)Cl-4](-) SO DALTON TRANSACTIONS LA English DT Article ID MAGNETIC-PROPERTIES; ELECTRON DELOCALIZATION; VIBRONIC MODEL; COMPLEXES; SYSTEMS; MOSSBAUER; PROTEINS; LOCALIZATION; RESONANCE; SPECTRA AB A combination of SQUID and pulsed high-field magnetometry is used to probe the nature of mixed valency in an (FeFe7III)-Fe-II cluster. DFT-computed spin Hamiltonian parameters suggest that antiferromagnetic coupling dominates, and that electron transfer both between the four irons of the cubane core (t(1)) and between a cubane and three neighboring irons (t(2)) is significant. Simulations using the computed parameters are able to reproduce the key features of the measured effective magnetic moment, mu(eff)(T), over the 2 < T < 300 K temperature range. In contrast, the field dependence of the molar magnetization, M-mol, measured at 0.4 K is inconsistent with substantial electron transfer: only values of t(2) similar to 0 place the separation between ground and first excited states in the region indicated by experiment. The apparent quenching of the cubane-outer electron transfer at very low temperatures indicates that vibronic coupling generates one or more shallow minima on the adiabatic potential energy surfaces that serve to trap the itinerant electron in the cubane core. C1 [Zueva, Ekaterina M.; Sameera, W. M. C.; McGrady, John E.] Univ Oxford, Inorgan Chem Lab, Dept Chem, Oxford OX1 3QR, England. [Zueva, Ekaterina M.] Kazan Natl Res Technol Univ, Dept Inorgan Chem, Kazan 420015, Russia. [Herchel, Radovan; Travnioek, Zdenek] Palacky Univ, Fac Sci, Dept Inorgan Chem, Reg Ctr Adv Technol & Mat, Olomouc, Czech Republic. [Borshch, Serguei A.] Ecole Normale Super Lyon, UMR 5182, Chim Lab, F-69364 Lyon, France. [Govor, Evgen V.; Raptis, Raphael G.] Univ Puerto Rico, Inst Funct Nanomat, Dept Chem, San Juan, PR 00936 USA. [McDonald, Ross; Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Krzystek, Jurek] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Sanakis, Yiannis] NCRS Demokritos, Inst Mat Sci, Athens 15310, Greece. RP McGrady, JE (reprint author), Univ Oxford, Inorgan Chem Lab, Dept Chem, S Parks Rd, Oxford OX1 3QR, England. EM john.mcgrady@chem.ox.ac.uk RI Raptis, Raphael/D-2833-2009; Herchel, Radovan/B-4339-2008 OI Raptis, Raphael/0000-0002-9522-0369; Herchel, Radovan/0000-0001-8262-4666 FU EPSRC (UK) [EP/G002789/1]; National Science Foundation (USA) [CHE-0822600]; Ministry of Education and Science (Russia) [8436]; Operational Program Research and Development for Innovations of the Ministry of Education, Youth and Sports (Czech Republic) [CZ.1.05/2.1.00/03.0058]; NSF [DMR 1157490]; State of Florida; Department of Energy FX Financial support from the EPSRC-EP/G002789/1 (UK), National Science Foundation-CHE-0822600 (USA), the Ministry of Education and Science project 8436 (Russia) and the Operational Program Research and Development for Innovations CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports (Czech Republic) is gratefully acknowledged. Part of this work was carried out at the National High Magnetic Field Laboratory, which is funded by NSF (Cooperative Agreement DMR 1157490), the State of Florida, and Department of Energy. RGR is grateful to the NHMFL for the granting of instrument time to projects PO1587 and PO1965. NR 45 TC 2 Z9 2 U1 5 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PD AUG 7 PY 2014 VL 43 IS 29 BP 11269 EP 11276 DI 10.1039/c4dt00020j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AL7IC UT WOS:000339306400021 PM 24668287 ER PT J AU Holmes, DE Giloteaux, L Orellana, R Williams, KH Robbins, MJ Lovley, DR AF Holmes, Dawn E. Giloteaux, Ludovic Orellana, Roberto Williams, Kenneth H. Robbins, Mark J. Lovley, Derek R. TI Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE anaerobic protozoa; methanogenesis; in situ transcriptomics; uranium bioremediation; endosymbiont ID 16S RIBOSOMAL-RNA; URANIUM-CONTAMINATED GROUNDWATER; POLYMERASE-CHAIN-REACTION; METHANOGENIC BACTERIA; PHYLOGENETIC ANALYSIS; SULFATE REDUCERS; ARSENIC RELEASE; ORGANIC-MATTER; DISSIMILATORY REDUCTION; ANAEROBIC PROTOZOA AB Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and beta-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA m RNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus beta-tubulin m RNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus beta-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane. C1 [Holmes, Dawn E.; Giloteaux, Ludovic; Orellana, Roberto; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Holmes, Dawn E.] Western New England Univ, Springfield, MA 01119 USA. [Williams, Kenneth H.; Robbins, Mark J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Holmes, DE (reprint author), Western New England Univ, 1215 Wilbraham Rd, Springfield, MA 01119 USA. EM dholmes@wne.edu RI Williams, Kenneth/O-5181-2014; Giloteaux, Ludovic/L-6986-2015 OI Williams, Kenneth/0000-0002-3568-1155; FU Office of Science (BER), U. S. Department of Energy [DE-SC0006790] FX This research was supported by the Office of Science (BER), U. S. Department of Energy, Award No. DE-SC0006790. NR 65 TC 4 Z9 4 U1 2 U2 44 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD AUG 6 PY 2014 VL 5 AR 366 DI 10.3389/fmicb.2014.00366 PG 9 WC Microbiology SC Microbiology GA AO7ED UT WOS:000341514000001 PM 25147543 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Integrable Model with Parafermion Zero Energy Modes SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOPOLOGICAL QUANTUM COMPUTATION; CURRENT-ALGEBRA; 2 DIMENSIONS; PERTURBATIONS; SYMMETRY; ANYONS AB Parafermion zero energy modes are a vital element of fault-tolerant topological quantum computation. Although it is believed that such modes form on the border between topological and normal phases, this has been demonstrated only for Z(2) (Majorana) and Z(3) parafermions. I consider an integrable model of one-dimensional fermions where such a demonstration is possible for Z(N) parafermions with any N. The procedure is easily generalizable for more complicated symmetry groups. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. DOE [DE-AC02-98 CH 10886] FX I am grateful to H. Frahm and R. Konik for valuable discussions and interest in the work. The work was supported by the U.S. DOE under Contract No. DE-AC02-98 CH 10886. NR 27 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2014 VL 113 IS 6 AR 066401 DI 10.1103/PhysRevLett.113.066401 PG 4 WC Physics, Multidisciplinary SC Physics GA AO4FJ UT WOS:000341291300005 PM 25148341 ER PT J AU Cowan, SR Schulz, P Giordano, AJ Garcia, A MacLeod, BA Marder, SR Kahn, A Ginley, DS Ratcliff, EL Olson, DC AF Cowan, Sarah R. Schulz, Philip Giordano, Anthony J. Garcia, Andres MacLeod, Bradley A. Marder, Seth R. Kahn, Antoine Ginley, David S. Ratcliff, Erin L. Olson, Dana C. TI Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-based Organic Solar Cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; INDIUM-TIN OXIDE; POWER-CONVERSION EFFICIENCY; TITANIUM DIOXIDE; SURFACE; TANDEM; OXYGEN; ZNO; PERFORMANCE; ADSORPTION AB A spin-cast method is presented for the formation of phosphonic acid functionalized small molecule layers on solution-processed ZnO substrates for use as electron collecting interlayers in organic photovoltaics. Phosphonic acid interlayers modify the ZnO work function and the charge carrier injection barrier at its interface, resulting in systematic control of V-OC in inverted bulk heterojunction solar cells. Surface modification is shown to moderate the need for UV light-soaking of the ZnO contact layers. Lifetime studies (30 days) indicate stable and improved OPV performance over the unmodified ZnO contact, which show significant increases in charge extraction barriers and series resistance. Results suggest that enhanced stability using small molecule modifiers is due to partial passivation of the oxide surface to molecular oxygen adsorption. Surface passivation while maintaining work function control of a selective interlayer can be employed to improve net efficiency and lifetime of organic photovoltaic devices. The modified cathode work function modulates V-OC via static energetic barriers and modulates contact conductivity by creating reversible and irreversible S-shape current-voltage characteristics as a result of kinetic barriers to charge transport. C1 [Cowan, Sarah R.; Garcia, Andres; MacLeod, Bradley A.; Ginley, David S.; Olson, Dana C.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Schulz, Philip; Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Giordano, Anthony J.; Marder, Seth R.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Giordano, Anthony J.; Marder, Seth R.] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Ratcliff, Erin L.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. RP Cowan, SR (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM Dana.Olson@nrel.gov RI MacLeod, Bradley/F-5589-2013; Schulz, Philip/N-2295-2015 OI MacLeod, Bradley/0000-0001-5319-3051; Schulz, Philip/0000-0002-8177-0108 FU Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Fellowship through the SunShot Solar Energy Technologies Program; Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084] FX S.R.C. acknowledges funding from the Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Fellowship through the SunShot Solar Energy Technologies Program. This work was supported as part of the Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001084. The authors acknowledge Mr. Skyler Jackson for work function measurements on ITO. NR 49 TC 34 Z9 34 U1 17 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD AUG 6 PY 2014 VL 24 IS 29 BP 4671 EP 4680 DI 10.1002/adfm.201400158 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN3CB UT WOS:000340461400012 ER PT J AU Wang, JL Yang, MY Zhu, Y Wang, L Tomsia, AP Mao, CB AF Wang, Jianglin Yang, Mingying Zhu, Ye Wang, Lin Tomsia, Antoni P. Mao, Chuanbin TI Phage Nanofibers Induce Vascularized Osteogenesis in 3D Printed Bone Scaffolds SO ADVANCED MATERIALS LA English DT Article ID MESENCHYMAL STEM-CELLS; INTEGRIN ALPHA(V)BETA(3); BIOLOGICAL NANOFIBERS; IN-VIVO; ANGIOGENESIS; TISSUE; GROWTH; DELIVERY; DIFFERENTIATION; MINERALIZATION AB A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. C1 [Wang, Jianglin; Zhu, Ye; Wang, Lin; Mao, Chuanbin] Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. [Yang, Mingying] Zhejiang Univ, Inst Appl Bioresource Res, Coll Anim Sci, Hangzhou 310058, Zhejiang, Peoples R China. [Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, MY (reprint author), Zhejiang Univ, Inst Appl Bioresource Res, Coll Anim Sci, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China. EM yangm@zju.edu.cn; cbmao@ou.edu RI WANG, JIANGLIN/L-5155-2015; OI Mao, Chuanbin/0000-0002-8142-3659 FU National Institutes of Health [5R01DE015633, 5R01HL092526, 1R21EB015190, 4R03AR056848]; National Science Foundation [CBET-0854465, CMMI-1234957, CBET-0854414, DMR-0847758]; Oklahoma Center for Adult Stem Cell Research [434003]; Department of Defense Peer Reviewed Medical Research Program [W81XWH-12-1-0384]; Oklahoma Center for the Advancement of Science and Technology [070014, HR11-006]; National High Technology Research and Development Program 863 [2013AA102507]; National Natural Science Foundation of China [20804037, 21172194]; Zhejiang Provincial Natural Science Foundation of China [LZ12C17001]; Projects of Zhejiang Provincial Science and Technology Plans [2012C12910]; Silkworm Industry Science and Technology Innovation Team [2011R50028] FX We would like to thank the financial support from the National Institutes of Health (5R01DE015633, 5R01HL092526, 1R21EB015190, and 4R03AR056848), the National Science Foundation (CBET-0854465, CMMI-1234957, CBET-0854414, and DMR-0847758), the Oklahoma Center for Adult Stem Cell Research (434003), Department of Defense Peer Reviewed Medical Research Program (W81XWH-12-1-0384), and the Oklahoma Center for the Advancement of Science and Technology (070014 and HR11-006). M.Y. acknowledges the support of National High Technology Research and Development Program 863 (2013AA102507), National Natural Science Foundation of China (20804037 and 21172194), Zhejiang Provincial Natural Science Foundation of China (LZ12C17001), Projects of Zhejiang Provincial Science and Technology Plans (2012C12910), and Silkworm Industry Science and Technology Innovation Team (2011R50028). We would also like to thank Drs. Kun Ma and Yiyang Lin for their kind help during the experiments. NR 39 TC 47 Z9 47 U1 24 U2 206 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD AUG 6 PY 2014 VL 26 IS 29 BP 4961 EP 4966 DI 10.1002/adma.201400154 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN3PP UT WOS:000340500700009 PM 24711251 ER PT J AU Book, AJ Yennamalli, RM Takasuka, TE Currie, CR Phillips, GN Fox, BG AF Book, Adam J. Yennamalli, Ragothaman M. Takasuka, Taichi E. Currie, Cameron R. Phillips, George N., Jr. Fox, Brian G. TI Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Lytic polysaccharide monooxygenase; LPMO; Cellulase; Chitinase; Streptomyces; AA9; AA10; Enzyme evolution; Biofuels ID BAYESIAN PHYLOGENETIC INFERENCE; GLYCOSIDE HYDROLASE FAMILY; BINDING PROTEIN CBP21; CELLOBIOSE DEHYDROGENASE; THERMOMONOSPORA-FUSCA; DEGRADING ENZYMES; NEUROSPORA-CRASSA; CRYSTAL-STRUCTURE; PROVIDES INSIGHT; ACTIVE-SITE AB Background: Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequences, structures, and evolution of LPMOs to understand the factors that may influence substrate specificity both within and between these enzyme families. Results: Comparative analysis of sequences, solved structures, and homology models from AA9 and AA10 LPMO families demonstrated that, although these two LPMO families are highly conserved, structurally they have minimal sequence similarity outside the active site residues. Phylogenetic analysis of the AA10 family identified clades with putative chitinolytic and cellulolytic activities. Estimation of the rate of synonymous versus non-synonymous substitutions (dN/dS) within two major AA10 subclades showed distinct selective pressures between putative cellulolytic genes (subclade A) and CBP21-like chitinolytic genes (subclade D). Estimation of site-specific selection demonstrated that changes in the active sites were strongly negatively selected in all subclades. Furthermore, all codons in the subclade D had dN/dS values of less than 0.7, whereas codons in the cellulolytic subclade had dN/dS values of greater than 1.5. Positively selected codons were enriched at sites localized on the surface of the protein adjacent to the active site. Conclusions: The structural similarity but absence of significant sequence similarity between AA9 and AA10 families suggests that these enzyme families share an ancient ancestral protein. Combined analysis of amino acid sites under Darwinian selection and structural homology modeling identified a subclade of AA10 with diversifying selection at different surfaces, potentially used for cellulose-binding and protein-protein interactions. Together, these data indicate that AA10 LPMOs are under selection to change their function, which may optimize cellulolytic activity. This work provides a phylogenetic basis for identifying and classifying additional cellulolytic or chitinolytic LPMOs. C1 [Book, Adam J.; Takasuka, Taichi E.; Currie, Cameron R.; Phillips, George N., Jr.; Fox, Brian G.] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Book, Adam J.; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Yennamalli, Ragothaman M.; Takasuka, Taichi E.; Phillips, George N., Jr.; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. RP Fox, BG (reprint author), Great Lakes Bioenergy Res Ctr, Dept Energy, 1552 Univ Ave, Madison, WI 53726 USA. EM bgfox@biochem.wisc.edu FU Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC-02-07ER64494]; Department of Energy Bringing Advanced Computational Techniques to Energy Research program (DOE BACTER) [DE-FG02-04ER25627]; National Institute of Health Protein Structure Initiative [U01 GM098248]; National Science Foundation GRAPE [CMMI-0941013] FX This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC-02-07ER64494), the Department of Energy Bringing Advanced Computational Techniques to Energy Research program (DOE BACTER DE-FG02-04ER25627), the National Institute of Health Protein Structure Initiative (U01 GM098248), and the National Science Foundation GRAPE (CMMI-0941013). NR 55 TC 15 Z9 15 U1 9 U2 54 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 6 PY 2014 VL 7 AR 109 DI 10.1186/1754-6834-7-109 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA AN5KJ UT WOS:000340629300001 PM 25161697 ER PT J AU Du, WX Yang, GX Wong, E Deskins, NA Frenkel, AI Su, D Teng, XW AF Du, Wenxin Yang, Guangxing Wong, Emily Deskins, N. Aaron Frenkel, Anatoly I. Su, Dong Teng, Xiaowei TI Platinum-Tin Oxide Core-Shell Catalysts for Efficient Electro-Oxidation of Ethanol SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PT-SN ELECTROCATALYSTS; IN-SITU; FUEL-CELLS; OXIDIZING ETHANOL; CARBON-DIOXIDE; C-C; OXIDATION; METHANOL; DEMS; NANOPARTICLES AB Platinum-tin (Pt/Sn) binary nanoparticles are active electrocatalysts for the ethanol oxidation reaction (EOR), but inactive for splitting the C-C bond of ethanol to CO2. Here we studied detailed structure properties of Pt/Sn catalysts for the EOR, especially CO2 generation in situ using a CO2 microelectrode. We found that composition and crystalline structure of the tin element played important roles in the CO2 generation: non-alloyed Pt-46-(SnO2)(54) core shell particles demonstrated a strong capability for C-C bond breaking of ethanol than pure Pt and intermetallic Pt/Sn, showing 4.1 times higher CO2 peak partial pressure generated from EOR than commercial Pt/C. C1 [Du, Wenxin; Yang, Guangxing; Wong, Emily; Teng, Xiaowei] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. [Deskins, N. Aaron] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. [Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Teng, XW (reprint author), Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. EM xw.teng@unh.edu RI Frenkel, Anatoly/D-3311-2011; Du, Wenxin/P-9195-2014; Deskins, Nathaniel/H-3954-2012; Su, Dong/A-8233-2013 OI Frenkel, Anatoly/0000-0002-5451-1207; Su, Dong/0000-0002-1921-6683 FU National Science Foundation [CBET-1159662]; US Department of Energy [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium through the U.S. Department of Energy grant [DE-FG02-05ER15688]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This material is based upon work supported by the National Science Foundation (CBET-1159662) and the US Department of Energy (DE-AC02-98CH10886). Use of the NSLS was supported by the U.S. Department of Energy (DE-AC02-98CH10886). Beam lines X19A/X18B are partly supported by Synchrotron Catalysis Consortium through the U.S. Department of Energy grant (DE-FG02-05ER15688). TEM work was carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). NR 38 TC 45 Z9 45 U1 19 U2 173 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 6 PY 2014 VL 136 IS 31 BP 10862 EP 10865 DI 10.1021/ja505456w PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AM7WQ UT WOS:000340079800011 PM 25033229 ER PT J AU Xia, XH Figueroa-Cosme, L Tao, J Peng, HC Niu, GD Zhu, YM Xia, YN AF Xia, Xiaohu Figueroa-Cosme, Legna Tao, Jing Peng, Hsin-Chieh Niu, Guangda Zhu, Yimei Xia, Younan TI Facile Synthesis of Iridium Nanocrystals with Well-Controlled Facets Using Seed-Mediated Growth SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DEPENDENT CATALYTIC-ACTIVITY; OXYGEN REDUCTION REACTION; NOBLE-METAL NANOCRYSTALS; HYDRAZINE DECOMPOSITION; PLATINUM NANOPARTICLES; PALLADIUM NANOCRYSTALS; PD NANOCRYSTALS; CO OXIDATION; SHAPE; HYDROGENATION AB Iridium nanoparticles have only been reported with roughly spherical shapes and sizes of 1-5 nm, making it impossible to investigate their facet-dependent catalytic properties. Here we report for the first time a simple method based on seed-mediated growth for the facile synthesis of Ir nanocrystals with well-controlled facets. The essence of this approach is to coat an ultrathin conformal shell of Ir on a Pd seed with a well-defined shape at a relatively high temperature to ensure fast surface diffusion. In this way, the facets on the initial Pd seed are faithfully replicated in the resultant Pd@Ir core shell nanocrystal. With 6 nm Pd cubes and octahedra encased by {100} and {111} facets, respectively, as the seeds, we have successfully generated Pd@Ir cubes and octahedra covered by Ir{100} and Ir{111} facets. The Pd@Ir cubes showed higher H-2 selectivity (31.8% vs 8.9%) toward the decomposition of hydrazine compared with Pd@Ir octahedra with roughly the same size. C1 [Xia, Xiaohu; Niu, Guangda; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Xia, Xiaohu; Niu, Guangda; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA. [Figueroa-Cosme, Legna; Peng, Hsin-Chieh; Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Xia, YN (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. EM younan.xia@bme.gatech.edu RI Xia, Younan/E-8499-2011; Xia, Xiaohu/H-4581-2015 FU NSF [DMR-1215034]; Georgia Institute of Technology; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-98CH1088] FX This work was supported in part by the NSF (DMR-1215034) and startup funds from the Georgia Institute of Technology. Part of the electron microscopy work at BNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-98CH1088. NR 37 TC 46 Z9 46 U1 18 U2 203 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 6 PY 2014 VL 136 IS 31 BP 10878 EP 10881 DI 10.1021/ja505716v PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AM7WQ UT WOS:000340079800015 PM 25058427 ER PT J AU Kim, W Yuan, G McClure, BA Frei, H AF Kim, Wooyul Yuan, Guangbi McClure, Beth Anne Frei, Heinz TI Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCoII Unit Coupled to Ir Oxide Nanocluster Catalyst SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHARGE-TRANSFER CHROMOPHORE; MESOPOROUS SILICA; ELECTRON-TRANSFER; PHOTOCATALYTIC REDUCTION; HYDROGEN-PRODUCTION; ARTIFICIAL PHOTOSYNTHESIS; CO2 REDUCTION; FERMI-LEVEL; OXIDATION; SEMICONDUCTOR AB An all-inorganic polynuclear unit consisting of an oxo-bridged binuclear ZrOCoII group coupled to an iridium oxide nanocluster (IrOx) was assembled on an SBA-15 silica mesopore surface. A photodeposition method was developed that affords coupling of the IrOx water oxidation catalyst with the Co donor center. The approach consists of excitation of the ZrOCoII metal-to-metal charge-transfer (MMCT) chromophore with visible light in the presence of [Ir(acac)3] (acac: acetylacetonate) precursor followed by calcination under mild conditions, with each step monitored by optical and infrared spectroscopy. Illumination of the MMCT chromophore of the resulting ZrOCoII-IrOx units in the SBA-15 pores loaded with a mixture of (CO2)-C-13 and H2O vapor resulted in the formation of (CO)-C-13 and O-2 monitored by FT-IR and mass spectroscopy, respectively. Use of O-18 labeled water resulted in the formation of O-18(2) product. This is the first example of a closed photosynthetic cycle of carbon dioxide reduction by water using an all-inorganic polynuclear cluster featuring a molecularly defined light absorber. The observed activity implies successful competition of electron transfer between the IrOx catalyst cluster and the transient oxidized Co donor center with back electron transfer of the ZrOCo light absorber, and is further aided by the instant desorption of the CO and O-2 product from the silica pores. C1 [Kim, Wooyul; Yuan, Guangbi; McClure, Beth Anne; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM HMFrei@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; U.S. Department of Energy; National Research Foundation of Korea (NRF) - Ministry of Education [2012R1A6A3A03039210] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy. W.K. thankful for support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A6A3A03039210). The authors thank Drs. Diana Cedeno and Wenjun Liu, Joint Center for Artificial Photosynthesis at LBNL, for conducting XPS and NMR measurements. NR 72 TC 29 Z9 29 U1 8 U2 153 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 6 PY 2014 VL 136 IS 31 BP 11034 EP 11042 DI 10.1021/ja504753g PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AM7WQ UT WOS:000340079800039 PM 25033315 ER PT J AU Fang, L Iyer, RG Tan, GJ West, DJ Zhang, SB Kanatzidis, MG AF Fang, Lei Iyer, Ratnasabapathy G. Tan, Gangjian West, Damien J. Zhang, Shengbai Kanatzidis, Mercouri G. TI The New Phase [TI4Sb6Se10][Sn5Sb2Se14]: A Naturally Formed Semiconducting Heterostructure with Two-Dimensional Conductance SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AUGMENTED-WAVE METHOD; FERECRYSTALLINE COMPOUNDS; THERMOELECTRICS; CRYSTALS; SUPERLATTICES; CONDUCTIVITY; PREDICTION; TRANSPORT; MERIT; PBSE AB We report on a new layered semiconductor TI8Sn10Sb16Se48 with an indirect band gap of 0.45 eV. The novel structure is made of alternating layers of SnSe2-type [Sn5Sb2Se14] and SnSe-type [TI4Sb6Se10]. The material exhibits two-dimensional (2D) electron variable range hopping at low temperatures, indicating an absence of interlayer coherency of the electronic state. Theoretical calculations unveil a 2D confinement for electrons in the [Sn5Sb2Se14] sheet and confirm the heterostructure nature. This unique electronic structure is attributed to the weak interlayer coupling and structure distortion in the electron-poor [TI4Sb6Se10] layer that energetically impedes electron propagation. C1 [Fang, Lei; Iyer, Ratnasabapathy G.; Tan, Gangjian; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Iyer, Ratnasabapathy G.] Claflin Univ, Dept Chem, Orangeburg, SC 29118 USA. [West, Damien J.; Zhang, Shengbai] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Tan, Gangjian/M-3509-2014; West, Damien/F-8616-2012; Zhang, Shengbai/D-4885-2013 OI Tan, Gangjian/0000-0002-9087-4048; West, Damien/0000-0002-4970-3968; Zhang, Shengbai/0000-0003-0833-5860 FU Defense Advanced Research Project Agency (DARPA) [N66001-12-1-4034]; NSF [DMR-1104965]; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-06CH11357] FX The transport measurements were supported by the Defense Advanced Research Project Agency (DARPA) (L.F., D.J.W., S.B.Z.) Award No. N66001-12-1-4034. R.G.I. and G.T. were supported by NSF Grant DMR-1104965. Research at Argonne was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne Contract No. DE-AC02-06CH11357). NR 44 TC 4 Z9 4 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 6 PY 2014 VL 136 IS 31 BP 11079 EP 11084 DI 10.1021/ja505301y PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AM7WQ UT WOS:000340079800045 PM 25058471 ER PT J AU Kiriya, D Chen, K Ota, H Lin, YJ Zhao, PD Yu, ZB Ha, TJ Javey, A AF Kiriya, Daisuke Chen, Kevin Ota, Hiroki Lin, Yongjing Zhao, Peida Yu, Zhibin Ha, Tae-jun Javey, Ali TI Design of Surfactant-Substrate Interactions for Roll-to-Roll Assembly of Carbon Nanotubes for Thin-Film Transistors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RADIOFREQUENCY APPLICATIONS; INTEGRATED-CIRCUITS; ELECTRONICS; SENSORS; SOLUBILIZATION; DISPERSION; WATER; ADSORPTION; TRANSPARENT; SEPARATION AB Controlled assembly of single-walled carbon nanotube (SWCNT) networks with high density and deposition rate is critical for many practical applications, including large-area electronics. In this regard, surfactant chemistry plays a critical role as it facilitates the substrate-nanotube interactions. Despite its importance, detailed understanding of the subject up until now has been lacking, especially toward tuning the controllability of SWCNT assembly for thin-film transistors. Here, we explore SWCNT assembly with steroid- and alkyl-based surfactants. While steroid-based surfactants yield highly dense nanotube thin films, alkyl surfactants are found to prohibit nanotube assembly. The latter is attributed to the formation of packed alkyl layers of residual surfactants on the substrate surface, which subsequently repel surfactant encapsulated SWCNTs. In addition, temperature is found to enhance the nanotube deposition rate and density. Using this knowledge, we demonstrate highly dense and rapid assembly with an effective SWCNT surface coverage of similar to 99% as characterized by capacitance voltage measurements. The scalability of the process is demonstrated through a roll-to-roll assembly of SWCNTs on plastic substrates for large-area thin-film transistors. The work presents an important process scheme for nanomanufacturing of SWCNT-based electronics. C1 [Kiriya, Daisuke; Chen, Kevin; Ota, Hiroki; Lin, Yongjing; Zhao, Peida; Yu, Zhibin; Ha, Tae-jun; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kiriya, Daisuke; Chen, Kevin; Ota, Hiroki; Lin, Yongjing; Zhao, Peida; Yu, Zhibin; Ha, Tae-jun; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Kiriya, Daisuke; Chen, Kevin; Ota, Hiroki; Lin, Yongjing; Zhao, Peida; Yu, Zhibin; Ha, Tae-jun; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Javey, Ali/B-4818-2013 FU NSF NASCENT Center FX This work was supported by NSF NASCENT Center. NR 69 TC 24 Z9 24 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 6 PY 2014 VL 136 IS 31 BP 11188 EP 11194 DI 10.1021/ja506315j PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AM7WQ UT WOS:000340079800060 PM 25019509 ER PT J AU Marra, DM Chambers, JQ Higuchi, N Trumbore, SE Ribeiro, GHPM dos Santos, J Negron-Juarez, RI Reu, B Wirth, C AF Marra, Daniel Magnabosco Chambers, Jeffrey Q. Higuchi, Niro Trumbore, Susan E. Ribeiro, Gabriel H. P. M. dos Santos, Joaquim Negron-Juarez, Robinson I. Reu, Bjoern Wirth, Christian TI Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest SO PLOS ONE LA English DT Article ID TROPICAL RAIN-FOREST; PHYLOGENY GROUP CLASSIFICATION; BARRO-COLORADO-ISLAND; WOOD DENSITY; PUERTO-RICO; SPECIES-DIVERSITY; FLOWERING PLANTS; GAP DISTURBANCES; LARGE BLOWDOWNS; HURRICANE HUGO AB Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the shortterm (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 +/- 46 trees ha(-1)) (mean +/- 699% Confidence Interval) and basal area (26.7 +/- 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m 2 ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level. C1 [Marra, Daniel Magnabosco; Reu, Bjoern; Wirth, Christian] Univ Leipzig, D-04109 Leipzig, Germany. [Marra, Daniel Magnabosco; Trumbore, Susan E.; Wirth, Christian] Max Planck Inst Biogeochem, BGC Prozesse, D-07745 Jena, Germany. [Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. [Chambers, Jeffrey Q.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Chambers, Jeffrey Q.; Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Chambers, Jeffrey Q.; Negron-Juarez, Robinson I.] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA. [Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany. RP Marra, DM (reprint author), Univ Leipzig, D-04109 Leipzig, Germany. EM daniel.marra@uni-leipzig.de RI Chambers, Jeffrey/J-9021-2014; iDiv, Deutsches Zentrum/B-5164-2016; Negron-Juarez, Robinson/I-6289-2016; OI Chambers, Jeffrey/0000-0003-3983-7847; Ribeiro, Gabriel/0000-0002-3343-3043 FU Brazilian Council for Scientific and Technological Development (CNPq); National Aeronautics and Space Administration's Biodiversity Program [08-BIODIV-10]; Max-Planck-Institute for Biogeochemistry (BGC-Processes, Jena); Coordination for the Improvement of Higher Level Personal (CAPES) FX This study was financed by the Brazilian Council for Scientific and Technological Development (CNPq) [Projeto SAWI (Chamada Universal MCTI/No 14/2012, Proc. 473357/2012-7) and INCT - Madeiras da Amazonia], by the National Aeronautics and Space Administration's Biodiversity Program (Project 08-BIODIV-10), and by the Max-Planck-Institute for Biogeochemistry (BGC-Processes, Jena). The presented results are part of the first author's PhD thesis, which incorporate data from his Master thesis, undertaken at the INPA/CFT, with fellowship funded by the Coordination for the Improvement of Higher Level Personal (CAPES). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 105 TC 9 Z9 9 U1 3 U2 51 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 6 PY 2014 VL 9 IS 8 AR e103711 DI 10.1371/journal.pone.0103711 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM6SM UT WOS:000339995100028 PM 25099118 ER PT J AU Vigneron, A Cruaud, P Roussel, EG Pignet, P Caprais, JC Callac, N Ciobanu, MC Godfroy, A Cragg, BA Parkes, JR Van Nostrand, JD He, ZL Zhou, JZ Toffin, L AF Vigneron, Adrien Cruaud, Perrine Roussel, Erwan G. Pignet, Patricia Caprais, Jean-Claude Callac, Nolwenn Ciobanu, Maria-Cristina Godfroy, Anne Cragg, Barry A. Parkes, John R. Van Nostrand, Joy D. He, Zhili Zhou, Jizhong Toffin, Laurent TI Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin SO PLOS ONE LA English DT Article ID DEEP SUBSEAFLOOR SEDIMENTS; MARINE-SEDIMENTS; SEA-FLOOR; ARCHAEAL COMMUNITIES; GROWTH-RATE; GULF; RNA; CALIFORNIA; BIOSPHERE; NITROGEN AB Subsurface sediments of the Sonora Margin (Guayma Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. C1 [Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Callac, Nolwenn; Godfroy, Anne; Toffin, Laurent] IFREMER, Lab Microbiol Environm Extremes, UMR6197, Plouzane, France. [Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Callac, Nolwenn; Godfroy, Anne; Toffin, Laurent] Univ Bretagne Occidentale, Lab Microbiol Environm Extremes, UMR6197, Plouzane, France. [Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Callac, Nolwenn; Godfroy, Anne; Toffin, Laurent] CNRS, Lab Microbiol Environm Extremes, UMR6197, Plouzane, France. [Caprais, Jean-Claude] IFREMER, Lab Etud Environm Profonds, UMR6197, Plouzane, France. [Callac, Nolwenn] Univ Brest, Domaines Ocean IUEM, UMR6538, Plouzane, France. [Ciobanu, Maria-Cristina] IFREMER, Geosci Marines, Lab Environm Sedimentaires, Plouzane, France. [Roussel, Erwan G.; Cragg, Barry A.; Parkes, John R.] Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AX, S Glam, Wales. [Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Vigneron, A (reprint author), IFREMER, Lab Microbiol Environm Extremes, UMR6197, Plouzane, France. EM avignero@gmail.com RI Cragg, Barry/D-2690-2009; Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; Roussel, Erwan/0000-0002-8735-5597; Callac, Nolwenn/0000-0002-7578-3455 FU IFREMER; IFREMER PhD grant FX The oceanographic cruise and this study was funded by IFREMER and a IFREMER PhD grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 11 Z9 11 U1 5 U2 72 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 6 PY 2014 VL 9 IS 8 AR e104427 DI 10.1371/journal.pone.0104427 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM6SM UT WOS:000339995100071 PM 25099369 ER PT J AU Li, XJ Peng, ZL Lei, H Dao, M Karniadakis, GE AF Li, Xuejin Peng, Zhangli Lei, Huan Dao, Ming Karniadakis, George Em TI Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE red blood cell; multi-scale modelling; dissipative particle dynamics ID DISSIPATIVE PARTICLE DYNAMICS; SHEAR-FLOW; MESOSCOPIC SIMULATION; LIPID-BILAYER; MEMBRANE; DEFORMATION; ERYTHROCYTE; VISCOSITY; VESICLES; MOTION AB This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer-cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model. C1 [Li, Xuejin; Karniadakis, George Em] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Peng, Zhangli; Dao, Ming] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Lei, Huan] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99354 USA. RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. EM george_karniadakis@brown.edu RI Dao, Ming/B-1602-2008; Li, Xuejin/B-8559-2009; Peng, Zhangli/N-7284-2016 OI Li, Xuejin/0000-0002-4446-2480; FU National Institutes of Health (NIH) grant [U01HL114476]; new DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) FX This work is supported by the National Institutes of Health (NIH) grant no. U01HL114476 and the new DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). NR 37 TC 15 Z9 15 U1 3 U2 36 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD AUG 6 PY 2014 VL 372 IS 2021 SI SI AR 20130389 DI 10.1098/rsta.2013.0389 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL0VH UT WOS:000338844500011 ER PT J AU Mahadevan, VS Merzari, E Tautges, T Jain, R Obabko, A Smith, M Fischer, P AF Mahadevan, Vijay S. Merzari, Elia Tautges, Timothy Jain, Rajeev Obabko, Aleksandr Smith, Michael Fischer, Paul TI High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE multi-physics; reactor analysis; code coupling ID SPECTRAL ELEMENT SOLUTION; TIME-INTEGRATION METHODS; MULTIPHYSICS SIMULATIONS; EQUATIONS; DIFFUSION; SYSTEMS AB An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated monophysics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. C1 [Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul] Argonne Natl Lab, Argonne, IL 60439 USA. RP Mahadevan, VS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mahadevan@anl.gov OI Mahadevan, Vijay/0000-0002-3337-2607 FU Nuclear Energy Advanced Modeling and Simulation (NEAMS) programme of the US Department of Energy Office of Nuclear Energy [DE-AC02-06CH11357] FX This work was completed as part of the SHARP reactor performance and safety code suite development project, which is funded under the auspices of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) programme of the US Department of Energy Office of Nuclear Energy, under contract DE-AC02-06CH11357. NR 43 TC 5 Z9 5 U1 0 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD AUG 6 PY 2014 VL 372 IS 2021 SI SI AR 20130381 DI 10.1098/rsta.2013.0381 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL0VH UT WOS:000338844500005 ER PT J AU Baquero-Ruiz, M Charman, AE Fajans, J Little, A Povilus, A Robicheaux, F Wurtele, JS Zhmoginov, AI AF Baquero-Ruiz, M. Charman, A. E. Fajans, J. Little, A. Povilus, A. Robicheaux, F. Wurtele, J. S. Zhmoginov, A. I. TI Using stochastic acceleration to place experimental limits on the charge of antihydrogen SO NEW JOURNAL OF PHYSICS LA English DT Article DE antihydrogen; charge anomaly; CPT ID AUTORESONANT NONSTATIONARY EXCITATION; TRAPPED ANTIHYDROGEN; MAGNETIC TRAP; SPECTROSCOPY; CONFINEMENT; ANTIPROTON; POSITRONS; GRAVITY; ATOMS AB Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen also be charge neutral. Quantum anomaly cancellation also demands that antihydrogen be charge neutral. Standard techniques based on measurements of macroscopic quantities of atoms cannot be used to measure the charge of antihydrogen. In this paper, we describe how the application of randomly oscillating electric fields to a sample of trapped antihydrogen atoms, a form of stochastic acceleration, can be used to place experimental limits on this charge. C1 [Baquero-Ruiz, M.; Charman, A. E.; Fajans, J.; Little, A.; Povilus, A.; Wurtele, J. S.; Zhmoginov, A. I.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fajans, J.; Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Robicheaux, F.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Baquero-Ruiz, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wurtele, Jonathan/J-6278-2016; Fajans, Joel/J-6597-2016 OI wurtele, Jonathan/0000-0001-8401-0297; Fajans, Joel/0000-0002-4403-6027 FU DOE, (USA); NSF, (USA); LBNL-LDRD (USA); CNPq, (Brazil); FINEP/RENAFAE (Brazil); ISF (Israel); FNU (Denmark); VR (Sweden); NSERC, (Canada); NRC/TRIUMF, (Canada); AITF, (Canada); FQRNT (Canada); EPSRC; Royal Society; Leverhulme Trust (UK) FX This work was supported by the DOE, NSF, LBNL-LDRD (USA); the experimental data were acquired by the ALPHA collaboration with additional support from: CNPq, FINEP/RENAFAE (Brazil); ISF (Israel); FNU (Denmark); VR (Sweden); NSERC, NRC/TRIUMF, AITF, FQRNT (Canada); and EPSRC, the Royal Society and the Leverhulme Trust (UK). The ALPHA collaboration is grateful for the efforts of the CERN AD team, without which the experimental data could not have been collected. This article constitutes part of the PhD work of MB-R. NR 37 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 5 PY 2014 VL 16 AR 083013 DI 10.1088/1367-2630/16/8/083013 PG 13 WC Physics, Multidisciplinary SC Physics GA AP2QD UT WOS:000341917800004 ER PT J AU Dobrescu, BA Frugiuele, C AF Dobrescu, Bogdan A. Frugiuele, Claudia TI Hidden GeV-Scale Interactions of Quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAUGE BOSON; BARYON NUMBER; SEARCH; COLLISIONS; LEPTONS; DECAYS; TEV AB We explore quark interactions mediated by new gauge bosons of masses in the 0.3-50 GeV range. A tight upper limit on the gauge coupling of light Z' bosons is imposed by the anomaly cancellation conditions in conjunction with collider bounds on new charged fermions. Limits from quarkonium decays are model dependent, while electroweak constraints are mild. We derive the limits for a Z' boson coupled to baryon number and then construct a Z' model with relaxed constraints, allowing quark couplings as large as 0.2 for a mass of a few GeV. C1 [Dobrescu, Bogdan A.; Frugiuele, Claudia] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. NR 35 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2014 VL 113 IS 6 AR 061801 DI 10.1103/PhysRevLett.113.061801 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3XC UT WOS:000341269600003 PM 25148315 ER PT J AU Martinez, E Caro, A Beyerlein, IJ AF Martinez, Enrique Caro, Alfredo Beyerlein, Irene J. TI Atomistic modeling of defect-induced plasticity in CuNb nanocomposites SO PHYSICAL REVIEW B LA English DT Article ID STACKING-FAULT TETRAHEDRA; PRIMARY DAMAGE; DISLOCATION DYNAMICS; MOLECULAR-DYNAMICS; INFREQUENT EVENTS; RADIATION-DAMAGE; TIME-SCALE; CASCADES; IRRADIATION; COMPOSITES AB CuNb nanocomposites have proven stable under light-ion irradiation, although their response to heavy-ion bombardment and subsequent loading is still uncertain. In this paper we analyze the change in mechanical properties of model CuNb nanocomposites in vacancy supersaturated environments, mimicking certain effects introduced by heavy-ion irradiation. We have performed compression tests using molecular dynamics for different defect contents. The presence of defects substantially modifies the system response upon external loading. The dislocation nucleation mechanism changes with the interface atomic density. Stacking fault tetrahedra in the Cu layer may act as dislocation sources to lower significantly the yield stress and the same applies for voids present in the Nb layer. We have analyzed in detail the dislocation-interface interaction mechanisms under different conditions, showing how dislocations react with the misfit dislocations present at the interface to modify the atomic structure of the boundary, which suggests that the interface could be designed to optimize its defect healing properties. We conclude that heavy-ion irradiation softens the multilayer nanocomposites and that interfaces help in recovering these materials as they absorb the dislocations created from irradiation-induced defects. C1 [Martinez, Enrique; Caro, Alfredo] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. EM enriquem@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - U.S. Department of Energy at Los Alamos National Laboratory [2008LANL1026] FX The authors thank J. P. Hirth, M. J. Demkowicz, and A. Misra for exciting discussions. The authors also gratefully acknowledge the support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (Grant No. 2008LANL1026) at Los Alamos National Laboratory. Parallel computations were performed on the Lobo machine at the High Performance Computing clusters at Los Alamos National Laboratory. NR 33 TC 9 Z9 9 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 5 PY 2014 VL 90 IS 5 AR 054103 DI 10.1103/PhysRevB.90.054103 PG 9 WC Physics, Condensed Matter SC Physics GA AO3SN UT WOS:000341256100002 ER PT J AU Velizhanin, KA Shahbazyan, TV AF Velizhanin, Kirill A. Shahbazyan, Tigran V. TI Exciton-plasmaritons in graphene/semiconductor structures SO PHYSICAL REVIEW B LA English DT Article ID RELAXATION-TIME APPROXIMATION; LINDHARD DIELECTRIC FUNCTION; SURFACE-PLASMON POLARITONS; GRAPHENE PLASMONICS; SEMICONDUCTORS; DEVICES; ENERGY AB We study strong coupling between plasmons in monolayer charge-doped graphene and excitons in a narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that the Coulomb interaction between excitons and plasmons results in mixed states described by a Hamiltonian similar to that for exciton-polaritons and derive the exciton-plasmon coupling constant that depends on system parameters. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach values of up to 50-100 meV. C1 [Velizhanin, Kirill A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Shahbazyan, Tigran V.] Jackson State Univ, Dept Phys, Jackson, MS 39217 USA. RP Velizhanin, KA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kirill@lanl.gov; shahbazyan@jsums.edu RI Velizhanin, Kirill/C-4835-2008 FU NNSA of the US DOE at LANL [DE AC52-06NA25396]; NSF [DMR-1206975] FX The authors would like to thank G. Khodaparast for a helpful discussion. Work at LANL was performed under the NNSA of the US DOE at LANL under Contract No. DE AC52-06NA25396. Work at JSU was supported by the NSF under Grant No. DMR-1206975. NR 56 TC 4 Z9 4 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 5 PY 2014 VL 90 IS 8 AR 085403 DI 10.1103/PhysRevB.90.085403 PG 9 WC Physics, Condensed Matter SC Physics GA AO3SV UT WOS:000341257100003 ER PT J AU Yan, L Ollitrault, JY Poskanzer, AM AF Yan, Li Ollitrault, Jean-Yves Poskanzer, Arthur M. TI Eccentricity distributions in nucleus-nucleus collisions SO PHYSICAL REVIEW C LA English DT Article ID ELLIPTIC FLOW; AU+AU COLLISIONS; FLUCTUATIONS; PARTICLES AB We propose a new parametrization of the distribution of the initial eccentricity in a nucleus-nucleus collision at a fixed centrality, which we name the elliptic power distribution. It is a two-parameter distribution, where one of the parameters corresponds to the intrinsic eccentricity, while the other parameter controls the magnitude of eccentricity fluctuations. Unlike the previously used Bessel-Gaussian distribution, which becomes worse for more peripheral collisions, the new elliptic power distribution fits several Monte Carlo models of the initial state for all centralities. C1 [Yan, Li; Ollitrault, Jean-Yves] IPhT Inst Phys Theor Saclay, CNRS, URA2306, F-91191 Gif Sur Yvette, France. [Poskanzer, Arthur M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yan, L (reprint author), IPhT Inst Phys Theor Saclay, CNRS, URA2306, F-91191 Gif Sur Yvette, France. FU European Research Council under the Advanced Investigator [ERC-AD-267258]; Office of Science, of the US Department of Energy FX We thank Hiroshi Masui for carrying out the Monte Carlo Glauber calculations which inspired this work, Bjorn Schenke for the IP-Glasma results, C. Loizides for the new version of the PHOBOS Glauber, M. Luzum and S. Voloshin for extensive discussions and suggestions. In particular, we thank S. Voloshin for suggesting the name elliptic power, and for useful comments on the manuscript. J.Y.O. thanks the MIT LNS for hospitality. L.Y. is funded by the European Research Council under the Advanced Investigator Grant No. ERC-AD-267258. A.M.P. was supported by the Director, Office of Science, of the US Department of Energy. NR 54 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG 5 PY 2014 VL 90 IS 2 AR 024903 DI 10.1103/PhysRevC.90.024903 PG 9 WC Physics, Nuclear SC Physics GA AO3UF UT WOS:000341260900002 ER PT J AU Davoudiasl, H Lewis, IM AF Davoudiasl, Hooman Lewis, Ian M. TI Right-handed neutrinos as the origin of the electroweak scale SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER; SYMMETRY-BREAKING; STANDARD MODEL; HIGGS-BOSON; MECHANISM; LHC AB The insular nature of the Standard Model may be explained if the Higgs mass parameter is only sensitive to quantum corrections from physical states. Starting from a scale-free electroweak sector at tree level, we postulate that quantum effects of heavy right-handed neutrinos induce a mass term for a scalar weak doublet that contains the dark matter particle. In turn, below the scale of heavy neutrinos, the dark matter sector sets the scale of the Higgs potential. We show that this framework can lead to a Higgs mass that respects physical naturalness, while also providing a viable scalar dark matter candidate, realistic light neutrino masses, and the baryon asymmetry of the Universe via thermal leptogenesis. The proposed scenario can remain perturbative and stable up to the Planck scale, thereby accommodating simple extensions to include a high-scale (similar to 2 x 10(16) GeV) inflationary sector, implied by recent measurements. In that case, our model typically predicts that the dark matter scalar is close to 1 TeV in mass and could be accessible in near future direct detection experiments. C1 [Davoudiasl, Hooman; Lewis, Ian M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU United States Department of Energy [DE-AC02-98CH10886] FX We thank P. Meade and A. Strumia for discussions. This work was supported in part by the United States Department of Energy under Grant Contract No. DE-AC02-98CH10886. NR 54 TC 31 Z9 31 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 5 PY 2014 VL 90 IS 3 AR 033003 DI 10.1103/PhysRevD.90.033003 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AO3US UT WOS:000341262400001 ER PT J AU Vogel, T Li, YW Wust, T Landau, DP AF Vogel, Thomas Li, Ying Wai Wuest, Thomas Landau, David P. TI Scalable replica-exchange framework for Wang-Landau sampling SO PHYSICAL REVIEW E LA English DT Article ID MONTE-CARLO METHOD; DENSITY-OF-STATES; PARALLEL IMPLEMENTATION; PHASE-TRANSITIONS; POTTS-MODEL; RANDOM-WALK; FREE-ENERGY; SIMULATIONS; ALGORITHM; PROTEINS AB We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods. C1 [Vogel, Thomas; Landau, David P.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Li, Ying Wai] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Wuest, Thomas] ETH, IT Serv, Sci IT Serv, CH-8092 Zurich, Switzerland. RP Vogel, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM thomasvogel@physast.uga.edu FU National Science Foundation [DMR-0810223, OCI-0904685]; Office of Advanced Scientific Computing Research; U.S. Department of Energy; UT-Battelle, LLC [De-AC05-00OR22725]; TACC under XSEDE [PHY130009] FX This work has been supported by the National Science Foundation under Grants No. DMR-0810223 and No. OCI-0904685. Y. W. Li was partly sponsored by the Office of Advanced Scientific Computing Research; U.S. Department of Energy. Part of the work was performed at the Oak Ridge Leadership Computing Facility at ORNL, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. Supercomputer time was provided by TACC under XSEDE Grant No. PHY130009. LA-UR-13-29579 assigned. NR 63 TC 16 Z9 16 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG 5 PY 2014 VL 90 IS 2 AR 023302 DI 10.1103/PhysRevE.90.023302 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AO3WA UT WOS:000341266300008 PM 25215846 ER PT J AU He, HK Averick, S Roth, E Luebke, D Nulwala, H Matyjaszewski, K AF He, Hongkun Averick, Saadyah Roth, Elliot Luebke, David Nulwala, Hunaid Matyjaszewski, Krzysztof TI Clickable poly(ionic liquid)s for modification of glass and silicon surfaces SO POLYMER LA English DT Article DE Poly(ionic liquid)s; ATRP; Click chemistry ID TRANSFER RADICAL POLYMERIZATION; BLOCK-COPOLYMERS; POLY(ETHYLENE GLYCOL); NITRENE CHEMISTRY; CARBON NANOTUBES; IONIC LIQUIDS; POLYMERS; THIOL; BRUSHES; ATRP AB Covalent attachment of poly(ionic liquid)s (PILs) by click chemistry on glass or silicon (Si) surfaces was performed. Poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluorcimethylsulfonyl)imide] (poly-VBBI+Tf2N-), and copolymers of polyVBBI(+)Tf(2)N(-) with fluorescein O-methacrylate were synthesized by conducting an atom transfer radical polymerization (ATRP) from initiators containing azide or thioacetate groups. The azide- and thiol-terminated PILs were then successfully grafted onto alkyne and alkene modified glass/Si wafers by thermal azide-alkyne cycloaddition and photoinitiated thiol-ene click reactions, respectively. The modified surfaces were characterized by contact angle measurements and ellipsometry. The fluorescent PIL functionalized surfaces showed strong fluorescence under UV irradiation. This procedure of tethering PILs to substrates also provides an easy way to change the surface hydrophilicity by replacing the anions in the grafted PILs. The present approach could be readily applied for surface modifications with other types of PILs or their copolymers to achieve different functionalities on various surfaces. (C) 2014 Elsevier Ltd. All rights reserved. C1 [He, Hongkun; Averick, Saadyah; Nulwala, Hunaid; Matyjaszewski, Krzysztof] Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, Pittsburgh, PA 15213 USA. [He, Hongkun; Roth, Elliot; Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Nulwala, H (reprint author), Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, 4400 Fifth Ave, Pittsburgh, PA 15213 USA. EM hnulwala@andrew.cmu.edu; km3b@andrew.cmu.edu RI He, Hongkun/B-4759-2011; Matyjaszewski, Krzysztof/A-2508-2008; Averick, Saadyah/A-9999-2015; OI He, Hongkun/0000-0002-7214-3313; Matyjaszewski, Krzysztof/0000-0003-1960-3402; Nulwala, Hunaid/0000-0001-7481-3723 FU NSF support [CHE-1039870, DMR-0969301]; DoE support [ER-45998]; U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0004000] FX NSF support (CHE-1039870 and DMR-0969301) and DoE support (ER-45998) is acknowledged. This technical effort was also performed in support of U.S. Department of Energy's National Energy Technology Laboratory's on-going research on CO2 capture under the contract DE-FE0004000. NR 89 TC 16 Z9 16 U1 13 U2 125 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD AUG 5 PY 2014 VL 55 IS 16 SI SI BP 3330 EP 3338 DI 10.1016/j.polymer.2014.01.045 PG 9 WC Polymer Science SC Polymer Science GA AN7WS UT WOS:000340812300007 ER PT J AU Brombosz, SM Seifert, S Firestone, MA AF Brombosz, Scott M. Seifert, Soenke Firestone, Millicent A. TI Patterning a pi-conjugated polyelectrolyte through sequential polymerization of a bifunctional ionic liquid monomer SO POLYMER LA English DT Article DE pi-Conjugated polyelectrolyte; Ionic liquid; Sequential polymerization ID OPTICAL-PROPERTIES; OXIDATIVE POLYMERIZATION; ORGANIC BIOELECTRONICS; CARBON NANOTUBES; FILMS; COMPOSITES; POLYTHIOPHENE; MULTILAYERS; DERIVATIVES; COMPLEXES AB An electronically conductive polyelectrolyte is prepared by the sequential polymerization of a bifunctional imidazolium-based ionic liquid (IL) monomer, composed of a thienyl and vinyl containing cation paired with a tetrafluoroborate anion. In the first step, potentiodynamic electropolymerization of the thienyl moiety forms a cationic polyalkylthiophene that is soluble in select organic solvents. Cyclic voltammetry (CV) was used to determine the polymer p-doping potential (0.31 V) and the bipolaronic state (1.49 V). The polymer exhibits electrochromism, converting from red in the neutral state (lambda(max) = 443 nm) to dark blue in the polaronic state (lambda(max) = 819 nm). The solution-processable polymer can be cast into a film, masked and patterned by UV-initiated free radical polymerization of the vinyl moiety. Small-angle X-ray scattering (SAXS) revealed that the insoluble crosslinked polyalkylthiophene-polyvinylimidazolium adopts a lamellar structure with a lattice spacing of 3.3 nm. Four-probe d.c. conductivity measurements determined the de-doped electrical conductivity was 1.0 x 10(-2) S/cm. The results underscore the importance of the anion in controlling the polymerization of IL monomers. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Brombosz, Scott M.; Seifert, Soenke] Argonne Natl Lab, Argonne, IL 60439 USA. [Firestone, Millicent A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Firestone, MA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663,MS K771, Los Alamos, NM 87545 USA. EM firestone@lanl.gov FU U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-AC02-06CH11357] FX This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). The efforts of SMB and SS were supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. NR 47 TC 9 Z9 9 U1 3 U2 46 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD AUG 5 PY 2014 VL 55 IS 16 SI SI BP 3370 EP 3377 DI 10.1016/j.polymer.2014.04.049 PG 8 WC Polymer Science SC Polymer Science GA AN7WS UT WOS:000340812300011 ER PT J AU Wang, YY Fan, F Agapov, AL Saito, T Yang, J Yu, X Hong, KL Mays, J Sokolov, AP AF Wang, Yangyang Fan, Fei Agapov, Alexander L. Saito, Tomonori Yang, Jun Yu, Xiang Hong, Kunlun Mays, Jimmy Sokolov, Alexei P. TI Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes SO POLYMER LA English DT Article DE Polymer electrolytes; Ionic transport; Decoupling ID POLYCRYSTALLINE SOLID ELECTROLYTES; WALDEN PLOT ANALYSIS; DIELECTRIC FRICTION; MICROPHASE SEPARATION; LITHIUM BATTERIES; MOLECULAR THEORY; LIQUID-STATE; MOVING ION; CONDUCTIVITY; GLASSES AB Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with "superionic" conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Wang, Yangyang; Fan, Fei; Agapov, Alexander L.; Mays, Jimmy; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Saito, Tomonori; Yu, Xiang; Mays, Jimmy; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yang, Jun; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wang, YY (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM yywang@utk.edu RI Hong, Kunlun/E-9787-2015; Wang, Yangyang/A-5925-2010; Saito, Tomonori/M-1735-2016 OI Hong, Kunlun/0000-0002-2852-5111; Wang, Yangyang/0000-0001-7042-9804; Saito, Tomonori/0000-0002-4536-7530 FU Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences; NSF Polymer Program [DMR-1104824]; Center for Nanophase Materials Sciences, at Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank Dr. M. Nakanishi for providing the data of electrical conductivity of the lithium chloride solution. T.S., J.M. and A.P.S. acknowledge the financial support from the Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences. The polymer synthesis was partly conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. F.F. thanks the NSF Polymer Program (DMR-1104824) for funding. NR 96 TC 22 Z9 22 U1 11 U2 75 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD AUG 5 PY 2014 VL 55 IS 16 SI SI BP 4067 EP 4076 DI 10.1016/j.polymer.2014.06.085 PG 10 WC Polymer Science SC Polymer Science GA AN7WS UT WOS:000340812300089 ER PT J AU Matsuda, Y Fukatsu, A Wang, YY Miyamoto, K Mays, JW Tasaka, S AF Matsuda, Yasuhiro Fukatsu, Akinobu Wang, Yangyang Miyamoto, Kazuaki Mays, Jimmy W. Tasaka, Shigeru TI Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents SO POLYMER LA English DT Article DE Poly(L-lactic acid); Complex crystal; Gelation ID CRYSTAL-STRUCTURE; SYNDIOTACTIC POLYSTYRENE; INCLUSION-COMPOUNDS; ALPHA-FORM; X-RAY; THERMOREVERSIBLE GELATION; INFRARED-SPECTROSCOPY; CONFORMATION; MORPHOLOGY; BEHAVIOR AB Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLEA gels were produced in solvents that induced complex crystals (epsilon-crystals) with PLEA. Fibrous structure of PLEA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLEA in the DMF gel changed from epsilon-crystal to alpha-crystal, the major crystal form in common untreated PLEA films, but the morphology and high elastic modulus of the gel remained until the alpha-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLEA gels to be prepared in other useful solvents that do not induce epsilon-crystals without losing the morphology and mechanical properties. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Matsuda, Yasuhiro; Fukatsu, Akinobu; Miyamoto, Kazuaki; Tasaka, Shigeru] Shizuoka Univ, Dept Appl Chem & Biochem Engn, Naka Ku, Hamamatsu, Shizuoka, Japan. [Wang, Yangyang; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Matsuda, Y (reprint author), Shizuoka Univ, Dept Appl Chem & Biochem Engn, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan. EM tymatud@ipc.shizuoka.ac.jp RI Wang, Yangyang/A-5925-2010 OI Wang, Yangyang/0000-0001-7042-9804 FU US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering [ERKCC02]; Ministry of Education, Culture, Science, Sports and Technology of Japan [26870245] FX YYW and JWM acknowledge the financial support by the US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering (ERKCC02).; This work is partially supported by a Grant-in Aid for Young Scientists (B) (26870245) from the Ministry of Education, Culture, Science, Sports and Technology of Japan. NR 37 TC 4 Z9 4 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD AUG 5 PY 2014 VL 55 IS 16 SI SI BP 4369 EP 4378 DI 10.1016/j.polymer.2014.06.086 PG 10 WC Polymer Science SC Polymer Science GA AN7WS UT WOS:000340812300120 ER PT J AU Kesava, SV Fei, ZP Rimshaw, AD Wang, C Hexemer, A Asbury, JB Heeney, M Gomez, ED AF Kesava, Sameer Vajjala Fei, Zhuping Rimshaw, Adam D. Wang, Cheng Hexemer, Alexander Asbury, John B. Heeney, Martin Gomez, Enrique D. TI Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells SO ADVANCED ENERGY MATERIALS LA English DT Article ID X-RAY-SCATTERING; CONJUGATED-POLYMER BLENDS; SMALL-ANGLE; EXCITON DIFFUSION; MORPHOLOGY; SEPARATION; EFFICIENCY; DISSOCIATION; MISCIBILITY; PERFORMANCE AB The complex microstructure of organic semiconductor mixtures continues to obscure the connection between the active layer morphology and photovoltaic device performance. For example, the ubiquitous presence of mixed phases in the active layer of polymer/fullerene solar cells creates multiple morphologically distinct interfaces which are capable of exciton dissociation or charge recombination. Here, it is shown that domain compositions and fullerene aggregation can strongly modulate charge photogeneration at ultrafast timescales through studies of a model system, mixtures of a low band-gap polymer, poly[(4,4'-bis(2-ethylhexyl) dithieno[3,2-b:2',3'-d] germole)-2,6-diyl-alt-(2,1,3-benzothia-diazole)-4,7-diyl], and [6,6]w-phenyl-C-71-butyric acid methyl ester. Structural characterization using energyfiltered transmission electron microscopy (EFTEM) and resonant soft X-ray scattering shows similar microstructures even with changes in the overall film composition. Composition maps generated from EFTEM, however, demonstrate that compositions of mixed domains vary significantly with overall film composition. Furthermore, the amount of polymer in the mixed domains is inversely correlated with device performance. Photoinduced absorption studies using ultrafast infrared spectroscopy demonstrate that polaron concentrations are highest when mixed domains contain the least polymer. Grazing-incidence X-ray scattering results show that larger fullerene coherence lengths are correlated to higher polaron yields. Thus, the purity of the mixed domains is critical for efficient charge photogeneration because purity modulates fullerene aggregation and electron delocalization. C1 [Kesava, Sameer Vajjala; Gomez, Enrique D.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Fei, Zhuping; Heeney, Martin] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. [Fei, Zhuping; Heeney, Martin] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, London SW7 2AZ, England. [Rimshaw, Adam D.; Asbury, John B.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Wang, Cheng; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gomez, Enrique D.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Gomez, ED (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM edg12@psu.edu RI Foundry, Molecular/G-9968-2014; Wang, Cheng/A-9815-2014; OI Fei, Zhuping/0000-0002-2160-9136; Heeney, Martin/0000-0001-6879-5020 FU NSF [DMR-1056199]; National Science Foundation [CHE-0846241]; Office of Naval Research [N00014-11-1-0239]; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Major funding for this work was provided by NSF under Grant No. DMR-1056199. A.D.R. and J.B.A. gratefully acknowledge support for this research from the National Science Foundation under Grant No. CHE-0846241 and partial support from the Office of Naval Research under Grant No. N00014-11-1-0239. The authors gratefully acknowledge the Penn Regional Nanotechnology Facility, University of Pennsylvania and the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 for TEM access. The authors also acknowledge the Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Advanced Photon Source, Argonne National Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors further thank Dr. Susan Trolier-McKinstry and Dr. Janna Maranas for use of the spectroscopic ellipsometer and differential scanning calorimeter, respectively. NR 73 TC 34 Z9 34 U1 0 U2 69 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD AUG 5 PY 2014 VL 4 IS 11 AR 1400116 DI 10.1002/aenm.201400116 PG 10 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AN3ZH UT WOS:000340526900019 ER PT J AU Owczarczyk, ZR Braunecker, WA Oosterhout, SD Kopidakis, N Larsen, RE Ginley, DS Olson, DC AF Owczarczyk, Zbyslaw R. Braunecker, Wade A. Oosterhout, Stefan D. Kopidakis, Nikos Larsen, Ross E. Ginley, David S. Olson, Dana C. TI Cyclopenta[c]thiophene-4,6-dione-Based Copolymers as Organic Photovoltaic Donor Materials SO ADVANCED ENERGY MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; CONJUGATED POLYMERS; MOLECULAR-WEIGHT; MICROWAVE CONDUCTIVITY; CONVERSION EFFICIENCY; PERFORMANCE; CHARGE; POLY(3-HEXYLTHIOPHENE); BLENDS; NANOPARTICLES AB A class of "push-pull" conjugated copolymers based on cyclopenta[c] thiophene-4,6-dione (CTD) and benzodithiophene (BDT) is synthesized for application as an electron donor in organic photovoltaics (OPV). Given the diverse electronic and structural tunability of the CTD unit, specific CTD-containing copolymers are chosen with the aid of theoretical calculations from a broad array of potential candidate materials. Evaluation of the chosen materials as OPV absorbers includes characterization of the optical, electronic, and structural properties of the polymer films using UV-vis absorbance, photoluminescence, cyclic voltammetry, and X-ray diffraction techniques. In addition, the contactless time-resolved microwave conductivity (TRMC) technique is used to measure the photoconductance of polymer/fullerene blends. Excellent correlation between measured photoconductance and OPV device efficiency is demonstrated with these materials and TRMC is discussed as a tool for screening potential active layer materials for OPV devices. C1 [Owczarczyk, Zbyslaw R.; Braunecker, Wade A.; Oosterhout, Stefan D.; Kopidakis, Nikos; Larsen, Ross E.; Ginley, David S.; Olson, Dana C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Owczarczyk, ZR (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM zbyslaw.owczarczyk@nrel.gov; wade.braunecker@nrel.gov RI Larsen, Ross/E-4225-2010; Kopidakis, Nikos/N-4777-2015 OI Larsen, Ross/0000-0002-2928-9835; FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory through the DOE SETP program FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory through the DOE SETP program. NR 53 TC 7 Z9 7 U1 1 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD AUG 5 PY 2014 VL 4 IS 11 AR 1301821 DI 10.1002/aenm.201301821 PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AN3ZH UT WOS:000340526900005 ER PT J AU Widjonarko, NE Schulz, P Parilla, PA Perkins, CL Ndione, PF Sigdel, AK Olson, DC Ginley, DS Kahn, A Toney, MF Berry, JJ AF Widjonarko, N. Edwin Schulz, Philip Parilla, Philip A. Perkins, Craig L. Ndione, Paul F. Sigdel, Ajaya K. Olson, Dana C. Ginley, David S. Kahn, Antoine Toney, Michael F. Berry, Joseph J. TI Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymer-Fullerene Bulk Heterojunction SO ADVANCED ENERGY MATERIALS LA English DT Article ID ORGANIC SOLAR-CELLS; PHOTOVOLTAIC DEVICES; LOW-TEMPERATURE; NICKEL-OXIDE; FREE-ENERGY; X-RAY; FILMS; THIN; CONTACT; BLENDS AB Investigations on the impact of interfacial modification on organic optoelectronic device performance often attribute the improved device performance to the optoelectronic properties of the modifier. A critical assumption of such conclusions is that the organic active layer deposited on top of the modified surface (interface) remains unaltered. Here the validity of this assumption is investigated by examining the impact of substrate surface properties on the morphology of poly(3-hexylthiophene): 1-(3-methoxycarbonyl)-propyl-1-phenyl-[6,6]C-61 (P3HT: PCBM) bulk-heterojunction (BHJ). A set of four nickel oxide and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTL) with contrasting surface properties and performance in organic photovoltaic (OPV) devices is studied. Differences in vertical composition variation and structural morphologies are observed across the samples, but only in the near-interface region of less than or similar to 20 nm. Near-interface differences in morphology are most closely correlated with surface polarity and surface roughness of the HTL. Surface polarity is more influenced by surface composition than surface roughness and crystal structure. These findings corroborate the previously mentioned conclusions that the differences in device performance observed in solar cells employing these HTLs are dominated by the electronic properties of the HTL/organic photoactive active layer interface and not by unintentional alteration in the BHJ active layer morphology. C1 [Widjonarko, N. Edwin] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Widjonarko, N. Edwin; Parilla, Philip A.; Perkins, Craig L.; Ndione, Paul F.; Sigdel, Ajaya K.; Olson, Dana C.; Ginley, David S.; Berry, Joseph J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sigdel, Ajaya K.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Schulz, Philip; Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Widjonarko, NE (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. EM nicodemus.widjonarko@colorado.edu; joe.berry@nrel.gov RI Schulz, Philip/N-2295-2015; Ndione, Paul/O-6152-2015 OI Schulz, Philip/0000-0002-8177-0108; Ndione, Paul/0000-0003-4444-2938 FU Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences, U.S. Department of Energy Award [DE-SC0001084]; Center for Energy Efficent Materials (CEEM), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences, U.S. Department of Energy Award [DE-SC0001009]; DOE [DE-AC36-08GO28308]; National Renewable Energy Laboratory (NREL) FX P.S., P.A.P., and C.L.P. contributed equally to this work. This paper was based on research supported as part of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, U.S. Department of Energy Award Number DE-SC0001084 (N.E.W., P.S., P.F.N., A.K.S., D.S.G., A.K.). also by the Center for Energy Efficent Materials (CEEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, U.S. Department of Energy Award Number DE-SC0001009 (D.C.O., J.J.B.). P.A.P. and C.L.P. were supported by DOE Contract Number DE-AC36-08GO28308 with the National Renewable Energy Laboratory (NREL). Portions of this research were carried out at the Stanford Synchrotron Radiation Light source, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences (M.F.T.). The authors gratefully acknowledge Prof. Charles Rogers and Prof. Minhyea Lee of the University of Colorado, and Dr. Jian V. Li of NREL for helpful discussions. Dr. Michele Olsen of NREL has also provided significant comments during internal reviews. NR 42 TC 9 Z9 9 U1 4 U2 70 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD AUG 5 PY 2014 VL 4 IS 11 AR 1301879 DI 10.1002/aenm.201301879 PG 10 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA AN3ZH UT WOS:000340526900008 ER PT J AU Carpenter, TS Kirshner, DA Lau, EY Wong, SE Nilmeier, JP Lightstone, FC AF Carpenter, Timothy S. Kirshner, Daniel A. Lau, Edmond Y. Wong, Sergio E. Nilmeier, Jerome P. Lightstone, Felice C. TI A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations SO BIOPHYSICAL JOURNAL LA English DT Article ID NONSTEROIDAL ANTIINFLAMMATORY DRUGS; MEMBRANE LIQUID-CHROMATOGRAPHY; IN-SILICO PREDICTION; PARTICLE MESH EWALD; LIPID-MEMBRANES; PARTITION-COEFFICIENT; COMPUTER-SIMULATIONS; PERFUSION TECHNIQUE; CORRELATION-ENERGY; PENETRATION AB The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (P-eff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R-2 = 0.94) and logPS (R-2 = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method. C1 [Carpenter, Timothy S.; Kirshner, Daniel A.; Lau, Edmond Y.; Wong, Sergio E.; Nilmeier, Jerome P.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA 94550 USA. EM lightstone1@llnl.gov FU Laboratory Directed Research and Development [12-SI-004]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-648046] FX We thank Laboratory Directed Research and Development 12-SI-004 for funding. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-648046. NR 102 TC 21 Z9 23 U1 3 U2 44 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD AUG 5 PY 2014 VL 107 IS 3 BP 630 EP 641 DI 10.1016/j.bpj.2014.06.024 PG 12 WC Biophysics SC Biophysics GA AM7AV UT WOS:000340018000013 PM 25099802 ER PT J AU Dutilh, BE Thompson, CC Vicente, ACP Marin, MA Lee, C Silva, GGZ Schmieder, R Andrade, BGN Chimetto, L Cuevas, D Garza, DR Okeke, IN Aboderin, AO Spangler, J Ross, T Dinsdale, EA Thompson, FL Harkins, TT Edwards, RA AF Dutilh, Bas E. Thompson, Cristiane C. Vicente, Ana C. P. Marin, Michel A. Lee, Clarence Silva, Genivaldo G. Z. Schmieder, Robert Andrade, Bruno G. N. Chimetto, Luciane Cuevas, Daniel Garza, Daniel R. Okeke, Iruka N. Aboderin, Aaron Oladipo Spangler, Jessica Ross, Tristen Dinsdale, Elizabeth A. Thompson, Fabiano L. Harkins, Timothy T. Edwards, Robert A. TI Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions SO BMC GENOMICS LA English DT Article DE Functional genomics; Mobile elements; Phages; Niche adaptation; Vibrio; Genome evolution; Genotype-phenotype association; Random forest ID RANDOM FORESTS; SEQUENCES; ALGORITHM; BACTERIA; STRAINS; PROJECT; SERVER AB Background: Vibrio cholerae is a globally dispersed pathogen that has evolved with humans for centuries, but also includes non-pathogenic environmental strains. Here, we identify the genomic variability underlying this remarkable persistence across the three major niche dimensions space, time, and habitat. Results: Taking an innovative approach of genome-wide association applicable to microbial genomes (GWAS-M), we classify 274 complete V. cholerae genomes by niche, including 39 newly sequenced for this study with the Ion Torrent DNA-sequencing platform. Niche metadata were collected for each strain and analyzed together with comprehensive annotations of genetic and genomic attributes, including point mutations (single-nucleotide polymorphisms, SNPs), protein families, functions and prophages. Conclusions: Our analysis revealed that genomic variations, in particular mobile functions including phages, prophages, transposable elements, and plasmids underlie the metadata structuring in each of the three niche dimensions. This underscores the role of phages and mobile elements as the most rapidly evolving elements in bacterial genomes, creating local endemicity (space), leading to temporal divergence (time), and allowing the invasion of new habitats. Together, we take a data-driven approach for comparative functional genomics that exploits high-volume genome sequencing and annotation, in conjunction with novel statistical and machine learning analyses to identify connections between genotype and phenotype on a genome-wide scale. C1 [Dutilh, Bas E.; Dinsdale, Elizabeth A.; Edwards, Robert A.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Dutilh, Bas E.; Silva, Genivaldo G. Z.; Schmieder, Robert; Cuevas, Daniel; Garza, Daniel R.; Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Dutilh, Bas E.] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Mol Life Sci, Ctr Mol & Biomol Informat, NL-6525 ED Nijmegen, Netherlands. [Dutilh, Bas E.; Chimetto, Luciane; Thompson, Fabiano L.; Edwards, Robert A.] Univ Fed Rio de Janeiro, Inst Biol, Dept Marine Biol, Rio De Janeiro, Brazil. [Thompson, Cristiane C.; Vicente, Ana C. P.; Marin, Michel A.; Andrade, Bruno G. N.] Fiocruz MS, Inst Oswaldo Cruz, Lab Mol Genet Microorganisms, BR-21045900 Rio De Janeiro, Brazil. [Silva, Genivaldo G. Z.; Schmieder, Robert; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Lee, Clarence; Cuevas, Daniel; Spangler, Jessica; Ross, Tristen; Harkins, Timothy T.] Life Technol Inc, Adv Applicat Grp, Beverly, MA USA. [Okeke, Iruka N.] Haverford Coll, Dept Biol, Haverford, PA 19041 USA. [Aboderin, Aaron Oladipo] Obafemi Awolowo Univ, Coll Hlth Sci, Dept Med Microbiol & Parasitol, Ife, Nigeria. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Edwards, RA (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM redwards@sciences.sdsu.edu RI Garza, Daniel Rios/A-1716-2016; Dutilh, Bas/B-9719-2011; Thompson, Cristiane/I-5783-2016; OI Garza, Daniel Rios/0000-0001-5956-6832; Dutilh, Bas/0000-0003-2329-7890; Okeke, Iruka/0000-0002-1694-7587; Garza, Daniel/0000-0003-3865-2146; Abanto Marin, Michel/0000-0001-9136-0041 FU Dutch Science foundation (NWO) Veni [016.111.075]; CAPES/BRASIL; CAPES; CNPq; IOC-FIOCRUZ; NSF from the Division of Biological Infrastructure [DBI: 0850356]; Division of Environmental Biology [DEB: 1046413]; Department of Education [P116M100007]; NSF TUES [1044453] FX The authors thank Ankur Mutreja for sharing the most recent version of the N16961 genome. BED is supported by the Dutch Science foundation (NWO) Veni grant 016.111.075 and CAPES/BRASIL. ACPV, CCT, MAM and BNA are supported by CAPES, CNPq and IOC-FIOCRUZ. RAE is supported by NSF grants DBI: 0850356 from the Division of Biological Infrastructure and DEB: 1046413 from the Division of Environmental Biology, and by grant P116M100007 from the Department of Education. EAD is supported by NSF TUES grant 1044453. We thank Anca Segall, Forest Rohwer, and Stanley Maloy for thoughtful discussions and critical reviews of the manuscript. NR 42 TC 5 Z9 5 U1 2 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD AUG 5 PY 2014 VL 15 AR 654 DI 10.1186/1471-2164-15-654 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AN5PI UT WOS:000340643300001 PM 25096633 ER PT J AU Eren, B Marot, L Steiner, R de los Arcos, T Duggelin, M Mathys, D Goldie, KN Olivieri, V Meyer, E AF Eren, Baran Marot, Laurent Steiner, Roland de los Arcos, Teresa Dueggelin, Marcel Mathys, Daniel Goldie, Kenneth N. Olivieri, Vesna Meyer, Ernst TI Carbon nanotube growth on AlN support: Comparison between Ni and Fe chemical states and morphology SO CHEMICAL PHYSICS LETTERS LA English DT Article ID VAPOR-DEPOSITION; IRON; NANOPARTICLES; FILMS; MECHANISM; GRAPHENE; NITRIDE; SPECTRA; PHASE AB In this work, carbon nanotubes (CNTs) are grown from Ni and Fe nanoparticles supported on a rough AlN surface. Although, identical experimental parameters are used during dewetting (island formation) via thermal treatment, Ni particles appear metallic and larger, whereas Fe particles are smaller and slightly oxidized. This difference in the nanoparticle chemical state and morphology reflects to CNTs during catalytic chemical vapor deposition in terms of their CNT growth mode and size: tip-growth mode for Ni catalyst with CNT diameters of up to 40 nm, whereas base-growth mode for Fe with CNT diameters typically less than 10 nm are observed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Eren, Baran; Marot, Laurent; Steiner, Roland; Meyer, Ernst] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Eren, Baran] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [de los Arcos, Teresa] Ruhr Univ Bochum, Res Dept Plasma, Inst Expt Phys 2, D-44780 Bochum, Germany. [Dueggelin, Marcel; Mathys, Daniel; Olivieri, Vesna] Univ Basel, Ctr Microscopy, CH-4056 Basel, Switzerland. [Goldie, Kenneth N.] Univ Basel, Biozentrum, Ctr Cellular Imaging & Nano Analyt, CH-4056 Basel, Switzerland. RP Marot, L (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. EM laurent.marot@unibas.ch RI Eren, Baran/A-9644-2013; Meyer, Ernst/L-3873-2016; Marot, Laurent/A-5834-2008 OI Meyer, Ernst/0000-0001-6385-3412; Marot, Laurent/0000-0002-1529-9362 FU Swiss Federal Office of Energy; Federal Office for Education and Science; Swiss National Foundation (SNF); Swiss Nanoscience Institute (SNI); COST Action [MP1303] FX The authors would like to thank the Swiss Federal Office of Energy and the Federal Office for Education and Science for their financial support. This work was also supported by the Swiss National Foundation (SNF), the Swiss Nanoscience Institute (SNI) and the COST Action MP1303. NR 36 TC 3 Z9 3 U1 5 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD AUG 5 PY 2014 VL 609 BP 82 EP 87 DI 10.1016/j.cplett.2014.06.042 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AM9SJ UT WOS:000340221000016 ER PT J AU Scown, CD Gokhale, AA Willems, PA Horvath, A McKone, TE AF Scown, Corinne D. Gokhale, Amit A. Willems, Paul A. Horvath, Arpad McKone, Thomas E. TI Role of Lignin in Reducing Life-Cycle Carbon Emissions, Water Use, and Cost for United States Cellulosic Biofuels SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID TECHNOECONOMIC ANALYSIS; ETHANOL-PRODUCTION; TRANSPORTATION; BIOREFINERIES; PRETREATMENT; ELECTRICITY; ENERGY; FUELS AB Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with similar to 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants. C1 [Scown, Corinne D.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Gokhale, Amit A.; Willems, Paul A.] BP Corp North Amer Inc, Berkeley, CA 94704 USA. [Horvath, Arpad] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Scown, CD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM cdscown@lbl.gov RI Scown, Corinne/D-1253-2013 FU Energy Biosciences Institute at the University of California, Berkeley; U.S. Department of Energy [DE-AC03-76SF00098] FX We wish to thank John Myers from the Department of Chemical Petroleum Engineering at University of Wyoming for fruitful conversations regarding modeling various power generation scenarios. Preparation of this article was financially supported in part by the Energy Biosciences Institute at the University of California, Berkeley. This work was carried out in part at the Lawrence Berkeley National Laboratory, which is operated for the U.S. Department of Energy under Contract Grant No. DE-AC03-76SF00098. NR 39 TC 5 Z9 5 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 5 PY 2014 VL 48 IS 15 SI SI BP 8446 EP 8455 DI 10.1021/es5012753 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AM7WY UT WOS:000340080600017 PM 24988448 ER PT J AU Cheah, S Malone, SC Feik, CJ AF Cheah, Singfoong Malone, Shealyn C. Feik, Calvin J. TI Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; TRANSPORTATION FUELS; BIOMASS GASIFICATION; COAL; SOIL; CATALYST; GAS; TRANSFORMATION; CHEMISTRY; IFEFFIT AB The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600-800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). Biochars produced under pyrolysis conditions at 500-600 degrees C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77-100%. Biochars produced in gasification conditions at 850 degrees C contain 73-100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H-2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. C1 [Cheah, Singfoong; Malone, Shealyn C.; Feik, Calvin J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Cheah, S (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy,MS 3322, Golden, CO 80401 USA. EM singfoong.cheah@nrel.gov FU BioEnergy Technologies Office, U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Science, Technology, Engineering, and Mathematics Teacher and Researcher (STAR) program - National Science Foundation; California State University; S. D. Bechtel, Jr. Foundation; DOE Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) [P41GM103393]; National Center for Research Resources (NCRR) [P41RR001209] FX The authors thank Daniel Carpenter and Katherine Gaston at NREL for their comments and discussion as well as three anonymous reviewers for their constructive feedback and insights. The authors also gratefully acknowledge the help of Dr. Ritimukta Sarangi and Dr. Erik Nelson of the Stanford Synchrotron Radiation Laboratory (SSRL) during XANES data collection. Funding for this research was provided by the BioEnergy Technologies Office, U.S. Department of Energy (DOE), under contract number DE-AC36-08GO28308, with the National Renewable Energy Laboratory. Shealyn C. Malone's work at NREL was funded by the Science, Technology, Engineering, and Mathematics Teacher and Researcher (STAR) program, which is supported by the National Science Foundation, The California State University, and the S. D. Bechtel, Jr. Foundation. Portions of this research were carried out at SSRL a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) (including P41GM103393), and National Center for Research Resources (NCRR) (including P41RR001209). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR, or NIH. NR 51 TC 15 Z9 15 U1 4 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 5 PY 2014 VL 48 IS 15 SI SI BP 8474 EP 8480 DI 10.1021/es500073r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AM7WY UT WOS:000340080600020 PM 25003702 ER PT J AU Lee, MS McGrail, BP Glezakou, VA AF Lee, Mal-Soon McGrail, B. Peter Glezakou, Vassiliki-Alexandra TI Microstructural Response of Variably Hydrated Ca-rich Montmorillonite to Supercritical CO2 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID X-RAY-DIFFRACTION; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; CARBON-DIOXIDE; INFRARED-SPECTRA; NA-MONTMORILLONITE; WATER; SMECTITE; CLUSTERS; IO AB First-principles molecular dynamics simulations were carried out to explore the mechanistic and thermodynamic ramifications of the exposure of variably hydrated Ca-rich montmorillonites to supercritical CO2 and CO2-SO2 mixtures under geologic storage conditions. In sub- to single-hydrated systems (<= 1W), CO2 intercalation causes interlamellar expansion of 8-12%, while systems transitioning to 2W may undergo contraction (similar to 7%) or remain almost unchanged. When compared to similar to 2W hydration state, structural analysis of the <= 1W systems, reveals more Ca-CO2 contacts and partial transition to vertically confined CO2 molecules. Infrared spectra and projected vibrational frequency analysis imply that intercalated Ca-bound CO2 are vibrationally constrained and contribute to the higher frequencies of the asymmetric stretch band. Reduced intercalated H2O and CO2 (10(-6)-10(-7) cm(2)/s) indicate that Ca-montmorillonites in similar to 1W hydration states can be more efficient in capturing CO2. Simulations including SO2 imply that similar to 0.66 mmol SO2/g clay can be intercalated without other significant structural changes. SO2 is likely to divert H2O away from the cations, promoting Ca-CO2 interactions and CO2 capture by further reducing CO2 diffusion (10(-8) cm(2)/s). Vibrational bands at similar to 1267 or 1155 cm(-1) may be used to identify the chemical state (oxidation states +4 or +6, respectively) and the fate of sulfur contaminants. C1 [Lee, Mal-Soon; McGrail, B. Peter; Glezakou, Vassiliki-Alexandra] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Glezakou, VA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Vanda.Glezakou@pnnl.gov RI Lee, Mal-Soon/K-4161-2013 OI Lee, Mal-Soon/0000-0001-6851-177X FU Office of Fossil Energy, U.S. Department of Energy; Department of Energy's Office of Biological and Environmental Research; PNNL Institutional Computing (PIC) program FX We are infinitely grateful to Dr. R. Rousseau for insightful discussions and a critical reading of the manuscript. The comments by Professor Giammar and three expert reviewers were extremely beneficial and much appreciated. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, and PNNL Institutional Computing (PIC) program, both located at Pacific Northwest National Laboratory. We are particularly grateful to Dr. D. Baxter and Dr. T. Carlson for facilitating timely access to computational resources. NR 52 TC 14 Z9 14 U1 2 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 5 PY 2014 VL 48 IS 15 SI SI BP 8612 EP 8619 DI 10.1021/es5005889 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AM7WY UT WOS:000340080600036 PM 24842544 ER PT J AU Tidwell, VC Moreland, B Zemlick, K AF Tidwell, Vincent C. Moreland, Barbie Zemlick, Katie TI Geographic Footprint of Electricity Use for Water Services in the Western US SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB A significant fraction of our nation's electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. To improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. This study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. Results indicate that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. These results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load. C1 [Tidwell, Vincent C.; Moreland, Barbie; Zemlick, Katie] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tidwell, VC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM vctidwe@sandia.gov FU U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability [M610000581]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the very helpful comments of three anonymous reviewers. The work described in this article was funded by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability through the American Recovery and Reinvestment Act of 2009 under Contract No. M610000581. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 5 PY 2014 VL 48 IS 15 SI SI BP 8897 EP 8904 DI 10.1021/es5016845 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AM7WY UT WOS:000340080600070 PM 24963828 ER PT J AU Kaplan, DI Miller, TJ Diprete, D Powell, BA AF Kaplan, Daniel I. Miller, Todd J. Diprete, David Powell, Brian A. TI Long-Term Radiostrontiunn Interactions and Transport through Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PLUTONIUM TRANSPORT; STRONTIUM; SOILS; RADIONUCLIDES; CESIUM; MODEL; IV AB Radioactive strontium is one of the most common radiological contaminants in groundwater and soil. Objectives of this study were to (1) evaluate Sr transport through an 11-year-long field lysimeter study and (2) quantify secondary aging effects between Sr and sediment that may need to be considered for long-term transport modeling. Batch sorption/desorption tests were conducted with Sr-85, Sr-88, and Sr-90 using a sediment recovered from a field lysimeter containing a glass pellet amended with high-level nuclear waste for 24 years. Sr was largely reversibly and linearly sorbed. Sr-85 sorption coefficients (K-d, concentration ratios of solids/liquids) after a 23-day contact period were about the same as the Sr-90 desorption K-d values after a 24-year contact period: sorption K-d = 32.1 +/- 3.62 mL g(-1) and desorption K-d = 43.1 +/- 11.4 mL g(-1). Numerical modeling of the lysirneter Sr-90 depth profile indicated that a Kd value of 32 mL fit the data best. The Kd construct captured most of the data trends above and below the source term, except for immediately below the source where the model clearly overestimated Sr mobility. Sr-90 desorption tests suggested that the overestimated mobility may be attributed to a second, slower sorption reaction that occurs over a course of months to decades. C1 [Kaplan, Daniel I.; Diprete, David] Savannah River Natl Lab, Aiken, SC 29803 USA. [Miller, Todd J.; Powell, Brian A.] Clemson Univ, Clemson, SC 29634 USA. RP Kaplan, DI (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM daniel.kaplan@srnl.doe.gov RI Powell, Brian /C-7640-2011 OI Powell, Brian /0000-0003-0423-0180 FU Department of Energy's Subsurface Biogeochemistry Research program within the Office of Science; U.S. Department of Energy [DE-AC09-96SR18500] FX Funding for this research was made possible by the Department of Energy's Subsurface Biogeochemistry Research program within the Office of Science. Work was conducted at Savannah River National Laboratory under the U.S. Department of Energy Contract DE-AC09-96SR18500. NR 32 TC 1 Z9 1 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 5 PY 2014 VL 48 IS 15 SI SI BP 8919 EP 8925 DI 10.1021/es5021108 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AM7WY UT WOS:000340080600073 PM 24960400 ER PT J AU Van Gough, D Wheeler, JS Cheng, SF Stevens, MJ Spoerke, ED AF Van Gough, Dara Wheeler, Jill S. Cheng, Shengfeng Stevens, Mark J. Spoerke, Erik D. TI Supramolecular Assembly of Asymmetric Self-Neutralizing Amphiphilic Peptide Wedges SO LANGMUIR LA English DT Article ID SURFACTANT-LIKE PEPTIDES; SECONDARY STRUCTURE; NANOFIBERS; NANOTUBES; NANOSTRUCTURES; PROTEIN; SCAFFOLDS AB Mimicking the remarkable dynamic and multifunctional utility of biological nanofibers, such as microtubules, is a challenging and technologically attractive objective in synthetic supramolecular chemistry. Understanding the complex molecular interactions that govern the assembly of synthetic materials, such as peptides, is key to meeting this challenge. Using molecular dynamics simulations to guide molecular design, we explore here the self-assembly of structurally and functionally asymmetric wedge-shaped peptides. Supramolecular assembly into nanofiber gels or multilayered lamellar structures was determined by cooperative influences of hydrogen bonding, amphiphilicity (hydrophilic asymmetry), and the distribution of electrostatic charges on the aqueous self-assembly of asymmetric peptides. Molecular amphiphilicity and beta-sheet forming capacity were both identified as necessary, but not independently sufficient, to form supramolecular nanofibers. Imbalances in positive and negative charges prevented nanofiber assembly, while the asymmetric distribution of balanced charges within a peptide is believed to affect peptide conformation and subsequent self-assembly into either nanofibers or lamellar structures. Insights into cooperative molecular interactions and the effects of molecular asymmetry on assembly may aid the development of next-generation supramolecular nanomaterial assemblies. C1 [Van Gough, Dara; Wheeler, Jill S.; Cheng, Shengfeng; Stevens, Mark J.; Spoerke, Erik D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edspoer@sandia.gov OI Cheng, Shengfeng/0000-0002-6066-2968 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC0203010]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge Bonnie McKenzie for performing scanning electron microscopy analysis, Ana Trujillo for performing atomic force microscopy, and Dr. Bruce Bunker for insightful discussions. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Project KC0203010. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 37 TC 2 Z9 2 U1 0 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 5 PY 2014 VL 30 IS 30 BP 9201 EP 9209 DI 10.1021/la501620g PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AM7WK UT WOS:000340079200024 PM 25003982 ER PT J AU Tian, YY Cui, WJ Huang, MN Robinson, H Wan, YQ Wang, YS Ke, HM AF Tian, Yuanyuan Cui, Wenjun Huang, Manna Robinson, Howard Wan, Yiqian Wang, Yousheng Ke, Hengming TI Dual Specificity and Novel Structural Folding of Yeast Phosphodiesterase-1 for Hydrolysis of Second Messengers Cyclic Adenosine and Guanosine 3 ',5 '-Monophosphate SO BIOCHEMISTRY LA English DT Article ID AFFINITY CAMP-PHOSPHODIESTERASE; PROTEIN-KINASE-A; CANDIDA-ALBICANS; SACCHAROMYCES-CEREVISIAE; NUCLEOTIDE PHOSPHODIESTERASE; BAKERS-YEAST; INHIBITOR SELECTIVITY; SUBSTRATE-SPECIFICITY; AMP PHOSPHODIESTERASE; STRESS RESPONSES AB Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a Km of 110 mu M and a k(cat) of 16.9 s(-1) for cAMP and a Km of 105 mu M and a k(cat), of 11.8 s(-1) for cGMP. Thus, the specificity constant (k(cat)/K-M(cAMP))/(k(cat)/K-M(cGMP)) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 angstrom resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-beta-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and CGMP. C1 [Tian, Yuanyuan; Wang, Yousheng] Beijing Technol & Business Univ, Beijing Lab Food Qual & Safety, Beijing 100048, Peoples R China. [Tian, Yuanyuan; Wang, Yousheng] Beijing Technol & Business Univ, Beijing Engn & Technol Res Ctr Food Addit, Beijing 100048, Peoples R China. [Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Ke, Hengming] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Ke, Hengming] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Huang, Manna; Wan, Yiqian] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ke, HM (reprint author), Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. EM wangys@th.btbu.edu.cn; hke@med.unc.edu FU National Institutes of Health [GM59791]; National Natural Science Foundation of China [31291944]; Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy; National Center for Research Resources of the National Institutes of Health FX This work was supported in part by National Institutes of Health Grant GM59791 to H.K, the National Natural Science Foundation of China (31291944, to Y.W.), and the Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy and the National Center for Research Resources of the National Institutes of Health (H.R.). NR 48 TC 2 Z9 2 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD AUG 5 PY 2014 VL 53 IS 30 BP 4938 EP 4945 DI 10.1021/bi500406h PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AM7WH UT WOS:000340078900008 PM 25050706 ER PT J AU Hawley, AK Brewer, HM Norbeck, AD Pasa-Tolic, L Hallam, SJ AF Hawley, Alyse K. Brewer, Heather M. Norbeck, Angela D. Pasa-Tolic, Ljiljana Hallam, Steven J. TI Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID SUB-ARCTIC PACIFIC; CENTRAL BALTIC SEA; COMMUNITY STRUCTURE; OXIDIZING BACTERIA; NITRITE OXIDATION; AMMONIA OXIDATION; CARBON FIXATION; ORGANIC-CARBON; SULFUR CYCLE; DARK OCEAN AB Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. C1 [Hawley, Alyse K.; Hallam, Steven J.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada. [Hallam, Steven J.] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V6T 1Z3, Canada. [Hallam, Steven J.] Univ British Columbia, Genome Sci & Technol Training Program, Vancouver, BC V6T 1Z3, Canada. [Brewer, Heather M.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Biol & Computat Sci Div, Richland, WA 99352 USA. RP Hallam, SJ (reprint author), Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada. EM shallam@mail.ubc.ca FU US Department of Energy (DOE); Office of Science of US DOE [DE-AC02-05CH11231]; Tula Foundation-funded Centre for Microbial Diversity and Evolution; Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; Canadian Institute for Advanced Research; US DOE's Office of Biological and Environmental Research FX We thank the crew aboard the MSV John Strickland for logistical support; David Walsh, Olena Schevchuk, and Elena Zaikova for assistance with sample collection; Jinshu Yang for assistance with sample preparation; and Charles Howes for assistance with data analysis. We also thank Sean Crowe and all members of the S.J.H. laboratory for helpful comments along the way. We thank the Joint Genome Institute, including Sussanah Tringe, Stephanie Malfatti, and Tijana Glavina del Rio, for technical and project management assistance. This work was performed under the auspices of the US Department of Energy (DOE) Joint Genome Institute supported by the Office of Science of US DOE Contract DE-AC02-05CH11231, the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research through grants awarded to S. J. H. Metaproteomics support came from the intramural research and development program of the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the US DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory operated by Battelle for the US DOE. NR 53 TC 26 Z9 26 U1 6 U2 108 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 5 PY 2014 VL 111 IS 31 BP 11395 EP 11400 DI 10.1073/pnas.1322132111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM4EZ UT WOS:000339807200040 PM 25053816 ER PT J AU Rautengarten, C Ebert, B Moreno, I Temple, H Herter, T Link, B Donas-Cofre, D Moreno, A Saez-Aguayoc, S Blanco, F Mortimer, JC Schultink, A Reiter, WD Dupree, P Pauly, M Heazlewood, JL Scheller, HV Orellana, A AF Rautengarten, Carsten Ebert, Berit Moreno, Ignacio Temple, Henry Herter, Thomas Link, Bruce Donas-Cofre, Daniela Moreno, Adrian Saez-Aguayoc, Susana Blanco, Francisca Mortimer, Jennifer C. Schultink, Alex Reiter, Wolf-Dieter Dupree, Paul Pauly, Markus Heazlewood, Joshua L. Scheller, Henrik V. Orellana, Ariel TI The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE membrane transport; proteoliposomes; glycan biosynthesis; galactan ID NUCLEOTIDE-SUGAR TRANSPORTERS; CELL-WALL BIOSYNTHESIS; TANDEM MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; MOLECULAR-CLONING; THALIANA; IDENTIFICATION; ENZYME; PLANTS; GROWTH AB Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-L-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-L-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-LRha/UDP-D-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-L-Rha and UDP-D-Gal for matrix polysaccharide biosynthesis. C1 [Rautengarten, Carsten; Ebert, Berit; Herter, Thomas; Heazlewood, Joshua L.; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94702 USA. [Rautengarten, Carsten; Ebert, Berit; Herter, Thomas; Heazlewood, Joshua L.; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94702 USA. [Ebert, Berit] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, DK-1871 Copenhagen C, Denmark. [Moreno, Ignacio; Temple, Henry; Donas-Cofre, Daniela; Moreno, Adrian; Saez-Aguayoc, Susana; Blanco, Francisca; Orellana, Ariel] Univ Andres Bello, Fac Ciencias Biol, Ctr Biotecnol Vegetal, Santiago 8370146, Chile. [Moreno, Ignacio; Temple, Henry; Donas-Cofre, Daniela; Moreno, Adrian; Saez-Aguayoc, Susana; Blanco, Francisca; Orellana, Ariel] Fondo Areas Prioritarias Ctr Genome Regulat, Santiago 8370146, Chile. [Link, Bruce; Reiter, Wolf-Dieter] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA. [Mortimer, Jennifer C.; Dupree, Paul] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England. [Schultink, Alex; Pauly, Markus; Scheller, Henrik V.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Scheller, HV (reprint author), Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94702 USA. EM hscheller@lbl.gov; aorellana@unab.cl RI Heazlewood, Joshua/A-2554-2008; Scheller, Henrik/A-8106-2008; Orellana, Ariel/E-2166-2014; Ebert, Berit/F-1856-2016; Pauly, Markus/B-5895-2008 OI Mortimer, Jenny/0000-0001-6624-636X; Moreno, Adrian/0000-0001-5125-2927; Heazlewood, Joshua/0000-0002-2080-3826; Donas-Cofre, Daniela/0000-0001-7703-5613; Blanco, Maria/0000-0002-7497-9907; Scheller, Henrik/0000-0002-6702-3560; Orellana, Ariel/0000-0002-9243-808X; Ebert, Berit/0000-0002-6914-5473; Pauly, Markus/0000-0002-3116-2198 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-08ER20203]; CONICYT; Fondo de Areas Prioritarias-Centro de Regulacion del Genoma [15090007, PFB-16, ICM-Millenium Nucleus P10-062-F, DI-365-13/R, Fondecyt 3140415]; Biotechnology and Biological Sciences Research Council [BB/G016240/1]; Fred E. Dickinson Chair funds; Danish Research Council for Strategic Research; National Science Foundation-Research Coordination Network [0090281] FX This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Funding for W.-D.R. was provided by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DE-FG02-08ER20203. This work was also supported by CONICYT fellowships (I. M., H. T., and A. M.) and by Fondo de Areas Prioritarias-Centro de Regulacion del Genoma-15090007, PFB-16, ICM-Millenium Nucleus P10-062-F, DI-365-13/R, and Fondecyt 3140415 grants (to A.O.). J.C.M. was supported by Biotechnology and Biological Sciences Research Council Grant BB/G016240/1 (to P. D.). Both A. S. and M. P. were supported by Fred E. Dickinson Chair funds. B. E. was supported in part by the Danish Research Council for Strategic Research. The substrates obtained from Carbosource Services were supported, in part, by National Science Foundation-Research Coordination Network Grant 0090281. NR 45 TC 23 Z9 23 U1 5 U2 48 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 5 PY 2014 VL 111 IS 31 BP 11563 EP 11568 DI 10.1073/pnas.1406073111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM4EZ UT WOS:000339807200068 PM 25053812 ER PT J AU Heath, GA O'Donoughue, P Arent, DJ Bazilian, M AF Heath, Garvin A. O'Donoughue, Patrick Arent, Douglas J. Bazilian, Morgan TI Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE life cycle assessment; methane leakage; meta-analysis ID NATURAL-GAS; METHANE LEAKAGE; COAL; FOOTPRINT AB Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. C1 [Heath, Garvin A.] Joint Inst Strateg Energy Anal, Golden, CO 80401 USA. Strateg Energy Anal Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Heath, GA (reprint author), Joint Inst Strateg Energy Anal, Golden, CO 80401 USA. EM garvin.heath@nrel.gov FU Joint Institute for Strategic Energy Analysis; US Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX Funding to support this research was generously provided by the Joint Institute for Strategic Energy Analysis. Funding for the foundational research of the LCA Harmonization Project (www.nrel.gov/harmonization) was provided by US Department of Energy, Office of Energy Efficiency and Renewable Energy Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 56 TC 25 Z9 25 U1 0 U2 32 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 5 PY 2014 VL 111 IS 31 BP E3167 EP E3176 DI 10.1073/pnas.1309334111 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM4EZ UT WOS:000339807200001 PM 25049378 ER PT J AU Dziarmaga, J Zurek, WH AF Dziarmaga, Jacek Zurek, Wojciech H. TI Quench in the 1D Bose-Hubbard model: Topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics SO SCIENTIFIC REPORTS LA English DT Article ID SPONTANEOUS SYMMETRY-BREAKING; STRING FORMATION; COSMOLOGICAL EXPERIMENTS; EINSTEIN CONDENSATE; VORTEX FORMATION; SUPERFLUID HE-3; LIQUID-CRYSTALS; SYSTEMS; UNIVERSE; PIECES AB Kibble-Zurek mechanism (KZM) uses critical scaling to predict density of topological defects and other excitations created in second order phase transitions. We point out that simply inserting asymptotic critical exponents deduced from the immediate vicinity of the critical point to obtain predictions can lead to results that are inconsistent with a more careful KZM analysis based on causality - on the comparison of the relaxation time of the order parameter with the "time distance'' from the critical point. As a result, scaling of quench-generated excitations with quench rates can exhibit behavior that is locally (i.e., in the neighborhood of any given quench rate) well approximated by the power law, but with exponents that depend on that rate, and that are quite different from the naive prediction based on the critical exponents relevant for asymptotically long quench times. Kosterlitz-Thouless scaling (that governs e.g. Mott insulator to superfluid transition in the Bose-Hubbard model in one dimension) is investigated as an example of this phenomenon. C1 [Dziarmaga, Jacek] Uniwersytetu Jagiellonskiego, Inst Fizyki, PL-30059 Krakow, Poland. [Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Dziarmaga, J (reprint author), Uniwersytetu Jagiellonskiego, Inst Fizyki, Ul Reymonta 4, PL-30059 Krakow, Poland. EM jacekdziarmaga@yahoo.com FU Polish National Science Center (NCN) [DEC-2013/09/B/ST3/01603]; Department of Energy under the Los Alamos National Laboratory FX This work was supported by the Polish National Science Center (NCN) under Project DEC-2013/09/B/ST3/01603 and by Department of Energy under the Los Alamos National Laboratory LDRD Program. NR 59 TC 8 Z9 8 U1 3 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 5 PY 2014 VL 4 AR 5950 DI 10.1038/srep05950 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM7GA UT WOS:000340032000003 PM 25091996 ER PT J AU Mei, ZG Stan, M Yang, J AF Mei, Zhi-Gang Stan, Marius Yang, Jiong TI First-principles study of thermophysical properties of uranium dioxide SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Uranium dioxide; Thermophysical properties; First-principles calculations ID HEAT-CAPACITY; THERMAL-CONDUCTIVITY; NUCLEAR-FUELS; DYNAMICS; UO2 AB The structural and elastic properties, lattice dynamics and thermophysical properties of uranium dioxide (UO2) were studied by DFT based first-principles calculations. LDA+U method shows the overall best description of the lattice parameters and elastic constants of UO2 among all the DFT methods studied. The phonon dispersion relations of UO2 predicted by direct method agree with experimental results. Thermodynamic properties, including Gibbs energy, enthalpy, entropy and heat capacity, were evaluated under quasiharmonic approximation using the calculated phonon density of states. Good agreement with experiments is obtained up to 1000 K. Further improvement of heat capacity at high temperatures can be achieved by taking into account of thermal expansion. The calculated lattice thermal conductivity of UO2 shows that phonon scatterings by defects are critical at room temperature while three-phonon interactions dominate the phonon scattering at high temperatures. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mei, Zhi-Gang; Stan, Marius] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Yang, Jiong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Mei, ZG (reprint author), Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. EM zmei@anl.gov RI Yang, Jiong/K-6330-2014; Mei, Zhi-Gang/D-3333-2012 OI Yang, Jiong/0000-0002-5862-5981; Mei, Zhi-Gang/0000-0002-4249-7532 FU US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. First-principles calculations were carried out on LCRC's high performance computing cluster Fusion and CNM's high performance computing cluster Carbon. ZGM thanks Boris Dorado for providing specific modules for the VASP code. NR 36 TC 4 Z9 4 U1 2 U2 47 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD AUG 5 PY 2014 VL 603 BP 282 EP 286 DI 10.1016/j.jallcom.2014.03.091 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AG6CC UT WOS:000335505100041 ER PT J AU Abdul-Jabbar, NM Kalkan, B Huang, GY MacDowell, AA Gronsky, R Bourret-Courchesne, ED Wirth, BD AF Abdul-Jabbar, N. M. Kalkan, B. Huang, G. -Y. MacDowell, A. A. Gronsky, R. Bourret-Courchesne, E. D. Wirth, B. D. TI The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga2SeTe2 semiconductor alloy SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-CHANGE MATERIALS; CRYSTAL-STRUCTURE; GA2TE3 AB We observe that pressure-induced amorphization of Ga2SeTe2 (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10-11 GPa in contrast to those with aperiodic structures, which amorphize around 7-8 GPa. The result is an instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga2SeTe2 provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies. (C) 2014 AIP Publishing LLC. C1 [Abdul-Jabbar, N. M.; Wirth, B. D.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Abdul-Jabbar, N. M.; Bourret-Courchesne, E. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kalkan, B.; MacDowell, A. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Huang, G. -Y.; Wirth, B. D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Gronsky, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Abdul-Jabbar, NM (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 FU Nuclear Nonproliferation International Safeguards Graduate Fellowship Program; National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI); U.S. Department of Energy/NNSA/NA22; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge C. A. Ramsey for experimental assistance and E. C. Samulon and G. A. Bizarri for useful discussions. N.M.A. acknowledges support from the Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). This work was supported by the U.S. Department of Energy/NNSA/NA22 and carried out at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 2 Z9 2 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 051908 DI 10.1063/1.4892549 PG 5 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000027 ER PT J AU Cobaleda, CSF Xiao, XY Burckel, DB Polsky, R Huang, DN Diez, E Pan, W AF Cobaleda, Cayetano S. F. Xiao, Xiaoyin Burckel, D. Bruce Polsky, Ronen Huang, Duanni Diez, Enrique Pan, W. TI Superconducting properties in tantalum decorated three-dimensional graphene and carbon structures SO APPLIED PHYSICS LETTERS LA English DT Article AB We present here the results on superconducting properties in tantalum thin films (100 nm thick) deposited on three-dimensional graphene (3DG) and carbon structures. A superconducting transition is observed in both composite thin films with a superconducting transition temperature of 1.2K and 1.0 K, respectively. We have further measured the magnetoresistance at various temperatures and differential resistance dV/dI at different magnetic fields in these two composite thin films. In both samples, a much large critical magnetic field (similar to 2 T) is observed and this critical magnetic field shows linear temperature dependence. Finally, an anomalously large cooling effect was observed in the differential resistance measurements in our 3DG-tantalum device when the sample turns superconducting. Our results may have important implications in flexible superconducting electronic device applications. (C) 2014 AIP Publishing LLC. C1 [Cobaleda, Cayetano S. F.; Xiao, Xiaoyin; Burckel, D. Bruce; Polsky, Ronen; Huang, Duanni; Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cobaleda, Cayetano S. F.; Diez, Enrique] Univ Salamanca, Lab Bajas Temp, E-37008 Salamanca, Spain. [Huang, Duanni] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Cobaleda, CSF (reprint author), Sandia Natl Labs, POB 5800,MS 1086, Albuquerque, NM 87185 USA. EM ccobaleda@usal.es; wpan@sandia.gov RI ENRIQUE, DIEZ/M-3691-2014 OI ENRIQUE, DIEZ/0000-0001-7964-4148 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; LDRD at Sandia; Spanish MINECO [MAT2013-46308-C2-1-R, FPU-ap2009-2619, JCYL SA226U13]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was jointly supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (C. C., D. H., and W. P.) and by LDRD at Sandia (X. Y. X., D. B. B., R. P., and W. P.), and also by the Spanish MINECO MAT2013-46308-C2-1-R (C. C. and E. D.), FPU-ap2009-2619 (C. C.), and JCYL SA226U13 (C. C. and E. D.). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 0 Z9 0 U1 2 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 053508 DI 10.1063/1.4892574 PG 4 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000096 ER PT J AU Du, Y Zhang, KHL Varga, T Chambers, SA AF Du, Y. Zhang, K. H. L. Varga, T. Chambers, S. A. TI Reflection high-energy electron diffraction beam-induced structural and property changes on WO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID IN-SITU OBSERVATION; TUNGSTEN-OXIDE; TRANSPORT-PROPERTIES; EPITAXIAL-GROWTH; X-RAY; SURFACE; ELECTROCHROMICS; PHOTOEMISSION; SPECTROSCOPY; TRANSITION AB Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen. (C) 2014 AIP Publishing LLC. C1 [Du, Y.; Varga, T.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhang, K. H. L.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Du, Y (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM yingge.du@pnnl.gov FU Office of Basic Energy Sciences, Division of Materials Science and Engineering [10122]; EMSL's Intramural Research and Capability Development Program; Office of Biological and Environmental Research FX A portion of the work was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award 10122. Y.D. gratefully acknowledges support by EMSL's Intramural Research and Capability Development Program. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a DOE User Facility sponsored by the Office of Biological and Environmental Research. The authors would like to thank Tiffany Kaspar and Tim Droubay for many insightful discussions. NR 41 TC 2 Z9 2 U1 6 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 051606 DI 10.1063/1.4892810 PG 4 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000019 ER PT J AU Duenow, JN Burst, JM Albin, DS Kuciauskas, D Johnston, SW Reedy, RC Metzger, WK AF Duenow, J. N. Burst, J. M. Albin, D. S. Kuciauskas, D. Johnston, S. W. Reedy, R. C. Metzger, W. K. TI Single-crystal CdTe solar cells with V-oc greater than 900 mV SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTO-VOLTAIC PROPERTIES; VAPOR-PHASE EPITAXY; CADMIUM TELLURIDE; SPRAY-PYROLYSIS; PHOTOVOLTAIC PROPERTIES; HETEROJUNCTIONS; JUNCTIONS; CONTACTS; SURFACE; FILMS AB We fabricated single-crystal CdTe photovoltaic devices in a heterojunction structure with an In-doped CdS window layer and ZnO/Al-doped ZnO front contact. By replacing the polycrystalline absorber layer of a CdTe solar cell with a single crystal, we were able to achieve open-circuit voltage (V-oc) as high as 929 mV. Simulations and measurements indicate that increased minority-carrier lifetime and carrier concentration can explain this high V-oc. Cu and Na both introduce transient effects in single-crystal CdTe similar to those observed in polycrystalline CdTe, suggesting that Group I dopants pose stability problems that are linked fundamentally to their defect chemistry in CdTe, regardless of the presence of grain boundaries. (C) 2014 AIP Publishing LLC. C1 [Duenow, J. N.; Burst, J. M.; Albin, D. S.; Kuciauskas, D.; Johnston, S. W.; Reedy, R. C.; Metzger, W. K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Duenow, JN (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM joel.duenow@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors would like to thank Anna Duda and Clay M. DeHart for contact depositions. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 37 TC 20 Z9 20 U1 3 U2 52 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 053903 DI 10.1063/1.4892401 PG 4 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000103 ER PT J AU Kiesow, KI Dhuey, S Habteyes, TG AF Kiesow, Karissa I. Dhuey, Scott Habteyes, Terefe G. TI Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution SO APPLIED PHYSICS LETTERS LA English DT Article ID ENHANCED RAMAN-SCATTERING; METAL NANOPARTICLE PAIRS; HOT-SPOTS; MICROSCOPY; SIZE; SERS; RESONANCES; MOLECULES; ANTENNA; PROBE AB Quantifying the near-field localization in plasmonic optical nanoantennas is fundamentally important to understand and optimize the design and fabrication of nanostructures for various applications. Here, the near-field localization in optical gap nanoantennas that are in resonance or near-resonance with 633 nm excitation wavelength is directly visualized in real space with 10 nm spatial resolutions, mapping the amplitude and phase characteristics of the in-plane and out-of-plane vector components selectively. While large field amplitude is observed in the gap for the in-plane component, the narrow gaps that are not resolved in the topographic image have been clearly observed in the optical images when the out-of-plane component is mapped, suggesting that the lateral optical resolution can surpass the radius of curvature of the probing tip. The effects of various structural parameters and metallic adhesion layer on the extent of field localization have been discussed, providing important insight in designing and fabricating plasmonic optical devices. (C) 2014 AIP Publishing LLC. C1 [Kiesow, Karissa I.; Habteyes, Terefe G.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Kiesow, Karissa I.; Habteyes, Terefe G.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Dhuey, Scott] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Kiesow, KI (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Office of Science by Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The fabrication of the nanostructures was performed as a user project at the Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. For some of the samples, the evaporation of gold was carried out at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). NR 36 TC 1 Z9 1 U1 1 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 053105 DI 10.1063/1.4892577 PG 5 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000071 ER PT J AU Mickel, PR Lohn, AJ Marinella, MJ AF Mickel, Patrick R. Lohn, Andrew J. Marinella, Matthew J. TI Detection and characterization of multi-filament evolution during resistive switching SO APPLIED PHYSICS LETTERS LA English DT Article ID ACCURATE EXPERIMENTAL-DETERMINATION; WEIBULL SHAPE FACTOR; INTRINSIC BREAKDOWN; DIELECTRIC FILMS; MEMORIES AB We report resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes and present a technique which enables the characterization of the evolution of multiple filaments within a single device during switching, including their temperature, heat flow, conductivity, and time evolving areas. Using a geometrically defined equivalent circuit, we resolve the individual current/voltage values of each filament and demonstrate that the switching curves of each filament collapse onto a common curve determined by the analytical steady-state resistive switching solution for filamentary switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance. (C) 2014 AIP Publishing LLC. C1 [Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mickel, PR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia's Laboratory Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to acknowledge James E. Stevens and the Sandia MESA Fab for device fabrication. This work was funded by Sandia's Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 20 TC 3 Z9 3 U1 2 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 053503 DI 10.1063/1.4892471 PG 4 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000091 ER PT J AU Odbadrakh, K McNutt, NW Nicholson, DM Rios, O Keffer, DJ AF Odbadrakh, Khorgolkhuu McNutt, N. W. Nicholson, D. M. Rios, O. Keffer, D. J. TI Lithium diffusion at Si-C interfaces in silicon-graphene composites SO APPLIED PHYSICS LETTERS LA English DT Article ID LI-ION BATTERIES; DENSITY-FUNCTIONAL THEORY; CRYSTALLINE SILICON; ELECTROCHEMICAL PERFORMANCE; 1ST PRINCIPLES; ANODES; INTERCALATION; ADSORPTION; LITHIATION; GRAPHITE AB Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si. (C) 2014 AIP Publishing LLC. C1 [Odbadrakh, Khorgolkhuu] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37830 USA. [McNutt, N. W.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Nicholson, D. M.] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37830 USA. [Nicholson, D. M.] Univ N Carolina, Dept Phys, Asheville, NC 28804 USA. [Rios, O.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Keffer, D. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Odbadrakh, K (reprint author), Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37830 USA. RI Rios, Orlando/E-6856-2017 OI Rios, Orlando/0000-0002-1814-7815 FU JDRD program at the University of Tennessee; Oak Ridge Associated Universities High Performance Computing Program; Sustainable Energy Education and Research Center of the University of Tennessee; National Science Foundation [DGE-0801470]; NSF [OCI 07-11134.5]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX K.O. was supported by a grant from the JDRD program at the University of Tennessee. N.M. was supported by a grant from the Oak Ridge Associated Universities High Performance Computing Program, by a grant from the Sustainable Energy Education and Research Center of the University of Tennessee and by a grant from the National Science Foundation (DGE-0801470). This research project used resources of the National Institute for Computational Sciences (NICS) supported by NSF under Agreement No. OCI 07-11134.5. This research was also sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. NR 41 TC 0 Z9 0 U1 8 U2 84 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 053906 DI 10.1063/1.4892829 PG 4 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000106 ER PT J AU Perret, E Highland, MJ Stephenson, GB Streiffer, SK Zapol, P Fuoss, PH Munkholm, A Thompson, C AF Perret, Edith Highland, M. J. Stephenson, G. B. Streiffer, S. K. Zapol, P. Fuoss, P. H. Munkholm, A. Thompson, Carol TI Real-time x-ray studies of crystal growth modes during metal-organic vapor phase epitaxy of GaN on c- and m-plane single crystals SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; SURFACE-STRUCTURE; DEPOSITION; SCATTERING; ENVIRONMENT; SILICON AB Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface, we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct crossover between step-flow and 3D growth, with no layer-by-layer regime. The apparent activation energy of 2.8 +/- 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands. (C) 2014 AIP Publishing LLC. C1 [Perret, Edith; Highland, M. J.; Stephenson, G. B.; Zapol, P.; Fuoss, P. H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Stephenson, G. B.; Streiffer, S. K.] Argonne Natl Lab, Photon Sci Directorate, Argonne, IL 60439 USA. [Streiffer, S. K.] Argonne Natl Lab, Phys Sci & Engn Directorate, Argonne, IL 60439 USA. [Munkholm, A.] AIXTRON Inc, Sunnyvale, CA 94089 USA. [Thompson, Carol] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. RP Highland, MJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mhighland@anl.gov RI Zapol, Peter/G-1810-2012; OI Zapol, Peter/0000-0003-0570-9169; Thompson, Carol/0000-0003-3832-4855 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors would like to acknowledge all of those who have contributed to the MOVPE facility at APS sector 12. GBS, SKS, and the use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. PZ, PHF, and CT were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 19 TC 3 Z9 3 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 051602 DI 10.1063/1.4892349 PG 3 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000015 ER PT J AU Wong, AT Beekman, C Guo, H Siemons, W Gai, Z Arenholz, E Takamura, Y Ward, TZ AF Wong, A. T. Beekman, C. Guo, H. Siemons, W. Gai, Z. Arenholz, E. Takamura, Y. Ward, T. Z. TI Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-SEPARATED MANGANITE; THIN-FILMS; TRANSITIONS; DEVICES; FIELD AB We investigate the effects of strain on antiferromagnetic (AFM) single crystal thin films of La1-xSrxMnO3 (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic ordering and no indication of a global ferromagnetic phase transition. These behaviors are attributed to epitaxy induced changes in orbital occupation driving different magnetic ordering types. Our findings suggest that different AFM ordering types have a profound impact on the AMR magnitude and character. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Wong, A. T.; Beekman, C.; Guo, H.; Siemons, W.; Ward, T. Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Wong, A. T.] Univ Tennessee, Knoxville, TN 37996 USA. [Guo, H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Gai, Z.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Takamura, Y.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Ward, TZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wardtz@ornl.gov RI Gai, Zheng/B-5327-2012; Ward, Thomas/I-6636-2016 OI Gai, Zheng/0000-0002-6099-4559; Ward, Thomas/0000-0002-1027-9186 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division; U.S. DOE [DE-SC0002136]; Scientific User Facilities Division, Office of BES, U.S. DOE; Office of Science, Office of BES, of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [DMR 0747896] FX This effort was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division, (T.Z.W., C.B., and W.S.) and under U.S. DOE grant DE-SC0002136 (A.W. and H.W.G.). Magnetization measurements (Z.G.) were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of BES, U.S. DOE. The Advanced Light Source is supported by the Direction, Office of Science, Office of BES, of the U.S. DOE under Contract No. DE-AC02-05CH11231. Y.T. acknowledges the support of the National Science Foundation Contract No. DMR 0747896. NR 29 TC 5 Z9 5 U1 6 U2 47 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 052401 DI 10.1063/1.4892420 PG 5 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000040 ER PT J AU Zhu, GH Wiederrecht, GP Ling, C Wu, ST Banerjee, D Yano, K AF Zhu, Gaohua Wiederrecht, Gary P. Ling, Chen Wu, Songtao Banerjee, Debasish Yano, Kazuhisa TI Damping of coherent acoustic vibrations by nanosized pores in colloidal hypersonic crystals SO APPLIED PHYSICS LETTERS LA English DT Article ID MESOPOROUS SILICA SPHERES; METAL NANOPARTICLES; GOLD NANOPARTICLES; QUANTUM-WELLS; OSCILLATIONS; MODULATION; DYNAMICS; WAVES AB We investigated the damping of the coherent acoustic vibrations in the presence of the nanosized pores in colloidal hypersonic crystals. The colloidal crystal samples are comprised of close-packed silica or monodisperse mesoporous silica spheres, where the mesoporous silica sphere contains radially aligned uniform nanosized pores. The decay of the acoustic vibrations was monitored by using ultrafast pump-probe spectroscopy. Two types of coherent acoustic modes are observed, the propagating bulk mode and the localized surface mode. Our studies show that porous structure could have different effects on different modes of vibrations. While the bulk mode is heavily damped due to the scattering from the nanosized pores, the surface mode is much less influenced. (C) 2014 AIP Publishing LLC. C1 [Zhu, Gaohua; Ling, Chen; Wu, Songtao; Banerjee, Debasish; Yano, Kazuhisa] Toyota Res Inst North Amer, Mat Res Dept, Ann Arbor, MI 48105 USA. [Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yano, Kazuhisa] Toyota Cent Res & Dev Labs Inc, Inorgan Mat Lab, Nagakute, Aichi 4801192, Japan. RP Zhu, GH (reprint author), Toyota Res Inst North Amer, Mat Res Dept, Ann Arbor, MI 48105 USA. EM gaohua.zhu@tema.toyota.com; k-yano@mosk.tytlabs.co.jp FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 34 TC 0 Z9 0 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 051903 DI 10.1063/1.4892428 PG 5 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000022 ER PT J AU Zou, T Dun, ZL Cao, HB Zhu, MZ Coulter, D Zhou, HD Ke, XL AF Zou, Tao Dun, Zhiling Cao, Huibo Zhu, Mengze Coulter, Daniel Zhou, Haidong Ke, Xianglin TI Excess-hole induced high temperature polarized state and its correlation with the multiferroicity in single crystalline DyMnO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROELECTRICITY AB Controlling the ferroelectricity and magnetism in multiferroic materials has been an important research topic. We report the formation of a highly polarized state in multiferroic DyMnO3 single crystals which develops well above the magnetic transition temperatures, and we attribute it to the thermally stimulated depolarization current effect of excess holes forming Mn4+ ions in the system. We also show that this high temperature polarized state intimately correlates with the lower temperature ferroelectric state that is induced by the incommensurate spiral magnetic order of Mn spins. This study demonstrates an efficient approach to tune the multiferroicity in the manganite system. (C) 2014 AIP Publishing LLC. C1 [Zou, Tao; Zhu, Mengze; Coulter, Daniel; Ke, Xianglin] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dun, Zhiling; Zhou, Haidong] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Cao, Huibo] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Ke, XL (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM ke@pa.msu.edu RI Zou, Tao/A-1761-2013; Cao, Huibo/A-6835-2016; Dun, Zhiling/F-5617-2016; Zhou, Haidong/O-4373-2016 OI Zou, Tao/0000-0002-6510-5749; Cao, Huibo/0000-0002-5970-4980; Dun, Zhiling/0000-0001-6653-3051; FU Michigan State University; NSF-DMR [DMR-1350002]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX X.K. acknowledges the support from the start-up funds at Michigan State University. Z. L. Dun and H. D. Z. thank for the support from NSF-DMR through Award DMR-1350002. Work at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. T. Z. appreciates the useful discussion with Professor J. M. Liu. NR 28 TC 6 Z9 6 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 4 PY 2014 VL 105 IS 5 AR 052906 DI 10.1063/1.4892470 PG 5 WC Physics, Applied SC Physics GA AO2LE UT WOS:000341153000061 ER PT J AU Jiang, T Xu, CF Zuo, XB Conticello, VP AF Jiang, Tao Xu, Chunfu Zuo, Xiaobing Conticello, Vincent P. TI Structurally Homogeneous Nanosheets from Self-Assembly of a Collagen-Mimetic Peptide SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE collagen-mimetic peptides; nanoarchitectonics; nanosheets; self-assembly; structural homogeneity ID TRIPLE-HELICAL STRUCTURES; CRYSTAL-STRUCTURE; MOLECULAR-STRUCTURE; CONFORMATIONAL STABILITY; ANGSTROM RESOLUTION; MODEL PEPTIDE; GLY SEQUENCE; 4-HYDROXYPROLINE; NANOARCHITECTONICS; 4-FLUOROPROLINE AB A collagen-mimetic peptide, NSIII, has been designed with three sequential blocks having positive, neutral, and negative charges, respectively. The non-canonical imino acid, (2S, 4S)-4-aminoproline (amp), was used to specify the positive charges at the Xaa positions of (Xaa-Yaa-Gly) triads in the N-terminal domain of NSIII. Peptide NSIII underwent self-assembly from aqueous solution to form a highly homogeneous population of nanosheets. Two-dimensional crystalline sheets formed in which the length of the peptide defined the height of the sheets. These results contrasted with prior results on a similar multi-domain collagen-mimetic polypeptides in which the sheets had highly polydisperse distribution of sizes in the (x/y)- and (z)-dimensions. The structural differences between the two nanosheet assemblies were interpreted in terms of the relative stereoelectronic effects of the different aminoproline derivatives on the local triple helical conformation of the peptides. C1 [Jiang, Tao; Xu, Chunfu; Conticello, Vincent P.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Conticello, VP (reprint author), Emory Univ, Dept Chem, 1515 Dickey Dr, Atlanta, GA 30322 USA. EM vcontic@emory.edu FU NSF [CHE-1012620]; U.S. D.O.E. Office of Basic Energy Sciences, Division of Material Sciences [W-31-109-Eng-38] FX V.P.C. acknowledges financial support from NSF grant CHE-1012620. This work benefited from the use of the A.P.S. funded by U.S. D.O.E. Office of Basic Energy Sciences, Division of Material Sciences, under contract W-31-109-Eng-38. We thank Prof. Shuming Nie for use of the dynamic light scattering instrument. NR 37 TC 23 Z9 23 U1 7 U2 69 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD AUG 4 PY 2014 VL 53 IS 32 BP 8367 EP 8371 DI 10.1002/anie.201403780 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AN3XT UT WOS:000340522700016 PM 24961508 ER PT J AU Polinski, MJ Pace, KA Stritzinger, JT Lin, J Cross, JN Cary, SK Van Cleve, SM Alekseev, EV Albrecht-Schmitt, TE AF Polinski, Matthew J. Pace, Kristen A. Stritzinger, Jared. T. Lin, Jian Cross, Justin N. Cary, Samantha K. Van Cleve, Shelley M. Alekseev, Evgeny V. Albrecht-Schmitt, Thomas E. TI Chirality and Polarity in the f-Block Borates M-4[B16O26(OH)(4)(H2O)(3)Cl-4] ( M = Sm, Eu, Gd, Pu, Am, Cm, and Cf) SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE actinides; americium; californium; curium; lanthanides; plutonium ID ELECTRONIC ENERGY LEVELS; LANTHANIDE AQUO IONS; TRIVALENT ACTINIDE; SPECTROSCOPIC PROPERTIES; SPECTRAL INTENSITIES; CRYSTAL-STRUCTURES; SINGLE-CRYSTAL; SOLID-STATE; TH-CM; PLUTONIUM(III) AB The reactions of trivalent lanthanides and actinides with molten boric acid in high chloride concentrations result in the formation of M-4[B16O26(OH)(4)(H2O)(3)Cl-4] (M = Sm, Eu, Gd, Pu, Am, Cm, Cf). This cubic structure type is remarkably complex and displays both chirality and polarity. The polymeric borate network forms helical features that are linked via two different types of nine-coordinate f-element environments. The f-f transitions are unusually intense and result in dark coloration of these compounds with actinides. C1 [Polinski, Matthew J.; Pace, Kristen A.; Stritzinger, Jared. T.; Lin, Jian; Cross, Justin N.; Cary, Samantha K.; Albrecht-Schmitt, Thomas E.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Alekseev, Evgeny V.] Forschungszentrum Julich, Inst Energy & Climate Res IEK 6, D-52428 Julich, Germany. [Alekseev, Evgeny V.] Univ Aachen, Inst Kristallog, Rhein Westfael TH, D-52066 Aachen, Germany. [Van Cleve, Shelley M.] Oak Ridge Natl Lab, Nucl Mat Proc Grp, Oak Ridge, TN 37830 USA. RP Albrecht-Schmitt, TE (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. OI Alekseev, Evgeny/0000-0002-4919-5211 FU Heavy Elements Chemistry Program, U.S. Department of Energy [DE-FG02-13ER16414] FX We are grateful for support provided by the Heavy Elements Chemistry Program, U.S. Department of Energy, under Grant DE-FG02-13ER16414. The 249Cf was provided to Florida State University by the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at Oak Ridge National Laboratory and was purchased by the Gregory R. Choppin Chair Endowment. The 249Cf used in this research was supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics. NR 49 TC 4 Z9 4 U1 3 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD AUG 4 PY 2014 VL 20 IS 32 BP 9892 EP 9896 DI 10.1002/chem.201403820 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AN0ES UT WOS:000340257000011 PM 25042434 ER PT J AU Sturzbecher-Hoehne, M Kullgren, B Jarvis, EE An, DD Abergel, RJ AF Sturzbecher-Hoehne, Manuel Kullgren, Birgitta Jarvis, Erin E. An, Dahlia D. Abergel, Rebecca J. TI Highly Luminescent and Stable Hydroxypyridinonate Complexes: A Step Towards New Curium Decontamination Strategies SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE actinides; curium; energy transfer; luminescence; thermodynamics ID RADIONUCLIDE DECORPORATION AGENTS; IN-VIVO; THERMODYNAMIC EVALUATION; LANTHANIDE COMPLEXES; SEQUESTERING AGENTS; AQUEOUS-SOLUTION; LIGANDS; CHELATION; 3,4,3-LI(1,2-HOPO); IONS AB The photophysical properties, solution thermodynamics, and in vivo complex stabilities of Cm-III complexes formed with multidentate hydroxypyridinonate ligands, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), are reported. Both chelators were investigated for their ability to act as antenna chromophores for Cm-III, leading to highly sensitized luminescence emission of the metal upon complexation, with long lifetimes (383 and 196 mu s for 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), respectively) and remarkable quantum yields (45% and 16%, respectively) in aqueous solution. The bright emission peaks were used to probe the electronic structure of the 5f complexes and gain insight into ligand field effects; they were also exploited to determine the high (and proton-independent) stabilities of the corresponding Cm-III complexes (log beta(110)=21.8(4) for 3,4,3-LI(1,2-HOPO) and log beta(120)=24.5(5) for 5-LIO(Me-3,2-HOPO)). The in vivo complex stability for both ligands was assessed by using Cm-248 as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic Cm-III decontamination agent. C1 [Sturzbecher-Hoehne, Manuel; Kullgren, Birgitta; Jarvis, Erin E.; An, Dahlia D.; Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov FU Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; National Institutes of Health through the U.S. Department of Energy [DE-AC02-05CH11231, RAI087604Z] FX We thank Prof. Kenneth N. Raymond, Dr. Norman M. Edelstein, and Dr. David K. Shuh for helpful discussions. Spectroscopic characterization of Cm complexes and solution thermodynamic studies were supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. The in vivo experiments were supported by the National Institutes of Health (RAI087604Z) through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 48 TC 9 Z9 9 U1 3 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD AUG 4 PY 2014 VL 20 IS 32 BP 9962 EP 9968 DI 10.1002/chem.201402103 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AN0ES UT WOS:000340257000021 PM 25043376 ER PT J AU Morrow, R Freeland, JW Woodward, PM AF Morrow, Ryan Freeland, John W. Woodward, Patrick M. TI Probing the Links between Structure and Magnetism in Sr2-xCaxFeOsO6 Double Perovskites SO INORGANIC CHEMISTRY LA English DT Article ID ORDERED DOUBLE-PEROVSKITE; CRYSTAL-STRUCTURE; TEMPERATURE; DIFFRACTION; SR2FEOSO6; OSMIUM AB synthesis, structure, and properties of the ordered double perovskites Sr2FeOsO6, Ca2FeOsO6, and SrCaFeOsO6 are reported. The latter two compounds have monoclinic P2(1)/n symmetry and a(-)a(-)b(+) tilting of the octahedra, while Sr2FeOsO6 is tetragonal with 14/m symmetry and a(0)a(0)c(-) tilting. Magnetic measurements indicate and neutron powder diffraction studies confirm that Ca2FeOsO6 is a ferrimagnet with a Curie temperature of 350 K. The ferrimagnetism is retained if half of the Ca2+ ions are replaced with larger Sr2+ ions to form SrCaFeOsO6 (Tc = 210 K). This substitution reduces the degree of octahedral tilting, but unlike most perovskites, the magnetic ordering temperature decreases as the Fe-O-Os bond angles approach a linear geometry. In contrast, Sr2FeOsO6 orders antiferromagnetically, as previously reported. X-ray absorption spectroscopy confirms the assignment of Fe(III) and Os(V) oxidation states for all three compounds. In these insulating double perovskites, the magnetic ground state is governed by a competition between the fourbond Fe-O-Os-O-Fe antiferromagnetic superexchange coupling of Fe(III) ions and the two-bond Fe-O-Os antiferromagnetic superexchange coupling between neighboring Fe(III) and Os(V) ions. When the Fe-O-Os bonds are linear, as they are in the c direction in Sr2FeOsO6, the four-bond coupling between Fe(III) ions prevails. The competition shifts in favor of antiferromagnetic coupling of Fe(III) and Os(V) as the Fe-O-Os bond angles bend in response to chemical pressure. C1 [Morrow, Ryan; Woodward, Patrick M.] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Woodward, PM (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. EM woodward@chemistry.ohio-state.edu RI Morrow, Ryan/K-9668-2015 OI Morrow, Ryan/0000-0001-9986-3049 FU Materials World Network Grant - National Science Foundation [DMR-1107637]; Center for Emergent Materials an NSF Materials Research Science and Engineering Center [DMR-0820414]; U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Support for this research was provided by a Materials World Network Grant funded by the National Science Foundation (award no. DMR-1107637). Partial support was supplied by the Center for Emergent Materials an NSF Materials Research Science and Engineering Center (DMR-0820414). A portion of this research was carried out at Oak Ridge National Laboratory's Spallation Neutron Source, which is sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. The authors thank Ashfia Huq for assistance with the neutron diffraction experiments. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 34 TC 18 Z9 18 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 4 PY 2014 VL 53 IS 15 BP 7983 EP 7992 DI 10.1021/ic5006715 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AM6NR UT WOS:000339982400025 PM 25025612 ER PT J AU Bacchi, M Berggren, G Niklas, J Veinberg, E Mara, MW Shelby, ML Poluektov, OG Chen, LX Tiede, DM Cavazza, C Field, MJ Fontecave, M Artero, V AF Bacchi, Marine Berggren, Gustav Niklas, Jens Veinberg, Elias Mara, Michael W. Shelby, Megan L. Poluektov, Oleg G. Chen, Lin X. Tiede, David M. Cavazza, Christine Field, Martin J. Fontecave, Marc Artero, Vincent TI Cobaloxime-Based Artificial Hydrogenases SO INORGANIC CHEMISTRY LA English DT Article ID PHOTOSYSTEM-I; MOLECULAR ELECTROCATALYSTS; ELECTRONIC-STRUCTURE; FUNCTIONAL MODELS; OXYGEN CARRIERS; H-2 EVOLUTION; APO-MYOGLOBIN; ACTIVE-SITES; PROTEIN; DESIGN AB Cobaloximes are popular H-2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)(2)} and {Co(dmgBF(2))(2)} (dmgH(2) = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H-2 evolution near-neutral aqueous conditions. in C1 [Bacchi, Marine; Berggren, Gustav; Cavazza, Christine; Fontecave, Marc; Artero, Vincent] Univ Grenoble Alpes, Lab Chem & Biol Met, CNRS, CEA, F-38000 Grenoble, France. [Niklas, Jens; Poluektov, Oleg G.; Chen, Lin X.; Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Veinberg, Elias; Field, Martin J.] Univ Grenoble Alpes, CEA 5075, UMR CNRS, DYNAMO,DYNAMOP,Inst Biol Struct, F-38000 Grenoble, France. [Mara, Michael W.; Shelby, Megan L.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Fontecave, Marc] Univ Paris 06, CNRS, Coll France, Lab Chim Proc Biol,UMR 8229, F-75005 Paris, France. RP Artero, V (reprint author), Univ Grenoble Alpes, Lab Chem & Biol Met, CNRS, CEA, 17 Rue Martyrs, F-38000 Grenoble, France. EM vincent.artero@cea.fr RI berggren, gustav/H-8659-2013; Artero, Vincent/C-6853-2008; Niklas, Jens/I-8598-2016 OI berggren, gustav/0000-0002-6717-6612; Artero, Vincent/0000-0002-6148-8471; Niklas, Jens/0000-0002-6462-2680 FU French National Research Agency (ANR, NiFe-Cat project) [ANR-10-BLAN-711,]; French National Research Agency (ANR, Labex program ARCANE) [ANR-11-LABX-0003-01]; COST Action [CM1202 PERSPECT-H2O]; Life Science Division of the CEA (Irtelis program); Life Science Division of the CEA (DSV-Energy program); Bengt Lundqvist minnesfond; FORMAS [213-2010-563]; Swedish Royal Academy of Sciences; Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357] FX The authors acknowledge partial support from the French National Research Agency (ANR, NiFe-Cat project; Grant ANR-10-BLAN-711, and Labex program ARCANE; Grant ANR-11-LABX-0003-01), the COST Action CM1202 PERSPECT-H2O, and the Life Science Division of the CEA (Irtelis and 2011 DSV-Energy programs). G.B. gratefully acknowledges support from Bengt Lundqvist minnesfond, FORMAS (Contract 213-2010-563), and the Swedish Royal Academy of Sciences. Work at the Argonne National Laboratory was supported by funding from the Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357. The authors thank Sunshine Silver (Argonne National Laboratory) for ICP-AES measurements. NR 91 TC 24 Z9 24 U1 8 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 4 PY 2014 VL 53 IS 15 BP 8071 EP 8082 DI 10.1021/ic501014c PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AM6NR UT WOS:000339982400035 PM 25029381 ER PT J AU Paley, JM Messier, MD Raja, R Akgun, U Asner, DM Aydin, G Baker, W Barnes, PD Bergfeld, T Beverly, L Bhatnagar, V Choudhary, B Dukes, EC Duru, F Feldman, GJ Godley, A Graf, N Gronberg, J Gulmez, E Gunaydin, YO Gustafson, HR Hartouni, EP Hanlet, P Heffner, M Kaplan, DM Kamaev, O Klay, J Kumar, A Lange, DJ Lebedev, A Ling, J Longo, MJ Lu, LC Materniak, C Mahajan, S Meyer, H Miller, DE Mishra, SR Nelson, K Nigmanov, T Norman, A Onel, Y Penzo, A Peterson, RJ Rajaram, D Ratnikov, D Rosenfeld, C Rubin, H Seun, S Singh, A Solomey, N Soltz, RA Torun, Y Wilson, K Wright, DM Wu, QK AF Paley, J. M. Messier, M. D. Raja, R. Akgun, U. Asner, D. M. Aydin, G. Baker, W. Barnes, P. D., Jr. Bergfeld, T. Beverly, L. Bhatnagar, V. Choudhary, B. Dukes, E. C. Duru, F. Feldman, G. J. Godley, A. Graf, N. Gronberg, J. Gulmez, E. Gunaydin, Y. O. Gustafson, H. R. Hartouni, E. P. Hanlet, P. Heffner, M. Kaplan, D. M. Kamaev, O. Klay, J. Kumar, A. Lange, D. J. Lebedev, A. Ling, J. Longo, M. J. Lu, L. C. Materniak, C. Mahajan, S. Meyer, H. Miller, D. E. Mishra, S. R. Nelson, K. Nigmanov, T. Norman, A. Onel, Y. Penzo, A. Peterson, R. J. Rajaram, D. Ratnikov, D. Rosenfeld, C. Rubin, H. Seun, S. Singh, A. Solomey, N. Soltz, R. A. Torun, Y. Wilson, K. Wright, D. M. Wu, Q. K. CA MIPP Collaboration TI Measurement of charged pion production yields off the NuMI target SO PHYSICAL REVIEW D LA English DT Article ID COLLISIONS; DETECTOR AB The fixed-target Main Injector Particle Production (MIPP) experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3% and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using dE/dx, time-of-flight, and Cherenkov radiation measurements. MIPP collected 1.42 x 10(6) events of 120 GeV Main Injector protons striking a target used in the Neutrinos at the Main Injector facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton on target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5% and 10%. C1 [Paley, J. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Akgun, U.] Coe Coll, Cedar Rapids, IA 52402 USA. [Peterson, R. J.] Univ Colorado, Boulder, CO 80309 USA. [Choudhary, B.] Univ Delhi, Delhi 110007, India. [Raja, R.; Baker, W.; Beverly, L.; Norman, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Feldman, G. J.; Lebedev, A.; Seun, S.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Hanlet, P.; Kaplan, D. M.; Kamaev, O.; Rajaram, D.; Ratnikov, D.; Rubin, H.; Torun, Y.] IIT, Chicago, IL 60616 USA. [Messier, M. D.; Graf, N.] Indiana Univ, Bloomington, IN 47403 USA. [Akgun, U.; Aydin, G.; Duru, F.; Gulmez, E.; Gunaydin, Y. O.; Onel, Y.; Penzo, A.] Univ Iowa, Iowa City, IA 52242 USA. [Asner, D. M.; Barnes, P. D., Jr.; Gronberg, J.; Hartouni, E. P.; Heffner, M.; Klay, J.; Lange, D. J.; Soltz, R. A.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gustafson, H. R.; Longo, M. J.; Nigmanov, T.; Rajaram, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bhatnagar, V.; Kumar, A.; Mahajan, S.; Singh, A.] Panjab Univ, Chandigarh 160014, India. [Miller, D. E.] Purdue Univ, W Lafayette, IN 47907 USA. [Bergfeld, T.; Godley, A.; Ling, J.; Mishra, S. R.; Rosenfeld, C.; Wilson, K.; Wu, Q. K.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Dukes, E. C.; Lu, L. C.; Materniak, C.; Nelson, K.; Norman, A.] Univ Virginia, Charlottesville, VA 22904 USA. [Meyer, H.; Solomey, N.] Wichita State Univ, Wichita, KS 67260 USA. [Gulmez, E.] Bogazici Univ, Istanbul, Turkey. RP Paley, JM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Gulmez, Erhan/P-9518-2015; Ling, Jiajie/I-9173-2014; OI Gulmez, Erhan/0000-0002-6353-518X; Ling, Jiajie/0000-0003-2982-0670; Norman, Andrew/0000-0001-8572-956X; Torun, Yagmur/0000-0003-2336-6585 FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. We are grateful to the staff of Fermilab, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Argonne National Laboratory for their contributions to this effort. NR 11 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 4 PY 2014 VL 90 IS 3 AR 032001 DI 10.1103/PhysRevD.90.032001 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AM6UF UT WOS:000340000000001 ER PT J AU Rusydi, A Goos, A Binder, S Eich, A Botril, K Abbamonte, P Yu, X Breese, MBH Eisaki, H Fujimaki, Y Uchida, S Guerassimova, N Treusch, R Feldhaus, J Reininger, R Klein, MV Rubhausen, M AF Rusydi, A. Goos, A. Binder, S. Eich, A. Botril, K. Abbamonte, P. Yu, X. Breese, M. B. H. Eisaki, H. Fujimaki, Y. Uchida, S. Guerassimova, N. Treusch, R. Feldhaus, J. Reininger, R. Klein, M. V. Ruebhausen, M. TI Electronic Screening-Enhanced Hole Pairing in Two-Leg Spin Ladders Studied by High-Resolution Resonant Inelastic X-Ray Scattering at Cu M Edges SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAMAN-SCATTERING; CORRELATED SYSTEMS; SR14CU24O41; EXCITATIONS; SUPERCONDUCTORS; SPECTROSCOPY; LIGHT AB We study the electronic screening mechanisms of the effective Coulomb on-site repulsion in hole-doped Sr14Cu24O41 compared to undoped La6Ca8Cu24O41 using polarization dependent high-resolution resonant inelastic x-ray scattering at Cu M edges. By measuring the energy of the effective Coulomb on-site repulsion and the spin excitations, we estimate superexchange and hopping matrix element energies along rungs and legs, respectively. Interestingly, hole doping locally screens the Coulomb on-site repulsion reducing it by as much as 25%. We suggest that the increased ratio of the electronic kinetic to the electronic correlation energy contributes to the local superexchange mediated pairing between holes. C1 [Rusydi, A.; Goos, A.; Binder, S.; Eich, A.; Botril, K.; Ruebhausen, M.] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Rusydi, A.; Goos, A.; Binder, S.; Eich, A.; Botril, K.; Ruebhausen, M.] Ctr Free Elect Laser Sci CFEL, D-22607 Hamburg, Germany. [Rusydi, A.; Breese, M. B. H.; Ruebhausen, M.] Natl Univ Singapore, Dept Phys, NUSSNI NanoCore, Singapore 117542, Singapore. [Rusydi, A.; Yu, X.; Breese, M. B. H.] Natl Univ Singapore, Singapore Synchrotron Light Sourc, Singapore 117603, Singapore. [Abbamonte, P.; Klein, M. V.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Abbamonte, P.; Klein, M. V.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Fujimaki, Y.; Uchida, S.] Univ Tokyo, Dept Superconduct, Bunkyo Ku, Tokyo 113, Japan. [Guerassimova, N.; Treusch, R.; Feldhaus, J.] DESY, D-22607 Hamburg, Germany. [Reininger, R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Rusydi, A (reprint author), Univ Hamburg, Inst Angew Phys, Jungiusstr 11, D-20355 Hamburg, Germany. EM phyandri@nus.edu.sg; michael.ruebhausen@desy.de RI Treusch, Rolf/C-3935-2015; Breese, Mark/G-2068-2012; Rusydi, Andrivo/I-1849-2016 FU BMBF [05K10GUD]; DFG [Ru 773/4-1, Ru 773/4-2]; Singapore National Research Foundation [NRF-CRP 8-2011-06, NRF2008NRF-CRP002024]; MOE Tier 2 [MOE2010-T2-2-121]; FRC and NUS YIA FX We would like to acknowledge technical support from Holger Weigelt, Benjamin Schulz, Pelangi Saichu, Jason Lim, and Wong How Kwong, and discussions with Dirk Manske, Wilfried Wurth, George Sawatzky, Jochen Schneider, and Lance Cooper. We acknowledge financial support by BMBF under 05K10GUD as well as DFG through Ru 773/4-1 & 4-2, and by Singapore National Research Foundation under its Competitive Research Funding (NRF-CRP 8-2011-06 and NRF2008NRF-CRP002024), MOE Tier 2 (MOE2010-T2-2-121), and FRC and NUS YIA. NR 40 TC 3 Z9 3 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 4 PY 2014 VL 113 IS 6 AR 067001 DI 10.1103/PhysRevLett.113.067001 PG 6 WC Physics, Multidisciplinary SC Physics GA AM7GW UT WOS:000340034500009 PM 25148343 ER PT J AU Martinez, E Hirth, JP AF Martinez, Enrique Hirth, John P. TI Screw-dislocation constrictions in face-centered cubic crystals SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; CROSS-SLIP; THIN-FILM; COPPER; DEFORMATION; NUCLEATION; PLASTICITY; GROWTH; METALS; NICKEL AB We show, using molecular statics and dynamics simulations along with dislocation dynamics calculations, that the structure of a screw dislocation in a thin film or at a free surface for face-centered cubic Cu differs from that found in bulk. In agreement with earlier work, a screw dislocation at the surface is observed to dissociate in two different {111} planes, forming a constriction at the site where the glide plane changes. We analyze in detail the energetics of the structure and conclude that the constricted configuration is stable due to the long-range elastic interactions. We have also performed shear stress simulations and compared to bulk stress to understand how the constriction modifies the response of the dislocation to an applied load. We found that such constriction represents a strong pinning point, substantially increasing the yield stress required for the dislocation to glide. In contrast, the configuration provides a barrierless source for the dislocation to cross slip. C1 [Martinez, Enrique] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Hirth, John P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. EM enriquem@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - U.S. Department of Energy at Los Alamos National Laboratory [2008LANL1026] FX The authors gratefully acknowledge the support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (Award No. 2008LANL1026) at Los Alamos National Laboratory, as well as helpful discussions with A. Caro. Parallel computations were performed on the Lobo machine at the High Performance Computing clusters at Los Alamos National Laboratory. NR 36 TC 0 Z9 0 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 4 PY 2014 VL 90 IS 6 AR 064102 DI 10.1103/PhysRevB.90.064102 PG 6 WC Physics, Condensed Matter SC Physics GA AM6TO UT WOS:000339998300002 ER PT J AU Cannon, WR AF Cannon, William R. TI Simulating Metabolism with Statistical Thermodynamics SO PLOS ONE LA English DT Article AB New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10-and 100-fold changes in the ratio of NAD+: NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. C1 Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Cannon, WR (reprint author), Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM William.cannon@pnnl.gov RI Cannon, William/K-8411-2014 OI Cannon, William/0000-0003-3789-7889 FU Scientific Discovery through Advanced Computing (SciDAC) program, Office of Advanced Scientific Computing Research (OASCR); Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER) through a SciDAC award; U.S. Department of Energy [DE-AC06-76RLO] FX This research was developed under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. Initial concepts were supported through joint funding from the Scientific Discovery through Advanced Computing (SciDAC) program, Office of Advanced Scientific Computing Research (OASCR) and the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), through a SciDAC award to W. R. Cannon. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 2 Z9 2 U1 2 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 4 PY 2014 VL 9 IS 8 AR e103582 DI 10.1371/journal.pone.0103582 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AM4GX UT WOS:000339812700033 PM 25089525 ER PT J AU Collier, SM Ruark, MD Oates, LG Jokela, WE Dell, CJ AF Collier, Sarah M. Ruark, Matthew D. Oates, Lawrence G. Jokela, William E. Dell, Curtis J. TI Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Environmental Sciences; Issue 90; greenhouse gas; trace gas; gas flux; static chamber; soil; field; agriculture; climate ID NITROUS-OXIDE FLUXES; DIFFUSION-MODEL; ATMOSPHERE; EMISSIONS; METHANE AB Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. C1 [Collier, Sarah M.] Univ Wisconsin, Off Sustainabil, Madison, WI 53706 USA. [Ruark, Matthew D.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Oates, Lawrence G.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Oates, Lawrence G.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Jokela, William E.] USDA ARS, Dairy Forage Res Ctr, Washington, DC 20250 USA. [Dell, Curtis J.] USDA ARS, Pasture Syst Watershed Management Res Unit, Washington, DC 20250 USA. RP Dell, CJ (reprint author), USDA ARS, Pasture Syst Watershed Management Res Unit, Washington, DC 20250 USA. EM curtis.dell@ars.usda.gov OI Collier, Sarah/0000-0002-8834-5075; Oates, Lawrence/0000-0003-4829-7600 FU National Science Foundation [1215858]; US Department of Agriculture [2013-68002-20525]; US Department of Energy Great Lakes Bioenergy Research Center - DOE BER Office of Science [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830] FX This material is based upon work supported by the National Science Foundation under Grant Number 1215858, by the US Department of Agriculture under Grant Number 2013-68002-20525, and by the US Department of Energy Great Lakes Bioenergy Research Center - DOE BER Office of Science (DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). In-field video and images were recorded at the Wisconsin Integrated Cropping System Trial project of the University of Wisconsin-Madison. The authors are grateful to Ryan Curtin for skillful videography and editing. NR 25 TC 2 Z9 2 U1 5 U2 38 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD AUG PY 2014 IS 90 AR e52110 DI 10.3791/52110 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB0EV UT WOS:000349299200080 PM 25146426 ER PT J AU Rames, M Yu, YD Ren, G AF Rames, Matthew Yu, Yadong Ren, Gang TI Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Environmental Sciences; Issue 90; small and asymmetric protein structure; electron microscopy; optimized negative staining ID HIGH-DENSITY-LIPOPROTEINS; APOLIPOPROTEIN-A-I; LECITHIN-CHOLESTEROL ACYLTRANSFERASE; MULTIPLE ISOMORPHOUS REPLACEMENT; ANOMALOUS DISPERSION DATA; HEAVY-ATOM POSITIONS; LIPID-BINDING; CRYO-EM; SCATTERING FACTORS; DIFFERENT SIZES AB Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa(1,2), a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol(3). Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high#resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography(4,5). Moreover, OpNS can be a high# throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples(6). Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms. C1 [Rames, Matthew; Yu, Yadong; Ren, Gang] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ren, G (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM gren@lbl.gov RI Foundry, Molecular/G-9968-2014; Chiang, Vincent, Ming-Hsien/D-4312-2016 OI Chiang, Vincent, Ming-Hsien/0000-0002-2029-7863 FU NHLBI NIH HHS [R01 HL115153, R01HL115153]; NIGMS NIH HHS [R01 GM104427, R01GM104427] NR 80 TC 1 Z9 1 U1 1 U2 5 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD AUG PY 2014 IS 90 AR e51087 DI 10.3791/51087 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB0EV UT WOS:000349299200006 PM 25145703 ER PT J AU Tsai, WT Hassan, A Sarkar, P Correa, J Metlagel, Z Jorgens, DM Auer, M AF Tsai, Wen-Ting Hassan, Ahmed Sarkar, Purbasha Correa, Joaquin Metlagel, Zoltan Jorgens, Danielle M. Auer, Manfred TI From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Bioengineering; Issue 90; 3D electron microscopy; feature extraction; segmentation; image analysis; reconstruction; manual tracing; thresholding ID NOISE-REDUCTION; IMAGE-ANALYSIS; VISUALIZATION; CELLS AB Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam-and serial block face-scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets. C1 [Tsai, Wen-Ting; Hassan, Ahmed; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Sarkar, Purbasha; Auer, Manfred] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Phys Biosci Div, Berkeley, CA USA. [Correa, Joaquin] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA USA. RP Auer, M (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM mauer@lbl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-05CH11231]; U.S. National Institutes of Health (NIH) [P01 GM051487] FX Research was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-05CH11231 [David Skinner], as well as U.S. National Institutes of Health (NIH) grant No. P01 GM051487 [M.A.] for the inner ear hair cell project and microscopy instrumentation use. NR 35 TC 1 Z9 1 U1 1 U2 8 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD AUG PY 2014 IS 90 AR e51673 DI 10.3791/51673 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB0EV UT WOS:000349299200035 PM 25145678 ER PT J AU Yang, CR Bland, W Mellor-Crummey, J Balaji, P AF Yang, Chaoran Bland, Wesley Mellor-Crummey, John Balaji, Pavan TI Portable, MPI-Interoperable Coarray Fortran SO ACM SIGPLAN NOTICES LA English DT Article DE Coarray Fortran; MPI; PGAS; Interoperability AB The past decade has seen the advent of a number of parallel programming models such as Coarray Fortran (CAF), Unified Parallel C, X10, and Chapel. Despite the productivity gains promised by these models, most parallel scientific applications still rely on MPI as their data movement model. One reason for this trend is that it is hard for users to incrementally adopt these new programming models in existing MPI applications. Because each model use its own runtime system, they duplicate resources and are potentially error-prone. Such independent runtime systems were deemed necessary because MPI was considered insufficient in the past to play this role for these languages. The recently released MPI-3, however, adds several new capabilities that now provide all of the functionality needed to act as a runtime, including a much more comprehensive one-sided communication framework. In this paper, we investigate how MPI-3 can form a runtime system for one example programming model, CAF, with a broader goal of enabling a single application to use both MPI and CAF with the highest level of interoperability. C1 [Yang, Chaoran; Mellor-Crummey, John] Rice Univ, Dept Comp Sci, Houston, TX 77251 USA. [Bland, Wesley; Balaji, Pavan] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Yang, CR (reprint author), Rice Univ, Dept Comp Sci, Houston, TX 77251 USA. EM chaoran@rice.edu; wbland@mcs.anl.gov; johnmc@rice.edu; balaji@mcs.anl.gov FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. We also thank Scott K. Warren and Dung X. Nguyen from Rice Group for porting CGPOP to CAF 2.0 and allowing us to use it for the evaluation of CAF-MPI. NR 34 TC 0 Z9 0 U1 1 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2014 VL 49 IS 8 BP 81 EP 92 DI 10.1145/2555243.2555270 PG 12 WC Computer Science, Software Engineering SC Computer Science GA CA8BS UT WOS:000349142100008 ER PT J AU Leung, VJ Bunde, DP Ebbers, J Feer, SP Price, NW Rhodes, ZD Swank, M AF Leung, Vitus J. Bunde, David P. Ebbers, Johnathan Feer, Stefan P. Price, Nickolas W. Rhodes, Zachary D. Swank, Matthew TI Task Mapping Stencil Computations for Non-Contiguous Allocations SO ACM SIGPLAN NOTICES LA English DT Article DE Task mapping; stencil communication pattern; non-contiguous allocation; improved scalability AB We examine task mapping algorithms for systems that allocate jobs non-contiguously. Several studies have shown that task placement affects job running time. We focus on jobs with a stencil communication pattern and use experiments on a Cray XE to evaluate novel task mapping algorithms as well as some adapted to this setting. This is done with the miniGhost miniApp which mimics the behavior of CTH, a shock physics application. Our strategies improve average and single-run times by as much as 28% and 36% over a baseline strategy, respectively. C1 [Leung, Vitus J.] Sandia Natl Labs, Livermore, CA 94550 USA. [Bunde, David P.; Ebbers, Johnathan; Feer, Stefan P.; Price, Nickolas W.; Rhodes, Zachary D.; Swank, Matthew] Knox Coll, Galesburg, IL USA. [Rhodes, Zachary D.] Allstate Corp, Northbrook, IL USA. RP Leung, VJ (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM vjleung@sandia.gov; dbunde@knox.edu; jebbers@knox.edu; sfeer@mmm.com; nprice@knox.edu; rhodesz87@gmail.com; mswank@knox.edu FU Sandia National Laboratories [899808]; Knox College; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX D.P. Bunde, J. Ebbers, S.P. Feer, N.W. Price, Z.D. Rhodes, and M. Swank were partially supported by contract 899808 from Sandia National Laboratories. Z.D. Rhodes also acknowledges support from a Post-baccalaureate Fellowship from Knox College. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 6 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2014 VL 49 IS 8 BP 377 EP 378 DI 10.1145/2555243.2555277 PG 2 WC Computer Science, Software Engineering SC Computer Science GA CA8BS UT WOS:000349142100036 ER PT J AU Gomez, LB Cappello, F AF Gomez, Leonardo Bautista Cappello, Franck TI Detecting Silent Data Corruption through Data Dynamic Monitoring for Scientific Applications SO ACM SIGPLAN NOTICES LA English DT Article DE Fault Tolerance; Supercomputers; Silent Data Corruption; Soft Errors; Bit Flips; Data Entropy AB Parallel programming has become one of the best ways to express scientific models that simulate a wide range of natural phenomena. These complex parallel codes are deployed and executed on large-scale parallel computers, making them important tools for scientific discovery. As supercomputers get faster and larger, the increasing number of components is leading to higher failure rates. In particular, the miniaturization of electronic components is expected to lead to a dramatic rise in soft errors and data corruption. Moreover, soft errors can corrupt data silently and generate large inaccuracies or wrong results at the end of the computation. In this paper we propose a novel technique to detect silent data corruption based on data monitoring. Using this technique, an application can learn the normal dynamics of its datasets, allowing it to quickly spot anomalies. We evaluate our technique with synthetic benchmarks and we show that our technique can detect up to 50% of injected errors while incurring only negligible overhead. C1 [Gomez, Leonardo Bautista; Cappello, Franck] Argonne Natl Lab, Argonne, IL 60439 USA. RP Gomez, LB (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. OI Bautista-Gomez, Leonardo/0000-0002-0814-5779 NR 4 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2014 VL 49 IS 8 BP 381 EP 382 DI 10.1145/2555243.2555279 PG 2 WC Computer Science, Software Engineering SC Computer Science GA CA8BS UT WOS:000349142100038 ER PT J AU Isaacs, KE Gamblin, T Bhatele, A Bremer, PT Schulz, M Hamann, B AF Isaacs, Katherine E. Gamblin, Todd Bhatele, Abhinav Bremer, Peer-Timo Schulz, Martin Hamann, Bernd TI Extracting Logical Structure and Identifying Stragglers in Parallel Execution Traces SO ACM SIGPLAN NOTICES LA English DT Article DE parallel execution trace; logical structure; visualization AB We introduce a new approach to automatically extract an idealized logical structure from a parallel execution trace. We use this structure to define intuitive metrics such as the lateness of a process involved in a parallel execution. By analyzing and illustrating traces in terms of logical steps, we leverage a developer's understanding of the happened-before relations in a parallel program. This technique can uncover dependency chains, elucidate communication patterns, and highlight sources and propagation of delays, all of which may be obscured in a traditional trace visualization. C1 [Isaacs, Katherine E.; Hamann, Bernd] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Gamblin, Todd; Bhatele, Abhinav; Bremer, Peer-Timo; Schulz, Martin] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Isaacs, KE (reprint author), Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. EM keisaacs@ucdavis.edu; tgamblin@llnl.gov; bhatele@llnl.gov; ptbremer@llnl.gov; schulzm@llnl.gov; hamann@cs.ucdavis.edu FU U.S. Department of Energy Office of Science Graduate Fellowship [DE-AC05-06OR23100]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-ABS-647655] FX This research is supported by the U.S. Department of Energy Office of Science Graduate Fellowship administered by ORISE-ORAU under contract DE-AC05-06OR23100 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-ABS-647655). NR 5 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2014 VL 49 IS 8 BP 397 EP 398 DI 10.1145/2555243.2555288 PG 2 WC Computer Science, Software Engineering SC Computer Science GA CA8BS UT WOS:000349142100046 ER PT J AU Agar, JC Mangalam, RVK Damodaran, AR Velarde, G Karthik, J Okatan, MB Chen, ZH Jesse, S Balke, N Kalinin, SV Martin, LW AF Agar, J. C. Mangalam, R. V. K. Damodaran, A. R. Velarde, G. Karthik, J. Okatan, M. B. Chen, Z. H. Jesse, S. Balke, N. Kalinin, S. V. Martin, L. W. TI Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr1-xTixO3 Epitaxial Thin Films SO ADVANCED MATERIALS INTERFACES LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; ZIRCONATE-TITANATE FILMS; DOMAIN-WALL MOTION; PIEZOELECTRIC PROPERTIES; DIELECTRIC PERMITTIVITY; ELECTRICAL-PROPERTIES; PB(ZR,TI)O-3 FILMS; CERAMICS; DEPENDENCE; THICKNESS AB Epitaxial strain is a powerful tool to manipulate the properties of ferroelectric materials. But despite extensive work in this regard, few studies have explored the effect of epitaxial strain on PbZr0.52Ti0.48O3. Here we explore how epitaxial strain impacts the structure and properties of 75 nm thick films of the morphotropic phase boundary composition. Single-phase, fully epitaxial films are found to possess "relaxed" or nearly "relaxed" structures despite growth on a range of substrates. Subsequent studies of the dielectric and ferroelectric properties reveal films with low leakage currents facilitating the measurement of low-loss hysteresis loops down to measurement frequencies of 30 mHz and dielectric response at background dc bias fields as large as 850 kV/cm. Despite a seeming insensitivity of the crystal structure to the epitaxial strain, the polarization and switching characteristics are found to vary with substrate. The elastic constraint from the substrate produces residual strains that dramatically alter the electric-field response including quenching domain wall contributions to the dielectric permittivity and suppressing field-induced structural reorientation. These results demonstrate that substrate mediated epitaxial strain of PbZr0.52Ti0.48O3 is more complex than in conventional ferroelectrics with discretely defined phases, yet can have a marked effect on the material and its responses. C1 [Agar, J. C.; Mangalam, R. V. K.; Damodaran, A. R.; Velarde, G.; Karthik, J.; Chen, Z. H.; Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Agar, J. C.; Mangalam, R. V. K.; Damodaran, A. R.; Velarde, G.; Karthik, J.; Chen, Z. H.; Martin, L. W.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Martin, L. W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Okatan, M. B.; Jesse, S.; Balke, N.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Agar, JC (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM lwmartin@illinois.edu RI Martin, Lane/H-2409-2011; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016; Chen, Zuhuang/E-7131-2011 OI Martin, Lane/0000-0003-1889-2513; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846; Chen, Zuhuang/0000-0003-1912-6490 FU National Science Foundation [DMR-1149062, DMR-1124696]; Air Force Office of Scientific Research (AFOSR) [AF FA 9550-11-1-0073]; Army Research Office (ARO) [W911NF-10-1-0482]; Office of Naval Research (ONR) [N00014-10-1-0525] FX J. C. A. and L. W. M. would like to acknowledge support from the National Science Foundation under grant DMR-1149062 and the Air Force Office of Scientific Research (AFOSR) under grant AF FA 9550-11-1-0073. R.V.K.M. and L.W.M. would like to acknowledge support from the National Science Foundation under grant DMR-1124696. A.R.D. and L.W.M. would like to acknowledge support from the Army Research Office (ARO) under grant W911NF-10-1-0482. J.K. and L.W.M. would like to acknowledge support from the Office of Naval Research (ONR) under grant N00014-10-1-0525. NR 51 TC 3 Z9 3 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD AUG PY 2014 VL 1 IS 5 AR 1400098 DI 10.1002/admi.201400098 PG 8 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5TT UT WOS:000348283700019 ER PT J AU Vandehey, NT O'Neil, JP AF Vandehey, Nicholas T. O'Neil, James P. TI Capturing [C-11]CO2 for use in aqueous applications SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE [C-11]CO2; Carbon-11; Radiochemistry; Positron emission tomography; Carbon capture; Ion exchange ID EMISSION-TOMOGRAPHY AB We present a simple method for trapping [C-11]CO2 gas and releasing it into a buffered solution using an ion-exchange cartridge. Sodium hydroxide cartridges captured >99% of [C-11]CO2 following NaOH activation. A sodium bicarbonate solution eluted >99% of trapped radioactivity. Trapping [C-11]CO2 directly in small volumes of several solutions was less effective than cartridge methods. The recommended methods allow for fast and simple production of highly concentrated carbon-11 containing aqueous solutions for use in filling phantoms, calibrating detectors, or (bio)geochemical experiments. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Vandehey, Nicholas T.; O'Neil, James P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vandehey, NT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ntvandehey@lbl.gov; jponei1@lbl.gov OI Vandehey, Nicholas/0000-0003-0286-7532 FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 20 TC 4 Z9 4 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD AUG PY 2014 VL 90 BP 74 EP 78 DI 10.1016/j.apradiso.2014.03.013 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AY5ER UT WOS:000347596400011 PM 24705008 ER PT J AU Rennie, EA Ebert, B Miles, GP Cahoon, RE Christiansen, KM Stonebloom, S Khatab, H Twell, D Petzold, CJ Adams, PD Dupree, P Heazlewood, JL Cahoon, EB Scheller, HV AF Rennie, Emilie A. Ebert, Berit Miles, Godfrey P. Cahoon, Rebecca E. Christiansen, Katy M. Stonebloom, Solomon Khatab, Hoda Twell, David Petzold, Christopher J. Adams, Paul D. Dupree, Paul Heazlewood, Joshua L. Cahoon, Edgar B. Scheller, Henrik Vibe TI Identification of a Sphingolipid alpha-Glucuronosyltransferase That Is Essential for Pollen Function in Arabidopsis SO PLANT CELL LA English DT Article ID TANDEM MASS-SPECTROMETRY; PROGRAMMED CELL-DEATH; SACCHAROMYCES-CEREVISIAE; PLANT SPHINGOLIPIDS; INOSITOLPHOSPHORYLCERAMIDE SYNTHASE; SERINE PALMITOYLTRANSFERASE; TOBACCO-LEAVES; TUBE GROWTH; LIPID RAFTS; THALIANA AB Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants. C1 [Rennie, Emilie A.; Ebert, Berit; Christiansen, Katy M.; Stonebloom, Solomon; Petzold, Christopher J.; Adams, Paul D.; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Rennie, Emilie A.; Ebert, Berit; Christiansen, Katy M.; Stonebloom, Solomon; Petzold, Christopher J.; Adams, Paul D.; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Rennie, Emilie A.; Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Miles, Godfrey P.; Dupree, Paul] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England. [Cahoon, Rebecca E.; Khatab, Hoda; Cahoon, Edgar B.] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA. [Cahoon, Rebecca E.; Khatab, Hoda; Cahoon, Edgar B.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. [Twell, David] Univ Leicester, Dept Biol, Leicester LE1 7RH, Leics, England. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Scheller, HV (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM hscheller@lbl.gov RI Heazlewood, Joshua/A-2554-2008; Adams, Paul/A-1977-2013; Ebert, Berit/F-1856-2016; Scheller, Henrik/A-8106-2008 OI Heazlewood, Joshua/0000-0002-2080-3826; Adams, Paul/0000-0001-9333-8219; Ebert, Berit/0000-0002-6914-5473; Scheller, Henrik/0000-0002-6702-3560 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship Program [DGE 1106400]; National Science Foundation [MCB 115850] FX We thank Sherry Chan for technical assistance and Tsan-Yiu Chiu for providing vectors. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Lab and the U.S. Department of Energy and by National Science Foundation Graduate Research Fellowship Program Grant DGE 1106400 (E.A.R.) and National Science Foundation Grant MCB 115850 (E.B.C.). NR 70 TC 13 Z9 14 U1 3 U2 21 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD AUG PY 2014 VL 26 IS 8 BP 3314 EP 3325 DI 10.1105/tpc.114.129171 PG 12 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA AU9MX UT WOS:000345918600009 PM 25122154 ER PT J AU Boswell, R Kaganovich, ID AF Boswell, Rod Kaganovich, Igor D. TI Special issue on transport in B-fields in low-temperature plasmas SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Editorial Material C1 [Boswell, Rod] Australian Natl Univ, Canberra, ACT, Australia. [Kaganovich, Igor D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boswell, R (reprint author), Australian Natl Univ, Canberra, ACT, Australia. NR 15 TC 0 Z9 0 U1 3 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD AUG PY 2014 VL 23 IS 4 AR 040201 DI 10.1088/0963-0252/23/4/040201 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AU7DR UT WOS:000345761500001 ER PT J AU Griswold, ME Raitses, Y Fisch, NJ AF Griswold, Martin E. Raitses, Yevgeny Fisch, Nathaniel J. TI Cross-field plasma lens for focusing of the Hall thruster plume SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE Hall thruster; plasma lens; anomalous transport ID ION-BEAMS AB Hall thrusters produce neutralized ion beams with high current density because the acceleration takes place in quasi-neutral plasma and is not subject to space charge limitation. We tested an external plasma lens (PL) in front of the thruster as a means to focus the thruster plume. In the PL, the plasma is nearly collisionless, with non-magnetized flowing ions and magnetized electrons. Surprisingly, we observed anomalous electron cross-field transport, leading to large currents to the PL electrode and enhanced power loss. C1 [Griswold, Martin E.; Raitses, Yevgeny; Fisch, Nathaniel J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Griswold, ME (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM martin.griswold@alumni.princeton.edu FU US DOE [DE-AC02-09CH11466]; Air Force Office of Scientific Research; DOE Fusion Energy Sciences Fellowship FX This work was supported by the US DOE under Contract No DE-AC02-09CH11466 and by the Air Force Office of Scientific Research. MEG acknowledges the support of a DOE Fusion Energy Sciences Fellowship. NR 19 TC 2 Z9 2 U1 4 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD AUG PY 2014 VL 23 IS 4 AR 044005 DI 10.1088/0963-0252/23/4/044005 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AU7DR UT WOS:000345761500008 ER PT J AU Appy, D Lei, HP Wang, CZ Tringides, MC Liu, DJ Evans, JW Thiel, PA AF Appy, David Lei, Huaping Wang, Cai-Zhuang Tringides, Michael C. Liu, Da-Jiang Evans, James W. Thiel, Patricia A. TI Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology SO PROGRESS IN SURFACE SCIENCE LA English DT Review DE Graphite; Graphene; Transition metal; Nucleation; Adsorption; Diffusion ID SCANNING-TUNNELING-MICROSCOPY; ORIENTED PYROLYTIC-GRAPHITE; ATOMIC-FORCE MICROSCOPY; NANOMETER-SIZED PITS; GOLD CLUSTERS; NANOPARTICLE ARRAYS; EQUILIBRIUM SHAPE; PROBE MICROSCOPY; MOLECULE CORRALS; DENDRITIC GROWTH AB In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Appy, David; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Liu, Da-Jiang; Evans, James W.; Thiel, Patricia A.] Ames Lab, Ames, IA 50011 USA. [Appy, David; Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Lei, Huaping; Tringides, Michael C.; Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Lei, Huaping] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences; Biosciences through the Ames Laboratory Chemical Physics program; Ames Laboratory which is operated for the USDOE by Iowa State University [DE-ACO207CH11358]; NSF [CHE-1111500] FX Contributions by DA, HL, CZW, MCT, and PAT were supported by the U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division through the Ames Laboratory Materials Science program. Work by DJL was supported by the U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory Chemical Physics program. The work was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-ACO207CH11358. IWE's contribution was supported by NSF Grant CHE-1111500. NR 127 TC 11 Z9 11 U1 7 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6816 J9 PROG SURF SCI JI Prog. Surf. Sci. PD AUG-DEC PY 2014 VL 89 IS 3-4 BP 219 EP 238 DI 10.1016/j.progsurf.2014.08.001 PG 20 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA AU6OD UT WOS:000345721200001 ER PT J AU Chow, WW Jahnke, F Gies, C AF Chow, Weng W. Jahnke, Frank Gies, Christopher TI Emission properties of nanolasers during the transition to lasing SO LIGHT-SCIENCE & APPLICATIONS LA English DT Review DE nanolasers; optoelectronics; photon statistics; quantum light sources; quantum optics; semiconductor quantum dots; thresholdless lasing ID QUANTUM-DOT; PHASE-TRANSITION; OPTICAL MICROCAVITIES; MICROPILLAR CAVITIES; LASER; DYNAMICS; ANALOGY; PHYSICS AB This review addresses ongoing discussions involving nanolaser experiments, particularly those related to thresholdless lasing or few-emitter devices. A quantum-optical (quantum-mechanical active medium and radiation field) theory is used to examine the emission properties of nanolasers under different experimental configurations. The active medium is treated as inhomogeneously broadened semiconductor quantum dots embedded in a quantum well, where carriers are introduced via current injection. Comparisons are made between a conventional laser and a nanolaser with a spontaneous emission factor of unity, as well as a laser with only a few quantum dots providing the gain. It is found that the combined exploration of intensity, coherence time, photon autocorrelation function and carrier spectral hole burning can provide a unique and consistent picture of nanolasers in the new regimes of laser operation during the transition from thermal to coherent emission. Furthermore, by reducing the number of quantum dots in the optical cavity, a clear indication of non-classical photon statistics is observed before the single-quantum-dot limit is reached. C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jahnke, Frank; Gies, Christopher] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; Deutsche Forschungsgemeinschaft; [SFB787] FX The present extension of the nanolaser model was developed at the Energy Frontier Research Center for Solid-State Lighting Science, funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The application of this model to the specific cases of unity spontaneous emission and the few-emitter limit was performed under Sandia's LDRD program. FJ and CG acknowledge financial support from the Deutsche Forschungsgemeinschaft. WWC is grateful for the hospitality of the Technical University Berlin and travel support provided by SFB787. FJ acknowledges the hospitality of the Sandia National Laboratories. NR 45 TC 29 Z9 29 U1 3 U2 33 PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS PI CHANGCHUN PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA SN 2047-7538 J9 LIGHT-SCI APPL JI Light-Sci. Appl. PD AUG PY 2014 VL 3 AR e201 DI 10.1038/lsa.2014.82 PG 8 WC Optics SC Optics GA AT8MN UT WOS:000345187400005 ER PT J AU Polyakov, A Melli, M Cantarella, G Schwartzberg, A Weber-Bargioni, A Schuck, PJ Cabrini, S AF Polyakov, Aleksandr Melli, Mauro Cantarella, Giuseppe Schwartzberg, Adam Weber-Bargioni, Alexander Schuck, P. James Cabrini, Stefano TI Coupling model for an extended-range plasmonic optical transformer scanning probe SO LIGHT-SCIENCE & APPLICATIONS LA English DT Article DE optical transformer; plasmonic tip; plasmon coupling ID SINGLE-MOLECULE FLUORESCENCE; DIFFRACTION LIMIT; SURFACE-PLASMONS; MICROSCOPY; SPECTROSCOPY; NANOCAVITIES; LIGHT; GUIDE; TIPS AB The expansion of nanoscale optics has generated a variety of scanning probe geometries that yield spatial resolution below 10 nm. In this work, we present a physical model for coupling far-field radiation to plasmonic modes on the surface of a scanning probe, and propose a scheme for extending the working distance of such a probe. In a subsurface application, an optical transformer at the tip of a probe can be coupled to a remote near-field antenna placed inside the sample at a distance away from the surface, expanding the effective working distance up to 100 nm. C1 [Polyakov, Aleksandr; Melli, Mauro; Cantarella, Giuseppe; Schwartzberg, Adam; Weber-Bargioni, Alexander; Schuck, P. James; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Polyakov, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 67-2206G, Berkeley, CA 94720 USA. EM apolyakov@lbl.gov; scabrini@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 4 Z9 4 U1 3 U2 10 PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS PI CHANGCHUN PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA SN 2047-7538 J9 LIGHT-SCI APPL JI Light-Sci. Appl. PD AUG PY 2014 VL 3 AR e195 DI 10.1038/lsa.2014.76 PG 6 WC Optics SC Optics GA AT8MN UT WOS:000345187400002 ER PT J AU Goldman, AI AF Goldman, Alan I. TI Magnetism in icosahedral quasicrystals: current status and open questions SO SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS LA English DT Review DE quasicrystals; rare earth magnetism; frustration; spin glass transition; quantum critical behavior; magnetic ordering; neutron scattering ID ZN-MG-HO; EARTH-METALS SYSTEMS; NEUTRON-SCATTERING; PENROSE LATTICE; ANTIFERROMAGNETIC ORDER; ELECTRICAL-PROPERTIES; SPIN CORRELATIONS; ATOMIC-STRUCTURE; ISING-MODEL; MN ALLOYS AB Progress in our understanding of the magnetic properties of R-containing icosahedral quasicrystals (R = rare earth element) from over 20 years of experimental effort is reviewed. This includes the much studied R-Mg-Zn and R-Mg-Cd ternary systems, as well as several magnetic quasicrystals that have been discovered and investigated more recently including Sc-Fe-Zn, R-Ag-In, Yb-Au-Al, the recently synthesized R-Cd binary quasicrystals, and their periodic approximants. In many ways, the magnetic properties among these quasicrystals are very similar. However, differences are observed that suggest new experiments and promising directions for future research. C1 [Goldman, Alan I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Goldman, AI (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM goldman@ameslab.gov FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; US DOE by Iowa State University [DE-AC02-07CH11358] FX I would like to acknowledge not only useful interactions, but also delightful collaborations, over the past few years with Andreas Kreyssig, Sergey Bud'ko, Tai Kong, Anton Jesche, Guillaume Beutier, Takanobu Hiroto, Tsunetomo Yamada, Jong Woo Kim, Min Gyu Kim, Shibabrata Nandi, Mandy Caudle, Mehmet Ramazanoglu, Kevin Dennis, Jens-Uwe Hoffman, Claire Colin, Ian Fisher, Matthew Kramer, Patricia Thiel, Ryuji Tamura, Mark de Boissieu and, especially, Paul Canfield. This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under contract # DE-AC02-07CH11358. NR 107 TC 11 Z9 11 U1 7 U2 25 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1468-6996 EI 1878-5514 J9 SCI TECHNOL ADV MAT JI Sci. Technol. Adv. Mater. PD AUG PY 2014 VL 15 IS 4 AR 044801 DI 10.1088/1468-6996/15/4/044801 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA AT6CC UT WOS:000345025400007 PM 27877699 ER PT J AU Gorton, I AF Gorton, Ian TI Cyberinfrastructures: Bridging the Divide between Scientific Research and Software Engineering SO COMPUTER LA English DT Article AB Cyberinfrastructures-scientific research environments that span multiple institutions-require careful crafting and collaboration among domain specialists and software engineers, but several factors impede this collaboration. Recognizing five rules of thumb can help facilitate successful cyberinfrastructure creation and accelerate science in the disciplines they support. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM igorton@sei.cmu.edu NR 12 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD AUG PY 2014 VL 47 IS 8 BP 48 EP 55 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AS8BW UT WOS:000344476300018 ER PT J AU Denton, RE Takahashi, K Thomsen, MF Borovsky, JE Singer, HJ Wang, Y Goldstein, J Brandt, PC Reinisch, BW AF Denton, R. E. Takahashi, K. Thomsen, M. F. Borovsky, J. E. Singer, H. J. Wang, Y. Goldstein, J. Brandt, P. C. Reinisch, B. W. TI Evolution of mass density and O plus concentration at geostationary orbit during storm and quiet events SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INNER MAGNETOSPHERE; ELECTRON-DENSITIES; OUTER PLASMASPHERE; POLAR-CAP; ART.; FIELD; PLASMAPAUSE; IONS; IONOSPHERE; DYNAMICS AB We investigated mass density rho(m) and O+ concentration eta(O+) = n(O+)/n(e) (where n(O+) and n(e) are the O+ and electron density, respectively) during two events, one active and one more quiet. We found rho(m) from observations of Alfven wave frequencies measured by the GOES, and we investigated composition by combining measurements of rho(m) with measurements of ion density n(MPA, i) from the Magnetospheric Plasma Analyzer (MPA) instrument on Los Alamos National Laboratory spacecraft or n(e) from the Radio Plasma Imager instrument on the Imager forMagnetopause-to-Aurora Global Exploration spacecraft. Using a simple assumption for the He+ density at solar maximum based on a statistical study, we found eta(O+) values ranging from near zero to close to unity. For geostationary spacecraft that corotate with the Earth, sudden changes in density for both rho(m) and n(e) often appear between dusk and midnight magnetic local time, especially when Kp is significantly above zero. This probably indicates that the bulk (total) ions have energy below a few keV and that the satellites are crossing from closed or previously closed to open drift paths. During long periods that are geomagnetically quiet, the mass density varies little, but ne gradually refills leading to a gradual change in composition from low-density plasma that is relatively cold and heavy (high-average ion mass M = rho(m)/n(e)) to high-density plasma that is relatively cold and light (low M) plasmasphere-like plasma. During active periods we observe a similar daily oscillation in plasma properties from the dayside to the nightside, with cold and light high-density plasma (more plasmasphere-like) on the dayside and hotter and more heavy low-density plasma (more plasma sheet-like) on the nightside. The value of ne is very dependent on whether it is measured inside or outside a plasmaspheric plume, while rho(m) is not. All of our results were found at solar maximum; previous results suggest that there will be much less O+ at solar minimum under all conditions. C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Takahashi, K.; Brandt, P. C.] Johns Hopkins Univ Appl Phys Lab, Laurel, MD USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Borovsky, J. E.] Space Sci Inst, Boulder, CO USA. [Singer, H. J.] Natl Ocean & Atmospher Adm Space Weather Predict, Boulder, CO USA. [Wang, Y.] NASA Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, Greenbelt, MD USA. [Wang, Y.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Goldstein, J.] Southwest Res Inst, San Antonio, TX USA. [Reinisch, B. W.] Univ Massachusetts Lowell, Space Sci Lab, Lowell, MA USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu RI Brandt, Pontus/N-1218-2016 OI Brandt, Pontus/0000-0002-4644-0306 FU NSF [AGS-1105790, ATM-0855924]; NASA [NNX10AQ60G, NNX11AO59G] FX Work at Dartmouth College was supported by NSF grant AGS-1105790 and NASA grants NNX10AQ60G (Living with a Star Targeted Research Plasmasphere focused science topic) and NNX11AO59G (Heliophysics Theory Program). Work at the Applied Physics Laboratory was supported by NSF grant ATM-0855924. We thank the reviewers for helpful comments. Supplementary materials for this paper include GOES magnetometer data, calculated Alfven frequencies and mass density, and IMAGE RPI electron density. Most LANL MPA data used in this study are available at CDAWeb. NR 44 TC 4 Z9 4 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG PY 2014 VL 119 IS 8 DI 10.1002/2014JA019888 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BJ UT WOS:000344809600028 ER PT J AU Jha, PK Churchfield, MJ Moriarty, PJ Schmitz, S AF Jha, Pankaj K. Churchfield, Matthew J. Moriarty, Patrick J. Schmitz, Sven TI Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID STOKES COMPUTATIONS; WAKES AB The objective of this work is to develop and test a set of general guidelines for choosing parameters to be used in the state-of-the-art actuator line method (ALM) for modeling wind turbine blades in computational fluid dynamics (CFD). The actuator line method is being increasingly used for the computation of wake interactions in large wind farms in which fully blade-resolving simulations are expensive and require complicated rotating meshes. The focus is on actuator line behavior using fairly isotropic grids of low aspect ratio typically used for large-eddy simulation (LES). Forces predicted along the actuator lines need to be projected onto the flow field as body forces, and this is commonly accomplished using a volumetric projection. In this study, particular attention is given to the spanwise distribution of the radius of this projection. A new method is proposed where the projection radius varies along the blade span following an elliptic distribution. The proposed guidelines for actuator line parameters are applied to the National Renewable Energy Laboratory's (NREL's) Phase VI rotor and the NREL 5-MW turbine. Results obtained are compared with available data and the blade-element code XTURB-PSU. It is found that the new criterion for the projection radius leads to improved prediction of blade tip loads for both blade designs. C1 [Jha, Pankaj K.; Schmitz, Sven] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. [Churchfield, Matthew J.; Moriarty, Patrick J.] Natl Wind Technol Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jha, PK (reprint author), Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. FU Department of Energy as part of the "Cyber Wind Facility" project at The Pennsylvania State University [DE-EE0005481]; NREL FX This work was supported by the Department of Energy (DE-EE0005481) as part of the "Cyber Wind Facility" project at The Pennsylvania State University and in collaboration with NREL. NR 51 TC 4 Z9 4 U1 2 U2 12 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2014 VL 136 IS 3 AR 031003 DI 10.1115/1.4026252 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA AS8SN UT WOS:000344518500003 ER PT J AU Ma, ZW Glatzmaier, G Mehos, M AF Ma, Zhiwen Glatzmaier, Greg Mehos, Mark TI Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE concentrating solar power; thermal energy storage; fluidized bed; solid particle AB A generalized modeling method is introduced and used to evaluate thermal energy storage (TES) performance. The method describes TES performance metrics in terms of three efficiencies: first-law efficiency, second-law efficiency, and storage effectiveness. By capturing all efficiencies in a systematic way, various TES technologies can be compared on an equal footing before more detailed simulations of the components and concentrating solar power (CSP) system are performed. The generalized performance metrics are applied to the particle-TES concept in a novel CSP thermal system design. The CSP thermal system has an integrated particle receiver and fluidized-bed heat exchanger, which uses gas/solid two-phase flow as the heat-transfer fluid, and solid particles as the heat carrier and storage medium. The TES method can potentially achieve high temperatures (>800 degrees C) and high thermal efficiency economically. C1 [Ma, Zhiwen; Glatzmaier, Greg; Mehos, Mark] Natl Renewable Energy Lab, Concentrating Solar Power Program, Golden, CO 80401 USA. RP Ma, ZW (reprint author), Natl Renewable Energy Lab, Concentrating Solar Power Program, 15013 Denver West Pkwy,MS RSF033, Golden, CO 80401 USA. EM zhiwen.ma@nrel.gov; Greg.Glatzmaier@nrel.gov; Mark.Mehos@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy, SunShot Initiative [DE-EE0001586] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors thank the funding support by the U.S. Department of Energy, SunShot Initiative, under award number DE-EE0001586. NR 23 TC 8 Z9 8 U1 1 U2 12 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2014 VL 136 IS 3 AR 031014 DI 10.1115/1.4027262 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA AS8SN UT WOS:000344518500014 ER PT J AU Shumpert, BL Wolfe, AK Bjornstad, DJ Wang, S Campa, MF AF Shumpert, Barry L. Wolfe, Amy K. Bjornstad, David J. Wang, Stephanie Campa, Maria Fernanda TI Specificity and Engagement: Increasing ELSI's Relevance to Nano-Scientists SO NANOETHICS LA English DT Article DE Emerging technologies; Ethical, legal, and social issues; Nano-ELSI literature; Nanoscience AB Scholars studying the ethical, legal, and social issues (ELSI) associated with emerging technologies maintain the importance of considering these issues throughout the research and development cycle, even during the earliest stages of basic research. Embedding these considerations within the scientific process requires communication between ELSI scholars and the community of physical scientists who are conducting that basic research. We posit that this communication can be effective on a broad scale only if it links societal issues directly to characteristics of the emerging technology that are relevant to the physical and natural scientists involved in research and development. In this article, we examine nano-ELSI literature from 2003 to 2010 to discern the degree to which it makes these types of explicit connections. We find that, while the literature identifies a wide range of issues of societal concern, it generally does so in a non-specific manner. It neither links societal issues to particular forms or characteristics of widely divergent nanotechnologies nor to any of the many potential uses to which those nanotechnologies may be put. We believe that these kinds of specificity are essential to those engaged in nano-scale research. We also compare the literature-based findings to observations from interviews we conducted with nanoscientists and conclude that ELSI scholars should add technical- and application-related forms of specificity to their work and their writings to enhance effectiveness and impact in communicating with one important target audience-members of the nano-scale science community. C1 [Shumpert, Barry L.; Wolfe, Amy K.; Bjornstad, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wang, Stephanie] Oak Ridge Natl Lab Program, Oak Ridge, TN USA. [Campa, Maria Fernanda] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN USA. [Campa, Maria Fernanda] Univ Tennessee, Grad Educ, Knoxville, TN USA. RP Wolfe, AK (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM wolfeak@ornl.gov FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725, DE-AC05-06OR23100]; Oak Ridge Associated Universities [DE-AC05-06OR23100] FX This research was funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This research was also performed under two appointments to the Higher Education Research Experiences (HERE) at the Oak Ridge National Laboratory (ORNL), administered by the Oak Ridge Institute for Science and Education (ORISE) under contract number DE-AC05-06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. NR 15 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1871-4757 EI 1871-4765 J9 NANOETHICS JI NanoEthics PD AUG PY 2014 VL 8 IS 2 BP 193 EP 200 DI 10.1007/s11569-014-0194-x PG 8 WC Ethics; History & Philosophy Of Science SC Social Sciences - Other Topics; History & Philosophy of Science GA AT2XC UT WOS:000344796600007 ER PT J AU McGrath, S Hodkinson, TR Frohlich, A Grant, J Barth, S AF McGrath, Sarah Hodkinson, Trevor R. Frohlich, Andreas Grant, Jim Barth, Susanne TI Seasonal and genetic variations in water-soluble carbohydrates and other quality traits in ecotypes and cultivars of perennial ryegrass (Lolium perenne L.) SO PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION LA English DT Article DE carbohydrates; ecotypes; genetic resources; perennial ryegrass; protein content; seasonal variation ID NUTRITIVE-VALUE; IMPROVEMENT; GRASSES; AGRICULTURE; POPULATIONS; METABOLISM; MORPHOLOGY; FRUCTAN; PROTEIN; MODEL AB Phenotyping of genetic resources remains the bottleneck in the characterization of genetic resources, since the advent of modern next-generation sequencing technologies has made genotyping much more cost-and time-effective. This article reports on the phenotyping of agriculturally important traits in perennial ryegrass (Lolium perenne). In the present study, water-soluble carbohydrate (WSC), crude protein and dry matter contents were recorded for 1320 individuals, pooled into 132 samples from 33 perennial ryegrass ecotypes and cultivars at five different harvest time points across the 2004 growing season. While, in general, the cultivars had higher WSC contents than the ecotypes, individual ecotypes did show potential to be used in breeding programmes, as they had higher values than all other accessions at particular cutting time points. In correlation analyses, positive relationships were observed between dry matter and glucose contents both early and late in the growing season. Principal components analysis allowed the split either between cultivars and ecotypes or between tetraploid cultivars and the rest of the accessions at four of the five cutting time points. In the analysis of variance, cutting time was the most significant factor influencing the variation in traits. C1 [McGrath, Sarah; Frohlich, Andreas; Barth, Susanne] TEAGASC, Crops Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. [McGrath, Sarah; Hodkinson, Trevor R.] Univ Dublin Trinity Coll, Sch Nat Sci, Dept Bot, Dublin 2, Ireland. [Grant, Jim] TEAGASC, Operat Res Grp, Stat & Appl Phys Dept, Dublin 15, Ireland. RP Barth, S (reprint author), TEAGASC, Crops Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Barth, Susanne/P-3366-2014; Hodkinson, Trevor/F-6850-2014 OI Barth, Susanne/0000-0002-4104-5964; Hodkinson, Trevor/0000-0003-1384-7270 FU Teagasc and the Genetic Resources for Food and Agriculture Scheme of the Irish Department of Agriculture, Fisheries and the Marine; Teagasc PhD student fellowship; European Community FX This project was financed by Teagasc and the Genetic Resources for Food and Agriculture Scheme of the Irish Department of Agriculture, Fisheries and the Marine. SMG received a Teagasc PhD student fellowship. The authors are grateful to Monica Francioso, Simona Lamorte, Laura Castelli, Jan Philip Jacobsen and Henry Skowski (all supported by the European Community "Leonardo da Vinci" programme) and Adeline Airault for their technical help in carbohydrate analysis. NR 39 TC 0 Z9 0 U1 1 U2 19 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1479-2621 EI 1479-263X J9 PLANT GENET RESOUR-C JI Plant Genet. Resour.-Charact. Util. PD AUG PY 2014 VL 12 IS 2 BP 236 EP 247 DI 10.1017/S1479262113000567 PG 12 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA AS9DF UT WOS:000344542700009 ER PT J AU Fent, KW Eisenberg, J Snawder, J Sammons, D Pleil, JD Stiegel, MA Mueller, C Horn, GP Dalton, J AF Fent, Kenneth W. Eisenberg, Judith Snawder, John Sammons, Deborah Pleil, Joachim D. Stiegel, Matthew A. Mueller, Charles Horn, Gavin P. Dalton, James TI Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires SO ANNALS OF OCCUPATIONAL HYGIENE LA English DT Article DE aromatic hydrocarbons; benzene; biomarkers; dermal exposure; exhaled breath; firefighters; PAHs; urine ID POLYCYCLIC AROMATIC-HYDROCARBONS; ASPHALT PAVING WORKERS; ENVIRONMENTAL EXPOSURE; DERMAL EXPOSURE; CANCER-RISK; ABSORPTION; BREATH; BIOMARKERS; PENETRATION; EXHAUST AB Turnout gear provides protection against dermal exposure to contaminants during firefighting; however, the level of protection is unknown. We explored the dermal contribution to the systemic dose of polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons in firefighters during suppression and overhaul of controlled structure burns. The study was organized into two rounds, three controlled burns per round, and five firefighters per burn. The firefighters wore new or laundered turnout gear tested before each burn to ensure lack of PAH contamination. To ensure that any increase in systemic PAH levels after the burn was the result of dermal rather than inhalation exposure, the firefighters did not remove their self-contained breathing apparatus until overhaul was completed and they were > 30 m upwind from the burn structure. Specimens were collected before and at intervals after the burn for biomarker analysis. Urine was analyzed for phenanthrene equivalents using enzyme-linked immunosorbent assay and a benzene metabolite (s-phenylmercapturic acid) using liquid chromatography/tandem mass spectrometry; both were adjusted by creatinine. Exhaled breath collected on thermal desorption tubes was analyzed for PAHs and other aromatic hydrocarbons using gas chromatography/mass spectrometry. We collected personal air samples during the burn and skin wipe samples (corn oil medium) on several body sites before and after the burn. The air and wipe samples were analyzed for PAHs using a liquid chromatography with photodiode array detection. We explored possible changes in external exposures or biomarkers over time and the relationships between these variables using non-parametric sign tests and Spearman tests, respectively. We found significantly elevated (P < 0.05) post-exposure breath concentrations of benzene compared with pre-exposure concentrations for both rounds. We also found significantly elevated post-exposure levels of PAHs on the neck compared with pre-exposure levels for round 1. We found statistically significant positive correlations between external exposures (i.e. personal air concentrations of PAHs) and biomarkers (i.e. change in urinary PAH metabolite levels in round 1 and change in breath concentrations of benzene in round 2). The results suggest that firefighters wearing full protective ensembles absorbed combustion products into their bodies. The PAHs most likely entered firefighters' bodies through their skin, with the neck being the primary site of exposure and absorption due to the lower level of dermal protection afforded by hoods. Aromatic hydrocarbons could have been absorbed dermally during firefighting or inhaled during the doffing of gear that was off-gassing contaminants. C1 [Fent, Kenneth W.; Eisenberg, Judith; Mueller, Charles] NIOSH, Div Surveillance Hazard Evaluat & Field Studies, Cincinnati, OH 45226 USA. [Snawder, John; Sammons, Deborah] NIOSH, Div Appl Res & Technol, Cincinnati, OH 45226 USA. [Pleil, Joachim D.] US Environm Protect Agcy, Human Exposure & Atmospher Sci Div, Res Triangle Pk, NC 27709 USA. [Stiegel, Matthew A.] Gillings Sch Global Publ, Oak Ridge Inst Sci & Educ, Chapel Hill, NC 27599 USA. [Horn, Gavin P.] Univ Illinois, Illinois Fire Serv Inst, Champaign, IL 61820 USA. [Dalton, James] Chicago Fire Dept, Training Div, Res & Dev Sect, Chicago, IL 60607 USA. RP Fent, KW (reprint author), NIOSH, Div Surveillance Hazard Evaluat & Field Studies, 4676 Columbia Pkwy, Cincinnati, OH 45226 USA. EM kfent@cdc.gov OI Pleil, Joachim/0000-0001-8211-0796 FU National Institute for Occupational Safety and Health (NIOSH) by National Occupational Research Agenda; NIOSH Human Subjects Review Board FX National Institute for Occupational Safety and Health (NIOSH) by intramural award under the National Occupational Research Agenda; NIOSH Human Subjects Review Board. NR 48 TC 10 Z9 11 U1 5 U2 35 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0003-4878 EI 1475-3162 J9 ANN OCCUP HYG JI Ann. Occup. Hyg. PD AUG PY 2014 VL 58 IS 7 BP 830 EP 845 DI 10.1093/annhyg/meu036 PG 16 WC Public, Environmental & Occupational Health; Toxicology SC Public, Environmental & Occupational Health; Toxicology GA AS4IY UT WOS:000344239400004 PM 24906357 ER PT J AU Burkes, DE Casella, AM Buck, EC Casella, AJ Edwards, MK MacFarlan, PJ Pool, KN Smith, FN Steen, FH AF Burkes, Douglas E. Casella, Andrew M. Buck, Edgar C. Casella, Amanda J. Edwards, Matthew K. MacFarlan, Paul J. Pool, Karl N. Smith, Frances N. Steen, Franciska H. TI Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel SO INTERNATIONAL JOURNAL OF THERMOPHYSICS LA English DT Article DE Multilayer; Nuclear fuel; Thermal conductivity; Uranium-molybdenum ID ZR DIFFUSION BARRIER; WT.PERCENT-MO; PHYSICAL-PROPERTIES; TEMPERATURE AB The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature. C1 [Burkes, Douglas E.; Casella, Andrew M.] Pacific NW Natl Lab, Engn & Anal Grp, Nucl Syst Design, Richland, WA 99352 USA. [Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.] Pacific NW Natl Lab, Nucl Chem & Engn Grp, Richland, WA 99352 USA. [Steen, Franciska H.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Burkes, DE (reprint author), Pacific NW Natl Lab, Engn & Anal Grp, Nucl Syst Design, POB 999,MSIN K8-34, Richland, WA 99352 USA. EM Douglas.Burkes@pnnl.gov RI Buck, Edgar/N-7820-2013; OI Buck, Edgar/0000-0001-5101-9084; Casella, Andrew/0000-0002-4053-6593 FU Global Threat Reduction Initiative [DE-AC05-76RL01830] FX The authors wish to acknowledge Mr. Jason Schulthess, Mr. Adam Robinson, Mr. Glenn Moore, Mr. Brady Mackowiak, Mr. Blair Park, Dr. Barry Rabin, and Mrs. Susan Case from Idaho National Laboratory for the fabrication of the surrogate plates and delivery of the surrogate mini-plates. Installation of equipment into hot cells and the operations conducted in hot cells are a large undertaking. The authors wish to acknowledge those at Pacific Northwest National Laboratory who were involved in the preparation of samples and performance of measurements, specifically Ms. Nicole Green, Mr. Jake Bohlke, Mr. Jamin Trevino, Mr. Dustin Blundon, Ms. Brittany Carman, Mr. Jason Cartwright, Mr. Jeffrey Chenault, Mr. Steve Halstead, Mr. Eric Hanson, Mr. Kevin Heaton, Mr. Robert Orton, Mr. Stan Owsley, Mr. Ben Palma, Mr. Mario Pereira, Mr. Bruce Slonecker, Mr. Timothy Smith, Mr. Randy Thornhill, and Mr. Patrick Valdez. Finally, the authors wish to acknowledge the sponsor, the Global Threat Reduction Initiative, for the opportunity to conduct this work under Contract DE-AC05-76RL01830. NR 32 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-928X EI 1572-9567 J9 INT J THERMOPHYS JI Int. J. Thermophys. PD AUG PY 2014 VL 35 IS 8 BP 1476 EP 1500 DI 10.1007/s10765-014-1683-4 PG 25 WC Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied SC Thermodynamics; Chemistry; Mechanics; Physics GA AR9WB UT WOS:000343925800005 ER PT J AU Hathcock, CD Fair, JM AF Hathcock, Charles D. Fair, Jeanne M. TI HAZARDS TO BIRDS FROM OPEN METAL PIPES SO WESTERN NORTH AMERICAN NATURALIST LA English DT Article AB There are reports of open polyvinyl chloride (PVC) pipes causing bird deaths in the western United States (Brattstrom 1995). Here, we document cases of open bollards and open pipes on gates causing bird deaths in northern New Mexico. At Los Alamos National Laboratory (LANL), a 10,240-ha site, over 100 uncapped 10.16 cm diameter protective bollard posts were examined, and 27% of the open bollards contained dead birds. A total of 88 open pipes used as gate posts, with diameters of 8.89 cm or 10.16 cm, were examined, and 11% contained dead birds. We conducted a preliminary assessment of open pipes on gates along a highway on federal land north of LANL, and 14% of the open pipes contained dead birds. This gate configuration, with open pipes anchoring the gate on either side, is very common in the western United States. In all cases, Western Bluebirds (Sialia mexicana) composed the majority of the identifiable birds we discovered. Based on these preliminary findings, the number of bird deaths from this source is potentially very large and should be a concern in bird conservation and management. C1 [Hathcock, Charles D.; Fair, Jeanne M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hathcock, CD (reprint author), Los Alamos Natl Lab, Box 1663,Mailstop J978, Los Alamos, NM 87545 USA. EM hathcock@lanl.gov FU Environmental Protection Division through Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory [DEAC52-06NA25396] FX We thank M. Alexander, P Gallagher, S. Terp, J. Payne, D. Keller, H. Mahowald, K. Schoenberg, M. Musgrave, A. Smith, B. Lechel, A. Jacobs, L. Martinez, and P Maestas. This research was funded by the Environmental Protection Division through Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DEAC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy. NR 6 TC 2 Z9 2 U1 1 U2 7 PU BRIGHAM YOUNG UNIV PI PROVO PA 290 LIFE SCIENCE MUSEUM, PROVO, UT 84602 USA SN 1527-0904 EI 1944-8341 J9 WEST N AM NATURALIST JI West. North Am. Naturalist PD AUG PY 2014 VL 74 IS 2 BP 228 EP 230 PG 3 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA AS7BW UT WOS:000344413500009 ER PT J AU Fleetwood, D Brown, D Girard, S Gouker, P Gerardin, S Quinn, H Barnaby, H AF Fleetwood, Dan Brown, Dennis Girard, Sylvain Gouker, Pascale Gerardin, Simone Quinn, Heather Barnaby, Hugh TI SELECTED PAPERS FROM THE 2013 RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS) CONFERENCE, Oxford, UK, September 23-27, 2013 Comments by the Editors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Editorial Material C1 [Fleetwood, Dan] Vanderbilt Univ, Nashville, TN 37235 USA. [Girard, Sylvain] Univ St Etienne, St Etienne, France. [Gouker, Pascale] MIT Lincoln Lab, Cambridge, MD USA. [Gerardin, Simone] Univ Padua, I-35100 Padua, Italy. [Quinn, Heather] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barnaby, Hugh] Arizona State Univ, Tempe, AZ 85287 USA. RP Fleetwood, D (reprint author), Vanderbilt Univ, Nashville, TN 37235 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 1507 EP 1507 DI 10.1109/TNS.2014.2344371 PN 1 PG 1 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9WT UT WOS:000343928100002 ER PT J AU Javanainen, A Ferlet-Cavrois, V Bosser, A Jaatinen, J Kettunen, H Muschitiello, M Pintacuda, F Rossi, M Schwank, JR Shaneyfelt, MR Virtanen, A AF Javanainen, Arto Ferlet-Cavrois, Veronique Bosser, Alexandre Jaatinen, Jukka Kettunen, Heikki Muschitiello, Michele Pintacuda, Francesco Rossi, Mikko Schwank, James R. Shaneyfelt, Marty R. Virtanen, Ari TI SEGR in SiO2-Si3N4 Stacks SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT European Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 23-27, 2013 CL Oxford, ENGLAND SP Synergy Hlth plc, RADECS Assoc, IEEE, Nucl & Plasma Sci Soc, AWE, Intersil, Peregrine Semicond DE Modeling; MOS; semi-empirical; Si3N4; SiO2; Single Event Gate Rupture (SEGR) ID EVENT GATE RUPTURE; BREAKDOWN; SILICON AB This paper presents experimental Single Event Gate Rupture (SEGR) data for Metal-Insulator-Semiconductor (MIS) devices, where the gate dielectrics are made of stacked SiO2-Si3N4 structures. A semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is first proposed. Then interrelationship between SEGR cross-section and heavy-ion induced energy deposition probability in thin dielectric layers is discussed. Qualitative connection between the energy deposition in the dielectric and the SEGR is proposed. C1 [Javanainen, Arto; Bosser, Alexandre; Jaatinen, Jukka; Kettunen, Heikki; Rossi, Mikko; Virtanen, Ari] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Ferlet-Cavrois, Veronique; Muschitiello, Michele] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Pintacuda, Francesco] STMicroelectronics Srl, I-95121 Catania, Italy. [Schwank, James R.; Shaneyfelt, Marty R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Javanainen, A (reprint author), Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. EM arto.javanainen@jyu.fi RI Javanainen, Arto/P-6355-2016 OI Javanainen, Arto/0000-0001-7906-3669 NR 11 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 1902 EP 1908 DI 10.1109/TNS.2014.2303493 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9WT UT WOS:000343928100057 ER PT J AU Rempe, JL Knudson, DL AF Rempe, Joy L. Knudson, Darrell L. TI Instrumentation Performance During the TMI-2 Accident SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Accident instrumentation; Three Mile Island Unit 2 AB The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. The loss of coolant and the hydrogen combustion that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focused upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this paper. As noted within this paper, several techniques were invoked in the TMI-2 post-accident program to evaluate sensor survivability status and data qualification, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this paper provides recommendations related to sensor survivability and the data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts. C1 [Rempe, Joy L.; Knudson, Darrell L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM joy.rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 FU U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office [DE AC07 05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office Contract DE AC07 05ID14517. NR 9 TC 1 Z9 1 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 1963 EP 1970 DI 10.1109/TNS.2013.2293350 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400002 ER PT J AU Rempe, JL Knudson, DL Daw, JE Unruh, TC Chase, BM Davis, KL Palmer, AJ Schley, RS AF Rempe, J. L. Knudson, D. L. Daw, J. E. Unruh, T. C. Chase, B. M. Davis, K. L. Palmer, A. J. Schley, R. S. TI Advanced In-Pile Instrumentation for Materials Testing Reactors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE In-pile detectors; radiation resistant sensors ID THERMAL-CONDUCTIVITY MEASUREMENT; NUCLEAR-FUELS; IRRADIATION; THERMOCOUPLES AB The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating 'advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors. C1 [Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov RI Schley, Robert/B-9124-2017; OI Schley, Robert/0000-0001-8907-6535; Rempe, Joy/0000-0001-5527-3549 FU U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office [DE AC07 05ID14517] FX This research was supported by the U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office Contract DE AC07 05ID14517. NR 22 TC 0 Z9 0 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 1984 EP 1994 DI 10.1109/TNS.2014.2335616 PN 2 PG 11 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400005 ER PT J AU Vaccaro, S Hu, J Svedkauskaite, J Smejkal, A Schwalbach, P De Baere, P Gauld, IC AF Vaccaro, S. Hu, J. Svedkauskaite, J. Smejkal, A. Schwalbach, P. De Baere, P. Gauld, I. C. TI A New Approach to Fork Measurements Data Analysis by RADAR-CRISP and ORIGEN Integration SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Depletion modelling; fork detector measurements; nuclear safeguards; spent fuel verification ID SCALE AB Currently, in the EU, activities related to storage of spent fuel are constantly increasing. This is particularly true in Finland and Sweden, where final geological repository sites are planned to be operational in 2023 and 2026 respectively, but also in several other countries where fuel is moved from wet ponds to dry storage (Germany, Belgium, Spain, Czech Republic, Bulgaria). The required verification activities present a considerable challenge to the EURATOM Safeguards authority. Both EURATOM and IAEA safeguards need to know the contents of the storage casks and keep continuity of knowledge of the spent fuel. A frequently-used tool for the verification of the nuclear material during loading is the Fork detector for gross gamma and neutron counting. The data acquisition applications RADAR (Remote Acquisition of Data and Review) and CRISP (Central RADAR Inspection Support Package), developed by EURATOM, are used to acquire safeguards measurement data and to analyse them in order to verify the declarations of the nuclear plant operators. Under the framework of the U. S. DOE-EURATOM agreement on nuclear safeguards and security, a module for automated analysis of spent fuel measurement data using the ORIGEN (Oak Ridge Isotope GENeration) code, part of the SCALE nuclear systems modelling and simulation package, has been integrated into CRISP. Measurement data are collected in an unattended mode by RADAR and then processed by CRISP, which outputs, for each fuel assembly, the measured gamma and neutron count rates. In parallel, ORIGEN performs burn-up calculations based on operator declarations previously entered into CRISP and calculates the expected neutron and gamma count rates for each assembly. These calculations use detector response functions, developed using Monte Carlo modelling, to account for the detection probabilities of both neutron and photon particles that originate in each fuel pin. Finally, CRISP correlates and compares the expected (calculated) gamma and neutron signals with the measured values. The comparison is presented to the inspector to help draw safeguards conclusions. This paper will show initial case studies of in-field applications of the CRISP-ORIGEN approach for safeguards inspection activities during the loading of a spent fuel cask. C1 [Vaccaro, S.; Svedkauskaite, J.; Smejkal, A.; Schwalbach, P.; De Baere, P.] Commiss European Communities, Directorate Gen Energy, L-2310 Luxembourg, Luxembourg. [Hu, J.; Gauld, I. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Vaccaro, S (reprint author), Commiss European Communities, Directorate Gen Energy, L-2310 Luxembourg, Luxembourg. EM stefano.vaccaro@ec.eu-ropa.eu OI Gauld, Ian/0000-0002-3893-7515 FU U.S. Department of Energy NNSA under the U.S.-Euratom cooperation agreement FX This work was supported in part by the U.S. Department of Energy NNSA under the U.S.-Euratom cooperation agreement. NR 16 TC 2 Z9 2 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2161 EP 2168 DI 10.1109/TNS.2014.2320604 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400030 ER PT J AU LaFleur, AM Croft, S Mayer, RL Swinhoe, MT Mayo, DR Sapp, BA AF LaFleur, Adrienne M. Croft, Stephen Mayer, Richard L. Swinhoe, Martyn T. Mayo, Douglas R. Sapp, Benjamin A. TI Traceable Determination of the Absolute Neutron Emission Yields of UO2F2 Working Reference Materials SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Holdup; nondestructive assay; nuclear safeguards; uranium enrichment AB The nuclear material contained in the process equipment of a uranium enrichment plant (referred to as holdup) is an important component of the overall nuclear material inventory for the plant. Accurate quantification and verification of holdup is needed to improve international safeguards and nuclear material accountancy. This is also needed for criticality safety and waste disposition. Passive neutron and gamma-ray nondestructive assay (NDA) methods are used to measure the holdup in process equipment. A key advantage of neutron measurements is that neutrons are highly penetrating and can be measured through thick walled equipment. The dominant source of neutrons in the UO2F2 holdup is from the F-19(alpha,n)Na-22 reaction resulting from U-234 alpha decay when uranium is enriched. There is a considerable spread between different historic determinations of the F-19(alpha,n) yield from uranium which limits the accuracy of modeling and the calibration of NDA instruments. Furthermore, the compound form and presence of water also significantly affects the neutron emission rate from the holdup. This paper describes a series of experimental measurements performed at Los Alamos National Laboratory (LANL) to determine the absolute neutron emission yield from 10 different UO2F2 working reference materials (WRMs) fabricated at the Portsmouth Gaseous Diffusion Plant (PGDP). The Mini Epithermal Neutron Multiplicity Counter (Mini ENMC) and a NIST certified neutron source were used for these measurements. The high efficiency and short die-away time of the Mini ENMC provides the high measurement precision needed to certify the neutron emission yield. The experiment was designed to achieve sub 1% accuracy in the net counting rate on each item and to provide assurance that important factors such as instrument stability, item placement and background were well understood. The traceable neutron yields measured from the WRMs were used to determine a more accurate neutron yield for the UO2F2 material. The results were compared to historical neutron emission rates. The F(alpha,n) data obtained from these measurements directly supports nuclear safeguards for NDA of uranium holdup and provides a more accurate calibration for new and existing NDA detector systems. C1 [LaFleur, Adrienne M.; Swinhoe, Martyn T.; Mayo, Douglas R.; Sapp, Benjamin A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Croft, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mayer, Richard L.] DOE Portsmouth Paducah Project Off, Piketon, OH 45661 USA. RP LaFleur, AM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM alafleur@lanl.gov; crofts@ornl.gov; Richard.Mayer@lex.doe.gov; swinhoe@lanl.gov; mayo@lanl.gov; bsapp@lanl.gov FU Department of Energy National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security FX This work was supported by the Department of Energy National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security. NR 23 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2182 EP 2188 DI 10.1109/TNS.2013.2284435 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400033 ER PT J AU Chapelle, A Authier, N Casoli, P Richard, B Myers, W Hutchinson, J Sood, A Rooney, B AF Chapelle, Amaury Authier, Nicolas Casoli, Pierre Richard, Benoit Myers, Will Hutchinson, Jesson Sood, Avneet Rooney, Brian TI Joint Neutron Noise Measurements on Metallic Reactor Caliban SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Bare reactor; Caliban; Feynman method; Hage-Cifarelli; Hansen-Dowdy; helium 3; kinetic parameters; neutron noise; Rossi method; subcriticality; uncertainties AB The aim of the experiments concerning neutron noise measurements presented in this article is to provide robust experimental subcritical data. These measurements will make possible to compare measured parameters to simulated ones. The results of these measurements must therefore be very accurate, with controlled uncertainties. To determine the relative contribution of uncertainties to the final result, a table presents the prompt multiplication estimated by a French team and a U. S. team. The different sources of uncertainties are then explored, by a sensitivity analysis, separated in three categories, linked to the experimental configuration, to the detection process and finally to the analysis process. These experiments improve the safety task of reactivity control far from criticality, with static methods, and the knowledge of the behaviour of a subcritical reactor. C1 [Chapelle, Amaury] EAMEA, F-50100 Cherbourg, France. [Authier, Nicolas; Casoli, Pierre] CEA, F-21120 Valduc, France. [Richard, Benoit] CEA, F-50100 Cherbourg, France. [Myers, Will; Hutchinson, Jesson; Sood, Avneet; Rooney, Brian] LANL, Los Alamos, NM 87545 USA. RP Chapelle, A (reprint author), EAMEA, F-50100 Cherbourg, France. EM amaury.chapelle@eamea.fr NR 8 TC 0 Z9 0 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2262 EP 2270 DI 10.1109/TNS.2014.2320853 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400045 ER PT J AU Daw, J Tittmann, B Reinhardt, B Kohse, G Ramuhalli, P Montgomery, R Chien, HT Villard, JF Palmer, J Rempe, J AF Daw, J. Tittmann, B. Reinhardt, B. Kohse, G. Ramuhalli, P. Montgomery, R. Chien, H. -T. Villard, J. -F. Palmer, J. Rempe, J. TI Irradiation Testing of Ultrasonic Transducers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE In-pile instrumentation; magnetostriction; material and test reactors; piezoelectricity; ultrasonic transducers ID RADIATION-DAMAGE; VELOCITY AB Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10(21) n/cm(2) (E > 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. C1 [Daw, J.; Palmer, J.; Rempe, J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Tittmann, B.; Reinhardt, B.] Penn State Univ, University Pk, PA 16802 USA. [Kohse, G.] MIT, Cambridge, MA 02139 USA. [Ramuhalli, P.; Montgomery, R.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Chien, H. -T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Villard, J. -F.] Commissariat Energie Atom & Energies Alternat, Ctr Etud Cadarache, F-13108 St Paul Les Durance, France. RP Daw, J (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Joshua.Daw@inl.gov OI Rempe, Joy/0000-0001-5527-3549; Ramuhalli, Pradeep/0000-0001-6372-1743 FU U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office [DE AC07 05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology, under DOE-NE Idaho Operations Office Contract DE AC07 05ID14517. NR 22 TC 2 Z9 2 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2279 EP 2284 DI 10.1109/TNS.2014.2335613 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XF UT WOS:000343929400047 ER PT J AU Mendoza, E Cano-Ott, D Koi, T Guerrero, C AF Mendoza, Emilio Cano-Ott, Daniel Koi, Tatsumi Guerrero, Carlos CA GEANT4 Collaboration TI New Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First Verification SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE GEANT; Monte Carlo simulation; neutrons; radiation detectors; simulation ID NUCLEAR-SCIENCE AB The Monte Carlo simulation of the interaction of neutrons with matter relies on evaluated nuclear data libraries and models. The evaluated libraries are compilations of measured physical parameters (such as cross sections) combined with predictions of nuclear model calculations which have been adjusted to reproduce the experimental data. The results obtained from the simulations depend largely on the accuracy of the underlying nuclear data used, and thus it is important to have access to the nuclear data libraries available, either of general use or compiled for specific applications, and to perform exhaustive validations which cover the wide scope of application of the simulation code. In this paper we describe the work performed in order to extend the capabilities of the GEANT4 toolkit for the simulation of the interaction of neutrons with matter at neutron energies up to 20 MeV and a first verification of the results obtained. Such a work is of relevance for applications as diverse as the simulation of a neutron detector, an entire particle physics experiment, a fission or fusion nuclear reactor, a neutron shielding or a hadron therapy cancer treatment facility. C1 [Mendoza, Emilio; Cano-Ott, Daniel] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid 208040, Spain. [Koi, Tatsumi] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Guerrero, Carlos] CERN, CH-1211 Geneva, Switzerland. RP Mendoza, E (reprint author), Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid 208040, Spain. EM emilio.mendoza@ciemat.es; daniel.cano@ciemat.es; tatsumi.koi@slac.stanford.edu; carlos.guerrero@cern.ch RI Mendoza Cembranos, Emilio/K-5789-2014; Cano Ott, Daniel/K-4945-2014 OI Mendoza Cembranos, Emilio/0000-0002-2843-1801; Cano Ott, Daniel/0000-0002-9568-7508 FU Spanish national company for radioactive waste ENRESA through CIEMAT-ENRESA; Spanish Plan Nacional de I+D+i de Fisica de Particulas [FPA2008-04972-C03-01]; Spanish Ministerio de Ciencia e Innovacion through CONSOLIDER CSD [2007-00042]; European Union [262010] FX This work was supported in part by the Spanish national company for radioactive waste ENRESA, through the CIEMAT-ENRESA agreements on "Transmutacion de residuos radiactivos de alta actividad," the Spanish Plan Nacional de I+D+i de Fisica de Particulas (project FPA2008-04972-C03-01), the Spanish Ministerio de Ciencia e Innovacion through the CONSOLIDER CSD 2007-00042 project, and in part by the European Union's Seventh Framework Programme under grant agreement 262010 (ENSAR). NR 16 TC 13 Z9 13 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2357 EP 2364 DI 10.1109/TNS.2014.2335538 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XI UT WOS:000343929900007 ER PT J AU Hoover, AS Winkler, R Rabin, MW Bennett, DA Doriese, WB Fowler, JW Hayes-Wehle, J Horansky, RD Reintsema, CD Schmidt, DR Vale, LR Ullom, JN Schaffer, K AF Hoover, Andrew S. Winkler, Ryan Rabin, Michael W. Bennett, Douglas A. Doriese, William B. Fowler, Joseph W. Hayes-Wehle, James Horansky, Robert D. Reintsema, Carl D. Schmidt, Dan R. Vale, Leila R. Ullom, Joel N. Schaffer, Kathryn TI Uncertainty of Plutonium Isotopic Measurements with Microcalorimeter and High-Purity Germanium Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray detectors; measurement uncertainty; spectroscopy; superconducting photodetectors ID GAMMA-RAY SPECTROSCOPY; PHOTON MASS ATTENUATION; X-RAY; COEFFICIENTS AB The nondestructive assay (NDA) of plutonium-bearing materials using gamma-ray spectroscopy supports global nuclear nonproliferation and safeguards efforts. High-purity germanium (HPGe) detectors have been used for this application for decades, but the uncertainty limit remains around 1% relative error for measured isotope ratios, an order of magnitude larger than destructive assay. To lower NDA uncertainty limits, we are pursuing new measurement technology using superconducting microcalorimeter detectors, and assessing the sources of current uncertainty limits. We compare results from analysis of plutonium isotopic standards using HPGe and microcalorimeter detectors, and find lower random error for the microcalorimeter data. Uncertainties in the reference values of constants of nature contribute to the total measurement error. For one particular set of constants, the gamma-ray energies, we find that microcalorimeter analysis is much less sensitive (more than a factor of ten) to the uncertainty in nuclear data than HPGe. C1 [Hoover, Andrew S.; Winkler, Ryan; Rabin, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Hayes-Wehle, James; Horansky, Robert D.; Reintsema, Carl D.; Schmidt, Dan R.; Vale, Leila R.; Ullom, Joel N.] NIST, Boulder, CO 80305 USA. [Schaffer, Kathryn] Sch Art Inst Chicago, Chicago, IL 60603 USA. RP Hoover, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. FU U.S. Department of Energy Office of Nuclear Energy FX This work was supported by the U.S. Department of Energy Office of Nuclear Energy. NR 26 TC 1 Z9 1 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2365 EP 2372 DI 10.1109/TNS.2014.2332275 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XI UT WOS:000343929900008 ER PT J AU Ayaz-Maierhafer, B Zhang, X Hayward, JP Bell, ZW Laubach, MA AF Ayaz-Maierhafer, B. Zhang, X. Hayward, J. P. Bell, Z. W. Laubach, M. A. TI Investigation of Active Background From Photofission in Depleted Uranium Using Cherenkov Detectors and Gamma Ray Time-of-Flight Analysis SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Cherenkov radiation; glass detectors; photo-fission ID GLASS DETECTORS; BREMSSTRAHLUNG; INTERROGATION; RESOLUTION; ENERGY AB Prompt gammas from induced fission could potentially be a valuable fission signature to use for detection of special nuclear materials like highly enriched uranium. Detectability requires an understanding of both signal and background, and the background from highly enriched uranium can be understood using depleted uranium as a surrogate. In order to study the prompt gamma active backgrounds from special nuclear materials induced through photofission, a combination of measurements using the Idaho Accelerator Center 44 MeV Electron Linear Accelerator and Monte CarloN-Particle simulations were used. In this paper, we discuss the prompt, time-gated glass Cherenkov detector response to gamma emissions resulting from short pulse 6, 10, and 25 MeV bremsstrahlung beams incident on a depleted uranium target. Considering any threshold used with the Cherenkov detectors, the prompt gamma signal from depleted uranium is buried in the active background from the interrogating photon source. This paper describes the contributions to this prominent prompt active background observed in our measurements. C1 [Ayaz-Maierhafer, B.; Zhang, X.; Hayward, J. P.; Laubach, M. A.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Bell, Z. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ayaz-Maierhafer, B (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM bi1@ornl.gov OI Bell, Zane/0000-0003-1115-8674 FU [1-09-1-0052] FX This work was supported by Grant 1-09-1-0052. NR 22 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2014 VL 61 IS 4 BP 2402 EP 2409 DI 10.1109/TNS.2014.2332273 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AR9XI UT WOS:000343929900013 ER PT J AU Feld, GK Frank, M AF Feld, Geoffrey K. Frank, Matthias TI Enabling membrane protein structure and dynamics with X-ray free electron lasers SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; ROOM-TEMPERATURE; ACETYLCHOLINE-RECEPTOR; COUPLED RECEPTORS; PHOTOSYSTEM-II; NANOCRYSTALLOGRAPHY; DIFFRACTION; CRYSTALLIZATION; RESOLUTION; OPPORTUNITIES AB Determining the three-dimensional structures and dynamics of membrane proteins remains one of the great challenges of modern biology. The recent availability of X-ray free electron laser (XFEL) light sources has opened the door to a new and revolutionary approach to performing X-ray analysis of these important biomolecules. Recent advances in sample delivery, data reduction, and phasing have enabled the high-resolution structural probing of membrane proteins at room temperature. While considerable challenges remain, the recent developments described in this review may ultimately provide structural biologists with powerful tools for obtaining unprecedented atomic-scale and dynamic visualization of membrane proteins at near-physiological conditions. C1 [Feld, Geoffrey K.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Frank, Matthias] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Frank, M (reprint author), Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM frank1@llnl.gov RI Frank, Matthias/O-9055-2014 FU LLNL Lab-Directed Research and Development (LDRD) Project [012-ERD-031]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Dr. Brent W. Segelke of Lawrence Livermore National Laboratory (LLNL) for valuable commentary and suggestions, Dr. Bill Pedrini of the Paul Scherrer Institute for contributing the diffraction image in Figure 3, and Ryan W. Chen of LLNL's Technical Information Department for helping to produce Figure 1. This work was supported by LLNL Lab-Directed Research and Development (LDRD) Project 012-ERD-031 (to M.F.), and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 55 TC 12 Z9 12 U1 1 U2 22 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD AUG PY 2014 VL 27 BP 69 EP 78 DI 10.1016/j.sbi.2014.05.002 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AR6JG UT WOS:000343689300012 PM 24930119 ER PT J AU Holliday, VT Surovell, T Meltzer, DJ Grayson, DK Boslough, M AF Holliday, Vance T. Surovell, Todd Meltzer, David J. Grayson, Donald K. Boslough, Mark TI The Younger Dryas impact hypothesis: a cosmic catastrophe SO JOURNAL OF QUATERNARY SCIENCE LA English DT Review DE Clovis; extinction; extraterrestrial impact; Younger Dryas; Younger Dryas impact hypothesis ID SOUTHERN HIGH-PLAINS; NORTH-AMERICAN PALEOINDIANS; BEARS ARCTODUS-SIMUS; EXTRATERRESTRIAL IMPACT; MURRAY SPRINGS; NEW-MEXICO; PLEISTOCENE EXTINCTIONS; OKLAHOMA PANHANDLE; HUMAN RESPONSES; CLIMATE-CHANGE AB In this paper we review the evidence for the Younger Dryas impact hypothesis (YDIH), which proposes that at similar to 12.9k cal a BP North America, South America, Europe and the Middle East were subjected to some sort of extraterrestrial event. This purported event is proposed as a catastrophic process responsible for: terminal Pleistocene environmental changes (onset of YD cooling, continent-scale wildfires); extinction of late Pleistocene mammals; and demise of the Clovis 'culture' in North America, the earliest well-documented, continent-scale settlement of the region. The basic physics in the YDIH is not in accord with the physics of impacts nor the basic laws of physics. No YD boundary (YDB) crater, craters or other direct indicators of an impact are known. Age control is weak to nonexistent at 26 of the 29 localities claimed to have evidence for the YDIH. Attempts to reproduce the results of physical and geochemical analyses used to support the YDIH have failed or show that many indicators are not unique to an impact nor to similar to 12.9k cal a BP. The depositional environments of purported indicators at most sites tend to concentrate particulate matter and probably created many 'YDB zones'. Geomorphic, stratigraphic and fire records show no evidence of any sort of catastrophic changes in the environment at or immediately following the YDB. Late Pleistocene extinctions varied in time and across space. Archeological data provide no indication of population decline, demographic collapse or major adaptive shifts at or just after similar to 12.9 ka. The data and the hypotheses generated by YDIH proponents are contradictory, inconsistent and incoherent. Copyright (C) 2014 John Wiley & Sons, Ltd. C1 [Holliday, Vance T.] Univ Arizona, Sch Anthropol, Tucson, AZ 85721 USA. [Surovell, Todd] Univ Wyoming, Dept Anthropol, Laramie, WY 82071 USA. [Meltzer, David J.] So Methodist Univ, Dept Anthropol, Dallas, TX 75275 USA. [Grayson, Donald K.] Univ Washington, Seattle, WA 98195 USA. [Boslough, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Holliday, VT (reprint author), Univ Arizona, Sch Anthropol, Tucson, AZ 85721 USA. EM vthollid@email.arizona.edu OI Meltzer, David/0000-0001-8084-9802 NR 145 TC 7 Z9 8 U1 9 U2 54 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0267-8179 EI 1099-1417 J9 J QUATERNARY SCI JI J. Quat. Sci. PD AUG PY 2014 VL 29 IS 6 BP 515 EP 530 DI 10.1002/jqs.2724 PG 16 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AS0YR UT WOS:000344003200002 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaitia, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahmadov, F Aielli, G Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Ask, S Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernabeu, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Bigliettia, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Christidi, IA Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connellb, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Graat, J De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Dobson, E Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dos Anjos, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Uhrssen, MD Dunford, M Yildiz, HD Uren, MD Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favaret, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Argos, CG Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodrick, MJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Ivarsson, J Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joseph, J Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubik, P Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ dit Latour, BM Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzania, S Moore, RW Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettinia, P Morii, M Moritz, S Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezo, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piegaia, R Pieron, JP Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reinsch, A Reisin, H Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Savedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Satsounkevitch, I Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schaefer, U Schaffer, AC Schaile, D Schamberger, RD Scharfa, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Shaw, RS Sherwood, P Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnov, LN Smirnova, O Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Socher, F Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, P Songb, HY Soni, N Sood, A Sopczak, A Sopko, V Sopko, B Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoice, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC Van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warren, M Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoobb, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaitia, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahmadov, F. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernabeu, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Bigliettia, M. Bilbao De Mendizabal, J. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. Bruckman de Renstrom, P. A. Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Christidi, I. A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connellb, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Graat, J. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Uhrssen, M. D. Dunford, M. Yildiz, H. Duran Uren, M. D. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favaret, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Argos, C. Garcia Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodrick, M. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Ivarsson, J. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joseph, J. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubik, P. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Martin dit Latour, B. Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Miano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzania, S. Moore, R. W. Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettinia, P. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petruccia, F. Petteni, M. Pettersson, N. E. Pezo, R. Phillips, P. W. Piacquadio, G. Pianori, E. Perinia, L. Piccinini, M. Piegaia, R. Pieron, J. P. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reinsch, A. Reisin, H. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Savedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Satsounkevitch, I. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharfa, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutt, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, R. S. Sherwood, P. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnov, L. N. Smirnova, O. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Socher, F. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, P. Songb, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, V. Sopko, B. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoice, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. Van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warren, M. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoobb, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collboration TI Operation and performance of the ATLAS semiconductor tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ID PROTON CROSS-SECTION; ROOT-S=7 TEV; DETECTOR; LHC; MODULES; SILICON; SYSTEM; MONITOR; SINGLE; CHARGE AB The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Dimitrievska, A.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Martin dit Latour, B.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Hasib, A.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Conta, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Dondero, P.; Fabbri, L.; Ferrari, R.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Gaudio, G.; Giacobbe, B.; Grafstrom, P.; Livan, M.; Massa, I.; Mengarelli, A.; Negri, A.; Negrini, M.; Piccinini, M.; Polesello, G.; Polini, A.; Rebuzzi, D. M.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Vercesi, V.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; Conta, C.; De Castro, S.; Di Sipio, R.; Dondero, P.; Fabbri, L.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Grafstrom, P.; Livan, M.; Massa, I.; Mengarelli, A.; Negri, A.; Piccinini, M.; Rebuzzi, D. M.; Rimoldi, A.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Bruni, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Arslan, O.; Bechtle, P.; Bellerive, A.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutt, F.; Stillings, J. A.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoice, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politeh Bucharest, Bucharest, Romania. [Chitan, A.] West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Goodrick, M. J.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Shaw, R. S.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Banfi, D.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Uhrssen, M. D.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Petridis, A.; Pezo, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Songb, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Li, Y.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kuhl, A.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Bruckman de Renstrom, P. A.; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Goncalves Pinto Firmino Da Costa, J.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Maettig, S.; Medinnis, M.; Monig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; O'Neil, D. C.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bilbao De Mendizabal, J.; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Perinia, L.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favaret, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettinia, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favaret, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Uren, M. D.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Kugel, A.; Laier, H.; Lang, V. S.; Meier, K.; Poddar, S.; Scharfa, V.; Schultz-Coulon, H. -C.; Stamen, R.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Lukas, W.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Nagai, K.; Pieron, J. P.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Carter, A. A.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Carter, A. A.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Davison, P.; Dobson, E.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Warren, M.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Pater, J. R.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meade, A.; Meyer, C.; Moreno, D.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Peters, R. F. Y.; Price, D.; Qin, Y.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Brau, B.; Chen, L.; Colon, G.; Dallapiccola, C.; Gao, J.; Liu, K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.] Univ Milan, INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Harkusha, S.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnov, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Univ Naples Federico II, INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palack Univ, RCPTM, Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Chakraborty, D.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Chakraborty, D.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Conventi, F.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Della Pietra, M.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.] Univ Pisa, INFN Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Maio, A.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kubik, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Petridou, C.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzania, S.; Nisati, A.; Pasqualucci, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma, I-00185 Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzania, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Grossi, G. C.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Baroncelli, A.; Bigliettia, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petruccia, F.; Stanescu, C.; Trovatelli, M.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petruccia, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Oujda, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energies A, Inst Rech Lois Fondament Univers, DSM IRFU, Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Takeshita, T.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Petrolo, E.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Vickey, T.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connellb, S. H.; Yacoobb, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaitia, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaitia, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Consorti, V.; Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Ahmad, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Savedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Astalos, R.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Alhroob, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Bernabeu, J.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Argos, C. Garcia; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Bernabeu, J.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Argos, C. Garcia; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Aom Mol & Nucl, Valencia, Spain. [Bernabeu, J.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Argos, C. Garcia; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Bernabeu, J.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Argos, C. Garcia; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Bernabeu, J.; Urban, S. Cabrera; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Argos, C. Garcia; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; March, L.; Marti-Garcia, S.; Moya, M. Miano; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hill, E.; Jeske, C.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Silbert, O.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Dos Anjos, A.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Conventi, F.; Della Pietra, M.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnov, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoobb, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Grinstein, Sebastian/N-3988-2014; Li, Liang/O-1107-2015; Fullana Torregrosa, Esteban/A-7305-2016; Juste, Aurelio/I-2531-2015; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Villa, Mauro/C-9883-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Bernabeu, Jose/H-6708-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Di Domenico, Antonio/G-6301-2011; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Gabrielli, Alessandro/H-4931-2012; Moraes, Arthur/F-6478-2010; Castro, Nuno/D-5260-2011; Boyko, Igor/J-3659-2013; Warburton, Andreas/N-8028-2013; Brooks, William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Doyle, Anthony/C-5889-2009; OI Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Li, Liang/0000-0001-6411-6107; Garcia-Argos, Carlos/0000-0001-8348-4693; Troncon, Clara/0000-0002-7997-8524; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Vari, Riccardo/0000-0002-2814-1337; Nisati, Aleandro/0000-0002-5080-2293; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Villa, Mauro/0000-0002-9181-8048; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Bernabeu, Jose/0000-0002-0296-9988; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Gabrielli, Alessandro/0000-0001-5346-7841; Moraes, Arthur/0000-0002-5157-5686; Castro, Nuno/0000-0001-8491-4376; Boyko, Igor/0000-0002-3355-4662; Warburton, Andreas/0000-0002-2298-7315; Brooks, William/0000-0001-6161-3570; Lei, Xiaowen/0000-0002-2564-8351; Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Walsh, Brian/0000-0003-1689-2309; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 64 TC 1 Z9 1 U1 6 U2 68 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2014 VL 9 AR UNSP P08009 DI 10.1088/1748-0221/9/08/P08009 PG 73 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AP2TJ UT WOS:000341927600037 ER PT J AU Chiang, A Dreger, DS Ford, SR Walter, WR AF Chiang, Andrea Dreger, Douglas S. Ford, Sean R. Walter, William R. TI Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID JOINT VERIFICATION EXPERIMENT; NUCLEAR-EXPLOSIONS; TECTONIC RELEASE; CRANDALL CANYON; SURFACE-WAVES; INVERSIONS; EVENT; UTAH AB In this study, we investigate the 14 September 1988 U.S.-Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motion observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors. C1 [Chiang, Andrea; Dreger, Douglas S.] Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chiang, A (reprint author), Berkeley Seismol Lab, 215 McCone Hall, Berkeley, CA 94720 USA. EM achiang@seismo.berkeley.edu RI Walter, William/C-2351-2013; Chiang, Andrea/I-9577-2016; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Chiang, Andrea/0000-0001-8513-4363; Ford, Sean/0000-0002-0376-5792 FU Air Force Research Laboratory [FA9453-10-C-0263] FX The authors thank the two anonymous reviewers and associate editor for their comments. We acknowledge funding from the Air Force Research Laboratory, Contract Number FA9453-10-C-0263, which supports this research. We thank Seung Hoon Yoo for his 1D Earth model inversion code and the parallelization of the Network Sensitivity Solutions. NR 29 TC 4 Z9 4 U1 2 U2 8 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD AUG PY 2014 VL 104 IS 4 BP 1587 EP 1600 DI 10.1785/0120130228 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AR0CQ UT WOS:000343233600001 ER PT J AU Patton, HJ Pabian, FV AF Patton, Howard J. Pabian, Frank V. TI Comment on "Advanced Seismic Analyses of the Source Characteristics of the 2006 and 2009 North Korean Nuclear Tests" by J. R. Murphy, J. L. Stevens, B. C. Kohl, and T. J. Bennett SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Editorial Material ID HIGH-PRECISION LOCATION; TEST-SITE; EXPLOSIONS; YIELD C1 [Patton, Howard J.; Pabian, Frank V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Patton, HJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 35 TC 3 Z9 3 U1 0 U2 5 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD AUG PY 2014 VL 104 IS 4 BP 2104 EP 2110 DI 10.1785/0120130262 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AR0CQ UT WOS:000343233600039 ER PT J AU Nichols, GP Cragle, DL Benitez, JG AF Nichols, Gregory P. Cragle, Donna L. Benitez, John G. TI Medical Screening After a Coal Fly Ash Spill in Roane County, Tennessee SO DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS LA English DT Article DE coal fly ash; disaster management; medical screening; medical toxicology; Kingston Fossil Plant ID AMERICAN; INFECTION; PULMONARY AB Objective: To assess the health of community residents following a coal fly ash spill at the Tennessee Valley Authority Kingston Fossil Plant in Harriman, Tennessee, on December 22, 2008. Methods: A uniform health assessment was developed by epidemiologists at Oak Ridge Associated Universities and medical toxicologists at Vanderbilt University Medical Center. Residents who believed that their health may have been affected by the coal fly ash spill were invited to participate in the medical screening program. Results: Among the 214 individuals who participated in the screening program, the most commonly reported symptoms were related to upper airway irritation. No evidence of heavy metal toxicity was found. Conclusions: This is the first report, to our knowledge, regarding the comprehensive health evaluation of a community after a coal fly ash spill. Because this evaluation was voluntary, the majority of residents screened represented those with a high percentage of symptoms and concerns about the potential for toxic exposure. Based on known toxicity of the constituents present in the coal fly ash, health complaints did not appear to be related to the fly ash. This screening model could be used to assess immediate or baseline toxicity concerns after other disasters. C1 [Nichols, Gregory P.; Cragle, Donna L.] Oak Ridge Associated Univ, Occupat Exposure & Worker Hlth Programs, Oak Ridge, TN USA. [Benitez, John G.] Vanderbilt Univ, Med Ctr, Tennessee Poison Ctr, Nashville, TN USA. RP Nichols, GP (reprint author), ORAU Occupat Exposure & Worker Hlth Programs, POB 117 MS 23, Oak Ridge, TN 37831 USA. EM Gregory.Nichols@orau.org OI Benitez, John/0000-0002-2047-6204 FU Tennessee Valley Authority (TVA) FX Funding for this medical screening was provided by the Tennessee Valley Authority (TVA). NR 27 TC 0 Z9 0 U1 0 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1935-7893 EI 1938-744X J9 DISASTER MED PUBLIC JI Dis. Med. Public Health Prep. PD AUG PY 2014 VL 8 IS 4 BP 341 EP 348 DI 10.1017/dmp.2014.60 PG 8 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AQ9UM UT WOS:000343202100012 PM 25058814 ER PT J AU Zelinski, ME Henderson, J Smith, M AF Zelinski, Michael E. Henderson, John Smith, Milton TI Use of Landsat 5 for Change Detection at 1998 Indian and Pakistani Nuclear Test Sites SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Comprehensive Nuclear Test-Ban Treaty (CTBT); covariance matrix Landsat 5; Mahalanobis distance; multispectral change detection AB An underground nuclear explosion (UNE) can generate a shock wave that lofts surface material, resulting in surface changes that might be detectable. The Comprehensive Nuclear Test-Ban Treaty (CTBT) allows ground and airborne spectral and thermal imaging to help locate such events. Landsat 5 data on the 1998 Indian and Pakistani tests are used here to demonstrate that there are detectable changes in surface features which might be used to localize an underground nuclear test and to develop change detection techniques specific to the use of satellite data to support a CTBT on-site inspection. Landsat 5 has been active for over 20 years providing repeat coverage of the Earth's surface every 16 days. Most locations have Landsat data available for a variety of dates, allowing for statistical analysis of the data to understand temporal trends and data variability on a pixel-by-pixel basis. Given the right conditions, these usual patterns of change (such as seasonal changes or weathering) can be discerned from unusual patterns of change, such as features relating to a UNE. This paper extends known change detection techniques to a temporal series of data and shows that multispectral change detection can be used to help localize a UNE. C1 [Zelinski, Michael E.; Smith, Milton] Lawrence Livermore Natl Lab, Pass Remote Sensing Grp, Livermore, CA 94550 USA. [Henderson, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zelinski, ME (reprint author), Lawrence Livermore Natl Lab, Pass Remote Sensing Grp, Livermore, CA 94550 USA. EM zelinski1@llnl.gov NR 20 TC 1 Z9 1 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD AUG PY 2014 VL 7 IS 8 BP 3453 EP 3460 DI 10.1109/JSTARS.2013.2294322 PG 8 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA AQ8DZ UT WOS:000343055200024 ER PT J AU Ryutov, DD Cohen, RH Farmer, WA Rognlien, TD Umansky, MV AF Ryutov, D. D. Cohen, R. H. Farmer, W. A. Rognlien, T. D. Umansky, M. V. TI The 'churning mode' of plasma convection in the tokamak divertor region SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 4th Italian-Pakistani Workshop on Relativistic Astrophysics CY FEB, 2013 CL Islamabad, PAKISTAN DE tokamak; divertor; convection; turbulence AB The churning mode can arise in a toroidally-symmetric plasma where it causes convection in the vicinity of the poloidal magnetic field null. The mode is driven by the toroidal curvature of magnetic field lines coupled with a pressure gradient. The toroidal equilibrium conditions cannot be satisfied easily in the virtual absence of the poloidal field (PF)-hence the onset of this mode, which 'churns' the plasma around the PF null without perturbing the strong toroidal field. We find the conditions under which this mode can be excited in magnetic configurations with first-, second-, and third-order PF nulls (i.e., in the geometry of standard, snowflake and cloverleaf divertors). The size of the affected zone in second- and third-order-null divertors is much larger than in a standard first-order-null divertor. The proposed phenomenological theory allows one to evaluate observable characteristics of the mode, in particular the frequency and amplitude of the PF perturbations. The mode spreads the tokamak heat exhaust between multiple divertor legs and may lead to a broadening of the plasma width in each leg. The mode causes much more intense plasma convection in the poloidal plane than the classical plasma drifts. C1 [Ryutov, D. D.; Cohen, R. H.; Farmer, W. A.; Rognlien, T. D.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutov1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory, under Contract DE-AC52-07NA27344. NR 24 TC 8 Z9 8 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD AUG PY 2014 VL 89 IS 8 AR 088002 DI 10.1088/0031-8949/89/8/088002 PG 10 WC Physics, Multidisciplinary SC Physics GA AR0WT UT WOS:000343295000041 ER PT J AU Muniz, RA Kato, Y Batista, CD AF Muniz, Rodrigo A. Kato, Yasuyuki Batista, Cristian D. TI Generalized spin-wave theory: Application to the bilinear-biquadratic model SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID CEB6; ANTIFERROMAGNETS; TRANSITION; SYSTEMS; PHASE AB We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N - 1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S = 1when the biquadratic termin the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S > 1. C1 [Muniz, Rodrigo A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Muniz, Rodrigo A.] Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, Canada. [Muniz, Rodrigo A.] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil. [Kato, Yasuyuki; Batista, Cristian D.] Los Alamos Natl Lab, Div Theoret, T4 & CNLS, Los Alamos, NM 87545 USA. [Kato, Yasuyuki] RIKEN, CEMS, Wako, Saitama 3510198, Japan. RP Muniz, RA (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yasuyuki.kato@riken.jp RI Batista, Cristian/J-8008-2016 FU US DOE [DE-AC52-06NA25396]; NSF [PHY-1066293]; CNPq (Brazil); JSPS KAKENHI [26800199] FX We thank A. V. Chubukov for stimulating discussions. Work at the LANL was performed under the auspices of the US DOE Contract No. DE-AC52-06NA25396 through the LDRD program. This material is based upon work supported in part by the NSF under Grant No. PHY-1066293 and the hospitality of the Aspen Center for Physics. R. M. also thanks CNPq (Brazil) for financial support. Y.K. acknowledges support from JSPS KAKENHI Grants No. 26800199. NR 30 TC 3 Z9 3 U1 1 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD AUG PY 2014 IS 8 AR 083I01 DI 10.1093/ptep/ptu109 PG 16 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA AQ7GJ UT WOS:000342980300010 ER PT J AU Greenwood, DM Gentle, JP Myers, KS Davison, PJ West, IJ Bush, JW Ingram, GL Troffaes, MCM AF Greenwood, David M. Gentle, Jake P. Myers, Kurt S. Davison, Peter J. West, Isaac J. Bush, Jason W. Ingram, Grant L. Troffaes, Matthias C. M. TI A Comparison of Real-Time Thermal Rating Systems in the U.S. and the U.K. SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Fluid dynamics; power system planning; power transmission AB Real-time thermal rating is a smart-grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes-one in the U.S. and one in the U.K.-where real-time thermal ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Second, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future real-time thermal rating projects. C1 [Greenwood, David M.; Davison, Peter J.] Newcastle Univ, Sch Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Gentle, Jake P.; Myers, Kurt S.; West, Isaac J.; Bush, Jason W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Ingram, Grant L.] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England. [Troffaes, Matthias C. M.] Univ Durham, Dept Math Sci, Durham DH1 3LE, England. RP Greenwood, DM (reprint author), Newcastle Univ, Sch Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM d.m.greenwood2@ncl.ac.uk; Jake.Gentle@inl.gov; g.l.ingram@durham.ac.uk; Matthias.troffaes@dur.ac.uk OI Troffaes, Matthias/0000-0002-1294-600X FU U.S. Department of Energy Wind Power Technology Office; Idaho National Laboratory; Durham Energy Institute; EPSRC [EP/J501323/1] FX This work was supported in part by the U.S. Department of Energy Wind Power Technology Office under contract with Idaho National Laboratory, in part by the Durham Energy Institute, and in part by EPSRC under Grant EP/J501323/1. Paper no. TPWRD-00609-2013. NR 23 TC 16 Z9 16 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 EI 1937-4208 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD AUG PY 2014 VL 29 IS 4 BP 1849 EP 1858 DI 10.1109/TPWRD.2014.2299068 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA AQ6JO UT WOS:000342917700038 ER PT J AU Hong, L Petridis, L Smith, JC AF Hong, Liang Petridis, Loukas Smith, Jeremy C. TI Biomolecular Structure and Dynamics with Neutrons: The View from Simulation SO ISRAEL JOURNAL OF CHEMISTRY LA English DT Review DE hydration; lignocellulose; molecular dynamics; neutron scattering; proteins ID PROTEIN VIBRATIONAL DYNAMICS; STRONGLY-DENATURED PROTEIN; METHYL-GROUP DYNAMICS; ENZYME-ACTIVITY; SCATTERING ANALYSIS; CONFIGURATIONAL DISTRIBUTION; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; GLOBULAR PROTEIN; NORMAL-MODE AB The characterization of the structure and internal dynamics of biomolecules is essential to understanding their biological function. Neutron scattering probes similar time- and length-scales to molecular dynamics simulation. Hence, simulation models of biomolecules have become invaluable in the interpretation of experimental neutron data. Here, we report on advances in the application of simulation in developing neutron scattering to investigate internal protein motions and, as an example of industrial relevance, in the derivation of physical models of use in biofuel renewable energy research. C1 [Hong, Liang; Petridis, Loukas; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Hong, Liang; Petridis, Loukas; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol & Cellular Biol, Knoxville, TN USA. RP Smith, JC (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, POB 2008, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Petridis, Loukas/B-3457-2009; hong, liang/D-5647-2012 OI smith, jeremy/0000-0002-2978-3227; Petridis, Loukas/0000-0001-8569-060X; FU Genomic Science Program Office of Biological and Environmental Research U.S. Department of Energy [FWP ERKP752]; DOE EpsCOR; ASCR (SciDAC); DFG; National Science Foundation FX JCS is privileged to have been able to be a part of Martin Karplus' highly competent, dynamic and creative research group in Harvard in the 1980s. Part of this research was funded by the Genomic Science Program Office of Biological and Environmental Research U.S. Department of Energy FWP ERKP752, DOE EpsCOR, ASCR (SciDAC), DFG and the National Science Foundation. NR 58 TC 1 Z9 1 U1 4 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0021-2148 EI 1869-5868 J9 ISR J CHEM JI Isr. J. Chem. PD AUG PY 2014 VL 54 IS 8-9 SI SI BP 1264 EP 1273 DI 10.1002/ijch.201300137 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA AQ4UY UT WOS:000342796500021 ER PT J AU Satyal, S Joglekar, PV Shastry, K Kalaskar, S Dong, Q Hulbert, SL Bartynski, RA Weiss, AH AF Satyal, S. Joglekar, P. V. Shastry, K. Kalaskar, S. Dong, Q. Hulbert, S. L. Bartynski, R. A. Weiss, A. H. TI Measurement of the background in Auger-photoemission coincidence spectra (APECS) associated with inelastic or multi-electron valence, band photoemission processes SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Electron spectroscopy; Coincidence spectroscopy; Auger photoelectron; Background elimination; Low energy tail (LET) ID SPECTROSCOPY APECS; EMISSION; RADIATION; SOLIDS AB Auger photoelectron coincidence spectroscopy (APECS), in which the Auger spectra are measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band (VB) photoelectrons. However the APECS method alone cannot eliminate the background due to valence band photoemission processes in which the initial photon energy is shared by two or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method to determine the contributions from these background processes and apply this method in the case of copper M3VV Auger spectrum obtained in coincidence with the 3p(3/2) photoemission peak. A beam of 200 eV photons was incident on a Cu(1 0 0) sample and a series of coincidence measurements were performed using a spectrometer equipped with two cylindrical mirror analyzers (CMAs). One CMA was set at series of fixed energies that ranged between the energy of the core and the VB peaks. The other CMA was scanned over a range corresponding to electrons leaving the surface between 0 eV and 70 eV. The set of measured spectra were then fit to a parameterized function which was extrapolated to determine the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. The extrapolated background was subtracted from the APECS spectrum to obtain the spectrum of electrons emitted solely as the result of the Auger process. A comparison of the coincidence spectrum with the same spectrum with background removed shows that in the case of Cu M3VV the background due to the inelastic scattering of VB electrons is negligible in the region of the Auger peak but is more than half the total signal down in the low energy tail of the Auger peak. (C) 2014 Elsevier B.V. All rights reserved. C1 [Satyal, S.; Joglekar, P. V.; Shastry, K.; Kalaskar, S.; Weiss, A. H.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Dong, Q.; Hulbert, S. L.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Bartynski, R. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Weiss, AH (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weiss@uta.edu FU Department of Physics, University of Texas at Arlington; NSF [DMR 0907679, 1213727]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank the Department of Physics, University of Texas at Arlington for financial support and the referees of this paper for their comments and suggestions. This research was sponsored in part by the NSF DMR 0907679 and NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 18 TC 1 Z9 1 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2014 VL 195 BP 66 EP 70 DI 10.1016/j.elspec.2014.05.010 PG 5 WC Spectroscopy SC Spectroscopy GA AQ5TZ UT WOS:000342872800010 ER PT J AU Fero, A Smallwood, CL Affeldt, G Lanzara, A AF Fero, A. Smallwood, C. L. Affeldt, G. Lanzara, A. TI Impact of work function induced electric fields on laser-based angle-resolved photoemission spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Electric fields; ARPES; Photoemission; Laser; Spectroscopy; Work function ID SUPERCONDUCTORS AB We examine the effects of the electric fields caused by the difference in work function between a sample and its surroundings in laser-based angle-resolved photoemission spectroscopy (laser ARPES) experiments. To simulate these effects we created several samples and surrounding puck geometries using Simian 8.0 modeling software, and found that in most cases the system can be approximated by a circular sample mounted on an infinite conducting plane. Experimental measurements of the cuprate superconductor Bi2Sr2CaCu2O8+delta mounted on copper, aluminum, and graphite pucks confirmed the model's accuracy. Both the model and experimental data showed that work-function-induced fields have a significant effect on the outgoing trajectories of electrons for kinetic energies up to six times the work function difference between the sample and the puck. However, with the exception of effects very close to the sample edge, all electric field effects can be taken into account using linear corrections. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fero, A.; Smallwood, C. L.; Affeldt, G.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fero, A.; Smallwood, C. L.; Affeldt, G.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Fero, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM allie.fero@gmail.com RI Smallwood, Christopher/D-4925-2011 OI Smallwood, Christopher/0000-0002-4103-8748 FU Berkeley Lab's program on Quantum Materials - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Innovation Seed Fund in Energy and Climate Research at the University of California FX We thank W.T. Zhang and T.L. Miller for useful discussions, H. Eisaki for growing the samples, and C. Jozwiak for feedback and input on the SimIon simulation. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. A. F. was partially supported by the Innovation Seed Fund in Energy and Climate Research at the University of California (Berkeley, CA). NR 27 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2014 VL 195 BP 237 EP 243 DI 10.1016/j.elspec.2014.01.008 PG 7 WC Spectroscopy SC Spectroscopy GA AQ5TZ UT WOS:000342872800034 ER PT J AU Sobota, JA Yang, SL Leuenberger, D Kemper, AF Analytis, JG Fisher, IR Kirchmann, PS Devereaux, TP Shen, ZX AF Sobota, J. A. Yang, S. -L. Leuenberger, D. Kemper, A. F. Analytis, J. G. Fisher, I. R. Kirchmann, P. S. Devereaux, T. P. Shen, Z. -X. TI Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Topological insulator; Time- and angle-resolved photoemission; Two-photon photoemission; Electron-phonon scattering ID SINGLE DIRAC CONE; 2-PHOTON PHOTOEMISSION; SURFACE; BI2TE3; SB2TE3; STATES AB We characterize the topological insulator Bi2Se3 using time- and angle-resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a metastable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states. Published by Elsevier B.V. C1 [Sobota, J. A.; Yang, S. -L.; Leuenberger, D.; Fisher, I. R.; Kirchmann, P. S.; Devereaux, T. P.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Sobota, J. A.; Yang, S. -L.; Leuenberger, D.; Fisher, I. R.; Devereaux, T. P.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Sobota, J. A.; Yang, S. -L.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Analytis, J. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Kirchmann, PS (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM kirchman@stanford.edu; zxshen@stanford.edu RI Kemper, Alexander/F-8243-2016; Kirchmann, Patrick/C-1195-2008; OI Kemper, Alexander/0000-0002-5426-5181; Kirchmann, Patrick/0000-0002-4835-0654; Yang, Shuolong/0000-0002-8200-9898 FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Science [DE-AC02-76SF00515]; Stanford Graduate Fellowship; Alexander-von-Humboldt Foundation; M. Wolf; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank M. Sentef for valuable discussions. This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science under contract DE-AC02-76SF00515. J. A. S. and S.-L. Y. acknowledge support by the Stanford Graduate Fellowship. P. S. K. acknowledges support by the Alexander-von-Humboldt Foundation through a Feodor-Lynen fellowship and continuous support by M. Wolf. A. F. K. is supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy contract number DE-AC02-05CH11231. NR 47 TC 14 Z9 14 U1 9 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2014 VL 195 BP 249 EP 257 DI 10.1016/j.elspec.2014.01.005 PG 9 WC Spectroscopy SC Spectroscopy GA AQ5TZ UT WOS:000342872800036 ER PT J AU Fadley, CS Nemsak, S AF Fadley, Charles S. Nemsak, Slavomir TI Some future perspectives in soft- and hard- X-ray photoemission SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Photoemission; X-ray photoemission; Hard X-ray photoemission; Photoelectron diffraction; Hard X-ray photoelectron diffraction; Photoelectron holography; Ambient pressure photoemission; Angle-resolved photoemission; ARPES; HARPES; XPS; XPD; HXPD; HXPS; HAXPES; PH; Standing wave photoemission; Synchrotron radiation; Spintronics ID ANGLE-RESOLVED PHOTOEMISSION; BULK ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; STANDING-WAVE; DIFFRACTION PATTERNS; HOLOGRAPHIC IMAGES; ANGULAR RESOLUTION; AUGER-ELECTRON; ATOMIC IMAGES; VALENCE BANDS AB We discuss several recent developments in photoemission, with comments on their perspectives for the future. These include an adequate allowance for differential cross section effects in core- and valence-angular distributions, as well as more accurate one-step modeling of angle-resolved photoemission (ARPES); the use of higher photon energies from the soft- to hard- X-ray regime to permit probing bulk electronic structure and buried layers and interfaces; extending ARPES into the soft- and hard- X-ray regimes; tailoring the X-ray wave field through X-ray optical effects including standing waves, total reflection, and tuning through resonances; using standing-wave excitation to provide much enhanced depth sensitivity in studying solid/gas and solid/liquid interfaces; and applying photoelectron holography to time-resolved studies of molecular reactions and dissociation. Specific application examples include a magnetic semiconductor, multilayer structures of complex metal oxides, a thin water solution on a metal oxide surface, and a halo-substituted benzene molecule. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fadley, Charles S.; Nemsak, Slavomir] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, Charles S.; Nemsak, Slavomir] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fadley, CS (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fadley@physics.ucdavis.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy through the Materials Sciences Division of the Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; Army Research Office MURI [W911-NF-09-1-0398]; Julich Research Center, Peter Grunberg Institute [PGI-6]; LABEX-PALM APTCOM Project of the Triangle de Physique (Paris) FX This work has been supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Materials Sciences Division of the Lawrence Berkeley National Laboratory (LBNL). Additional support has come from Army Research Office MURI grant W911-NF-09-1-0398, in particular for the GTO/STO study; the Julich Research Center, Peter Grunberg Institute (PGI-6); and from the LABEX-PALM APTCOM Project of the Triangle de Physique (Paris). We are also grateful to various co-authors and staff scientists who have provided excellent assistance with measurements at the Advanced Light Source, SPring-8, the Swiss Light Source, Soleil, and Petra III. NR 72 TC 7 Z9 7 U1 6 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2014 VL 195 BP 409 EP 422 DI 10.1016/j.elspec.2014.06.004 PG 14 WC Spectroscopy SC Spectroscopy GA AQ5TZ UT WOS:000342872800057 ER PT J AU Pasha, MFK Yeasmin, D Kao, SC Hadjerioua, B Wei, YX Smith, BT AF Pasha, M. Fayzul K. Yeasmin, Dilruba Kao, Shih-Chieh Hadjerioua, Boualem Wei, Yaxing Smith, Brennan T. TI Stream-Reach Identification for New Run-of-River Hydropower Development through a Merit Matrix-Based Geospatial Algorithm SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article DE Hydropower resource assessment; New hydropower development; Stream-reach selection; Flood elevation ID OPTIMIZATION; SYSTEMS; ENERGY AB Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or nonpowered dams, locating a feasible new hydropower plant involves many unknowns; hence, the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial data sets for topography, hydrology, and environmental characteristics, a merit matrix-based geospatial algorithm is proposed to identify possible hydropower stream reaches for future development. These hydropower stream reaches-sections of natural streams with suitable head, flow, and slope for possible future development-are identified and compared by using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa and Apalachicola-Chattahoochee-Flint hydrologic subregions. It was found that a merit matrix-based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can effectively identify stream reaches with high power density and small surface inundation. These identified stream reaches can then be evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies. Given that the selected data sets are available nationally (at least within the conterminous U. S.), the proposed methodology will have wide applicability across the country. (C) 2014 American Society of Civil Engineers. C1 [Pasha, M. Fayzul K.] Calif State Univ Fresno, Dept Civil & Geomat Engn, Fresno, CA 93740 USA. [Yeasmin, Dilruba; Kao, Shih-Chieh; Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hadjerioua, Boualem; Smith, Brennan T.] Oak Ridge Natl Lab, Div Environm Sci, Energy Water Ecosyst Engn Grp, Oak Ridge, TN 37831 USA. RP Pasha, MFK (reprint author), Calif State Univ Fresno, Dept Civil & Geomat Engn, 2320 E San Ramon Ave M-S EE94, Fresno, CA 93740 USA. EM mpasha@csufresno.edu RI Kao, Shih-Chieh/B-9428-2012 OI Kao, Shih-Chieh/0000-0002-3207-5328 FU US Department of Energy's Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program; California State University-Fresno; US Department of Energy [DE-AC05-00OR22725]; United States government FX This research was sponsored by the US Department of Energy's Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program. Support from California State University-Fresno is also acknowledged. This paper was co-authored by employees of Oak Ridge National Laboratory, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy. Accordingly, the publisher, by accepting the article for publication, acknowledges that the United States government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes. NR 29 TC 1 Z9 1 U1 2 U2 7 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD AUG PY 2014 VL 140 IS 8 AR 04014016 DI 10.1061/(ASCE)WR.1943-5452.0000429 PG 11 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA AQ5HF UT WOS:000342837700009 ER PT J AU Chen, X Heidbrink, WW Kramer, GJ Van Zeeland, MA Pace, DC Petty, CC Fisher, RK Nazikian, R Zeng, L Austin, ME Grierson, BA Podesta, M AF Chen, X. Heidbrink, W. W. Kramer, G. J. Van Zeeland, M. A. Pace, D. C. Petty, C. C. Fisher, R. K. Nazikian, R. Zeng, L. Austin, M. E. Grierson, B. A. Podesta, M. TI Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfven eigenmodes in DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID DIGITAL BISPECTRAL ANALYSIS; D TOKAMAK; TOROIDAL PLASMAS; DRIVEN; SHEAR; INSTABILITIES; DISCHARGES; OPERATION; PROFILE; CODE AB Two key insights into interactions between Alfven eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit, The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-or-bit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density', and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through hi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by' a non-linear interaction between the fast ions and the two independent AEs. (C) 2014 AIP Publishing LLC. C1 [Chen, X.; Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Chen, X.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.] Gen Atom Co, San Diego, CA 92186 USA. [Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. RP Chen, X (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. FU U.S. Department of Energy [DE-FG03-94ER54271, DEACO5-060R23100, SC-G903402, DE-FG02-99-ER54522, DE-ACO2-09CH11466, DE-FCO2-04ER54698, DE-FG02-08ER54984, SCG903402, DE-FG03-97ER54415] FX This work was supported by the U.S. Department of Energy under DE-FG03-94ER54271, DEACO5-060R23100, SC-G903402, DE-FG02-99-ER54522, DE-ACO2-09CH11466, DE-FCO2-04ER54698, DE-FG02-08ER54984, SCG903402, and DE-FG03-97ER54415. The authors thank the DIII-D Team for their support, especially, the physics operator Dr. T. H. Osborne and Dr. A. W. Hyatt; and thank Dr. N. J. Commaux, Dr. J. M. Hanson, Dr. G. R. McKee, Dr. T. Rhodes, Dr. B. J. Tobias. and Dr. Z. Yan. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 47 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082503 DI 10.1063/1.4891442 PG 9 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600031 ER PT J AU Johns, HM Mancini, RC Hakel, P Nagayama, T Smalyuk, VA Regan, SP Delettrez, J AF Johns, H. M. Mancini, R. C. Hakel, P. Nagayama, T. Smalyuk, V. A. Regan, S. P. Delettrez, J. TI Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission SO PHYSICS OF PLASMAS LA English DT Article ID OMEGA LASER SYSTEM; PUSHER CONDITIONS; IMPLOSIONS; PLASMAS; MODULATIONS; PERFORMANCE; PROFILES; PHASE AB Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1-2 transitions in F-through Li-like Ti ions in the 4400-4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T-e and density N-e to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T-e and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed Te, Ne conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T-e = 400-600 eV and Ne = 3.0-10.0 x 10(24) cm(-3) for all but the most distant Ti-doped layer, with error bars similar to 5% T-e value and similar to 10% N-e on average. The T-e, N-e conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core. (C) 2014 AIP Publishing LLC. C1 [Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Smalyuk, V. A.; Regan, S. P.; Delettrez, J.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Johns, HM (reprint author), Los Alamos Natl Lab, TA-3 Bldg 1400 Casa Grande Dr, Los Alamos, NM 87545 USA. FU LLE [416232-G]; DOE [DE-NA0002267] FX This work was supported by LLE contract 416232-G and DOE grant DE-NA0002267. NR 29 TC 5 Z9 5 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082711 DI 10.1063/1.4892554 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600055 ER PT J AU Kaye, SM Guttenfelder, W Bell, RE Gerhardt, SP LeBlanc, BP Maingi, R AF Kaye, S. M. Guttenfelder, W. Bell, R. E. Gerhardt, S. P. LeBlanc, B. P. Maingi, R. TI Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas SO PHYSICS OF PLASMAS LA English DT Article ID HEAT-TRANSPORT; CONFINEMENT; EQUILIBRIUM; TURBULENCE AB A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as beta(e), nu(*)(e), the MHD alpha parameter, and the gradient scale lengths of T-e, T-i, and n(e) were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when beta(e) and nu(*)(e) were relatively low, ballooning parity modes were dominant. As time progressed and both beta(e) and nu(*)(e) increased, microtearing became the dominant low-k(theta) mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k(theta), may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. (C) 2014 AIP Publishing LLC. C1 [Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaye, SM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM skaye@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466] FX This work has been supported by U.S. Department of Energy Contract DE-AC02-09CH11466. NR 35 TC 5 Z9 5 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082510 DI 10.1063/1.4893135 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600038 ER PT J AU Mikkelsen, DR Tanaka, K Nunami, M Watanabe, TH Sugama, H Yoshinuma, M Ida, K Suzuki, Y Goto, M Morita, S Wieland, B Yamada, I Yasuhara, R Tokuzawa, T Akiyama, T Pablant, NA AF Mikkelsen, D. R. Tanaka, K. Nunami, M. Watanabe, T. -H. Sugama, H. Yoshinuma, M. Ida, K. Suzuki, Y. Goto, M. Morita, S. Wieland, B. Yamada, I. Yasuhara, R. Tokuzawa, T. Akiyama, T. Pablant, N. A. TI Quasilinear carbon transport in an impurity hole plasma in LHD SO PHYSICS OF PLASMAS LA English DT Article ID LARGE HELICAL DEVICE; ELECTRON HEAT-TRANSPORT; TOKAMAK; TURBULENCE; SPECTROSCOPY; SIMULATIONS AB Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-internal transport barrier (ITB) and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions, the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H, He, C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks. (C) 2014 AIP Publishing LLC. C1 [Mikkelsen, D. R.; Pablant, N. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tanaka, K.; Nunami, M.; Sugama, H.; Yoshinuma, M.; Ida, K.; Suzuki, Y.; Goto, M.; Morita, S.; Wieland, B.; Yamada, I.; Yasuhara, R.; Tokuzawa, T.; Akiyama, T.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Watanabe, T. -H.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. RP Mikkelsen, DR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dmikkelsen@pppl.gov RI Ida, Katsumi/E-4731-2016; OI Ida, Katsumi/0000-0002-0585-4561; Hideo, Sugama/0000-0001-5444-1758 FU U.S. Department of Energy [DE-AC02-76CH03073]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank M. Yokoyama for TASK3D analysis, and C. D. Beidler, G. W. Hammett, and P. Xanthopoulos for helpful discussions. This work has been done under the collaboration research of National Institute for Fusion Science. It is a pleasure to acknowledge cooperation and discussions with Professor K. Komori, Professor O. Kaneko, and Professor H. Yamada of National Institute for Fusion Science. This work was supported by U.S. Department of Energy Contract No DE-AC02-76CH03073. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of parallel computer clusters at PPPL is also gratefully acknowledged. NR 55 TC 9 Z9 9 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082302 DI 10.1063/1.4890973 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600023 ER PT J AU Shahzad, M Tallents, GJ Steel, AB Hobbs, L Hoarty, DJ Dunn, J AF Shahzad, M. Tallents, G. J. Steel, A. B. Hobbs, L. Hoarty, D. J. Dunn, J. TI Electron temperature and density characterization using L-shell spectroscopy of laser irradiated buried iron layer targets SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; PULSES; HOT; SPECTRA AB Uniform high density plasmas of different materials with properties relevant to the interior of stars and to inertial fusion can be created by laser irradiation of targets containing a buried layer of the material. Buried layer targets also enable the diagnosis of hot and thermal electron, x-ray and ion heating of targets. In this paper, L-emission spectroscopy from an iron layer (thickness 77 nm) encased in an otherwise plastic target (of thickness 240 nm-1.36 mu m on the laser side) is irradiated by 0.53 mu m wavelength, 2 ps duration laser pulses at irradiances of 10(17)-10(18) Wcm(-2). The relative iron L-emission from Li-like Fe XXIV to Ne-like Fe XVII is used to diagnose the plasma conditions of temperature and density in the iron layer. As the upper quantum states of the L-emission lines are in local thermodynamic equilibrium, line intensity ratios depend on both electron temperature and density, which-we show-enables the simultaneous measurement of both electron temperature and density by considering several line intensity ratios. We also show that hot electron target heating and the value of thermal flux limited heat conduction can be evaluated from the relative intensity of iron lines. (C) 2014 AIP Publishing LLC. C1 [Shahzad, M.; Tallents, G. J.] Univ York, York Plasma Inst, York YO10 5DQ, N Yorkshire, England. [Steel, A. B.; Dunn, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hobbs, L.; Hoarty, D. J.] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Shahzad, M (reprint author), Univ York, York Plasma Inst, York YO10 5DQ, N Yorkshire, England. FU UK Atomic Weapons Establishment; Engineering and Physical Sciences Research Council FX We would like to acknowledge the staff at LLNL, especially Jim Hunter and Jim Moody. Additionally, we acknowledge Dr. J. Pasley and Professor N. C. Woolsey for access to HYADES Cascade Applied Sciences Inc. and PRISM Computational Sciences Inc codes. Author M. Shahzad acknowledges funding from the UK Atomic Weapons Establishment and Engineering and Physical Sciences Research Council. NR 21 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082702 DI 10.1063/1.4892263 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600047 ER PT J AU Yu, EP Velikovich, AL Maron, Y AF Yu, Edmund P. Velikovich, A. L. Maron, Y. TI Application of one-dimensional stagnation solutions to three-dimensional simulation of compact wire array in absence of radiation SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH IMPLOSIONS; SELF-SIMILAR OSCILLATIONS; K-SHELL RADIATION; DENSITY Z-PINCHES; X-RAY-EMISSION; ENERGY DEPOSITION; ATOMIC-NUMBER; PLASMA; PHYSICS; GENERATION AB We investigate the stagnation phase of a three-dimensional (3D), magnetohydrodynamic simulation of a compact, tungsten wire-array Z pinch, under the simplifying assumption of negligible radiative loss. In particular, we address the ability of one-dimensional (1D) analytic theory to describe the time evolution of spatially averaged plasma properties from 3D simulation. The complex fluid flows exhibited in the stagnated plasma are beyond the scope of 1D theory and result in centrifugal force as well as enhanced thermal transport. Despite these complications, a 1D homogeneous (i.e., shockless) stagnation solution can capture the increase of on-axis density and pressure during the initial formation of stagnated plasma. Later, when the stagnated plasma expands outward into the imploding plasma, a 1D shock solution describes the decrease of on-axis density and pressure, as well as the growth of the shock accretion region. (C) 2014 AIP Publishing LLC. C1 [Yu, Edmund P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Velikovich, A. L.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Maron, Y.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. RP Yu, EP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM epyu@sandia.gov NR 77 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2014 VL 21 IS 8 AR 082703 DI 10.1063/1.4891844 PG 22 WC Physics, Fluids & Plasmas SC Physics GA AQ4IZ UT WOS:000342760600048 ER PT J AU Bionta, MR Hartmann, N Weaver, M French, D Nicholson, DJ Cryan, JP Glownia, JM Baker, K Bostedt, C Chollet, M Ding, Y Fritz, DM Fry, AR Kane, DJ Krzywinski, J Lemke, HT Messerschmidt, M Schorb, S Zhu, D White, WE Coffee, RN AF Bionta, M. R. Hartmann, N. Weaver, M. French, D. Nicholson, D. J. Cryan, J. P. Glownia, J. M. Baker, K. Bostedt, C. Chollet, M. Ding, Y. Fritz, D. M. Fry, A. R. Kane, D. J. Krzywinski, J. Lemke, H. T. Messerschmidt, M. Schorb, S. Zhu, D. White, W. E. Coffee, R. N. TI Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FREE-ELECTRON LASER; RAY AB The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10-100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for "measure-and-sort" at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses. (C) 2014 AIP Publishing LLC. C1 [Bionta, M. R.] Univ Toulouse, UPS, Lab Collis Agregats Reactivite, IRSAMC, F-31062 Toulouse, France. [Bionta, M. R.] CNRS, UMR 5589, F-31062 Toulouse, France. [Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Nicholson, D. J.; Cryan, J. P.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Coffee, R. N.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Hartmann, N.] Univ Bern, Inst Appl Phys, CH-3012 Bern, Switzerland. [Nicholson, D. J.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Cryan, J. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Baker, K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kane, D. J.] Mesa Photon LLC, Santa Fe, NM 87505 USA. [Coffee, R. N.] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA 94025 USA. RP Bionta, MR (reprint author), Univ Toulouse, UPS, Lab Collis Agregats Reactivite, IRSAMC, F-31062 Toulouse, France. EM mina.bionta@irsamc.ups-tlse.fr; coffee@slac.stanford.edu RI Messerschmidt, Marc/F-3796-2010; Lemke, Henrik Till/N-7419-2016 OI Messerschmidt, Marc/0000-0002-8641-3302; Lemke, Henrik Till/0000-0003-1577-8643 FU U.S. Department of Energy Office of Science FX This research was carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility funded under the auspices of the U.S. Department of Energy Office of Science operated by Stanford University. NR 35 TC 15 Z9 15 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083116 DI 10.1063/1.4893657 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500017 PM 25173255 ER PT J AU Covo, MK AF Covo, Michel Kireeff TI Measurement of axial injection displacement with trim coil current unbalance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement. (C) 2014 AIP Publishing LLC. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Covo, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mkireeffcovo@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231] FX The author would like to thank Damon Todd and Markus Strohmeier for fruitful comments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-AC02-05CH11231. NR 5 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 085113 DI 10.1063/1.4892463 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500080 ER PT J AU Danly, CR Merrill, FE Barlow, D Mariam, FG AF Danly, C. R. Merrill, F. E. Barlow, D. Mariam, F. G. TI Nonuniform radiation damage in permanent magnet quadrupoles SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID RADIOGRAPHY AB We present data that indicate nonuniform magnetization loss due to radiation damage in neodymiumiron- boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components. (C) 2014 AIP Publishing LLC. C1 [Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Danly, CR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. OI Merrill, Frank/0000-0003-0603-735X NR 13 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083305 DI 10.1063/1.4892803 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500022 PM 25173260 ER PT J AU Frantti, J Fujioka, Y Zhang, J Zhu, J Vogel, SC Zhao, Y AF Frantti, J. Fujioka, Y. Zhang, J. Zhu, J. Vogel, S. C. Zhao, Y. TI Microstrain in tetragonal lead-zirconate-titanate: The effect of pressure on the ionic displacements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NEUTRON-DIFFRACTION; PBTIO3; PHASE; PEROVSKITES; DIFFRACTOMETER; CERAMICS; EQUATION; HIPPO; STATE; GPA AB Piezoelectric materials respond to external stimuli by adjusting atomic positions. In solid-solutions, the changes occurring in atomic scale are very complex since the short-and long-range order are different. Standard methods used in diffraction data analysis fail to model the short-range order accurately. Pressure-induced cation displacements in ferroelectric Pb(Zr0.45Ti0.55)O-3 perovskite oxide are modeled by starting from a short-range order. We show that the model gives the average structure correctly and properly describes the local structure. The origin of the microstrain in lead zirconate titanate is the spatially varying Zr and Ti concentration and atomic distances, which is taken into account in the simulation. High-pressure neutron powder diffraction and simulation techniques are applied for the determination of atomic positions and bond-valences as a function of pressure. Under hydrostatic pressure, the material loses its piezoelectric properties far before the transition to the cubic phase takes place. The total cation valence +6 is preserved up to 3.31 GPa by compensating the increasing B-cation valence by decreasing Pb-displacement from the high-symmetry position. At 3.31 GPa, Pb-displacement is zero and the material is no more ferroelectric. This is also the pressure at which the Pb-valence is minimized. The average structure is still tetragonal. The model for microstrain predicts that the transition occurs over a finite pressure range: Pb-displacements are spatially varying and follow the distribution of Zr and Ti ions. (C) 2014 AIP Publishing LLC. C1 [Frantti, J.; Fujioka, Y.] Finnish Res & Engn, Helsinki 00180, Finland. [Zhang, J.; Zhu, J.; Vogel, S. C.; Zhao, Y.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Frantti, J (reprint author), Finnish Res & Engn, Jaalaranta 9 B 42, Helsinki 00180, Finland. EM Johannes.Frantti@fre.fi OI Zhang, Jianzhong/0000-0001-5508-1782; Vogel, Sven C./0000-0003-2049-0361 NR 33 TC 3 Z9 3 U1 3 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083901 DI 10.1063/1.4891458 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500040 PM 25173278 ER PT J AU Grapes, MD LaGrange, T Friedman, LH Reed, BW Campbell, GH Weihs, TP LaVan, DA AF Grapes, Michael D. LaGrange, Thomas Friedman, Lawrence H. Reed, Bryan W. Campbell, Geoffrey H. Weihs, Timothy P. LaVan, David A. TI Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID THIN-FILMS; ULTRATHIN FILMS; ALLOY; PURE; DTEM AB Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (102 K/s-105 K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed. (C) 2014 AIP Publishing LLC. C1 [Grapes, Michael D.; Weihs, Timothy P.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Grapes, Michael D.; Friedman, Lawrence H.; LaVan, David A.] NIST, Mat Measurement Sci Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Grapes, MD (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM mgrapes1@jhu.edu; weihs@jhu.edu; david.lavan@nist.gov RI Weihs, Timothy/A-3313-2010; Friedman, Lawrence/G-5650-2011 OI Friedman, Lawrence/0000-0003-2416-9903 FU National Institute of Standards and Technology (NIST) [70NANB9H9146]; National Science Foundation (NSF) [DMR-1308966]; (U.S.) Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [FWP SCW0974] FX The authors are grateful to Chris Amigo for design guidance and machining of the holder and to Bernadette Cannon for her help calibrating nanocalorimeter sensors during her time as a NIST Summer Undergraduate Research Fellowship (SURF) student. M. D. G. and T. P. W. were supported in part by National Institute of Standards and Technology (NIST) Grant No. 70NANB9H9146 and in part by National Science Foundation (NSF) Grant No. DMR-1308966. Nanocalorimeter fabrication was performed at the NIST Center for Nanoscale Science and Technology. The work presented in this article conducted at the LLNL DTEM facility was performed under the auspices of the (U.S.) Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The DTEM experiments conducted at LLNL and effort of T. L., B. W. R., and G. H. C. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP SCW0974. Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose. Since the completion of this work, T. L. and B. W. R. have become employees at Integrated Dynamic Electron Solutions, Inc., a startup company marketing time-resolved electron microscope technology. NR 34 TC 3 Z9 3 U1 8 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 084902 DI 10.1063/1.4892537 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500060 PM 25173298 ER PT J AU Haboub, A Bale, HA Nasiatka, JR Cox, BN Marshall, DB Ritchie, RO MacDowell, AA AF Haboub, Abdel Bale, Hrishikesh A. Nasiatka, James R. Cox, Brian N. Marshall, David B. Ritchie, Robert O. MacDowell, Alastair A. TI Tensile testing of materials at high temperatures above 1700 degrees C with in situ synchrotron X-ray micro-tomography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CERAMIC-MATRIX COMPOSITES; COMPUTED-TOMOGRAPHY; K FURNACE; MICROTOMOGRAPHY; DAMAGE AB A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300 degrees C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter. Samples are held between grips connected to a motorized stage that loads the samples in tension or compression with forces up to 2.2 kN. The heating chamber and loading system are water-cooled for thermal stability. The entire instrument is mounted on a rotation stage that allows stepwise recording of radiographs over an angular range of 180 degrees. A thin circumferential (360 degrees) aluminum window in the wall of the heating chamber allows the x-rays to pass through the chamber and the sample over the full angular range. The performance of the instrument has been demonstrated by characterizing the evolution of 3D damage mechanisms in ceramic composite materials under tensile loading at 1750 degrees C. (C) 2014 AIP Publishing LLC. C1 [Haboub, Abdel; Nasiatka, James R.; Ritchie, Robert O.; MacDowell, Alastair A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bale, Hrishikesh A.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cox, Brian N.; Marshall, David B.] Teledyne Sci Co, Thousand Oaks, CA 91360 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU U.S. Air Force Office of Scientific Research (AFOSR); National Aeronautics and Space Administration (NASA) under the National Hypersonics Science Center for Materials and Structures (AFOSR) [FA9550-09-1-0477]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Air Force Office of Scientific Research (AFOSR) (Dr. Ali Sayir) and National Aeronautics and Space Administration (NASA) ( Dr. Anthony Calomino) under the National Hypersonics Science Center for Materials and Structures (AFOSR Prime Contract No. FA9550-09-1-0477 to Teledyne Scientific with sub-contract to the University of California, Berkeley). We are grateful for use of the x-ray micro-tomography beamline (8.3.2) at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 4 Z9 4 U1 4 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083702 DI 10.1063/1.4892437 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500033 PM 25173271 ER PT J AU Jones, MC Ampleford, DJ Cuneo, ME Hohlfelder, R Jennings, CA Johnson, DW Jones, B Lopez, MR MacArthur, J Mills, JA Preston, T Rochau, GA Savage, M Spencer, D Sinars, DB Porter, JL AF Jones, M. C. Ampleford, D. J. Cuneo, M. E. Hohlfelder, R. Jennings, C. A. Johnson, D. W. Jones, B. Lopez, M. R. MacArthur, J. Mills, J. A. Preston, T. Rochau, G. A. Savage, M. Spencer, D. Sinars, D. B. Porter, J. L. TI X-ray power and yield measurements at the refurbished Z machine SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID Z-PINCH EXPERIMENTS; Z-ACCELERATOR; ARRAY; DETECTORS; FLUENCE AB Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources. (C) 2014 AIP Publishing LLC. C1 [Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; Hohlfelder, R.; Jennings, C. A.; Johnson, D. W.; Jones, B.; Lopez, M. R.; MacArthur, J.; Mills, J. A.; Preston, T.; Rochau, G. A.; Savage, M.; Spencer, D.; Sinars, D. B.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jones, MC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM micjone@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX The authors would like to thank the entire Z Operation Team, who make this work possible. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DEAC04-94AL85000. NR 35 TC 20 Z9 22 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083501 DI 10.1063/1.4891316 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500025 PM 25173263 ER PT J AU King, JD Strait, EJ Boivin, RL Taussig, D Watkins, MG Hanson, JM Logan, NC Paz-Soldan, C Pace, DC Shiraki, D Lanctot, MJ La Haye, RJ Lao, LL Battaglia, DJ Sontag, AC Haskey, SR Bak, JG AF King, J. D. Strait, E. J. Boivin, R. L. Taussig, D. Watkins, M. G. Hanson, J. M. Logan, N. C. Paz-Soldan, C. Pace, D. C. Shiraki, D. Lanctot, M. J. La Haye, R. J. Lao, L. L. Battaglia, D. J. Sontag, A. C. Haskey, S. R. Bak, J. G. TI An upgrade of the magnetic diagnostic system of the DIII-D tokamak for non-axisymmetric measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPECTROSCOPY; MODE AB The DIII-D tokamak magnetic diagnostic system [E. J. Strait, Rev. Sci. Instrum. 77, 023502 (2006)] has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric "3D" fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers 1 <= n <= 3, and poloidal wavelengths smaller than MARS-F, IPEC, and VMEC magnetohydrodynamic model predictions. Small 3D perturbations, relative to the equilibrium field (10(-5) < delta B/B-0 < 10(-4)), require sub-millimeter fabrication and installation tolerances. This high precision is achieved using electrical discharge machined components, and alignment techniques employing rotary laser levels and a coordinate measurement machine. A 16-bit data acquisition system is used in conjunction with analog signal-processing to recover non-axisymmetric perturbations. Co-located radial and poloidal field measurements allow up to 14.2 cm spatial resolution of poloidal structures (plasma poloidal circumference is similar to 500 cm). The function of the new system is verified by comparing the rotating tearing mode structure, measured by 14 BP fluctuation sensors, with that measured by the upgraded BR saddle loop sensors after the mode locks to the vessel wall. The result is a nearly identical 2/1 helical eigenstructure in both cases. (C) 2014 AIP Publishing LLC. C1 [King, J. D.; Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Strait, E. J.; Boivin, R. L.; Taussig, D.; Watkins, M. G.; Pace, D. C.; Lanctot, M. J.; La Haye, R. J.; Lao, L. L.] Gen Atom, San Diego, CA 92186 USA. [Hanson, J. M.; Shiraki, D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Logan, N. C.; Battaglia, D. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sontag, A. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Haskey, S. R.] Australia Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. [Bak, J. G.] Natl Fus Res Ctr, Div Res & Dev, Taejon, South Korea. RP King, JD (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. RI Haskey, Shaun/M-1469-2015; Lanctot, Matthew J/O-4979-2016 OI Haskey, Shaun/0000-0002-9978-6597; Lanctot, Matthew J/0000-0002-7396-3372 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698, DE-AC05-06OR23100, DE-AC02-09CH11466, DE-AC05-00OR22725]; AINSE Ltd. FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DE-AC05-06OR23100, DE-AC02-09CH11466, DE-AC02-09CH11466, and DE-AC05-00OR22725. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D. The authors are very grateful to the whole DIII-D team. The authors would like to give a special thanks to J. Kulchar and D. Ayala for their enormous fabrication efforts. Additional gratitude is also due to the operations staff of DIII-D, who went the extra mile to see this project succeed, namely: R. L. Lee, P. L. Taylor, A. G. Kellman, C. J. Murphy, B. Scoville, B. Brown, R. Tompkins, J. Burchett, E. Gonzales, D. Kellman, D. Piglowski, W. Carrig, and D. Whitaker. Also, thanks to D. Eldon for his graphics expertise. S. R. Haskey wishes to thank AINSE Ltd. for providing financial assistance. NR 27 TC 18 Z9 18 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083503 DI 10.1063/1.4891817 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500027 PM 25173265 ER PT J AU Oks, E Shandrikov, M Salvadori, C Brown, I AF Oks, Efim Shandrikov, Maxim Salvadori, Cecilia Brown, Ian TI Low-energy dc ion source for low operating pressure SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FILMS AB We report on an experimental study of an ion source based on a Penning discharge with a cold hollow cathode in crossed electric and magnetic fields. The minimum vacuum chamber operating pressure was 3 x 10(-5) Torr for argon and 5 x 10(-5) Torr for hydrogen. The use of a hollow cathode allowed decreasing the discharge operating voltage down to 350 V at a discharge current of similar to 100 mA. At a discharge current of 100 mA and beam accelerating voltage of 2 kV, the ion current was 2.5 mA for argon and 8 mA for hydrogen, and the ion beam on-axis current density 170 and 450 mu A/cm(2), respectively. The current-voltage characteristics of the discharge and the radial ion beam current density distribution were measured. The influence of pressure on the discharge parameters and their time stability was investigated. (C) 2014 AIP Publishing LLC. C1 [Oks, Efim; Shandrikov, Maxim] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Oks, Efim] State Univ Control Syst & Radioelect, Tomsk 634050, Russia. [Salvadori, Cecilia] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, Ian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oks, E (reprint author), Russian Acad Sci, Inst High Current Elect, Akademichesky Ave 2-3, Tomsk 634055, Russia. EM oks@opee.hcei.tsc.ru RI Salvadori, Maria Cecilia/A-9379-2013; Shandrikov, Maxim/R-2148-2016; OI Oks, Efim/0000-0002-9323-0686 FU Russian Science Foundation [14-49-00001] FX The work was supported by the Russian Science Foundation, program for international research group, Project No. 14-49-00001. NR 9 TC 1 Z9 1 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 083502 DI 10.1063/1.4891697 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500026 PM 25173264 ER PT J AU Seol, Y Choi, JH Dai, S AF Seol, Yongkoo Choi, Jeong-Hoon Dai, Sheng TI Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STRATIGRAPHIC TEST WELL; ALASKA NORTH SLOPE; METHANE-HYDRATE; PHYSICAL-PROPERTIES; SAND; PERMEABILITY; DISSOCIATION; DEFORMATION; STRENGTH AB With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field. C1 [Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Seol, Y (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Yongkoo.Seol@netl.doe.gov RI Dai, Sheng/A-1691-2015; OI Dai, Sheng/0000-0003-0221-3993 FU Oak Ridge Institute for Science and Education (ORISE) fellowship - NETL, (U.S.) Department of Energy (DOE) FX We thank Karl Jarvis (URS) for technical support and Richard Baker (NETL) for discussions. J.-H. Choi and S. Dai are supported via the Oak Ridge Institute for Science and Education (ORISE) fellowship granted by NETL, (U.S.) Department of Energy (DOE). NR 46 TC 3 Z9 3 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 084501 DI 10.1063/1.4892995 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500050 PM 25173288 ER PT J AU Smither, RK AF Smither, Robert K. TI Invited Review Article: Development of crystal lenses for energetic photons SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Review ID X-RAY PROPAGATION; DISTORTED CRYSTALS; PENDELLOSUNG FRINGES; GAMMA-RAYS; DIFFRACTION EFFICIENCY; GRADIENT CRYSTALS; SINGLE-CRYSTALS; IMAGING-SYSTEM; LAUE GEOMETRY; BENT-CRYSTAL AB This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used to increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application. (C) 2014 AIP Publishing LLC. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Smither, RK (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. FU U.S. Department of Energy, BES-Materials Science [W-31-109-Eng-38] FX The author wishes to thank Bernard Hamermesh for introducing him to the art of crystal diffraction, Art Namenson for his assistance in many cutting-edge experiments in crystal diffraction, and Niels Lund for his encouragement and many interesting suggestions and advice. Thanks are due to Armando Travelli for his support through the Argonne Treaty Verification program, Larry Greenwood and Charles Roche for their assistance in the construction of partial crystal lenses early in the Treaty Verification program, and Patricia Fernandez, Tim Graber, Mohamed Faiz, and Antje Kohnle for their assistance in constructing the first full size Treaty Verification lens. The author would like to thank Peter von Ballmoos and Jerry Skinner from CESR in Toulouse, France for organizing the European collaboration that flew a crystal diffraction telescope on two balloon flights to detect x-rays from the Crab nebula, and Antje Kohnle, Juan Naya, Francis Albernhe, G. Vedrenne, and the members of the European collaboration for their support and assistance in these balloon flight experiments. The author would like to thank Dante Roa for his assistance in building the first medical imaging crystal diffraction lens at Argonne and Khaliefeh Abu Seleem, Mark Beno, Charles Kurtz, and Ali Khounsary for their assistance in performing experiments with bent crystals. Ali Paugys assisted in all of the above mentioned activities and in the construction of the 50 m test facility for the Treaty Verification lens and the two test stands used to conduct the crystal diffraction experiments at the Argonne National Laboratory. This work was supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-Eng-38. NR 59 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 081101 DI 10.1063/1.4893585 PG 35 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500001 PM 25173239 ER PT J AU Stone, MB Niedziela, JL Loguillo, MJ Overbay, MA Abernathy, DL AF Stone, M. B. Niedziela, J. L. Loguillo, M. J. Overbay, M. A. Abernathy, D. L. TI A radial collimator for a time-of-flight neutron spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIFFRACTION; SCATTERING; DIFFRACTOMETER; DETECTORS; STRESS AB We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator. (C) 2014 AIP Publishing LLC. C1 [Stone, M. B.; Abernathy, D. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. [Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RI Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; BL18, ARCS/A-3000-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; FU Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX We gratefully acknowledge the contributions of other support groups from within the Neutron Sciences Directorate at ORNL including the Instrument Data Acquisition and Controls group, especially A. A. Parizzi and G. C. Greene, the Instrumentation Projects and Development group especially M. Harvey, W. S. Keener, and G. Q. Rennich, the Vacuum Systems group especially J. P. Price and C. M. Stone, the Mechanical Shop especially G. L. Beets and W. Smith, the Instrument Development and Target Support group especially B. J. Cagley, J. A. Groff, and R. Morgan, and the Instrument Support group especially G. Brackett, W. Dawkins, D. Engle, and S. Vasquez. We acknowledge helpful discussions with E. Iverson of the Neutronics Analysis group. We thank JJ-Xray for their final design and production of the radial collimator as well as Keller Technology Corporation for their manufacturing of the elevator and oscillator parts. For supplying information for the collimator comparison table we thank B. Winn and G. Ehlers from the Spallation Neutron Source, D. Yu from ANSTO, S. Rols from The Institut Laue Langevin, J. Embs from the Paul Scherrer Institut, and C. M. Brown and J. R. D. Copley from the NIST Center for Neutron Research. The research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 22 TC 5 Z9 5 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2014 VL 85 IS 8 AR 085101 DI 10.1063/1.4891302 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6IH UT WOS:000342913500068 PM 25173306 ER PT J AU Oostrom, M Truex, MJ Wietsma, TW Tartakovsky, GD AF Oostrom, M. Truex, M. J. Wietsma, T. W. Tartakovsky, G. D. TI Pore-Water Extraction from Unsaturated Porous Media: Intermediate-Scale Laboratory SO VADOSE ZONE JOURNAL LA English DT Article ID VADOSE ZONE; HYDRAULIC CONDUCTIVITY; SOLUTE TRANSPORT; SOILS; LYSIMETERS; COLLECTION; SIMULATION; SAMPLERS; MODEL AB As a remedial approach, vacuum-induced pore-water extraction offers the possibility of contaminant and water removal from the vadose zone, which may be beneficial in reducing the flux of vadose zone contaminants to groundwater. Vadose zone water extraction is being considered at the Hanford Site in Washington State as a means to remove technetium-99 contamination from low permeability sediments with relatively high water contents. A series of intermediate-scale laboratory experiments have been conducted to improve the fundamental understanding and to recognize the limitations of the technique. Column experiments were designed to investigate the relations between imposed suctions, water saturations, and water extraction. Flow cell experiments were conducted to investigate the effects of high-permeability layers and near-well compaction on pore-water extraction efficiency. Results show that water extraction from unsaturated systems can be achieved in low permeability sediments, provided that the initial water saturations are relatively high. The presence of a high-permeability layer decreased the yield, and compaction near the well screen had a limited effect on overall performance. In all experiments, large pressure gradients were observed near the extraction screen. Minimum requirements for water extraction include an imposed suction larger than the initial sediment capillary pressure in combination with a fully saturated seepage-face boundary. A numerical multiphase simulator with a coupled seepage-face boundary condition was used to simulate the experiments. Reasonable matches were obtained between measured and simulated results for both water extraction and capillary pressures, suggesting that numerical simulations may be used as a design tool for field-scale applications of pore-water extraction. C1 [Oostrom, M.; Truex, M. J.; Tartakovsky, G. D.] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99354 USA. [Wietsma, T. W.] Pacific NW Natl Lab, Dept Environm Mol Sci Lab, Richland, WA 99354 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnnl.gov FU USDOE [DE-AC06-76RLO 1830]; U.S. Department of Energy, Richland Operations Office; USDOE's Office of Biological and Environmental Research FX Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the USDOE under Contract DE-AC06-76RLO 1830. This effort was part of the Deep Vadose Zone-Applied Field Research Initiative at Pacific Northwest National Laboratory. Funding for this work was provided by the U.S. Department of Energy, Richland Operations Office. The intermediate-scale experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the USDOE's Office of Biological and Environmental Research and located at PNNL. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnnl.gov). NR 33 TC 1 Z9 1 U1 3 U2 21 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2014 VL 13 IS 8 DI 10.2136/vzj2014.04.0044 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA AQ9HT UT WOS:000343162100004 ER PT J AU Mizutani, U Sato, H Inukai, M Zijlstra, ES Lin, Q Corbett, JD Miller, GJ AF Mizutani, U. Sato, H. Inukai, M. Zijlstra, E. S. Lin, Q. Corbett, J. D. Miller, G. J. TI Fermi Surface-Brillouin Zone Interactions in 2/1-2/1-2/1 Bergman-Type Approximant Na27Au27Ga31 SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 12th International Conference on Quasicrystals (ICQ12) CY SEP 01-06, 2013 CL Krakow, POLAND ID ROTHERY STABILIZATION MECHANISM; ELECTRON-CONCENTRATION RULE; E/A DETERMINATION; INTERMETALLIC COMPOUNDS; METAL ELEMENTS; QUASI-CRYSTAL; AL; ZN AB The X-ray diffraction studies on a newly synthesized Na26Au25Ga29 single crystal revealed the formation of a single phase 2/1-2/1-2/1 Bergman-type approximant and the presence of Au/Ga mixed occupancies in its unit cell containing 680 atoms. The structure model of the 2/1-2/1-2/1 approximant with composition Na27Au27Ga31 was constructed by eliminating the chemical disorder with a minimum sacrifice of composition displacement. The full potential linearized augmented plane wave electronic structure calculations with subsequent full potential linearized augmented plane wave-Fourier analysis were performed for the 2/1-2/1-2/1 approximant Na27Au27Ga31 with space group Pa (3) over bar. The square of the Fermi diameter (2kF)(2), electrons per atom ratio e/a and the critical reciprocal lattice vector vertical bar G vertical bar(2) are determined. A shallow pseudogap at the Fermi level was interpreted as originating from interference of electrons having (2kF)(2) = 109.2 +/- 1.0 with sets of lattice planes with vertical bar G vertical bar(2)s centered at 108. The effective e/a value for the compound is found to be 1.76 in good agreement with 1.73 derived from a composition average of (e/a)Na = 1.0, (e/a)Au = 1.0 and (e/a)Ga = 3.0. C1 [Mizutani, U.] Nagoya Ind Sci Res Inst, Chikusa Ku, Nagoya, Aichi 4640819, Japan. [Sato, H.] Aichi Univ Educ, Kariya, Aichi 4488542, Japan. [Inukai, M.] Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan. [Zijlstra, E. S.] Univ Kassel, D-34132 Kassel, Germany. [Lin, Q.; Corbett, J. D.; Miller, G. J.] US DOE, Ames Lab, Washington, DC 20585 USA. [Lin, Q.; Corbett, J. D.; Miller, G. J.] Iowa State Univ, Dept Chem, Ames, IA USA. RP Mizutani, U (reprint author), Nagoya Ind Sci Res Inst, Chikusa Ku, 1-13 Yotsuya Dori, Nagoya, Aichi 4640819, Japan. EM uichiro@xa3.so-net.ne.jp NR 11 TC 3 Z9 3 U1 0 U2 4 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD AUG PY 2014 VL 126 IS 2 BP 535 EP 538 PG 4 WC Physics, Multidisciplinary SC Physics GA AQ1ME UT WOS:000342544700029 ER PT J AU Unal, B Evans, JW Thiel, PA AF Uenal, B. Evans, J. W. Thiel, P. A. TI Temperature Dependence of Ag Film Roughening during Deposition on Quasicrystal and Approximant Surfaces SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 12th International Conference on Quasicrystals (ICQ12) CY SEP 01-06, 2013 CL Krakow, POLAND ID MOLECULAR-BEAM EPITAXY; GROWTH; HOMOEPITAXY; ROUGHNESS; ISLANDS AB The temperature (T) dependence of roughening as assessed by scanning tunneling microscopy is compared for growth of Ag films on an 5-fold icosahedral Al-Pd-Mn quasicrystal surface and on an xi'-approximant. Growth on the quasicrystal corresponds to a version of the Volmer Weber growth, but modified by quantum size effects, and also by kinetic smoothening at low T and low coverages (theta). Growth on the approximant corresponds to a version of the Stranski Krastanov growth modified by kinetic roughening at low T and low theta. For larger theta, i.e., for thicker films, distinct behavior is observed. C1 [Uenal, B.; Evans, J. W.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Uenal, B.; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pthiel@iastate.edu NR 22 TC 0 Z9 0 U1 1 U2 5 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD AUG PY 2014 VL 126 IS 2 BP 608 EP 612 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ1ME UT WOS:000342544700047 ER PT J AU Clague, DA Dreyer, BM Paduan, JB Martin, JF Caress, DW Gill, JB Kelley, DS Thomas, H Portner, RA Delaney, JR Guilderson, TP McGann, ML AF Clague, David. A. Dreyer, Brian M. Paduan, Jennifer B. Martin, Julie F. Caress, David W. Gill, James B. Kelley, Deborah S. Thomas, Hans Portner, Ryan A. Delaney, John R. Guilderson, Thomas P. McGann, Mary L. TI Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Juan de Fuca Ridge; Endeavour Segment; high-resolution bathymetry; lava flow ages; tectonic; magmatic history ID EAST PACIFIC RISE; RA-226 TH-230 DISEQUILIBRIUM; SEISMIC LAYER 2A; OCEANIC-CRUST; HYDROTHERMAL SYSTEM; SULFIDE DEPOSITS; MIDOCEAN RIDGES; AXIAL SEAMOUNT; RIFT-VALLEY; TIME-SCALE AB High-resolution bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km(2) of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to approximate to 4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by approximate to 4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting approximate to 4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until approximate to 2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620-1760 yr BP and within the axial graben since approximate to 1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began approximate to 2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields. C1 [Clague, David. A.; Dreyer, Brian M.; Paduan, Jennifer B.; Martin, Julie F.; Caress, David W.; Thomas, Hans; Portner, Ryan A.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Dreyer, Brian M.; Gill, James B.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Kelley, Deborah S.; Delaney, John R.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Portner, Ryan A.] Brown Univ, Providence, RI 02912 USA. [Guilderson, Thomas P.] LLNL, Ctr Accelerator Mass Spectrometry, Livermore, CA USA. [McGann, Mary L.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Clague, DA (reprint author), Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. EM clague@mbari.org OI Caress, David/0000-0002-6596-9133 FU NSF [OCE 0732611, OCE 1043274, OCE 0623161, 1061176, OCE 1043403]; David and Lucile Packard Foundation; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the captains and crews of the R/V Western Flyer, R/V Zephyr, R/V Thompson, and R/V Atlantis, and the skillful pilots of the ROV Doc Ricketts, HOV ALVIN, and the AUV D. Allan B. and ABE teams. Without their skill and professionalism at sea, neither the high-resolution mapping data nor the 46 cores could have been collected and this study could not have been completed. Andrew Burleigh, John Jamieson, Linda Kunhz, Amy Lange, Sean Scott, and Kevin Werts assisted at sea during the ROV dives and postdive sample curation at sea, including the cores reported here. Marilena Calarco assisted at sea during the collection of D. Allan B. data in 2008. Jim Holden, funded by NSF grant OCE 0732611, kindly provided ship time to launch and recover the AUV during his 2008 cruise, including expenditure of a precious ALVIN dive to recover the wayward AUV D. Allan B. Suzanne Carbotte kindly shared her latest AMC depths and patiently educated the first author about MCS data and interpretations. The AUV D. Allan B. surveys, ROV Doc Ricketts dives, and salary and laboratory support to D. A. C., B. M. D., J.B.P., J.F.M., D. W. C., R. A. P., and H. T. were supported by a grant from the David and Lucile Packard Foundation to MBARI. Additional support to process and combine the AUV ABE survey data with that from the AUV D. Allan B was provided to D. A. C. and D. W. C. under NSF grant OCE 1043274. J.B.G. and B. M. D. were supported under NSF grants OCE 0623161 and 1061176. D. S. K. was supported under NSF grant OCE 1043403. The ABE surveys were collected as part of a joint project between the University of Washington, the W. M. Keck Foundation, and NEPTUNE Canada. We also thank Dana Yoerger for his development and support of the ABE missions. The 14C dating was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The bathymetric swath data and grids are available through the RIDGE Portal at Lamont Doherty Geological Observatory. NR 76 TC 7 Z9 7 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD AUG PY 2014 VL 15 IS 8 BP 3364 EP 3391 DI 10.1002/2014GC005415 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ3KY UT WOS:000342693400016 ER PT J AU Gangodagamage, C Rowland, JC Hubbard, SS Brumby, SP Liljedahl, AK Wainwright, H Wilson, CJ Altmann, GL Dafflon, B Peterson, J Ulrich, C Tweedie, CE Wullschleger, SD AF Gangodagamage, Chandana Rowland, Joel C. Hubbard, Susan S. Brumby, Steven P. Liljedahl, Anna K. Wainwright, Haruko Wilson, Cathy J. Altmann, Garrett L. Dafflon, Baptiste Peterson, John Ulrich, Craig Tweedie, Craig E. Wullschleger, Stan D. TI Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets SO WATER RESOURCES RESEARCH LA English DT Article DE active layer thickness; thaw depth; frozen ground; ice wedge polygons; barrow; Alaska; eco-hydro-geo-thermal regimes ID NORTH-CENTRAL ALASKA; KUPARUK RIVER-BASIN; CLIMATE-CHANGE; GROUND TEMPERATURES; MODEL PERFORMANCE; MACKENZIE DELTA; PERMAFROST; USA; TERRITORIES; VARIABILITY AB Landscape attributes that vary with microtopography, such as active layer thickness (ALT), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km(2) area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r(2)=0.76, RMSE 4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT, consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data. Key Points First effort to map the ALT using fine resolution remotely sensed data A blended methodology incorporating RS data and statistical manipulation Smaller-scale ALT is controlled by eco-hydro-geo variables C1 [Gangodagamage, Chandana; Rowland, Joel C.; Brumby, Steven P.; Wilson, Cathy J.; Altmann, Garrett L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hubbard, Susan S.; Wainwright, Haruko; Dafflon, Baptiste; Peterson, John; Ulrich, Craig] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liljedahl, Anna K.] Univ Alaska Fairbanks, Water & Environm Res Ctr, Fairbanks, AK USA. [Liljedahl, Anna K.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Tweedie, Craig E.] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Gangodagamage, C (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM chhandana@gmail.com RI Wainwright, Haruko/A-5670-2015; Dafflon, Baptiste/G-2441-2015; Hubbard, Susan/E-9508-2010; Wullschleger, Stan/B-8297-2012; OI Wainwright, Haruko/0000-0002-2140-6072; Wullschleger, Stan/0000-0002-9869-0446; Gangodagamage, Chandana/0000-0001-6511-1711 FU Next-Generation Ecosystem Experiments Arctic (NGEE-Arctic) project - Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX This project was funded by the Next-Generation Ecosystem Experiments Arctic (NGEE-Arctic) project, which is supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231. Authors would like to thanks the three anonymous reviewers for their helpful comments. Helpful discussions with Jacques Cloutier from Aero-Metric, Inc. Anchorage, AK are greatly appreciated. NR 83 TC 17 Z9 17 U1 4 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG PY 2014 VL 50 IS 8 BP 6339 EP 6357 DI 10.1002/2013WR014283 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AQ2QJ UT WOS:000342632300005 ER PT J AU Stein, CA Cerrone, A Ozturk, T Lee, S Kenesei, P Tucker, H Pokharel, R Lind, J Hefferan, C Suter, RM Ingraffea, AR Rollett, AD AF Stein, Clayton A. Cerrone, Albert Ozturk, Tugce Lee, Sukbin Kenesei, Peter Tucker, Harris Pokharel, Reeju Lind, Jonathan Hefferan, Christopher Suter, Robert M. Ingraffea, Anthony R. Rollett, Anthony D. TI Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE LSHR; Fatigue; Slip accumulation; Coherent Sigma 3; Crack initiation; Superalloy ID GRAIN-SIZE; ROOM-TEMPERATURE; NUMERICAL-METHOD; NIMONIC PE16; COPPER; MICROSTRUCTURE; COMPOSITES; MICROSCOPY; TEXTURE; TEM AB The study of fatigue in metals, and fatigue initiation specifically, lends itself to analysis via an emerging set of characterization and modeling tools that describe polycrystals on the meso- or microstructural length scale. These include three-dimensional characterization techniques, elastic anisotropic and visco-plastic stress models, new approaches to the statistical description of stress and strain distributions, synthetic microstructure modeling, and improved tools for manipulating the large datasets generated. A specific example of analysis in both 2D and 3D of fatigue cracks in a nickel-based superalloy is given where all the cracks are effectively coincident with coherent twin boundaries. A spectral method is used to analyze the stress state based on a fully anisotropic elastic calculation. The results indicate that, although a high resolved shear stress is associated with the locations of the observed cracks, the length of the trace of the twin boundary is more strongly correlated with crack formation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Stein, Clayton A.; Ozturk, Tugce; Tucker, Harris; Pokharel, Reeju; Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Cerrone, Albert; Ingraffea, Anthony R.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Lee, Sukbin] UNIST, Sch Mech & Adv Mat Engn, Ulsan, South Korea. [Kenesei, Peter] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Pokharel, Reeju] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Lind, Jonathan; Hefferan, Christopher; Suter, Robert M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Lind, Jonathan] RJ Lee Grp, Monroeville, PA 15146 USA. [Hefferan, Christopher] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Stein, CA (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM claystein@cmu.edu; arc247@cornell.edu; tozturk@andrew.cmu.edu; sukbinlee@unist.ac.kr; kenesei@aps.anl.gov; reeju@lanl.gov; lind.jf@gmail.com; chefferan@gmail.com; suter@andrew.cmu.edu; ari1@comell.edu; rollett@cmu.edu RI Suter, Robert/P-2541-2014; Rollett, Anthony/A-4096-2012; LEE, SUKBIN/A-4936-2012; Ozturk, Tugce/E-9317-2016 OI Suter, Robert/0000-0002-0651-0437; Rollett, Anthony/0000-0003-4445-2191; Ozturk, Tugce/0000-0001-5040-5821 FU AFOSR Discovery Challenge Thrust Grant [FA9550-10-1-0213]; National Science Foundation [DMR080072]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by an AFOSR Discovery Challenge Thrust Grant #FA9550-10-1-0213. This Research was also supported in part by the National Science Foundation through XSEDE resources provided by Texas Advanced Computing Center under Grant No. DMR080072. Materials and testing were performed at the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton, Ohio, courtesy of Drs. R. John and S. Jha. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. Orientation maps were reconstructed using IceNine, a software implementation of Li and Suter [41] developed by S.F. Li. Dr. R. Lebensohn at the Los Alamos National Laboratory is thanked for the use of his spectral method code. NR 58 TC 17 Z9 17 U1 10 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD AUG PY 2014 VL 18 IS 4 SI SI BP 244 EP 252 DI 10.1016/j.cossms.2014.06.001 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AP7PW UT WOS:000342270200009 ER PT J AU Meng, JY Endo, T AF Meng, Jiayuan Endo, Toshio TI Special Issue on Applications for the Heterogeneous Computing Era SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Meng, Jiayuan] Argonne Natl Lab, Leadership Comp Facil Div, Argonne, IL 60439 USA. [Endo, Toshio] Tokyo Inst Technol, Global Sci Informat & Comp Ctr GSIC, Tokyo, Japan. RP Meng, JY (reprint author), Argonne Natl Lab, Leadership Comp Facil Div, Argonne, IL 60439 USA. EM jmeng@alcf.anl.gov; endo@is.titech.ac.jp NR 0 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2014 VL 28 IS 3 SI SI BP 253 EP 254 DI 10.1177/1094342014527657 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA AP9GS UT WOS:000342387600001 ER PT J AU You, Y Fu, HH Song, SL Dehnavi, MM Gan, L Huang, XM Yang, GW AF You, Yang Fu, Haohuan Song, Shuaiwen Leon Dehnavi, Maryam Mehri Gan, Lin Huang, Xiaomeng Yang, Guangwen TI Evaluating multi-core and many-core architectures through accelerating the three-dimensional Lax-Wendroff correction stencil SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Complex stencil; 3D wave forward modeling; Kepler GPU; Intel Xeon Phi; optimization techniques; performance power analysis ID WAVE-PROPAGATION; HIGH-ORDER; GPU; PROCESSORS; POWER; CARDS AB Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time-consuming, which greatly limits their performance and power efficiency. In this paper, we accelerate the forward-modeling technique on the latest multi-core and many-core architectures such as Intel (R) Sandy Bridge CPUs, NVIDIA Fermi C2070 GPUs, NVIDIA Kepler K20X GPUs, and the Intel (R) Xeon Phi co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels. For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best performance. Although our stencil with 114 component variables poses several great challenges for performance optimization, and the low stencil ratio between computation and memory access is too inefficient to fully take advantage of our evaluated architectures, we manage to achieve performance efficiencies ranging from 4.730% to 20.02% of the theoretical peak. We also conduct cross-platform performance and power analysis (focusing on Kepler GPU and MIC) and the results could serve as insights for users selecting the most suitable accelerators for their targeted applications. C1 [You, Yang; Fu, Haohuan; Gan, Lin; Huang, Xiaomeng; Yang, Guangwen] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. [Song, Shuaiwen Leon] Pacific NW Natl Lab, Performance Anal Lab, Richland, WA 99352 USA. [Dehnavi, Maryam Mehri] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Fu, Haohuan; Gan, Lin; Huang, Xiaomeng; Yang, Guangwen] Tsinghua Univ, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China. RP You, Y (reprint author), Tsinghua Univ, Dept Comp Sci & Technol, FIT 3-126, Beijing 100084, Peoples R China. EM you-y12@mails.tsinghua.edu.cn FU National Natural Science Foundation of China [61303003, 41374113]; National High-tech R&D (863) Program of China [2013AA01A208] FX This work was supported in part by the National Natural Science Foundation of China (grant numbers 61303003 and 41374113) and the National High-tech R&D (863) Program of China (grant number 2013AA01A208). NR 27 TC 0 Z9 0 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2014 VL 28 IS 3 SI SI BP 301 EP 318 DI 10.1177/1094342014524807 PG 18 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA AP9GS UT WOS:000342387600005 ER PT J AU Schroeder, U Yurchuk, E Muller, J Martin, D Schenk, T Polakowski, P Adelmann, C Popovici, MI Kalinin, SV Mikolajick, T AF Schroeder, Uwe Yurchuk, Ekaterina Mueller, Johannes Martin, Dominik Schenk, Tony Polakowski, Patrick Adelmann, Christoph Popovici, Mihaela I. Kalinin, Sergei V. Mikolajick, Thomas TI Impact of different dopants on the switching properties of ferroelectric hafniumoxide SO JAPANESE JOURNAL OF APPLIED PHYSICS LA English DT Article ID FENAND FLASH MEMORY; CAPACITORS; LOGIC; FILMS; HFO2 AB The wake-up behavior of ferroelectric thin film capacitors based on doped hafnium oxide dielectrics in TiN-based metal-insulator-metal-structures is reported. After field cycling a remanent polarization up to 40 mu C/cm(2) and a high coercive field of about 1 MV/cm was observed. Doping of HfO2 by different dopants with a crystal radius ranging from 54 pm (Si) to 132 pm (Sr) was evaluated. In all cases, an improved polarization-voltage hysteresis after wake-up cycling is visible. For smaller dopant atoms like Si and Al stronger pinching of the polarization hysteresis appeared with increasing dopant concentration and proved to be stable during cycling. (C) 2014 The Japan Society of Applied Physics C1 [Schroeder, Uwe; Yurchuk, Ekaterina; Martin, Dominik; Schenk, Tony; Mikolajick, Thomas] NaMLab gGmbH, D-01187 Dresden, Germany. [Mueller, Johannes; Polakowski, Patrick] Fraunhofer IPMS CNT, D-01099 Dresden, Germany. [Adelmann, Christoph; Popovici, Mihaela I.] Imec, B-3001 Leuven, Belgium. [Mikolajick, Thomas] Tech Univ Dresden, IHM, D-01187 Dresden, Germany. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Schroeder, U (reprint author), NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany. EM Uwe.Schroeder@namlab.com RI Mikolajick, Thomas/F-8427-2011; Kalinin, Sergei/I-9096-2012; OI Mikolajick, Thomas/0000-0003-3814-0378; Kalinin, Sergei/0000-0001-5354-6152; Adelmann, Christoph/0000-0002-4831-3159 FU European Fund for Regional Development; Free State of Saxony (Heiko/Cool Memory project) FX The authors acknowledge T. Boscke and D. Brauhaus for their initial work on ferroelectric HfO2, and S. Muller, and T. Schlosser for sample preparation and characterization. This work was financially supported by the European Fund for Regional Development and the Free State of Saxony (Heiko/Cool Memory project). NR 30 TC 38 Z9 38 U1 10 U2 63 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0021-4922 EI 1347-4065 J9 JPN J APPL PHYS JI Jpn. J. Appl. Phys. PD AUG PY 2014 VL 53 IS 8 SI 1 BP 85 EP 89 DI 10.7567/JJAP.53.08LE02 PG 5 WC Physics, Applied SC Physics GA AQ1EC UT WOS:000342523700018 ER PT J AU Humble, TS Sadlier, RJ AF Humble, Travis S. Sadlier, Ronald J. TI Software-defined quantum communication systems SO OPTICAL ENGINEERING LA English DT Article DE quantum communication; software-defined systems; quantum networks; quantum engineering; software engineering ID QKD SYSTEM; RECONCILIATION; CHANNELS; STATES; FPGA AB Quantum communication (QC) systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for QC engineering is designing and prototyping these systems to evaluate the proposed capabilities. We apply the paradigm of software-defined communication for engineering QC systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose QC terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the superdense coding protocol as an example, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We conclude that the software-defined QC provides a robust framework in which to explore the large design space offered by this new regime of communication. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Humble, Travis S.; Sadlier, Ronald J.] Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN 37831 USA. [Humble, Travis S.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Sadlier, Ronald J.] Univ Rhode Isl, Kingston, RI 02881 USA. RP Humble, TS (reprint author), Oak Ridge Natl Lab, Quantum Comp Inst, MS 6015,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM humblets@ornl.gov OI Sadlier, Ronald/0000-0003-2922-1125 FU Department of Energy Science Undergraduate Laboratory Internships (SULI) program; U.S. Government [DE-AC05-00OR22725] FX T. S. H. thanks Henry Humble for comments regarding the SDQC design in Sec. 2, Toby Flynn and Laura Ann Anderson for help evaluating the Zynq middleware, and Ali Ismail for initial efforts in defining the middleware interface. R. J. S. thanks the Department of Energy Science Undergraduate Laboratory Internships (SULI) program for support. This work was supported by the Defense Threat Reduction Agency. This manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. NR 29 TC 5 Z9 5 U1 4 U2 33 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD AUG PY 2014 VL 53 IS 8 AR 086103 DI 10.1117/1.OE.53.8.086103 PG 8 WC Optics SC Optics GA AO2YT UT WOS:000341195300038 ER PT J AU Yashchuk, VV Tyurin, YN Tyurina, AY AF Yashchuk, Valeriy V. Tyurin, Yury N. Tyurina, Anastasia Y. TI Application of the time-invariant linear filter approximation to parametrization of surface metrology with high-quality x-ray optics SO OPTICAL ENGINEERING LA English DT Article DE x-ray optics; surface metrology; statistical modeling; metrology parametrization; time-invariant linear filter; autoregressive moving average; surface topography forecasting ID COMPONENT MEASURING MACHINE; ALGORITHM; MODEL AB We investigate the time-invariant linear filter (TILF) approach to optimally parameterize the surface metrology of high-quality x-ray optics considered as a result of a stationary uniform random process. The approach is a generalization of autoregressive moving average (ARMA) modeling of one-dimensional slope measurements with x-ray mirrors considered. We show that the suggested TILF approximation has all the advantages of one-sided autoregressive and ARMA modeling, allowing a high degree of confidence when fitting the metrology data with a limited number of parameters. Compared to ARMA modeling, the TILF approximation gains in terms of better fitting accuracy and the absence of the causality limitation. Moreover, the TILF approach can be directly generalized to two-dimensional random fields. With the determined model parameters, the surface topography of prospective beamline optics can be reliably forecast before they are fabricated. These forecast metrology data, containing essential and reliable statistical information about the existing optics which are fabricated by the same vendor and technology, but generally, have different sizes, and slope and height root-mean-square variations, are vitally needed for numerical simulations of the performance of new x-ray beamlines and those under upgrade. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. C1 [Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tyurin, Yury N.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia. [Tyurin, Yury N.] Second Star Algonumer, Needham, MA 02494 USA. [Tyurina, Anastasia Y.] Sci Syst, Woburn, MA 01801 USA. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM vvyashchuk@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; United States Government FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference, herein, to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed, herein, do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. NR 24 TC 6 Z9 6 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD AUG PY 2014 VL 53 IS 8 AR 084102 DI 10.1117/1.OE.53.8.084102 PG 9 WC Optics SC Optics GA AO2YT UT WOS:000341195300018 ER PT J AU Aleksie, J Ansoldi, S Antonelli, LA Antoranz, P Babie, A Bangale, P Barrio, JA Gonzalez, JB Bedriarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, E Bretz, T Carmona, E Carosi, A Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzio, F De Angelis, A De Caneva, G De Lotto, B Wilhelmi, ED Mendez, CD Doert, M Presters, DD Dorner, D Doro, M Einecke, S Eisenacher, D Elsaesser, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Godinovie, N Munoz, AG Gozzini, SR Hadasch, D Hanabata, Y Hayashida, M Herrera, J Hildebrand, D Hose, J Hrupec, D Idec, W Kadenius, V Kellermann, H Kodani, K Konno, Y Krause, J Kubo, H Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Lombardi, S Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Lozano, I Makariev, M Mallot, K Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Munar-Adrover, P Nakajima, D Niedzwiecki, A Nilsson, K Nishijima, K Noda, K Nowak, N Orito, R Overkemping, A Paiano, S Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Moroni, PGP Prandinin, E Preziuso, S Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Rugamer, S Saggion, A Saito, T Saito, K Satalecka, K Scalzotto, V Scapin, V Schultz, C Schweizer, T Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Spanier, E Stamatescu, V Stamerra, A Steinbring, T Storz, J Strzys, M Takalo, L Takami, H Tavecchio, E Temnikov, P Terzie, T Tescaro, D Teshima, M Thaele, J Tibolla, O Torres, DF Toyama, T Treves, A Uellenbeck, M Vogler, P Wagner, RM Zanin, R Bogosavljevie, M Ioannou, Z Mauche, CW Palaiologou, EV Perez-Torres, MA Tuommen, T AF Aleksie, J. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babie, A. Bangale, P. Barrio, J. A. Becerra Gonzalez, J. Bedriarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, E. Bretz, T. Carmona, E. Carosi, A. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzio, F. De Angelis, A. De Caneva, G. De Lotto, B. Wilhelmi, E. de Ona Delgado Mendez, C. Doert, M. Presters, D. Dominis Dorner, D. Doro, M. Einecke, S. Eisenacher, D. Elsaesser, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Terrats, D. Garrido Gaug, M. Godinovie, N. Gonzalez Munoz, A. Gozzini, S. R. Hadasch, D. Hanabata, Y. Hayashida, M. Herrera, J. Hildebrand, D. Hose, J. Hrupec, D. Idec, W. Kadenius, V. Kellermann, H. Kodani, K. Konno, Y. Krause, J. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Lombardi, S. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Lozano, I. Makariev, M. Mallot, K. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Munar-Adrover, P. Nakajima, D. Niedzwiecki, A. Nilsson, K. Nishijima, K. Noda, K. Nowak, N. Orito, R. Overkemping, A. Paiano, S. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Moroni, P. G. Prada Prandinin, E. Preziuso, S. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Ruegamer, S. Saggion, A. Saito, T. Saito, K. Satalecka, K. Scalzotto, V. Scapin, V. Schultz, C. Schweizer, T. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Spanier, E. Stamatescu, V. Stamerra, A. Steinbring, T. Storz, J. Strzys, M. Takalo, L. Takami, H. Tavecchio, E. Temnikov, P. Terzie, T. Tescaro, D. Teshima, M. Thaele, J. Tibolla, O. Torres, D. F. Toyama, T. Treves, A. Uellenbeck, M. Vogler, P. Wagner, R. M. Zanin, R. Bogosavljevie, M. Ioannou, Z. Mauche, C. W. Palaiologou, E. V. Perez-Torres, M. A. Tuommen, T. CA MAGIC Collaboration TI MAGIC search for VHE gamma-ray emission from AE Aquarii in a multiwavelength context SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; radiation mechanisms: non-thermal; novae, cataclysmic variables; gamma rays: stars ID MAGNETIZED WHITE-DWARF; PULSATIONS; TELESCOPE; DISCOVERY; PROPELLER; FLARES; STARS; BURST; AQR AB Context. It has been claimed that the nova-like cataclysmic variable AE Aquarii (AE Aqr) is a very-high-energy (VHE, E > 100 GeV) source both on observational and theoretical grounds. Aims. We search for VHE gamma-ray emission from AE Aqr during different states of the source at several wavelengths to confirm or rule out previous claims of detection of gamma-ray emission from this object. Methods. We report on observations of AE Aqr performed by MAGIC. The source was observed during 12 h as part of a multiwavelength campaign carried out between May and June 2012 covering the optical, X-ray, and gamma-ray ranges. Besides MAGIC, the other facilities involved were the KVA, Skinakas, and Vidojevica telescopes in the optical and Swift in X-rays. We calculated integral upper limits coincident with different states of the source in the optical. We computed upper limits to the pulsed emission limiting the signal region to 30% of the phaseogram and we also searched for pulsed emission at different frequencies applying the Rayleigh test. Results. AE Aqr was not detected at VHEs during the multiwavelength campaign. We establish integral upper limits at the 95% confidence level for the steady emission assuming the differential flux proportional to a power-law function d phi/dE proportional to E-r, with a Crab-like photon spectral index of Gamma = 2.6. The upper limit above 200 GeV is 6.4 x 10(-12) cm(-2) s(-1) and above 1 TeV is 7.4 x 10(-13) cm(-2) s(-1). We obtained an upper limit for the pulsed emission of 2.6 x 10(-12) cm(-2) s(-1) for energies above 200 GeV. Applying the Rayleigh test for pulsed emission at different frequencies we did not find any significant signal. Conclusions. Our results indicate that AE Aqr is not a VHE gamma-ray emitter at the level of emission previously claimed. We have established the most constraining upper limits for the VHE gamma-ray emission of AE Aqr. C1 [Aleksie, J.; Blanch, O.; Cortina, J.; Gonzalez Munoz, A.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Rico, J.; Sitarek, J.; Stamatescu, V.] IFAE, Bellaterra 08193, Spain. [Ansoldi, S.; Biasuzzi, B.; De Angelis, A.; De Lotto, B.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Angelis, A.; De Lotto, B.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, E.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.; Preziuso, S.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.; Preziuso, S.] INFN Pisa, I-53100 Siena, Italy. [Babie, A.; Presters, D. Dominis; Godinovie, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzie, T.] Univ Rijeka, Croatian MAG Consortium, Rudjer Boskov Inst, Zagreb 10000, Croatia. [Babie, A.; Presters, D. Dominis; Godinovie, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzie, T.] Univ Split, Zagreb 10000, Croatia. [Bangale, P.; Borracci, E.; Colin, P.; Dazzio, F.; Fruck, C.; Hose, J.; Kellermann, H.; Krause, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Noda, K.; Nowak, N.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Lozano, I.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Tescaro, D.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Bedriarek, W.; Idec, W.; Niedzwiecki, A.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyk, M.; Gozzini, S. R.; Mallot, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Biland, A.; Hildebrand, D.; Prandinin, E.; Vogler, P.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Bretz, T.; Dorner, D.; Eisenacher, D.; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Ruegamer, S.; Spanier, E.; Steinbring, T.; Storz, J.; Tibolla, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Wilhelmi, E. de Ona; Hadasch, D.] Inst Space Sci, Barcelona 08193, Spain. [Doert, M.; Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.; Uellenbeck, M.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Doro, M.; Mariotti, M.; Paiano, S.; Saggion, A.; Scalzotto, V.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [Doro, M.; Mariotti, M.; Paiano, S.; Saggion, A.; Scalzotto, V.; Schultz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, Unitat Fis Radiac, Dept Fis, Bellaterra 08193, Spain. [Font, L.; Terrats, D. Garrido; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Kyoto Univ, Div Phys & Astron, Japanese MAG Consortium, Kyoto 6068501, Japan. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.; Tuommen, T.] Univ Turku, Finnish MAG Consortium, Tuorla Observ, Oulu 900147, Finland. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.; Tuommen, T.] Univ Oulu, Dept Phys, Oulu 900147, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Moroni, P. G. Prada] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] Inst Space Sci, Barcelona 08193, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Italy. [Persic, M.] INAF Trieste, I-34131 Trieste, Italy. [Bogosavljevie, M.] Astron Observ Belgrade, Belgrade 11060, Serbia. [Ioannou, Z.] Sultan Qaboos Univ, Coll Sci, Dept Phys, PC-123 Muscat, Oman. [Mauche, C. W.] Lawrence Livermore Natl Lab, Livermore, CA 95125 USA. [Palaiologou, E. V.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Perez-Torres, M. A.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. RP Lopez-Coto, R (reprint author), IFAE, Campus UAB, Bellaterra 08193, Spain. EM hadasch@ieec.uab.es; rlopez@ifae.es RI Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Ribo, Marc/B-3579-2015; GAug, Markus/L-2340-2014; Antoranz, Pedro/H-5095-2015; Miranda, Jose Miguel/F-2913-2013; Fonseca Gonzalez, Maria Victoria/I-2004-2015; Delgado, Carlos/K-7587-2014; Stamatescu, Victor/C-9945-2016; Makariev, Martin/M-2122-2016; Torres, Diego/O-9422-2016; Barrio, Juan/L-3227-2014; Martinez Rodriguez, Manel/C-2539-2017; Cortina, Juan/C-2783-2017; OI Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; GAug, Markus/0000-0001-8442-7877; Antoranz, Pedro/0000-0002-3015-3601; Miranda, Jose Miguel/0000-0002-1472-9690; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Delgado, Carlos/0000-0002-7014-4101; Stamatescu, Victor/0000-0001-9030-7513; Torres, Diego/0000-0002-1522-9065; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; De Lotto, Barbara/0000-0003-3624-4480; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; LA BARBERA, ANTONINO/0000-0002-5880-8913; Persic, Massimo/0000-0003-1853-4900 NR 46 TC 1 Z9 1 U1 1 U2 18 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2014 VL 568 AR A109 DI 10.1051/0004-6361/201424072 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2VZ UT WOS:000341185900107 ER PT J AU Betoule, M Kessler, R Guy, J Mosher, J Hardin, D Biswas, R Astier, P El-Hage, P Konig, M Kuhlmann, S Marriner, J Pain, R Regnault, N Balland, C Bassett, BA Brown, PJ Campbell, H Carlberg, RG Cellier-Holzern, F Cinabro, D Conley, A D'Andrea, CB DePoy, DL Doi, M Ellis, RS Fabbro, S Filippenko, AV Foley, RJ Frieman, JA Fouchez, D Galbany, L Goobar, A Gupta, RR Hill, GJ Hlozek, R Hogan, CJ Hook, IM Howell, DA Jha, SW Le Guillou, L Leloudas, G Lidrnan, C Marshall, JL Moller, A Mourao, AM Neveu, J Nichol, R Olmstead, MD Palanque-Delabrouille, N Perlinutter, S Prieto, JL Pritchet, CJ Richinond, M Riess, AG Ruhlmann-Kleider, V Sako, M Sehahmaneche, K Schneider, DP Smith, M Sollerman, J Sullivan, M Walton, NA Wheeler, CJ AF Betoule, M. Kessler, R. Guy, J. Mosher, J. Hardin, D. Biswas, R. Astier, P. El-Hage, P. Konig, M. Kuhlmann, S. Marriner, J. Pain, R. Regnault, N. Balland, C. Bassett, B. A. Brown, P. J. Campbell, H. Carlberg, R. G. Cellier-Holzern, F. Cinabro, D. Conley, A. D'Andrea, C. B. DePoy, D. L. Doi, M. Ellis, R. S. Fabbro, S. Filippenko, A. V. Foley, R. J. Frieman, J. A. Fouchez, D. Galbany, L. Goobar, A. Gupta, R. R. Hill, G. J. Hlozek, R. Hogan, C. J. Hook, I. M. Howell, D. A. Jha, S. W. Le Guillou, L. Leloudas, G. Lidrnan, C. Marshall, J. L. Moeller, A. Mourao, A. M. Neveu, J. Nichol, R. Olmstead, M. D. Palanque-Delabrouille, N. Perlinutter, S. Prieto, J. L. Pritchet, C. J. Richinond, M. Riess, A. G. Ruhlmann-Kleider, V. Sako, M. Sehahmaneche, K. Schneider, D. P. Smith, M. Sollerman, J. Sullivan, M. Walton, N. A. Wheeler, C. J. TI Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; distance scale dark energy ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; BARYON ACOUSTIC-OSCILLATIONS; IA LIGHT CURVES; MICROWAVE BACKGROUND ANISOTROPIES; PHOTOMETRY DATA RELEASE; HOST GALAXY PROPERTIES; DARK ENERGY SURVEY; LEGACY SURVEY; LOW-REDSHIFT AB Aims. We present cosmological constraints from a joint analysis of type la supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z < 0.1), all three seasons from the SDSS-11 (0.05 < z < 0.4), and three years from SNLS (0.2 < z < 1), and it totals 740 spectroscopically confirmed type la supernovae with high quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: I) the addition of the full SDSS-II spectroscopically-confirmed SN la sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN la light curves. Results. We produce recalibrated SN la light curves and associated distances for the SDSS-II and SNLS samples. The large SOSS-II sample provides an effective, independent, low -z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low -z SN sample. For a flat ACDM cosmology, we find Omega(m), = 0.295 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8 sigma (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark energy equation of state parameter omega = -1.018 +/- 0,057 (sral+sys) for a fiat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: omega = 59 -1.027 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy. C1 [Betoule, M.; Guy, J.; Hardin, D.; Astier, P.; El-Hage, P.; Konig, M.; Pain, R.; Regnault, N.; Balland, C.; Cellier-Holzern, F.; Le Guillou, L.; Sehahmaneche, K.] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, F-75252 Paris 05, France. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kessler, R.; Frieman, J. A.; Hogan, C. J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Guy, J.; Perlinutter, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mosher, J.; Gupta, R. R.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Biswas, R.; Kuhlmann, S.; Gupta, R. R.] Argonne Natl Lab, Lemont, IL 60439 USA. [Marriner, J.; Frieman, J. A.; Hogan, C. J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Bassett, B. A.] African Inst Math Sci, Cape Town, South Africa. [Bassett, B. A.] South African Astron Observ, Cape Town, South Africa. [Bassett, B. A.] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Brown, P. J.; DePoy, D. L.; Marshall, J. L.; Prieto, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundame Ph, College Stn, TX 77843 USA. [Brown, P. J.; DePoy, D. L.; Marshall, J. L.; Prieto, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Campbell, H.; Walton, N. A.] Inst Astron, Cambridge CB4 0HA, England. [Campbell, H.; D'Andrea, C. B.; Nichol, R.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carlberg, R. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Cinabro, D.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Doi, M.] Univ Tokyo, Grad Sch Sci, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Doi, M.] Univ Tokyo, Res Ctr Early Universe, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Doi, M.] Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Ellis, R. S.] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA. [Fabbro, S.; Pritchet, C. J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8T 1M8, Canada. [Filippenko, A. V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Foley, R. J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Fouchez, D.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Galbany, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, Bellaterra 08193, Barcelona, Spain. [Galbany, L.] Univ Chile, Dept Astron, Santiago, Chile. [Goobar, A.; Leloudas, G.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Hill, G. J.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Hlozek, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hook, I. M.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Lidrnan, C.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Moeller, A.; Neveu, J.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.] CEA, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Mourao, A. M.] Univ Lisbon, Inst Super Tecn, CENTRA Ctr Multidisciplinar Astrofis, P-1699 Lisbon, Portugal. [Mourao, A. M.] Univ Lisbon, Inst Super Tecn, Dep Fis, P-1699 Lisbon, Portugal. [Olmstead, M. D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Richinond, M.] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA. [Riess, A. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Riess, A. G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Smith, M.] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. [Sollerman, J.] Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Wheeler, C. J.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Betoule, M (reprint author), Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 05, France. EM marc.betoule@lpnhe.in2p3.fr RI Mourao, Ana/K-9133-2015; Galbany, Lluis/A-8963-2017; OI Mourao, Ana/0000-0002-0855-1849; Hook, Isobel/0000-0002-2960-978X; Galbany, Lluis/0000-0002-1296-6887; Sollerman, Jesper/0000-0003-1546-6615; Moller, Anais/0000-0001-8211-8608; Neveu, Jeremy/0000-0002-6966-5946; Sullivan, Mark/0000-0001-9053-4820 FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Cambridge University; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST) Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; ESO New Technology Telescope at La Saila Observatory [77.A-0437, 78.A-0325, 79.A-0715]; W. M. Keck Foundation; CNRS/INT2P3; CNRS/INSU; CEA; Swedish Research Council [623-2011-7117]; DNRF; National Science Foundation [1009457]; France and Chicago Collaborating in the Sciences (FACCTS); Kavli Institute for Cosmological Physics at the University of Chicago; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST 1211916]; Royal Society FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation. the US Department of Energy, the National Aeronautics and Space Administration. the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University. University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study. the Japan Participation Group. Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST) Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University. the United States Naval Observatory, and the University of Washington. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchem and Georg-August-Universitat Gottingen, The HET is named in honor of its principal benefactors, William E Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Institut de Astronomia de la Universidad Nacional Autonoma de Mexico, The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley. and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac New Group, and the Nordic Optical Telescope as operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, both on the island of La Patina in the Spanish Observatorio del Roque de los Muchachos of the Institut de Astrofisica de Canarias. Observations at the ESO New Technology Telescope at La Saila Observatory were made under programme IDs 77.A-0437, 78.A-0325, and 79.A-0715. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy. Inc. (AURA) Under cooperative agreement with the National Science Foundation, The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University. and the National Optical Astronomy Observatories. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; The South African Large Telescope of the South African Astronomical Observatory is operated by a partnership between the National Research Foundation of South Africa, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences. the Hobby-Eberly Telescope Board, Rutgers University, Georg-August-Universitat Gottingen, University of Wisconsin Madison, University of Canterbury. University of North Carolina Chapel Hill. Dartmough College, Carnegie Mellon University, and the United Kingdom SALT consortium. The Telescopio Nazionale Galileo (TNG) is operated by the Fundacion Galileo Galilei of the Italian INAF (Istituo Nazionale di Astrotisica) on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This paper is based in part on observations obtained with MegaPrirne/MegaCam, a joint project of CFHT and CEA/IRFU. at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Part of the results are derived from observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. We also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We acknowledge the use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was completed in part with resources provided by the University of Chicago Research Computing Center, The French authors acknowledge support from CNRS/INT2P3, CNRS/INSU and CEA. G.L. is supported by the Swedish Research Council through gram No, 623-2011-7117. DARK is funded by DNRF. J.F. and R.K. are grateful for the support of National Science Foundation grant 1009457. a grant from France and Chicago Collaborating in the Sciences (FACCTS), and support from the Kavli Institute for Cosmological Physics at the University of Chicago. A.V.F. has received generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST 1211916. MSu acknowledges support from the Royal Society. NR 164 TC 249 Z9 249 U1 3 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2014 VL 568 AR A22 DI 10.1051/0004-6361/201423413 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2VZ UT WOS:000341185900037 ER PT J AU de Gasperin, F Evoli, C Bruggen, M Hektor, A Cardillo, M Thorman, P Dawson, WA Morrison, CB AF de Gasperin, F. Evoli, C. Brueggen, M. Hektor, A. Cardillo, M. Thorman, P. Dawson, W. A. Morrison, C. B. TI Discovery of the supernova remnant G351.0-5.4 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: supernova remnants; radio continuum: ISM; gamma rays: ISM ID LARGE-AREA TELESCOPE; COSMIC-RAY ACCELERATION; SKY SURVEY; CATALOG; NRAO; CALIBRATION; CHALLENGES; EMISSION; MHZ AB While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio emission, we have serendipitously discovered extended radio emission close to the Galactic plane. The radio morphology suggests the presence of a previously unknown Galactic supernova remnant. An unclassified gamma-ray source detected by EGRET (3EG J1744-3934) is present in the same location and may stem from the interaction between high-speed particles escaping the remnant and the surrounding interstellar medium. Our aim is to confirm the presence of a previously unknown supernova remnant and to determine a possible association with the gamma-ray emission 3EG 317443934. We have conducted optical and radio follow-ups of the target using the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope (GMRT). We then combined these data with archival radio and gamma-ray observations. While we detected the extended emission in four different radio bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been identified. Given its morphology and brightness, it is likely that the radio mission is caused by an old supernova remnant no longer visible in the optical band. Although an unclassified EGRET source is co located with the supernova remnant, Fermi-LAT data do not show a significant gamma-ray excess that is correlated with the radio emission. However, in the radial distribution of the gamma-ray events, a spatially extended feature is related to supernova remnant at a confidence level of similar to 1.5 sigma. We classify the newly discovered extended emission in the radio band as the old remnant of a previously unknown Galactic supernova: SNR G351.0-5.4, C1 [de Gasperin, F.; Brueggen, M.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Evoli, C.] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany. [Hektor, A.] NICPB, EE-10143 Tallinn, Estonia. [Cardillo, M.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Thorman, P.; Dawson, W. A.; Morrison, C. B.] Univ Calif Davis, Davis, CA 95616 USA. [Dawson, W. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Morrison, C. B.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. RP de Gasperin, F (reprint author), Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM fdg@hs.uni-hamburg.de RI Hektor, Andi/G-1804-2011; OI Hektor, Andi/0000-0001-7873-8118; Cardillo, Martina/0000-0001-8877-3996; Evoli, Carmelo/0000-0002-6023-5253; de Gasperin, Francesco/0000-0003-4439-2627 NR 26 TC 2 Z9 2 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2014 VL 568 AR A107 DI 10.1051/0004-6361/201424191 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2VZ UT WOS:000341185900119 ER PT J AU Malace, S Gaskell, D Higinbotham, DW Cloet, IC AF Malace, Simona Gaskell, David Higinbotham, Douglas W. Cloet, Ian C. TI The challenge of the EMC effect: Existing data and future directions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE EMF effect; deep inelastic scattering; nucleons in the nucleus ID DEEP-INELASTIC-SCATTERING; STRUCTURE-FUNCTION RATIOS; DEUTERON STRUCTURE FUNCTIONS; NUCLEAR-STRUCTURE FUNCTIONS; QUARK-DIQUARK MODEL; LEPTON SCATTERING; MUON SCATTERING; ELECTRON-SCATTERING; DIMUON PRODUCTION; IRON TARGETS AB Since the discovery that the ratio of inclusive charged lepton (per-nucleon) cross-sections from a nucleus A to the deuteron is not unity - even in deep inelastic scattering kinematics - a great deal of experimental and theoretical effort has gone into understanding the phenomenon. The EMC effect, as it is now known, shows that even in the most extreme kinematic conditions the effects of the nucleon being bound in a nucleus cannot be ignored. In this paper, we collect the most precise data available for various nuclear to deuteron ratios, as well as provide a commentary on the current status of the theoretical understanding of this thirty year old effect. C1 [Malace, Simona; Gaskell, David; Higinbotham, Douglas W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23601 USA. [Cloet, Ian C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Malace, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23601 USA. EM doug@jlab.org RI Higinbotham, Douglas/J-9394-2014 OI Higinbotham, Douglas/0000-0003-2758-6526 FU United States Department of Energy's Office of Science [DE-AC02-06CH11357, DE-AC05-06OR23177] FX The authors would like to acknowledge the many helpful conversations and inputs from Alberto Accardi. This work is supported by the United States Department of Energy's Office of Science contract number DE-AC02-06CH11357 under which UChicago Argonne, LCC operates Argonne National Laboratory and contract number DE-AC05-06OR23177 under which Jefferson Science Associates, LCC operates the Thomas Jefferson National Accelerator Facility. NR 120 TC 17 Z9 17 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD AUG PY 2014 VL 23 IS 8 AR 1430013 DI 10.1142/S0218301314300136 PG 35 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP2VW UT WOS:000341934900004 ER PT J AU Aab, A Abreu, P Aglietta, M Ahlers, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Aramo, C Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Badescu, AM Barber, KB Bauml, J Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Buchholz, P Bueno, A Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Cheng, SH Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Coutu, S Covault, CE Criss, A Cronin, J Curutiu, A Dallier, R Daniel, B Dasso, S Daumille, K Dawson, BR de Almeida, RM De Domenico, M de Jong, SJ Neto, JRTDM De Mitri, I de Oliveira, J de Souza, V del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diep, PN Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A Hasankiadeh, QD Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A San Luis, PF Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fernandes, M Fick, B Figueira, JM Filevich, A Filipcic, A Fox, BD Fratu, O Frohlich, U Fuchs, B Fuji, T Gaior, R Garcia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Garilli, G Bravo, AG Gate, F Gemmeke, H Ghia, PL Giaccari, U Giammarchi, M Giller, M Glaser, C Glass, H Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gookin, B Gorgi, A Gorham, P Gouffon, P Grebe, S Griffith, N Grillo, AF Grubb, TD Guardincerri, Y Guarino, F Guedes, GP Hansen, P Harari, D Harrison, TA Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Islo, K Jandt, I Jansen, S Jarne, C Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N La Rosa, G LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, A Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Malacari, M Maldera, S Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, AJ Matthews, J Matthiae, G Maurel, D Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Messina, S Meyhandan, R Micanovic, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morello, C Moreno, JC Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Newton, D Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Ochilo, L Olinto, A Oliveira, M Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Papenbreer, P Parente, G Parra, A Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Peters, C Petrera, S Petrolini, A Petrov, Y Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Privitera, P Prouza, M Purrello, V Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rizi, V Roberts, J de Carvalho, WR Cabo, IR Fernandez, GR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Roulet, E Rovero, AC Ruhle, C Saffi, SJ Saftoiu, A Salamida, F Salazar, H Greus, FS Salina, G Sanchez, F Sanchez-Lucas, P Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarmento, R Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Scholten, O Schoorlemmer, H Schovanek, P Schulz, A Schulz, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Szuba, M Taborda, OA Tapia, A Tartare, M Thao, NT Theodoro, VM Tiffenberg, J Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Whelan, BJ Widom, A Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhou, J Zhu, Y Silva, MZ Ziolkowski, M AF Aab, A. Abreu, P. Aglietta, M. Ahlers, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allen, J. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Aramo, C. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Badescu, A. M. Barber, K. B. Baeuml, J. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Coutu, S. Covault, C. E. Criss, A. Cronin, J. Curutiu, A. Dallier, R. Daniel, B. Dasso, S. Daumille, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. de Jong, S. J. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Diaz Castro, M. L. Diep, P. N. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. Hasankiadeh, Q. Dorosti Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. San Luis, P. Facal Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fernandes, M. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fox, B. D. Fratu, O. Froehlich, U. Fuchs, B. Fuji, T. Gaior, R. Garcia, B. Garcia Roca, S. T. Garcia-Gamez, D. Garcia-Pinto, D. Garilli, G. Gascon Bravo, A. Gate, F. Gemmeke, H. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glaser, C. Glass, H. Gomez Albarracin, F. Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Gonzalez, J. G. Gookin, B. Gorgi, A. Gorham, P. Gouffon, P. Grebe, S. Griffith, N. Grillo, A. F. Grubb, T. D. Guardincerri, Y. Guarino, F. Guedes, G. P. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Islo, K. Jandt, I. Jansen, S. Jarne, C. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. La Rosa, G. LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Malacari, M. Maldera, S. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Martraire, D. Meza, J. J. Masias Mathes, H. J. Mathys, S. Matthews, A. J. Matthews, J. Matthiae, G. Maurel, D. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Messina, S. Meyhandan, R. Micanovic, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morello, C. Moreno, J. C. Mostafa, M. Moura, C. A. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Newton, D. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Ochilo, L. Olinto, A. Oliveira, M. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Papenbreer, P. Parente, G. Parra, A. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Peters, C. Petrera, S. Petrolini, A. Petrov, Y. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Privitera, P. Prouza, M. Purrello, V. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rizi, V. Roberts, J. Rodrigues de Carvalho, W. Rodriguez Cabo, I. Rodriguez Fernandez, G. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Roulet, E. Rovero, A. C. Ruehle, C. Saffi, S. J. Saftoiu, A. Salamida, F. Salazar, H. Greus, F. Salesa Salina, G. Sanchez, F. Sanchez-Lucas, P. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarmento, R. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Scholten, O. Schoorlemmer, H. Schovanek, P. Schulz, A. Schulz, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Taborda, O. A. Tapia, A. Tartare, M. Thao, N. T. Theodoro, V. M. Tiffenberg, J. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Machado, D. Torres Travnicek, P. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Whelan, B. J. Widom, A. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhou, J. Zhu, Y. Silva, M. Zimbres Ziolkowski, M. CA Pierre Auger Collaborat TI Reconstruction of inclined air showers detected with the pierre Auger Observatory SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE ultra high energy cosmic rays; cosmic ray experiments ID HIGH ENERGY NEUTRINOS; COSMIC-RAY CASCADES; FLUORESCENCE; PROFILE; ARRAY; MODEL; SIMULATION AB We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60 degrees detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory. C1 [Anchordoqui, L.] CUNY, CUNY Herbert H Lehman Coll, Dept Phys & Astron, New York, NY 10021 USA. [Allekotte, I.; Asorey, H.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos De Bariloche, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos De Bariloche, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Dasso, S.; Dova, M. T.; Gomez Albarracin, F.; Guardincerri, Y.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Meza, J. J. Masias; Moreno, J. C.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, P.; Sciutto, S. J.; Tiffenberg, J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Meza, J. J. Masias; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Jarne, C.; Kruppke-Hansen, D.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Natl Univ La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina. [Almela, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Garcia, B.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Mendoza, Argentina. [Almela, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Garcia, B.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] Natl Technol Univ, Fac Mendoza, CONICET, CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Saffi, S. J.; Sorokin, J.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Leao, M. S. A. B.] Fac Independente Nordeste, Vitoria Da Conquista, Spain. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Theodoro, V. M.; Silva, M. Zimbres] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Fernandes, M.; Giaccari, U.; Lyberis, H.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Micanovic, S.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.; Rossler, T.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Dong, P. N.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Garcia-Gamez, D.; Kegl, B.; Ragaigne, D. Monnier; Veberic, D.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, Orsay, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [Dallier, R.; Martin, L.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, Paris, France. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.; Machado, D. Torres] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, F-44035 Nantes, France. [Becker, K. H.; Bleve, C.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Lu, L.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Wittkowski, D.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Daumille, K.; Dembinski, H.; Hasankiadeh, Q. Dorosti; Engel, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Mathes, H. J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schulz, A.; Smida, R.; Szuba, M.; Unger, M.; Weindl, A.; Will, M.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.; Zhu, Y.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Baeuml, J.; Baus, C.; Bluemer, H.; Fuchs, B.; Gonzalez, J. G.; Huber, D.; Kambeitz, O.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Palmieri, N.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Erdmann, M.; Glaser, C.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Scharf, N.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Batista, R. Alves; Schiffer, P.; Sigl, G.; van Vliet, A.] Univ Hamburg, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Pesce, R.; Petrolini, A.] Dipartimento Fis Univ, Genoa, Italy. [Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Rodriguez Fernandez, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Rodriguez Fernandez, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Solento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Ist Nazl Fis Nucl, Milan, Italy. [Petrera, S.] Gran Sasso Sci Inst, Ist Nazl Fis Nucl, Laquila, Italy. [La Rosa, G.; Maccarone, M. C.; Riggi, S.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Boncioli, D.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, Laquila, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Osservatorio Astronfis Torino INAF, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C.; van Aar, G.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9700 AB Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Santos, E.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Brancus, I.; Mitrica, B.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Stanic, S.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Pristava, Slovenia. [Pastor, S.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Minaya, I. A.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, E-28801 Alcala De Henares, Madrid, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Ave, M.; Caballero-Mora, K. S.; Garcia Roca, S. T.; Lopez Agueera, A.; Newton, D.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Riggi, S.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Torralba Elipe, G.; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Lu, L.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Griffith, N.; Stapleton, J.] Ohio State Univ, Columbus, OH 43210 USA. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Mostafa, M.; Greus, F. Salesa; Sommers, P.; Whelan, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; San Luis, P. Facal; Fang, K.; Fuji, T.; Hollon, N.; Monasor, M.; Olinto, A.; Privitera, P.; Williams, C.; Yamamoto, T.; Zhou, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Fox, B. D.; Gorham, P.; Meyhandan, R.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Ahlers, M.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Islo, K.; Paul, T.; Vlcek, B.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Yamamoto, T.] Konan Univ, Kobe, Hyogo, Japan. [Zaw, I.] NYU Abu Dhabi, Abu Dhabi, U Arab Emirates. [Newton, D.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. RP Aab, A (reprint author), Univ Siegen, D-57068 Siegen, Germany. RI Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Fauth, Anderson/F-9570-2012; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Assis, Pedro/D-9062-2013; Blanco, Francisco/F-1131-2015; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Espadanal, Joao/I-6618-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; Petrolini, Alessandro/H-3782-2011; de Mello Neto, Joao/C-5822-2013; Brogueira, Pedro/K-3868-2012; Lozano-Bahilo, Julio/F-4881-2016; zas, enrique/I-5556-2015; Chinellato, Carola Dobrigkeit /F-2540-2011; Arqueros, Fernando/K-9460-2014; Albuquerque, Ivone/H-4645-2012; Todero Peixoto, Carlos Jose/G-3873-2012; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; de souza, Vitor/D-1381-2012; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; Garcia Pinto, Diego/J-6724-2014; Navas, Sergio/N-4649-2014; Badescu, Alina/B-6087-2012; Caramete, Laurentiu/C-2328-2011; Alves Batista, Rafael/K-6642-2012; Horvath, Pavel/G-6334-2014; Sima, Octavian/C-3565-2011; Torralba Elipe, Guillermo/A-9524-2015; Di Giulio, Claudio/B-3319-2015; Pastor, Sergio/J-6902-2014; Chinellato, Jose Augusto/I-7972-2012; Pech, Miroslav/G-5760-2014; Bueno, Antonio/F-3875-2015; Pimenta, Mario/M-1741-2013; Ridky, Jan/H-6184-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; OI Ulrich, Ralf/0000-0002-2535-402X; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Petrera, Sergio/0000-0002-6029-1255; Mussa, Roberto/0000-0002-0294-9071; Sarmento, Raul/0000-0002-5018-5467; Aramo, Carla/0000-0002-8412-3846; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Fauth, Anderson/0000-0001-7239-0288; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Blanco, Francisco/0000-0003-4332-434X; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Espadanal, Joao/0000-0002-1301-8061; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Petrolini, Alessandro/0000-0003-0222-7594; de Mello Neto, Joao/0000-0002-3234-6634; Brogueira, Pedro/0000-0001-6069-4073; Lozano-Bahilo, Julio/0000-0003-0613-140X; zas, enrique/0000-0002-4430-8117; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Arqueros, Fernando/0000-0002-4930-9282; Albuquerque, Ivone/0000-0001-7328-0136; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; Garcia Pinto, Diego/0000-0003-1348-6735; Navas, Sergio/0000-0003-1688-5758; Alves Batista, Rafael/0000-0003-2656-064X; Horvath, Pavel/0000-0002-6710-5339; Torralba Elipe, Guillermo/0000-0001-8738-194X; Di Giulio, Claudio/0000-0002-0597-4547; Chinellato, Jose Augusto/0000-0002-3240-6270; Bueno, Antonio/0000-0002-7439-4247; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Pimenta, Mario/0000-0002-2590-0908; La Rosa, Giovanni/0000-0002-3931-2269; Sigl, Guenter/0000-0002-4396-645X; Cataldi, Gabriella/0000-0001-8066-7718; Salamida, Francesco/0000-0002-9306-8447; Ridky, Jan/0000-0001-6697-1393; Segreto, Alberto/0000-0001-7341-6603; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; de Jong, Sijbrand/0000-0002-3120-3367; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Rizi, Vincenzo/0000-0002-5277-6527; Mantsch, Paul/0000-0002-8382-7745; Ravignani, Diego/0000-0001-7410-8522; Yuan, Guofeng/0000-0002-1907-8815; Marsella, Giovanni/0000-0002-3152-8874; Bonino, Raffaella/0000-0002-4264-1215 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS); Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren; Ministerium fur Wissenschaft und Forschung; Nordrhein Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Ministero dell'Istruzione; dell'Universita e della Ricerca (MIUR); Gran Sasso Center for Astroparticle Physics (CFA); CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, 2013/10/M/ST9/00062]; Portuguese national funds; FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS; CNDI-UEFISCDI [nr.20/2012, nr.194/2012, nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education; Programme for research - Space Technology and Advanced Research - STAR, Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid; Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; Leverhulme Foundation; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107]; National Science Foundation [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005]; [CZ.1.05/2.1.00/03.0058] FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants # 2010/07359-6, # 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant Nos. ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728 and 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr.20/2012 and nr.194/2012, project nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-04ER41300, and DE-FG02-99ER41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 55 TC 12 Z9 12 U1 1 U2 50 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD AUG PY 2014 IS 8 AR 019 DI 10.1088/1475-7516/2014/08/019 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AP1RM UT WOS:000341848800019 ER PT J AU Hazra, DK Shafieloo, A Smoot, GF Starobinsky, AA AF Hazra, Dhiraj Kumar Shafieloo, Arman Smoot, George F. Starobinsky, Alexei A. TI Wiggly whipped inflation SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum inflation; physics of the early universe ID PRIMORDIAL POWER SPECTRUM; PROBE WMAP OBSERVATIONS; UNIVERSE AB Motivated by BICEP2 results on the CMB polarization B-mode which imply primordial gravitational waves are produced when the Universe has the expansion rate of about H approximate to 10(14) GeV, and by deviations from a smooth power-law behavior for multipoles l < 50 in the CM 13 temperature anisotropy power spectrum found in the WMAP and Planck experiments, we have expanded our class of large field inflationary models that fit both the BICEP2 and Planck CMB observations consistently. These best-fitted large field models are found to have a transition from a faster roll to the slow roll V(phi) = m(2)phi(2)/2 inflation at a field value around 14.6 M-PI and thus a potential energy of V(phi) similar to (10(16) GeV)(4). In general tIns transition with sharp features in the inflaton potential produces not only suppression of scalars relative to tensor modes at small k but also introduces wiggles in the primordial perturbation spectrum. These wiggles are shown to be useful to explain some localized features in the CMI3 angular power spectrum and can also have other observational consequences. Thus, primordial GW can be used now to make a tomography of inflation determining its fine structure. The resulting Wiggly Whipped Inflation scenario is described in details and the anticipated perturbation power spectra, CMB power spectra, non-Gaussianity and other observational consequences are calculated and compared to existing and forthcoming observations. C1 [Hazra, Dhiraj Kumar; Shafieloo, Arman] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Shafieloo, Arman] POSTECH, Dept Phys, Pohang 790784, Gyeongbuk, South Korea. [Smoot, George F.] Univ Paris Diderot, APC CNRS, Paris Ctr Cosmol Phys, Univ Sorbonne Paris Cite, F-75013 Paris, France. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Starobinsky, Alexei A.] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia. [Starobinsky, Alexei A.] Kazan Fed Univ, Kazan 420008, Republic Of Tat, Russia. RP Hazra, DK (reprint author), Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. EM dhiraj@apctp.org; arman@apctp.org; gfsmoot@lbl.gov; alstar@landau.ac.ru OI Starobinsky, Alexei/0000-0002-8946-9088 FU Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City for Independent Junior Research Groups at the Asia Pacific Center for Theoretical Physics; UnivEarthS Labex program at Universite Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; National Research Foundation of Korea [NRF-2013R1A1A2013795]; [RFBR 14-02-00894] FX D.K.H. and A.S. wish to acknowledge support from the Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City for Independent Junior Research Groups at the Asia Pacific Center for Theoretical Physics. G.F.S. acknowledges the financial support of the UnivEarthS Labex program at Universite Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). We thank Pat McDonald for providing the DESI matter power spectrum error estimates. We also acknowledge the use of publicly available CAMB and COSMOMC in our analysis. The authors would like to thank Antony Lewis for providing us the new COSMOMC package that takes into account the recent BICEP2 data. We acknowledge the use of WMAP-9 data and from Legacy Archive for Microwave Background Data Analysis (LAMBDA) [91, Planck data and likelihood from Planck Legacy Archive (PLA) [92] and BICEP2 data from [93]. A.S. would like to acknowledge the support of the National Research Foundation of Korea (NRF-2013R1A1A2013795). A.A.S. was partially supported by the grant RFBR 14-02-00894. NR 85 TC 19 Z9 20 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD AUG PY 2014 IS 8 AR 048 DI 10.1088/1475-7516/2014/08/048 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AP1RM UT WOS:000341848800048 ER PT J AU Senatore, L Silverstein, E Zaldarriaga, M AF Senatore, Leonardo Silverstein, Eva Zaldarriaga, Matias TI New sources of gravitational waves during inflation SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE inflation; gravitational waves and CMBR polarization; non-gaussianity; cosmological perturbation theory ID MICROWAVE; POLARIZATION AB We point out that detectable inflationary tensor modes can be generated by particle or string sources produced during inflation, consistently with the requirements for inflation and constraints from scalar fluctuations. We show via examples that this effect can dominate over the contribution from quantum fluctuations of the metric, occurring even when the inflationary potential energy is too low to produce a comparable signal. Thus a detection of tensor modes from inflation does not automatically constitute a determination of the inflationary Hubble scale. C1 [Senatore, Leonardo; Silverstein, Eva] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Senatore, Leonardo; Silverstein, Eva] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Zaldarriaga, Matias] Inst Adv Study, Princeton, NJ 08540 USA. RP Senatore, L (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM senatore@stanford.edu; evas@stanford.edu; matiasz@ias.edu FU National Science Foundation [PHY05-51164]; DOE [DE-AC03-76SF00515]; NSF [PHY-0244728] FX We would like to thank J. Polchinski for many useful discussions and collaboration on string production [15], and D. Spergel for raising a question motivating part of this work. We thank Mehrdad Mirbabayi for identifying three overestimates that appeared in the first version of this paper but that do not alter the conclusions: one in the LPM formula in the scattering production mechanism, one related to subtlety in the gravity waves emitted from the particle creation, and a last one related to scalar production in the string case. We are grateful to L. McAllister, K-W Ng, and M. Peskin for useful discussions. E.S. is grateful to the IAS for hospitality during parts of this project. This research was supported in part by the National Science Foundation under grant PHY05-51164, by NSF grant PHY-0244728, and by the DOE under contract DE-AC03-76SF00515. NR 40 TC 22 Z9 22 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD AUG PY 2014 IS 8 AR 016 DI 10.1088/1475-7516/2014/08/016 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AP1RM UT WOS:000341848800016 ER PT J AU Monteiro, CMB Oliveira, CAB da Luz, HN Veloso, JFCA dos Santos, JMF AF Monteiro, C. M. B. Oliveira, C. A. B. da Luz, H. Natal Veloso, J. F. C. A. dos Santos, J. M. F. TI Simultaneous readout of charge and scintillation pulses from electron avalanches for improving the response of micropattern gaseous detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 15th International Workshop on Radiation Imaging Detectors CY JUN 23-27, 2013 CL Paris, FRANCE DE Charge transport, multiplication and electroluminescence in rare gases and liquids; Gaseous detectors; Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc); Scintillators, scintillation and light emission processes(solid gas and liquid scintillators) ID PHOTODIODE; COUNTER; GEM AB Electroluminescence production and readout as amplification process for primary ionisation in time projection chambers (TPCs), are under study for application namely to rare event detection, where low-rate and high-radiation background are factors of ultimate importance, implying the highest achievable gain and best energy resolution in the detector. The use of the electroluminescence signal rather than the secondary charge signal provides these with additional advantages. However, the simplicity and low cost of charge readout electronics over scintillation readout systems imply that alternatives to electroluminescence production and readout as amplification process for primary ionisation are being investigated to apply to large scale detectors. The use of the secondary avalanche ionisation produced in micropattern electron multipliers like Large Electron Multipliers and also to gaseous detectors with pixelized readout for imaging is, therefore, investigated. Charge readout is simple and straightforward and is by far the most used readout method. A drawback is that the charge amplification method has energy resolutions that are typically worse than the scintillation amplification method, thus exploring methods to improve the energy resolution of the charge readout are always interesting. In this work, we implement simultaneous readout of charge and scintillation produced in the avalanches of a Thick Electron Multiplier (THGEM) to explore the improvement of the detector response to ionising radiation in the charge readout channel. The charge readout could be used predominantly for position determination, while the scintillation readout would be used for energy measurement. C1 [Monteiro, C. M. B.; da Luz, H. Natal; Veloso, J. F. C. A.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, GIAN, P-3004516 Coimbra, Portugal. [Oliveira, C. A. B.; Veloso, J. F. C. A.] Univ Aveiro, Phys Dept I3N, P-3810193 Aveiro, Portugal. [Oliveira, C. A. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Monteiro, CMB (reprint author), Univ Coimbra, Dept Phys, GIAN, P-3004516 Coimbra, Portugal. EM cristina@gian.fis.uc.pt RI dos Santos, Joaquim/B-3058-2015; Natal da Luz, Hugo/F-6460-2013; veloso, joao/J-4478-2013; OI Veloso, Joao/0000-0002-7107-7203; Natal da Luz, Hugo/0000-0003-1177-870X; dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523 NR 19 TC 0 Z9 0 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2014 VL 9 AR C08005 DI 10.1088/1748-0221/9/08/C08005 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AP2TJ UT WOS:000341927600005 ER PT J AU Rebel, B Hall, C Bernard, E Faham, CH Ito, TM Lundberg, B Messina, M Monrabal, F Pereverzev, SP Resnati, F Rowson, PC Soderberg, M Strauss, T Tomas, A Va'vra, J Wang, H AF Rebel, B. Hall, C. Bernard, E. Faham, C. H. Ito, T. M. Lundberg, B. Messina, M. Monrabal, F. Pereverzev, S. P. Resnati, F. Rowson, P. C. Soderberg, M. Strauss, T. Tomas, A. Va'vra, J. Wang, H. TI High voltage in noble liquids for high energy physics SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.) ID DARK-MATTER DETECTOR; SINGLE-ELECTRON; ARGON TPC; XENON; DESIGN; EMISSION; SURFACES; NITROGEN; SEARCHES; CHAMBER AB A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids. C1 [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hall, C.; Lundberg, B.] Univ Maryland, College Pk, MD 20742 USA. [Bernard, E.] Yale Univ, New Haven, CT 06520 USA. [Faham, C. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ito, T. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Messina, M.] Columbia Univ, New York, NY 10027 USA. [Monrabal, F.] IFIC, E-46980 Paterna, Spain. [Pereverzev, S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Resnati, F.] ETH, CH-8093 Zurich, Switzerland. [Rowson, P. C.; Va'vra, J.] SLAC Natl Accerlerator Lab, Menlo Pk, CA 94025 USA. [Soderberg, M.] Syracuse Univ, Syracuse, NY 13210 USA. [Strauss, T.] Univ Bern, CH-3012 Bern, Switzerland. [Tomas, A.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Wang, H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Rebel, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM rebel@fnal.gov RI Monrabal, Francesc/A-5880-2015; OI Monrabal, Francesc/0000-0002-4047-5620; Ito, Takeyasu/0000-0003-3494-6796 FU NSF-PHY [1004060, 1242545, 1104720]; URA (Fermilab) [604071]; BNL [238854]; LANL [240213-1]; Physics and Astronomy Machine Shop at UCLA; Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio [CSD2008-0037 (CUP), FPA2009-13697-C04-04]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Portuguese FCT; FEDER through the program COMPETE [PTDC/FIS/103860/2008] FX The work presented in section 4.3 was on behalf of the Albert Einstein Center, Laboratory of High Energy Physics of the University of Bern. The work presented in section 4.4 is supported by the following research grants: NSF-PHY: 1004060, 1242545, and 1104720; URA (Fermilab): 604071; BNL: 238854; LANL: 240213-1. It was also supported by the Physics and Astronomy Machine Shop at UCLA supervised by Harry Lockart. The work in section 5.5 was supported by the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP) and FPA2009-13697-C04-04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008. NR 75 TC 1 Z9 1 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2014 VL 9 AR T08004 DI 10.1088/1748-0221/9/08/T08004 PG 57 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AP2TJ UT WOS:000341927600043 ER PT J AU Cho, Y Ohm, RA Devappa, R Lee, HB Grigoriev, IV Kim, BY Ahn, JS AF Cho, Yangrae Ohm, Robin A. Devappa, Rakshit Lee, Hyang Burm Grigoriev, Igor V. Kim, Bo Yeon Ahn, Jong Seog TI Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola SO MOLECULES LA English DT Article DE phytoalexin; brassinin; gene expression profiles; RNA-seq; necrotrophic fungus; phytoalexin detoxification; GEO Series Accession No. GSE59195 ID RNA-SEQ; DETOXIFYING ENZYME; CAMALEXIN; GENE; VIRULENCE; PATHOGEN; DEFENSE; PLANT; IDENTIFICATION; DETOXIFICATION AB Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin. C1 [Cho, Yangrae; Devappa, Rakshit; Kim, Bo Yeon; Ahn, Jong Seog] Korea Res Inst Biosci & Biotechnol, Ochang 363883, Chungbuk, South Korea. [Ohm, Robin A.; Grigoriev, Igor V.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lee, Hyang Burm] Chonnam Natl Univ, Coll Agr & Life Sci, Div Appl Biosci & Biotechnol, Kwangju 500757, South Korea. RP Ahn, JS (reprint author), Korea Res Inst Biosci & Biotechnol, Ochang 363883, Chungbuk, South Korea. EM yangraec@kribb.re.kr; raohm@lbl.gov; hblee@chonnam.ac.kr; ivgrigoriev@lbl.gov; botaekim61@gmail.com; jsahn@kribb.re.kr RI Ohm, Robin/I-6689-2016 FU USDA-TSTAR [2009-34135-20197]; Chuncheongbuk-do; KRIBB Research Initiative Program FX We thank Fred Brooks for insightful discussions on the roles of the Bdtf1 gene in brassinin digestion. This research was supported by USDA-TSTAR 2009-34135-20197 to YC, administered by the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI and WCI2009-002 to BYK, and GRDC, NRF-2010-0079 to JSA administered by the Nation Research Foundation of Korea. This research was also support by Grants from the Chuncheongbuk-do and the KRIBB Research Initiative Program. NR 29 TC 5 Z9 6 U1 2 U2 12 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD AUG PY 2014 VL 19 IS 8 BP 10717 EP 10732 DI 10.3390/molecules190810717 PG 16 WC Chemistry, Organic SC Chemistry GA AO6ZW UT WOS:000341502600003 PM 25061722 ER PT J AU Grandfield, K Chattah, NLT Djomehri, S Eidelmann, N Eichmiller, FC Webb, S Schuck, PJ Nweeia, M Ho, SP AF Grandfield, Kathryn Chattah, Netta Lev-Tov Djomehri, Sabra Eidelmann, Naomi Eichmiller, Frederick C. Webb, Samuel Schuck, P. James Nweeia, Martin Ho, Sunita P. TI The narwhal (Monodon monoceros) cementum-dentin junction: A functionally graded biointerphase SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE LA English DT Article DE Monodon monoceros; narwhal; cementum-dentin junction; biomechanics; functional interface ID AGGRESSIVE TUSK USE; MECHANICAL-PROPERTIES; SPECKLE INTERFEROMETRY; CHEMICAL-COMPOSITION; BIOLOGICAL-MATERIALS; MINERALIZED TISSUES; TOOTH; COLLAGEN; ENAMEL; DEFORMATION AB In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a biological interphase between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000m graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100m wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 +/- 0.5 GPa for collagen fiber bundle compared to 3 +/- 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 +/- 0.05 GPa, 0.33 +/- 0.03 GPa, and 0.3 +/- 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. C1 [Grandfield, Kathryn; Djomehri, Sabra; Ho, Sunita P.] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, Div Biomat & Bioengn, San Francisco, CA 94143 USA. [Chattah, Netta Lev-Tov] Israel Natl Police, Div Identificat & Forens Sci, Jerusalem, Israel. [Eidelmann, Naomi] NIST, Paffenbarger Res Ctr, Amer Dent Assoc Fdn, Gaithersburg, MD 20899 USA. [Eichmiller, Frederick C.] Delta Dent Wisconsin, Stevens Point, WI USA. [Webb, Samuel] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA. [Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Nweeia, Martin] Smithsonian Inst, Dept Vertebrate Zool, Washington, DC 20560 USA. RP Ho, SP (reprint author), Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, Div Biomat & Bioengn, San Francisco, CA 94143 USA. EM sunita.ho@ucsf.edu RI Foundry, Molecular/G-9968-2014 FU NIH/NIDCR [R00DE018212]; NIH/NCRR [S10RR026645]; Department of Preventive and Restorative Dental Sciences, UCSF; Department of Orofacial Sciences, UCSF; Faculty of Engineering, McMaster University, Canada; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231]; [NIH/NIDCR-R01DE022032] FX The authors acknowledge funding support from NIH/NIDCR R00DE018212 (SPH), NIH/NIDCR-R01DE022032 (SPH), NIH/NCRR S10RR026645 (SPH) and Departments of Preventive and Restorative Dental Sciences and Orofacial Sciences, UCSF. K. G. acknowledges financial support from the Faculty of Engineering, McMaster University, Canada. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 2 Z9 2 U1 7 U2 35 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-4119 EI 2041-3033 J9 P I MECH ENG H JI Proc. Inst. Mech. Eng. Part H-J. Eng. Med. PD AUG PY 2014 VL 228 IS 8 BP 754 EP 767 DI 10.1177/0954411914547553 PG 14 WC Engineering, Biomedical SC Engineering GA AP4PA UT WOS:000342058800002 PM 25205746 ER PT J AU Johnson, LR AF Johnson, Lane R. TI A Source Model for Induced Earthquakes at the Geysers Geothermal Reservoir SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Geysers geothermal reservoir; induced earthquakes; earthquake source model ID BRITTLE SOLIDS; CALIFORNIA; AREA; SEISMICITY; COMPRESSION; FAILURE; DAMAGE; FIELD AB The results of a previous study on source mechanisms of small earthquakes at the Geysers geothermal reservoir in northern California are used to investigate an extended crack model for seismic events. The seismic events are characterized by their first-degree moment tensors and interpreted in terms of a model that is a combination of a shear crack and wing cracks. Solutions to both forward and inverse problems are obtained that can be used with either dynamic or static moment tensors. The model contains failure criteria, explains isotropic parts that are commonly observed in induced earthquakes, and produces estimates of crack dimensions and maximum amount of slip. Effects of fluid pressure are easily incorporated into the model as an effective stress. The model is applied to static moment tensors of 20 earthquakes that occurred during a controlled injection project in the northwest Geysers. For earthquakes in the moment magnitude range of 0.9-2.8, the model predicts shear crack radii in the range of 10-150 m, wing crack lengths in the range of 2-25 m, and maximum slips in the range of 0.3-1.1 cm. Only limited results are obtained for the time-dependence of the earthquake process, but the model is consistent with corner frequencies of the isotropic part of the moment tensor being greater than the deviatoric part and waveforms of direct p waves that become more emergent for larger events. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Johnson, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM LRJohnson@lbl.gov FU Department of Energy Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The comments of two anonymous reviewers helped to improve the manuscript. This research is supported by the Department of Energy Office of Basic Energy Sciences and is conducted at LBNL, which is operated by the University of California for the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 7 Z9 7 U1 1 U2 9 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD AUG PY 2014 VL 171 IS 8 BP 1625 EP 1640 DI 10.1007/s00024-014-0798-7 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2SX UT WOS:000341926200003 ER PT J AU Johnson, LR AF Johnson, Lane R. TI Source Mechanisms of Induced Earthquakes at The Geysers Geothermal Reservoir SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Geysers geothermal reservoir; induced earthquakes; source mechanism ID SEISMIC MOMENT TENSOR; WAVE-FORM INVERSION; NORTHERN CALIFORNIA; SIMPLE TOPOGRAPHY; LINEAR INVERSION; P-WAVE; FIELD; AREA; PROPAGATION; MODELS AB At The Geysers geothermal reservoir in northern California, evidence strongly suggests that activities associated with production of electric power cause an increase in the number of small earthquakes. First-degree dynamic moment tensors are used to investigate the relationship between induced earthquakes and injection of water into a well as part of a controlled experiment in the northwest Geysers. The estimation of dynamic moment tensors in the complex shallow crust at The Geysers is challenging, so the method is described in detail with particular attention given to the uncertainty in the results. For seismic events in the moment magnitude range of 0.9-2.8, spectral moduli of dynamic moment tensors are reliably recovered in the frequency range of 1-100 Hz, but uncertainty in the associated spectral phases limits their use to a few simple results. A number of different static moment tensors are investigated, with the preferred one obtained from parameters of a model fitted to the spectral modulus of the dynamic moment tensor. Moment tensors estimated for a group of 20 earthquakes exhibit a range of source mechanisms, with over half having significant isotropic parts of either positive or negative sign. Corner frequencies of the isotropic part of the moment tensor are about 40 % larger than the average of the deviatoric moment tensor. Some spatial patterns are present in source mechanisms, with earthquakes closely related in space tending to have similar mechanisms, but at the same time, some nearby earthquakes have very different mechanisms. Tensional axes of displacement in the source regions are primarily horizontal, while the pressure axes range from near horizontal to vertical. Injection of water into the well in the center of the study area clearly causes an increase in the number of earthquakes per day, but an effect upon source mechanisms is not evident. C1 [Johnson, Lane R.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Johnson, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM LRJohnson@lbl.gov FU Department of Energy Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11232] FX This study benefited greatly from the accumulated knowledge and broad expertise concerning The Geysers geothermal reservoir that exists at LBNL. Those who were particularly helpful include Ernie Majer, John Peterson, Don Vasco, Larry Hutchings, Gisela Viegas, Katie Boyle, Hunter Philson, and Aurelie Guilhem. The comments of two anonymous reviewers helped to improve the manuscript. The research is supported by the Department of Energy Office of Basic Energy Sciences and is conducted at LBNL, which is operated by the University of California for the US Department of Energy under Contract No. DE-AC02-05CH11232. NR 68 TC 7 Z9 7 U1 0 U2 8 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD AUG PY 2014 VL 171 IS 8 BP 1641 EP 1668 DI 10.1007/s00024-014-0795-x PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2SX UT WOS:000341926200004 ER PT J AU Weaver, CP Mooney, S Allen, D Beller-Simms, N Fish, T Grambsch, AE Hohenstein, W Jacobs, K Kenney, MA Lane, MA Langner, L Larson, E McGinnis, DL Moss, RH Nichols, LG Nierenberg, C Seyller, EA Stern, PC Winthrop, R AF Weaver, C. P. Mooney, S. Allen, D. Beller-Simms, N. Fish, T. Grambsch, A. E. Hohenstein, W. Jacobs, K. Kenney, M. A. Lane, M. A. Langner, L. Larson, E. McGinnis, D. L. Moss, R. H. Nichols, L. G. Nierenberg, C. Seyller, E. A. Stern, P. C. Winthrop, R. TI From global change science to action with social sciences SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CLIMATE ADAPTATION C1 [Weaver, C. P.; Grambsch, A. E.] US EPA, Washington, DC 20460 USA. [Mooney, S.] Boise State Univ, Dept Econ, Boise, ID 83725 USA. [Mooney, S.] Natl Sci Fdn, Expt Program Stimulate Competit Res, Arlington, VA 22230 USA. [Allen, D.; Seyller, E. A.] US Global Change Res Program, Washington, DC 20006 USA. [Beller-Simms, N.; Nierenberg, C.] NOAA, Silver Spring, MD 20910 USA. [Fish, T.] US Dept Interior, Washington, DC 20240 USA. [Hohenstein, W.] USDA, Washington, DC 20250 USA. [Jacobs, K.] Univ Arizona, Ctr Climate Adaptat Sci & Solut, Tucson, AZ 85721 USA. [Jacobs, K.] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Kenney, M. A.] Univ Maryland, Cooperat Inst Climate & Satellites Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Lane, M. A.; Stern, P. C.] CNR, Board Environm Change & Soc, Washington, DC 20001 USA. [Langner, L.] US Forest Serv, USDA, Washington, DC 20250 USA. [Larson, E.] NASA, Washington, DC 20546 USA. [McGinnis, D. L.] Montana State Univ, Billings, MT 59101 USA. [Moss, R. H.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Moss, R. H.] Univ Maryland, College Pk, MD 20740 USA. [Nichols, L. G.] Natl Sci Fdn, Div Behav & Cognit Sci, Arlington, VA 22230 USA. [Winthrop, R.] Bureau Land Management, Washington, DC 20003 USA. RP Weaver, CP (reprint author), US EPA, 1200 Penn Ave NW, Washington, DC 20460 USA. EM weaver.chris@epa.gov RI Weaver, Christopher/G-3714-2010 OI Weaver, Christopher/0000-0003-4016-5451 NR 22 TC 30 Z9 30 U1 1 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD AUG PY 2014 VL 4 IS 8 BP 656 EP 659 PG 4 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AO7YF UT WOS:000341568200010 ER PT J AU Bianco, FB Modjaz, M Hicken, M Friedman, A Kirshner, RP Bloom, JS Challis, P Marion, GH Wood-Vasey, WM Rest, A AF Bianco, F. B. Modjaz, M. Hicken, M. Friedman, A. Kirshner, R. P. Bloom, J. S. Challis, P. Marion, G. H. Wood-Vasey, W. M. Rest, A. TI MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE supernovae: general ID RICH CIRCUMSTELLAR MEDIUM; GAMMA-RAY BURST; DIGITAL SKY SURVEY; IA SUPERNOVAE; IC SUPERNOVA; ABSOLUTE MAGNITUDE; IMAGE SUBTRACTION; NEUTRON-STAR; SN 2006JC; PHOTOMETRY AB We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z less than or similar to 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of UBVRI, UBVr'i', and u'BVr'i', and 1919 JHK(s) NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper. C1 [Bianco, F. B.; Modjaz, M.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Friedman, A.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Friedman, A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Bloom, J. S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Bloom, J. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marion, G. H.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, PITT PACC, Pittsburgh, PA 15260 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Bianco, FB (reprint author), NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. EM fb55@nyu.edu RI Friedman, Andrew/I-4691-2013 OI Friedman, Andrew/0000-0003-1334-039X FU James Arthur fellowship at the Center for Cosmology and Particle Physics at NYU; NSF CAREER [AST-1352405]; National Science Foundation [AST06-06772]; NSF [AST09-07903, AST12-11196]; Kavli Institute for Theoretical Physics NSF [PHY99-07949]; Harvard University Milton Fund; University of Virginia; SAO; UC Berkeley; University of Massachusetts; Infrared Processing and Analysis Center/California Institute of Technology; NASA FX F.B.B. is supported by a James Arthur fellowship at the Center for Cosmology and Particle Physics at NYU. M.M. is supported in part by NSF CAREER award AST-1352405. Supernova research at Harvard University has been supported in part by the National Science Foundation grant AST06-06772 and R.P.K. in part by the NSF grants AST09-07903 and AST12-11196, and in part by the Kavli Institute for Theoretical Physics NSF grant PHY99-07949. Observations reported here were obtained at the F.L. Whipple Observatory, which is operated by the Smithsonian Astrophysical Observatory (SAO). PAIRITEL is operated by the Smithsonian Astrophysical Observatory and was made possible by a grant from the Harvard University Milton Fund, the camera loan from the University of Virginia, and the continued support of the SAO and UC Berkeley. The data analysis in this paper has made use of the Hydra computer cluster run by the Computation Facility at the Harvard-Smithsonian Center for Astrophysics.; This research has made use of NASA's Astrophysics Data System Bibliographic Services (ADS), the HyperLEDA database, and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and NSF. NR 95 TC 29 Z9 29 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2014 VL 213 IS 2 AR 19 DI 10.1088/0067-0049/213/2/19 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP0TM UT WOS:000341777400001 ER PT J AU McComas, DJ Allegrini, F Bzowski, M Dayeh, MA DeMajistre, R Funsten, HO Fuselier, SA Gruntman, M Janzen, PH Kubiak, MA Kucharek, H Mobius, E Reisenfeld, DB Schwadron, NA Sokol, JM Tokumaru, M AF McComas, D. J. Allegrini, F. Bzowski, M. Dayeh, M. A. DeMajistre, R. Funsten, H. O. Fuselier, S. A. Gruntman, M. Janzen, P. H. Kubiak, M. A. Kucharek, H. Moebius, E. Reisenfeld, D. B. Schwadron, N. A. Sokol, J. M. Tokumaru, M. TI IBEX: THE FIRST FIVE YEARS (2009-2013) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE local interstellar matter; solar wind; Sun: activity; Sun: heliosphere; Sun: magnetic fields ID INTERSTELLAR-BOUNDARY-EXPLORER; ENERGETIC NEUTRAL ATOMS; SOLAR-WIND; TERMINATION SHOCK; LO OBSERVATIONS; ENA FLUX; RIBBON; HELIOPAUSE; PARAMETERS; SPECTRA AB The Interstellar Boundary Explorer ( IBEX) returned its first five years of scientific observations from 2009 to 2013. In this study, we examine, validate, initially analyze, and provide to the broad scientific community this complete set of energetic neutral atom (ENA) observations for the first time. IBEX measures the fluxes of ENAs reaching 1 AU from sources in the outer heliosphere and most likely the very nearby interstellar space beyond the heliopause. The data, maps, and documentation provided in this study represent the fourth major release of the IBEX data, incorporate important improvements, and should be used for future studies and as the citable reference for the current version of the IBEX data. In this study, we also examine five years of time evolution in the outer heliosphere and the resulting ENA emissions. These observations show a complicated variation with a general decrease in ENA fluxes from 2009 to 2012 over most regions of the sky, consistent with a 2-4 year recycle time for the previously decreasing solar wind flux. In contrast, the heliotail fluxes continue to decrease, again consistent with a significantly more distant source in the downwind direction. Finally, the Ribbon shows the most complicated time variations, with a leveling off in the southern hemisphere and continued decline in the northern one; these may be consistent with the Ribbon source being significantly farther away in the north than in the south. Together, the observations and results shown in this study expose the intricacies of our heliosphere's interaction with the local interstellar medium. C1 [McComas, D. J.; Allegrini, F.; Dayeh, M. A.; Fuselier, S. A.; Schwadron, N. A.] Southwest Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.; Allegrini, F.; Fuselier, S. A.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Bzowski, M.; Kubiak, M. A.; Sokol, J. M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [DeMajistre, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Funsten, H. O.] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA. [Gruntman, M.] Univ So Calif, Viterbi Sch Engn, Dept Astronaut Engn, Los Angeles, CA 90089 USA. [Janzen, P. H.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [Kucharek, H.; Moebius, E.; Schwadron, N. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Tokumaru, M.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. RP McComas, DJ (reprint author), Southwest Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM dmccomas@swri.org RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; Sokol, Justyna/K-2892-2015; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 NR 62 TC 29 Z9 29 U1 0 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2014 VL 213 IS 2 AR 20 DI 10.1088/0067-0049/213/2/20 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP0TM UT WOS:000341777400002 ER PT J AU Stanford, SA Gonzalez, AH Brodwin, M Gettings, DP Eisenhardt, PRM Stern, D Wylezalek, D AF Stanford, S. A. Gonzalez, Anthony H. Brodwin, Mark Gettings, Daniel P. Eisenhardt, Peter R. M. Stern, Daniel Wylezalek, Dominika TI THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z similar to 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg(2) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: clusters: individual; galaxies: distances and redshifts; galaxies: evolution ID POLE TELESCOPE SURVEY; STELLAR POPULATION SYNTHESIS; DATA RELEASE; SDSS-III; SPITZER; IRAC; EVOLUTION; DISCOVERY; UNIVERSE; SAMPLE AB We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z similar to 1 clusters of galaxies over an area of 10,000 deg(2). Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates. C1 [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Gonzalez, Anthony H.; Gettings, Daniel P.] Univ Florida, Dept Astron, Bryant Space Ctr 211, Gainesville, FL 32611 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wylezalek, Dominika] European So Observ, D-85748 Garching, Germany. RP Stanford, SA (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; NASA Astrophysics Data Analysis Program (ADAP) [NNX12AE15G]; W.M. Keck Foundation FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, a list of which can be found at https://www.sdss3.org/collaboration/institutions.php. We acknowledge using EzGal, available at www.baryons.org/ezgal/index.php, to calculate the colors displayed in the color-magnitude diagrams. S.A.S, M.B., D.P.G., and A.H.G. acknowledge support for this research from the NASA Astrophysics Data Analysis Program (ADAP) through grant NNX12AE15G. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. A.H.G and D.P.G. were Visiting Astronomers at Gemini Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, on the island of La Palma. We thank the anonymous referee for comments which improved the final manuscript. NR 35 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2014 VL 213 IS 2 AR 25 DI 10.1088/0067-0049/213/2/25 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP0TM UT WOS:000341777400007 ER PT J AU Tan, MS Tan, L Jiang, T Zhu, XC Wang, HF Jia, CD Yu, JT AF Tan, M-S Tan, L. Jiang, T. Zhu, X-C Wang, H-F Jia, C-D Yu, J-T TI Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease SO CELL DEATH & DISEASE LA English DT Article ID NONVIRAL RNA INTERFERENCE; INNATE IMMUNE-RESPONSE; NLRP1 INFLAMMASOME; CELL-DEATH; NALP3 INFLAMMASOME; PLAQUE PATHOLOGY; MICE; BRAIN; PATHOGENESIS; ACTIVATION AB Increasing evidence has shown the aberrant expression of inflammasome-related proteins in Alzheimer's disease ( AD) brain; these proteins, including NLRP1 inflammasome, are implicated in the execution of inflammatory response and pyroptotic death. Although current data are associated NLRP1 genetic variants with AD, the involvement of NLRP1 inflammasome in AD pathogenesis is still unknown. Using APPswe/PS1dE9 transgenic mice, we found that cerebral NLRP1 levels were upregulated. Our in vitro studies further showed that increased NLRP1-mediated caspase-1-dependent 'pyroptosis' in cultured cortical neurons in response to amyloid-beta. Moreover, we employed direct in vivo infusion of non-viral small-interfering RNA to knockdown NLRP1 or caspase-1 in APPswe/PS1dE9 brain, and discovered that these NLRP1 or caspase-1 deficiency mice resulted in significantly reduced neuronal pyroptosis and reversed cognitive impairments. Taken together, our findings indicate an important role for NLRP1/caspase-1 signaling in AD progression, and point to the modulation of NLRP1 inflammasome as a promising strategy for AD therapy. C1 [Tan, M-S; Tan, L.; Yu, J-T] Ocean Univ China, Qingdao Municipal Hosp, Coll Med & Pharmaceut, Dept Neurol, Qingdao, Peoples R China. [Tan, L.; Yu, J-T] Qingdao Univ, Qingdao Municipal Hosp, Sch Med, Dept Neurol, Qingdao 266071, Shandong, Peoples R China. [Tan, L.; Jiang, T.; Zhu, X-C; Wang, H-F; Yu, J-T] Nanjing Med Univ, Qingdao Municipal Hosp, Dept Neurol, Qingdao, Peoples R China. [Jia, C-D] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yu, J-T] Univ Calif San Francisco, Memory & Aging Ctr, Dept Neurol, San Francisco, CA 94143 USA. RP Tan, L (reprint author), Qingdao Univ, Qingdao Municipal Hosp, Sch Med, Dept Neurol, 5 Donghai Middle Rd, Qingdao 266071, Shandong, Peoples R China. EM dr.tanlan@163.com; yu-jintai@163.com FU National Natural Science Foundation of China [81000544, 81171209, 81371406]; Shandong Provincial Natural Science Foundation, China [ZR2010HQ004, ZR2011HZ001]; Medicine and Health Science Technology Development Project of Shandong Province [2011WSA02018, 2011WSA02020]; Shandong Provincial Outstanding Medical Academic Professional Program FX This work was supported by grants from the National Natural Science Foundation of China (81000544, 81171209 and 81371406), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004 and ZR2011HZ001), the Medicine and Health Science Technology Development Project of Shandong Province (2011WSA02018 and 2011WSA02020), and the Shandong Provincial Outstanding Medical Academic Professional Program. NR 54 TC 26 Z9 28 U1 5 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-4889 J9 CELL DEATH DIS JI Cell Death Dis. PD AUG PY 2014 VL 5 AR e1382 DI 10.1038/cddis.2014.348 PG 12 WC Cell Biology SC Cell Biology GA AO8XL UT WOS:000341639000023 PM 25144717 ER PT J AU Prozorov, T Perez-Gonzalez, T Valverde-Tercedor, C Jimenez-Lopez, C Yebra-Rodriguez, A Kornig, A Faivre, D Mallapragada, SK Howse, PA Bazylinski, DA Prozorov, R AF Prozorov, Tanya Perez-Gonzalez, Teresa Valverde-Tercedor, Carmen Jimenez-Lopez, Concepcion Yebra-Rodriguez, Africa Koernig, Andre Faivre, Damien Mallapragada, Surya K. Howse, Paul A. Bazylinski, Dennis A. Prozorov, Ruslan TI Manganese incorporation into the magnetosome magnetite: magnetic signature of doping SO EUROPEAN JOURNAL OF MINERALOGY LA English DT Article DE magnetosome; biomineralization; doped-magnetite; Verwey transition; magnetic signature; crystal structure ID MAGNETOTACTIC BACTERIA; VERWEY-TRANSITION; IRON-OXIDES; CATION DISTRIBUTION; RAMAN-SPECTROSCOPY; DOPED MAGNETITE; COBALT FERRITE; NANOPARTICLES; CONTRAST; BIOMEDICINE AB The biomineralization of magnetotactic bacterial magnetite nanoparticles is a topic of intense research due to the particles' narrow size distribution and magnetic properties. Incorporation of foreign metal ions into the crystal matrix of magnetotactic bacterial magnetite has been previously examined by a number of investigators. In this study, cells of a magnetotactic bacterium, Magnetospirillum gryphiswaldense strain MSR-1 were grown in the presence of manganese, ruthenium, zinc and vanadium, of which only manganese was incorporated within the magnetosome magnetite crystals. We demonstrate that the magnetic properties of magnetite crystals of magnetotactic bacteria can be significantly altered by the incorporation of metal ions, other than iron, in the crystal structure. The Verwey transition serves as a unique marker to probe the incorporation of the dopant within the magnetosome: manganese incorporation into the magnetite nanocrystals is signaled by a suppression of the Verwey transition, as well as by changes in the crystalline structure and chemical composition of magnetosome magnetite. C1 [Prozorov, Tanya; Mallapragada, Surya K.; Prozorov, Ruslan] US DOE, Ames Lab, Ames, IA 50011 USA. [Perez-Gonzalez, Teresa; Valverde-Tercedor, Carmen; Jimenez-Lopez, Concepcion] Univ Granada, Dept Microbiol, E-18071 Granada, Spain. [Perez-Gonzalez, Teresa; Valverde-Tercedor, Carmen; Howse, Paul A.; Bazylinski, Dennis A.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Perez-Gonzalez, Teresa; Valverde-Tercedor, Carmen; Koernig, Andre; Faivre, Damien] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14424 Potsdam, Germany. [Yebra-Rodriguez, Africa] Univ Jaen, Dept Geol, Jaen, Spain. [Yebra-Rodriguez, Africa] Univ Jaen, CEACTierra, Jaen, Spain. [Mallapragada, Surya K.] Iowa State Univ, Ames, IA 50011 USA. [Prozorov, Ruslan] Iowa State Univ, Ames, IA 50010 USA. RP Prozorov, T (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM tprozoro@ameslab.gov RI faivre, damien/D-3713-2009; Yebra-Rodriguez, Africa/K-4662-2013 OI faivre, damien/0000-0001-6191-3389; Yebra-Rodriguez, Africa/0000-0002-1452-1136 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; NSF [EAR0920718, DMR0603841]; Alfred P. Sloan Foundation; Max Planck Society; European Research Council [256915]; [CGL2010-18274] FX The authors thank J. A. Anderegg for assistance in the XPS data acquisition, A. RodriguezNavarro for help in XRD analysis and d-spacing indexing from SAED data, and M. J. Kramer for helpful discussions. T. P. acknowledges support from the Department of Energy Office of Science Early Career Research Award, Bimolecular Materials Program. This work was supported by the U. S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. C. J. L. acknowledges support from the project CGL2010-18274. D. A. B. acknowledges support from NSF grant EAR0920718. P. A. H. was the recipient of an award from the NSF Research Experience for Undergraduates (REU) program A Broad View of Environmental Microbiology at UNLV (award NSF-0649267). R. P. acknowledges support from the Alfred P. Sloan Foundation and support from NSF grant DMR0603841. DF is supported by the Max Planck Society and the European Research Council through a Starting Grant (MB2 number 256915). NR 95 TC 6 Z9 6 U1 5 U2 37 PU E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0935-1221 EI 1617-4011 J9 EUR J MINERAL JI Eur. J. Mineral. PD AUG PY 2014 VL 26 IS 4 BP 457 EP 471 DI 10.1127/0935-1221/2014/0026-2388 PG 15 WC Mineralogy SC Mineralogy GA AP1FU UT WOS:000341813600002 ER PT J AU Kamireddy, SR Kozliak, EI Tucker, M Ji, Y AF Kamireddy, Srinivas Reddy Kozliak, Evguenii I. Tucker, Melvin Ji, Yun TI Kinetic features of xylan de-polymerization in production of xylose monomer and furfural during acid pretreatment for kenaf, forage sorghums and sunn hemp feedstocks SO INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING LA English DT Article DE acid pretreatment; sunn hemp; sorghum brown-mid rib (BMR); sorghum non brown- mid rib (SNBMR); kenaf; reaction kinetics; activation energy; reaction order ID SUGAR-CANE BAGASSE; CORN STOVER; LIGNOCELLULOSIC BIOMASS; CHEMICAL-COMPOSITION; HYDROLYSIS; HEMICELLULOSE; CELLULOSE; BIOFUELS; CRYSTALLINITY; BIOCONVERSION AB A kinetic study of acid pretreatment was conducted for sorghum non-brown mid rib (SNBMR) (Sorghum bicolor L Moench), sorghum-brown mid rib (SBMR), sunn hemp (Crotalaria juncea L) and kenaf (Gossypiumhirsutum L), focusing on rates of xylose monomer and furfural formation. The kinetics was investigated using two independent variables, reaction temperature (150 degrees C and 160 degrees C) and acid concentration (1 and 2 wt%), with a constant dry biomass loading of 10 wt% and a treatment time up to 20 min while sampling the mixture every 2 min. The experimental data were fitted using a two-step kinetic model based on irreversible pseudo first order kinetics at each step. Varied kinetic orders on the acid concentration, ranging from 0.2 to >3, were observed for both xylose and furfural formation, the values depending on the feedstock. The crystallinity index of raw biomass was shown to be a major factor influencing the rate of both xylose and furfural formation. A positive correlation was observed between the activation energy and biomass crystallinity index for xylose formation. C1 [Kamireddy, Srinivas Reddy; Ji, Yun] Univ N Dakota, Dept Chem Engn, Grand Forks, ND 58202 USA. [Kozliak, Evguenii I.] Univ N Dakota, Dept Chem, Grand Forks, ND 58202 USA. [Tucker, Melvin] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Ji, Y (reprint author), Univ N Dakota, Dept Chem Engn, 241 Centennial Dr, Grand Forks, ND 58202 USA. EM srinivasreddy.kamire@my.und.edu; jenya.kozliak@email.und.edu; melvin.tucker@nrel.gov; yun.ji@engr.und.edu NR 34 TC 4 Z9 4 U1 1 U2 21 PU CHINESE ACAD AGRICULTURAL ENGINEERING PI BEIJING PA RM 506, 41, MAIZIDIAN ST, CHAOYANG DISTRICT, BEIJING, 100125, PEOPLES R CHINA SN 1934-6344 EI 1934-6352 J9 INT J AGR BIOL ENG JI Int. J. Agric. Biol. Eng. PD AUG PY 2014 VL 7 IS 4 BP 86 EP 98 DI 10.3965/j.ijabe.20140704.010 PG 13 WC Agricultural Engineering SC Agriculture GA AO7TU UT WOS:000341556300011 ER PT J AU Santiago, F Bagwell, B Martinez, T Restaino, S Krishna, S AF Santiago, Freddie Bagwell, Brett Martinez, Ty Restaino, Sergio Krishna, Sanjay TI Large aperture adaptive doublet polymer lens for imaging applications SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article AB We report a full design process-finite element modeling, fabrication, and characterization-of adaptive doublet polymer lenses. A first-order model was developed and used to design fluidic doublets, analogous to their glass counterparts. Two constant-volume fluidic chambers were enclosed by three flexible membranes, resulting in a variable focal length doublet with a clear aperture of 19.0 mm. Chromatic focal shift was then used to compare numerical modeling to experimentally measured results over a positive focal length range of 55-200mm (f/2.89 to f/10.5). (C) 2014 Optical Society of America C1 [Santiago, Freddie; Bagwell, Brett] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Martinez, Ty; Restaino, Sergio] US Naval Res Lab, Washington, DC 20375 USA. [Krishna, Sanjay] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. RP Santiago, F (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM fsantia@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2014-3846 J. NR 13 TC 0 Z9 0 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD AUG PY 2014 VL 31 IS 8 BP 1842 EP 1846 DI 10.1364/JOSAA.31.001842 PG 5 WC Optics SC Optics GA AO8GL UT WOS:000341591600019 PM 25121541 ER PT J AU Green, AR Lewis, KM Barr, JT Jones, JP Lu, FC Ralph, J Vermerris, W Sattler, SE Kang, C AF Green, Abigail R. Lewis, Kevin M. Barr, John T. Jones, Jeffrey P. Lu, Fachuang Ralph, John Vermerris, Wilfred Sattler, Scott E. Kang, ChulHee TI Determination of the Structure and Catalytic Mechanism of Sorghum bicolor Caffeic Acid O-Methyltransferase and the Structural Impact of Three brown midrib12 Mutations SO PLANT PHYSIOLOGY LA English DT Article ID BROWN-MIDRIB MUTANTS; CYTOCHROME P450-DEPENDENT MONOOXYGENASE; LIGNIN BIOSYNTHESIS; COA 3-O-METHYLTRANSFERASE; REDUCES RECALCITRANCE; NDDO APPROXIMATIONS; TRANSGENIC ALFALFA; BIOFUEL PRODUCTION; ETHANOL-PRODUCTION; DOWN-REGULATION AB Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low K-m for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion. C1 [Green, Abigail R.; Kang, ChulHee] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. [Lewis, Kevin M.; Barr, John T.; Jones, Jeffrey P.; Kang, ChulHee] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Lu, Fachuang; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Biochem, Madison, WI 53726 USA. [Lu, Fachuang; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Vermerris, Wilfred] Univ Florida, Dept Microbiol, Gainesville, FL 32610 USA. [Vermerris, Wilfred] Univ Florida, Cell Sci & Genet Inst, Gainesville, FL 32610 USA. [Sattler, Scott E.] USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA. RP Kang, C (reprint author), Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. EM chkang@wsu.edu FU National Science Foundation [MCB 102114]; U.S. Department of Agriculture [35318-17454, 2011-10006-30358, 5440-21220-032-00D, 2011-67009-30026]; Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494] FX This work was supported by the National Science Foundation (grant no. MCB 102114 to C.K.), the U.S. Department of Agriculture (National Research Initiative grant no. 35318-17454 to C.K.; Biomass Research and Development Initiative Competitive grant no. 2011-10006-30358 to W.V.; and grant nos. 5440-21220-032-00D and 2011-67009-30026 to S.E.S.), and by the Department of Energy Great Lakes Bioenergy Research Center (grant no. DE-FC02-07ER64494 to J.R. and F.L.). NR 61 TC 8 Z9 9 U1 3 U2 23 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD AUG PY 2014 VL 165 IS 4 BP 1440 EP 1456 DI 10.1104/pp.114.241729 PG 17 WC Plant Sciences SC Plant Sciences GA AO9AT UT WOS:000341648600006 PM 24948836 ER PT J AU Penning, BW Sykes, RW Babcock, NC Dugard, CK Held, MA Klimek, JF Shreve, JT Fowler, M Ziebell, A Davis, MF Decker, SR Turner, GB Mosier, NS Springer, NM Thimmapuram, J Weil, CF McCann, MC Carpita, NC AF Penning, Bryan W. Sykes, Robert W. Babcock, Nicholas C. Dugard, Christopher K. Held, Michael A. Klimek, John F. Shreve, Jacob T. Fowler, Matthew Ziebell, Angela Davis, Mark F. Decker, Stephen R. Turner, Geoffrey B. Mosier, Nathan S. Springer, Nathan M. Thimmapuram, Jyothi Weil, Clifford F. McCann, Maureen C. Carpita, Nicholas C. TI Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population SO PLANT PHYSIOLOGY LA English DT Article ID GENOME-WIDE ASSOCIATION; CINNAMOYL-COA REDUCTASE; CELL-WALL COMPOSITION; ZEA-MAYS L.; ETHANOL-PRODUCTION; TRANSCRIPTION FACTORS; CELLULOSIC ETHANOL; BIOFUEL PRODUCTION; HYBRID POPLAR; BIOSYNTHESIS AB Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. C1 [Penning, Bryan W.; McCann, Maureen C.; Carpita, Nicholas C.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Carpita, Nicholas C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Babcock, Nicholas C.; Weil, Clifford F.] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Mosier, Nathan S.] Purdue Univ, Lab Renewable Resources Engn & Agr & Biol Engn, W Lafayette, IN 47907 USA. [Shreve, Jacob T.; Thimmapuram, Jyothi] Purdue Univ, Bioinformat Core, W Lafayette, IN 47907 USA. [Sykes, Robert W.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Springer, Nathan M.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. RP Carpita, NC (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. EM carpita@purdue.edu OI Held, Michael/0000-0003-2604-8048; davis, mark/0000-0003-4541-9852 FU National Science Foundation Hy-Bi, an Emerging Frontiers in Research and Innovation program [0938033]; U.S. Department of Energy Feedstock Genomics Program, Office of Biological and Environmental Research, Office of Science [DE-FOA-0000598]; Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997] FX This work was supported by the National Science Foundation Hy-Bi, an Emerging Frontiers in Research and Innovation program (grant no. 0938033), by the U.S. Department of Energy Feedstock Genomics Program, Office of Biological and Environmental Research, Office of Science (grant no. DE-FOA-0000598), and by the Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (grant no. DE-SC0000997). NR 84 TC 15 Z9 15 U1 5 U2 51 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD AUG PY 2014 VL 165 IS 4 BP 1475 EP 1487 DI 10.1104/pp.114.242446 PG 13 WC Plant Sciences SC Plant Sciences GA AO9AT UT WOS:000341648600008 PM 24972714 ER PT J AU Conway, JM Perelson, AS AF Conway, Jessica M. Perelson, Alan S. TI A Hepatitis C Virus Infection Model with Time-Varying Drug Effectiveness: Solution and Analysis SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID COMPLEX DECAY PROFILES; VIRAL KINETIC-MODEL; DYNAMICS IN-VIVO; PEGYLATED INTERFERON-ALPHA-2B; ANTIVIRAL THERAPY; RNA DECLINE; B-VIRUS; PHARMACODYNAMICS; RESISTANCE AB Simple models of therapy for viral diseases such as hepatitis C virus (HCV) or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE) model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE) models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time. C1 [Conway, Jessica M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Conway, JM (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM asp@lanl.gov FU NIH [R01-OD011095, R01-AI078881, R34-HL109334, P20-GM103452, R01-AI028433] FX This work was supported by NIH grants R01-OD011095, R01-AI078881, R34-HL109334, P20-GM103452 and R01-AI028433. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 39 TC 3 Z9 3 U1 1 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD AUG PY 2014 VL 10 IS 8 AR e1003769 DI 10.1371/journal.pcbi.1003769 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AO8AE UT WOS:000341573600019 PM 25101902 ER PT J AU Baker, P Ricer, T Moynihan, PJ Kitova, EN Walvoort, MTC Little, DJ Whitney, JC Dawson, K Weadge, JT Robinson, H Ohman, DE Codee, JDC Klassen, JS Clarke, AJ Howell, PL AF Baker, Perrin Ricer, Tyler Moynihan, Patrick J. Kitova, Elena N. Walvoort, Marthe T. C. Little, Dustin J. Whitney, John C. Dawson, Karen Weadge, Joel T. Robinson, Howard Ohman, Dennis E. Codee, Jeroen D. C. Klassen, John S. Clarke, Anthony J. Howell, P. Lynne TI P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation SO PLOS PATHOGENS LA English DT Article ID MUCOID PSEUDOMONAS-AERUGINOSA; IONIZATION MASS-SPECTROMETRY; O-ACETYLPEPTIDOGLYCAN ESTERASE; MULTIPLE SEQUENCE ALIGNMENT; CHARGE-STATE DISTRIBUTIONS; BIOSYNTHETIC GENE-CLUSTER; SOLID-PHASE SYNTHESIS; ELECTROSPRAY-IONIZATION; BIOFILM FORMATION; MACROMOLECULAR STRUCTURE AB The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 angstrom resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. C1 [Baker, Perrin; Ricer, Tyler; Little, Dustin J.; Whitney, John C.; Dawson, Karen; Weadge, Joel T.; Howell, P. Lynne] Hosp Sick Children, Res Inst, Program Mol Struct & Funct, Toronto, ON M5G 1X8, Canada. [Ricer, Tyler; Little, Dustin J.; Whitney, John C.; Dawson, Karen; Howell, P. Lynne] Univ Toronto, Fac Med, Dept Biochem, Toronto, ON, Canada. [Moynihan, Patrick J.; Clarke, Anthony J.] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada. [Kitova, Elena N.; Klassen, John S.] Univ Alberta, Alberta Glyc Ctr, Edmonton, AB, Canada. [Kitova, Elena N.; Klassen, John S.] Univ Alberta, Dept Chem, Edmonton, AB, Canada. [Walvoort, Marthe T. C.; Codee, Jeroen D. C.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Robinson, Howard] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Ohman, Dennis E.] Virginia Commonwealth Univ, Dept Microbiol & Immunol, Med Ctr, Richmond, VA 23298 USA. [Ohman, Dennis E.] McGuire Vet Affairs Med Ctr, Richmond, VA USA. RP Howell, PL (reprint author), Hosp Sick Children, Res Inst, Program Mol Struct & Funct, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM howell@sickkids.ca RI Moynihan, Patrick/I-3393-2013 OI Moynihan, Patrick/0000-0003-4182-6223 FU Canadian Institutes of Health Research (CIHR) [13337, TGC 114045]; Alberta Glycomics Centre; Netherlands Organization for Scientific Research; National Institutes of Health Research [AI19146]; Veterans Administration Medical Research [I01BX000477]; Canada Research Chairs Program; Cystic Fibrosis Canada (CFC); Natural Sciences and Engineering Research Council of Canada (NSERC); Ontario Graduate Scholarship Program; Hospital for Sick Children Foundation Student Scholarship Program; University of Toronto; Canadian Institutes of Health research; United States Department of Energy Office; National Center for Research Resources from National Institutes of Health [P41RR012408]; National Institute of General Medical Sciences from National Institutes of Health [P41GM103473] FX This work was supported, in whole or in part, by Operating grants 13337 (to PLH), and TGC 114045 (to AJC) from the Canadian Institutes of Health Research (CIHR, http://www.cihr-irsc.gc.ca/e/193.html), Alberta Glycomics Centre (to ENK and JSK, http://www.glycomicscentre.ca), Netherlands Organization for Scientific Research Grant NOW-vidi (to JDCC, http://www.nwo.nl/en), National Institutes of Health Research AI19146 (http://www.nih.gov), and Veterans Administration Medical Research grant I01BX000477 (to DEO, http://www.research.va.gov). Salary/trainee scholarship support was provided by the Canada Research Chairs Program (http://www.chairs-chaires.gc.ca/home-accueil-eng.aspx), Cystic Fibrosis Canada (CFC, http://www.cysticfibrosis.ca), Natural Sciences and Engineering Research Council of Canada (NSERC, http://www.nserc-crsng.gc.ca), Ontario Graduate Scholarship Program (https://osap.gov.on.ca/OSAPPortal/en/A-ZListofAid/PRD1346626.html), The Hospital for Sick Children Foundation Student Scholarship Program (https://www.sickkids.ca/Research/StudentandFellowResources/RTC/Training -Programs/Graduate-Studentship/index.html), University of Toronto (http://www.biochemistry.utoronto.ca), and Canadian Institutes of Health research (http://www.cihr-irsc.gc.ca/e/193.html). Beam Line X29 at the National Synchrotron Light Source is supported by the United States Department of Energy Office and by the National Center for Research Resources Grant P41RR012408 and the National Institute of General Medical Sciences Grant P41GM103473, from the National Institutes of Health (http://energy.gov/public-services/funding-financing, http://www.nih.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 78 TC 8 Z9 8 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD AUG PY 2014 VL 10 IS 8 AR e1004334 DI 10.1371/journal.ppat.1004334 PG 16 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA AO8BD UT WOS:000341576300047 PM 25165982 ER PT J AU Dafflon, B AF Dafflon, Baptiste TI Baptiste Dafflon receives the 2013 Paul Niggli Medal Response SO SWISS JOURNAL OF GEOSCIENCES LA English DT Editorial Material C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dafflon, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Dafflon, Baptiste/G-2441-2015 NR 0 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1661-8726 EI 1661-8734 J9 SWISS J GEOSCI JI Swiss J. Geosci. PD AUG PY 2014 VL 107 IS 1 BP 134 EP 134 PG 1 WC Geosciences, Multidisciplinary; Paleontology SC Geology; Paleontology GA AO5IX UT WOS:000341378900011 ER PT J AU Mearls, EB Lynd, LR AF Mearls, Elizabeth B. Lynd, Lee R. TI The identification of four histidine kinases that influence sporulation in Clostridium thermocellum SO ANAEROBE LA English DT Article DE Sporulation; L-Forms; Histidine kinase; Metabolic shutdown; Cellulose degradation ID BACILLUS-SUBTILIS SPORULATION; PROTEIN-KINASE; L-FORMS; STREPTOCOCCUS-MUTANS; ENDOSPORE FORMATION; GENETIC COMPETENCE; SPO0A REGULON; INITIATION; PHOSPHORELAY; ACETOBUTYLICUM AB In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C thermocellum biology. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Mearls, Elizabeth B.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Mearls, Elizabeth B.; Lynd, Lee R.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, 14 Engn Dr, Hanover, NH 03755 USA. EM Lee.R.Lynd@dartmouth.edu FU BioEnergy Science Center (BESC), Oak Ridge National Laboratory, a U.S. Department of Energy (DOE) BioEnergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science FX This research was supported by a grant from the BioEnergy Science Center (BESC), Oak Ridge National Laboratory, a U.S. Department of Energy (DOE) BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 71 TC 6 Z9 6 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1075-9964 EI 1095-8274 J9 ANAEROBE JI Anaerobe PD AUG PY 2014 VL 28 BP 109 EP 119 DI 10.1016/j.anaerobe.2014.06.004 PG 11 WC Microbiology SC Microbiology GA AO4YT UT WOS:000341348000019 PM 24933585 ER PT J AU Jung, HB Kabilan, S Carson, JP Kuprat, AP Um, W Martin, P Dahl, M Kafentzis, T Varga, T Stephens, S Arey, B Carroll, KC Bonneville, A Fernandez, CA AF Jung, Hun Bok Kabilan, Senthil Carson, James P. Kuprat, Andrew P. Um, Wooyong Martin, Paul Dahl, Michael Kafentzis, Tyler Varga, Tamas Stephens, Sean Arey, Bruce Carroll, Kenneth C. Bonneville, Alain Fernandez, Carlos A. TI Wellbore cement fracture evolution at the cement-basalt caprock interface during geologic carbon sequestration SO APPLIED GEOCHEMISTRY LA English DT Article ID CO2-RICH BRINE; COMPUTED-TOMOGRAPHY; IMAGING DATA; CO2; DIOXIDE; INTEGRITY; LEAKAGE; FLOW; MICROTOMOGRAPHY; SIMULATIONS AB Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 degrees C and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul; Dahl, Michael; Kafentzis, Tyler; Varga, Tamas; Stephens, Sean; Arey, Bruce; Bonneville, Alain; Fernandez, Carlos A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Carroll, Kenneth C.] New Mexico State Univ, Las Cruces, NM 88003 USA. RP Fernandez, CA (reprint author), Pacific NW Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99354 USA. EM carlos.fernandez@pnnl.gov RI Carroll, Kenneth/H-5160-2011; OI Carroll, Kenneth/0000-0003-2097-9589; Kuprat, Andrew/0000-0003-4159-918X FU National Risk Assessment Partnership (NRAP) in the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program; Energy Efficiency and Renewable Energy-Geothermal Technologies Program of U.S. Department of Energy; U.S. DOE [DE-AC06-76RLO 1830] FX XMT, SEM and EDS analysis was performed in EMSL (Environmental Molecular Sciences Laboratory; EMSL proposal # 47743), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). Funding for this research was provided by the National Risk Assessment Partnership (NRAP) in the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program as well as Energy Efficiency and Renewable Energy-Geothermal Technologies Program of U.S. Department of Energy. PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO 1830. NR 53 TC 10 Z9 10 U1 4 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD AUG PY 2014 VL 47 BP 1 EP 16 DI 10.1016/j.apgeochem.2014.04.010 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AO4VT UT WOS:000341340200001 ER PT J AU Benedicto, A Begg, JD Zhao, PH Kersting, AB Missana, T Zavarin, M AF Benedicto, Ana Begg, James D. Zhao, Pihong Kersting, Annie B. Missana, Tiziana Zavarin, Mavrik TI Effect of major cation water composition on the ion exchange of Np(V) on montmorillonite: NpO2+-Na+-K+-Ca2+-Mg2+ selectivity coefficients SO APPLIED GEOCHEMISTRY LA English DT Article ID NA-MONTMORILLONITE; MECHANISTIC DESCRIPTION; SURFACE COMPLEXATION; ZN SORPTION; NEPTUNIUM; ADSORPTION; EQUILIBRIUM; SPECIATION; BENTONITE; SMECTITE AB Np(V) sorption was examined in pH 4.5 colloidal suspensions of nominally homoionic montmorillonite (Na-, K-, Ca- and Mg-montmorillonite). Ionic exchange on permanent charge sites was studied as a function of ionic strength (0.1, 0.01 and 0.001 M) and background electrolyte (NaCl, KCl, CaCl2 and MgCl2). An ion exchange model was developed using the FIT4FD program, which considered all experimental data simultaneously: Np sorption data, major cation composition of the electrolyte and associated uncertainties. The model was developed to be consistent with the ion exchange selectivity coefficients between the major cations reported in the literature and led to the following recommended selectivity coefficients for Np(V) ion exchange according to the Vanselow convention: log ((NpO2+)(Na+) K-V) = -0.20, log ((NpO2+)(K+) K-V) = -0.46, log ((NpO2+)(Ca2+) K-V) = -0.57, log ((NpO2+)(Mg2+) K-V) = -0.57. Both the experimental data and the estimated selectivity coefficients in this study are consistent with the limited Np(V) ion exchange and sorption data reported in the literature. The results indicate that, as expected, low ionic strengths favor Np(V) sorption when ion exchange is the main sorption mechanism (i.e. acidic to neutral pHs) and that the divalent cations Ca2+ and Mg2+. may be important in limiting Np(V) ionic exchange on montmorillonite. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Benedicto, Ana; Begg, James D.; Zhao, Pihong; Kersting, Annie B.; Zavarin, Mavrik] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst Phys & Life Sci, Livermore, CA 94550 USA. [Benedicto, Ana; Missana, Tiziana] CIEMAT, Dept Environm, E-28040 Madrid, Spain. RP Benedicto, A (reprint author), CEA, Ctr Etud Saclay, L3MR, F-91191 Gif Sur Yvette, France. EM ana-benedicto@hotmail.com RI Garcia-Gutierrez, Miguel/M-1651-2014; Missana, Tiziana/E-4646-2010 OI Garcia-Gutierrez, Miguel/0000-0001-6551-2873; Missana, Tiziana/0000-0003-3052-5185 FU Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program; Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research; LLNL [DE-AC52-07NA27344]; Spanish Ministry of Economy and Competitiveness [CMT2011-27975]; Spanish Government [BES-2009-026765] FX This work was supported by the Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program and by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research. Prepared by LLNL under Contract DE-AC52-07NA27344 and partially supported by the Spanish Ministry of Economy and Competitiveness under the frame of the NANOBAG Project (CMT2011-27975). A. Benedicto was supported by a Spanish Government 'FPI' pre-doctoral contract (BES-2009-026765). We thank three anonymous reviewers whose comments greatly improved this manuscript. NR 59 TC 6 Z9 6 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD AUG PY 2014 VL 47 BP 177 EP 185 DI 10.1016/j.apgeochem.2014.06.003 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AO4VT UT WOS:000341340200018 ER PT J AU Nordwald, EM Brunecky, R Himmel, ME Beckham, GT Kaar, JL AF Nordwald, Erik M. Brunecky, Roman Himmel, Michael E. Beckham, Gregg T. Kaar, Joel L. TI Charge Engineering of Cellulases Improves Ionic Liquid Tolerance and Reduces Lignin Inhibition SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE enzyme engineering; Trichoderma reesei cellulase; 1-butyl-3-methylimidazolium chloride; biomass conversion; cellulose; biofuels ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; ENZYMATIC-HYDROLYSIS; BIOMASS RECALCITRANCE; LIGNOCELLULOSIC BIOMASS; CELLULOSE HYDROLYSIS; CRYSTAL-STRUCTURE; WHEAT-STRAW; PRETREATMENT AB We report a novel approach to concurrently improve the tolerance to ionic liquids (ILs) as well as reduce lignin inhibition of Trichoderma reesei cellulase via engineering enzyme charge. Succinylation of the cellulase enzymes led to a nearly twofold enhancement in cellulose conversion in 15% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The improvement in activity upon succinylation correlated with the apparent preferential exclusion of the [Cl] anion in fluorescence quenching assays. Additionally, modeling analysis of progress curves of Avicel hydrolysis in buffer indicated that succinylation had a negligible impact on the apparent KM of cellulase. As evidence of reducing lignin inhibition of T. reesei cellulase, succinylation resulted in a greater than twofold increase in Avicel conversion after 170 h in buffer with 1 wt% lignin. The impact of succinylation on lignin inhibition of cellulase further led to the reduction in apparent KM of the enzyme cocktail for Avicel by 2.7-fold. These results provide evidence that naturally evolved cellulases with highly negative surface charge densities may similarly repel lignin, resulting in improved cellulase activity. Ultimately, these results underscore the potential of rational charge engineering as a means of enhancing cellulase function and thus conversion of whole biomass in ILs. (C) 2014 Wiley Periodicals, Inc. C1 [Nordwald, Erik M.; Kaar, Joel L.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Brunecky, Roman; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. RP Kaar, JL (reprint author), Univ Colorado, Dept Chem & Biol Engn, Campus Box 596, Boulder, CO 80309 USA. EM joel.kaar@colorado.edu FU National Science Foundation [CBET 1347737]; DOE EERE BioEnergy Technology Office FX Contract grant sponsor: National Science Foundation; Contract grant number: CBET 1347737; Contract grant sponsor: DOE EERE BioEnergy Technology Office NR 39 TC 22 Z9 22 U1 3 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD AUG PY 2014 VL 111 IS 8 BP 1541 EP 1549 DI 10.1002/bit.25216 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO3MS UT WOS:000341235400008 PM 24522957 ER PT J AU Piao, HL Froula, J Du, CB Kim, TW Hawley, ER Bauer, S Wang, Z Ivanova, N Clark, DS Klenk, HP Hess, M AF Piao, Hailan Froula, Jeff Du, Changbin Kim, Tae-Wan Hawley, Erik R. Bauer, Stefan Wang, Zhong Ivanova, Nathalia Clark, Douglas S. Klenk, Hans-Peter Hess, Matthias TI Identification of Novel Biomass-Degrading Enzymes From Genomic Dark Matter: Populating Genomic Sequence Space With Functional Annotation SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biomass-degradation; CAZymes; cellulases; gene-neighborhood analysis; genomic dark matter; gut microorganisms ID CELLULOLYTIC COMPLEX CELLULOSOME; CARBOHYDRATE-BINDING MODULES; AMINO-ACID-SEQUENCES; HIDDEN MARKOV MODEL; SP-NOV.; GEN.-NOV.; HUMAN FECES; BACTEROIDES-THETAIOTAOMICRON; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-ACTIVITY AB Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of similar to 35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. (C) 2014 Wiley Periodicals, Inc. C1 [Piao, Hailan; Hess, Matthias] Washington State Univ, Sch Mol Biosci, Richland, WA 99352 USA. [Piao, Hailan; Hawley, Erik R.; Hess, Matthias] Pacific NW Natl Lab, Richland, WA 99352 USA. [Froula, Jeff; Du, Changbin; Wang, Zhong; Ivanova, Nathalia; Hess, Matthias] DOE Joint Genome Inst, Walnut Creek, CA USA. [Kim, Tae-Wan; Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kim, Tae-Wan; Bauer, Stefan; Clark, Douglas S.] Energy Biosci Inst, Berkeley, CA USA. [Hawley, Erik R.] Washington State Univ, Dept Civil & Environm Engn, Richland, WA USA. [Klenk, Hans-Peter] German Collect Microorganisms & Cell Cultures, Leibniz Inst DSMZ, Braunschweig, Germany. [Hess, Matthias] DOE Environm Mol Sci Lab, Richland, WA USA. RP Hess, M (reprint author), Washington State Univ, Sch Mol Biosci, Richland, WA 99352 USA. EM mhess@lbl.gov FU Washington State University; WSUs Office of Grant and Research Development in Pullman; Energy Biosciences Institute, University of California Berkeley FX Contract grant sponsor: Washington State University; Contract grant sponsor: WSUs Office of Grant and Research Development in Pullman; Contract grant sponsor: Energy Biosciences Institute, University of California Berkeley NR 89 TC 11 Z9 11 U1 0 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD AUG PY 2014 VL 111 IS 8 BP 1550 EP 1565 DI 10.1002/bit.25250 PG 16 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO3MS UT WOS:000341235400009 PM 24728961 ER PT J AU George, KW Chen, A Jain, A Batth, TS Baidoo, EEK Wang, G Adams, PD Petzold, CJ Keasling, JD Lee, TS AF George, Kevin W. Chen, Amy Jain, Aakriti Batth, Tanveer S. Baidoo, Edward E. K. Wang, George Adams, Paul D. Petzold, Christopher J. Keasling, Jay D. Lee, Taek Soon TI Correlation Analysis of Targeted Proteins and Metabolites to Assess and Engineer Microbial Isopentenol Production SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofuel; correlation analysis; isopentenol; proteomics; metabolic engineering; isoprenoid ID ISOPRENOID PRECURSOR TOXICITY; ESCHERICHIA-COLI; SYNTHETIC BIOLOGY; MEVALONATE PATHWAY; BACILLUS-SUBTILIS; GENE-EXPRESSION; IDENTIFICATION; OPTIMIZATION; GENERATION; ALCOHOLS AB The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. (C) 2014 Wiley Periodicals, Inc. C1 [George, Kevin W.; Chen, Amy; Jain, Aakriti; Batth, Tanveer S.; Baidoo, Edward E. K.; Wang, George; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Lee, Taek Soon] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [George, Kevin W.; Batth, Tanveer S.; Baidoo, Edward E. K.; Wang, George; Adams, Paul D.; Petzold, Christopher J.; Keasling, Jay D.; Lee, Taek Soon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chen, Amy; Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Jain, Aakriti; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Lee, TS (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM tslee@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU US Department of Energy FX Contract grant sponsor: US Department of Energy NR 32 TC 22 Z9 23 U1 4 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD AUG PY 2014 VL 111 IS 8 BP 1648 EP 1658 DI 10.1002/bit.25226 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO3MS UT WOS:000341235400018 PM 24615242 ER PT J AU Mason, CJ Zeldin, EL Currie, CR Raffa, KF McCown, BH AF Mason, Charles J. Zeldin, Eric L. Currie, Cameron R. Raffa, Kenneth F. McCown, Brent H. TI Populations of uncultivated American cranberry in sphagnum bog communities harbor novel assemblages of Actinobacteria with antifungal properties SO BOTANY LA English DT Article DE cranberry; bacteria; sphagnum moss; natural populations; antifungal ID NITROGEN-FIXATION; PLANT-GROWTH; DIVERSITY; ENDOPHYTES; RESISTANCE; BACTERIAL; MICROORGANISMS; TOLERANCE; PATTERNS; PEATLAND AB The American cranberry (Vaccinium macrocarpon Aiton) is a perennial plant in northern latitudes that co-occurs with sphagnum mosses in uncultivated populations, in habitats characterized by high acidity, low nitrogen, and fungal pathogens that thrive in wet environments. We investigated the association of Actinobacteria with cranberry and co-inhabiting sphagnum moss and their antifungal properties, across several natural populations. Based on 16S-rRNA gene phylogeny, the majority of these species were in the genus Streptomyces. Neither site nor plant source explained the phylogenetic relationships of these isolates. Most sequences did not group with known Streptomyces sequences, indicating a potentially high diversity of novel strains from this environment. We observed antibiosis by some Actinobacteria isolates against the phytopathogenic fungus Colletotrichum acutatum and a general antagonistic fungus, Trichoderma sp. Individual isolates varied in antifungal ability within and between fungi. Variation in bacterial antifungal properties was not explained by plant species or site, but was partially related to phylogenetic relationship. These results document novel associations between cranberry and sphagnum moss with Actinobacteria, including strains capable of inhibiting fungi. These results suggest candidates for development as biological control agents in agriculture. C1 [Mason, Charles J.; Raffa, Kenneth F.] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. [Zeldin, Eric L.; McCown, Brent H.] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA. [Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Currie, Cameron R.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53706 USA. RP Mason, CJ (reprint author), Univ Wisconsin, Dept Entomol, 345 Russell Labs,1630 Linden Dr, Madison, WI 53706 USA. EM cjmason@wisc.edu FU Unites States Department of Agriculture [WIS01598]; University of Wisconsin College of Agricultural and Life Sciences; Wisconsin Cranberry Board FX We thank Jessica Warwick, Michael Geiger, and Erik Hoeck who assisted in the isolation and maintenance of bacterial cultures and in conducting experiments. We also thank Patty McManus for initial fungal C. acutatum isolation and Kyle Johnson for sphagnum species information. We thank Nathan Basilko and one anonymous reviewer whose comments greatly improved this manuscript. This work was funded by the Unites States Department of Agriculture Hatch No. WIS01598, the University of Wisconsin College of Agricultural and Life Sciences, and the Wisconsin Cranberry Board. NR 50 TC 0 Z9 0 U1 1 U2 14 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 1916-2790 EI 1916-2804 J9 BOTANY JI Botany PD AUG PY 2014 VL 92 IS 8 BP 589 EP 595 DI 10.1139/cjb-2014-0025 PG 7 WC Plant Sciences SC Plant Sciences GA AO7FR UT WOS:000341518300006 ER PT J AU Kafle, K Shi, R Lee, CM Mittal, A Park, YB Sun, YH Park, S Chiang, V Kim, SH AF Kafle, Kabindra Shi, Rui Lee, Christopher M. Mittal, Ashutosh Park, Yong Bum Sun, Ying-Hsuan Park, Sunkyu Chiang, Vincent Kim, Seong H. TI Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods SO CELLULOSE LA English DT Article DE Reaction wood; Tension wood; Compression wood; Cellulose microfibril assembly; Sum; frequency; generation spectroscopy; X-ray; diffraction ID PLANT-CELL WALLS; ATOMIC-FORCE MICROSCOPY; TENSION WOOD; CRYSTALLINE CELLULOSE; DIRECT VISUALIZATION; ACETOBACTER-XYLINUM; ELECTRON-MICROSCOPY; COMPRESSION WOOD; FIBERS; ORIENTATION AB The cellulose microfibril assemblies in secondary cell walls of tension wood and compression wood were studied with vibrational sum frequency generation (SFG) spectroscopy. The tension wood contains the gelatinous layer with highly-crystalline and highly-aligned cellulose microfibrils. The SFG spectral features of tension wood changed depending on the azimuth angle between the polarization of the incident IR beam and the preferential alignment axis of the cellulose microfibrils. The SFG spectra of the compression wood did not show any dependence on the azimuth angle, implying that the overall orientation of cellulose microfibrils in compression wood is not highly aligned. Instead, the decrease of cellulose content in compression wood brought about larger separation between cellulose microfibrils, which was manifested as changes in CH2/OH intensity ratio in SFG spectra. These results implied that SFG spectral features are sensitive to cellulose microfibril alignments and inter-fibrillar separations. C1 [Kafle, Kabindra; Lee, Christopher M.; Kim, Seong H.] Penn State Univ, Res Inst, Dept Chem Engn & Mat, University Pk, PA 16802 USA. [Shi, Rui; Sun, Ying-Hsuan; Chiang, Vincent] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA. [Mittal, Ashutosh] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Park, Yong Bum] Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA. [Sun, Ying-Hsuan] Natl Chung Hsing Univ, Dept Forestry, Taichung 40227, Taiwan. [Park, Sunkyu] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA. RP Kim, SH (reprint author), Penn State Univ, Res Inst, Dept Chem Engn & Mat, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001090]; Forest Biotechnology Industrial Research Consortium (FORBIRC) at North Carolina State University; National Science Foundation, Plant Genome Research Program [DBI-092239] FX This work was supported by The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001090. The P. trichocarpa and P. taeda samples were produced with the support from the Forest Biotechnology Industrial Research Consortium (FORBIRC) at North Carolina State University and The National Science Foundation, Plant Genome Research Program DBI-092239. The trunk section of the 18 year old P. taeda tree was generously provided by Prof. Hou-min Chang at North Carolina State University. NR 60 TC 7 Z9 7 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD AUG PY 2014 VL 21 IS 4 BP 2219 EP 2231 DI 10.1007/s10570-014-0322-3 PG 13 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA AO6VM UT WOS:000341490200004 ER PT J AU Lischeske, JJ Nelson, RS Stickel, JJ AF Lischeske, James J. Nelson, Robert S. Stickel, Jonathan J. TI Benchtop methods for measuring the fraction of free liquid of biomass slurries SO CELLULOSE LA English DT Article DE Lignocellulosic biomass; Free liquid; Solute exclusion; Centrifuge filtration; Dewatering ID SOLUTE EXCLUSION TECHNIQUE; ENZYMATIC-HYDROLYSIS; CORN STOVER; POLY(ETHYLENE GLYCOL); SURFACE-AREA; CELLULOSE; WATER; LIGNOCELLULOSE; DIFFUSION; PRETREATMENT AB The free-liquid fraction of slurries is strongly correlated with other slurry properties, especially the rheological and transport properties. Measuring free-liquid fraction can be problematic with lignocellulosic materials, and many studies to-date have instead used the total mass-fraction of liquid as a surrogate measure. This study presents two benchscale methods for determining the free- liquid content of lignocellulosic biomass slurries. One is based on centrifuge- filtration of biomass for increasing time intervals until an asymptote is observed. The other uses solute exclusion methods and includes a proper accounting for unavoidable adsorption of the tracer solute molecules on the biomass solids. Overall, we found both methods gave reasonable results for washed pretreated corn stover. Among our controls, the centrifuge dewatering method tends to enable better results for large, rigid particles, and can give unrealistic results for small, compressible particles. This tendency is also reflected in the results for different pretreated corn stover slurries, where the quality of the results varied with the particle size distribution of the slurries. The solute exclusion method gives physically realistic results for all of our control materials and for washed pretreated materials, but produced physically unrealistic results for one unwashed pretreated corn stover sample. Further, we show that blue dextran interacts chemically with lignocellulosic material via adsorption and suspected degradation reactions. C1 [Lischeske, James J.; Nelson, Robert S.; Stickel, Jonathan J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lischeske, JJ (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM james.lischeske@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory through the BioEnergy Technologies Office FX This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory through the BioEnergy Technologies Office. NR 30 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD AUG PY 2014 VL 21 IS 4 BP 2261 EP 2269 DI 10.1007/s10570-014-0185-7 PG 9 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA AO6VM UT WOS:000341490200007 ER PT J AU Sun, QN Foston, M Sawada, D Pingali, SV O'Neill, HM Li, HJ Wyman, CE Langan, P Pu, YQ Ragauskas, AJ AF Sun, Qining Foston, Marcus Sawada, Daisuke Pingali, Sai Venkatesh O'Neill, Hugh M. Li, Hongjia Wyman, Charles E. Langan, Paul Pu, Yunqiao Ragauskas, Art J. TI Comparison of changes in cellulose ultrastructure during different pretreatments of poplar SO CELLULOSE LA English DT Article DE Biomass pretreatment; Cellulose; Ultrastructure; Crystallinity; Enzymatic hydrolysis ID LIME PRETREATMENT; LIGNOCELLULOSIC BIOMASS; C-13 NMR; CRYSTALLINE CELLULOSE; CORN STOVER; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; ORGANOSOLV PROCESS; ACID PRETREATMENT; WHEAT-STRAW AB One commonly cited factor that contributes to the recalcitrance of biomass is cellulose crystallinity. The present study aims to establish the effect of several pretreatment technologies on cellulose crystallinity, crystalline allomorph distribution, and cellulose ultrastructure. The observed changes in the cellulose ultrastructure of poplar were also related to changes in enzymatic hydrolysis, a measure of biomass recalcitrance. Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments were compared in terms of changes in enzymatic sugar release and then changes in cellulose ultrastructure measured by 13 C cross polarization magic angle spinning nuclear magnetic resonance and wide-angle X-ray diffraction. Pretreatment severity and relative chemical depolymerization/ degradation were assessed through compositional analysis and high-performance anionexchange chromatography with pulsed amperometric detection. Results showed minimal cellulose ultrastructural changes occurred due to lime and limeoxidant pretreatments, which at short residence time displayed relatively high enzymatic glucose yield. Hot water pretreatment moderately changed cellulose crystallinity and crystalline allomorph distribution, yet produced the lowest enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Ib allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Perhaps related, compositional analysis and Klason lignin contents for samples that underwent dilute acid and dilute acid-oxidant pretreatments indicated the most significant polysaccharide depolymerization/ degradation also ensued. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Hot-water, dilute acid, dilute acid-oxidant, and organo-solv pretreatments all showed evidence of cellulose microfibril coalescence. C1 [Sun, Qining; Pu, Yunqiao; Ragauskas, Art J.] Georgia Inst Technol, Inst Paper Sci & Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Foston, Marcus] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Sawada, Daisuke; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Langan, Paul] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Li, Hongjia; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Chem & Environm Engn Dept,BioEnergy Sci Ctr, Riverside, CA 92507 USA. RP Ragauskas, AJ (reprint author), Georgia Inst Technol, Inst Paper Sci & Technol, Sch Chem & Biochem, 500 10th St, Atlanta, GA 30332 USA. EM art.ragauskas@chemistry.gatech.edu RI Langan, Paul/N-5237-2015; Sun, Qining/B-7592-2016; OI Langan, Paul/0000-0002-0247-3122; Sun, Qining/0000-0002-9678-7834; Pingali, Sai Venkatesh/0000-0001-7961-4176; Pu, Yunqiao/0000-0003-2554-1447; O'Neill, Hugh/0000-0003-2966-5527 FU Genomic Science Program, Office of Biological and Environmental Research, U. S. Department of Energy [FWP ERKP752]; US Department of Energy; Office of Biological and Environmental Research [FWP ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy; Paper Science & Engineering (PSE) fellowship program at Institute of Paper Science & Technology (IPST) at Georgia Institute of Technology FX Hybrid poplar samples were obtained through a collaborative agreement with the Bioenergy Science Center (BESC) located at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, U. S. Department of Energy, under FWP ERKP752 and US Department of Energy sponsored BioEnergy Science Center (BESC). Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) is supported by the Office of Biological and Environmental Research (FWP ERKP291). A portion of this research was also conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. Q. S. is grateful for the financial support from the Paper Science & Engineering (PSE) fellowship program at Institute of Paper Science & Technology (IPST) at Georgia Institute of Technology. NR 56 TC 16 Z9 16 U1 6 U2 65 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD AUG PY 2014 VL 21 IS 4 BP 2419 EP 2431 DI 10.1007/s10570-014-0303-6 PG 13 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA AO6VM UT WOS:000341490200020 ER PT J AU Glatz, A Varlamov, AA Vinokur, VM AF Glatz, A. Varlamov, A. A. Vinokur, V. M. TI High-resolution tunnel fluctuoscopy SO EPL LA English DT Article ID SUPERCONDUCTOR; FLUCTUATIONS; TRANSITION; JUNCTIONS AB Electron tunneling spectroscopy pioneered by Esaki and Giaever offered a powerful tool for studying electronic spectra and density of states (DOS) in superconductors. This led to important discoveries that revealed, in particular, the pseudogap in the tunneling spectrum of superconductors above their critical temperatures. However, the phenomenological approach of Giaever and Megerle does not resolve the fine structure of low-bias behavior carrying significant information about electron scattering, interactions, and decoherence effects. Here we construct a complete microscopic theory of electron tunneling into a superconductor in the fluctuation regime. We reveal a non-trivial low-energy anomaly in tunneling conductivity due to Andreev-like reflections of injected electrons from superconducting fluctuations. Our findings enable real-time observation of fluctuating Cooper pairs dynamics by time-resolved scanning tunneling microscopy measurements and open new horizons for quantitative analysis of the fluctuation electronic spectra of superconductors. Copyright (C) EPLA, 2014 C1 [Glatz, A.; Varlamov, A. A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Glatz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Varlamov, A. A.] CNR SPIN, I-00133 Rome, Italy. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; FP7-IRSES program "SIMTECH" [236947] FX The authors are grateful to T. BATURINA for attracting their interest to the problem of fluctuation formation of a pseudogap close to Hc2(0). We acknowledge useful discussions with B. ALTSHULER, A. GOLDMAN, A. KAMENEV, V. E. KRAVTSOV, V. KRASNOV, M. NORMAN, and B. SACEPE. We appreciate M. V. FEIGELMAN'S criticism, having resulted in the better understanding of the obtained results. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. AAV acknowledges support of the FP7-IRSES program, grant No. 236947 "SIMTECH". NR 20 TC 1 Z9 1 U1 2 U2 6 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD AUG PY 2014 VL 107 IS 4 AR 47004 DI 10.1209/0295-5075/107/47004 PG 6 WC Physics, Multidisciplinary SC Physics GA AO4ML UT WOS:000341313000021 ER PT J AU Peshkin, M Volya, A Zelevinsky, V AF Peshkin, Murray Volya, Alexander Zelevinsky, Vladimir TI Non-exponential and oscillatory decays in quantum mechanics SO EPL LA English DT Article ID QUASI-STATIONARY STATE; ORBITAL ELECTRON-CAPTURE; NUCLEAR REACTIONS; UNIFIED THEORY; BETA(+) DECAY; LAW; EVOLUTION; SURVIVAL; SYSTEMS; IONS AB The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI. Copyright (C) EPLA, 2014 C1 [Peshkin, Murray] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Volya, Alexander] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Zelevinsky, Vladimir] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Zelevinsky, Vladimir] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Peshkin, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. OI Volya, Alexander/0000-0002-1765-6466 FU U.S. Department of Energy [02-06CH11357, DE-SC0009883]; NSF [PHY-1068217, PHY-1404442] FX This material is based upon work supported by the U.S. Department of Energy 02-06CH11357 and DE-SC0009883, and by the NSF grants PHY-1068217 and PHY-1404442. We thank YU. LITVINOV for information concerning the GSI experiment. NR 38 TC 7 Z9 7 U1 0 U2 10 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD AUG PY 2014 VL 107 IS 4 AR 40001 DI 10.1209/0295-5075/107/40001 PG 7 WC Physics, Multidisciplinary SC Physics GA AO4ML UT WOS:000341313000002 ER PT J AU Singh, D Tian, J Mamtani, K King, J Miller, JT Ozkan, US AF Singh, Deepika Tian, Juan Mamtani, Kuldeep King, Jesaiah Miller, Jeffrey T. Ozkan, Unlit S. TI A comparison of N-containing carbon nanostructures (CNx) and N-coordinated iron-carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media SO JOURNAL OF CATALYSIS LA English DT Article DE CNx; FeNC; ORR; XANES; EXAFS; SQUID ID PEM FUEL-CELLS; NITROGEN-CONTAINING CARBON; HEAT-TREATED POLYACRYLONITRILE; SUPPORTED METAL PARTICLES; HIGH-AREA CARBON; O-2 REDUCTION; ACTIVE-SITES; TRANSITION-METAL; ELECTROCHEMICAL DURABILITY; ELECTROCATALYTIC ACTIVITY AB In light of the debate about the role of the transition metal in non-precious metal catalysts (NPMCs), two different NPMCs, CNx and FeNC, were compared for activity toward oxygen reduction in acidic media and characterized using various techniques, including X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), extended X-ray absorption fine structure (EXAFS), superconducting quantum interference device (SQUID) magnetometry, inductive-couple plasma optical emission spectrometry (ICP-OES), and temperature-programmed oxidation (TPO). The effect of acid-washing as well as long-term exposure to fuel cell and half-cell environment on both catalysts was also studied. Although FeNC exhibited a much higher initial activity than CNx, it was seen to degrade rapidly in both half-cell and fuel cell environments, while CNx retained much of its initial activity. The results discussed are sought to clarify some of the ambiguity in the role of the transition metal in these two catalysts and help establish that they are indeed two different materials with different active sites that catalyze ORR. (C) 2014 Elsevier Inc. All rights reserved. C1 [Singh, Deepika; Tian, Juan; Mamtani, Kuldeep; King, Jesaiah; Ozkan, Unlit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA. EM Ozkan.1@osu.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER15896]; E.I. DuPont de Nemours Co.; Dow Chemical Company; Northwestern University; U.S. DOE [DE-AC02-06CH11357] FX We gratefully acknowledge the financial support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-FG02-07ER15896. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern University. Use of the APS, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 85 TC 36 Z9 37 U1 10 U2 80 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD AUG PY 2014 VL 317 BP 30 EP 43 DI 10.1016/j.jcat.2014.05.025 PG 14 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AO6PC UT WOS:000341473000004 ER PT J AU Ye, JY Liu, CJ Mei, DH Ge, QF AF Ye, Jingyun Liu, Chang-jun Mei, Donghai Ge, Qingfeng TI Methanol synthesis from CO2 hydrogenation over a Pd-4/In2O3 model catalyst: A combined DFT and kinetic study SO JOURNAL OF CATALYSIS LA English DT Article DE Methanol synthesis; Carbon dioxide; Indium oxide; Palladium; Density functional theory; Kinetic modeling ID SUPPORTED PD CATALYSTS; AUGMENTED-WAVE METHOD; HETEROGENEOUS CATALYSIS; REFORMING ACTIVITY; METAL-CLUSTERS; CARBON-DIOXIDE; ADSORPTION; SURFACE; ENERGY; ATOM AB Methanol synthesis from CO2 hydrogenation on a model Pd/In2O3 catalyst, i.e. Pd-4/In2O3, has been investigated using density functional theory (DFT) and microkinetic modeling. Three possible routes in the reaction network of CO2 + H-2 -> CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier blocked the HCOOH route kinetically. The DFT results also suggest that H2COO* + H* <-> H2CO* + OH* and cis-COOH* + H* <-> CO* + H2O* are the rate-limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant pathway for forming methanol from CO2 hydrogenation. Furthermore, the activation of the H adatom on the Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting methanol production. The hydroxyl adsorbed at the interface of Pd-4/In2O3 induces structural transformation of the supported Pd-4 cluster from a butterfly shape into a tetrahedron one. This structural change not only indicates the dynamical nature of the supported nanocatalysts during the reaction but also causes the final hydrogenation step to change from CH3O to H2COH. (C) 2014 Elsevier Inc. All rights reserved. C1 [Ye, Jingyun; Liu, Chang-jun; Ge, Qingfeng] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Ye, Jingyun; Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Mei, Donghai] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Ge, QF (reprint author), So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. EM qge@chem.siu.edu RI Ge, Qingfeng/A-8498-2009; Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; FU National Natural Science Foundation of China [91334206]; U.S. Department of Energy, Basic Energy Science program [DE-FG02-05ER46231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences FX We gratefully acknowledge the supports from the National Natural Science Foundation of China (#91334206) and from U.S. Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. NR 77 TC 15 Z9 15 U1 24 U2 218 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD AUG PY 2014 VL 317 BP 44 EP 53 DI 10.1016/j.jcat.2014.06.002 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AO6PC UT WOS:000341473000005 ER PT J AU Zhang, HB Lei, Y Kropf, AJ Zhang, GH Elam, JW Miller, JT Sollberger, F Ribeiro, F Akatay, MC Stach, EA Dumesic, JA Marshall, CL AF Zhang, Hongbo Lei, Yu Kropf, A. Jeremy Zhang, Guanghui Elam, Jeffrey W. Miller, Jeffrey T. Sollberger, Fred Ribeiro, Fabio Akatay, M. Cem Stach, Eric A. Dumesic, James A. Marshall, Christopher L. TI Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating SO JOURNAL OF CATALYSIS LA English DT Article DE Selective hydrogenation; 2-Furfuraldehyde; Furfuryl alcohol; Stability; Copper chromite; TPR; XAFS; ALD; Operando ID ATOMIC LAYER DEPOSITION; CARBON-SUPPORTED COPPER; STABILIZATION; REDUCTION; OXIDATION; DEHYDROGENATION; NANOPARTICLES; SPECTROSCOPY; CU-ZSM-5; ALCOHOL AB The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction. (c) 2014 Elsevier Inc. All rights reserved. C1 [Zhang, Hongbo; Kropf, A. Jeremy; Zhang, Guanghui; Miller, Jeffrey T.; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lei, Yu; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Sollberger, Fred; Ribeiro, Fabio] Purdue Univ, Sch Chem Engn, FRNY 2158, W Lafayette, IN 47907 USA. [Akatay, M. Cem] Purdue Univ, Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM marshall@anl.gov RI Stach, Eric/D-8545-2011; Zhang, Guanghui/C-4747-2008; Marshall, Christopher/D-1493-2015; OI Stach, Eric/0000-0002-3366-2153; Zhang, Guanghui/0000-0002-5854-6909; Marshall, Christopher/0000-0002-1285-7648; Lei, Yu/0000-0002-4161-5568 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. We thank Dr. Heng Shou for helpful discussions. NR 41 TC 18 Z9 18 U1 5 U2 94 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD AUG PY 2014 VL 317 BP 284 EP 292 DI 10.1016/j.jcat.2014.07.007 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AO6PC UT WOS:000341473000031 ER PT J AU Payan, C Ulrich, TJ Le Bas, PY Saleh, T Guimaraes, M AF Payan, C. Ulrich, T. J. Le Bas, P. Y. Saleh, T. Guimaraes, M. TI Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: Application to concrete thermal damage SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID ELASTIC-WAVE SPECTROSCOPY; DISCERN MATERIAL DAMAGE; CEMENT-BASED COMPOSITE; ULTRASOUND SPECTROSCOPY; ACOUSTIC SPECTROSCOPY; ELEVATED-TEMPERATURES; NEWS TECHNIQUES; INDUCED STRESS; PART II; CRACKING AB Developed in the late 1980s, Nonlinear Resonant Ultrasound Spectroscopy (NRUS) has been widely employed in the field of material characterization. Most of the studies assume the measured amplitude to be proportional to the strain amplitude which drives nonlinear phenomena. In 1D resonant bar experiments, the configuration for which NRUS was initially developed, this assumption holds. However, it is not true for samples of general shape which exhibit several resonance mode shapes. This paper proposes a methodology based on linear resonant ultrasound spectroscopy, numerical simulations and nonlinear resonant ultrasound spectroscopy to provide quantitative values of nonlinear elastic moduli taking into account the 3D nature of the samples. In the context of license renewal in the field of nuclear energy, this study aims at providing some quantitative information related to the degree of micro-cracking of concrete and cement based materials in the presence of thermal damage. The resonance based method is validated as regard with concrete microstructure evolution during thermal exposure. (C) 2014 Acoustical Society of America. C1 [Payan, C.] Aix Marseille Univ, LMA UPR CNRS 7051, Marseille, France. [Ulrich, T. J.; Le Bas, P. Y.; Saleh, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Guimaraes, M.] Elect Power Res Inst, Charlotte, NC 28262 USA. RP Payan, C (reprint author), Aix Marseille Univ, LMA UPR CNRS 7051, Marseille, France. EM cedric.payan@univ-amu.fr OI Saleh, Tarik/0000-0003-2108-4293 FU U.S. DOE Used Fuel Disposition (Storage) campaign; Electrical Power Research Institute; Aix Marseille University FX The authors thank the U.S. DOE Used Fuel Disposition (Storage) campaign and the Electrical Power Research Institute for supporting this study and C.P.'s visit to LANL, and CSTB for manufacturing the samples. C. P. was also supported by Aix Marseille University. The authors would also like to thank James Ten Cate, Paul Johnson, and Robert Guyer for useful discussion during the course of this work. NR 27 TC 11 Z9 11 U1 1 U2 13 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD AUG PY 2014 VL 136 IS 2 BP 537 EP 546 DI 10.1121/1.4887451 PG 10 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AO2TE UT WOS:000341178100031 PM 25096088 ER PT J AU Swift, GW Geller, DA Backhaus, SN AF Swift, G. W. Geller, D. A. Backhaus, S. N. TI High-purity thermoacoustic isotope enrichment SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID MIXTURE SEPARATION; DIFFUSION AB In a tube many wavelengths long, thermoacoustic separation of a gas mixture can produce very high purities. A flexible wall allows a spatially continuous supply of acoustic power into such a long tube. Coiling the tube and immersing it in a fluid lets a single-wavelength, circulating, traveling pressure wave in the fluid drive all the wavelengths in the tube wall and gas. Preliminary measurements confirm many aspects of the concept with neon (Ne-20 and Ne-22) and highlight some challenges of practical implementation. (C) 2014 Acoustical Society of America. C1 [Swift, G. W.; Geller, D. A.; Backhaus, S. N.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Swift, GW (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM swift@lanl.gov OI Geller, Drew/0000-0001-8046-8495; Backhaus, Scott/0000-0002-0344-6791 FU Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science FX This work was supported by the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science. We thank Robert Keolian for suggesting that we consider the hydraulic drive mechanism. NR 16 TC 1 Z9 1 U1 1 U2 5 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD AUG PY 2014 VL 136 IS 2 BP 638 EP 648 DI 10.1121/1.4887437 PG 11 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AO2TE UT WOS:000341178100042 PM 25096099 ER PT J AU Akins, CD Ruder, CD Price, SJ Harden, LA Gibbons, JW Dorcas, ME AF Akins, C. D. Ruder, C. D. Price, S. J. Harden, L. A. Gibbons, J. W. Dorcas, M. E. TI Factors affecting temperature variation and habitat use in free-ranging diamondback terrapins SO JOURNAL OF THERMAL BIOLOGY LA English DT Article DE Temperature; Semi-aquatic turtle; Habitat use; Datalogger; Estuarine; Diamondback terrapin ID MALACLEMYS-TERRAPIN; THERMAL PREFERENCE; BODY-TEMPERATURE; PAINTED TURTLES; CHRYSEMYS-PICTA; THERMOREGULATION; POPULATION; PATTERNS; WATER; ZONE AB Measuring the thermal conditions of aquatic reptiles with temperature dataloggers is a cost-effective way to study their behavior and habitat use. Temperature dataloggers are a particularly useful and informative approach to studying organisms such as the estuarine diamondback terrapin (Malaclemys terrapin) that inhabits a dynamic environment often inaccessible to researchers. We used carapace-mounted dataloggers to measure hourly carapace temperature (T-c) of free-ranging terrapins in South Carolina from October 2007 to 2008 to examine the effects of month, sex, creek site, and tide on T-c and to determine the effects of month, sex, and time of day on terrapin basking frequency. Simultaneous measurements of environmental temperatures (T-e; shallow mud, deep mud, water) allowed us to make inferences about terrapin microhabitat use. Terrapin T-c differed significantly among months and creek and between sexes. Terrapin microhabitat use also varied monthly, with shallow mud temperature being the best predictor of T-c November-March and water temperature being the best predictor of T-c, April-October. Terrapins basked most frequently in spring and fall and males basked more frequently than females. Our study contributes to a fuller understanding of terrapin thermal biology and provides support for using dataloggers to investigate behavior and habitat use of aquatic ectotherms inhabiting dynamic environments. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Akins, C. D.; Ruder, C. D.; Harden, L. A.; Dorcas, M. E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA. [Price, S. J.] Univ Kentucky, Dept Forestry, Lexington, KY 40546 USA. [Gibbons, J. W.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Harden, LA (reprint author), Davidson Coll, Dept Biol, Davidson, NC 28035 USA. EM leharden@davidson.edu FU University of Georgia; Davidson College Faculty Research; Department of Biology at Davidson College; Pittman Foundation; EarthWatch Institute; Davidson College Animal Care and Use Committee [SCI13-0100, SCI11-0492] FX We thank Annette Baker and Wyndham Vacation Rentals for arranging and providing lodging. Marilyn Blizard, Sophia McCallister, and Sidi Limehouse have been instrumental in facilitating our long-term terrapin research project on Kiawah Island and improving terrapin conservation measures and awareness. We also thank the students, technicians, research coordinators, and volunteers for assistance in the field and the UGA-SREL and Davidson College personnel who have helped sample and process terrapins over the years. In particular we thank Andrea Drayer, Jackie Guzy, Judy Greene, Kristen Cecala, Shannon Pittman, Tom Luhring, Tony Tucker, Cris Hagen, and J.D. Willson. We also thank the numerous Kiawah Island Nature Center Naturalists for their assistance, particularly Liz King, Jennifer Barbour, Nicholas Boehm, Mike Frees, and Jake Feary. Funding was provided by the University of Georgia, Davidson College Faculty Research Grants to MED, the Department of Biology at Davidson College, the Pittman Foundation, and EarthWatch Institute. Research was conducted under SCDNR Scientific Terrapin Collection Permit numbers SCI13-0100 and SCI11-0492 under the auspices of the Davidson College Animal Care and Use Committee. NR 41 TC 1 Z9 1 U1 4 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4565 J9 J THERM BIOL JI J. Therm. Biol. PD AUG PY 2014 VL 44 BP 63 EP 69 DI 10.1016/j.jtherbio.2014.06.008 PG 7 WC Biology; Zoology SC Life Sciences & Biomedicine - Other Topics; Zoology GA AO6QZ UT WOS:000341477900010 PM 25086975 ER PT J AU Wu, N Lyu, YC Xiao, RJ Yu, XQ Yin, YX Yang, XQ Li, H Gu, L Guo, YG AF Wu, Na Lyu, Ying-Chun Xiao, Rui-Juan Yu, Xiqian Yin, Ya-Xia Yang, Xiao-Qing Li, Hong Gu, Lin Guo, Yu-Guo TI A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries SO NPG ASIA MATERIALS LA English DT Article ID NONAQUEOUS MAGNESIUM ELECTROCHEMISTRY; X-RAY-DIFFRACTION; CATHODE MATERIALS; LITHIUM BATTERIES; ELECTROLYTE-SOLUTIONS; STORAGE MECHANISM; INTERCALATION; TECHNOLOGY; CHALLENGES; PROGRESS AB Rechargeable magnesium (Mg) batteries have been attracting increasing attention recently because of the abundance of the raw material, their relatively low price and their good safety characteristics. However, rechargeable Mg batteries are still in their infancy. Therefore, alternate Mg-ion insertion anode materials are highly desirable to ultimately mass-produce rechargeable Mg batteries. In this study, we introduce the spinel Li4Ti5O12 as an Mg-ion insertion-type anode material with a high reversible capacity of 175mAh g(-1). This material possesses a low-strain characteristic, resulting in an excellent long-term cycle life. The proposed Mg-storage mechanism, including phase separation and transition reaction, is evaluated using advanced atomic scale scanning transmission electron microscopy techniques. This unusual Mg storage mechanism has rarely been reported for ion insertion-type electrode materials for rechargeable batteries. Our findings offer more options for the development of Mg-ion insertion materials for long-life rechargeable Mg batteries. C1 [Wu, Na; Yin, Ya-Xia; Guo, Yu-Guo] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China. [Wu, Na; Yin, Ya-Xia; Guo, Yu-Guo] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China. [Lyu, Ying-Chun; Xiao, Rui-Juan; Li, Hong; Gu, Lin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China. [Yu, Xiqian; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Guo, YG (reprint author), Chinese Acad Sci, Inst Chem, 2 Zhongguancun First North St, Beijing 100190, Peoples R China. EM hli@iphy.ac.cn; l.gu@iphy.ac.cn; ygguo@iccas.ac.cn RI Gu, Lin/D-9631-2011; Xiao, Ruijuan/B-4739-2010; Guo, Yu-Guo/A-1223-2009; Li, Hong/C-4643-2008; Lyu, Yingchun/F-9893-2015; Yu, Xiqian/B-5574-2014 OI Gu, Lin/0000-0002-7504-031X; Guo, Yu-Guo/0000-0003-0322-8476; Li, Hong/0000-0002-8659-086X; Lyu, Yingchun/0000-0003-3229-1175; Yu, Xiqian/0000-0001-8513-518X FU National Natural Science Foundation of China [51225204, 21303222, 21127901]; National Basic Research Program of China [2011CB935700, 2012CB932900]; 'Strategic Priority Research Program' of the Chinese Academy of Sciences [XDA09010000]; US Department of Energy; Office of Vehicle Technologies [DE-AC02-98CH10886] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 51225204, 21303222 and 21127901), the National Basic Research Program of China (Grant Nos. 2011CB935700 and 2012CB932900) and the 'Strategic Priority Research Program' of the Chinese Academy of Sciences (Grant No. XDA09010000). The work at BNL was supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, and the Office of Vehicle Technologies (DE-AC02-98CH10886). We acknowledge the technical support from a beamline scientist at the X-ray beamline X14A (NSLS, BNL) and 11-BM-B (APS, ANL). We thank Dr Yong-Qing Wang for help with material syntheses, Dr Xing-Long Wu for help with battery tests and Prof. Yongsheng Hu for helpful discussions. NR 36 TC 11 Z9 13 U1 15 U2 180 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1884-4049 EI 1884-4057 J9 NPG ASIA MATER JI NPG Asia Mater. PD AUG PY 2014 VL 6 AR e120 DI 10.1038/am.2014.61 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA AO8SE UT WOS:000341623700004 ER PT J AU Venugopalan, R AF Venugopalan, Raju TI Thermalization of the world's smallest fluids: Recent developments SO NUCLEAR PHYSICS A LA English DT Article DE High parton densities; Quark-gluon plasma; Thermalization ID HEAVY-ION COLLISIONS; P-PB COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; RANGE ANGULAR-CORRELATIONS; COLOR GLASS CONDENSATE; TRANSVERSE-MOMENTUM; LONG-RANGE; PPB COLLISIONS; LARGE NUCLEI; SIDE AB The late Geny Brown was not shy to tackle complex scientific problems that took time to play out but yielded in the end a deeper understanding of many-body phenomena. In this note, prepared for a memorial volume in his honor, we provide a perspective on a couple of outstanding scientific puzzles that have their origin in our understanding of the thermalization of matter in ultrarelativistic heavy ion collisions, and possibly, in high multiplicity proton-proton and proton-nucleus collisions. (C) 2014 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Venugopalan, R (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. FU DOE [DE-AC02-98CH10886] FX This research was supported by DOE Contract No. DE-AC02-98CH10886. He thanks his collaborators Juergen Berges, Kirill Boguslavski, Adam Bzdak, Kevin Dusling, Bjoern Schenke, Soeren Schlichting and Prithwish Tribedy for generously contributing their insight into the topics discussed here. He is grateful to Bjoern Schenke and Soeren Schlichting for a close reading of the manuscript, and to Edward Shuryak for valuable editorial comments. NR 88 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2014 VL 928 BP 209 EP 221 DI 10.1016/j.nuclphysa.2014.04.030 PG 13 WC Physics, Nuclear SC Physics GA AO6LY UT WOS:000341464800023 ER PT J AU Vogt, R AF Vogt, R. TI J/psi's are jazzy SO NUCLEAR PHYSICS A LA English DT Article DE J/psi; Heavy-ion collisions ID J-PSI-SUPPRESSION; NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; PB-PB COLLISIONS; PP COLLISIONS; MOMENTUM DISTRIBUTION; HADRONIC COLLISIONS; HARD PROCESSES; DEPENDENCE AB I discuss some of my early adventures in the study of J/psi production and suppression at Stony Brook and some of the things I've learned since then. My recent focus has been on quarkonium production in proton-proton (pp) collisions and cold nuclear matter effects in proton/deuteron-nucleus (pA, dA) collisions. (C) 2014 Elsevier B.V. All rights reserved. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. EM vogt@physics.ucdavis.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JET Collaboration FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported in part by the JET Collaboration. NR 71 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2014 VL 928 BP 222 EP 233 DI 10.1016/j.nuclphysa.2014.03.022 PG 12 WC Physics, Nuclear SC Physics GA AO6LY UT WOS:000341464800024 ER PT J AU Liao, JF AF Liao, Jinfeng TI The extraordinary glow SO NUCLEAR PHYSICS A LA English DT Article DE Heavy ion collisions; Quark-gluon plasma; Glasma; Electromagnetic probes ID BOSE-EINSTEIN CONDENSATION; BOTTOM-UP THERMALIZATION; HEAVY-ION COLLISIONS; EQUATION; PHOTONS; GLASMA AB In this contribution I discuss some recent progress in understanding the evolution of the pre-thermal quark-gluon matter, known as the glasma, during the early stage in heavy ion collisions, and the implication for early time photon and dilepton emissions. (C) 2014 Elsevier B.V. All rights reserved. C1 [Liao, Jinfeng] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Liao, JF (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. EM liaoji@indiana.edu FU National Science Foundation [PHY-1352368]; RIKEN BNL Research Center FX The author thanks all his collaborators on the works reported here, in particular J.-P. Blaizot and L. McLerran. He is also grateful to the organizers of this wonderful conference in memory of Gerald E. Brown. The author's research is supported by the National Science Foundation under Grant No. PHY-1352368. He is also grateful to the RIKEN BNL Research Center for partial support. NR 46 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2014 VL 928 BP 247 EP 259 DI 10.1016/j.nuclphysa.2014.05.002 PG 13 WC Physics, Nuclear SC Physics GA AO6LY UT WOS:000341464800026 ER PT J AU Chen, J Li, TLH Anitescu, M AF Chen, Jie Li, Tom L. H. Anitescu, Mihai TI A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides SO PARALLEL COMPUTING LA English DT Article DE Krylov method; Multiple right-hand sides; Multilevel Toeplitz; FFT; Communication hiding; Allreduce ID ALGORITHM; EQUATIONS; MATRICES AB A Toeplitz matrix has constant diagonals; a multilevel Toeplitz matrix is defined recursively with respect to the levels by replacing the matrix elements with Toeplitz blocks. Multilevel Toeplitz linear systems appear in a wide range of applications in science and engineering. This paper discusses an MPI implementation for solving such a linear system by using the conjugate gradient algorithm. The implementation techniques can be generalized to other iterative Krylov methods besides conjugate gradient. These techniques include the use of an arbitrary dimensional process grid for handling the multilevel Toeplitz structure, a communication-hiding approach for performing matrix-vector multiplications, the incorporation of multilevel circulant preconditioning for accelerating convergence, an efficient orthogonalization manager for detecting linear dependence in block iterations, and an algorithmic rearrangement to eliminate all-reduce synchronizations. The combined use of these techniques leads to a scalable solver for large multilevel Toeplitz systems, possibly with several right-hand sides. We show experimental results on matrices of size up to the order of one billion with nearly perfect scaling by using up to 1024 MPI processes. We also demonstrate an application of the solver in parameter estimation for analyzing large-scale climate data. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chen, Jie; Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Li, Tom L. H.] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63121 USA. RP Chen, J (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jiechen@mcs.anl.gov; ll9n8@mail.umsl.edu; anitescu@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. We gratefully acknowledge use of the Fusion cluster and Blues cluster in the Laboratory Computing Resource Center at Argonne National Laboratory. We thank Robert Jacob of Argonne National Laboratory for sharing with us the climate data. We are indebted to Michael Stein of University of Chicago for the discussion of modeling and preprocessing of the data. We are also thankful to the three anonymous referees whose comments have substantially improved the paper. NR 39 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD AUG PY 2014 VL 40 IS 8 BP 408 EP 424 DI 10.1016/j.parco.2014.06.004 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA AO6MB UT WOS:000341465100005 ER PT J AU Budnitz, RJ Kim, KJ Winick, H AF Budnitz, Robert J. Kim, Kwang-Je Winick, Herman TI Andrew Marienhoff Sessler Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Budnitz, Robert J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Kwang-Je] Argonne Natl Lab, Lemont, IL USA. [Winick, Herman] SLAC, Menlo Pk, CA USA. RP Budnitz, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD AUG PY 2014 VL 67 IS 8 BP 58 EP 59 DI 10.1063/PT.3.2489 PG 4 WC Physics, Multidisciplinary SC Physics GA AO6GQ UT WOS:000341448800016 ER PT J AU Kyrpides, NC Hugenholtz, P Eisen, JA Woyke, T Goker, M Parker, CT Amann, R Beck, BJ Chain, PSG Chun, J Colwell, RR Danchin, A Dawyndt, P Dedeurwaerdere, T DeLong, EF Detter, JC De Vos, P Donohue, TJ Dong, XZ Ehrlich, DS Fraser, C Gibbs, R Gilbert, J Gilna, P Glockner, FO Jansson, JK Keasling, JD Knight, R Labeda, D Lapidus, A Lee, JS Li, WJ Ma, JC Markowitz, V Moore, ERB Morrison, M Meyer, F Nelson, KE Ohkuma, M Ouzounis, CA Pace, N Parkhill, J Qin, N Rossello-Mora, R Sikorski, J Smith, D Sogin, M Stevens, R Stingl, U Suzuki, K Taylor, D Tiedje, JM Tindall, B Wagner, M Weinstock, G Weissenbach, J White, O Wang, J Zhang, LX Zhou, YG Field, D Whitman, WB Garrity, GM Klenk, HP AF Kyrpides, Nikos C. Hugenholtz, Philip Eisen, Jonathan A. Woyke, Tanja Goeker, Markus Parker, Charles T. Amann, Rudolf Beck, Brian J. Chain, Patrick S. G. Chun, Jongsik Colwell, Rita R. Danchin, Antoine Dawyndt, Peter Dedeurwaerdere, Tom DeLong, Edward F. Detter, John C. De Vos, Paul Donohue, Timothy J. Dong, Xiu-Zhu Ehrlich, Dusko S. Fraser, Claire Gibbs, Richard Gilbert, Jack Gilna, Paul Glockner, Frank Oliver Jansson, Janet K. Keasling, Jay D. Knight, Rob Labeda, David Lapidus, Alla Lee, Jung-Sook Li, Wen-Jun Ma, Juncai Markowitz, Victor Moore, Edward R. B. Morrison, Mark Meyer, Folker Nelson, Karen E. Ohkuma, Moriya Ouzounis, Christos A. Pace, Norman Parkhill, Julian Qin, Nan Rossello-Mora, Ramon Sikorski, Johannes Smith, David Sogin, Mitch Stevens, Rick Stingl, Uli Suzuki, Ken-ichiro Taylor, Dorothea Tiedje, Jim M. Tindall, Brian Wagner, Michael Weinstock, George Weissenbach, Jean White, Owen Wang, Jun Zhang, Lixin Zhou, Yu-Guang Field, Dawn Whitman, William B. Garrity, George M. Klenk, Hans-Peter TI Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains SO PLOS BIOLOGY LA English DT Editorial Material ID MICROBIAL DIVERSITY; MINIMUM INFORMATION; PHYLOGENY; STANDARDS; PROJECT; TREE; MICROORGANISMS; NOMENCLATURE; PUBLICATION; PROKARYOTES AB Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently, 11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment. C1 [Kyrpides, Nikos C.; Woyke, Tanja; Markowitz, Victor] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogenom Res, Brisbane, Qld, Australia. [Eisen, Jonathan A.] Univ Calif Davis, Davis, CA 95616 USA. [Goeker, Markus; Sikorski, Johannes; Tindall, Brian; Klenk, Hans-Peter] DSMZ German Collect Microorganisms & Cell Culture, Braunschweig, Germany. [Parker, Charles T.; Taylor, Dorothea; Garrity, George M.] NamesforLife LLC, E Lansing, MI USA. [Amann, Rudolf; Glockner, Frank Oliver] Max Planck Inst Marine Microbiol, Bremen, Germany. [Beck, Brian J.] Amer Type Culture Collect ATCC, Manassas, VA USA. [Chain, Patrick S. G.; Detter, John C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea. [Chun, Jongsik] Seoul Natl Univ, Chunlab Inc, Seoul, South Korea. [Colwell, Rita R.] Univ Maryland, College Pk, MD 20742 USA. [Colwell, Rita R.] Johns Hopkins Univ, Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Danchin, Antoine] Genopole, AMAbiot SAS, Evry, France. [Dawyndt, Peter; De Vos, Paul] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium. [Dedeurwaerdere, Tom] Catholic Univ Louvain, Ctr Philosophy Law, Louvain La Neuve, Belgium. [DeLong, Edward F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [DeLong, Edward F.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [De Vos, Paul] Univ Ghent, BCCM LMG Bacteria Collect, Microbiol Lab, B-9000 Ghent, Belgium. [Donohue, Timothy J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Dong, Xiu-Zhu; Zhang, Lixin] Chinese Acad Sci, Bioresource Ctr BRC Inst Microbiol, Beijing 100864, Peoples R China. [Ehrlich, Dusko S.] Inst Natl Rech Agronom, Jouy En Josas, France. [Fraser, Claire; White, Owen] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Gibbs, Richard] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Gilbert, Jack] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Gilna, Paul] Oak Ridge Natl Lab, BESC, Knoxville, TN USA. [Glockner, Frank Oliver] Jacobs Univ Bremen gGmbH, Bremen, Germany. [Jansson, Janet K.; Keasling, Jay D.; Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Keasling, Jay D.] JBEI, Berkeley, CA USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Labeda, David] ARS, USDA, Natl Ctr Agr Utilizat Res, Peoria, IL USA. [Lapidus, Alla] St Petersburg State Univ, Theodosius Dobzhansky Ctr Genome Bioinformat, St Petersburg 199034, Russia. [Lapidus, Alla] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg, Russia. [Lee, Jung-Sook] Korea Res Inst Biosci & Biotechnol KRIBB, Korean Collect Type Cultures KCTC, Taejon, South Korea. [Li, Wen-Jun] Minist Educ, Key Lab Microbial Resources, Kunming, Peoples R China. [Ma, Juncai; Zhou, Yu-Guang] Chinese Acad Sci, China Gen Microbiol Culture Collect Ctr CGMCC, Inst Microbiol, Beijing, Peoples R China. [Moore, Edward R. B.] Univ Gothenburg, Sahlgrenska Acad, CCUG Culture Collect Univ Gothenburg, Gothenburg, Sweden. [Morrison, Mark] Univ Queensland, Diamantina Inst, St Lucia, Qld, Australia. [Meyer, Folker; Stevens, Rick] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Nelson, Karen E.] J Craig Venter Inst, Rockville, MD USA. [Ohkuma, Moriya] Japan Collect Microorganisms, Riken Bioresource Ctr, Wako, Saitama, Japan. [Ouzounis, Christos A.] Ctr Res & Technol, Chem Proc & Energy Resources Inst, Thessaloniki, Greece. [Ouzounis, Christos A.] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada. [Pace, Norman] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA. [Parkhill, Julian] Wellcome Trust Sanger Inst, Cambridge, England. [Qin, Nan; Wang, Jun] Zhejiang Univ, Coll Med, Affiliated Hosp 1, State Key Lab Diag & Treatment Infect Dis, Hangzhou 310003, Zhejiang, Peoples R China. [Rossello-Mora, Ramon] CSIC UIB, Inst Mediterrani Estudis Avancats IMEDEA, Illes Balears, Spain. [Smith, David] CABI, Egham, Surrey, England. [Sogin, Mitch] MBL, Josephine Bay Paul Ctr Comparat Evolut & Mol Biol, Woods Hole, MA USA. [Stingl, Uli] KAUST, Red Sea Res Ctr, Thuwal, Saudi Arabia. [Suzuki, Ken-ichiro] NBRC, Kisarazu, Chiba, Japan. [Tiedje, Jim M.; Garrity, George M.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Wagner, Michael] Univ Vienna, Dept Microbial Ecol, Vienna, Austria. [Weinstock, George] Jackson Lab Genom Med, Farmington, CT USA. [Weissenbach, Jean] CEA, Evry, France. [Wang, Jun] Univ Copenhagen, Dept Biol, Copenhagen, Denmark. [Zhang, Lixin] Chinese Acad Sci, Chinese Acad Sci Key Lab Pathogen Microbiol & Imm, Inst Microbiol, Beijing, Peoples R China. [Field, Dawn] UK Nat Environm Res Council NERC, Environm Bioinformat Ctr, Oxford, England. [Whitman, William B.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. RP Kyrpides, NC (reprint author), DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. EM nckyrpides@lbl.gov; Hans-Peter.Klenk@dsmz.de RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Faculty of, Sciences, KAU/E-7305-2017; Lapidus, Alla/I-4348-2013; Keasling, Jay/J-9162-2012; Ohkuma, Moriya/A-8100-2011; Knight, Rob/D-1299-2010; Rossello-Mora, Ramon/L-4650-2014; Amann, Rudolf/C-6534-2014; De Vos, Paul/J-5392-2013; Hugenholtz, Philip/G-9608-2011; Parkhill, Julian/G-4703-2011; Wagner, Michael/A-7801-2011; Ouzounis, Christos/G-2302-2010; Gilna, Paul/I-3608-2016 OI Danchin, Antoine/0000-0002-6350-5001; Dawyndt, Peter/0000-0002-1623-9070; Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731; Garrity, George/0000-0002-4465-7034; Colwell, Rita R./0000-0001-5432-1502; Fraser, Claire/0000-0003-1462-2428; Stingl, Uli/0000-0002-0684-2597; Eisen, Jonathan A./0000-0002-0159-2197; Chain, Patrick/0000-0003-3949-3634; Keasling, Jay/0000-0003-4170-6088; Rossello-Mora, Ramon/0000-0001-8253-3107; Amann, Rudolf/0000-0002-0846-7372; Parkhill, Julian/0000-0002-7069-5958; Wagner, Michael/0000-0002-9778-7684; Gilna, Paul/0000-0002-6542-0191 NR 44 TC 56 Z9 57 U1 5 U2 68 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD AUG PY 2014 VL 12 IS 8 AR e1001920 DI 10.1371/journal.pbio.1001920 PG 7 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA AO7HI UT WOS:000341523000003 PM 25093819 ER PT J AU Plazas, AA Bernstein, GM Sheldon, ES AF Plazas, A. A. Bernstein, G. M. Sheldon, E. S. TI On-Sky Measurements of the Transverse Electric Fields' Effects in the Dark Energy Camera CCDs SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID HIGH-RESISTIVITY SILICON; CHARGE-COUPLED-DEVICES; CALIBRATION AB Photogenerated charge in thick, back-illuminated, fully-depleted CCDs is transported by electric fields from the silicon substrate to the collecting well at the front gate of the CCDs. However, electric fields transverse to the surface of the CCD-with diverse origins such as doping gradients, guard rings around the imaging area of the sensor, and physical stresses on the silicon lattice displace this charge, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs. The transverse fields mainly manifest as concentric rings ("tree rings") and bright stripes near the boundaries of the detectors ("edge distortions") with relative amplitudes of about 1% and 10% in the flat-field images, respectively. Their nature as pixel size variations is confirmed by comparing their photometric and astrometric signatures. Using flat-field images from DECam, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position in each DECam detector. These templates can be directly incorporated into the derivation of photometric and astrometric solutions, helping to meet the DES photometric and astrometric requirements. C1 [Plazas, A. A.; Sheldon, E. S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11792 USA. [Bernstein, G. M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Plazas, AA (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510, Upton, NY 11792 USA. EM aplazas@bnl.gov FU Department of Energy [DE-SC0007901]; National Science Foundation [AST-0908027]; DOE [DE-AC02-98CH10886]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratories; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Laboratory; Stanford University; University of Sussex; Texas AM University; University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC) FX We thank D. DePoy, H. T. Diehl, B. Flaugher, S. Holland, M. Jarvis, I. Kotov, T. Li, M. May, A. Nomerotski, P. O'Connor, A. Rassmusen, and W. Wester for useful comments and discussions. G. M. B is supported by Department of Energy grant DE-SC0007901 and by National Science Foundation grant AST-0908027. A. A. P and E. S. S are supported by DOE grant DE-AC02-98CH10886. This paper has gone through internal review by the DES collaboration. We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning, and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organization. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University. This research has made use of NASA's Astrophysics Data System. NR 40 TC 11 Z9 11 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2014 VL 126 IS 942 BP 750 EP 760 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO3KH UT WOS:000341227600003 ER PT J AU Alvarenga, LM Zahid, M di Tommaso, A Juste, MO Aubrey, N Billiald, P Muzard, J AF Alvarenga, Larissa M. Zahid, Muhammad di Tommaso, Anne Juste, Matthieu O. Aubrey, Nicolas Billiald, Philippe Muzard, Julien TI Engineering Venom's Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential SO TOXINS LA English DT Review DE scorpion stings; snakebite; antivenom; serum therapy; antibody; scFv; diabody; nanobody ID SINGLE-CHAIN ANTIBODY; ANDROCTONUS-AUSTRALIS-HECTOR; HUMAN MONOCLONAL-ANTIBODIES; TITYUS-SERRULATUS SCORPION; PHAGE-DISPLAY; INFECTIOUS-DISEASES; ACETYLCHOLINE-RECEPTOR; FUNCTIONAL-EVALUATION; DIRECTED EVOLUTION; DOMAIN ANTIBODIES AB Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety. C1 [Alvarenga, Larissa M.; Zahid, Muhammad; Billiald, Philippe; Muzard, Julien] CNRS, MNHN, UMR 7245, F-75231 Paris 05, France. [di Tommaso, Anne; Juste, Matthieu O.; Aubrey, Nicolas] Univ Tours, INRA, UMR 1282, Fac Pharm, F-37200 Tours, France. [Billiald, Philippe] Univ Paris 11, Fac Pharm, IPSIT, F-92296 Chatenay Malabry, France. [Muzard, Julien] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zahid, Muhammad] Islamia Coll Univ, Dept Zool, Peshawar 25000, Khyber Paktunkh, Pakistan. RP Billiald, P (reprint author), CNRS, MNHN, UMR 7245, 12 Rue Buffon, F-75231 Paris 05, France. EM lmalvarenga@gmail.com; zahid@mnhn.fr; anne.ditommaso@univ-tours.fr; matthieu.juste@univ-tours.fr; aubrey@univ-tours.fr; billiald@mnhn.fr; jmuzard@lbl.gov RI Foundry, Molecular/G-9968-2014; Alvarenga, L/J-2628-2015 FU Coordenacao de Aperfeicoamento de Pessoal de nivel Superior CAPES Brazil [23038000825/2011-63]; Societe Francaise d'Exportation des Ressources Educatives; Higher Education Commission; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants from Coordenacao de Aperfeicoamento de Pessoal de nivel Superior CAPES Brazil (toxinologia No. 23038000825/2011-63) to Larissa Alvarenga, Societe Francaise d'Exportation des Ressources Educatives and Higher Education Commission (SFERE-HEC to Muhammad Zahid and the French Higher Education and Research ministry under the program "Investissements d'avenir" Grant Agreement: LabEx MAbImprove ANR-10-LABX-53-01 to Nicolas Aubrey and Matthieu Juste. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 (Julien Muzard). NR 102 TC 7 Z9 7 U1 4 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-6651 J9 TOXINS JI Toxins PD AUG PY 2014 VL 6 IS 8 BP 2541 EP 2567 DI 10.3390/toxins6082541 PG 27 WC Toxicology SC Toxicology GA AO5ZS UT WOS:000341427200019 PM 25153256 ER PT J AU Ginovska-Pangovska, B Dutta, A Reback, ML Linehan, JC Shaw, WJ AF Ginovska-Pangovska, Bojana Dutta, Arnab Reback, Matthew L. Linehan, John C. Shaw, Wendy J. TI Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID FORMATE DEHYDROGENASE-H; H-2 PRODUCTION; CLOSTRIDIUM-PASTEURIANUM; NICKEL ELECTROCATALYST; MOLECULAR CATALYSTS; CRYSTAL-STRUCTURE; PROTON TRANSPORT; AMINO-ACIDS; WATER; PEPTIDE AB CONSPECTUS: Redox active metalloenzymes play a major role in energy transformation reactions in biological systems. Examples include formate dehydrogenases, nitrogenases, CO dehydrogenase, and hydrogenases. Many of these reactions are also of interest to humans as potential energy storage or utilization reactions for photoelectrochemical, electrolytic, and fuel cell applications. These metalloenzymes consist of redox active metal centers where substrates are activated and undergo transformation to products accompanied by electron and proton transfer to or from the substrate. These active sites are typically buried deep within a protein matrix of the enzyme with channels for proton transport, electron transport, and substrate/product transport between the active site and the surface of the protein. In addition, there are amino acid residues that lie in close proximity to the active site that are thought to play important roles in regulating and enhancing enzyme activity. Directly studying the outer coordination sphere of enzymes can be challenging due to their complexity, and the use of modified molecular catalysts may allow us to provide some insight. There are two fundamentally different approaches to understand these important interactions. The "bottom-up" approach involves building an amino acid or peptide containing outer coordination sphere around a functional molecular catalyst, and the "top-down" approach involves attaching molecular catalyst to a structured protein. Both of these approaches have been undertaken for hydrogenase mimics and are the emphasis of this Account. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional enzyme mimic for H-2 oxidation and production, [Ni((P2N2R')-N-R)(2)](2+). This "bottom-up" approach has allowed us to evaluate individual functional group and structural contributions to electrocatalysts for H-2 oxidation and production. For instance, using amine, ether, and carboxylic acid functionalities in the outer coordination sphere enhances proton movement and results in lower catalytic overpotentials for H-2 oxidation, while achieving water solubility in some cases. Amino acids with acidic and basic side chains concentrate substrate around catalysts for H-2 production, resulting in up to 5-fold enhancements in rate. The addition of a structured peptide in an H-2 production catalyst limited the structural freedom of the amino acids nearest the active site, while enhancing the overall rate. Enhanced stability to oxygen or extreme conditions such as strongly acidic or basic conditions has also resulted from an amino acid based outer coordination sphere. From the "top-down" approach, others have achieved water solubility and photocatalytic activity by associating this core complex with photosystem-I. Collectively, by use of this well understood core, the role of individual and combined features of the outer coordination sphere are starting to be understood at a mechanistic level. Common mechanisms have yet to be defined to predictably control these processes, but our growing knowledge in this area is essential for the eventual mimicry of enzymes by efficient molecular catalysts for practical use. C1 [Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.; Linehan, John C.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wendy.shaw@pnnl.gov FU Office of Science Early Career Research Program through the USDOE, Basic Energy Sciences (BES); USDOE BES, Chemical Sciences, Geoscience and Biosciences; USDOE BES, Physical Biosciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center - USDOE, Office of Science, Office of BES FX This Account reviews previously published work supported by the Office of Science Early Career Research Program through the USDOE, Basic Energy Sciences (BES); USDOE BES, Chemical Sciences, Geoscience and Biosciences; USDOE BES, Physical Biosciences; the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the USDOE, Office of Science, Office of BES. Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by USDOE's Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the USDOE. We thank Dr. Charles Weiss for assistance with the Conspectus graphic. NR 45 TC 45 Z9 45 U1 13 U2 121 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD AUG PY 2014 VL 47 IS 8 BP 2621 EP 2630 DI 10.1021/ar5001742 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA AN6JY UT WOS:000340702000038 PM 24945095 ER PT J AU Khaira, GS Qin, J Garner, GP Xiong, SS Wan, L Ruiz, R Jaeger, HM Nealey, PF de Pablo, JJ AF Khaira, Gurdaman S. Qin, Jian Garner, Grant P. Xiong, Shisheng Wan, Lei Ruiz, Ricardo Jaeger, Heinrich M. Nealey, Paul F. de Pablo, Juan J. TI Evolutionary Optimization of Directed Self-Assembly of Triblock Copolymers on Chemically Patterned Substrates SO ACS MACRO LETTERS LA English DT Article ID MONTE-CARLO SIMULATIONS; BLOCK-COPOLYMERS; DENSITY MULTIPLICATION; MORPHOLOGIES; FABRICATION; SURFACES; FEATURES; FILMS AB Directed self-assembly of block copolymers on chemical patterns is of considerable interest for sublithographic patterning. The concept of pattern interpolation, in which a subset of features patterned on a substrate is multiplied through the inherent morphology of an ordered block copolymer, has enabled fabrication of extremely small, defect-free features over large areas. One of the central challenges in design of pattern interpolation strategies is that of identifying system characteristics leading to ideal, defect-free directed assembly. In this work we demonstrate how a coarse-grained many-body model of block copolymers, coupled to an evolutionary computation (EC) strategy, can be used to design and optimize substrate-copolymer combinations for use in lithographic patterning. The proposed approach is shown to be significantly more effective than traditional algorithms based on random searches, and its results are validated in the context of recent experimental observations. The coupled simulation-evolution method introduced here provides a general and efficient method for potential design of complex device-oriented structures. C1 [Khaira, Gurdaman S.; Qin, Jian; Garner, Grant P.; Xiong, Shisheng; Nealey, Paul F.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Wan, Lei; Ruiz, Ricardo] HGST, San Jose, CA 95135 USA. [Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Nealey, Paul F.; de Pablo, Juan J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM depablo@uchicago.edu OI Ruiz, Ricardo/0000-0002-1698-4281 FU U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design (CHiMaD) [70NANB14H012]; Semiconductor Research Corporation for development of new processing strategies for sublithographic patterning; NSF [CBET 1334426] FX This work was performed under award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design (CHiMaD). Additional support from the Semiconductor Research Corporation for development of new processing strategies for sublithographic patterning is gratefully acknowledged. H.M.J. acknowledges support from NSF CBET 1334426. NR 28 TC 27 Z9 27 U1 5 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD AUG PY 2014 VL 3 IS 8 BP 747 EP 752 DI 10.1021/mz5002349 PG 6 WC Polymer Science SC Polymer Science GA AN6JX UT WOS:000340701900011 ER PT J AU Hsu, AL Koch, RJ Ong, MT Fang, WJ Hofmann, M Kim, KK Seyller, T Dresselhaus, MS Reed, EJ Kong, J Palacios, T AF Hsu, Allen L. Koch, Roland J. Ong, Mitchell T. Fang, Wenjing Hofmann, Mario Kim, Ki Kang Seyller, Thomas Dresselhaus, Mildred S. Reed, Evan J. Kong, Jing Palacios, Tomas TI Surface-Induced Hybridization between Graphene and Titanium SO ACS NANO LA English DT Article DE graphene; titanium; Raman spectroscopy; chemical functionalization; density functional theory; hybridization ID CONTACT RESISTANCE; EPITAXIAL GRAPHENE; MONOLAYER GRAPHENE; HIGH-QUALITY; DEVICES; PERFORMANCE; INTERFACE; LAYERS AB Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface specific and has major consequences for contacting graphene-nanoelectronic devices as well as applications toward metal induced chemical functionalization of graphene. C1 [Hsu, Allen L.; Fang, Wenjing; Hofmann, Mario; Kim, Ki Kang; Dresselhaus, Mildred S.; Kong, Jing; Palacios, Tomas] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Koch, Roland J.; Seyller, Thomas] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany. [Ong, Mitchell T.; Reed, Evan J.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Ong, Mitchell T.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Kim, Ki Kang] Dongguk Univ, Dept Energy & Mat Engn, Seoul 100715, South Korea. [Dresselhaus, Mildred S.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Hsu, AL (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. EM allenhsu@mit.edu RI Koch, Roland/A-3927-2015; Seyller, Thomas/F-8410-2011; OI Koch, Roland/0000-0001-5748-8463; Seyller, Thomas/0000-0002-4953-2142; Hofmann, Mario/0000-0003-1946-2478 FU MSD MARCO program; Army-MIT Institute for Soldier Nanotechnology; Army Research Laboratory; ONR GATE MURI program; National Science Foundation (NSF) DMR [0845358]; DFG [SFB 953] FX This work has been partially funded by the MSD MARCO program, the Army-MIT Institute for Soldier Nanotechnology, the Army Research Laboratory, and the ONR GATE MURI program. K.K.K. and J.K. acknowledge funding from the National Science Foundation (NSF) DMR 0845358. T.S. and R.K. acknowledge funding by the DFG in the framework of SFB 953 Synthetic Carbon Allotropes, W. Mahler and B. Zada for support during beamtime, the Helmholtz Zentrum Berlin for travel support, and K Horn for providing access to his photoemission setup. NR 63 TC 10 Z9 10 U1 10 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 7704 EP 7713 DI 10.1021/nn502842x PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300015 PM 25032479 ER PT J AU Buehler, DC Marsden, MD Shen, S Toso, DB Wu, XM Loo, JA Zhou, ZH Kickhoefer, VA Wender, PA Zack, JA Rome, LH AF Buehler, Daniel C. Marsden, Matthew D. Shen, Sean Toso, Daniel B. Wu, Xiaomeng Loo, Joseph A. Zhou, Z. Hong Kickhoefer, Valerie A. Wender, Paul A. Zack, Jerome A. Rome, Leonard H. TI Bioengineered Vaults: Self-Assembling Protein Shell-Lipophilic Core Nanoparticles for Drug Delivery SO ACS NANO LA English DT Article DE vaults; nanoparticles; drug delivery systems; bryostatin 1; HIV latency ID HEPATITIS-C VIRUS; LATENT HIV; RIBONUCLEOPROTEIN-PARTICLES; BRYOSTATIN ANALOGS; IN-VITRO; SYSTEMS; 5A; THERAPEUTICS; PROSTRATIN; COMPONENT AB We report a novel approach to a new class of bioengineered, monodispersecl, self-assembling vault nanoparticles consisting of a protein shell exterior with a lipophilic core interior designed for drug and probe delivery. Recombinant vaults were engineered to contain a small amphipathic alpha-helix derived from the nonstructural protein SA of hepatitis C virus, thereby creating within the vault lumen a lipophilic microenvironment into which lipophilic compounds could be reversibly encapsulated. Multiple types of electron microscopy showed that attachment of this peptide resulted in larger than expected additional mass internalized within the vault lumen attributable to incorporation of host lipid membrane constituents spanning the vault waist (>35 nm). These bioengineered lipophilic vaults reversibly associate with a sample set of therapeutic compounds, including all trans retinoic acid, amphotericin B, and bryostatin 1, incorporating hundreds to thousands of drug molecules per vault nanoparticle. Bryostatin 1 is of particular therapeutic interest because of its ability to potently induce expression of latent HIV, thus representing a preclinical lead in efforts to eradicate HIV/AIDS. Vaults loaded with bryostatin 1 released free drug, resulting in activation of HIV from provirus latency in vitro and induction of CD69 biomarker expression following intravenous injection into mice. The ability to preferentially and reversibly encapsulate lipophilic compounds into these novel bioengineered vault nanoparticles greatly advances their potential use as drug delivery systems. C1 [Buehler, Daniel C.; Loo, Joseph A.; Kickhoefer, Valerie A.; Rome, Leonard H.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. [Marsden, Matthew D.] Univ Calif Los Angeles, Div Hematol & Oncol, Dept Med, Los Angeles, CA 90095 USA. [Shen, Sean; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Toso, Daniel B.; Wu, Xiaomeng; Zhou, Z. Hong; Zack, Jerome A.] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Zhou, Z. Hong; Zack, Jerome A.; Rome, Leonard H.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Buehler, Daniel C.; Wender, Paul A.] Stanford Univ, Dept Chem & Syst Biol, Dept Chem, Stanford, CA 94305 USA. RP Zack, JA (reprint author), Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. EM jzack@ucla.edu; lrome@mednet.ucla.edu RI Rome, Leonard/E-8786-2016; OI Rome, Leonard/0000-0002-1236-2063; Kickhoefer, Valerie/0000-0002-0048-0580 FU National Institutes of Health [AI70010, U19AI096113, 3.4, GM071940, AI094386, S10RR024605, R01GM103479, R01 CA031841, R01 CA031845]; UCLA CFAR [AI28697]; Bill and Melinda Gates Foundation [OPP1032668] FX The authors gratefully acknowledge support from the National Institutes of Health (AI70010 to J.Z., U19AI096113, Project 3.4 to J.Z., GM071940 and AI094386 to Z. H.Z., S10RR024605 and R01GM103479 to J.A.L., and R01 CA031841 and R01 CA031845 to P.A.W.); the UCLA CFAR (AI28697) for core support and a UCLA CFAR Seed Grant to L H.R.; and a Grand Challenges Explorations Grant (OPP1032668 to J.Z.) from the Bill and Melinda Gates Foundation. NR 46 TC 10 Z9 10 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 7723 EP 7732 DI 10.1021/nn5002694 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300017 PM 25061969 ER PT J AU Walter, AL Sahin, H Jeon, KJ Bostwick, A Horzum, S Koch, R Speck, F Ostler, M Nagel, P Merz, M Schupler, S Moreschini, L Chang, YJ Seyller, T Peeters, FM Horn, K Rotenberg, E AF Walter, Andrew Leigh Sahin, Hasan Jeon, Ki-Joon Bostwick, Aaron Horzum, Seyda Koch, Roland Speck, Florian Ostler, Markus Nagel, Peter Merz, Michael Schupler, Stefan Moreschini, Luca Chang, Young Jun Seyller, Thomas Peeters, Francois M. Horn, Karsten Rotenberg, Eli TI Luminescence, Patterned Metallic Regions, and Photon-Mediated Electronic Changes in Single-Sided Fluorinated Graphene Sheets SO ACS NANO LA English DT Article DE graphene; fluorine; photoemission; XMCD; STM ID FLUOROGRAPHENE AB Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable "ground-state" phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a "boat" structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material. C1 [Walter, Andrew Leigh; Bostwick, Aaron; Moreschini, Luca; Rotenberg, Eli] EO Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Walter, Andrew Leigh; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany. [Walter, Andrew Leigh] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain. [Sahin, Hasan; Horzum, Seyda; Peeters, Francois M.] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium. [Jeon, Ki-Joon] Inha Univ, Dept Environm Engn, Inchon 402751, South Korea. [Koch, Roland; Speck, Florian; Ostler, Markus] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany. [Nagel, Peter; Merz, Michael; Schupler, Stefan] Karlsruhe Inst Technol, Inst Festkorperphys, D-76344 Eggenstein Leopoldshafen, Germany. [Chang, Young Jun] Univ Seoul, Dept Phys, Seoul 130743, South Korea. [Seyller, Thomas] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany. RP Walter, AL (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, NSLS 2, Upton, NY 11973 USA. EM awalter@bnl.gov RI Chang, Young Jun/N-3440-2014; Horzum Sahin, Seyda/B-7175-2012; Koch, Roland/A-3927-2015; Rotenberg, Eli/B-3700-2009; CMT, UAntwerpen Group/A-5523-2016; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Sahin, Hasan/C-6267-2016; Walter, Andrew/B-9235-2011; Seyller, Thomas/F-8410-2011; OI Chang, Young Jun/0000-0001-5538-0643; Koch, Roland/0000-0001-5748-8463; Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; Sahin, Hasan/0000-0002-6189-6707 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; ESF; DFG through the EUROCORES program EUROGRAPHENE; Max- Planck-Gesellschaft; Donostia International Physics Centre; Centro de Fisica de Materiales in San Sebastian, Spain; INHA University [INHA-47292]; Flemish Science Foundation (FWO-VI); EUROCORES program EUROGRAPHENE; Methusalem Foundation of the Flemish government; Hercules Foundation; FWO Pegasus Marie Curie Fellowship FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the ESF and the DFG through the EUROCORES program EUROGRAPHENE. A.L.W. acknowledges support from the Max- Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain. We gratefully acknowledge the Max-Planck Institute for Intelligent Systems Stuttgart for use of their XMCD end station at WERA, and the ANKA Angstromquelle Karlsruhe for the provision of beamtime. K.J.J. acknowledges support from an INHA University Research Grant (INHA-47292). H.S. and F.M.P. were supported by the Flemish Science Foundation (FWO-VI), the EUROCORES program EUROGRAPHENE, and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. NR 36 TC 10 Z9 10 U1 4 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 7801 EP 7808 DI 10.1021/nn501163c PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300025 PM 25106688 ER PT J AU Wang, DB Capehart, SL Pal, S Liu, MH Zhang, L Schuck, PJ Liu, Y Yan, H Francis, MB De Yoreo, JJ AF Wang, Debin Capehart, Stacy L. Pal, Suchetan Liu, Minghui Zhang, Lei Schuck, P. James Liu, Yan Yan, Hao Francis, Matthew B. De Yoreo, James J. TI Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates SO ACS NANO LA English DT Article DE bioinspired assembly; DNA origami; virus capsid; plasmonic nanostructure; scanning confocal microscopy; atomic force microscopy (AFM); finite-difference time-domain (FDTD) simulation ID SINGLE-MOLECULE FLUORESCENCE; GOLD NANOPARTICLES; ELECTROMAGNETIC-FIELD; SILVER-NANOPARTICLE; ENHANCEMENT; SURFACE; PARTICLES; DELIVERY; BACTERIOPHAGE-MS2; LIPOPROTEINS AB Building plasmonic nanostructures using biomolecules as scaffolds has shown great potential for attaining tunable light absorption and emission via precise spatial organization of optical species and antennae. Here we report bottom up assembly of hierarchical plasmonic nanostructures using DNA origami templates and MS2 virus capsids. These serve as programmable scaffolds that provide molecular level control over the distribution of fluorophores and nanometer-scale control over their distance from a gold nanoparticle antenna. While previous research using DNA origami to assemble plasmonic nanostructures focused on determining the distance-dependent response of single fluorophores, here we address the challenge of constructing hybrid nanostructures that present an organized ensemble of fluorophores and then investigate the plasmonic response. By combining finite-difference time-domain numerical simulations with atomic force microscopy and correlated scanning confocal fluorescence microscopy, we find that the use of the scaffold keeps the majority of the fluorophores out of the quenching zone, leading to increased fluorescence intensity and mild levels of enhancement. The results show that the degree of enhancement can be controlled by exploiting capsid scaffolds of different sizes and tuning capsid-AuNP distances. These bioinspired plasmonic nanostructures provide a flexible design for manipulating photonic excitation and photoemission. C1 [Wang, Debin; Zhang, Lei; Schuck, P. James; Francis, Matthew B.; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Debin; Zhang, Lei; Schuck, P. James; Francis, Matthew B.; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wang, Debin; De Yoreo, James J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Capehart, Stacy L.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pal, Suchetan; Liu, Minghui; Yan, Hao] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Pal, Suchetan; Liu, Minghui; Yan, Hao] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP De Yoreo, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM James.DeYoreo@pnnl.gov RI Zhang, Lei/G-6427-2012; Pal, Suchetan/D-3653-2012; Foundry, Molecular/G-9968-2014 OI Zhang, Lei/0000-0002-4880-824X; Pal, Suchetan/0000-0001-8291-2844; FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-05CH11231, DE-AC05-76RL01830]; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division; NSF graduate research fellowship [2010101391]; Office of Naval Research FX This work was performed at Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory with support from the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract Nos. DE-AC02-05CH11231 and DE-AC05-76RL01830, respectively. Research was carried out in the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division. S.L.C. was supported by an NSF graduate research fellowship (2010101391). Work performed at Arizona State University was supported by grants from the Office of Naval Research. We thank Dr. Gang Ren for his supervision of the TEM imaging work. We thank Dr. Jeffery Neaton, Dr. Sahar Sharifzadeh, and Andrew Taber for their constructive discussions on the FDTD simulation. We thank Dr. Jolene Lau for assistance with the protein and capsid biochemistry. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle. NR 46 TC 11 Z9 11 U1 9 U2 129 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 7896 EP 7904 DI 10.1021/nn5015819 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300034 PM 25020109 ER PT J AU Wang, P Dimitrijevic, NM Chang, AY Schaller, RD Liu, YZ Rajh, T Rozhkova, EA AF Wang, Peng Dimitrijevic, Nada M. Chang, Angela Y. Schaller, Richard D. Liu, Yuzi Rajh, Tijana Rozhkova, Elena A. TI Photoinduced Electron Transfer Pathways in Hydrogen-Evolving Reduced Graphene Oxide-Boosted Hybrid Nano-Bio Catalyst SO ACS NANO LA English DT Article DE graphene; bacteriorhodopsin; Pt/TiO2 nanoparticles; visible light; hydrogen fuels; nano-bio materials ID WALLED CARBON NANOTUBES; PHOTOCURRENT GENERATION; PHOTOCATALYTIC ACTIVITY; NITROGENASE CATALYSIS; SOLAR-ENERGY; LIGHT; TIO2; BACTERIORHODOPSIN; PERFORMANCE; WATER AB Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H-2 (mu mol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light. C1 [Wang, Peng; Schaller, Richard D.; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chang, Angela Y.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Rozhkova, EA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rozhkova@anl.gov RI Wang, Peng/G-9561-2016; Liu, Yuzi/C-6849-2011 OI Wang, Peng/0000-0003-4250-8104; FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 49 TC 16 Z9 16 U1 11 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 7995 EP 8002 DI 10.1021/nn502011p PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300045 PM 25050831 ER PT J AU Mukherjee, P Manchanda, P Kumar, P Zhou, L Kramer, MJ Kashyap, A Skomski, R Sellmyer, D Shield, JE AF Mukherjee, Pinaki Manchanda, Priyanka Kumar, Pankaj Zhou, Lin Kramer, Matthew J. Kashyap, Arti Skomski, Ralph Sellmyer, David Shield, Jeffrey E. TI Size-Induced Chemical and Magnetic Ordering in Individual Fe-Au Nanoparticles SO ACS NANO LA English DT Article DE chemical ordering; nanoparticles; Fe-Au; nanomagnetism; thermodynamics ID INTERMETALLIC AU3FE1-X; DISORDER TRANSITION; PHASE; NANOCRYSTALS; ALLOYS; NANOCLUSTERS; METALS AB Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L1(2)-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L1(2)-ordered Fe3Au and FeAu3 compounds along with a previously discovered L1(0)-ordered FeAu has been explained by a size dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results. C1 [Mukherjee, Pinaki; Shield, Jeffrey E.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Mukherjee, Pinaki; Manchanda, Priyanka; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Manchanda, Priyanka; Skomski, Ralph; Sellmyer, David] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Manchanda, Priyanka; Kumar, Pankaj; Kashyap, Arti] Indian Inst Technol Mandi, Sch Basic Sci, Suran 175001, HP, India. [Zhou, Lin; Kramer, Matthew J.] Iowa State Univ, Ames Lab, Mat Sci & Engn Div, Ames, IA 50011 USA. RP Mukherjee, P (reprint author), Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. EM pmukherjee@unl.edu; jshield@unl.edu FU U.S. Department of Energy EPSCoR State and National Laboratory Partnership Program [DE-SC0001269]; U.S. Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Sciences (BES) [DE-AC02-07CH11358]; USDOE Basic Energy studies, Materials Science and Engineering [DE-FG02-04ER46152]; US Army Research Office [WF911NF-10-2-0099]; Nebraska Research Initiative; NSF-MRI [DMR-0960110] FX P.M. and J.E.S. were supported by the U.S. Department of Energy EPSCoR State and National Laboratory Partnership Program through Grant No. DE-SC0001269. Electron microscopy at Ames Laboratory (L.Z. and M.J.K.) is supported by the U.S. Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Sciences (BES) under Contract No. DE-AC02-07CH11358. Synthesis and magnetism studies of P.M. and D.S. were supported by USDOE Basic Energy studies, Materials Science and Engineering grant DE-FG02-04ER46152. Theoretical research of Pr.M, P.K., A.K., and R.S. was supported by the US Army Research Office Grant No. WF911NF-10-2-0099. This research was performed in part in Central Facilities of the Nebraska Center for Materials and Nanoscience, which is supported by the Nebraska Research Initiative. Electron microscopy research was supported by NSF-MRI (DMR-0960110). NR 39 TC 15 Z9 15 U1 7 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 8113 EP 8120 DI 10.1021/nn5022007 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300056 PM 25010729 ER PT J AU Guo, YJ Rowland, CE Schaller, RD Vela, J AF Guo, Yijun Rowland, Clare E. Schaller, Richard D. Vela, Javier TI Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy SO ACS NANO LA English DT Article DE germanium; core/shell nanocrystals; IV/II-VI epitaxy; near-IR photoluminescence; quantum dots ID PBSE QUANTUM DOTS; GERMANIUM NANOCRYSTALS; MESOPOROUS GERMANIUM; CATION-EXCHANGE; COLLOIDAL NANOCRYSTALS; SUPPRESSED BLINKING; EMITTING GERMANIUM; SOFT ACIDS; GROWTH; GIANT AB Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II-VI, III-V and IV-VI semiconductor quantum dots. Here, we use relatively unexplored IV/II-VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II-VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II-VI nanocrystals are reproducibly 1-3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative, recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II-VI nanocrystals. We expect this synthetic IV/II-VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials. C1 [Guo, Yijun; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50010 USA. [Guo, Yijun; Vela, Javier] Ames Lab, Ames, IA 50011 USA. [Rowland, Clare E.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rowland, Clare E.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50010 USA. EM vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU National Science Foundation through a CAREER grant from the Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry (MSN) program [NSF-CHE-1253058]; Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; Iowa State University Research Excellence Award; Midwest Chapter of the Society of Cosmetic Chemists; National Science Foundation Graduate Research Fellowship [NSF-DGE-0824162]; Iowa State University's Plant Sciences Institute FX J. Vela gratefully acknowledges the National Science Foundation for funding of this work through a CAREER grant from the Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry (MSN) program (NSF-CHE-1253058). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. Y. Guo is the recipient of an Iowa State University Research Excellence Award and a scholarship from the Midwest Chapter of the Society of Cosmetic Chemists. C. Rowland acknowledges support from a National Science Foundation Graduate Research Fellowship (NSF-DGE-0824162). J. Vela and Y. Guo thank Iowa State University's Plant Sciences Institute for initial support, as well as Purnima Ruberu and Sam Alvarado for assistance with synthesis and graphics. NR 66 TC 18 Z9 18 U1 10 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 8334 EP 8343 DI 10.1021/nn502792m PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300082 PM 25010416 ER PT J AU Arenal, R Lopez-Bezanilla, A AF Arenal, Raul Lopez-Bezanilla, Alejandro TI In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation SO ACS NANO LA English DT Article DE hybrid (boron nitride carbon) nanotubes; HRTEM; electron-irradiation; EELS-STEM; DFT calculations ID SINGLE-WALLED CARBON; LASER VAPORIZATION; BN-NANOTUBES; MICROSCOPY; GRAPHENE AB We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT were in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations. C1 [Arenal, Raul] Univ Zaragoza, LMA, INA, Zaragoza 50018, Spain. [Arenal, Raul] Fdn ARAID, Zaragoza 50018, Spain. [Lopez-Bezanilla, Alejandro] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Arenal, R (reprint author), Univ Zaragoza, LMA, INA, Zaragoza 50018, Spain. EM arenal@unizar.es RI Lopez-Bezanilla, Alejandro/B-9125-2015; Arenal, Raul/D-2065-2009 OI Lopez-Bezanilla, Alejandro/0000-0002-4142-2360; Arenal, Raul/0000-0002-2071-9093 FU U. de Zaragoza [165-119, 165-120]; ARAID foundation; European Union [312483 - ESTEEM2]; DOE-BES [DE-AC02-06CH11357]; DOE (FWP) [70081] FX The TEM measurements were performed in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA) - Universidad de Zaragoza (Spain). R.A. acknowledges funding from grants 165-119 and 165-120 from U. de Zaragoza and from ARAID foundation. The research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative - 13). A.L.-B. gratefully acknowledges the computing resources provided on the Blues compute cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Work at Argonne is supported by DOE-BES under Contract No. DE-AC02-06CH11357. A.L.-B. acknowledges Glue funding from DOE (FWP#70081). NR 38 TC 7 Z9 7 U1 7 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 8419 EP 8425 DI 10.1021/nn502912w PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300091 PM 25061660 ER PT J AU Chang, AY Liu, WY Talapin, DV Schaller, RD AF Chang, Angela Y. Liu, Wenyong Talapin, Dmitri V. Schaller, Richard D. TI Carrier Dynamics in Highly Quantum-Confined, Colloidal Indium Antimonide Nanocrystals SO ACS NANO LA English DT Article DE indium antimonide; InSb; semiconductor nanocrystals; nanocrystal quantum dots; transient absorption; Auger recombination; intraband relaxation ID LIGHT-EMITTING-DIODES; SEMICONDUCTOR NANOCRYSTALS; GERMANIUM NANOCRYSTALS; INSB NANOCRYSTALS; EPITAXIAL-GROWTH; OPTICAL GAIN; DOTS; MULTIPLICATION; EMISSION; PHOTOVOLTAICS AB Nanometer-sized particles of indium antimonide (InSb) offer opportunities in areas such as solar energy conversion and single photon sources. Here, we measure electron-hole pair dynamics, spectra, and absorption cross sections of strongly quantum-confined colloidal InSb nanocrystal quantum dots using femtosecond transient absorption. For all samples, we observe a bleach feature that develops on ultrafast time scales, which notably moves to lower energy during the first several picoseconds following excitation. We associate this unusual red shift, which becomes larger for larger particles and more distinct at lower sample temperatures, with hot exciton cooling through states that we suggest arise from energetically proximal conduction band levels. From controlled optical excitation intensities, we determine biexciton lifetimes, which range from 2 to 20 ps for the studied 3-6 nm diameter particle sizes. C1 [Chang, Angela Y.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Liu, Wenyong; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov RI liu, wenyong/J-3208-2015 OI liu, wenyong/0000-0001-9143-9139 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-1310398]; NSF MRSEC Program [DMR 08-20054] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The work on the synthesis and characterization of InSb NCs was supported by NSF under Award Number DMR-1310398. D.V.T. also thanks the David and Lucile Packard Foundation and Keck Foundation. This work used facilities supported by NSF MRSEC Program under Award Number DMR 08-20054. NR 49 TC 6 Z9 6 U1 9 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 8513 EP 8519 DI 10.1021/nn5031274 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300101 PM 25106893 ER PT J AU Dowgiallo, AM Mistry, KS Johnson, JC Blackburn, JL AF Dowgiallo, Anne-Marie Mistry, Kevin S. Johnson, Justin C. Blackburn, Jeffrey L. TI Ultrafast Spectroscopic Signature of Charge Transfer between Single-Walled Carbon Nanotubes and C-60 SO ACS NANO LA English DT Article DE single-walled carbon nanotubes; fullerene; electron transfer; photovoltaic; charge generation; exciton dissociation; recombination; trion ID PHOTOINDUCED ELECTRON-TRANSFER; SEMICONDUCTOR QUANTUM-WELLS; THIN-FILM PHOTOVOLTAICS; SOLAR-CELLS; DYNAMICS; EXCITONS; TRIONS; TRANSITIONS; COMPOSITES; ABSORPTION AB The time scales for interfacial charge separation and recombination play crucial roles in determining efficiencies of excitonic photovoltaics. Near-infrared photons are harvested efficiently by semiconducting single-walled carbon nanotubes (SWCNTs) paired with appropriate electron acceptors, such as fullerenes (e.g., C-60). However, little is known about crucial photochemical events that occur on femtosecond to nanosecond time scales at such heterojunctions. Here, we present transient absorbance measurements that utilize a distinct spectroscopic signature of charges within SWCNTs, the absorbance of a trion quasiparticle, to measure both the ultrafast photoinduced electron transfer time (tau(pet)) and yield (phi(pet)) in photoexcited SWCNT-C-60 bilayer films. The rise time of the trion-induced absorbance enables the determination of the photoinduced electron transfer (PET) time of tau(pet) <= 120 fs, while an experimentally determined trion absorbance cross section reveals the yield of charge transfer (phi(pet) approximate to 38 +/- 3%). The extremely fast electron transfer times observed here are on par with some of the best donor: acceptor pairs in excitonic photovoltaics and underscore the potential for efficient energy harvesting in SWCNT-based devices. C1 [Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mistry, Kevin S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Jeffrey.Blackburn@nrel.gov FU Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX This work was supported by the Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 40 TC 23 Z9 23 U1 4 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2014 VL 8 IS 8 BP 8573 EP 8581 DI 10.1021/nn503271k PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO0IM UT WOS:000340992300108 PM 25019648 ER PT J AU Foley, JJ McMahon, JM Schatz, GC Harutyunyan, H Wiederrecht, GP Gray, SK AF Foley, Jonathan J. McMahon, Jeffrey M. Schatz, George C. Harutyunyan, Hayk Wiederrecht, Gary P. Gray, Stephen K. TI Inhomogeneous Surface Plasmon Polaritons SO ACS PHOTONICS LA English DT Article DE plasmonics; surface waves; inhomogeneous waves; refraction; near-field optics; dispersion engineering ID SUBWAVELENGTH HOLE ARRAYS; NEGATIVE REFRACTION; OPTICS; MICROSCOPY; SENSORS AB We show analytically and with rigorous computational electrodynamics how inhomogeneous surface plasmon polaritons (ISPPs) can be generated by refraction of ordinary SPPs at metal-metal interfaces. ISPPs, in contrast with SPPs, propagate and decay in different directions and can therefore exhibit significantly different intensity patterns. Our analytical arguments are based on a complex generalization of Snells law to describe how SPPs moving on one metal surface are refracted at an interface with a second, different metal surface. The refracted waveform on the second metal is an ISPP. Under suitable circumstances the decay of an ISPP can be almost perpendicular to the propagation direction, leading to significant confinement. It is also found that ISPPs on the second metal can retain information about the SPPs on the first metal, a phenomenon that we term "dispersion imprinting". The complex Snells law predictions are validated with 3-D finite-difference time-domain simulations, and possible means of experimentally observing ISPPs are suggested. The idea of ISPPs and how they result from refraction may expand the potential for designing the propagation and dispersion features of surface waves in general, including surface phonon polaritons, surface magnons, and guided waves in metamaterials. C1 [Foley, Jonathan J.; Harutyunyan, Hayk; Wiederrecht, Gary P.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [McMahon, Jeffrey M.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [McMahon, Jeffrey M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Gray, SK (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gray@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; Department of Energy, Office of Basic Energy Sciences [DE-FG02-10ER16153]; Department of Energy [DE-NA0001789] FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, under Contract No. DE-AC02-06CH11357. J.M.M. and G.C.S. were supported by the Department of Energy, Office of Basic Energy Sciences, under grant DE-FG02-10ER16153. J.M.M. was also supported by the Department of Energy under grant DE-NA0001789. NR 39 TC 5 Z9 5 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD AUG PY 2014 VL 1 IS 8 BP 739 EP 745 DI 10.1021/ph500172f PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AN6UW UT WOS:000340734900015 ER PT J AU Angell, CT Kaplan, AC Seelig, JD Norman, EB Pedretti, M AF Angell, C. T. Kaplan, A. C. Seelig, J. D. Norman, E. B. Pedretti, M. TI Concepts in nuclear science illustrated through experiments with radon (vol 80, pg 61, 2012) SO AMERICAN JOURNAL OF PHYSICS LA English DT Correction C1 [Angell, C. T.; Kaplan, A. C.; Seelig, J. D.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Pedretti, M.] Lawrence Livermore Natl Lab, Dept Phys, Livermore, CA 94550 USA. RP Angell, CT (reprint author), Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD AUG PY 2014 VL 82 IS 8 BP 802 EP 802 DI 10.1119/1.4883595 PG 1 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA AO2KZ UT WOS:000341152100010 ER PT J AU Cheshire, MC Caporuscio, FA Rearick, MS Jove-Colon, C McCarney, MK AF Cheshire, Michael C. Caporuscio, Florie A. Rearick, Michael S. Jove-Colon, Carlos McCarney, Mary Kate TI Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs SO AMERICAN MINERALOGIST LA English DT Article DE Analcime; bentonite; clinoptilolite; electron microscopy; hydrothermal; illite/smectite; montmorillonite; nuclear repository; X-ray powder diffraction ID X-RAY-DIFFRACTION; YUCCA MOUNTAIN; MONTMORILLONITE STABILITY; HYDROTHERMAL REACTIVITY; RESERVOIR SANDSTONES; SOLUTION CHEMISTRY; ILLITE-SMECTITE; DISSOLUTION; ANALCIME; NEVADA AB Geologic disposal of spent nuclear fuel in high-capacity metal canisters may reduce the repository footprint, but it may yield high-thermal loads (up to 300 degrees C). The focus of this experimental work is to expand our understanding of the hydrothermal stability of bentonite clay barriers interacting with metallic phases under different geochemical, mineralogical, and engineering conditions. The hydrothermal experiments were performed using flexible Au/Ti Dickson reaction cells mounted in an externally heated pressure vessel at 150-160 bars and temperatures up to 300 degrees C for five to six weeks. Unprocessed Wyoming bentonite, containing primarily montmorillonite with minor amount of clinoptilolite, was saturated with a K-Ca-Na-Cl-bearing water (similar to 1900 mg/L total dissolved solids) at a 9:1 water:rock mass ratio. The bentonite and solution combination contained either steel plates or Cu-foils and were buffered to low Eh using magnetite and metallic iron. During reactions, pH, K+, and Ca2+ concentrations decreased, whereas SiO2(aq), Na+, and SO42- concentrations increased throughout the experiments. Pyrite decomposition was first observed at similar to 210 degrees C, generating H2S(aq,g) that interacted with metal plates or evolves as a gas. The aqueous concentrations of alkali and alkaline earth cations appear to be buffered via montmorillonite and clinoptilolite exchange reactions. Illite or illite/smectite mixed-layer formation was significantly retarded in the closed system due to a limited K+ supply along with high Na+ and SiO2(aq) concentrations. Precursor clinoptilolite underwent extensive recrystallization during the six weeks, 300 degrees C experiments producing a Si-rich analcime in addition to authigenic silica phases (i.e., opal, cristobalite). Analcime and feldspar formation partially sequester aqueous Al3+, thereby potentially inhibiting illitization. Associated with the zeolite alteration is a similar to 17% volume decrease (quartz formation) that translates into similar to 2% volume loss in the bulk bentonite. These results provide chemical information that can be utilized in extending the bentonite barriers' lifetime and thermal stability. Zeolite alteration mineralogy and illitization retardation under these experimental conditions is important for the evaluation of clay barrier long-term stability in a spent nuclear fuel repository. C1 [Cheshire, Michael C.; Caporuscio, Florie A.; Rearick, Michael S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jove-Colon, Carlos] Sandia Natl Labs, Nucl Waste Disposal Res & Anal Dept, Albuquerque, NM 87185 USA. [McCarney, Mary Kate] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. RP Cheshire, MC (reprint author), Los Alamos Natl Lab, MS J966, Los Alamos, NM 87545 USA. EM cheshire@lanl.gov FU Department of Energy's Used Fuel Disposition campaign FX We thank Emily Kluk for XRF analyses and Liz Miller for assistance in the lab. Scanning electron microscopy facilities were provided by Materials Science and Technology group at Los Alamos National Laboratory. George Mason at the University of Oklahoma was instrumental in the obtaining of EMP analyses. Bentonite Performance Minerals, L.L.C. graciously provided the bentonite. We thank Dennis Newell and David Bish for the discussions regarding the experimental system and results. We also thank the two anonymous reviewers, whose suggestions improved this manuscript. Funding was through the Department of Energy's Used Fuel Disposition campaign. Los Alamos National Laboratory has assigned free release number LA-UR-13-23814 to this document. NR 75 TC 2 Z9 2 U1 4 U2 29 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD AUG-SEP PY 2014 VL 99 IS 8-9 BP 1662 EP 1675 DI 10.2138/am.2014.4673 PG 14 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA AN4TD UT WOS:000340580500015 ER PT J AU An, W Baber, AE Xu, F Soldemo, M Weissenrieder, J Stacchiola, D Liu, P AF An, Wei Baber, Ashleigh E. Xu, Fang Soldemo, Markus Weissenrieder, Jonas Stacchiola, Dario Liu, Ping TI Mechanistic Study of CO Titration on CuxO/Cu(111) (x <= 2) Surfaces SO CHEMCATCHEM LA English DT Article DE cooper; density functional calculations; reduction; surface chemistry; scanning probe microscopy ID OXYGEN-INDUCED RECONSTRUCTIONS; AUGMENTED-WAVE METHOD; AB-INITIO; IN-SITU; ADSORPTION; CU(111); CU2O; REDUCTION; CU2O(111); OXIDE AB The reducibility of metal oxides is of great importance to their catalytic behavior. Herein, we combined ambient-pressure scanning tunneling microscopy (AP-STM), X-ray photoemission spectroscopy (AP-XPS), and DFT calculations to study the CO titration of CuxO thin films supported on Cu(111) (CuxO/Cu(111)) aiming to gain a better understanding of the roles that the Cu(111) support and surface defects play in tuning catalytic performances. Different conformations have been observed during the reduction, namely, the 44 structure and a recently identified (5-7-7-5) Stone-Wales defects (5-7 structure). The DFT calculations revealed that the Cu(111) support is important to the reducibility of supported CuxO thin films. Compared with the case for the Cu2O(111) bulk surface, at the initial stage CO titration is less favorable on both the 44 and 5-7 structures. The strong CuxO <-> Cu interaction accompanied with the charge transfer from Cu to CuxO is able to stabilize the oxide film and hinder the removal of O. However, with the formation of more oxygen vacancies, the binding between CuxO and Cu(111) is weakened and the oxide film is destabilized, and Cu2O(111) is likely to become the most stable system under the reaction conditions. In addition, the surface defects also play an essential role. With the proceeding of the CO titration reaction, the 5-7 structure displays the highest activity among all three systems. Stone-Wales defects on the surface of the 5-7 structure exhibit a large difference from the 44 structure and Cu2O(111) in CO binding energy, stability of lattice oxygen, and, therefore, the reduction activity. The DFT results agree well with the experimental measurements, demonstrating that by adopting the unique conformation, the 5-7 structure is the active phase of CuxO, which is able to facilitate the redox reaction and the Cu2O/Cu(111)<-> Cu transition. C1 [An, Wei; Baber, Ashleigh E.; Stacchiola, Dario; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Xu, Fang] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Soldemo, Markus; Weissenrieder, Jonas] KTH Royal Inst Technol, Stockholm, Sweden. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov RI An, Wei/E-9270-2010; Stacchiola, Dario/B-1918-2009; OI An, Wei/0000-0002-0760-1357; Stacchiola, Dario/0000-0001-5494-3205; Xu, Fang/0000-0002-8166-0275; Weissenrieder, Jonas/0000-0003-1631-4293 FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; US Department of Energy, Division of Chemical Sciences; US Department of Energy [DE-AC02-05CH11231.]; New York Center for Computational Sciences, BNL; State of New York; National Energy Research Scientific Computing Center (NERSC); Swedish research council (VR) FX The research was performed at Brookhaven National Laboratory (BNL) under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, BNL, supported by US Department of Energy, the New York Center for Computational Sciences, BNL, supported by the US Department of Energy and the State of New York, and the National Energy Research Scientific Computing Center (NERSC) supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The Maxlab staff is acknowledged for support. The Swedish part was funded by the Swedish research council (VR). NR 46 TC 9 Z9 9 U1 7 U2 58 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD AUG PY 2014 VL 6 IS 8 BP 2364 EP 2372 DI 10.1002/cctc.201402177 PG 9 WC Chemistry, Physical SC Chemistry GA AN4RE UT WOS:000340574600034 ER PT J AU Piette, MA Kiliccote, S Ghatikar, G AF Piette, Mary Ann Kiliccote, Sila Ghatikar, Girish TI SMART GRID Implementing Automated Demand Response SO CHEMICAL ENGINEERING PROGRESS LA English DT Article C1 [Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Piette, MA (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU California Energy Commission Public Interest Energy Research (PIER) Program [500-03-026]; U.S. Dept. of Energy (DOE) [DE-AC02-05CH11231]; Pacific Gas and Electric Co.; Bonneville Power Administration; DOE's Building Technology Office; Seattle City Light FX This work was sponsored by numerous organizations. Support was provided by the California Energy Commission Public Interest Energy Research (PIER) Program under Work for Others Contract No. 500-03-026, and by the U.S. Dept. of Energy (DOE) under Contract No. DE-AC02-05CH11231. We are also thankful for the support of Pacific Gas and Electric Co., Seattle City Light, the Bonneville Power Administration, and the DOE's Building Technology Office. NR 5 TC 0 Z9 0 U1 2 U2 4 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 EI 1945-0710 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD AUG PY 2014 VL 110 IS 8 BP 40 EP 44 PG 5 WC Engineering, Chemical SC Engineering GA AN6UB UT WOS:000340732600015 ER PT J AU Haig, SM D'Elia, J Eagles-Smith, C Fair, JM Gervais, J Herring, G Rivers, JW Schulz, JH AF Haig, Susan M. D'Elia, Jesse Eagles-Smith, Collin Fair, Jeanne M. Gervais, Jennifer Herring, Garth Rivers, James W. Schulz, John H. TI The persistent problem of lead poisoning in birds from ammunition and fishing tackle SO CONDOR LA English DT Review DE birds; copper bullets; endangered species; fishing jigs; fishing sinkers; fishing tackle; lead; lead ammunition; lead poisoning ID ECOLOGICAL RISK-ASSESSMENT; WOODCOCK SCOLOPAX-MINOR; DOVES ZENAIDA-MACROURA; MOURNING DOVES; BLOOD-LEAD; CALIFORNIA CONDOR; NORTHERN BOBWHITE; AMERICAN WOODCOCK; DIETARY EXPOSURE; UNITED-STATES AB Lead (Pb) is a metabolic poison that can negatively influence biological processes, leading to illness and mortality across a large spectrum of North American avifauna (>120 species) and other organisms. Pb poisoning can result from numerous sources, including ingestion of bullet fragments and shot pellets left in animal carcasses, spent ammunition left in the field, lost fishing tackle, Pb-based paints, large-scale mining, and Pb smelting activities. Although Pb shot has been banned for waterfowl hunting in the United States (since 1991) and Canada (since 1999), Pb exposure remains a problem for many avian species. Despite a large body of scientific literature on exposure to Pb and its toxicological effects on birds, controversy still exists regarding its impacts at a population level. We explore these issues and highlight areas in need of investigation: (1) variation in sensitivity to Pb exposure among bird species; (2) spatial extent and sources of Pb contamination in habitats in relation to bird exposure in those same locations; and (3) interactions between avian Pb exposure and other landscape-level stressors that synergistically affect bird demography. We explore multiple paths taken to reduce Pb exposure in birds that (1) recognize common ground among a range of affected interests; (2) have been applied at local to national scales; and (3) engage governmental agencies, interest groups, and professional societies to communicate the impacts of Pb ammunition and fishing tackle, and to describe approaches for reducing their availability to birds. As they have in previous times, users of fish and wildlife will play a key role in resolving the Pb poisoning issue. C1 [Haig, Susan M.; Eagles-Smith, Collin; Herring, Garth] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97330 USA. [D'Elia, Jesse] US Fish & Wildlife Serv, Portland, OR USA. [Fair, Jeanne M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gervais, Jennifer] Oregon State Univ, Oregon Wildlife Inst, Corvallis, OR 97331 USA. [Gervais, Jennifer] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. [Rivers, James W.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Schulz, John H.] Univ Missouri, Dept Fisheries & Wildlife Sci, Columbia, MO USA. RP Haig, SM (reprint author), US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97330 USA. EM susan_haig@usgs.gov OI Eagles-Smith, Collin/0000-0003-1329-5285 NR 168 TC 19 Z9 19 U1 14 U2 111 PU COOPER ORNITHOLOGICAL SOC PI LAWRENCE PA ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA SN 0010-5422 EI 1938-5129 J9 CONDOR JI Condor PD AUG PY 2014 VL 116 IS 3 BP 408 EP 428 DI 10.1650/CONDOR-14-36.1 PG 21 WC Ornithology SC Zoology GA AO3JD UT WOS:000341224600010 ER PT J AU Stock, SR Ignatiev, K Lee, PL Almer, JD AF Stock, Stuart R. Ignatiev, Konstantin Lee, Peter L. Almer, Jonathan D. TI Calcite orientations and composition ranges within teeth across Echinoidea SO CONNECTIVE TISSUE RESEARCH LA English DT Article DE Biomineralization; calcite; sea urchin; synchrotron radiation; teeth; X-ray diffraction ID SEA-URCHIN TEETH AB Sea urchin's teeth from four families of order Echinoida and from orders Temnopleuroida, Arbacioida and Cidaroida were studied with synchrotron X-ray diffraction. The high and very high Mg calcite phases of the teeth, i.e. the first and second stage mineral constituents, respectively, have the same crystallographic orientations. The co-orientation of first and second stage mineral, which the authors attribute to epitaxy, extends across the phylogenic width of the extant regular sea urchins and demonstrates that this is a primitive character of this group. The range of compositions Delta x for the two phases of Ca1-xMgxCO3 is about 0.20 or greater and is consistent with a common biomineralization process. C1 [Stock, Stuart R.; Ignatiev, Konstantin] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Chicago, IL 60611 USA. [Lee, Peter L.; Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, 303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu OI Ignatyev, Konstantin/0000-0002-8937-5655 FU NIDCR [DE001374]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The research was partially supported by NIDCR grant DE001374 (to Prof. Arthur Veis). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors have no financial interest in any of the results or interpretations reported in this article. NR 16 TC 0 Z9 0 U1 0 U2 7 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0300-8207 EI 1607-8438 J9 CONNECT TISSUE RES JI Connect. Tissue Res. PD AUG PY 2014 VL 55 SU 1 BP 48 EP 52 DI 10.3109/03008207.2014.923865 PG 5 WC Cell Biology; Orthopedics SC Cell Biology; Orthopedics GA AO3LP UT WOS:000341231000012 PM 25158180 ER PT J AU Walker, AP Beckerman, AP Gu, LH Kattge, J Cernusak, LA Domingues, TF Scales, JC Wohlfahrt, G Wullschleger, SD Woodward, FI AF Walker, Anthony P. Beckerman, Andrew P. Gu, Lianhong Kattge, Jens Cernusak, Lucas A. Domingues, Tomas F. Scales, Joanna C. Wohlfahrt, Georg Wullschleger, Stan D. Woodward, F. Ian TI The relationship of leaf photosynthetic traits - V-cmax and J(max) - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study SO ECOLOGY AND EVOLUTION LA English DT Article DE Carbon assimilation; carbon cycle; carboxylation; DGVM; electron transport; Farquhar model; land surface model; meta-analysis; mixed-effect multiple regression; noncarbon photosynthesis; TBM ID DIOXIDE RESPONSE CURVES; CARBON-DIOXIDE; ELEVATED CO2; TERRESTRIAL BIOSPHERE; MESOPHYLL CONDUCTANCE; STOMATAL CONDUCTANCE; TEMPERATURE RESPONSE; BIOCHEMICAL-MODEL; GAS-EXCHANGE; C-3 PLANTS AB Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V-cmax) and the maximum rate of electron transport (J(max)). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V-cmax and J(max) and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V-cmax and J(max) and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V-cmax and J(max) with leaf N, P, and SLA. V-cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V-cmax to leaf N. J(max) was strongly related to V-cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J(max) to V-cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting. C1 [Walker, Anthony P.; Beckerman, Andrew P.; Woodward, F. Ian] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Walker, Anthony P.; Gu, Lianhong; Wullschleger, Stan D.] Oak Ridge Natl Lab, Climate Change Sci Inst, Div Environm Sci, Oak Ridge, TN 37831 USA. [Kattge, Jens] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Cernusak, Lucas A.] James Cook Univ, Dept Marine & Trop Biol Cairns, Cairns, Qld 4878, Australia. [Domingues, Tomas F.] Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Biol, BR-14040901 Ribeirao Preto, Brazil. [Scales, Joanna C.] Rothamsted Res, Plant Biol & Crop Sci, Harpenden AL5 2JQ, Herts, England. [Wohlfahrt, Georg] Univ Innsbruck, Inst Ecol, A-6020 Innsbruck, Austria. RP Walker, AP (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. EM alp@ornl.gov RI Cernusak, Lucas/A-6859-2011; James Cook University, TESS/B-8171-2012; Beckerman, Andrew/D-3020-2011; Wohlfahrt, Georg/D-2409-2009; Domingues, Tomas/G-9707-2011; Walker, Anthony/G-2931-2016; Kattge, Jens/J-8283-2016; Wullschleger, Stan/B-8297-2012; Gu, Lianhong/H-8241-2014 OI Cernusak, Lucas/0000-0002-7575-5526; Beckerman, Andrew/0000-0002-4797-9143; Wohlfahrt, Georg/0000-0003-3080-6702; Domingues, Tomas/0000-0003-2857-9838; Walker, Anthony/0000-0003-0557-5594; Kattge, Jens/0000-0002-1022-8469; Wullschleger, Stan/0000-0002-9869-0446; Gu, Lianhong/0000-0001-5756-8738 FU Natural Environment Research Council - National Centre for Earth Observation; US Department of Energy, Office of Science, Biological and Environmental Research Program; US Department of Energy [DE-AC05-00OR22725]; DIVERSITAS; IGBP; Global Land Project; QUEST; French program FRB; French program GIS Climat, Environnement et Societe FX APW was funded by a Natural Environment Research Council PhD studentship awarded by the National Centre for Earth Observation. APW, SDW, and LG were supported by the US Department of Energy, Office of Science, Biological and Environmental Research Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. Data were supplied by the TRY initiative on plant traits (http://www.try-db.org), which is supported by DIVERSITAS, IGBP, the Global Land Project, QUEST, and the French programs FRB and GIS Climat, Environnement et Societe. We would like to thank Belinda Medlyn, Ebe Merilo, David Tissue, and Tarryn Turnbull for help with data to standardize Vcmax and Jmax calculations. NR 86 TC 23 Z9 24 U1 17 U2 113 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD AUG PY 2014 VL 4 IS 16 BP 3218 EP 3235 DI 10.1002/ece3.1173 PG 18 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA AO2WS UT WOS:000341188300007 PM 25473475 ER PT J AU Zoback, MD Arent, DJ AF Zoback, Mark D. Arent, Douglas J. TI THE OPPORTUNITIES AND CHALLENGES OF SUSTAINABLE SHALE GAS DEVELOPEMENT SO ELEMENTS LA English DT Article AB Horizontal drilling and multistage hydraulic fracturing technologies have enabled the rapid expansion of natural gas production from organic-rich shale formations around the world. Abundant new supplies of natural gas have made possible large-scale fuel switching from-coal to natural gas in electrical power generation in the United States. This fuel substitution has had beneficial effects on air pollution and greenhouse gas emissions, along with significant economic impacts as a fuel for consumers and industry. But fuel switching to natural gas will not be sufficient by itself to combat long-term climate change; further decarbonization by eventually switching to noncarbon energy sources will also be required. In this context, global shale gas resources represent a critically important transition fuel on the path to a decarbonized energy future. C1 [Zoback, Mark D.] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA. [Arent, Douglas J.] Natl Renewable Energy Lab, Joint Inst Strateg Energy Anal, Golden, CO 80401 USA. RP Zoback, MD (reprint author), Stanford Univ, Dept Geophys, Stanford, CA 94305 USA. NR 10 TC 4 Z9 4 U1 7 U2 40 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD AUG PY 2014 VL 10 IS 4 BP 251 EP 253 DI 10.2113/gselements.10.4.251 PG 3 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA AO1MH UT WOS:000341075700004 ER PT J AU Kasule, JS Turton, R Bhattacharyya, D Zitney, SE AF Kasule, Job S. Turton, Richard Bhattacharyya, Debangsu Zitney, Stephen E. TI One-Dimensional Dynamic Modeling of a Single-Stage Downward-Firing Entrained-Flow Coal Gasifier SO ENERGY & FUELS LA English DT Article ID SIMULATION; GASIFICATION; PERFORMANCE; CFD AB In the current paper, a one-dimensional partial differential equation (PDE)-based dynamic model and its simulation results are presented for a single-stage down-fired entrained-flow gasifier. The gasifier model comprises mass, momentum, and energy balances for the gas and solid phases. The initial gasification processes of water evaporation and coal devolatilization and the key heterogeneous and homogeneous chemical reactions have also been modeled. The resulting coupled system of PDEs and algebraic equations is solved using the well-known method of lines in Aspen Custom Modeler. In addition to the dynamic gasifier model, efficient control strategies that can satisfactorily perform both servo and disturbance rejection functions have been developed for the entrained-flow gasifier. The dynamic variations of key gasifier output variables in response to the disturbances commonly encountered in industrial operation are presented. Output variables of interest include gas and solid phase temperatures, synthesis gas compositions, and carbon conversion, while disturbances include ramp and step changes in input variables such as coal flow rate, oxygen-to-coal ratio, and water-to-coal ratio among others. Feedstock switchovers have also been studied by simulating transitions from one coal type to another. The gasifier model results are also compared to the dynamic data available in the literature. C1 [Kasule, Job S.; Turton, Richard; Bhattacharyya, Debangsu] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Zitney, Stephen E.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Turton, R (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Richard.Turton@mail.wvu.edu; Debangsu.Bhattacharyya@mail.wvu.edu FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 35 TC 3 Z9 3 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2014 VL 28 IS 8 BP 4949 EP 4957 DI 10.1021/ef5010122 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AN7VJ UT WOS:000340808800013 ER PT J AU Newalkar, G Iisa, K D'Amico, AD Sievers, C Agrawal, P AF Newalkar, Gautami Iisa, Kristiina D'Amico, Andrew D. Sievers, Carsten Agrawal, Pradeep TI Effect of Temperature, Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor SO ENERGY & FUELS LA English DT Article ID GASIFICATION REACTIVITY; RAPID PYROLYSIS; AGRICULTURAL RESIDUES; BIOMASS GASIFICATION; PRODUCT COMPOSITIONS; HEATING RATE; COAL CHARS; CELLULOSE; WOOD; DEVOLATILIZATION AB High-pressure biomass gasification is poorly understood at heating rates of practical significance. This paper addresses this knowledge gap by performing pyrolysis of pine at high temperatures (600-1000 degrees C) and high pressures (5-20 bar) in an entrained flow reactor. Heating rates of 10(3)-10(4) degrees C/s are achieved with solids residence time ranging from 4 to 28 s. The pyrolysis chars, gases, and tars are characterized using several techniques: N-2 and CO2 physisorption, elemental analyses, SEM, XRD, micro-GC, FTIR-MS, and GCxGC-TOF-MS. The evolution of gases at high pressure is studied by pyrolyzing pine in PTGA at 800 degrees C between 5 and 30 bar. Pyrolysis pressure, temperature, heating rate, and residence time dramatically influence the physical and chemical properties of char, mainly through differences in the release of volatiles, evolution of char morphology, and carbonization of the char skeleton. The surface area and pore properties of chars correlate with the development of graphite-like structures in the carbon matrix. The gas composition from both the PTGA and PEFR shows that CO, CO2, H-2, and CH4 are the major light gases evolved, whereas C-2-C-4 hydrocarbons, oxygenates, and benzene are the minor light gas species observed. The formation of polynuclear aromatic tars at the longest residence times appears to occur via gas phase molecular weight growth reactions. The knowledge of char structure evolution developed in this paper will help us better understand char gasification kinetics which is important for the design of gasifiers. C1 [Newalkar, Gautami; Sievers, Carsten; Agrawal, Pradeep] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA. [D'Amico, Andrew D.] Micromerit Instrument Corp, Norcross, GA 30093 USA. [Sievers, Carsten] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. RP Iisa, K (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM Kristiina.Iisa@nrel.gov; pradeep.agrawal@chbe.gatech.edu OI Newalkar, Gautami/0000-0002-1736-3989 FU U.S. Department of Energy-Bioenergy Technologies Office [DE-PS36-09GO18160]; U.S. Department of Energy (Bioenergy Technologies Office) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Paper Science and Engineering Fellowship, Institute of Paper Science and Technology (IPST) FX This work was supported by a grant from the U.S. Department of Energy-Bioenergy Technologies Office under Contract No. DE-PS36-09GO18160. Part of this work was supported by the U.S. Department of Energy (Bioenergy Technologies Office) under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Graduate student support provided by the Paper Science and Engineering Fellowship offered by the Institute of Paper Science and Technology (IPST) is gratefully acknowledged. Grinding of pine samples was supervised by Steve Lien at IPST, who is gratefully acknowledged. We would like to thank Scott Sinquefield for the operation of the PEFR and generation of all char samples studied in this work. We also acknowledge important contributions by Daniel Carpenter, Bryon Donohoe, and Steve Deutch from NREL and Kathryn Black, Josh Chu, and Andrew Tricker from Georgia Tech. NR 61 TC 14 Z9 15 U1 4 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2014 VL 28 IS 8 BP 5144 EP 5157 DI 10.1021/ef5009715 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AN7VJ UT WOS:000340808800035 ER PT J AU Luecke, J McCormick, RL AF Luecke, Jon McCormick, Robert L. TI Electrical Conductivity and pH(e) Response of Fuel Ethanol Contaminants SO ENERGY & FUELS LA English DT Article ID WATER MIXTURES; CARBON-STEEL; CHLORIDE; CONDUCTANCE; POTASSIUM; CORROSION; SOLVENTS; ACID AB Electrical conductivity and pH, are used in some parts of the world as fuel specification parameters for denatured fuel ethanol (DFE). Conductivity has been correlated with the presence of corrosive ions such as chloride, and high-conductivity fluids are more likely to cause electrochemical or galvanic corrosion. This study examined how electrical conductivity and pH(e) of DFE are affected by impurities, including sodium chloride (NaCl), magnesium chloride (MgCl2), hydrochloric acid, magnesium sulfate (MgSO4), sulfuric acid, acetic acid, water, and hydrocarbon denaturant. Conductivity and pH(e) response data were measured at impurity concentrations permissible by ASTM D4806, the most commonly used specification for DFE. Conductivity was determined to be very responsive to strong acids, NaCl, and MgCl2, which have high solubility and dissociation constants in DFE. Molar conductivity of solutions containing these ions measured 40-60 S cm(2)/mol. Conductivity was relatively unresponsive to MgSO4 (a salt with low solubility), water (up to 1 wt %), hydrocarbon denaturant, and acetic acid, with molar conductivities measuring <2 S cm(2)/mol. Although water produced no conductivity response, it did reduce the molar conductivity of the strong acids by 38% and increased it for MgCl2 by 25%. Water at 1% by volume also increased the pH(e) value for all samples to varying degrees. Three common pH, buffering/corrosion-inhibiting additives were tested for pH(e) and conductivity response. The two products containing pH, buffer raised pH(e) by about 2 units; the stand-alone corrosion inhibitor decreased pH(e) by 0.5 units. Sample handling proved to be extremely important because the use of some glass containers versus high-density polyethylene (HDPE) containers resulted in background conductivity as high as 2 mu S/cm and could increase pH(e) by more than 100%. The best results for DFE conductivity and pH(e) measurement are realized using ethanol-rinsed HDPE containers. C1 [Luecke, Jon; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP McCormick, RL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM robert.mccormick@nrel.gov RI McCormick, Robert/B-7928-2011 FU Renewable Fuels Association under Technical Services Agreement [11-399]; National Renewable Energy Laboratory FX This research was sponsored by the Renewable Fuels Association under Technical Services Agreement No. 11-399 with the National Renewable Energy Laboratory. NR 27 TC 2 Z9 2 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2014 VL 28 IS 8 BP 5222 EP 5228 DI 10.1021/ef5013038 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AN7VJ UT WOS:000340808800043 ER PT J AU Gibson, LM Shadle, LJ Pisupati, SV AF Gibson, LaTosha M. Shadle, Lawrence J. Pisupati, Sarma V. TI Determination of Sticking Probability Based on the Critical Velocity Derived from a Visco-Elastoplastic Model to Characterize Ash Deposition in an Entrained Flow Gasifier SO ENERGY & FUELS LA English DT Article ID PULVERIZED COAL INJECTION; CHAR-SLAG TRANSITION; BLAST-FURNACE; GASIFICATION CONDITIONS; SLAG/CARBON INTERFACE; PLASTIC SPHERES; SURFACE-TENSION; PARTICLE-SIZE; MOLTEN SLAG; TEMPERATURE AB The fluid and solid mechanics of particle wall collisions were investigated for entrained coal gasifier applications. Critical velocity was used to characterize the conditions required for the reacted coal particles to stick to the wall. The critical velocity was derived from a viscoelastic model. Based on this method, the sticking probability was determined for simulated char particles from different coal specific gravity and size fractions. In this method, particles that exceeded the critical velocity were predicted to adhere, while those below it were predicted to rebound. This study showed that the sticking efficiency based on the critical velocity was closer to the predictions based on the temperature of the critical viscosity and critical angle than the predictions based on the temperature of the critical viscosity alone. However, there was a significant difference in the predictions between the "rules based criterion" and the critical velocity methodology for the sticking efficiency calculations of the larger size fractions for higher specific gravity fractions (SG3 and SG4). Nevertheless, the critical velocity methodology in this work is the first attempt to address the influence of both the ash and the carbon on the particle properties responsible for the inertial behavior of char particles within an entrained flow gasifier. Provided that the remaining uncertainty of the measurements of the particle compressive yield strength and the modulus of elasticity versus temperature is addressed in correlation to the measured viscosity and surface tension, this method could be a practical alternative in determining sticking efficiency. C1 [Gibson, LaTosha M.; Pisupati, Sarma V.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Gibson, LaTosha M.; Pisupati, Sarma V.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Gibson, LaTosha M.; Shadle, Lawrence J.; Pisupati, Sarma V.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Pisupati, SV (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, 110 Hosler Bldg, University Pk, PA 16802 USA. EM sxp17@psu.edu RI Pisupati, Sarma/A-9861-2009; OI Pisupati, Sarma/0000-0002-2098-3302; Shadle, Lawrence/0000-0002-6283-3628 FU Office of Fossil Energy of the Department of Energy FX Funding for this work was provided by the Advanced Gasification Program from the Office of Fossil Energy of the Department of Energy. NR 56 TC 2 Z9 2 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2014 VL 28 IS 8 BP 5307 EP 5317 DI 10.1021/ef5008616 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AN7VJ UT WOS:000340808800053 ER PT J AU Monazam, ER Breault, RW Siriwardane, R AF Monazam, Esmail R. Breault, Ronald W. Siriwardane, Ranjani TI Kinetics of Hematite to Wustite by Hydrogen for Chemical Looping Combustion SO ENERGY & FUELS LA English DT Article ID IRON-OXIDE REDUCTION; LOW-TEMPERATURE; PHASE-CHANGE; MECHANISM; MIXTURES; POWDER; H-2 AB Kinetics analysis of hematite (Fe2O3) reduction by hydrogen was evaluated by the thermogravimetric analyser (TGA) in the temperature range of 700-950 degrees C, using continuous streams of 5, 10, and 20% H-2 concentrations in N-2. A number of kinetic models have been considered, including the single and multi-step models to describe the experimental reduction data. The details of nucleation and growth during the isothermal reduction are described in terms of the local Johnson-Mehl-Avrami (JMA) exponent and local activation energy. The variations of n values (JMA exponent) and activation energies for the reduction conversion indicate the presence of the multi-step reaction process. The reduction was shown to be one-dimensional (1D) growth with a decrease in the nucleation rate. C1 [Monazam, Esmail R.] REM Engn Serv PLLC, Morgantown, WV 26505 USA. [Breault, Ronald W.; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM ronald.breault@netl.doe.gov OI Breault, Ronald/0000-0002-5552-4050 FU U.S. DOE through office of Fossil Energy's Gasification Technology and Advanced Research FX The authors acknowledge the U.S. DOE for funding the research through the office of Fossil Energy's Gasification Technology and Advanced Research funding programs. Special thanks go to Duane D. Miller, Hanjing Tian, and Thomas Simonyi of URS Energy and Construction, Inc. for their assistance with experimental work and data. NR 29 TC 12 Z9 13 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2014 VL 28 IS 8 BP 5406 EP 5414 DI 10.1021/ef501100b PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AN7VJ UT WOS:000340808800064 ER PT J AU Weng, SC Xu, RQ Said, AH Leu, BM Ding, Y Hong, H Fang, XY Chou, MY Bosak, A Abbamonte, P Cooper, SL Fradkin, E Chang, SL Chiang, TC AF Weng, Shih-Chang Xu, Ruqing Said, Ayman H. Leu, Bogdan M. Ding, Yang Hong, Hawoong Fang, Xinyue Chou, M. Y. Bosak, A. Abbamonte, P. Cooper, S. L. Fradkin, E. Chang, S. -L. Chiang, T. -C. TI Pressure-induced antiferrodistortive phase transition in SrTiO3: Common scaling of soft-mode with pressure and temperature SO EPL LA English DT Article ID 110 DEGREES K; NEUTRON-SCATTERING; PHONON AB We report a study of the pressure-induced antiferrodistortive cubic-to-tetragonal phase transition in strontium titanate (SrTiO3) at ambient temperature. High-resolution inelastic x-ray scattering measurements reveal the softening of a phonon mode (R-25) at the zone boundary; a static distortion sets in at a critical pressure of 9.5 GPa, which corresponds to a critical volume reduction of 5.3%. Prior studies have shown that similar phonon softening and ensuing lattice distortion can be induced under ambient pressure by lowering the sample temperature through a critical temperature of 105 K. The relationship between the two phase transitions is clarified by comparing the power laws of the pressure and temperature dependences of the softening behavior. The results are explained in terms of the analytic properties of the soft mode. Copyright (C) EPLA, 2014 C1 [Weng, Shih-Chang; Fang, Xinyue; Abbamonte, P.; Cooper, S. L.; Fradkin, E.; Chiang, T. -C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Weng, Shih-Chang; Xu, Ruqing; Fang, Xinyue; Abbamonte, P.; Cooper, S. L.; Fradkin, E.; Chiang, T. -C.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Weng, Shih-Chang; Chang, S. -L.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Said, Ayman H.; Leu, Bogdan M.; Ding, Yang; Hong, Hawoong; Abbamonte, P.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Chou, M. Y.] Acad Sinica, Inst Atom & Mol Sci, Taipei, Taiwan. [Bosak, A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Weng, SC (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM tcchiang@illinois.edu RI Chou, Mei-Yin/D-3898-2012; Xu, Ruqing/K-3586-2012; Ding, Yang/K-1995-2014; OI Xu, Ruqing/0000-0003-1037-0059; Ding, Yang/0000-0002-8845-4618; Fradkin, Eduardo/0000-0001-6837-463X FU U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences [DE-FG02-07ER46383, DE-FG02-07ER46453]; National Science Council, through the National Synchrotron Radiation Center of Taiwan [NSC-100-2745-M-001-ASP]; U.S. DOE [DE-AC02-06CH11357]; U.S. National Science Foundation [DMR-0115852] FX We wish to thank Michael KRISCH of the European Synchrotron Radiation Facility for technical assistance and GSECARS at the Advanced Photon Source for loading the diamond anvil cell with gas. This work was supported by the U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences, under Grant No. DE-FG02-07ER46383 (T-CC) and Grant No. DE-FG02-07ER46453 (PA, SLC, and EF). S-CW received fellowship support from the National Science Council, Grant No. NSC-100-2745-M-001-ASP, through the National Synchrotron Radiation Center of Taiwan. Use of the Advanced Photon Source, an OS User Facility operated by the Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The construction of the HERIX beamline was partially supported by the U.S. National Science Foundation under Grant No. DMR-0115852. NR 20 TC 1 Z9 1 U1 1 U2 29 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD AUG PY 2014 VL 107 IS 3 AR 36006 DI 10.1209/0295-5075/107/36006 PG 5 WC Physics, Multidisciplinary SC Physics GA AN7KY UT WOS:000340780100025 ER PT J AU Donepudi, VR Melumai, B Thallapaka, B Sandeep, K Cesareo, R Brunetti, A Zhong, Z Akatsuka, T Yuasa, T Takeda, T Gigante, GE AF Donepudi, Venkateswara Rao Melumai, Bhaskaraiah Thallapaka, Balasaidulu Sandeep, Konam Cesareo, Roberto Brunetti, Antonio Zhong, Zhong Akatsuka, Takao Yuasa, Tetsuya Takeda, Tohoru Gigante, Giovanni E. TI Synchrotron-based phase-contrast images of zebrafish and its anatomical structures SO EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS LA English DT Article ID RAY COMPUTED-TOMOGRAPHY; X-RAYS AB Images of vertebrates (zebrafish and zebrafish eye) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging (SY-DEI) (or analyzer based imaging) and synchrotron-based diffraction imaging in tomography mode (SY-DEI-CT). Due to the limitations of the conventional radiographic imaging in visualizing the internal complex feature of the sample, we utilized the upgraded SY-DEI and SY-DEI-CT systems to acquire the images at 20, 30 and 40 keV, to observe the enhanced contrast. SY-DEI and SY-DEI-CT techniques exploits the refraction properties, and have great potential in studies of soft biological tissues, in particular for low (Z) elements, such as, C, H, O and N, which constitutes the soft tissue. Recently, these techniques are characterized by its extraordinary image quality, with improved contrast, by imaging invertebrates. We have chosen the vertebrate sample of zebrafish (Danio rerio), a model organism widely used in developmental biology and oncology. For biological imaging, these techniques are most sensitive to enhance the contrast. For the present study, images of the sample, in planar and tomography modes offer more clarity on the contrast enhancement of anatomical features of the eye, especially the nerve bundle, swim bladder, grills and some internal organs in gut with more visibility. C1 [Donepudi, Venkateswara Rao; Melumai, Bhaskaraiah; Thallapaka, Balasaidulu; Sandeep, Konam] Rajiv Gandhi Univ Knowledge Technol, AP IIIT, Dept Phys, Rk Valley 516329, AP, India. [Cesareo, Roberto; Brunetti, Antonio] Univ Sassari, Ist Matemat & Fis, I-07100 Sassari, Italy. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Akatsuka, Takao; Yuasa, Tetsuya] Yamagata Univ, Fac Engn, Dept Biosyst Engn, Yonezawa, Yamagata 9928510, Japan. [Takeda, Tohoru] Kitasato Univ, Sagamihara, Kanagawa 2288555, Japan. [Gigante, Giovanni E.] Univ Rome, Dipartimento Fis, I-00185 Rome, Italy. RP Donepudi, VR (reprint author), Rajiv Gandhi Univ Knowledge Technol, AP IIIT, Dept Phys, Rk Valley 516329, AP, India. EM dvrao@rgukt.in OI Gigante, Giovanni Ettore/0000-0001-5943-9366 FU ICTP, Trieste, Italy; Istituto di Matematica e Fisica, Universita di Sassari, Italy; Department of Bio-Systems Engineering, Yamagata University, Yonezawa, Japan; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX One of the author's (DVR) undertook part of this work with a support from, ICTP, Trieste, Italy, Istituto di Matematica e Fisica, Universita di Sassari, Italy and Department of Bio-Systems Engineering, Yamagata University, Yonezawa, Japan. The travel support at the time of experiments was provided by DST, India, under the category of "Utilization of synchrotron and neutron scattering facilities". Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 16 TC 0 Z9 0 U1 1 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1286-0042 EI 1286-0050 J9 EUR PHYS J-APPL PHYS JI Eur. Phys. J.-Appl. Phys PD AUG PY 2014 VL 67 IS 2 AR 20701 DI 10.1051/epjap/2014140115 PG 8 WC Physics, Applied SC Physics GA AN6YJ UT WOS:000340744400010 ER PT J AU Miller, FJ Asgharian, B Schroeter, JD Price, O Corley, RA Einstein, DR Jacob, RE Cox, TC Kabilan, S Bentley, T AF Miller, Frederick J. Asgharian, Bahman Schroeter, Jeffry D. Price, Owen Corley, Richard A. Einstein, Daniel R. Jacob, Richard E. Cox, Timothy C. Kabilan, Senthil Bentley, Timothy TI Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats SO INHALATION TOXICOLOGY LA English DT Article DE Breathing parameters; deposition modeling; lung geometry; morphometric variables; particles; Sprague-Dawley rats ID MULTIPLE-PATH MODEL; PARTICLE DEPOSITION; 3-DIMENSIONAL RECONSTRUCTION; LABORATORY-ANIMALS; HUMANS; VOLUME; AIRWAY; INHALABILITY; SIMULATIONS; AEROSOLS AB While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons. C1 [Miller, Frederick J.] Fred J Miller & Associates LLC, Cary, NC 27511 USA. [Asgharian, Bahman; Schroeter, Jeffry D.] Appl Res Associates Inc, Raleigh, NC USA. [Price, Owen] Appl Res Associates Inc, Arlington, VA USA. [Corley, Richard A.; Einstein, Daniel R.; Jacob, Richard E.; Kabilan, Senthil] Pacific NW Natl Lab, Washington, DC USA. [Cox, Timothy C.] Univ Washington, Dept Pediat Craniofacial Med, Seattle, WA 98195 USA. [Bentley, Timothy] Off Naval Res, Arlington, VA 22217 USA. RP Miller, FJ (reprint author), Fred J Miller & Associates LLC, 911 Queensferry Rd, Cary, NC 27511 USA. EM fjmiller@nc.rr.com FU Office of Naval Research [N00014-12-C-0624]; National Heart, Lung and Blood Institute of the National Institutes of Health [NHLBI R01 HL073598] FX This work was funded, in part, by the Office of Naval Research via contract N00014-12-C-0624. All imaging, image processing and lung geometry data acquisition was supported by grants from the National Heart, Lung and Blood Institute (NHLBI R01 HL073598) of the National Institutes of Health. NR 43 TC 7 Z9 7 U1 3 U2 14 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0895-8378 EI 1091-7691 J9 INHAL TOXICOL JI Inhal. Toxicol. PD AUG PY 2014 VL 26 IS 9 BP 524 EP 544 DI 10.3109/08958378.2014.925991 PG 21 WC Toxicology SC Toxicology GA AN8YF UT WOS:000340891300002 PM 25055841 ER PT J AU Satagopan, S Chan, S Perry, LJ Tabita, FR AF Satagopan, Sriram Chan, Sum Perry, L. Jeanne Tabita, F. Robert TI Structure-Function Studies with the Unique Hexameric Form II Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) from Rhodopseudomonas palustris SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE; RHODOSPIRILLUM-RUBRUM; CRYSTAL-STRUCTURE; LARGE-SUBUNIT; CO2/O-2 SPECIFICITY; RHODOBACTER-CAPSULATUS; HEXADECAMERIC RUBISCO; CATALYTIC-PROPERTIES; PROTEIN STRUCTURES; REGULATORY TWIST AB The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum. The presence of a transition-state analog in the active site locked the activated enzyme in a "closed" conformation and revealed the positions of critical active site residues during catalysis. Functional roles of two form II-specific residues (Ile(165) and Met(331)) near the active site were examined via site-directed mutagenesis. Substitutions at these residues affect function but not the ability of the enzyme to assemble. Random mutagenesis and suppressor selection in a Rubisco deletion strain of Rhodobacter capsulatus identified a residue in the amino terminus of one subunit (Ala(47)) that compensated for a negative change near the active site of a neighboring subunit. In addition, substitution of the native carboxyl-terminal sequence with the last few dissimilar residues from the related R. rubrum homolog increased the enzyme's k(cat) for carboxylation. However, replacement of a longer carboxyl-terminal sequence with termini from either a form III or a form I enzyme, which varied both in length and sequence, resulted in complete loss of function. From these studies, it is evident that a number of subtle interactions near the active site and the carboxyl terminus account for functional differences between the different forms of Rubiscos found in nature. C1 [Satagopan, Sriram; Tabita, F. Robert] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Chan, Sum; Perry, L. Jeanne] Univ Calif Los Angeles, Dept Energy DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Tabita, FR (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA. EM tabita.1@osu.edu RI Satagopan, Sriram/B-3198-2011 OI Satagopan, Sriram/0000-0002-4867-531X FU National Institutes of Health [GM095742]; Department of Energy [DE-FC02-02ER63421] FX This work was supported, in whole or in part, by National Institutes of Health Grant GM095742. This work was also supported by Department of Energy Grant DE-FC02-02ER63421 (to the Protein Expression Technology Center Core Facility at UCLA). NR 55 TC 10 Z9 10 U1 3 U2 14 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 1 PY 2014 VL 289 IS 31 BP 21433 EP 21450 DI 10.1074/jbc.M114.578625 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AN4LC UT WOS:000340558300022 PM 24942737 ER PT J AU Lai, YS Stefano, G Brandizzi, F AF Lai, Ya-Shiuan Stefano, Giovanni Brandizzi, Federica TI ER stress signaling requires RHD3, a functionally conserved ER-shaping GTPase SO JOURNAL OF CELL SCIENCE LA English DT Article DE RHD3; Arabidopsis; Unfolded protein response; IRE1 ID UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM PROTEIN; MESSENGER-RNA; ARABIDOPSIS-THALIANA; MEMBRANE-PROTEINS; MISSENSE MUTATION; GOLGI-APPARATUS; PLANT-CELLS; IRE1; ORGANIZATION AB Whether structure and function are correlated features of organelles is a fundamental question in cell biology. Here, we have assessed the ability of Arabidopsis mutants with a defective endoplasmic reticulum (ER) structure to invoke the unfolded protein response (UPR), an essential ER signaling pathway. Through molecular and genetic approaches, we show that loss of the ER-shaping GTPase Root Hair Defective 3 (RHD3) specifically disrupts the UPR by interfering with the mRNA splicing function of the master regulator IRE1. These findings establish a new role for RHD3 in the ER and support specificity of the effects of ER-shaping mutations on ER function. C1 [Lai, Ya-Shiuan; Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Lai, Ya-Shiuan; Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu RI STEFANO, GIOVANNI/A-8264-2011 OI STEFANO, GIOVANNI/0000-0002-2744-0052 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021]; National Institutes of Health [R01 GM101038]; National Science Foundation [MCB 1243792] FX This study was supported by grants from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [grant number DE-FG02-91ER20021] for the infrastructure; and the National Institutes of Health [grant number R01 GM101038] and National Science Foundation [grant number MCB 1243792]. Deposited in PMC for release after 12 months. NR 44 TC 7 Z9 7 U1 2 U2 12 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0021-9533 EI 1477-9137 J9 J CELL SCI JI J. Cell Sci. PD AUG 1 PY 2014 VL 127 IS 15 BP 3227 EP 3232 DI 10.1242/jcs.147447 PG 6 WC Cell Biology SC Cell Biology GA AO2SS UT WOS:000341176800004 PM 24876222 ER PT J AU Korte, AR Lee, YJ AF Korte, Andrew R. Lee, Young Jin TI MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN) SO JOURNAL OF MASS SPECTROMETRY LA English DT Article DE MALDI; mass spectrometry imaging; matrix; metabolites; small molecules; 1,5-diaminonaphthalene ID DESORPTION/IONIZATION MASS-SPECTROMETRY; IN-SOURCE FRAGMENTATION; TOF-MS; MATRIX; 1,5-DIAMINONAPTHALENE; SUBLIMATION; IONIZATION; ROLES AB 1,5-diaminonaphthalene (DAN) has previously been reported as an effective matrix for matrix-assisted laser desorption ionization-mass spectrometry of phospholipids. In the current work, we investigate the use of DAN as a matrix for small metabolite analysis in negative ion mode. DAN was found to provide superior ionization to the compared matrices for MW < similar to 400 Da; however, 9-aminoacridine (9-AA) was found to be superior for a uridine diphosphate standard (MW 566 Da). DAN was also found to provide a more representative profile of a natural phospholipid mixture than 9-AA. Finally, DAN and 9-AA were applied for imaging of metabolites directly from corn leaf sections. Published 2014. This article is a U. S. Government work and is in the public domain in the USA. C1 [Korte, Andrew R.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Korte, Andrew R.; Lee, Young Jin] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Lee, YJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM yjlee@iastate.edu RI Lee, Young Jin/F-2317-2011 OI Lee, Young Jin/0000-0002-2533-5371 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Iowa State University under DOE [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. The Ames Laboratory is operated by Iowa State University under DOE Contract DE-AC02-07CH11358. NR 20 TC 14 Z9 15 U1 5 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1076-5174 EI 1096-9888 J9 J MASS SPECTROM JI J. Mass Spectrom. PD AUG PY 2014 VL 49 IS 8 BP 737 EP 741 DI 10.1002/jms.3400 PG 5 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA AN5XR UT WOS:000340666300009 PM 25044901 ER PT J AU Vaughn, S Zumeta, R Wanzek, J Cook, B Klingner, JK AF Vaughn, Sharon Zumeta, Rebecca Wanzek, Jeanne Cook, Bryan Klingner, Janette K. TI Intensive Interventions for Students with Learning Disabilities in the RTI Era: Position Statement of the Division for Learning Disabilities Council for Exceptional Children SO LEARNING DISABILITIES RESEARCH & PRACTICE LA English DT Article AB Response to intervention (RTI) reforms have changed the structure of many aspects of special education for students with and at risk for learning disabilities (LD). Regardless of the structure of services, the core of special education for students with LD remains intensive instruction. Many students with LD are not being provided with appropriate instruction that consists of intensive, individualized interventions based on the best available evidence. To encourage schools and districts to examine the intensity, individualization, and research base of their instructional approaches for students with LD, the Council for Exceptional Children's Division for Learning Disabilities offers the following position statement: RTI reforms provide a structure for delivering instruction to students with and at risk for LD. Students with LD require appropriate instruction that includes intensive, individualized interventions based on the best available evidence to help them improve in their areas of need, successfully access the general education curriculum, and make progress toward standards. Special education for students with LD should not be either accommodations/adaptations OR intensive interventions, but both. We suggest that the design and implementation of these intensive, individualized, research-based interventions will likely require changes in how schooling is now provided to the vast majority of students with LD. C1 [Vaughn, Sharon] US DOE, Washington, DC 20585 USA. [Vaughn, Sharon] NICHHD, Inst Sci Educ, Bethesda, MD USA. [Zumeta, Rebecca] Amer Inst Res, Washington, DC USA. [Wanzek, Jeanne] Florida State Univ, Tallahassee, FL 32306 USA. [Cook, Bryan] Univ Hawaii, Honolulu, HI 96822 USA. [Klingner, Janette K.] Univ Colorado, Boulder, CO 80309 USA. RP Vaughn, S (reprint author), Univ Texas Austin, Austin, TX 78712 USA. EM srvaughn@austin.utexas.edu NR 1 TC 1 Z9 1 U1 3 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0938-8982 EI 1540-5826 J9 LEARN DISABIL RES PR PD AUG PY 2014 VL 29 IS 3 BP 90 EP 92 DI 10.1111/ldrp.12039 PG 3 WC Education, Special; Rehabilitation SC Education & Educational Research; Rehabilitation GA AN6CB UT WOS:000340680200002 ER PT J AU Jenniskens, P Rubin, AE Yin, QZ Sears, DWG Sandford, SA Zolensky, ME Krot, AN Blair, L Kane, D Utas, J Verish, R Friedrich, JM Wimpenny, J Eppich, GR Ziegler, K Verosub, KL Rowland, DJ Albers, J Gural, PS Grigsby, B Fries, MD Matson, R Johnston, M Silber, E Brown, P Yamakawa, A Sanborn, ME Laubenstein, M Welten, KC Nishiizumi, K Meier, MMM Busemann, H Clay, P Caffee, MW Schmitt-Kopplin, P Hertkorn, N Glavin, DP Callahan, MP Dworkin, JP Wu, QH Zare, RN Grady, M Verchovsky, S Emel'yanenko, V Naroenkov, S Clark, DL Girten, B Worden, PS AF Jenniskens, Peter Rubin, Alan E. Yin, Qing-Zhu Sears, Derek W. G. Sandford, Scott A. Zolensky, Michael E. Krot, Alexander N. Blair, Leigh Kane, Darci Utas, Jason Verish, Robert Friedrich, Jon M. Wimpenny, Josh Eppich, Gary R. Ziegler, Karen Verosub, Kenneth L. Rowland, Douglas J. Albers, Jim Gural, Peter S. Grigsby, Bryant Fries, Marc D. Matson, Robert Johnston, Malcolm Silber, Elizabeth Brown, Peter Yamakawa, Akane Sanborn, Matthew E. Laubenstein, Matthias Welten, Kees C. Nishiizumi, Kunihiko Meier, Matthias M. M. Busemann, Henner Clay, Patricia Caffee, Marc W. Schmitt-Kopplin, Phillipe Hertkorn, Norbert Glavin, Daniel P. Callahan, Michael P. Dworkin, Jason P. Wu, Qinghao Zare, Richard N. Grady, Monica Verchovsky, Sasha Emel'yanenko, Vacheslav Naroenkov, Sergey Clark, David L. Girten, Beverly Worden, Peter S. CA Novato Meteorite Consortium TI Fall, recovery, and characterization of the Novato L6 chondrite breccia SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID UNEQUILIBRATED ORDINARY CHONDRITES; PARK-FOREST METEORITE; INNER SOLAR-SYSTEM; COSMOGENIC NUCLIDES; EXPOSURE HISTORY; OXYGEN-ISOTOPE; CARBONACEOUS CHONDRITES; INNISFREE METEORITE; ASTEROIDAL SOURCE; STONY METEORITES AB The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35 +/- 5 cm in diameter (mass 80 +/- 35 kg) with a cosmic-ray exposure age of 9 +/- 1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last similar to 0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U, Th-He age of 420 +/- 220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5: 2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shock-stage S4. Despite this, a freshly broken surface shows a wide range of organic compounds. C1 [Jenniskens, Peter; Blair, Leigh; Albers, Jim; Gural, Peter S.; Grigsby, Bryant] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Jenniskens, Peter; Sears, Derek W. G.; Sandford, Scott A.; Girten, Beverly; Worden, Peter S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rubin, Alan E.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Yin, Qing-Zhu; Wimpenny, Josh; Verosub, Kenneth L.; Yamakawa, Akane; Sanborn, Matthew E.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Sears, Derek W. G.] BAER Inst, Mountain View, CA 94043 USA. [Zolensky, Michael E.; Fries, Marc D.] NASA, Johnson Space Ctr, Houston, TX 77801 USA. [Krot, Alexander N.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Kane, Darci] Buck Inst, Novato, CA 94945 USA. [Utas, Jason] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Verish, Robert] Meteorite Recovery Lab, Escondido, CA 92046 USA. [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Friedrich, Jon M.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Eppich, Gary R.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94550 USA. [Ziegler, Karen] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Rowland, Douglas J.] Univ Calif Davis, Ctr Mol & Genom Imaging, Davis, CA 95616 USA. [Matson, Robert] SAIC, San Diego, CA 92121 USA. [Johnston, Malcolm] US Geol Survey, Menlo Pk, CA 94025 USA. [Silber, Elizabeth; Brown, Peter; Clark, David L.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Laubenstein, Matthias] Inst Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Welten, Kees C.; Nishiizumi, Kunihiko] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Meier, Matthias M. M.] ETH, Dept Earth Sci, CH-8092 Zurich, Switzerland. [Meier, Matthias M. M.] Lund Univ, Dept Geol, SE-22362 Lund, Sweden. [Busemann, Henner; Clay, Patricia] Univ Manchester, SEAES, Manchester M13 9PL, Lancs, England. [Caffee, Marc W.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Schmitt-Kopplin, Phillipe; Hertkorn, Norbert] Helmholtz Zentrum Munchen, BGC, D-85764 Munich, Germany. [Schmitt-Kopplin, Phillipe] Tech Univ Munich, ALC, D-85354 Freising Weihenstephan, Germany. [Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Wu, Qinghao; Zare, Richard N.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Grady, Monica; Verchovsky, Sasha] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Emel'yanenko, Vacheslav; Naroenkov, Sergey] Russian Acad Sci INASAN, Inst Astron, Moscow 119017, Russia. RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. EM petrus.m.jenniskens@nasa.gov RI Naroenkov, Sergey/I-5699-2013; Emel'yanenko, Vacheslav/A-4087-2014; Yin, Qing-Zhu/B-8198-2009; Caffee, Marc/K-7025-2015; Laubenstein, Matthias/C-4851-2013; Glavin, Daniel/D-6194-2012; Schmitt-Kopplin, Philippe/H-6271-2011; Dworkin, Jason/C-9417-2012; OI Grady, Monica/0000-0002-4055-533X; Yin, Qing-Zhu/0000-0002-4445-5096; Caffee, Marc/0000-0002-6846-8967; Laubenstein, Matthias/0000-0001-5390-4343; Glavin, Daniel/0000-0001-7779-7765; Schmitt-Kopplin, Philippe/0000-0003-0824-2664; Dworkin, Jason/0000-0002-3961-8997; Eppich, Gary/0000-0003-2176-6673; Busemann, Henner/0000-0002-0867-6908; Meier, Matthias/0000-0002-7179-4173; Rowland, Douglas/0000-0001-8059-6905; Clark, David/0000-0002-1203-764X; Sanborn, Matthew/0000-0003-3218-1195; Clay, Patricia/0000-0002-6175-9761 FU NASA [NNX12AM14G, NNX08AO64G]; NASA Cosmochemistry program [NNG06GF95G, NNX11AJ51G, NNX11AC69G]; Swiss National Science Foundation (STFC) FX This consortium study was made possible thanks to the donation of meteorite N01 by Novato residents Lisa Webber and Glenn Rivera. Lynn Hofland of NASA Ames Research Center performed the tensile strength measurements. This work was supported by the NASA Near Earth Object Observation and Planetary Astronomy programs (NNX12AM14G and NNX08AO64G to P.J.), the NASA Cosmochemistry program (NNG06GF95G to A. R., NNX11AJ51G to Q.Z.Y. & A.N.K., and NNX11AC69G to K.N.), and the Swiss National Science Foundation (STFC). NR 124 TC 14 Z9 14 U1 0 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2014 VL 49 IS 8 BP 1388 EP 1425 DI 10.1111/maps.12323 PG 38 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AN8SZ UT WOS:000340875900007 ER PT J AU Duan, JC Kodali, VK Gaffrey, MJ Guo, J Chu, RK Camp, DG Smith, RD Thrall, B Qian, WJ AF Duan, Jicheng Kodali, Vamsi K. Gaffrey, Matthew J. Guo, Jia Chu, Rosalie K. Camp, David G. Smith, Richard D. Thrall, Brian Qian, Wei-Jun TI Quantitative Site-Specific Profiling S-glutathionylation in Macrophages in Response to Engineered Nanomaterial-induced Oxidative Stress SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Duan, Jicheng; Kodali, Vamsi K.; Gaffrey, Matthew J.; Guo, Jia; Chu, Rosalie K.; Camp, David G.; Smith, Richard D.; Thrall, Brian; Qian, Wei-Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2014 VL 13 IS 8 SU 1 MA B.10 BP S37 EP S37 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AN6QH UT WOS:000340720100052 ER PT J AU Qian, WJ Shi, TJ Gao, YQ Gaffrey, MJ Fillmore, TL Nicora, CD Chrisler, WB Gritsenko, MA Smith, RD Camp, DG Liu, T Rodland, KD Wiley, SH AF Qian, Weijun Shi, Tujin Gao, Yuqian Gaffrey, Matthew J. Fillmore, Thomas L. Nicora, Carrie D. Chrisler, William B. Gritsenko, Marina A. Smith, Richard D. Camp, David G. Liu, Tao Rodland, Karin D. Wiley, Steven H. TI Sensitive Isoform-specific Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells by PRISM-SRM SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Qian, Weijun; Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.; Fillmore, Thomas L.; Nicora, Carrie D.; Chrisler, William B.; Gritsenko, Marina A.; Smith, Richard D.; Camp, David G.; Liu, Tao; Rodland, Karin D.; Wiley, Steven H.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012; Shi, Tujin/O-1789-2014 OI Smith, Richard/0000-0002-2381-2349; NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2014 VL 13 IS 8 SU 1 MA C.2 BP S44 EP S44 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AN6QH UT WOS:000340720100066 ER PT J AU Qi, ZJ Rodriguez-Manzo, JA Botello-Mendez, AR Hong, SJ Stach, EA Park, YW Charlier, JC Drndic, M Johnson, ATC AF Qi, Zhengqing John Rodriguez-Manzo, Julio A. Botello-Mendez, Andres R. Hong, Sung Ju Stach, Eric A. Park, Yung Woo Charlier, Jean-Christophe Drndic, Marija Johnson, A. T. Charlie TI Correlating Atomic Structure and Transport in Suspended Graphene Nanoribbons SO NANO LETTERS LA English DT Article DE Graphene; electronic transport properties; transmission electron microscopy; graphene nanoribbon; nanofabrication; graphene point contact ID HIGH BIAS; ELECTRON; EDGE; TRANSFORMATIONS; SUBLIMATION; ZIGZAG; BEAMS; STATE AB Graphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope. Few-layer GNRs very frequently formed bonded-bilayers and were remarkably robust, sustaining currents in excess of 1.5 mu A per carbon bond across a S atom-wide ribbon. We found that the intrinsic conductance of a sub-10 nm bonded bilayer GNR scaled with width as G(BL)(w) approximate to 3/4(e(2)/h)w, where w is the width in nanometers, while a monolayer GNR was roughly five times less conductive. Nanosculpted, crystalline monolayer GNRs exhibited armchair-terminated edges after current annealing, presenting a pathway for the controlled fabrication of semiconducting GNRs with known edge geometry. Finally, we report on simulations of quantum transport in GNRs that are in qualitative agreement with the observations. C1 [Qi, Zhengqing John; Rodriguez-Manzo, Julio A.; Hong, Sung Ju; Drndic, Marija; Johnson, A. T. Charlie] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Botello-Mendez, Andres R.; Charlier, Jean-Christophe] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, B-1348 Louvain La Neuve, Belgium. [Hong, Sung Ju; Park, Yung Woo] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Park, YW (reprint author), Seoul Natl Univ, Dept Phys & Astron, 1 Gwanak Ro, Seoul 151747, South Korea. EM ywpark@phya.snu.ac.kr; drndic@physics.upenn.edu; cjohnson@physics.upenn.edu RI Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Botello Mendez, Andres/0000-0002-7317-4699 FU SRC [2011-IN-2229]; NSF AIR Program [ENG-1312202]; NIH [R21HG006313]; Nano/Bio Interface Center through the National Science Foundation NSEC [DMR08-32802]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Leading Foreign Research Institute Recruitment Program of NRF [0409-20100156]; FPRD of BK21 through the MEST, Korea; F.R.S.-FNRS of Belgium; Communaute Francaise de Belgique; European ICT FET Flagship entitled "Graphene-based revolutions in ICT and beyond" through the ARC on "Graphene Nanoelectromechanics" [11/16-037] FX This work was supported by SRC contract no. 2011-IN-2229, which is associated with the NSF AIR Program ENG-1312202. M.D. and J.A.R.-M. acknowledge funding from the NIH Grant R21HG006313 and the Nano/Bio Interface Center through the National Science Foundation NSEC DMR08-32802. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We acknowledge support for access of the FEI-Titan ACTEM through proposal 31972 at Brookhaven National Laboratory's Center for Functional Nanomaterials. Y.W.P. and S.J.H. acknowledge support from the Leading Foreign Research Institute Recruitment Program (0409-20100156) of NRF and the FPRD of BK21 through the MEST, Korea. A.R.B-M. and J-C.C. acknowledge financial support from the F.R.S.-FNRS of Belgium, from the Communaute Francaise de Belgique and the European ICT FET Flagship entitled "Graphene-based revolutions in ICT and beyond" through the ARC on "Graphene Nanoelectromechanics" (no. 11/16-037). Computational resources were provided by the CISM of the Universite catholique de Louvain. NR 40 TC 22 Z9 22 U1 11 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4238 EP 4244 DI 10.1021/nl501872x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200007 PM 24954396 ER PT J AU Vazquez-Mena, O Bosco, JP Ergen, O Rasool, HI Fathalizadeh, A Tosun, M Crommie, M Javey, A Atwater, HA Zettl, A AF Vazquez-Mena, Oscar Bosco, Jeffrey P. Ergen, O. Rasool, Haider I. Fathalizadeh, Aidin Tosun, Mahmut Crommie, Michael Javey, Ali Atwater, Harry A. Zettl, Alex TI Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect SO NANO LETTERS LA English DT Article DE Graphene; zinc phosphide; field effect solar cell; Schottky barrier; earth-abundant materials; photovoltaics ID SCHOTTKY-JUNCTION; ZN3P2; BARRIER; FILMS AB The optical transparency and high electron mobility of graphene make it an attractive material for photovoltaics. We present a field-effect solar cell using graphene to form a tunable junction barrier with an Earth-abundant and low cost zinc phosphide (Zn3P2) thin-film light absorber. Adding a semitransparent top electrostatic gate allows for tuning of the graphene Fermi level and hence the energy barrier at the graphene-Zn3P2 junction, going from an ohmic contact at negative gate voltages to a rectifying barrier at positive gate voltages. We perform current and capacitance measurements at different gate voltages in order to demonstrate the control of the energy barrier and depletion width in the zinc phosphide. photovoltaic measurements show that the efficiency conversion is increased 2-fold when we increase the gate voltage and the junction barrier to maximize the photovoltaic response. At an optimal gate voltage of +2 V, we obtain an open-circuit voltage of V-oc, = 0.53 V and an efficiency of 1.9% under AM 1.5 1-sun solar illumination. This work demonstrates that the field effect can be used to modulate and optimize the response of photovoltaic devices incorporating graphene. Our C1 [Vazquez-Mena, Oscar; Ergen, O.; Rasool, Haider I.; Fathalizadeh, Aidin; Crommie, Michael; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vazquez-Mena, Oscar; Ergen, O.; Rasool, Haider I.; Fathalizadeh, Aidin; Tosun, Mahmut; Crommie, Michael; Javey, Ali; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bosco, Jeffrey P.; Atwater, Harry A.] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA. [Bosco, Jeffrey P.; Atwater, Harry A.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Tosun, Mahmut; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Crommie, Michael; Zettl, Alex] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Crommie, Michael; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vazquez-Mena, O (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM oscar.vazquezmena@gmail.com; azettl@berkeley.edu RI Javey, Ali/B-4818-2013; Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Vazquez Mena, Oscar/0000-0002-9351-550X; Vazquez-Mena, Oscacr/0000-0001-9054-5183 FU Office of Energy Research, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation within the Center of Integrated Nanomechanical Systems [EEC-0832819]; Office of Naval Research (MURI) [N00014-09-1066]; Swiss National Science Foundation [PA00P2_145394]; DOW Chemical Company FX This research was supported in part by the Office of Energy Research, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, which provided for the design of the experiment and Raman spectroscopy characterization; the National Science Foundation within the Center of Integrated Nanomechanical Systems, under Grant EEC-0832819, which provided for photovoltaic response characterization; and by the Office of Naval Research (MURI) under Grant N00014-09-1066, which provided for graphene growth and device assembly. O.V.M. acknowledges the support of the Swiss National Science Foundation through the fellowship for Advanced Researchers PA00P2_145394. J.P.B. and H.A.A. acknowledge the support of the DOW Chemical Company. The authors also would like to thank to C. Ojeda-Aristizabal, J. Velasco, W. Regan, and Professor F. Wang for fruitful discussions. NR 30 TC 14 Z9 14 U1 5 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4280 EP 4285 DI 10.1021/nl500925n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200013 PM 25058004 ER PT J AU Yang, FF Liu, YJ Martha, SK Wu, ZY Andrews, JC Ice, GE Pianetta, P Nanda, J AF Yang, Feifei Liu, Yijin Martha, Surendra K. Wu, Ziyu Andrews, Joy C. Ice, Gene E. Pianetta, Piero Nanda, Jagjit TI Nanoscale Morphological and Chemical Changes of High Voltage Lithium Manganese Rich NMC Composite Cathodes with Cycling SO NANO LETTERS LA English DT Article DE Li-ion battery; Li-Mn-rich NMC; X-ray nanotomography; XANES imaging ID X-RAY MICROSCOPE; LI-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; LAYERED COMPOSITE; PHASE; ELECTRODES; ENERGY; OXIDES; TOMOGRAPHY; RESOLUTION AB Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium- manganese rich cathode material of composition Li-1 M-+ x(1) (-) O-x(2) (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (similar to 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. C1 [Yang, Feifei; Wu, Ziyu] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230027, Anhui, Peoples R China. [Liu, Yijin; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Martha, Surendra K.; Ice, Gene E.; Nanda, Jagjit] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Nanda, Jagjit] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Liu, YJ (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM liuyijin@slac.stanford.edu; jandrews@slac.stanford.edu; nandaj@ornl.gov RI Liu, Yijin/O-2640-2013 OI Liu, Yijin/0000-0002-8417-2488 FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy; NIH/NIBIB [5R01EB004321]; NSFCScience Fund for Creative Research Groups, NSFC [11321503]; National Basic Research Program of China [2012CB825801]; Knowledge Innovation Program of the Chinese Academy of Sciences [KJCX2-YW-N42] FX The authors gratefully thank Dr. Michael F. Toney, Dr. Apurva Mehta, and Dr. Johanna Nelson Weker (all from SLAC National Accelerator Laboratory) for valuable discussions. This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725, is sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy. The TXM at SSRL was supported by NIH/NIBIB under Grant Number 5R01EB004321. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Z.W. acknowledges the support from the Science Fund for Creative Research Groups, NSFC (Grant Number: 11321503), the National Basic Research Program of China (Grant Number: 2012CB825801), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Number: KJCX2-YW-N42). NR 57 TC 47 Z9 47 U1 27 U2 199 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4334 EP 4341 DI 10.1021/nl502090z PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200021 PM 25054780 ER PT J AU Manfrinato, VR Wen, JG Zhang, LH Yang, YJ Hobbs, RG Baker, B Su, D Zakharov, D Zaluzec, NJ Miller, DJ Stach, EA Berggren, KK AF Manfrinato, Vitor R. Wen, Jianguo Zhang, Lihua Yang, Yujia Hobbs, Richard G. Baker, Bowen Su, Dong Zakharov, Dmitri Zaluzec, Nestor J. Miller, Dean J. Stach, Eric A. Berggren, Karl K. TI Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function SO NANO LETTERS LA English DT Article DE Electron-beam lithography; point-spread function; electron energy loss spectroscopy; chromatic aberration; transmission electron microscopy; secondary electrons; volume plasmons; HSQ ID MONTE-CARLO-SIMULATION; SECONDARY ELECTRONS; EMISSION; MICROSCOPE; TEMPLATES; RESISTS; SOLIDS; SCALE; SEM AB One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography. C1 [Manfrinato, Vitor R.; Yang, Yujia; Hobbs, Richard G.; Baker, Bowen; Berggren, Karl K.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Wen, Jianguo; Zaluzec, Nestor J.; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Zhang, Lihua; Su, Dong; Zakharov, Dmitri; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Berggren, KK (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. EM berggren@mit.edu RI Stach, Eric/D-8545-2011; Zakharov, Dmitri/F-4493-2014; Zhang, Lihua/F-4502-2014; Su, Dong/A-8233-2013 OI Stach, Eric/0000-0002-3366-2153; Su, Dong/0000-0002-1921-6683 FU Center for Excitonics, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Gordon and Betty Moore Foundation FX We thank Jim Daley and Mark Mondol at the MIT Nanostructures Laboratory and Yong Zhang at the MRSEC Shared Experimental Facilities at MIT for technical assistance. This material is based upon work supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001088. The energy-filtered electron microscopy and momentum-resolved EELS were accomplished at the Electron Microscopy Center, Nanoscience and Technology Division of Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. The STEM lithography and EELS were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No DE-AC02-98CH10886. V.R.M., Y.Y., and K.K.B. would like to also acknowledge support from the Gordon and Betty Moore Foundation. NR 53 TC 17 Z9 17 U1 10 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4406 EP 4412 DI 10.1021/nl5013773 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200031 PM 24960635 ER PT J AU Li, XG Zhang, XG Cheng, HP AF Li, Xiang-Guo Zhang, X-G. Cheng, Hai-Ping TI Conformational Electroresistance and Hysteresis in Nanoclusters SO NANO LETTERS LA English DT Article DE Conformational electroresistance; self-capacitance; nanoclusters; hysteresis ID ELECTRONIC-PROPERTIES; CLUSTERS AB The existence of multiple thermodynamically stable isomer states is one of the most fundamental properties of small clusters. This work shows that the conformational dependence of the Coulomb charging energy of a nanocluster leads to a giant electroresistance, where charging induced conformational distortion changes the blockade voltage. The intricate interplay between charging and conformation change is demonstrated in a nanocluster Zn3O4 by combining a first-principles calculation with a temperature-dependent transport model. The predicted hysteretic Coulomb blockade staircase in the current voltage curve adds another dimension to the rich phenomena of tunneling electroresistance. The new mechanism provides a better controlled and repeatable platform to study conformational electroresistance. C1 [Li, Xiang-Guo; Cheng, Hai-Ping] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Li, Xiang-Guo; Cheng, Hai-Ping] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Zhang, X-G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cheng, HP (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM cheng@qtp.ufl.edu FU US Department of Energy (DOE), Office of Basic Energy Sciences (BES) [DE-FG02-02ER45995]; Division of Scientific User Facilities FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities (X.-G.Z.). The computation was done using the utilities of the National Energy Research Scientific Computing Center (NERSC). NR 29 TC 1 Z9 1 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4476 EP 4479 DI 10.1021/nl5014458 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200041 PM 24987929 ER PT J AU Kim, BJ Tersoff, J Kodambaka, S Jang, JS Stach, EA Ross, FM AF Kim, B. J. Tersoff, J. Kodambaka, S. Jang, Ja-Soon Stach, E. A. Ross, F. M. TI Au Transport in Catalyst Coarsening and Si Nanowire Formation SO NANO LETTERS LA English DT Article DE AuSi eutectic liquid catalyst; vapor-liquid-solid growth; coarsening; in situ transmission electron microscopy ID SILICON NANOWIRES; 2-DIMENSIONAL DIFFUSION; 3-DIMENSIONAL DROPLETS; SURFACE MIGRATION; GROWTH; GOLD; PARTICLES AB The motion of Au between AuSi liquid eutectic droplets, both before and during vapor-liquid-solid growth, is important in controlling tapering and diameter uniformity in Si nanowires. We measure the kinetics of coarsening of AuSi droplets on Si(001) and Si(111), quantifying the size evolution of droplets during annealing in ultrahigh vacuum using in situ transmission electron microscopy. For individual droplets, we show that coarsening kinetics are modified when disilane or oxygen is added: coarsening rates increase in the presence of disilane but decrease in oxygen. Matching droplet size measurements on Si(001) with coarsening models confirms that Au transport is driven by capillary forces and that the kinetic coefficients depend on the gas environment present. We suggest that the gas effects are qualitatively similar whether transport is attachment limited or diffusion limited. These results provide insight into manipulating nanowire morphologies for advanced device fabrication. C1 [Kim, B. J.] Gwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju, South Korea. [Tersoff, J.; Ross, F. M.] IBM TJ Watson Res Ctr, Yorktown Hts, NY USA. [Kodambaka, S.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA. [Jang, Ja-Soon] Yeungnam Univ, LED IT Fus Technol Res Ctr, Dept Elect Engn, Gyeongbuk, South Korea. [Stach, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kim, BJ (reprint author), Gwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju, South Korea. EM kimbj@gist.ac.kr; fmross@us.ibm.com RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU Research Institute for Solar and Sustainable Energies (RISE) at Gwangju Institute of Science and Technology (GIST); National Research Foundation of Korea (NRF) [NRF-2013S1A2A2035468]; Ministry of Trade, Industry, and Energy (MTIE) [10033630]; Center for Functional Nanomaterials, Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02 98CH10886] FX B.J.K. acknowledges support from the Research Institute for Solar and Sustainable Energies (RISE) at Gwangju Institute of Science and Technology (GIST) and from the National Research Foundation of Korea (NRF) under Grant NRF-2013S1A2A2035468. B.J.K. and J.S.J. acknowledge support from the Ministry of Trade, Industry, and Energy (MTIE) through the industrial infrastructure program under Grant 10033630. E.A.S. acknowledges the support of the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02 98CH10886. We acknowledge P. Venables (ASU) and M. Filler (GaTech) for very helpful discussions and Yong-Ryun Jo (GIST) for assistance with data analysis. NR 34 TC 8 Z9 8 U1 7 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4554 EP 4559 DI 10.1021/nl501582q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200054 PM 25040757 ER PT J AU Desai, SB Seol, G Kang, JS Fang, H Battaglia, C Kapadia, R Ager, JW Guo, J Javey, A AF Desai, Sujay B. Seol, Gyungseon Kang, Jeong Seuk Fang, Hui Battaglia, Corsin Kapadia, Rehan Ager, Joel W. Guo, Jing Javey, Ali TI Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2 SO NANO LETTERS LA English DT Article DE layered materials; uniaxial tensile strain; indirect to direct bandgap transition; photoluminescence; strain engineering ID MONOLAYER MOS2; PHOTOLUMINESCENCE AB Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvesting or detection where thicker films with direct optical bandgap are desired. Here, we experimentally demonstrate a drastic enhancement in PL intensity for multilayer WSe2 (2-4 layers) under uniaxial tensile strain of up to 2%. Specifically, the PL intensity of bilayer WSe2 is amplified by similar to 35X, making it comparable to that of an unstrained WSe2 monolayer. This drastic PL enhancement is attributed to an indirect to direct bandgap transition for strained bilayer WSe2, as confirmed by density functional theory (DFT) calculations. Notably, in contrast to MoS2 multilayers, the energy difference between the direct and indirect bandgaps of WSe2 multilayers is small, thus allowing for bandgap crossover at experimentally feasible strain values. Our results present an important advance toward controlling the band structure and optoelectronic properties of few-layer WSe2 via strain engineering, with important implications for practical device applications. C1 [Desai, Sujay B.; Kang, Jeong Seuk; Fang, Hui; Battaglia, Corsin; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Desai, Sujay B.; Kang, Jeong Seuk; Fang, Hui; Battaglia, Corsin; Kapadia, Rehan; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seol, Gyungseon; Guo, Jing] Univ Florida, Dept ECE, Gainesville, FL 32611 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013; Battaglia, Corsin/B-2917-2010; OI Ager, Joel/0000-0001-9334-9751 FU Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U. S. Department of Energy [DE-AC02-05CH11231]; Intel FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Strain measurement setup was built through funding by Intel. The authors wish to acknowledge Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, for providing access to the Raman and PL measurement tools. The authors thank Dr. K. T. Lam of University of Florida for technical discussions. NR 28 TC 85 Z9 85 U1 20 U2 220 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4592 EP 4597 DI 10.1021/nl501638a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200060 PM 24988370 ER PT J AU Gu, M Yang, H Perea, DE Zhang, JG Zhang, SL Wang, CM AF Gu, Meng Yang, Hui Perea, Daniel E. Zhang, Ji-Guang Zhang, Sulin Wang, Chong-Min TI Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires SO NANO LETTERS LA English DT Article DE Ge nanowires; Li ion battery; in situ TEM; symmetry breaking; chemomechanical modeling ID TRANSMISSION ELECTRON-MICROSCOPY; LITHIUM-ION BATTERIES; SILICON NANOWIRES; ELECTROCHEMICAL LITHIATION; HIGH-CAPACITY; GE NANOWIRES; NANOPARTICLES; ANODES; FRACTURE; NANOPILLARS AB From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion. C1 [Gu, Meng; Perea, Daniel E.; Wang, Chong-Min] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Yang, Hui; Zhang, Sulin] Penn State Univ, State Coll, PA 16801 USA. RP Zhang, SL (reprint author), Penn State Univ, Univ Pk, State Coll, PA 16801 USA. EM suz10@psu.edu; Chongmin.Wang@pnnl.gov RI YANG, HUI/H-6996-2012; Zhang, Sulin /E-6457-2010; Perea, Daniel/A-5345-2010; Gu, Meng/B-8258-2013 OI YANG, HUI/0000-0002-2628-4676; FU NSF [CMMI-1201058]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 18769]; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX H.Y. and S.L.Z. acknowledge NSF support under Grant No. CMMI-1201058. This work is supported by Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769 under the Batteries for Advanced Transportation Technologies (BATT) program. The development of the in situ TEM capability is supported by Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 41 TC 26 Z9 27 U1 9 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4622 EP 4627 DI 10.1021/nl501680w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200065 PM 25025296 ER PT J AU Brittman, S Yoo, Y Dasgupta, NP Kim, SI Kim, B Yang, PD AF Brittman, Sarah Yoo, Youngdong Dasgupta, Neil P. Kim, Si-in Kim, Bongsoo Yang, Peidong TI Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells SO NANO LETTERS LA English DT Article DE Copper oxide; nanowire; solar cell; photovoltaics; epitaxy; heterojunction ID CU2O NANOCRYSTALS; PERFORMANCE; TEMPERATURE; EXCITONS; GROWTH; FILMS; PD AB As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells. C1 [Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Brittman, Sarah; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dasgupta, Neil P.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Kim, Si-in; Kim, Bongsoo] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Kim, Bongsoo/C-1545-2011 FU National Science Foundation Center of Integrated Nanomechanical Systems (NSF COINS) [0832819]; NRF of Korea - MEST [2012R1A6A3A03039763]; U.S. Department of Energy through an Office of Energy Efficiency and Renewable Energy (EERE) FX Funding from the National Science Foundation Center of Integrated Nanomechanical Systems (NSF COINS) under contract No. 0832819 is greatly appreciated. Y.Y. acknowledges a postdoctoral fellowship from the NRF of Korea under the Basic Science Research Program funded by the MEST (2012R1A6A3A03039763). N.P.D. acknowledges support from the U.S. Department of Energy through an Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the SunShot Solar Energy Technologies Program. NR 29 TC 14 Z9 15 U1 12 U2 198 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4665 EP 4670 DI 10.1021/nl501750h PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200072 PM 25014113 ER PT J AU Wu, ZZ Han, XG Zheng, JX Wei, Y Qiao, RM Shen, F Dai, JQ Hu, LB Xu, K Lin, Y Yang, WL Pan, F AF Wu, Zhongzhen Han, Xiaogang Zheng, Jiaxin Wei, Yi Qiao, Ruimin Shen, Fei Dai, Jiaqi Hu, Liangbing Xu, Kang Lin, Yuan Yang, Wanli Pan, Feng TI Depolarized and Fully Active Cathode Based on Li(Ni0.5Co0.2Mn0.3)O-2 Embedded in Carbon Nanotube Network for Advanced Batteries SO NANO LETTERS LA English DT Article DE Depolarization; fill-active cathode; low functionalized CNT; NCM523; capacity; delithiation kinetic ID LITHIUM-ION BATTERIES; ELECTRODES; LINI1/3CO1/3MN1/3O2; PERFORMANCE; CHEMISTRY; GRAPHITE AB Improving battery capacity and power is a daunting challenge, and in Li-ion batteries positive electrodes often set the limitation on both properties. Layered transition-metal oxides have. served as the mainstream cathode materials for high-energy batteries due to their large theoretical capacity (similar to 280 mAh/g). Here we report a significant enhancement of cathode capacity utilization through a novel concept of material design. By embedding Li(Ni0.5Co0.2Mn0.3)O-2 in the single wall carbon nanotube (CNT) network, we created a composite in which all components are electrochemically active. Long-term charge/discharge stability was obtained between 3.0 and 4.8 V, and both Li(Ni0.5Co0.2Mn0.3)O-2 and CNT contribute to the overall reversible capacity by 250 and 50 mAh/g, respectively. The observed improvement causes significant depolarization within the electrodes through the CNT network system. Additionally, the depolarization provides the ideal template to understand the solid reaction mechanism of Li(Ni0.5Co0.2Mn0.3)O-2 by demonstrating well-defined two-stage delithiation kinetics consistent with first-principle calculations, which would be otherwise impossible. These results deliver new insights on both practical designs and fundamental understandings of battery cathodes. C1 [Wu, Zhongzhen; Zheng, Jiaxin; Wei, Yi; Lin, Yuan; Pan, Feng] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China. [Han, Xiaogang; Shen, Fei; Dai, Jiaqi; Hu, Liangbing] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Qiao, Ruimin; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Xu, Kang] US Army Res Lab, Adelphi, MD 20783 USA. RP Pan, F (reprint author), Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China. EM panfeng@pkusz.edu.cn RI Yang, Wanli/D-7183-2011; Qiao, Ruimin/E-9023-2013; Hu, Liangbing/N-6660-2013; Han, Xiaogang/D-6430-2015; lin, yuan/G-9390-2013 OI Yang, Wanli/0000-0003-0666-8063; Han, Xiaogang/0000-0002-4785-6506; lin, yuan/0000-0003-3410-3588 FU Shenzhen Science and Technology Research [ZDSY20130331145131323, SGLH20120928095706623, CXZZ20120829172325895, JCYJ20120614150338154]; ShenZhen National SuperComputing Center FX This work was financially supported jointly by Shenzhen Science and Technology Research Grant (No. ZDSY20130331145131323, SGLH20120928095706623, CXZZ20120829172325895, and JCYJ20120614150338154). Additionally, we acknowledge the support of ShenZhen National SuperComputing Center and Daikin America who provided gratis the baseline high voltage electrolyte (without HFiP). NR 33 TC 34 Z9 34 U1 15 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4700 EP 4706 DI 10.1021/nl5018139 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200078 PM 24979204 ER PT J AU Beaumont, SK Alayoglu, S Specht, C Kruse, N Somorjai, GA AF Beaumont, Simon K. Alayoglu, Selim Specht, Colin Kruse, Norbert Somorjai, Gabor A. TI A Nanoscale Demonstration of Hydrogen Atom Spillover and Surface Diffusion Across Silica Using the Kinetics of CO2 Methanation Catalyzed on Spatially Separate Pt and Co Nanoparticles SO NANO LETTERS LA English DT Article DE Hydrogen spillover; nanoparticles; catalysis; surface diffusion; transport limited; CO2 methanation ID PLATINUM; SPECTROSCOPY; MIGRATION; ZEOLITES AB Hydrogen spillover is of great importance to understanding many phenomena in heterogeneous catalysis and has long been controversial. Here we exploit well-defined nanoparticles to demonstrate its occurrence through evaluation of CO2 methanation kinetics. Combining platinum and cobalt nanoparticles causes a substantial increase in reaction rate, but increasing the spatial separation between discrete cobalt and platinum entities results in a dramatic similar to 50% drop in apparent activation energy, symptomatic of H atom surface diffusion limiting the reaction rate. C1 [Beaumont, Simon K.; Alayoglu, Selim; Specht, Colin; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Beaumont, Simon K.; Alayoglu, Selim; Specht, Colin; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Beaumont, Simon K.] Univ Durham, Dept Chem, Durham DH1 3LE, England. [Kruse, Norbert] Univ Libre Brussels, B-1050 Brussels, Belgium. [Kruse, Norbert] Washington State Univ, Dept Chem Engn & Bioengn, Pullman, WA 99163 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Beaumont, Simon/F-5272-2012; Foundry, Molecular/G-9968-2014 OI Beaumont, Simon/0000-0002-1973-9783; FU Office of Basic Energy Sciences, Materials Science and Engineering Division and the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Total S.A. FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Science and Engineering Division and the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. S.K.B. and N.K. gratefully acknowledge financial support by Total S.A. We are also thankful for valuable discussions with Daniel Curulla-Ferre (Total SA). NR 17 TC 22 Z9 22 U1 15 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4792 EP 4796 DI 10.1021/nl501969k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200092 PM 25026434 ER PT J AU Qiu, YC Li, WF Zhao, W Li, GZ Hou, Y Liu, MN Zhou, LS Ye, FM Li, HF Wei, ZH Yang, SH Duan, WH Ye, YF Guo, JH Zhang, YG AF Qiu, Yongcai Li, Wanfei Zhao, Wen Li, Guizhu Hou, Yuan Liu, Meinan Zhou, Lisha Ye, Fangmin Li, Hongfei Wei, Zhanhua Yang, Shihe Duan, Wenhui Ye, Yifan Guo, Jinghua Zhang, Yuegang TI High-Rate, Ultra long Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene SO NANO LETTERS LA English DT Article DE Nitrogen-doped graphene; sulfur nanoparticles; specific capacity; cycle life; lithium/sulfur batteries ID CHEMICAL-VAPOR-DEPOSITION; SULFUR BATTERIES; CATHODE MATERIAL; S BATTERIES; ELECTRICAL-PROPERTIES; ROOM-TEMPERATURE; LI/S BATTERIES; HIGH-CAPACITY; COMPOSITE; PERFORMANCE AB Nitrogen-doped graphene (NG) is a promising conductive matrix material for fabricating high-performance Li/S batteries. Here we report a simple, low-cost, and scalable method to prepare an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside the NG sheets (S@NG). We show that the Li/S@NG can deliver high specific discharge capacities at high rates, that is, similar to 1167 mAh g(-1) at 0.2 C, similar to 1058 mAh g(-1) at 0.5 C, similar to 971 mAh g(-1) at 1 C, similar to 802 mAh g(-1) at 2 C, and similar to 606 mAh g(-1) at 5 C. The cells also demonstrate an ultralong cycle life exceeding 2000 cycles and an extremely low capacity-decay rate (0.028% per cycle), which is among the best performance demonstrated so far for Li/S cells. Furthermore, the S@NG cathode can be cycled with an excellent Coulombic efficiency of above 97% after 2000 cycles. With a high active S content (6096) in the total electrode weight, the S@NG cathode could provide a specific energy that is competitive to the state-of-the-art Li-ion cells even after 2000 cycles. The X-ray spectroscopic analysis and ab initio calculation results indicate that the excellent performance can be attributed to the well-restored C C lattice and the unique lithium polysulfide binding capability of the N functional groups in the NG sheets. The results indicate that the S@NG nanocomposite based Li/S cells have a great potential to replace the current Li-ion batteries. C1 [Qiu, Yongcai; Li, Wanfei; Li, Guizhu; Hou, Yuan; Liu, Meinan; Zhou, Lisha; Ye, Fangmin; Li, Hongfei; Zhang, Yuegang] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I LAB, Suzhou 215123, Jiangsu, Peoples R China. [Wei, Zhanhua; Yang, Shihe] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China. [Zhao, Wen; Duan, Wenhui; Zhang, Yuegang] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Ye, Yifan; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhang, YG (reprint author), Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I LAB, Suzhou 215123, Jiangsu, Peoples R China. EM ygzhang2012@sinano.ac.cn RI Duan, Wenhui /H-4992-2011; Qiu, Yongcai/J-6562-2012; Zhang, Y/E-6600-2011; ZHAO, Wen/J-4005-2016; OI Duan, Wenhui /0000-0001-9685-2547; Qiu, Yongcai/0000-0002-7843-6811; Zhang, Y/0000-0003-0344-8399; ZHAO, Wen/0000-0002-1118-8155; Yang, Shihe/0000-0002-6469-8415 FU China Postdoctoral Science Foundation [2014M550314]; Natural Science Foundation of Jiangsu Province, China [BK20140383] FX This work was supported by China Postdoctoral Science Foundation (No. 2014M550314) and the Natural Science Foundation of Jiangsu Province, China (No. BK20140383). NR 56 TC 160 Z9 163 U1 64 U2 495 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4821 EP 4827 DI 10.1021/nl5020475 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200097 PM 25073059 ER PT J AU Sutter, P Huang, Y Sutter, E AF Sutter, Peter Huang, Yuan Sutter, Eli TI Nanoscale Integration of Two-Dimensional Materials by Lateral Heteroepitaxy SO NANO LETTERS LA English DT Article DE 2D materials; heteroepitaxy; graphene; boron nitride; heterostructure; ruthenium ID HEXAGONAL BORON-NITRIDE; GRAPHENE NANORIBBONS; MONOLAYER GRAPHENE; FISCHER-TROPSCH; HETEROSTRUCTURES; GROWTH; RUTHENIUM; SURFACES; PT(111); GRAINS AB Materials integration in heterostructures with novel properties different from those of the constituents has become one of the most powerful concepts of modern materials science. Two-dimensional (2D) crystals represent a new class of materials from which such engineered structures can be envisioned. Calculations have predicted emergent properties in 2D heterostructures with nanoscale feature sizes, but methods for their controlled fabrication have been lacking. Here, we use sequential graphene and boron nitride growth on Ru(0001) to show that lateral heteroepitaxy, the joining of 2D materials by preferential incorporation of different atomic species into exposed ID edges during chemical vapor deposition on a metal substrate, can be used for the bottom-up synthesis of 2D heterostructures with characteristic dimensions on the nanoscale. Our results suggest that on a proper substrate, this method lends itself to building nanoheterostructures from a wide range of 2D materials. C1 [Sutter, Peter; Huang, Yuan; Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 31 TC 26 Z9 26 U1 14 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4846 EP 4851 DI 10.1021/nl502110q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200100 PM 25054434 ER PT J AU Lee, EJ Chen, ZH Noh, HJ Nam, SC Kang, S Kim, DH Amine, K Sun, YK AF Lee, Eung-Ju Chen, Zonghai Noh, Hyung-Ju Nam, Sang Cheol Kang, Sung Kim, Do Hyeong Amine, Khalil Sun, Yang-Kook TI Development of Microstrain in Aged Lithium Transition Metal Oxides SO NANO LETTERS LA English DT Article DE Coprecipitation; Micro-Strain; Ni Rich; Cathode; Lithium; Battery ID X-RAY-DIFFRACTION; HIGH-ENERGY; ION CELLS; CATHODE MATERIAL; BATTERIES; CAPACITY AB Cathode materials with high energy density for lithium-ion batteries are highly desired in emerging applications in automobiles and stationary energy storage for the grid. Lithium transition metal oxide with concentration gradient of metal elements inside single particles was investigated as a promising high-energy-density cathode material. Electrochemical characterization demonstrated that a full cell with this cathode can be continuously operated for 2500 cycles with a capacity retention of 83.3%. Electron microscopy and high-resolution X-ray diffraction were employed to investigate the structural change of the cathode material after this extensive electrochemical testing. It was found that microstrain developed during the continuous charge/discharge cycling, resulting in cracking of nanoplates. This finding suggests that the performance of the cathode material can be further improved by optimizing the concentration gradient to minimize the microstrain and to reduce the lattice mismatch during cycling. C1 [Lee, Eung-Ju; Noh, Hyung-Ju; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Nam, Sang Cheol; Kang, Sung; Kim, Do Hyeong] Res Inst Ind Sci & Technol, Pohang 790330, Gyeongbuk, South Korea. [Amine, Khalil] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 80203, Saudi Arabia. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@anl.gov; yksun@hanyang.ac.kr RI Chen, Zonghai/F-1067-2015; Faculty of, Sciences, KAU/E-7305-2017 OI Chen, Zonghai/0000-0001-5371-9463; FU Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government Ministry of Trade, Industry, and Energy [20124010203310]; National Research Foundation of Korea (NRF) - Korea government (MEST) [2009-0092780]; U. S. Department of Energy, Office of Science, Office of Basic Energy Science FX Research at Hangyang University was supported by the Human Resources Development Program (No. 20124010203310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry, and Energy and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; No. 2009-0092780). Support from David Howell (Team Lead), Tien Duong, and Peter Faguy of the Vehicle Technologies Program, Hybrid and Electric Systems, at the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged. The authors acknowledge the use of the Advanced Photon Source (APS) of Argonne National Laboratory, which is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Science. NR 15 TC 21 Z9 21 U1 8 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4873 EP 4880 DI 10.1021/nl5022859 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200104 PM 24960550 ER PT J AU Fathalizadeh, A Pham, T Mickelson, W Zettl, A AF Fathalizadeh, Aidin Thang Pham Mickelson, William Zettl, Alex TI Scaled Synthesis of Boron Nitride Nanotubes, Nanoribbons, and Nanococoons Using Direct Feedstock Injection into an Extended-Pressure, Inductively-Coupled Thermal Plasma SO NANO LETTERS LA English DT Article DE Boron nitride nanotubes; scalable nanotube synthesis; inductively coupled plasma; hyperbaric plasma ID PURE BN NANOTUBES; BXCYNZ NANOTUBES; CARBON NANOTUBES; COMPOSITES AB A variable pressure (up to 10 atm) powder/gas/liquid injection inductively coupled plasma system has been developed and used to produce high-quality boron nitride nanotubes (BNNTs) at continuous production rates of 35 g/h. Under suitable conditions, collapsed BN nanotubes (i.e., nanoribbons), and closed shell BN capsules (i.e., nanococoons) are also obtained. The process is adaptable to a large variety of feedstock materials. C1 [Fathalizadeh, Aidin; Thang Pham; Mickelson, William; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Thang Pham] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mickelson, William; Zettl, Alex] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Fathalizadeh, Aidin; Thang Pham; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0832819]; National Center for Electron Microscopy of the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank C. Song for assistance with the EELS measurements. This research was supported in part by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231, within the sp2-bonded Materials Program, which provided for the design, construction, and execution of the experiment; the National Science Foundation under grant EEC-0832819, which provided for salary support (WM) and Raman characterization; and by the National Center for Electron Microscopy of the Lawrence Berkeley National Laboratory, under Contract DE-AC02-05CH11231, which provided for EELS characterization. NR 37 TC 26 Z9 26 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4881 EP 4886 DI 10.1021/nl5022915 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200105 PM 25003307 ER PT J AU An, K Zhang, Q Alayoglu, S Musselwhite, N Shin, JY Somorjai, GA AF An, Kwangjin Zhang, Qiao Alayoglu, Selim Musselwhite, Nathan Shin, Jae-Youn Somorjai, Gabor A. TI High-Temperature Catalytic Reforming of n-Hexane over Supported and Core-Shell Pt Nanoparticle Catalysts: Role of Oxide-Metal Interface and Thermal Stability SO NANO LETTERS LA English DT Article DE Pt; core@shell; selectivity; reforming; thermal stability; n-hexane ID PLATINUM NANOPARTICLES; ELECTRON-MICROSCOPY; SURFACE-STRUCTURE; TITANIUM-OXIDE; HYDROGENATION; SILICA; ISOMERIZATION; TIO2; SIZE AB Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 degrees C with a hexane/H-2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C-6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 degrees C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 degrees C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 degrees C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 degrees C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 degrees C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 degrees C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 mu mol.g(-1).s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C-6 isomers at 440 degrees C). By the strong metal-support interaction, the Pt/TiO2 was turned out as the best catalyst with great thermal stability as well as high reaction rate and product selectivity in high-temperature reforming reaction. C1 [An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Shin, Jae-Youn; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Qiao] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China. [Zhang, Qiao] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China. [Zhang, Qiao] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Zhang, Qiao/C-2251-2008; Foundry, Molecular/G-9968-2014 OI Zhang, Qiao/0000-0001-9682-3295; FU Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Chevron Corporation; Soochow University; 1000 Talented Program; Natural Science Foundation of Jiangsu Province; Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Science and Engineering Division and the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The user project at the Advanced Light Source and the Molecular Foundry at the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. The nanoparticle synthesis was funded by Chevron Corporation. Q.Z. thanks Soochow University for start-up funds, the 1000 Talented Program, and the Natural Science Foundation of Jiangsu Province for funding support. We thank Professors A. Paul Alivisatos, Peidong Yang, and Omar Yaghi for use of the TEM and XRD instruments and Professor Katz and Alexander Okrut for TGA measurement. NR 34 TC 14 Z9 14 U1 13 U2 152 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2014 VL 14 IS 8 BP 4907 EP 4912 DI 10.1021/nl502434m PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AN2WH UT WOS:000340446200109 PM 25078630 ER PT J AU Xu, WH Nazaretski, E Lu, M Hadim, H Shi, Y AF Xu, Weihe Nazaretski, Evgeny Lu, Ming Hadim, Hamid Shi, Yong TI Characterization of the thermal conductivity of La0.95Sr0.05CoO3 thermoelectric oxide nanofibers SO NANO RESEARCH LA English DT Article DE heat transfer; thermal conductivity; nanoscale; MEMS; thermoelectric ID BISMUTH TELLURIDE NANOWIRES; SILICON NANOWIRES; TRANSPORT-PROPERTIES; NANOSTRUCTURES; PERFORMANCE; FIGURE; MERIT; NANOTUBES; DEVICES AB Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers' thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity of a single nanofiber. A microelectro-mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by a focused ion beam to reduce the effective length of a prepared nanofiber. La0.95Sr0.05CoO3 nanofibers with diameters of 140 nm and 290 nm were studied and characterized using this approach at room temperature. Measured thermal conductivities yielded values of 0.7 W center dot m(-1)center dot K-1 and 2.1 W center dot m(-1)center dot K-1, respectively. Our measurements in La0.95Sr0.05CoO3 nanofibers confirmed that a decrease of linear dimensions has a profound effect on its thermal conductivity. C1 [Xu, Weihe; Nazaretski, Evgeny; Lu, Ming] Brookhaven Natl Lab, Upton, NY 11973 USA. [Xu, Weihe; Hadim, Hamid; Shi, Yong] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. RP Shi, Y (reprint author), Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. EM yong.shi@stevens.edu FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. We thank Dr. F. Camino and Dr. J. Li for carrying out some tests and discussion. NR 48 TC 2 Z9 2 U1 3 U2 26 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 100084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD AUG PY 2014 VL 7 IS 8 BP 1224 EP 1231 DI 10.1007/s12274-014-0485-0 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO2RH UT WOS:000341172400014 ER PT J AU Alidoust, N Bian, G Xu, SY Sankar, R Neupane, M Liu, C Belopolski, I Qu, DX Denlinger, JD Chou, FC Hasan, MZ AF Alidoust, Nasser Bian, Guang Xu, Su-Yang Sankar, Raman Neupane, Madhab Liu, Chang Belopolski, Ilya Qu, Dong-Xia Denlinger, Jonathan D. Chou, Fang-Cheng Hasan, M. Zahid TI Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2 SO NATURE COMMUNICATIONS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; TOPOLOGICAL PHASE-TRANSITION; ELECTRONIC-STRUCTURE; VALLEY POLARIZATION; OPTICAL-PROPERTIES; MOS2 TRANSISTORS; INSULATOR; CRYSTALS; SPECTROSCOPY; GRAPHENE AB Transition metal dichalcogenides transition metal dichalcogenides have attracted much attention recently due to their potential applications in spintronics and photonics because of the indirect to direct band gap transition and the emergence of the spin-valley coupling phenomenon upon moving from the bulk to monolayer limit. Here, we report high-resolution angle-resolved photoemission spectroscopy on MoSe2 single crystals and monolayer films of MoS2 grown on highly ordered pyrolytic graphite substrate. Our experimental results resolve the Fermi surface trigonal warping of bulk MoSe2, and provide evidence for the critically important spin-orbit split valence bands of monolayer MoS2. Moreover, we systematically image the formation of quantum well states on the surfaces of these materials, and present a theoretical model to account for these experimental observations. Our findings provide important insights into future applications of transition metal dichalcogenides in nanoelectronics, spintronics and photonics devices as they critically depend on the spin-orbit physics of these materials. C1 [Alidoust, Nasser; Bian, Guang; Xu, Su-Yang; Neupane, Madhab; Liu, Chang; Belopolski, Ilya; Hasan, M. Zahid] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. [Sankar, Raman; Chou, Fang-Cheng] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan. [Qu, Dong-Xia] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Denlinger, Jonathan D.] Lawrence Berkeley Natl Lab, Adv Light Source, Stanford, CA 94305 USA. RP Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. EM mzhasan@princeton.edu RI Bian, Guang/C-5182-2016 OI Bian, Guang/0000-0001-7055-2319 FU US National Science Foundation Grant [NSF-DMR-1006492]; A.P. Sloan Foundation; Basic Energy Sciences of the US Department of Energy; US Department of Energy; National Science Council (NSC), Taiwan [NSC100-2119-M- 002-021]; Feynman cluster at Princeton University, Department of Physics; [DMR-0819860]; [DMR-1006492]; [NSF-DMR-0819860]; [DE-FG02-05ER46200] FX Work at Princeton University is supported by the US National Science Foundation Grant, NSF-DMR-1006492. M.Z.H. acknowledges visiting-scientist support from Lawrence Berkeley National Laboratory and additional partial support from the A.P. Sloan Foundation and NSF-DMR-0819860. The photoemission measurements using synchrotron X-ray facilities are supported by the Basic Energy Sciences of the US Department of Energy. Theoretical computations are supported by the US Department of Energy (supported by DE-FG02-05ER46200 and Feynman cluster at Princeton University, Department of Physics). Sample growth and characterization are partially supported by DMR-0819860, DMR-1006492 and by the National Science Council (NSC), Taiwan, under project number NSC100-2119-M- 002-021. NR 50 TC 29 Z9 29 U1 7 U2 106 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4673 DI 10.1038/ncomms5673 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1MV UT WOS:000341077100002 PM 25146151 ER PT J AU Fry, HC Liu, Y Dimitrijevic, NM Rajh, T AF Fry, H. Christopher Liu, Yuzi Dimitrijevic, Nada M. Rajh, Tijana TI Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material SO NATURE COMMUNICATIONS LA English DT Article ID NANOCRYSTALLINE TIO2 FILMS; SENSITIZED SOLAR-CELLS; AMINO-ACIDS; INORGANIC MATERIALS; ELECTRON-TRANSFER; PHASE TIO2; LIGHT; PORPHYRINS; EPR; EFFICIENCY AB In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL(3)K(3)-CO2H and c16-AHL(3)K(9)-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design. C1 [Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Fry, HC (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hfry@anl.gov RI Liu, Yuzi/C-6849-2011 FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 50 TC 6 Z9 6 U1 6 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4606 DI 10.1038/ncomms5606 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1EZ UT WOS:000341056400001 PM 25132637 ER PT J AU Gofryk, K Du, S Stanek, CR Lashley, JC Liu, XY Schulze, RK Smith, JL Safarik, DJ Byler, DD McClellan, KJ Uberuaga, BP Scott, BL Andersson, DA AF Gofryk, K. Du, S. Stanek, C. R. Lashley, J. C. Liu, X. -Y. Schulze, R. K. Smith, J. L. Safarik, D. J. Byler, D. D. McClellan, K. J. Uberuaga, B. P. Scott, B. L. Andersson, D. A. TI Anisotropic thermal conductivity in uranium dioxide SO NATURE COMMUNICATIONS LA English DT Article ID MOLECULAR-DYNAMICS; NEUTRON-DIFFRACTION; THORIUM-DIOXIDE; UO2; CRYSTALS; TEMPERATURE; SIMULATION; SCATTERING; SYSTEMS AB The thermal conductivity of uranium dioxide has been studied for over half a century, as uranium dioxide is the fuel used in a majority of operating nuclear reactors and thermal conductivity controls the conversion of heat produced by fission events to electricity. Because uranium dioxide is a cubic compound and thermal conductivity is a second-rank tensor, it has always been assumed to be isotropic. We report thermal conductivity measurements on oriented uranium dioxide single crystals that show anisotropy from 4 K to above 300 K. Our results indicate that phonon-spin scattering is important for understanding the general thermal conductivity behaviour, and also explains the anisotropy by coupling to the applied temperature gradient and breaking cubic symmetry. C1 [Gofryk, K.; Lashley, J. C.; Schulze, R. K.; Smith, J. L.; Safarik, D. J.] Los Alamos Natl Lab, Mat Technol Met Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Du, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Stanek, C. R.; Byler, D. D.; McClellan, K. J.; Uberuaga, B. P.; Andersson, D. A.] Los Alamos Natl Lab, Mat Sci Radiat & Dynam Extremes Mat Sci & Technol, Los Alamos, NM 87545 USA. [Scott, B. L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Stanek, CR (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat Dept, POB 1625, Idaho Falls, ID 83415 USA. EM stanek@lanl.gov; andersson@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Gofryk, Krzysztof/0000-0002-8681-6857; Safarik, Douglas/0000-0001-8648-9377; Schulze, Roland/0000-0002-6601-817X FU US Department of Energy, the Office of Nuclear Energy, the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We acknowledge Mark T. Paffett for making the UO2 single crystal available to us and Walt Ellis and Harlan Anderson for providing the original crystals. Gerry H. Lander is acknowledged for fruitful discussions and advice. This work was sponsored by the US Department of Energy, the Office of Nuclear Energy, the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 38 TC 10 Z9 10 U1 3 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4551 DI 10.1038/ncomms5551 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1BN UT WOS:000341046900001 PM 25080878 ER PT J AU Gong, M Zhou, W Tsai, MC Zhou, JG Guan, MY Lin, MC Zhang, B Hu, YF Wang, DY Yang, J Pennycook, SJ Hwang, BJ Dai, HJ AF Gong, Ming Zhou, Wu Tsai, Mon-Che Zhou, Jigang Guan, Mingyun Lin, Meng-Chang Zhang, Bo Hu, Yongfeng Wang, Di-Yan Yang, Jiang Pennycook, Stephen J. Hwang, Bing-Joe Dai, Hongjie TI Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis SO NATURE COMMUNICATIONS LA English DT Article ID ALKALINE ELECTROLYTES; WATER ELECTROLYSIS; NI; ELECTRODES; OXIDATION; TECHNOLOGIES; KINETICS; ENERGY; ALLOY AB Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves similar to 20 mA cm(-2) at a voltage of 1.5V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts. C1 [Gong, Ming; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Wang, Di-Yan; Yang, Jiang; Dai, Hongjie] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Tsai, Mon-Che; Hwang, Bing-Joe] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan. [Zhou, Jigang; Hu, Yongfeng] Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada. [Pennycook, Stephen J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Dai, HJ (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM hdai@stanford.edu RI Zhou, Wu/D-8526-2011; Zhou, Jigang/N-6831-2014 OI Zhou, Wu/0000-0002-6803-1095; Zhou, Jigang/0000-0001-6644-2862 FU Stanford GCEP; Stanford Precourt Institute for Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DOE DE-SC0008684]; NSERC; NRC; CIHR of Canada; University of Saskatchewan; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE FX This work was supported by a Grant from Stanford GCEP, a Steinhart/Reed Award from the Stanford Precourt Institute for Energy and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DOE DE-SC0008684 (for carbon nanomaterials synthesis and characterization with advanced electrical properties). Work at CLS is supported by the NSERC, NRC, CIHR of Canada and the University of Saskatchewan. The electron microscopic study was supported by a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S.DOE and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. We thank Dr. Tom Regier for his technical support in collecting Ni L edge data at SGM beamline. NR 28 TC 184 Z9 184 U1 85 U2 456 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4695 DI 10.1038/ncomms5695 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1NE UT WOS:000341078500001 PM 25146255 ER PT J AU Han, MG Marshall, MSJ Wu, LJ Schofield, MA Aoki, T Twesten, R Hoffman, J Walker, FJ Ahn, CH Zhu, YM AF Han, Myung-Geun Marshall, Matthew S. J. Wu, Lijun Schofield, Marvin A. Aoki, Toshihiro Twesten, Ray Hoffman, Jason Walker, Frederick J. Ahn, Charles H. Zhu, Yimei TI Interface-induced nonswitchable domains in ferroelectric thin films SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRIC-FIELD; OXIDES; CERAMICS; DYNAMICS; TITANATE AB Engineering domains in ferroelectric thin films is crucial for realizing technological applications including non-volatile data storage and solar energy harvesting. Size and shape of domains strongly depend on the electrical and mechanical boundary conditions. Here we report the origin of nonswitchable polarization under external bias that leads to energetically unfavourable head-to-head domain walls in as-grown epitaxial PbZr0.2Ti0.8O3 thin films. By mapping electrostatic potentials and electric fields using off-axis electron holography and electron-beam-induced current with in situ electrical biasing in a transmission electron microscope, we show that electronic band bending across film/substrate interfaces locks local polarization direction and further produces unidirectional biasing fields, inducing nonswitchable domains near the interface. Presence of oxygen vacancies near the film surface, as revealed by electron-energy loss spectroscopy, stabilizes the charged domain walls. The formation of charged domain walls and nonswitchable domains reported in this study can be an origin for imprint and retention loss in ferroelectric thin films. C1 [Han, Myung-Geun; Wu, Lijun; Schofield, Marvin A.; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Marshall, Matthew S. J.; Hoffman, Jason; Walker, Frederick J.; Ahn, Charles H.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Marshall, Matthew S. J.; Hoffman, Jason; Walker, Frederick J.; Ahn, Charles H.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Aoki, Toshihiro] JEOL USA Inc, Peabody, MA 01960 USA. [Twesten, Ray] Gatan Inc, Pleasanton, CA 94588 USA. RP Han, MG (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM mghan@bnl.gov; zhu@bnl.gov RI Aoki, Toshihiro/I-4852-2015; OI Walker, Frederick/0000-0002-8094-249X FU U.S. Department of Energy, Office of Basic Energy Sciences; NSF MRSEC DMR [119826 (CRISP)]; DMR [1309868]; FAME; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-98CH10886] FX R. Dunin-Borkowski and M. McCartney are acknowledged for their fruitful discussions on electron holography data. M. McCartney is also acknowledged for providing the Digital Micrograph script used in reconstruction of electron holograms. L.Q. Chen is acknowledged for helpful phase field simulations. TEM sample preparation in part was carried out by K. Kisslinger at the Center for Functional Nanomaterials, Brookhaven National Laboratory. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. We acknowledge support from NSF MRSEC DMR 119826 (CRISP), DMR 1309868 and FAME. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract number DE-AC02-98CH10886. Supplementary Information is available online. NR 48 TC 23 Z9 23 U1 9 U2 115 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4693 DI 10.1038/ncomms5693 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1NC UT WOS:000341078300001 PM 25131416 ER PT J AU Iavarone, M Moore, SA Fedor, J Ciocys, ST Karapetrov, G Pearson, J Novosad, V Bader, SD AF Iavarone, M. Moore, S. A. Fedor, J. Ciocys, S. T. Karapetrov, G. Pearson, J. Novosad, V. Bader, S. D. TI Visualizing domain wall and reverse domain superconductivity SO NATURE COMMUNICATIONS LA English DT Article ID CONDUCTIVITY; MULTILAYERS; ANISOTROPY; PB AB In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. C1 [Iavarone, M.; Moore, S. A.; Fedor, J.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Ciocys, S. T.; Karapetrov, G.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Pearson, J.; Novosad, V.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Iavarone, M (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM iavarone@temple.edu RI Moore, Steven/D-1562-2016; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008 OI Moore, Steven/0000-0002-3956-815X; Karapetrov, Goran/0000-0003-1113-0137 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0004556]; UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'); Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Work at Temple University was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0004556. Work at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 30 TC 7 Z9 7 U1 4 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4766 DI 10.1038/ncomms5766 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1PA UT WOS:000341084300005 PM 25164004 ER PT J AU Li, J Tan, A Moon, KW Doran, A Marcus, MA Young, AT Arenholz, E Ma, S Yang, RF Hwang, C Qiu, ZQ AF Li, J. Tan, A. Moon, K. W. Doran, A. Marcus, M. A. Young, A. T. Arenholz, E. Ma, S. Yang, R. F. Hwang, C. Qiu, Z. Q. TI Tailoring the topology of an artificial magnetic skyrmion SO NATURE COMMUNICATIONS LA English DT Article ID CHIRAL MAGNET; LATTICE; STATES; FIELD; PERMALLOY; CROSSOVER; FILMS; DOTS AB Despite theoretical predictions, it remains an experimental challenge to realize an artificial magnetic skyrmion whose topology can be well controlled and tailored so that its topological effect can be revealed explicitly in a deformation of the spin textures. Here we report epitaxial magnetic thin films in which an artificial skyrmion is created by embedding a magnetic vortex into an out-of-plane aligned spin environment. By changing the relative orientation between the central vortex core polarity and the surrounding out-of-plane spins, we are able to control and tailor the system between two skyrmion topological states. An in-plane magnetic field is used to annihilate the skyrmion core by converting the central vortex state into a single domain state. Our result shows distinct annihilation behaviour of the skyrmion core for the two different skyrmion states, suggesting a topological effect of the magnetic skyrmions in the core annihilation process. C1 [Li, J.; Tan, A.; Ma, S.; Yang, R. F.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moon, K. W.; Hwang, C.] Korea Res Inst Stand & Sci, Taejon 305340, South Korea. [Doran, A.; Marcus, M. A.; Young, A. T.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Qiu, ZQ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM qiu@berkeley.edu RI Qiu, Zi Qiang/O-4421-2016 OI Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation NRF through Global Research Laboratory project of Korea [DMR-1210167]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council FX Financial support through National Science Foundation DMR-1210167 NRF through Global Research Laboratory project of Korea is gratefully acknowledged. The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC02-05CH11231. S.M. and R.F.Y. acknowledge the fellowship support from China Scholarship Council. NR 45 TC 38 Z9 38 U1 9 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4704 DI 10.1038/ncomms5704 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1NH UT WOS:000341078900002 PM 25134845 ER PT J AU Lu, XC Li, GS Kim, JY Mei, DH Lemmon, JP Sprenkle, VL Liu, J AF Lu, Xiaochuan Li, Guosheng Kim, Jin Y. Mei, Donghai Lemmon, John P. Sprenkle, Vincent L. Liu, Jun TI Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage SO NATURE COMMUNICATIONS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; WAVE BASIS-SET; ION BATTERIES; CHLORIDE BATTERY; RESISTANCE RISE; SULFUR CELLS; PERFORMANCE; EXCHANGE AB Commercial sodium-sulphur or sodium-metal halide batteries typically need an operating temperature of 300-350 degrees C, and one of the reasons is poor wettability of liquid sodium on the surface of beta alumina. Here we report an alloying strategy that can markedly improve the wetting, which allows the batteries to be operated at much lower temperatures. Our combined experimental and computational studies suggest that addition of caesium to sodium can markedly enhance the wettability. Single cells with Na-Cs alloy anodes exhibit great improvement in cycling life over those with pure sodium anodes at 175 and 150 degrees C. The cells show good performance even at as low as 95 degrees C. These results demonstrate that sodium-beta alumina batteries can be operated at much lower temperatures with successfully solving the wetting issue. This work also suggests a strategy to use liquid metals in advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation. C1 [Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Mei, Donghai] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Lu, XC (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Xiaochuan.Lu@pnnl.gov; Jin.Kim@pnnl.gov RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU US Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (OE); Laboratory-Directed Research and Development Program of Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute for the Department of Energy [DE-AC05-76RL01830] FX We thank N. Canfield for the BASE conversion, B. W. Kirby for the glass seal and D. R. Herling, D. Reed and J. Holladay for discussion and suggestions. The work was supported by the Laboratory-Directed Research and Development Program of Pacific Northwest National Laboratory (PNNL) and the US Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (OE). We appreciate useful discussions with Dr I. Gyuk of the DOE-OE Grid Storage Program. PNNL is a multi-program laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830. NR 47 TC 16 Z9 16 U1 15 U2 120 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4578 DI 10.1038/ncomms5578 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1DS UT WOS:000341052900005 PM 25081362 ER PT J AU Sanches, M Duffy, NM Talukdar, M Thevakumaran, N Chiovitti, D Canny, MD Lee, K Kurinov, I Uehling, D Al-awar, R Poda, G Prakesch, M Wilson, B Tam, V Schweitzer, C Toro, A Lucas, JL Vuga, D Lehmann, L Durocher, D Zeng, QP Patterson, JB Sicheri, F AF Sanches, Mario Duffy, Nicole M. Talukdar, Manisha Thevakumaran, Nero Chiovitti, David Canny, Marella D. Lee, Kenneth Kurinov, Igor Uehling, David Al-awar, Rima Poda, Gennadiy Prakesch, Michael Wilson, Brian Tam, Victor Schweitzer, Colleen Toro, Andras Lucas, Julie L. Vuga, Danka Lehmann, Lynn Durocher, Daniel Zeng, Qingping Patterson, John B. Sicheri, Frank TI Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors SO NATURE COMMUNICATIONS LA English DT Article ID UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; MESSENGER-RNA; TRANSCRIPTION FACTOR; ER STRESS; TRANSMEMBRANE PROTEIN; MAMMALIAN-CELLS; KINASE-ACTIVITY; ACTIVATION; IRE1-ALPHA AB Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1 alpha is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy-aryl-aldehydes (HAA), selectively inhibit IRE1 alpha RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1 alpha in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892. Structure-activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1 alpha using small molecule inhibitors and suggest new avenues for inhibitor design. C1 [Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha; Thevakumaran, Nero; Chiovitti, David; Canny, Marella D.; Lee, Kenneth; Durocher, Daniel; Sicheri, Frank] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Ctr Syst Biol, Toronto, ON M5G 1X5, Canada. [Talukdar, Manisha; Lee, Kenneth; Durocher, Daniel; Sicheri, Frank] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Thevakumaran, Nero; Sicheri, Frank] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Kurinov, Igor] Argonne Natl Lab, NE CAT APS, Argonne, IL 60439 USA. [Uehling, David; Al-awar, Rima; Poda, Gennadiy; Prakesch, Michael; Wilson, Brian] Ontario Inst Canc Res, Drug Discovery Program, Toronto, ON M5G 0A3, Canada. [Al-awar, Rima] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada. [Tam, Victor; Schweitzer, Colleen; Toro, Andras; Lucas, Julie L.; Vuga, Danka; Zeng, Qingping; Patterson, John B.] MannKind Corp, Valencia, CA 91355 USA. [Lehmann, Lynn] NanoTemper Technol Inc, San Francisco, CA 94080 USA. RP Patterson, JB (reprint author), MannKind Corp, 28903 North Ave Paine, Valencia, CA 91355 USA. EM jpatterson@mankindcorp.com; sicheri@lunenfeld.ca RI Durocher, Daniel/A-7733-2010; Sicheri, Frank/F-8856-2013 OI Durocher, Daniel/0000-0003-3863-8635; FU Canadian Institutes of Health Research [MOP 84370]; Multiple Myeloma Research Foundation Biotech Investment Award; National Institute of General Medical Sciences from the National Institutes of Health [P41 GM103403]; U.S. DOE [DE-AC02-06CH11357]; Canadian Cancer Society Postdoctoral Fellowship FX This work was supported by a grant to F.S. from the Canadian Institutes of Health Research (MOP 84370) and a Multiple Myeloma Research Foundation Biotech Investment Award to MannKind Corporation. We would like to thank Gary Flynn, David Lonergan, Peter Pallai, Warren Wade, Zoltan Zubovics, Yun Yang and Zhipeng Wu for chemistry support. We thank the Advanced Photon Source on the Northeastern Collaborative Access Team beam lines, supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health and by the U.S. DOE under contract No. DE-AC02-06CH11357. M. S was supported through a Canadian Cancer Society Postdoctoral Fellowship. NR 60 TC 21 Z9 21 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4202 DI 10.1038/ncomms5202 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO0XM UT WOS:000341036200001 PM 25164867 ER PT J AU Wang, JJ Chen-Wiegart, YCK Wang, J AF Wang, Jiajun Chen-Wiegart, Yu-chen Karen Wang, Jun TI In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy SO NATURE COMMUNICATIONS LA English DT Article ID DOMINO-CASCADE MODEL; LIFEPO4 NANOPARTICLES; ABSORPTION SPECTROSCOPY; ION BATTERIES; ELECTRODE; VISUALIZATION; TRANSITION; SITU; DELITHIATION; MECHANISMS AB The delithiation reaction in lithium ion batteries is often accompanied by an electrochemically driven phase transformation process. Tracking the phase transformation process at nanoscale resolution during battery operation provides invaluable information for tailoring the kinetic barrier to optimize the physical and electrochemical properties of battery materials. Here, using hard X-ray microscopy-which offers nanoscale resolution and deep penetration of the material, and takes advantage of the elemental and chemical sensitivity-we develop an in operando approach to track the dynamic phase transformation process in olivine-type lithium iron phosphate at two size scales: a multiple-particle scale to reveal a rate-dependent intercalation pathway through the entire electrode and a single-particle scale to disclose the intraparticle two-phase coexistence mechanism. These findings uncover the underlying two-phase mechanism on the intraparticle scale and the inhomogeneous charge distribution on the multiple-particle scale. This in operando approach opens up unique opportunities for advancing high-performance energy materials. C1 [Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg 744 Ring Rd, Upton, NY 11973 USA. EM junwang@bnl.gov RI wang, jiajun/H-3315-2012; wang, jiajun/H-5683-2016 FU Laboratory Directed Research and Development (LDRD) project at Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX This work was supported by a Laboratory Directed Research and Development (LDRD) project at Brookhaven National Laboratory. The use of the NSLS was supported by the U.S. Department of Energy, Office of Basic Energy Science under contract number DE-AC02-98CH10886. NR 40 TC 49 Z9 49 U1 15 U2 107 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4570 DI 10.1038/ncomms5570 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1DH UT WOS:000341051700002 PM 25087693 ER PT J AU Zhang, KHL Sushko, PV Colby, R Du, Y Bowden, ME Chambers, A AF Zhang, K. H. L. Sushko, P. V. Colby, R. Du, Y. Bowden, M. E. Chambers, S. A. TI Reversible nano-structuring of SrCrO3-delta through oxidation and reduction at low temperature SO NATURE COMMUNICATIONS LA English DT Article ID OXIDE FUEL-CELLS; OXYGEN-DEFICIENT PEROVSKITES; AUGMENTED-WAVE METHOD; CATHODE; SPECTROSCOPY; TRANSITION; TRANSPORT; CRO2 AB Oxygen vacancies are often present in complex oxides as point defects, and their effect on the electronic properties is typically uniform and isotropic. Exploiting oxygen deficiency in order to generate controllably novel structures and functional properties remains a challenging goal. Here we show that epitaxial strontium chromite films can be transformed, reversibly and at low temperature, from rhombohedral, semiconducting SrCrO2.8 to cubic, metallic perovskite SrCrO3-delta. Oxygen vacancies in SrCrO2.8 aggregate and give rise to ordered arrays of {111}-oriented SrO2 planes interleaved between layers of tetrahedrally coordinated Cr4+ and separated by similar to 1 nm. First-principle calculations provide insight into the origin of the stability of such nanostructures and, consistent with the experimental data, predict that the barrier for O2- diffusion along these quasi-two-dimensional nanostructures is significantly lower than that in cubic SrCrO3-delta. This property is of considerable relevance to solid oxide fuel cells in which fast O2- diffusion reduces the required operating temperature. C1 [Zhang, K. H. L.; Sushko, P. V.; Chambers, S. A.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Colby, R.; Du, Y.; Bowden, M. E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chambers, A (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov RI Sushko, Peter/F-5171-2013 OI Sushko, Peter/0000-0001-7338-4146 FU United States Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; Department of Energy's Office of Biological and Environmental Research; Environmental Molecular Sciences Laboratory (EMSL) William Wiley postdoctoral fellowship; PNNL Laboratory Directed Research and Development programme FX This work was supported by the United States Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award no. 10122. The work was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, and with the support of the Environmental Molecular Sciences Laboratory (EMSL) William Wiley postdoctoral fellowship. The computational work was supported in part by the PNNL Laboratory Directed Research and Development programme. We thank Professor Steven May for helpful discussions and Dr Libor Kovarik for his work in developing the ETEM gas switching system. NR 33 TC 19 Z9 19 U1 14 U2 135 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2014 VL 5 AR 4669 DI 10.1038/ncomms5669 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO1FJ UT WOS:000341057500023 PM 25131307 ER PT J AU Spoerke, ED Connor, BA Gough, DV McKenzie, BB Bachand, GD AF Spoerke, Erik D. Connor, Bridget A. Gough, Dara V. McKenzie, Bonnie B. Bachand, George D. TI Microtubule-Templated Cadmium Sulfide Nanotube Assemblies SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION LA English DT Article ID CDS; PROTEINS; NUCLEATION; NANOWIRES; TRANSPORT; KINESIN; ASTERS AB This paper describes the use of microtubules (MTs) as nanoscale templates for the biologically directed growth and assembly of cadmium sulfide (CdS) nanotubes. CdS is a wide bandgap semiconductor with valuable optical, electronic, and chemical properties, and the organization of CdS nanostructures is critical to their widespread utility. The present work explores a bioinspired, biomediated approach to the formation and assembly of CdS nanotubes. In particular, a biomimetic synthetic strategy is used to control the uniform growth of cubic zinc blende CdS nanocrystals on MT templates, replicating the MTs' tubular morphology with dense CdS only a single nanocrystal thick. Furthermore, specific interactions between MTs and functional microtubule-associated proteins (MAPs) are exploited to manipulate the secondary organization of these MT templates. The subsequent directed growth of CdS nanotubes on these structures produces specific biomediated architectures including linear arrays, 3D asters, and rings. Finally, cathodoluminescence from MT-templated CdS structures verifies that the valuable semiconducting character of these materials is exhibited. These demonstrations of nanoscale materials synthesis and assembly illustrate a new level of complexity and control over materials synthesis that may be achieved using such biological tools and processes. C1 [Spoerke, Erik D.; Connor, Bridget A.; Gough, Dara V.] Sandia Natl Labs, Elect Opt & Nanomat Dept, Albuquerque, NM 87123 USA. [McKenzie, Bonnie B.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87123 USA. [Bachand, George D.] Sandia Natl Labs, Nanosyst Synth & Anal Dept, Albuquerque, NM 87123 USA. [Bachand, George D.] Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Elect Opt & Nanomat Dept, Albuquerque, NM 87123 USA. EM edspoer@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC0203010]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge Dr. Bruce Bunker for insightful discussion and Dr. Joe Howard for the generous donation of the Drosophila kinesin expression clone. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Project KC0203010. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 46 TC 4 Z9 4 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0934-0866 EI 1521-4117 J9 PART PART SYST CHAR JI Part. Part. Syst. Charact. PD AUG PY 2014 VL 31 IS 8 BP 863 EP 870 DI 10.1002/ppsc.201400013 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AN9BW UT WOS:000340901800006 ER PT J AU Sutter, E Ivars-Barcelo, F Sutter, P AF Sutter, Eli Ivars-Barcelo, Francisco Sutter, Peter TI Size-Dependent Room Temperature Oxidation of Tin Particles SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION LA English DT Article ID OXIDE-FILMS; PURE TIN; ELECTRONIC-STRUCTURE; CHEMICAL DIFFUSION; THERMAL-OXIDATION; HIGH-RESOLUTION; GAS SENSORS; NANOPARTICLES; NANOCRYSTALS; OXYGEN AB Using transmission electron microscopy, the size-dependent room temperature oxidation of tin nanoparticles is studied. The oxide that forms during room temperature oxidation of Sn particles is amorphous SnO, and it retains this stoichiometry and structure over extended time periods. From the investigation of arrays of Sn nanoparticles with broad size distribution, under identical conditions, the Sn oxide thickness is evaluated as a function of size and oxidation time. The oxide thickness depends strongly on the size of the Sn nanoparticles, which is in excellent agreement with predictions for a Mott-Cabrera model corrected for a non-uniform electric field. The results demonstrate the accelerated oxidation kinetics of nanoscale particles with high curvature, due to the amplified electric field at the interface to a continuously shrinking metal core. C1 [Sutter, Eli; Ivars-Barcelo, Francisco; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov RI Ivars-Barcelo, Francisco/J-9560-2015 OI Ivars-Barcelo, Francisco/0000-0002-5896-7623 FU US Department of Energy [DE-AC02-98CH10886] FX This work was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory under the auspices of the US Department of Energy, under contract No. DE-AC02-98CH10886. NR 52 TC 2 Z9 2 U1 6 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0934-0866 EI 1521-4117 J9 PART PART SYST CHAR JI Part. Part. Syst. Charact. PD AUG PY 2014 VL 31 IS 8 BP 879 EP 885 DI 10.1002/ppsc.201300352 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AN9BW UT WOS:000340901800008 ER PT J AU Kafesaki, M Basharin, AA Economou, EN Soukoulis, CM AF Kafesaki, M. Basharin, A. A. Economou, E. N. Soukoulis, C. M. TI THz metamaterials made of phonon-polariton materials SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article ID HYPERBOLIC METAMATERIALS; DIFFRACTION LIMIT; OPTICAL HYPERLENS; WAVE-GUIDES; FIELD; REFRACTION AB In this paper, we demonstrate numerically various phenomena and possibilities that can be realized in THz metamaterials made of phonon-polariton materials. Such phenomena include hyperbolic dispersion relation, subwavelength imaging using backward propagation and backward radiation, total transmission and subwavelength guiding exploiting Mie-resonant scattering in permittivity near zero host, and toroidal dipolar response. The systems that we use to demonstrate most of these phenomena are two-dimensional periodic systems of mu m-scale rods in a host, where both rods and host are made of polaritonic alkali-halide. materials. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kafesaki, M.; Basharin, A. A.; Economou, E. N.; Soukoulis, C. M.] Fdn Res & Technol, Hellas FORTH, Inst Elect Struct & Laser, Iraklion, Crete, Greece. [Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA USA. [Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. RP Kafesaki, M (reprint author), Fdn Res & Technol, Hellas FORTH, POB 1385, Iraklion, Crete, Greece. EM kafesaki@iesl.forth.gr RI Kafesaki, Maria/E-6843-2012; Economou, Eleftherios /E-6374-2010; Basharin, Alexey/K-5155-2014; Soukoulis, Costas/A-5295-2008 OI Kafesaki, Maria/0000-0002-9524-2576; Basharin, Alexey/0000-0003-0851-5642; FU EU project ENSEMBLE [213669]; Greek GSRT [ERC-02 EXEL]; U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) [DE-AC02-07CH11358]; US Office of Nayal Research [N00014-10-1-0925] FX Authors acknowledge financial support by EU project ENSEMBLE (Grant Agreement No. 213669) and by Greek GSRT through the project ERC-02 EXEL. Work at Ames Laboratory was partially supported by the U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering), Contract No. DE-AC02-07CH11358, and by the US Office of Nayal Research (Award No. N00014-10-1-0925). NR 79 TC 8 Z9 8 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 EI 1569-4429 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD AUG PY 2014 VL 12 IS 4 SI SI BP 376 EP 386 DI 10.1016/j.photonics.2014.05.009 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AO0FP UT WOS:000340984800013 ER PT J AU Nemenman, I Faeder, JR Gnanakaran, S Hlavacek, WS Munsky, B Wall, ME Jiang, Y AF Nemenman, Ilya Faeder, James R. Gnanakaran, S. Hlavacek, William S. Munsky, Brian Wall, Michael E. Jiang, Yi TI The Seventh q-bio Conference: meeting report and preface SO PHYSICAL BIOLOGY LA English DT Editorial Material C1 [Nemenman, Ilya] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Nemenman, Ilya] Emory Univ, Dept Biol, Atlanta, GA 30322 USA. [Faeder, James R.] Univ Pittsburgh, Sch Med, Pittsburgh, PA 15260 USA. [Gnanakaran, S.; Hlavacek, William S.; Munsky, Brian; Wall, Michael E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jiang, Yi] Georgia State Univ, Atlanta, GA 30303 USA. RP Nemenman, I (reprint author), Emory Univ, Dept Phys, Atlanta, GA 30322 USA. RI Munsky, Brian/A-1947-2016; OI Munsky, Brian/0000-0001-6147-7329; Gnanakaran, S/0000-0002-9368-3044; Alexandrov, Ludmil/0000-0003-3596-4515; Hlavacek, William/0000-0003-4383-8711 FU NIGMS NIH HHS [R13GM082162, R13 GM082162, R25 GM105608, R25GM105608] NR 8 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1478-3967 EI 1478-3975 J9 PHYS BIOL JI Phys. Biol. PD AUG PY 2014 VL 11 IS 4 AR 040301 DI 10.1088/1478-3975/11/4/040301 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AO4MN UT WOS:000341313300001 PM 25075709 ER PT J AU Potel, G Idini, A Barranco, F Vigezzi, E Broglia, RA AF Potel, G. Idini, A. Barranco, F. Vigezzi, E. Broglia, R. A. TI Nuclear field theory predictions for Li-11 and Be-12: Shedding light on the origin of pairing in nuclei SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID 2-NEUTRON TRANSFER-REACTIONS; PARTICLE-HOLE FIELDS; CLOSED-SHELL NUCLEI; SURFACE FLUCTUATIONS; STATES; SCATTERING; SUPERCONDUCTIVITY; VIBRATIONS; MONOPOLE; DENSITY AB Recent data resulting from studies of two-nucleon transfer reaction on Li-11, analyzed through a unified nuclear-structure-direct-reaction theory have provided strong direct as well as indirect confirmation, through the population of the first excited state of Li-9 and of the observation of a strongly quenched ground state transition, of the prediction that phonon-mediated pairing interaction is the main mechanism binding the neutron halo of the 8.5-ms-lived Li-11 nucleus. In other words, the ground state of Li-11 can be viewed as a neutron Cooper pair bound to the Li-9 core, mainly through the exchange of collective vibration of the core and of the pigmy resonance arizing from the sloshing back and forth of the neutron halo against the protons of the core, the mean field leading to unbound two-particle states, a situation essentially not altered by the bare nucleon-nucleon interaction acting between the halo neutrons. Two-neutron pick-up data, together with (t, p) data on Li-7, suggest the existence of a pairing vibrational band based on Li-9, whose members can be excited with the help of inverse kinematic experiments as was done in the case of Li-11(p, t)Li-9 reaction. The deviation from harmonicity can provide insight into the workings of medium polarization effects on Cooper-pair nuclear pairing, let alone specific information concering the "rigidity" of the N = 6 shell closure. Further information concerning these questions is provided by the predicted absolute differential cross sections sigma (abs) associated with the reactions Be-12(p, t)Be-10(g.s.) and Be-12(p, t)Be-10(pv) (a parts per thousand Be-10(p, t)Be-8(g.s.)). In particular, concerning this last reaction, predictions of sigma (abs) can change by an order of magnitude depending on whether the halo properties associated with the d (5/2) orbital are treated selfconsistently in calculating the ground state correlations of the (pair removal) mode, or not. C1 [Potel, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Idini, A.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Barranco, F.] Univ Seville, Dept Fis Aplicada 3, Escuela Super Ingenieros, Seville, Spain. [Vigezzi, E.; Broglia, R. A.] INFN Milano, Milan, Italy. [Broglia, R. A.] Univ Milan, Dept Phys, I-20122 Milan, Italy. [Broglia, R. A.] Univ Copenhagen, Niels Bohr Inst, DK-1168 Copenhagen, Denmark. RP Potel, G (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM vigezzi@mi.infn.it RI Potel Aguilar, Gregory/L-6591-2014; OI Potel Aguilar, Gregory/0000-0002-4887-7499; Barranco Paulano, Francisco/0000-0002-7799-2736 FU Ministry of Science and Innovation of Spain [FPA2009-07653, ACI2009-1056] FX Financial support from the Ministry of Science and Innovation of Spain grant no. FPA2009-07653 is acknowledged by G.P.; F.B. acknowledges financial support from the Ministry of Science and Innovation of Spain grants nos. FPA2009-07653 and ACI2009-1056. NR 77 TC 2 Z9 2 U1 0 U2 5 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 EI 1562-692X J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD AUG PY 2014 VL 77 IS 8 BP 941 EP 968 DI 10.1134/S106377881407014X PG 28 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AO1RR UT WOS:000341091800001 ER PT J AU Ruhm, W Mares, V Pioch, C Agosteo, S Endo, A Ferrarini, M Rakhno, I Rollet, S Satoh, D Vincke, H AF Ruehm, W. Mares, V. Pioch, C. Agosteo, S. Endo, A. Ferrarini, M. Rakhno, I. Rollet, S. Satoh, D. Vincke, H. TI Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV - Potential impact on neutron dosimetry at energies higher than 20 MeV SO RADIATION MEASUREMENTS LA English DT Article DE Bonner sphere spectrometry; Intra-nuclear cascade models; Neutron transport calculations ID INTRANUCLEAR-CASCADE CALCULATION; QUANTUM MOLECULAR-DYNAMICS; MOUNTAIN ALTITUDES; SECONDARY NEUTRONS; COSMIC-RADIATION; NUCLEAR; SPECTROMETER; SPECTRA; TRANSPORT; COUNTER AB Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calculations with the MC codes (MCNP, MCNPX, FLUKA, PHITS, MARS, or GEANT4) calculated the responses of a bare He-3 proportional counter, a He-3 proportional counter embedded in the middle of a 9 inch polyethylene sphere, and a He-3 proportional counter centred in a 9 inch polyethylene sphere containing a lead shell, at neutron energies of 1, 10, 100, and 1000 MeV. In general, calculated responses agreed very well for neutron energies below 20 MeV, whatever MC code used. At higher energies, however, certain differences were observed among the different calculations, which may mainly be attributed to the application of different INC models and their parameters. It was found that up to 1 GeV most of the results ranged between calculations previously published that were obtained with MCNP/LAHET using the Bertini INC model and GEANT4 using the Binary and Bertini INC models. These results indicate that use of different MC codes and INC models for the calculation of BSS response functions may result in an uncertainty of unfolded neutron fluences above 20 MeV of about 20%. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ruehm, W.; Mares, V.; Pioch, C.] Inst Radiat Protect, Helmholtz Ctr Munich, Munich, Germany. [Agosteo, S.] Politecn Milan, Milan, Italy. [Endo, A.; Satoh, D.] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. [Ferrarini, M.] Fdn CNAO, Milan, Italy. [Rakhno, I.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rollet, S.] Austrian Inst Technol, Seibersdorf, Austria. [Vincke, H.] CERN, CH-1211 Geneva 23, Switzerland. RP Ruhm, W (reprint author), German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Munchen, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany. EM werner.ruehm@helmholtz-muenchen.de OI , Sofia/0000-0002-4389-3641 NR 68 TC 3 Z9 3 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD AUG PY 2014 VL 67 BP 24 EP 34 DI 10.1016/j.radmeas.2014.05.006 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO0DT UT WOS:000340980000004 ER PT J AU Luttrell, T Halpegamage, S Sutter, E Batzill, M AF Luttrell, Tim Halpegamage, Sandamali Sutter, Eli Batzill, Matthias TI Photocatalytic activity of anatase and rutile TiO2 epitaxial thin film grown by pulsed laser deposition SO THIN SOLID FILMS LA English DT Article DE Titanium dioxide; Epitaxial films; Pulsed laser deposition; Photocatalysis; Rutile; Anatase; Atomic force microscopy; Transmission electron microscopy ID MOLECULAR-BEAM EPITAXY; NB-DOPED TIO2; TRANSMISSION ELECTRON-MICROSCOPY; ROOM-TEMPERATURE FERROMAGNETISM; TRANSPARENT CONDUCTING OXIDE; TITANIUM-DIOXIDE; SURFACE SCIENCE; LAALO3; SRTIO3; DEFECTS AB Epitaxial rutile-TiO2(011) and anatase-TiO2(001) films have been grown by pulsed laser deposition on Al2O3((1) over bar 102) and LaAlO3(100), respectively. For low growth rates of similar to 0.0012 nm/s and growth temperatures of 600 degrees C high quality films are obtained. In particular the anatase films exhibit 100 nm wide flat terraces for 10-15 nm film thickness. Atomic steps of both similar to 0.25 and similar to 0.5 nm are measured, suggesting the existence of two different terminations, although only a 4 x 1 reconstruction is observed in reflection high-energy electron diffraction. The rutile films exhibit coherent twin domain boundaries, which is likely the reason for smaller terrace sizes compared to anatase films. Photocatalytic activity of the films is measured by decomposition of methyl orange solution under UV-irradiation. The anatase films are about twice as active as the rutile films. For both films the activity does not change significantly for films of 10 nm and thicker. For rutile films the activity is also compared to that of single crystal ruffle TiO2(011) samples. Both rutile-films and single crystals exhibit very similar activity, indicating the good quality of the films. Post-growth annealing of the films in air at 600 degrees C decreases the photocatalytic activity of the films. On the other hand, reduction of thin films by vacuum annealing to 800 degrees C does not change the photocatalytic activity of the films significantly compared to the as grown films. This is in contrast to single crystal rutile samples whose photocatalytic activity for the decomposition of methyl orange almost doubles after reduction by high-temperature annealing in vacuum compared to the stoichiometric bulk-samples. The differences between films and bulk samples may hint differences in defect formation due to the substrate interface. (C) 2014 Elsevier B.V. All rights reserved. C1 [Luttrell, Tim; Halpegamage, Sandamali; Batzill, Matthias] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Batzill, M (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM mbatzill@usf.edu RI Batzill, Matthias/J-4297-2014 OI Batzill, Matthias/0000-0001-8984-8427 FU DOE-BES [DE-FG02-09ER1608]; NSF [CHE-0840547, CBET-1033000]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support from DOE-BES under grant no. DE-FG02-09ER1608 and from NSF under award nos. CHE-0840547 and CBET-1033000 is acknowledged. The TEM characterization of the TiO2 films was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors thank Kim Kisslinger for technical support. NR 65 TC 16 Z9 16 U1 7 U2 94 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 1 PY 2014 VL 564 BP 146 EP 155 DI 10.1016/j.tsf.2014.05.058 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AN8KD UT WOS:000340852200019 ER PT J AU Linshiz, G Stawski, N Goyal, G Bi, CH Poust, S Sharma, M Mutalik, V Keasling, JD Hillson, NJ AF Linshiz, Gregory Stawski, Nina Goyal, Garima Bi, Changhao Poust, Sean Sharma, Monica Mutalik, Vivek Keasling, Jay D. Hillson, Nathan J. TI PR-PR: Cross-Platform Laboratory Automation System SO ACS SYNTHETIC BIOLOGY LA English DT Article DE laboratory automation; microfluidics; liquid-handling robot; standardization; DNA assembly; Kunkel DNA mutagenesis ID ONE-STEP; ONE-POT; EXPRESSION AB To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms. C1 [Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Keasling, Jay D.; Hillson, Nathan J.] Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA 94608 USA. [Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D.; Hillson, Nathan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Linshiz, Gregory; Hillson, Nathan J.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Bi, Changhao] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin, Peoples R China. [Bi, Changhao] Chinese Acad Sci, Key Lab Syst Microbial Biotechnol, Tianjin, Peoples R China. [Poust, Sean; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Hillson, NJ (reprint author), Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA 94608 USA. EM njhillson@lbl.gov RI Keasling, Jay/J-9162-2012; OI Keasling, Jay/0000-0003-4170-6088; Mutalik, Vivek/0000-0001-7934-0400 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, ARPA-E Electrofuels Program [DE-0000206-1577]; National Science Foundation Graduate Research Fellowship Program [DGE 1106400]; Berkeley Laboratory Directed Research and Development Program; TeselaGen Biotechnology, Inc. [WF009700] FX The authors thank Steve Lane for providing information technology support; Alexander Goldberg and Tania Konry for constructive comments on the manuscript; and Justin Siegel for assistance with Kunkel Mutagenesis. This work conducted by the Joint BioEnergy Institute and the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231); the Department of Energy, ARPA-E Electrofuels Program (Contract No. DE-0000206-1577); the National Science Foundation Graduate Research Fellowship Program (Grant No. DGE 1106400); the Berkeley Laboratory Directed Research and Development Program; and through a Work for Others agreement (WF009700) with TeselaGen Biotechnology, Inc. NR 14 TC 15 Z9 15 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD AUG PY 2014 VL 3 IS 8 BP 515 EP 524 DI 10.1021/sb4001728 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AN3VO UT WOS:000340517000002 PM 25126893 ER PT J AU Lin, QS Corbett, JD AF Lin, Qisheng Corbett, John D. TI The low-temperature form of calcium gold stannide, CaAuSn SO ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY LA English DT Article DE crystal structure; single-crystal X-ray diffraction; EuAuGe-type; calcium gold stannide; low-temperature study; intergrowth structure ID ICOSAHEDRAL QUASI-CRYSTAL; KHG2 TYPE; APPROXIMANTS; PHASES; SYSTEM AB The EuAuGe-type CaAuSn phase has been synthesized and single-crystal X-ray diffraction analysis reveals that it has an orthorhombic symmetry (space group Imm2), with a = 4.5261 (7) angstrom, b = 7.1356 (11) angstrom and c = 7.8147 (11) angstrom. The structure features puckered layers that are connected by homoatomic Au-Au and Sn-Sn interlayer bonds. This structure is one of the two parent structures of its high-temperature polymorph (ca 873 K), which is an intergrowth structure of the EuAuGe-and SrMgSi-type structures in a 2:3 ratio. C1 [Lin, Qisheng; Corbett, John D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, QS (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM qslin@ameslab.gov FU Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE); DOE by Iowa State University [DE-AC02-07CH11358] FX This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE). Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. NR 18 TC 0 Z9 0 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 EI 1600-5759 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Struct. Chem. PD AUG PY 2014 VL 70 BP 773 EP U120 DI 10.1107/S205322961401612X PN 8 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN2KJ UT WOS:000340413600009 PM 25093357 ER PT J AU Orr, MG Galea, S Riddle, M Kaplan, GA AF Orr, Mark G. Galea, Sandro Riddle, Matt Kaplan, George A. TI Reducing racial disparities in obesity: simulating the effects of improved education and social network influence on diet behavior SO ANNALS OF EPIDEMIOLOGY LA English DT Article DE Obesity; Health disparities; Complex systems; Simulation; Agent-based modeling ID YOUNG-ADULTS; US ADULTS; EPIDEMIOLOGY; HEALTH; PREVALENCE AB Purpose: Understanding how to mitigate the present black white obesity disparity in the United States is a complex issue, stemming from a multitude of intertwined causes. An appropriate but underused approach to guiding policy approaches to this problem is to account for this complexity using simulation modeling. Methods: We explored the efficacy of a policy that improved the quality of neighborhood schools in reducing racial disparities in obesity-related behavior and the dependence of this effect on social network influence and norms. We used an empirically grounded agent-based model to generate simulation experiments. We used a 2 x 2 x 2 factorial design that represented the presence or absence of improved neighborhood school quality, the presence or absence of social influence, and the type of social norm (healthy or unhealthy). Analyses focused on time trends in sociodemographic variables and diet quality. Results: First, the quality of schools and social network influence had independent and interactive effects on diet behavior. Second, the black white disparity in diet behavior was considerably reduced under some conditions, but never completely eliminated. Third, the degree to which the disparity in diet behavior was reduced was a function of the type of social norm that was in place; the reduction was the smallest when the type of social norm was healthy. Conclusions: Improving school quality can reduce, but not eliminate racial disparities in obesity-related behavior, and the degree to which this is true depends partly on social network effects. (C) 2014 Elsevier Inc. All rights reserved. C1 [Orr, Mark G.] Virginia Polytech Inst & State Univ, Social & Decis Analyt Lab, Virginia Bioinformat Inst, Arlington, VA 22203 USA. [Galea, Sandro] Columbia Univ, Dept Epidemiol, New York, NY USA. [Riddle, Matt] Argonne Natl Lab, Lemont, IL USA. [Kaplan, George A.] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA. RP Orr, MG (reprint author), Virginia Polytech Inst & State Univ, Social & Decis Analyt Lab, Virginia Bioinformat Inst, 900 N Glebe Rd, Arlington, VA 22203 USA. EM morr9@vbi.vt.edu FU Mailman School of Public Health, Columbia Univ.; Epidemiology Merit Fellowship; Robert Wood Johnson Foundation; TIIH Scholar Award; Institute for Integrative Health; Network on Inequalities, Complex Systems, and Health [HHSN276200800013C] FX This work was supported in part by an Epidemiology Merit Fellowship to M.G.O. from the Mailman School of Public Health, Columbia Univ., grant No. 60466 from the Robert Wood Johnson Foundation to S.G. and G.A.K., a TIIH Scholar Award to G.A.K. from the Institute for Integrative Health, and by a small grant from the Network on Inequalities, Complex Systems, and Health (HHSN276200800013C). The authors would like to thank Nathan Osgood, Ronald Mintz, and Dylan Knowles regarding technical development of the agent-based model and Andrew Kosenko for aid in manuscript preparation. NR 29 TC 7 Z9 7 U1 4 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1047-2797 EI 1873-2585 J9 ANN EPIDEMIOL JI Ann. Epidemiol. PD AUG PY 2014 VL 24 IS 8 BP 563 EP 569 DI 10.1016/j.annepidem.2014.05.012 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AM9PZ UT WOS:000340214800001 PM 25084700 ER PT J AU Bagwell, CE Piskorska, M Soule, T Petelos, A Yeager, CM AF Bagwell, Christopher E. Piskorska, Magdalena Soule, Tanya Petelos, Angela Yeager, Chris M. TI A Diverse Assemblage of Indole-3-Acetic Acid Producing Bacteria Associate with Unicellular Green Algae SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Auxins; Microalgae; Bacteria; Biofuels; Bioenergy; Biomass; Cultivation ID RIBOSOMAL-RNA SEQUENCES; CHLORELLA-VULGARIS; GROWTH; MICROALGAE; RHIZOBACTERIA; BIOSYNTHESIS; VITAMIN-B-12; COMMUNITIES; RHIZOSPHERE; BIODIESEL AB Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. C1 [Bagwell, Christopher E.; Soule, Tanya; Petelos, Angela] Savannah River Natl Lab, Dept Environm Sci & Biotechnol, Aiken, SC 29803 USA. [Piskorska, Magdalena] Univ S Carolina, Dept Biol & Geol, Aiken, SC USA. [Yeager, Chris M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Soule, Tanya] Indiana Univ Purdue Univ, Dept Biol, Ft Wayne, IN 46805 USA. RP Bagwell, CE (reprint author), Savannah River Natl Lab, Dept Environm Sci & Biotechnol, Aiken, SC 29803 USA. EM christopher.bagwell@srnl.doe.gov FU SRNL's Laboratory Directed Research and Development Program [DE-NL0022905]; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program [DE-NL0022905] FX This research was jointly supported by the SRNL's Laboratory Directed Research and Development Program and the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program (Award No. DE-NL0022905). NR 40 TC 5 Z9 6 U1 4 U2 35 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 EI 1559-0291 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD AUG PY 2014 VL 173 IS 8 BP 1977 EP 1984 DI 10.1007/s12010-014-0980-5 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA AN4XB UT WOS:000340591800003 PM 24879600 ER PT J AU Zheng, LE Rutqvist, J Liu, HH Birkholzer, JT Sonnenthal, E AF Zheng, Liange Rutqvist, Jonny Liu, Hui-Hai Birkholzer, Jens T. Sonnenthal, Eric TI Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal SO APPLIED CLAY SCIENCE LA English DT Article DE Argillaceous; Swelling; Diffuse double layer; Geochemistry; Nuclear waste disposal ID DOUBLE-LAYER THEORY; OPALINUS CLAY; SWELLING CHARACTERISTICS; COMPACTED BENTONITE; CONSTITUTIVE MODEL; MULTIPHASE FLOW; EXPANSIVE CLAYS; YUCCA MOUNTAIN; FLUID-FLOW; TRANSPORT AB Argillaceous formations are being considered as host rocks for geologic disposal of nuclear waste in a number of countries. One advantage of emplacing nuclear waste in such formations is the potential self-sealing capability of clay due to swelling, which is of particular importance for the sealing and healing of disturbed rock zones (DRZ). It is therefore necessary to understand and be able to predict the changes in swelling properties within clay rock near the waste-emplacement tunnel. In this paper, considering that the clay rock formation is mostly under saturated conditions and the swelling property changes are mostly due to geochemical changes, we propose a modeling method that links a THC simulator with a swelling module that is based on diffuse double layer theory. Simulations were conducted to evaluate the geochemically induced changes in the swelling properties of the clay rock. Our findings are as follows: (1) geochemically induced swelling/shrinkage occurs exclusively in the EBS-clay formation interface, within a few meters from the waste-emplacement tunnels; (2) swelling/shrinkage-induced porosity changes are generally much smaller than those caused by mineral precipitation/dissolution processes; (3) geochemically induced swelling/shrinkage of the host clay rock is affected by variations in the pore water chemistry, exchangeable cations, and smectite abundance. Neglecting any of these three factors might lead to a miscalculation of the geochemically induced swelling pressure. (c) 2014 Elsevier B.V. All rights reserved. C1 [Zheng, Liange; Rutqvist, Jonny; Liu, Hui-Hai; Birkholzer, Jens T.; Sonnenthal, Eric] Berkeley Natl Lab LBNL, Berkeley, CA 94720 USA. RP Zheng, LE (reprint author), Berkeley Natl Lab LBNL, Berkeley, CA 94720 USA. EM lzheng@lbl.gov RI Sonnenthal, Eric/A-4336-2009; Birkholzer, Jens/C-6783-2011; zheng, liange/B-9748-2011; Rutqvist, Jonny/F-4957-2015 OI Birkholzer, Jens/0000-0002-7989-1912; zheng, liange/0000-0002-9376-2535; Rutqvist, Jonny/0000-0002-7949-9785 FU Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Lab. FX Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231 with Berkeley Lab. NR 56 TC 2 Z9 2 U1 7 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD AUG PY 2014 VL 97-98 BP 24 EP 32 DI 10.1016/j.clay.2014.05.019 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA AN0VN UT WOS:000340302200004 ER PT J AU Dube, N Seo, JW Dong, H Shu, JY Lund, R Mahakian, LM Ferrara, KW Xu, T AF Dube, Nikhil Seo, Jai W. Dong, He Shu, Jessica Y. Lund, Reidar Mahakian, Lisa M. Ferrara, Katherine W. Xu, Ting TI Effect of Alkyl Length of Peptide-Polymer Amphiphile on Cargo Encapsulation Stability and Pharmacokinetics of 3-Helix Micelles SO BIOMACROMOLECULES LA English DT Article ID BLOCK-COPOLYMER MICELLES; DRUG-DELIVERY; MOLECULAR ARCHITECTURE; ENHANCED STABILITY; NANOPARTICLE SIZE; CORE COMPOSITION; CHAIN-LENGTH; RELEASE; DOXORUBICIN; DESIGN AB 3-Helix micelles have demonstrated excellent in vitro and in vivo stability. Previous studies showed that the unique design of the peptide-polymer conjugate based on protein tertiary structure as the headgroup is the main design factor to achieve high kinetic stability. In this contribution, using amphiphiles with different alkyl tails, namely, C16 and C18, we quantified the effect of alkyl length on the stability of 3-helix micelles to delineate the contribution of the micellar core and shell on the micelle stability. Both amphiphiles form well-defined micelles, <20 nm in size, and show good stability, which can be attributed to the headgroup design. C18-micelles exhibit slightly higher kinetic stability in the presence of serum proteins at 37 degrees C, where the rate constant of subunit exchange is 0.20 h(-1) for C18-micelles vs 0.22 h(-1) for C16-micelles. The diffusion constant for drug release from C18-micelles is approximately half of that for C16-micelles. The differences between the two micelles are significantly more pronounced in terms of in vivo stability and extent accumulation. C18-micelles exhibit significantly longer blood circulation time of 29.5 h, whereas C16-micelles have a circulation time of 16.1 h. The extent of tumor accumulation at 48 h after injection is similar to 43% higher for C18-micelles. The present studies underscore the importance of core composition on the biological behavior of 3-helix micelles. The quantification of the effect of this key design parameter on the stability of 3-helix micelles provides important guidelines for carrier selection and use in complex environment. C1 [Dube, Nikhil; Dong, He; Shu, Jessica Y.; Lund, Reidar; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Seo, Jai W.; Mahakian, Lisa M.; Ferrara, Katherine W.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Lund, Reidar/F-3534-2014; Seo, Jai Woong/B-7959-2008; OI Seo, Jai Woong/0000-0002-2732-7498; Ferrara, Katherine/0000-0002-4976-9107 FU National Institutes of Health [1R21EB016947-01A1, NIHR01CA134659, NIHCA112356, NIHCA103828]; Office of Army of the U.S. Department of Defense [W91NF-09-1-0374]; Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX N.D. and T.X. were supported by National Institutes of Health under contracts 1R21EB016947-01A1. H.D. was supported by Office of Army of the U.S. Department of Defense under contract W91NF-09-1-0374. J.Y.S. and R.L. were supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. J.W.S., L.M.M, and K.W.F. were supported by National Institutes of Health under contracts NIHR01CA134659, NIHCA112356, and NIHCA103828. NR 47 TC 11 Z9 11 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD AUG PY 2014 VL 15 IS 8 BP 2963 EP 2970 DI 10.1021/bm5005788 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA AN1MS UT WOS:000340348600016 PM 24988250 ER PT J AU Skevas, T Swinton, SM Hayden, NJ AF Skevas, Theodoros Swinton, Scott M. Hayden, Noel J. TI What type of landowner would supply marginal land for energy crops? SO BIOMASS & BIOENERGY LA English DT Article DE Energy crops; Landowners; Non-crop marginal land; Attitudes; Factor analysis; Cluster analysis ID FOREST OWNERS; BIOENERGY; ATTITUDES; SWITCHGRASS; PERCEPTIONS; MOTIVATIONS; BIOFUELS; BIOMASS AB Landowner perspectives can inform policy to encourage expansion of energy crop production onto non-crop, marginal land. This paper analyzes a survey of owners of non-crop marginal land in southern Michigan to classify landowners by their attitudes toward energy crop production. A factor analysis identifies common factors underlying their perceptions of bioenergy production, and those factors are used in a cluster analysis that classifies landowners into four types: disamenity-sensitive, profit-oriented, bioenergy supporters, and bioenergy skeptics. Multinomial logit regression using the identified landowner types elucidates how these types are grounded in landowners' perceptions of bioenergy production and their socioeconomic characteristics. Policy makers aiming to encourage bioenergy production should target the profit-oriented landowners and the bioenergy supporters as they are most open to energy crop production. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Skevas, Theodoros] Michigan State Univ, Dept Agr Food & Resource Econ, E Lansing, MI 48824 USA. Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Skevas, T (reprint author), Michigan State Univ, Dept Agr Food & Resource Econ, Morrill Hall Agr,446 W Circle Dr, E Lansing, MI 48824 USA. EM skevast@anr.msu.edu NR 30 TC 6 Z9 6 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD AUG PY 2014 VL 67 BP 252 EP 259 DI 10.1016/j.biombioe.2014.05.011 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AN1JX UT WOS:000340339700027 ER PT J AU Gil, EY Jo, UH Lee, HJ Kang, J Seo, JH Lee, ES Kim, YH Kim, I Phan-Lai, V Disis, ML Park, KH AF Gil, Eun-Young Jo, Uk-Hyun Lee, Hye Jin Kang, Jinho Seo, Jae Hong Lee, Eun Sook Kim, Yeul Hong Kim, InSun Phan-Lai, Vy Disis, Mary L. Park, Kyong Hwa TI Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice SO BREAST CANCER RESEARCH AND TREATMENT LA English DT Article DE Breast cancer; ErbB-2; Peptide vaccine; Cancer stem cell; Spontaneous tumor ID BREAST-CANCER; ADJUVANT TRASTUZUMAB; T-CELL; CARCINOMA; IDENTIFICATION; ONCOPROTEIN; ANTIBODY; HER-2; NEU; AMPLIFICATION AB ErbB-2 has been implicated as a target for cancer-initiating cells in breast and other cancers. ErbB-2-directed peptide vaccines have been shown to be effective in prevention of spontaneous tumorigenesis of breast in neu transgenic mouse model, and cellular immunity is proposed as a mechanism for the anti-tumor efficacy. However, there has been no explanation as to how immunity suppresses tumorigenesis from the early stage carcinogenesis, when ErbB-2 expression in breast is low. Here, we investigated a peptide-based vaccine, which consists of two MHC class II epitopes derived from murine ErbB-2, to prevent the occurrence of spontaneous tumors in breast and assess immune impact on breast cancer stem cells. Female MMTV-PyMT transgenic mice were immunized with either ErbB-2 peptide vaccine, or a peptide from tetanus toxoid, or PBS in immune adjuvant. ErbB-2 peptides vaccine completely suppressed spontaneous breast tumors, and the efficacy was correlated with antigen-specific T-cell and antibody responses. In addition, immune serum from the mice of ErbB-2 vaccine group had an inhibitory effect on mammosphere-forming capacity and signaling through ErbB-2 and downstream Akt pathway in ErbB-2 overexpressing mouse mammary cancer cells. We provide evidence that multi-epitope class II peptides vaccine suppresses tumorigenesis of breast potentially by inhibiting the growth of cancer stem cells. We also suggest that a strategy of inducing strong immune responses using multi-epitope ErbB-2-directed helper vaccine might be useful in preventing breast cancer recurrence. C1 [Gil, Eun-Young; Jo, Uk-Hyun; Lee, Hye Jin; Kang, Jinho; Seo, Jae Hong; Kim, Yeul Hong; Park, Kyong Hwa] Korea Univ, Coll Med, Anam Hosp, Div Oncol Hematol,Dept Internal Med, Seoul 136705, South Korea. [Lee, Eun Sook] Natl Canc Ctr, Res Inst & Hosp, Goyang, Gyeonggi, South Korea. [Kim, InSun] Korea Univ, Coll Med, Dept Pathol, Seoul 136705, South Korea. [Phan-Lai, Vy] Univ Calif Los Angeles, Ctr Global Mentoring, UCLA DOE Inst, Los Angeles, CA USA. [Disis, Mary L.] Univ Washington, Tumor Vaccine Grp, Seattle, WA 98195 USA. RP Park, KH (reprint author), Korea Univ, Coll Med, Anam Hosp, Div Oncol Hematol,Dept Internal Med, 73 Inchon Ro, Seoul 136705, South Korea. EM khpark@korea.ac.kr FU National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2009-0068859] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0068859). MLD is supported by the Athena Distinguished Professor of Breast Cancer Research. NR 30 TC 6 Z9 6 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0167-6806 EI 1573-7217 J9 BREAST CANCER RES TR JI Breast Cancer Res. Treat. PD AUG PY 2014 VL 147 IS 1 BP 69 EP 80 DI 10.1007/s10549-014-3086-4 PG 12 WC Oncology SC Oncology GA AN4HH UT WOS:000340547800007 PM 25104444 ER PT J AU Liu, Q Liu, YD Sun, CJ Li, ZF Ren, Y Lu, WQ Stach, EA Xie, J AF Liu, Qi Liu, Yadong Sun, Cheng-Jun Li, Zhe-fei Ren, Yang Lu, Wenquan Stach, Eric A. Xie, Jian TI The Structural Evolution of V2O5 Nanocystals during Electrochemical Cycling Studied Using In operando Synchrotron Techniques SO ELECTROCHIMICA ACTA LA English DT Article DE vanadium oxide; Li-ion battery; synchrotron; high-energy x-ray diffraction; x-ray adsorption near edge spectroscopy ID LITHIUM-ION BATTERIES; RAY-ABSORPTION SPECTROSCOPY; CATHODE MATERIALS; VANADIUM; LI; INTERCALATION; MICROSPHERES; DIFFRACTION; NANOBELTS; INSERTION AB The structural evolution of vanadium oxide (V2O5) nanocrystals was studied during Le ion intercalation and deintercalation (i.e. electrochemical discharge/charge) processes using in operando high-energy x-ray diffraction (HEXRD) and in operando x-ray adsorption near edge spectroscopy (XANES). The HEXRD results clearly show that V2O5 undergoes phase transformations during the first Li+ ion intercalation (i.e. discharge) process. The analysis of the XANES data suggests that the average oxidation state of vanadium in fully charged V2O5 nanocrystals decreases to less than +5 after the first four cycles. The combined results of the unchanged crystal structure (HEXRD) and the decreased oxidation state (XANES) lead to the conclusion that some of the Le ions are trapped within the V2O5 framework and the V2O5 exists as Li0.18V2O5 instead of pure V2O5 after the first four cycles, while the trapped Li (+) ion may increase the stability of V2O5 framework. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Liu, Qi; Liu, Yadong; Li, Zhe-fei; Xie, Jian] Indiana Univ Purdue Univ, Purdue Sch Engn & Technol, Dept Mech Engn, Indianapolis, IN 46202 USA. [Sun, Cheng-Jun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Lu, Wenquan] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Xie, J (reprint author), Indiana Univ Purdue Univ, Purdue Sch Engn & Technol, Dept Mech Engn, Indianapolis, IN 46202 USA. EM jianxie@iupui.edu RI Stach, Eric/D-8545-2011; Li, Zhefei/M-1106-2015 OI Stach, Eric/0000-0002-3366-2153; FU U.S. Navy [N00164-09-C-GS42]; US Department of Energy - Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357]; Center for Functional Nanomaterials of the Brookhaven National Laboratory (US-DOE) [DE-AC02-98CH10886] FX This work was partially supported by the U.S. Navy under contract N00164-09-C-GS42. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy - Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. This research was also carried out in part at the Center for Functional Nanomaterials of the Brookhaven National Laboratory (US-DOE contract DE-AC02-98CH10886). NR 28 TC 5 Z9 6 U1 1 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD AUG 1 PY 2014 VL 136 BP 318 EP 322 DI 10.1016/j.electacta.2014.05.100 PG 5 WC Electrochemistry SC Electrochemistry GA AN1CR UT WOS:000340320800039 ER PT J AU Cavallin, JE Durhan, EJ Evans, N Jensen, KM Kahl, MD Kolpin, DW Kolodziej, EP Foreman, WT LaLone, CA Makynen, EA Seidl, SM Thomas, LM Villeneuve, DL Weberg, MA Wilson, VS Ankley, GT AF Cavallin, Jenna E. Durhan, Elizabeth J. Evans, Nicola Jensen, Kathleen M. Kahl, Michael D. Kolpin, Dana W. Kolodziej, Edward P. Foreman, William T. LaLone, Carlie A. Makynen, Elizabeth A. Seidl, Sara M. Thomas, Linnea M. Villeneuve, Daniel L. Weberg, Matthew A. Wilson, Vickie S. Ankley, Gerald T. TI INTEGRATED ASSESSMENT OF RUNOFF FROM LIVESTOCK FARMING OPERATIONS: ANALYTICAL CHEMISTRY, IN VITRO BIOASSAYS, AND IN VIVO FISH EXPOSURES SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Complex mixture; Livestock operation; Fathead minnow; Gene expression; Steroid hormone ID MINNOW PIMEPHALES-PROMELAS; TRENBOLONE ACETATE METABOLITES; FATHEAD MINNOW; CELL-LINE; STABLY EXPRESSES; ANIMAL MANURE; VITELLOGENIN; ESTROGENS; COMPENSATION; KETOCONAZOLE AB Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17 alpha-ethynylestradiol or 50-ng/L of 17 beta-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor a mRNA, gonadal ex vivo testosterone and 17 beta-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture. Environ Toxicol Chem 2014; 33: 1849-1857. Published 2014 Wiley Periodicals, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America. C1 [Cavallin, Jenna E.] US EPA, ORISE Res Participat Program, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div,Off Res & Dev, Duluth, MN 55804 USA. [Durhan, Elizabeth J.; Jensen, Kathleen M.; Kahl, Michael D.; LaLone, Carlie A.; Makynen, Elizabeth A.; Seidl, Sara M.; Thomas, Linnea M.; Villeneuve, Daniel L.; Weberg, Matthew A.; Ankley, Gerald T.] US EPA, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Off Res & Dev, Duluth, MN USA. [Evans, Nicola; Wilson, Vickie S.] US EPA, Natl Hlth & Environm Effects Res Lab, Tox Assessment Div, Off Res & Dev, Duluth, MN USA. [Kolpin, Dana W.] US Geol Survey, Iowa City, IA USA. [Kolodziej, Edward P.] Univ Nevada, Dept Civil & Environm Engn, Reno, NV 89557 USA. [Foreman, William T.] US Geol Survey, Natl Water Qual Lab, Denver, CO 80225 USA. RP Cavallin, JE (reprint author), US EPA, ORISE Res Participat Program, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div,Off Res & Dev, Duluth, MN 55804 USA. EM cavallin.jenna@epa.gov OI Kolodziej, Edward/0000-0002-7968-4198; Wilson, Vickie/0000-0003-1661-8481 NR 36 TC 13 Z9 13 U1 7 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD AUG PY 2014 VL 33 IS 8 BP 1849 EP 1857 DI 10.1002/etc.2627 PG 9 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA AN4DD UT WOS:000340536900024 PM 24831736 ER PT J AU Bevelhimer, MS Adams, SM Fortner, AM Greeley, MS Brandt, CC AF Bevelhimer, Mark S. Adams, S. Marshall Fortner, Allison M. Greeley, Mark S. Brandt, Craig C. TI USING ORDINATION AND CLUSTERING TECHNIQUES TO ASSESS MULTIMETRIC FISH HEALTH RESPONSE FOLLOWING A COAL ASH SPILL SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Coal ash; Hierarchical clustering; Canonical discriminant analysis; Fish health; Multivariate analysis ID ECOLOGICAL RISK-ASSESSMENT; ENVIRONMENTAL IMPACTS; CAUSAL RELATIONSHIPS; KINGSTON; EXPOSURE; TENNESSEE; STREAM; BIOINDICATORS; INVERTEBRATE; REMEDIATION AB The effect of coal ash exposure on fish health in freshwater communities is largely unknown. Given the large number of possible pathways of effects (e.g., toxicological effect of exposure to multiple metals, physical effects from ash exposure, and food web effects), measurement of only a few health metrics is not likely to give a complete picture. The authors measured a suite of 20 health metrics from 1100+ fish collected from 5 sites (3 affected and 2 reference) near a coal ash spill in east Tennessee over a 4.5-yr period. The metrics represented a wide range of physiological and energetic responses and were evaluated simultaneously using 2 multivariate techniques. Results from both hierarchical clustering and canonical discriminant analyses suggested that for most species x season combinations, the suite of fish health indicators varied more among years than between spill and reference sites within a year. In a few cases, spill sites from early years in the investigation stood alone or clustered together separate from reference sites and later year spill sites. Outlier groups of fish with relatively unique health profiles were most often from spill sites, suggesting that some response to the ash exposure may have occurred. Results from the 2 multivariate methods suggest that any change in the health status of fish at the spill sites was small and appears to have diminished since the first 2 to 3 yr after the spill. Published 2014 Wiley Periodicals, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America. C1 [Bevelhimer, Mark S.; Adams, S. Marshall; Fortner, Allison M.; Greeley, Mark S.; Brandt, Craig C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bevelhimer, MS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bevelhimerms@ornl.gov RI Greeley, Mark/D-2330-2016 OI Greeley, Mark/0000-0002-6088-5942 FU US Department of Energy [DE-AC05-00OR22725] FX The present study was funded by the Tennessee Valley Authority (TVA) and we thank TVA personnel for providing assistance in the field for collection of fish samples. In particular, we acknowledge N. Carriker, T. Baker, and D. Yankee of TVA for their support, encouragement, and interest in this study. Animal collection and euthanization was conducted under a protocol approved by Oak Ridge National Laboratory's (ORNL) Animal Care and Use Committee. Colleagues at ORNL who contributed to the success of this study include M. Peterson for project management and guidance; T. Mathews for a critical review of the manuscript; and K. McCracken, L. Elmore, J. Tenney, and T. Jett for assistance with sample collection and analysis. The authors are unaware of any real or perceived conflicts of interest or ethical violations, and all prevailing local, national, and international regulations and conventions, as well as normal scientific ethical practices, have been respected. Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy under contract DE-AC05-00OR22725. NR 27 TC 9 Z9 9 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD AUG PY 2014 VL 33 IS 8 BP 1903 EP 1913 DI 10.1002/etc.2622 PG 11 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA AN4DD UT WOS:000340536900031 PM 24764206 ER PT J AU Artusa, DR Avignone, FT Azzolini, O Balata, M Banks, TI Bari, G Beeman, J Bellini, F Bersani, A Biassoni, M Brofferio, C Bucci, C Cai, XZ Canonica, L Cao, XG Capelli, S Carbone, L Cardani, L Carrettoni, M Casali, N Chiesa, D Chott, N Clemenza, M Cosmelli, C Cremonesi, O Creswick, RJ Dafinei, I Dally, A Datskov, V Deninno, MM Di Domizio, S di Vacri, ML Ejzak, L Fang, DQ Farach, HA Faverzani, M Fernandes, G Ferri, E Ferroni, F Fiorini, E Freedman, SJ Fujikawa, BK Giachero, A Gironi, L Giuliani, A Goett, J Gorla, P Gotti, C Gutierrez, TD Haller, EE Han, K Heeger, KM Hennings-Yeomans, R Huang, HZ Kadel, R Kazkaz, K Keppel, G Kolomensky, YG Li, YL Lim, KE Liu, X Ma, YG Maiano, C Maino, M Martinez, M Maruyama, RH Mei, Y Moggi, N Morganti, S Nisi, S Nones, C Norman, EB Nucciotti, A O'Donnell, T Orio, F Orlandi, D Ouellet, JL Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pedretti, M Pessina, G Pettinacci, V Piperno, G Pirro, S Previtali, E Rosenfeld, C Rusconi, C Sala, E Sangiorgio, S Scielzo, ND Sisti, M Smith, AR Taffarello, L Tenconi, M Terranova, F Tian, W Tomei, C Trentalange, S Ventura, G Vignati, M Wang, B Wang, H Wielgus, L Wilson, J Winslow, LA Wise, T Zanotti, L Zarra, C Zhu, BX Zucchelli, S AF Artusa, D. R. Avignone, F. T., III Azzolini, O. Balata, M. Banks, T. I. Bari, G. Beeman, J. Bellini, F. Bersani, A. Biassoni, M. Brofferio, C. Bucci, C. Cai, X. Z. Canonica, L. Cao, X. G. Capelli, S. Carbone, L. Cardani, L. Carrettoni, M. Casali, N. Chiesa, D. Chott, N. Clemenza, M. Cosmelli, C. Cremonesi, O. Creswick, R. J. Dafinei, I. Dally, A. Datskov, V. Deninno, M. M. Di Domizio, S. di Vacri, M. L. Ejzak, L. Fang, D. Q. Farach, H. A. Faverzani, M. Fernandes, G. Ferri, E. Ferroni, F. Fiorini, E. Freedman, S. J. Fujikawa, B. K. Giachero, A. Gironi, L. Giuliani, A. Goett, J. Gorla, P. Gotti, C. Gutierrez, T. D. Haller, E. E. Han, K. Heeger, K. M. Hennings-Yeomans, R. Huang, H. Z. Kadel, R. Kazkaz, K. Keppel, G. Kolomensky, Yu. G. Li, Y. L. Lim, K. E. Liu, X. Ma, Y. G. Maiano, C. Maino, M. Martinez, M. Maruyama, R. H. Mei, Y. Moggi, N. Morganti, S. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. O'Donnell, T. Orio, F. Orlandi, D. Ouellet, J. L. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pedretti, M. Pessina, G. Pettinacci, V. Piperno, G. Pirro, S. Previtali, E. Rosenfeld, C. Rusconi, C. Sala, E. Sangiorgio, S. Scielzo, N. D. Sisti, M. Smith, A. R. Taffarello, L. Tenconi, M. Terranova, F. Tian, W. D. Tomei, C. Trentalange, S. Ventura, G. Vignati, M. Wang, B. S. Wang, H. W. Wielgus, L. Wilson, J. Winslow, L. A. Wise, T. Zanotti, L. Zarra, C. Zhu, B. X. Zucchelli, S. TI Initial performance of the CUORE-0 experiment SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID BOLOMETERS; CONTAMINATION; VALIDATION; CUORICINO; ARRAY AB CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of . We present the first data analysis with of total exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to ) and in the background-dominated region (2.70 to ) have been measured to be and , respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is . Based on the measured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time. C1 [Artusa, D. R.; Avignone, F. T., III; Chott, N.; Creswick, R. J.; Farach, H. A.; Rosenfeld, C.; Wilson, J.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Artusa, D. R.; Balata, M.; Banks, T. I.; Bucci, C.; Canonica, L.; Casali, N.; di Vacri, M. L.; Goett, J.; Gorla, P.; Nisi, S.; Orlandi, D.; Pattavina, L.; Pirro, S.; Zarra, C.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Azzolini, O.; Keppel, G.; Palmieri, V.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Banks, T. I.; Freedman, S. J.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; O'Donnell, T.; Ouellet, J. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hennings-Yeomans, R.; Mei, Y.; Ouellet, J. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bari, G.; Deninno, M. M.; Moggi, N.; Zucchelli, S.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Beeman, J.; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Cosmelli, C.; Ferroni, F.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Cosmelli, C.; Dafinei, I.; Ferroni, F.; Morganti, S.; Orio, F.; Pettinacci, V.; Piperno, G.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bersani, A.; Di Domizio, S.; Fernandes, G.; Pallavicini, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Biassoni, M.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Biassoni, M.; Brofferio, C.; Capelli, S.; Carbone, L.; Carrettoni, M.; Chiesa, D.; Clemenza, M.; Cremonesi, O.; Datskov, V.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Rusconi, C.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Cai, X. Z.; Cao, X. G.; Fang, D. Q.; Li, Y. L.; Ma, Y. G.; Tian, W. D.; Wang, H. W.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Dally, A.; Ejzak, L.; Wielgus, L.; Wise, T.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Di Domizio, S.; Fernandes, G.; Pallavicini, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Giuliani, A.; Tenconi, M.] Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Heeger, K. M.; Lim, K. E.; Maruyama, R. H.; Wise, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Huang, H. Z.; Liu, X.; Trentalange, S.; Winslow, L. A.; Zhu, B. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kadel, R.; Kolomensky, Yu. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Kazkaz, K.; Norman, E. B.; Pedretti, M.; Sangiorgio, S.; Scielzo, N. D.; Wang, B. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martinez, M.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain. [Nones, C.] CEA Saclay, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Norman, E. B.; Wang, B. S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, EH&S Div, Berkeley, CA 94720 USA. [Taffarello, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Ventura, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Ventura, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Zucchelli, S.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. RP Artusa, DR (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM cuore-spokeperson@lngs.infn.it RI Sisti, Monica/B-7550-2013; Chiesa, Davide/H-7240-2014; Giachero, Andrea/I-1081-2013; Nucciotti, Angelo/I-8888-2012; Martinez, Maria/K-4827-2012; Di Domizio, Sergio/L-6378-2014; Ferri, Elena/L-8531-2014; Bellini, Fabio/D-1055-2009; Kolomensky, Yury/I-3510-2015; Pattavina, Luca/I-7498-2015; Maruyama, Reina/A-1064-2013; Pallavicini, Marco/G-5500-2012; Vignati, Marco/H-1684-2013; Faverzani, Marco/K-3865-2016; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; Ma, Yu-Gang/M-8122-2013; Casali, Nicola/C-9475-2017; Han, Ke/D-3697-2017; OI Gotti, Claudio/0000-0003-2501-9608; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Sisti, Monica/0000-0003-2517-1909; Chiesa, Davide/0000-0003-1978-1727; Giachero, Andrea/0000-0003-0493-695X; Nucciotti, Angelo/0000-0002-8458-1556; Martinez, Maria/0000-0002-9043-4691; Di Domizio, Sergio/0000-0003-2863-5895; Ferri, Elena/0000-0003-1425-3669; Bellini, Fabio/0000-0002-2936-660X; Kolomensky, Yury/0000-0001-8496-9975; Pattavina, Luca/0000-0003-4192-849X; Maruyama, Reina/0000-0003-2794-512X; Pallavicini, Marco/0000-0001-7309-3023; Vignati, Marco/0000-0002-8945-1128; Bersani, Andrea/0000-0003-3276-5713; Keppel, Giorgio/0000-0003-4579-3342; Cardani, Laura/0000-0001-5410-118X; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Faverzani, Marco/0000-0001-8119-2953; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Ma, Yu-Gang/0000-0002-0233-9900; Casali, Nicola/0000-0003-3669-8247; Han, Ke/0000-0002-1609-7367; azzolini, oscar/0000-0003-3951-0537; Canonica, Lucia/0000-0001-8734-206X; Gutierrez, Thomas/0000-0002-0330-6414 FU Istituto Nazionale di Fisica Nucleare (INFN); Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344]; DOE Office of Nuclear Physics [DE-FG02-08ER41551, DEFG03-00ER41138]; National Science Foundation [NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852]; Alfred P. Sloan Foundation; University of Wisconsin Foundation; Yale University FX The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN); the Director, Office of Science, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC52-07NA27344; the DOE Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DEFG03-00ER41138; the National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, and NSF-PHY-0969852; the Alfred P. Sloan Foundation; the University of Wisconsin Foundation; and Yale University. This research used resources of the National Energy Research Scientific Computing Center (NERSC). NR 33 TC 30 Z9 30 U1 3 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD AUG 1 PY 2014 VL 74 IS 8 AR 2956 DI 10.1140/epjc/s10052-014-2956-6 PG 7 WC Physics, Particles & Fields SC Physics GA AN3QU UT WOS:000340504200001 ER PT J AU Xie, S Lu, Y Jakoncic, J Sun, HZ Xia, J Qian, CM AF Xie, Si Lu, Yao Jakoncic, Jean Sun, Hongzhe Xia, Jiang Qian, Chengmin TI Structure of RPA32 bound to the N-terminus of SMARCAL1 redefines the binding interface between RPA32 and its interacting proteins SO FEBS JOURNAL LA English DT Article DE crystallography; DNA damage; DNA replication; replication protein A; SMARCAL1 ID SINGLE-STRANDED-DNA; IMMUNO-OSSEOUS DYSPLASIA; DAMAGE RESPONSE; A RPA; REPLICATION; XPA; REPAIR; DOMAIN; UNG2; RECOGNITION AB Replication protein A subunit RPA32 contains a C-terminal domain that interacts with a variety of DNA damage response proteins including SMARCAL1, Tipin, UNG2 and XPA. We have solved the high-resolution crystal structure of RPA32 C-terminal domain (RPA32C) in complex with a 26-amino-acid peptide derived from the N-terminus of SMARCAL1 (SMARCAL1N). The RPA32C-SMARCAL1N structure reveals a 1 : 1 binding stoichiometry and displays a well-ordered binding interface. SMARCAL1N adopts a long a-helical conformation with the highly conserved 11 residues aligned on one face of the a-helix showing extensive interactions with the RPA32C domain. Extensive mutagenesis experiments were performed to corroborate the interactions observed in crystal structure. Moreover, the alpha 1/alpha 2 loop of the RPA32C domain undergoes a conformational rearrangement upon SMARCAL1N binding. NMR study has further confirmed that the RPA32C-SMARCAL1N interaction induces conformational changes in RPA32C. Isothermal titration calorimetry studies have also demonstrated that the conserved alpha-helical motif defined in the current study is required for sufficient binding of RPA32C. Taken together, our study has provided convincing structural information that redefines the common recognition pattern shared by RPA32C interacting proteins. C1 [Xie, Si; Qian, Chengmin] Univ Hong Kong, Dept Biochem, Hong Kong, Hong Kong, Peoples R China. [Lu, Yao; Xia, Jiang] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. [Jakoncic, Jean] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Sun, Hongzhe] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. RP Qian, CM (reprint author), Univ Hong Kong, Dept Biochem, Hong Kong, Hong Kong, Peoples R China. EM cmqian@hku.hk FU Hong Kong Research Grants Council [776811, 775712] FX We wish to acknowledge the use of Shanghai synchrotron radiation (beamline BL17U) for X-ray data collection, and the Bruker Avance 600 MHz NMR spectrometer with cryoprobe installed in the Chemistry Department of HKU for NMR data collection. We thank Dr KH Sze for facilitating NMR data collection and Dr Julian Tanner for critical reading of the manuscript. This work is supported by grants from Hong Kong Research Grants Council (776811 and 775712) to CM Qian. NR 38 TC 2 Z9 2 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD AUG PY 2014 VL 281 IS 15 BP 3382 EP 3396 DI 10.1111/febs.12867 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AN1PH UT WOS:000340355300006 PM 24910198 ER PT J AU Xiong, JB Sun, HB Peng, F Zhang, HY Xue, X Gibbons, SM Gilbert, JA Chu, HY AF Xiong, Jinbo Sun, Huaibo Peng, Fei Zhang, Huayong Xue, Xian Gibbons, Sean M. Gilbert, Jack A. Chu, Haiyan TI Characterizing changes in soil bacterial community structure in response to short-term warming SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Tibetan plateau; soil warming; bacterial community ID SUB-ARCTIC HEATH; MICROBIAL COMMUNITIES; TIBETAN PLATEAU; CLIMATE-CHANGE; BOREAL FOREST; CO2 FLUX; CARBON; DIVERSITY; ECOSYSTEM; SHIFTS AB High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa. C1 [Xiong, Jinbo; Sun, Huaibo; Zhang, Huayong; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China. [Xiong, Jinbo] Ningbo Univ, Sch Marine Sci, Ningbo 315211, Zhejiang, Peoples R China. [Peng, Fei; Xue, Xian] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Key Lab Desert & Desertificat, Lanzhou, Peoples R China. [Gibbons, Sean M.; Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Gibbons, Sean M.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China. EM hychu@issas.ac.cn OI Gibbons, Sean/0000-0002-8724-7916 FU National Natural Science Foundation of China [41071167, 41101228]; 'Hundred Talents Program' of the Chinese Academy of Sciences; US Dept. of Energy [DE-AC02-06CH11357]; EPA STAR Fellowship FX This work was supported by the National Natural Science Foundation of China (41071167 and 41101228), the 'Hundred Talents Program' of the Chinese Academy of Sciences to X. Xue and H. Chu, and partly by the US Dept. of Energy under Contract DE-AC02-06CH11357. Funding for S. M. Gibbons was provided by an EPA STAR Fellowship. The authors declare no conflict of interests. NR 63 TC 15 Z9 18 U1 12 U2 80 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD AUG PY 2014 VL 89 IS 2 SI SI BP 281 EP 292 DI 10.1111/1574-6941.12289 PG 12 WC Microbiology SC Microbiology GA AN4CM UT WOS:000340535200007 PM 24476229 ER PT J AU Wang, LP Haves, P AF Wang, Liping Haves, Philip TI Monte Carlo analysis of the effect of uncertainties on model-based HVAC fault detection and diagnostics SO HVAC&R RESEARCH LA English DT Article ID AIR-HANDLING UNITS; CONTROL STRATEGIES; SYSTEMS; SENSITIVITY; METHODOLOGY; SIMULATION AB Faults in HVAC systems can have a significant negative impact on energy consumption, indoor thermal comfort, and air quality. Automatic fault detection and diagnosis tools can help commissioning providers, operators, and facility managers efficiently detect and diagnose faults. They also can help satisfy the increasing demand for commissioning. A model-based fault detection and diagnosis (FDD) method was developed to detect faults by comparing model prediction and measurement, and to diagnose faults using a rule-based fuzzy inferencing system. The method includes Monte Carlo analysis to improve the robustness of the fault detection and diagnosis and reduce false alarms. The Monte Carlo analysis is employed not only to predict uncertainties in reference model outputs, based on estimates of uncertainty in each of the measured inputs, but also to determine the confidence levels of fault diagnosis by combining the effects of input uncertainties at different operating points. A simulated variable-air-volume (VAV) system, including detailed component models that can simulate different faults as well as correct operation, was used to test the diagnostic rules and the Monte Carlo analysis included in the method. The effect of uncertainties on fault diagnosis is illustrated for various types of faulty operation. C1 [Wang, Liping; Haves, Philip] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Simulat Res Grp, Berkeley, CA 94720 USA. [Wang, Liping] Univ Wyoming, Dept Civil & Architectural Engn, Laramie, WY 82071 USA. RP Wang, LP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Simulat Res Grp, Berkeley, CA 94720 USA. EM lwang12@uwyo.edu NR 16 TC 0 Z9 0 U1 0 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD AUG PY 2014 VL 20 IS 6 BP 616 EP 627 DI 10.1080/10789669.2014.924354 PG 12 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA AN1RJ UT WOS:000340361000004 ER PT J AU Miller, NC Baczewski, AD Albrecht, JD Shanker, B AF Miller, Nicholas C. Baczewski, Andrew D. Albrecht, John D. Shanker, Balasubramaniam TI A Discontinuous Galerkin Time Domain Framework for Periodic Structures Subject to Oblique Excitation SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Discontinuous Galerkin (DG) methods; periodic structures; time domain analysis ID ACCELERATED CARTESIAN EXPANSIONS; FINITE-ELEMENT FORMULATION; SCATTERING; RADIATION AB A nodal discontinuous Galerkin (DG) method is derived for the analysis of time-domain (TD) scattering from doubly periodic PEC/dielectric structures under oblique interrogation. Field transformations are employed to elaborate a formalism that is free from any issues with causality that are common when applying spatial periodic boundary conditions simultaneously with incident fields at arbitrary angles of incidence. An upwind numerical flux is derived for the transformed variables, which retains the same form as it does in the original Maxwell problem for domains without explicitly imposed periodicity. This, in conjunction with the amenability of the DG framework to non-conformal meshes, provides a natural means of accurately solving the first order TD Maxwell equations for a number of periodic systems of engineering interest. Results are presented that substantiate the accuracy and utility of our method. C1 [Miller, Nicholas C.; Baczewski, Andrew D.; Albrecht, John D.; Shanker, Balasubramaniam] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Baczewski, Andrew D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Miller, NC (reprint author), Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. EM mill1825@egr.msu.edu; baczewsk@gmail.com; jalbrech@egr.msu.edu; bshanker@egr.msu.edu FU National Science Foundation [1018576] FX This work was supported by the National Science Foundation under punt CCF:1018576. NR 27 TC 0 Z9 0 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD AUG PY 2014 VL 62 IS 8 BP 4386 EP 4391 DI 10.1109/TAP.2014.2324012 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA AN2XV UT WOS:000340450200056 ER PT J AU Wijayasekara, D Linda, O Manic, M Rieger, C AF Wijayasekara, Dumidu Linda, Ondrej Manic, Milos Rieger, Craig TI Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Anomaly detection; building energy management systems (BEMSs); clustering; fuzzy systems; linguistics ID AUTOMATION; CONSUMPTION; OPERATION; NETWORKS; STANDARD AB Building Energy Management Systems (BEMSs) are essential components of modern buildings that are responsible for minimizing energy consumption while maintaining occupant comfort. However, since indoor environment is dependent on many uncertain criteria, performance of BEMS can be suboptimal at times. Unfortunately, complexity of BEMSs, large amount of data, and interrelations between data can make identifying these suboptimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)-based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior; and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm-based BEMS. Six different scenarios were tested, and the presented Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more) than the alarm based BEMS. Furthermore, the Fuzzy-ADLD method identified cases that were missed by the alarm-based system, thus demonstrating potential for increased state-awareness of abnormal building behavior. C1 [Wijayasekara, Dumidu; Manic, Milos] Univ Idaho, Dept Comp Sci, Idaho Falls, ID 83402 USA. [Linda, Ondrej] Expedia Inc, Bellevue, WA 98004 USA. [Rieger, Craig] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Wijayasekara, D (reprint author), Univ Idaho, Dept Comp Sci, Idaho Falls, ID 83402 USA. EM dumidu.wijayasekara@gmail.com; olindaczech@gmail.com; misko@ieee.org; craig.rieger@inl.gov RI Wijayasekara, Dumidu/E-6346-2017 NR 45 TC 12 Z9 12 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 EI 1941-0050 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD AUG PY 2014 VL 10 IS 3 BP 1829 EP 1840 DI 10.1109/TII.2014.2328291 PG 12 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Automation & Control Systems; Computer Science; Engineering GA AN2PP UT WOS:000340428100014 ER PT J AU Rodenbeck, CT Tracey, KJ Barkley, KR DuVerneay, BB AF Rodenbeck, Christopher T. Tracey, Keith J. Barkley, Keith R. DuVerneay, Brian B. TI Delta Modulation Technique for Improving the Sensitivity of Monobit Subsamplers in Radar and Coherent Receiver Applications SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Analog-to-digital conversion; coherent receivers; Doppler radar; RF integrated circuits (RFICs); sampled data circuits ID DESIGN; NOISE; EGPRS AB This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as "delta modulation" (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudostationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate dc offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve the same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop's basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced dc offsets and wide temperature variation from -55 degrees C to +85 degrees C. Examination of the corrected versus uncorrected baseband spectrum under swept input signal-to-noise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. Two-tone testing shows no impact of the DM technique on ADC linearity. C1 [Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; DuVerneay, Brian B.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM chris.rodenbeck@ieee.org FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 27 TC 0 Z9 0 U1 5 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD AUG PY 2014 VL 62 IS 8 BP 1811 EP 1822 DI 10.1109/TMTT.2014.2332433 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA AN5GR UT WOS:000340619200026 ER PT J AU Raman, R Jarboe, TR Nelson, BA Mueller, D Jardin, SC Neumeyer, C Ono, M Menard, JE AF Raman, Roger Jarboe, T. R. Nelson, B. A. Mueller, D. Jardin, S. C. Neumeyer, C. Ono, M. Menard, J. E. TI Design Details of the Transient CHI Plasma Start-up System on NSTX-U SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE CHI; helicity injection; noninductive; NSTX; NSTX-U; plasma start-up; solenoid-free; spherical torus (ST) ID COAXIAL HELICITY INJECTION; SUSTAINMENT; TOKAMAK AB Elimination of the central solenoid would simplify the engineering design of a fusion nuclear science facility and tokamak based devices. The method of transient coaxial helicity injection (CHI) has successfully demonstrated formation of a high-quality closed flux plasma in NSTX and will be used as the front end of the start-up method for a full demonstration of noninductive current start-up, followed by noninductive current ramp-up using neutral beams in the NSTX-U device that is now under construction at the Princeton Plasma Physics Laboratory. CHI is implemented by driving current along open field lines that connect the lower inner and outer divertor plates of a spherical torus. The engineering system requirements and the design of the CHI system on NSTX-U are described. C1 [Raman, Roger; Jarboe, T. R.; Nelson, B. A.] Univ Washington, Seattle, WA 98195 USA. [Mueller, D.; Jardin, S. C.; Neumeyer, C.; Ono, M.; Menard, J. E.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Education [DE-AC02-09CH11466, DE-FG02-99ER54519 AM08] FX This work was supported by the U.S. Department of Education under Grant DE-AC02-09CH11466 and Grant DE-FG02-99ER54519 AM08. NR 17 TC 2 Z9 2 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD AUG PY 2014 VL 42 IS 8 BP 2154 EP 2160 DI 10.1109/TPS.2014.2334553 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AN2SH UT WOS:000340435100027 ER PT J AU Khodak, A Jaworski, MA AF Khodak, Andrei Jaworski, Michael A. TI Parametric Study of a Divertor Cooling System for a Liquid-Metal Plasma-Facing Component SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Computational fluid dynamics (CFD); cooling system; divertor; lithium; numerical simulations ID PERFORMANCE AB Novel divertor cooling system concept is currently under development at Princeton Plasma Physics Laboratory. This concept utilizes supercritical carbon dioxide as a coolant for the liquid lithium filled porous divertor front plate. Coolant is flowing in closed loop in the T-tube-type channel. Application of CO2 eliminates safety concerns associated with water cooling of liquid lithium systems, and promises higher overall efficiency compared with systems using He as a coolant. Numerical analysis of divertor system initial configuration was performed using ANSYS software. Initially conjugated heat transfer problem was solved involving computational fluid dynamics (CFD) simulation of the coolant flow, and heat transfer in the coolant and solid regions of the cooling system. Redlich-Kwong real gas model was used for equation of state of supercritical CO2 together with temperature- and pressure-dependent transport properties. Porous region filled with liquid lithium was modeled as a solid body with liquid lithium properties. Evaporation of liquid lithium from the front face was included via special temperature-dependent boundary condition. Results of CFD and heat transfer analysis were used as external conditions for structural analysis of the system components. Simulations were performed within ANSYS Workbench framework using ANSYS CFX for conjugated heat transfer and CFD analysis, and ANSYS Mechanical for structural analysis. Initial results were obtained using simplified 2-D model of the cooling system. The 2-D model allowed direct comparison with previous cooling concepts, which use He as a coolant. Optimization of the channel geometry in 2-D allowed increase in efficiency of the cooling system by reducing the total pressure drop in the coolant flow. Optimized geometrical parameters were used to create a 3-D model of the cooling system which eventually can be implemented and tested experimentally. The 3-D numerical simulation will be used to validate design variants of the divertor cooling system. C1 [Khodak, Andrei; Jaworski, Michael A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Khodak, A (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM akhodak@pppl.gov; mjaworsk@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-09CH11466. NR 14 TC 0 Z9 0 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD AUG PY 2014 VL 42 IS 8 BP 2161 EP 2165 DI 10.1109/TPS.2014.2330292 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AN2SH UT WOS:000340435100028 ER PT J AU Monreal, MJ Thomson, RK Scott, BL Kiplinger, JL AF Monreal, Marisa J. Thomson, Robert K. Scott, Brian L. Kiplinger, Jaqueline L. TI Enhancing the synthetic efficacy of thorium tetrachloride bis(1,2-dimethoxyethane) with added 1,2-dimethoxyethane: Preparation of metallocene thorium dichlorides SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Thorium; Cyclopentadienyl; Chloride; 1,2-Dimethoxyethane; X-ray crystallography ID BOND-CLEAVAGE; COMPLEXES; REACTIVITY; URANIUM; RING; CHEMISTRY; HYDRIDES; LIGANDS; SERIES; TH AB The synthetic efficacy of thorium tetrachloride bis(dimethoxyethane), ThCl4(DME)(2), is improved by adding 1,2-dimethoxyethane (DME) to the reaction mixture. The syntheses of the known metallocene dichlorides (C5Me5)(2) ThCl2 (1), (1,2,4-Bu-t(3)-C5H2)(2)ThCl2 (2), and (C5Me4Et)(2)ThCl2 (3) are used to demonstrate this finding. The full characterization and X-ray crystal structure of (C5Me4Et)(2)ThCl2 (3) is also reported. Published by Elsevier B.V. C1 [Monreal, Marisa J.; Thomson, Robert K.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Monreal, Marisa/0000-0001-6447-932X FU Los Alamos National Laboratory; LANL G. T. Seaborg Institute for Transactinium Science; Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry program; LANL LDRD program FX For financial support of this work, we acknowledge Los Alamos National Laboratory (Director's and Frederick Reines PD Fellowships to M.J.M.), the LANL G. T. Seaborg Institute for Transactinium Science (PD Fellowships to M.J.M. and R.KT.), the Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry program, and the LANL LDRD program. NR 31 TC 3 Z9 3 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 EI 1879-0259 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD AUG PY 2014 VL 46 BP 51 EP 53 DI 10.1016/j.inoche.2014.04.028 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AN0YI UT WOS:000340309500014 ER PT J AU Shantz, NC Gultepe, I Andrews, E Zelenyuk, A Earle, ME Macdonald, AM Liu, PSK Leaitch, WR AF Shantz, N. C. Gultepe, I. Andrews, E. Zelenyuk, A. Earle, M. E. Macdonald, A. M. Liu, P. S. K. Leaitch, W. R. TI Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008 SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE Arctic aerosols; stratified layers; biomass burning plumes ID LONG-TERM TRENDS; LIGHT-ABSORPTION MEASUREMENTS; BIOMASS BURNING PARTICLES; FILTER-BASED MEASUREMENTS; IN-SITU CHARACTERIZATION; BLACK CARBON; ARCTIC HAZE; SIZE-DISTRIBUTION; AIR-POLLUTION; SPLAT II AB Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 mu m (N-a>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm(-3), with the higher N-a>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing N-a>120, driven mostly by an increase in mean sizes of particles with increasing N-a>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing N-a>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 mu m) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface. C1 [Shantz, N. C.; Gultepe, I.; Earle, M. E.; Macdonald, A. M.; Liu, P. S. K.; Leaitch, W. R.] Environm Canada, Sci & Technol Branch, Toronto, ON, Canada. [Andrews, E.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Andrews, E.] NOAA, ESRL, Global Monitoring Div, Boulder, CO USA. [Zelenyuk, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Earle, M. E.] Environm Canada, Meteorol Serv Canada, Dartmouth, NS, Canada. RP Shantz, NC (reprint author), Airzone One Ltd, 222 Matheson Blvd E, Mississauga, ON L4Z 1X1, Canada. EM nshantz@airzoneone.com FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FG02-08ER64554]; U.S. DOE, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; European fog initiative project office [COST-722]; DOE's OBER at Pacific Northwest National Laboratory (PNNL); U.S. DOE [DE-AC06-76RL0 1830] FX The authors thank G. McFarquhar, S. Ghan, W. Strapp, A. Korolev, M. Couture, J. Ogren, M. Wasey, R. Reed, K. Sung, S. Cober, and the National Research Council (NRC) of Canada piloting and technical staff. Funding for this work was provided by the Office of Biological and Environmental Research of the U.S. Department of Energy (Grant No. DE-FG02-08ER64554) through the Atmospheric Radiation Measurement (ARM) Program and the ARM Aerial Vehicle Program with contributions from the DOE Atmospheric Sciences Program (ASP), and Environment Canada. Data were obtained from the ARM Program archive, sponsored by the U.S. DOE, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Some additional funding was also provided by the European COST-722 fog initiative project office. SPLAT II was developed with the support of the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's OBER at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. DOE by Battelle Memorial Institute under contract No. DE-AC06-76RL0 1830. NR 63 TC 3 Z9 3 U1 2 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD AUG PY 2014 VL 34 IS 10 BP 3125 EP 3138 DI 10.1002/joc.3898 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN1QY UT WOS:000340359900009 ER PT J AU Ramirez, A Foxall, W AF Ramirez, Abelardo Foxall, William TI Stochastic inversion of InSAR data to assess the probability of pressure penetration into the lower caprock at In Salah SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Markov Chain Monte Carlo; InSAR data; CO2 sequestration; Leakage probability; Monitoring ID APERTURE RADAR INTERFEROMETRY; SURFACE DEFORMATION; SAR INTERFEROMETRY; CO2 INJECTION; TENSILE FAULTS; HALF-SPACE; ALGERIA; STORAGE; SHEAR; WELL AB We carried out stochastic inversions of InSAR data to assess the probability that pressure perturbations resulting from CO2 injection into well KB-502 at In Salah penetrated into the lower caprock seal above the reservoir. We employed inversions of synthetic data to evaluate the factors that affect the vertical resolution of overpressure distributions, and to assess the impact of various sources of uncertainty in prior constraints on inverse solutions. These include alternative pressure-driven deformation modes within reservoir and caprock, the geometry of a sub-vertical fracture zone in the caprock identified in previous studies, and imperfect estimates of the rock mechanical properties. Inversions of field data indicate that there is a high probability that a pressure perturbation during the first phase of injection extended upwards along the fracture zone 150 m above the reservoir, and less than 50% probability that it reached the Hot Shale unit at 1500 m depth. Within the uncertainty bounds considered, we conclude that it is very unlikely that the pressure perturbation approached within 150 m of the top of the lower caprock at the Hercynian Unconformity. The results are consistent with previous deterministic inversion and forward modeling studies. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Ramirez, Abelardo; Foxall, William] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ramirez, A (reprint author), Lawrence Livermore Natl Lab, POB 808,L-046, Livermore, CA 94550 USA. EM ramirez3@llnl.gov FU In Salah Joint Industrial Partnership; U.S. Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Fossil Energy Program FX The authors would like to acknowledge the sponsor organizations that supported this work: The In Salah Joint Industrial Partnership (JIP; BP, Statoil, and Sonatrach), and the U.S. Department of Energy, Fossil Energy Program. The JIP also provided data used in our analysis. We would like to thank in particular lain Wright, Allan Mathieson and Rob Bissell of BP and Phil Ringrose of Statoil. We are also grateful for the InSAR data processed by Tele-Rilevamento Europa and made available, along with other data sets, by the JIP. Helpful discussions with Don Vasco (Lawrence Berkeley National Laboratory) and Josh White (Lawrence Livermore National Laboratory) helped us improve our deformation modeling approach. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 28 TC 6 Z9 6 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 42 EP 58 DI 10.1016/j.ijggc.2014.05.005 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600004 ER PT J AU Yang, XJ Chen, X Carrigan, CR Ramirez, AL AF Yang, Xianjin Chen, Xiao Carrigan, Charles R. Ramirez, Abelardo L. TI Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Uncertainty quantification; CO2 saturation; Electrical resistance tomography; Parametric bootstrap; Geophysical monitoring; Nonlinear Monte Carlo inversion ID RESISTIVITY TOMOGRAPHY; STOCHASTIC INVERSION; OCCAMS INVERSION; CROSS-HOLE; INJECTION; STORAGE; KETZIN; CONVERGENCE; GERMANY; ERRORS AB A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO2 saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO2 saturation, but we focus on how the ERT observation errors propagate to the estimated CO2 saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO2 saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO2 saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO2 saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO2 saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO2 saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC. The parametric bootstrap method provides a promising alternative to the MCMC approach for fast uncertainty quantification of the underlying geophysical inverse problems. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yang, XJ (reprint author), POB 808,L-052, Livermore, CA 94551 USA. EM yang25@llnl.gov RI Chen, Xiao/K-3070-2014 FU U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) [FC26-05NT42590]; Denbury Onshore LLC; Susan Hovorka of Bureau of Economic Geology at the University of Texas at Austin; U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX We appreciate two anonymous reviewers who are real experts in the field of uncertainty quantification, inverse problems and monitoring of carbon sequestration. Their thoughtful and inspiring comments and suggestions helped improve the quality of this paper significantly. We would like to thank Robert J. Butsch of Schlumberger Carbon Services for providing electrode depth data based on his Array Induction Tool (AIT) logs. We thank Multi-Phase Technologies in Sparks, NV for collection of all ERT data. This ERT monitoring project was hosted by Southeast Regional Carbon Sequestration Partnership (SECARB), led by Southern States Energy Board, and funded by U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number FC26-05NT42590. We thank the site host Denbury Onshore LLC for its support. We are also thankful for Susan Hovorka of Bureau of Economic Geology at the University of Texas at Austin for her support and coordination of the SECARB Cranfield projects. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. LLNL IM release number is LLNL-JRNL-642507. NR 35 TC 6 Z9 6 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 59 EP 68 DI 10.1016/j.ijggc.2014.05.006 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600005 ER PT J AU Hou, ZS Bacon, DH Engel, DW Lin, G Fang, YL Ren, HY Fang, ZF AF Hou, Zhangshuan Bacon, Diana H. Engel, Dave W. Lin, Guang Fang, Yilin Ren, Huiying Fang, Zhufeng TI Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; Uncertainty quantification; Wellbore leakage; Response surface; Adaptive sampling ID GEOLOGIC CARBON SEQUESTRATION; HYDRAULIC CONDUCTIVITY; SYSTEM MODEL; STORAGE; RISKS; SITE; QUANTIFICATION; INJECTION; FRAMEWORK; EQUATION AB This study focused on CO2 plume expansion subsequent to wellbore CO2 leakage into a shallow unconfined aquifer post-CO2 injection. The target response variables included CO2 plume size, as well as flux to the atmosphere. Many processes contribute to CO2 plume expansion in the aquifer; here we considered process and model parameters including those affecting the abandoned well leak rate, aquifer hydraulic properties, and aquifer geochemistry. In order to identify the significant factors affecting leakage, we adopted an uncertainty quantification framework to quantify input uncertainty, generate exploratory samples effectively, perform scalable numerical simulations, visualize output uncertainty, and evaluate input-output relationships. We combined quasi-Monte Carlo and adaptive sampling approaches to reduce the number of forward calculations while fully exploring the input parameter space and quantifying the output uncertainty. The CO2 migration was simulated with STOMP-CO2 (water-salt-CO2 module). Response surfaces of model outputs were built with respect to input parameters to determine the individual and combined effects. Four most significant parameters were identified to be dominating the CO2 plume expansion process subsequent to wellbore CO2 leakage: distance between the leaky and injection wells, maximum leakage rate, porosity, and hydraulic conductivity. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hou, Zhangshuan; Bacon, Diana H.; Fang, Yilin; Ren, Huiying; Fang, Zhufeng] Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA 99352 USA. [Engel, Dave W.; Lin, Guang] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Hou, ZS (reprint author), Pacific NW Natl Lab, Earth Syst Sci Div, POB 999, Richland, WA 99352 USA. EM zhangshuan.hou@pnnl.gov RI Hou, Zhangshuan/B-1546-2014; Fang, Yilin/J-5137-2015; OI Hou, Zhangshuan/0000-0002-9388-6060; Bacon, Diana/0000-0001-9122-5333; Fang, Zhufeng/0000-0002-7085-8016 FU National Risk Assessment Partnership (NRAP) Project within the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program; Pacific Northwest National Laboratory (PNNL) Carbon Sequestration Initiative; U.S. Department of Energy [DE-AC05-76RL01830] FX Funding for this research was provided by the National Risk Assessment Partnership (NRAP) Project within the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program, and by the Pacific Northwest National Laboratory (PNNL) Carbon Sequestration Initiative. The study was conducted at the Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. The research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. NR 58 TC 3 Z9 3 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 69 EP 80 DI 10.1016/j.ijggc.2014.05.004 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600006 ER PT J AU Cantrell, KJ Brown, CF AF Cantrell, Kirk J. Brown, Christopher F. TI Source term modeling for evaluating the potential impacts to groundwater of fluids escaping from a depleted oil reservoir used for carbon sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; scCO(2); Crude oil; Benzene; BTEX; PAH ID EQUATION-OF-STATE; CHEMICAL-CHARACTERIZATION; CO2 SEQUESTRATION; PHASE-BEHAVIOR; REDLICH-KWONG; EXTRACTION; FRACTIONS; CONSTANTS; TRANSPORT; AQUIFERS AB In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases (oil, vapor, and brine) within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Three model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The three cases were 50 wt.% oil and 50 wt.% water, 90 wt.% CO2 and 10 wt.% oil, and 90 wt.% CO2, 5 wt.% oil, and 5% wt.% water. Several key organic compounds were considered in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system of the scenario under investigation (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for the modeled oil reservoir conditions (75 degrees C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1520 kPa and 25 degrees C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cantrell, Kirk J.; Brown, Christopher F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cantrell, KJ (reprint author), Pacific NW Natl Lab, POB 999,Mail Stop P7-54, Richland, WA 99352 USA. EM kirk.cantrell@pnnl.gov FU National Risk Assessment Partnership (NRAP) in the U.S. DOE Office of Fossil Energy's Carbon Sequestration Program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX Funding for this research was provided by the National Risk Assessment Partnership (NRAP) in the U.S. DOE Office of Fossil Energy's Carbon Sequestration Program. Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 39 TC 2 Z9 2 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 139 EP 145 DI 10.1016/j.ijggc.2014.05.009 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600010 ER PT J AU Rasmusson, K Rasmusson, M Fagerlund, F Bensabat, J Tsang, Y Niemi, A AF Rasmusson, K. Rasmusson, M. Fagerlund, F. Bensabat, J. Tsang, Y. Niemi, A. TI Analysis of alternative push-pull-test-designs for determining in situ residual trapping of carbon dioxide SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2; CCS; Site characterization; Field test; Residual saturation; Single-well test ID SINGLE-WELL; CO2 INJECTION; 2-PHASE FLOW; 3 SANDSTONES; SATURATION; RESERVOIR AB Carbon dioxide storage in deep saline aquifers is a promising technique to reduce direct emissions of greenhouse gas to the atmosphere. To ensure safe storage the in situ trapping mechanisms, residual trapping being one of them, need to be characterized. This study aims to compare three alternative single-well carbon dioxide push-pull test sequences for their ability to quantify residual gas trapping. The three tests are based on the proposed test sequence by Zhang et al. (2011) for estimating residual gas saturation. A new alternative way to create residual gas conditions in situ incorporating withdrawal and a novel indicator-tracer approach has been investigated. Further the value of additional pressure measurements from a nearby passive observation well was evaluated. The iTOUGH2 simulator with the EOS7C module was used for sensitivity analysis and parameter estimation. Results show that the indicator-tracer approach could be used to create residual conditions without increasing estimation uncertainty of S-gr. Additional pressure measurements from a passive observation well would reduce the uncertainty in the S-gr estimate. The findings of the study can be used to develop field experiments for site characterization. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Rasmusson, K.; Rasmusson, M.; Fagerlund, F.; Niemi, A.] Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden. [Bensabat, J.] Environm & Water Resources Engn Ltd, IL-31067 Haifa, Israel. [Tsang, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Rasmusson, K (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, SE-75236 Uppsala, Sweden. EM kristina.rasmusson@geo.uu.se FU European Community [227286]; SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) [p2007023] FX The research leading to these results has received funding from the European Community's 7th Framework Programme FP7/2007-2013 under grant agreement no 227286, project MUSTANG. The computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project p2007023. We would like to thank the two anonymous reviewers for their review and constructive comments for improvement of the manuscript. NR 27 TC 8 Z9 8 U1 0 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 155 EP 168 DI 10.1016/j.ijggc.2014.05.008 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600012 ER PT J AU Zhang, LW Dzombak, DA Nakles, DV Hawthorne, SB Miller, DJ Kutchko, BG Lopano, CL Strazisar, BR AF Zhang, Liwei Dzombak, David A. Nakles, David V. Hawthorne, Steven B. Miller, David J. Kutchko, Barbara G. Lopano, Christina L. Strazisar, Brian R. TI Rate of H2S and CO2 attack on pozzolan-amended Class H well cement under geologic sequestration conditions SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Alteration rate; Wellbore cement; Carbon sequestration; Acid gas; CO2; H2S ID COAL FLY-ASH; STORAGE-CONDITIONS; CATALYTIC-OXIDATION; PURE WATER; MODEL; TEMPERATURE; SOLUBILITY; TRANSPORT; FLUIDS AB Experiments were conducted to investigate the rates of H2S and CO2 alteration of pozzolan-amended wellbore cement (35 vol% pozzolan-65 vol% cement), so as to evaluate the potential impact of H2S and CO2 induced degradation of existing cemented wells present at acid gas co-sequestration sites. In the exposure experiments, pozzolan-amended cement samples were mixed, cured and exposed to mixtures of H2S and CO2 under lab-simulated geologic sequestration conditions (50 degrees C and 15.2 MPa) for 2.5, 9,28 and 90 days. Measurement of the carbon alteration front was used to calculate the rate of CO2 alteration of pozzolan-amended cement exposed to a mixture of 79 mol% CO2 and 21 mol% H2S under geologic sequestration conditions in exposure periods of 0-90 days. Average CO2 alteration rates (rate of movement of CaCO3 precipitation front) were 3.3 x 10(-3) mm/day and 3.2 x 10(-3) mm/day for cement samples exposed to a 1% NaCl solution saturated with CO2 and H2S, and those in contact with a supercritical mixture of CO2 and H2S, respectively. Two scenarios were considered for measuring and quantifying alteration caused by H2S over the exposure periods of 0-90 days: sulfur-rich zone thickness, and sulfur alteration index. The average rate of H2S alteration determined by sulfur-rich zone thickness divided by exposure duration was 4.3 x 10(-3) mm/day for cement exposed to 1% NaCl solution saturated with CO2 and H2S, and the average rate of H2S alteration determined by sulfur alteration index divided by exposure duration was 8.2 x 10(-3) day(-1). Cement exposed to a supercritical mixture of CO2 and H2S result in H2S alteration rates determined by sulfur-rich zone thickness divided by exposure duration of 3.1 x 10(-3) mm/day, and average rates of H2S alteration determined by sulfur alteration index divided by exposure duration of 6.3 x 10(-3) day(-1). Sulfur alteration index results also show that H2S was able to penetrate to the core of pozzolan-amended wellbore cement after 2.5 days of exposure, though this was not readily apparent in the sulfur-rich zone thickness results. Sulfur-rich zone thickness is best used to describe high-level sulfur alteration in the rim of samples. The results indicate that (1) an aqueous environment is more favorable for H2S attack on pozzolan-amended cement than a supercritical CO2 and H2S environment; (2) for 90 days of exposure significant alteration induced by H2S and CO2 occurs at regions very close to the fluid/cement interface; (3) H2S penetrates pozzolan-amended cement more rapidly than CO2 in aqueous contact environments. In contrast, under supercritical liquid environment, H2S and CO2 have similar penetration rates in pozzolan-amended cement. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhang, Liwei; Dzombak, David A.; Nakles, David V.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Hawthorne, Steven B.; Miller, David J.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. [Kutchko, Barbara G.; Lopano, Christina L.; Strazisar, Brian R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Zhang, LW (reprint author), Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. EM zlwe88@gmail.com FU U.S. Department of Energy through National Energy Technology Laboratory [RES1000025]; Carnegie Mellon University FX The work was supported by the U.S. Department of Energy through National Energy Technology Laboratory contract RES1000025 with Carnegie Mellon University. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The authors thank Ron Ripper of the Civil and Environmental Engineering laboratories of Carnegie Mellon, and Tom Nuhfer and Jason Wolf of the Material Science and Engineering laboratories of Carnegie Mellon for their assistance and training with different apparatuses. NR 38 TC 6 Z9 6 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 299 EP 308 DI 10.1016/j.ijggc.2014.02.013 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600024 ER PT J AU Zhang, LW Dzombak, DA Nakles, DV Hawthorne, SB Miller, DJ Kutchko, B Lopano, C Strazisar, B AF Zhang, Liwei Dzombak, David A. Nakles, David V. Hawthorne, Steven B. Miller, David J. Kutchko, Barbara Lopano, Christina Strazisar, Brian TI Effect of exposure environment on the interactions between acid gas (H2S and CO2) and pozzolan-amended wellbore cement under acid gas co-sequestration conditions SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; Cement; Fly ash; Acid gas; CO2; H2S ID PORTLAND-CEMENT; INJECTION; MIXTURES; STORAGE; ALBERTA; CANADA; EDS AB Laboratory experiments were conducted to determine the effect of exposure environment on the integrity of pozzolan-amended Class H cement under geologic acid gas co-sequestration conditions. Cement was exposed to two potential subsurface storage environments: (1) a supercritical mixture of CO2/H2S and (2) a CO2/H2S saturated brine. Results show that cement alteration is dependent on the amount of pozzolan addition. The alteration rate and mechanism also differ for the two exposure scenarios. Cement containing 35% pozzolan amounts by volume (hereafter referred to as 35 vol% pozzolan cement) exposed to the aqueous environment was more vulnerable to alteration, compared with the same pozzolan content cement exposed to a supercritical mixture of CO2/H2S (21 mol% H2S). Specifically, 35 vol% pozzolan cement exposed to the aqueous environment exhibited a higher level of mineral dissolution (e.g., C-S-H, 3CaO center dot SiO2, 2CaO center dot SiO2, etc.) and a higher degree of sulfur alteration than the same pozzolan content samples exposed to the supercritical mixture of CO2-H2S (21 mol% H2S). Different from the 35 vol% pozzolan cement, the cement containing 65% pozzolan by volume (hereafter referred to as 65 vol% pozzolan cement) was more susceptible to alteration in the supercritical CO2/H2S (21 mol% H2S) environment, compared with the same pozzolan content cement exposed to the aqueous environment. Increasing the H2S mol% in the supercritical phase from 21 mol% to 40 mol% increased the alteration of cement exposed to both exposure environments. The 65 vol% pozzolan cement was more resistant to H2S and CO2 alteration than the 35 vol% pozzolan cement if the H2S content was high (i.e., 40 mol%), while the 35 vol% pozzolan cement was more resistant to H2S and CO2 alteration than the 65 vol% pozzolan cement if the H2S content was relatively low (i.e., 21 mol%). It was observed that while the two related exposure environments resulted in different degrees of cement alteration, the exposure environments did not result in the formation of different minerals. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhang, Liwei; Kutchko, Barbara; Lopano, Christina; Strazisar, Brian] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Dzombak, David A.; Nakles, David V.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Hawthorne, Steven B.; Miller, David J.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. RP Zhang, LW (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM zlwe88@gmail.com FU U.S. Department of Energy through National Energy Technology Laboratory [RES1000025]; Carnegie Mellon University FX The work was supported by the U.S. Department of Energy through National Energy Technology Laboratory contract RES1000025 with Carnegie Mellon University. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The authors thank Ron Ripper of the Civil and Environmental Engineering laboratories of Carnegie Mellon, and Tom Nuhfer and Jason Wolf of the Material Science and Engineering laboratories of Carnegie Mellon for their assistance and training with different apparatuses. NR 33 TC 5 Z9 6 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2014 VL 27 BP 309 EP 318 DI 10.1016/j.ijggc.2014.06.030 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AN1CF UT WOS:000340319600025 ER PT J AU Heller, WT Urban, VS Lynn, GW Weiss, KL O'Neill, HM Pingali, SV Qian, S Littrell, KC Melnichenko, YB Buchanan, MV Selby, DL Wignall, GD Butler, PD Myles, DA AF Heller, William T. Urban, Volker S. Lynn, Gary W. Weiss, Kevin L. O'Neill, Hugh M. Pingali, Sai Venkatesh Qian, Shuo Littrell, Kenneth C. Melnichenko, Yuri B. Buchanan, Michelle V. Selby, Douglas L. Wignall, George D. Butler, Paul D. Myles, Dean A. TI The Bio-SANS instrument at the High Flux Isotope Reactor of Oak Ridge National Laboratory SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID SMALL-ANGLE NEUTRON; LIQUID 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; MACROMOLECULAR CRYSTALLOGRAPHY; SCATTERING INSTRUMENT; PROTEIN; RESOLUTION; FACILITY; TEMPERATURE; POSITIONS; CELLULOSE AB Small-angle neutron scattering (SANS) is a powerful tool for characterizing complex disordered materials, including biological materials. The Bio-SANS instrument of the High Flux Isotope Reactor of Oak Ridge National Laboratory (ORNL) is a high-flux low-background SANS instrument that is, uniquely among SANS instruments, dedicated to serving the needs of the structural biology and biomaterials communities as an open-access user facility. Here, the technical specifications and performance of the Bio-SANS are presented. Sample environments developed to address the needs of the user program of the instrument are also presented. Further, the isotopic labeling and sample preparation capabilities available in the Bio-Deuteration Laboratory for users of the Bio-SANS and other neutron scattering instruments at ORNL are described. Finally, a brief survey of research performed using the Bio-SANS is presented, which demonstrates the breadth of the research that the instrument's user community engages in. (C) 2014 International Union of Crystallography C1 [Heller, William T.; Urban, Volker S.; Weiss, Kevin L.; O'Neill, Hugh M.; Pingali, Sai Venkatesh; Qian, Shuo; Melnichenko, Yuri B.; Wignall, George D.; Myles, Dean A.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Lynn, Gary W.; Selby, Douglas L.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Littrell, Kenneth C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Buchanan, Michelle V.] Oak Ridge Natl Lab, Phys Sci Directorate, Oak Ridge, TN 37831 USA. [Butler, Paul D.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Urban, VS (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM urbanvs@ornl.gov RI Butler, Paul/D-7368-2011; Weiss, Kevin/I-4669-2013; Urban, Volker/N-5361-2015; Littrell, Kenneth/D-2106-2013; myles, dean/D-5860-2016; Buchanan, Michelle/J-1562-2016 OI O'Neill, Hugh/0000-0003-2966-5527; Weiss, Kevin/0000-0002-6486-8007; Urban, Volker/0000-0002-7962-3408; Littrell, Kenneth/0000-0003-2308-8618; Wignall, George/0000-0002-3876-3244; Pingali, Sai Venkatesh/0000-0001-7961-4176; Qian, Shuo/0000-0002-4842-828X; myles, dean/0000-0002-7693-4964; Buchanan, Michelle/0000-0002-8078-4575 FU Office of Biological and Environmental Research of the US Department of Energy [FWP ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This publication is dedicated to the memory of Ralph M. Moon, a pioneer in neutron scattering techniques who built his reputation on neutron polarization analysis and studies of antiferromagnetism. In the late 1990s, he worked with John B. Hayter to develop a proposal for a major upgrade of the neutron scattering facilities at the High Flux Isotope Reactor. His reputation was an important factor in securing the investment in the future of neutron scattering at HFIR. He investigated various options for small-angle scattering instruments at the facility, and his design parameters were ultimately used for the Bio-SANS and its companion instrument the GP-SANS (Wignall et al., 2012). The authors wish to thank R. Summers, J. Wenzel and D. Armitage for assistance preparing the engineering schematics of the Bio-SANS detector, the sample cell holder of the sample tumbler and the GISANS goniometer, respectively. The Oak Ridge National Laboratory Center for Structural Molecular Biology (FWP ERKP291) is supported by the Office of Biological and Environmental Research of the US Department of Energy and provided support for WTH, VSU, GWL, DAM, KLW, HMON, SVP and SQ. Development of the Bio-Deuteration Laboratory and some sample environment capabilities were supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Research at the High Flux Isotope Reactor and the Spallation Neutron Source of Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 49 TC 14 Z9 14 U1 3 U2 30 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1238 EP 1246 DI 10.1107/S1600576714011285 PN 4 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000009 ER PT J AU Yang, X Juhas, P Billinge, SJL AF Yang, X. Juhas, P. Billinge, S. J. L. TI On the estimation of statistical uncertainties on powder diffraction and small-angle scattering data from two-dimensional X-ray detectors SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID RIETVELD; REGRESSION; SOFTWARE AB Optimal methods are explored for obtaining one-dimensional powder pattern intensities from two-dimensional planar detectors with good estimates of their standard deviations. Methods are described to estimate uncertainties when the same image is measured in multiple frames as well as from a single frame. The importance of considering the correlation of diffraction points during the integration and the resampling process of data analysis is shown. It is found that correlations between adjacent pixels in the image can lead to seriously overestimated uncertainties if such correlations are neglected in the integration process. Off-diagonal entries in the variance-covariance (VC) matrix are problematic as virtually all data processing and modeling programs cannot handle the full VC matrix. It is shown that the off-diagonal terms come mainly from the pixel-splitting algorithm used as the default integration algorithm in many popular two-dimensional integration programs, as well as from rebinning and resampling steps later in the processing. When the full VC matrix can be propagated during the data reduction, it is possible to get accurate refined parameters and their uncertainties at the cost of increasing computational complexity. However, as this is not normally possible, the best approximate methods for data processing in order to estimate uncertainties on refined parameters with the greatest accuracy from just the diagonal variance terms in the VC matrix is explored. (C) 2014 International Union of Crystallography C1 [Yang, X.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Juhas, P.; Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sb2896@columbia.edu RI Yang, Xiaohao/H-3977-2013; OI Yang, Xiaohao/0000-0001-6136-3575; Juhas, Pavol/0000-0001-8751-4458 FU Laboratory Directed Research and Development (LDRD) Program at the Brookhaven National Laboratory - US Department of Energy Office of Basic Energy Sciences (DOE-BES) [12-007, DE-AC02-98CH10886]; DOE-BES [W-31-109-Eng-38] FX We would like to thank E. Bozin for assistance with the experimental setup and data collection. This work is supported by Laboratory Directed Research and Development (LDRD) Program 12-007 (Complex Modeling) at the Brookhaven National Laboratory, which is funded by the US Department of Energy Office of Basic Energy Sciences (DOE-BES) through grant DE-AC02-98CH10886. The APS at Argonne National Laboratory is supported by DOE-BES under contract No. W-31-109-Eng-38. NR 27 TC 7 Z9 7 U1 1 U2 10 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1273 EP 1283 DI 10.1107/S1600576714010516 PN 4 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000014 ER PT J AU Stoupin, S Terentyev, SA Blank, VD Shvyd'ko, YV Goetze, K Assoufid, L Polyakov, SN Kuznetsov, MS Kornilov, NV Katsoudas, J Alonso-Mori, R Chollet, M Feng, Y Glownia, JM Lemke, H Robert, A Sikorski, M Song, S Zhu, D AF Stoupin, S. Terentyev, S. A. Blank, V. D. Shvyd'ko, Yu. V. Goetze, K. Assoufid, L. Polyakov, S. N. Kuznetsov, M. S. Kornilov, N. V. Katsoudas, J. Alonso-Mori, R. Chollet, M. Feng, Y. Glownia, J. M. Lemke, H. Robert, A. Sikorski, M. Song, S. Zhu, D. TI All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID FREE-ELECTRON LASER; ADVANCED PHOTON SOURCE AB A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of similar to 100 mu m, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 mm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 x 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 x 2 mm working regions of the crystals. C1 [Stoupin, S.; Shvyd'ko, Yu. V.; Goetze, K.; Assoufid, L.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Terentyev, S. A.; Blank, V. D.; Polyakov, S. N.; Kuznetsov, M. S.; Kornilov, N. V.] Technol Inst Superhard & Novel Carbon Mat, Troitsk, Russia. [Polyakov, S. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Katsoudas, J.] IIT, Chicago, IL 60616 USA. [Alonso-Mori, R.; Chollet, M.; Feng, Y.; Glownia, J. M.; Lemke, H.; Robert, A.; Sikorski, M.; Song, S.; Zhu, D.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sstoupin@aps.anl.gov RI BM, MRCAT/G-7576-2011; Blank, Vladimir/A-5577-2014; Lemke, Henrik Till/N-7419-2016 OI Lemke, Henrik Till/0000-0003-1577-8643 FU Russian Ministry of Education and Science [16.552.11.7014]; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX B. Stephenson and L. Young are acknowledged for their support and interest in this work. The help of our colleagues J. Maj, X. Huang, I. Lemesh and S. Marathe is greatly appreciated. V. Srinivasan is acknowledged for engineering support of the project at the LCLS. The present work was supported through a research grant from the Russian Ministry of Education and Science (contract No. 16.552.11.7014). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357. MRCAT operations are supported by the US Department of Energy and the MRCAT member institutions. NR 24 TC 17 Z9 17 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1329 EP 1336 DI 10.1107/S1600576714013028 PN 4 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000020 ER PT J AU Ashkar, R Pynn, R Dalgliesh, R Lavrik, NV Kravchenko, II AF Ashkar, Rana Pynn, Roger Dalgliesh, Robert Lavrik, Nickolay V. Kravchenko, Ivan I. TI A new approach for probing matter in periodic nanoconfinements using neutron scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID PHASE-OBJECT APPROXIMATION; SMALL-ANGLE; ORDERING PHENOMENA; DYNAMICAL THEORY; DIFFRACTION; MICROROBOTS; CHIP AB The efficacy of spin-echo small-angle neutron scattering (SESANS) combined with an exact dynamical theory (DT) model in resolving the arrangement of spherical colloidal particles in planar confinements, such as the channels of a rectangular diffraction grating, is reported. SESANS data obtained with a suspension of charge-stabilized 180 nm silica particles in contact with a silicon diffraction grating, with similar to 650 nm-wide channels, show clear deviations from the signal expected from a homogenous distribution of the suspension. DT fits to the data indicate that the colloidal particles are almost twice as concentrated in the channels as they are in the neighboring bulk suspension, consistent with a structure in which the particles are arranged in close-packed sheets parallel to the walls of the confining channels. (C) 2014 International Union of Crystallography C1 [Ashkar, Rana; Pynn, Roger] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Ashkar, Rana; Pynn, Roger] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Pynn, Roger] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Dalgliesh, Robert] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, Oxon, England. [Lavrik, Nickolay V.; Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ashkar, R (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. EM rashkar@umd.edu RI Kravchenko, Ivan/K-3022-2015; Lavrik, Nickolay/B-5268-2011; OI Kravchenko, Ivan/0000-0003-4999-5822; Lavrik, Nickolay/0000-0002-9543-5634; Ashkar, Rana/0000-0003-4075-2330 FU US Department of Energy through Office of Basic Energy Sciences, Division of Material Science and Engineering [DE-FG02-09ER46279]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We would like to thank Dr Maximilian Skoda for his help and guidance with the design of a sample cell. RA and RP are grateful to Professor Bogdan Dragnea and Dr Irina Svetskova at the Chemistry Department at Indiana University for their assistance and advice in the preparation of the colloidal samples. This work was supported by the US Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering (grant No. DE-FG02-09ER46279). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We thank the ISIS facility and the Science and Technology Facilities Council for the provision of beamtime. NR 28 TC 2 Z9 2 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1367 EP 1373 DI 10.1107/S1600576714013387 PN 4 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000023 ER PT J AU Coates, L Tomanicek, S Schrader, TE Weiss, KL Ng, JD Juttner, P Ostermann, A AF Coates, Leighton Tomanicek, Stephen Schrader, Tobias E. Weiss, Kevin L. Ng, Joseph D. Juettner, Philipp Ostermann, Andreas TI Cryogenic neutron protein crystallography: routine methods and potential benefits SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID X-RAY AB The use of cryocooling in neutron diffraction has been hampered by several technical challenges, such as the need for specialized equipment and techniques. This article reports the recent development and deployment of equipment and strategies that allow routine neutron data collection on cryocooled crystals using off-the-shelf components. This system has several advantages compared to a closed displex cooling system, such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at the FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure, a full neutron data set was collected on the BIODIFF instrument on a Toho-1 beta-lactamase structure at 100 K. (C) 2014 International Union of Crystallography C1 [Coates, Leighton; Weiss, Kevin L.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Tomanicek, Stephen] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Schrader, Tobias E.] Forschungszentrum Julich, JCNS, Outstn MLZ, D-85747 Garching, Germany. [Ng, Joseph D.] Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA. [Juettner, Philipp] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM 2, D-85748 Garching, Germany. [Ostermann, Andreas] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, D-85748 Garching, Germany. RP Coates, L (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM coatesl@ornl.gov RI Weiss, Kevin/I-4669-2013; OI Weiss, Kevin/0000-0002-6486-8007; Schrader, Tobias Erich/0000-0001-5159-0846 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); US Department of Energy [DE-AC05-00OR22725]; Office of Biological and Environmental Research FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle LLC for the US Department of Energy under contract No. DE-AC05-00OR22725. The Office of Biological and Environmental Research supported research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB), using facilities supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We thank Robert Standaert for synthesis of the perdeuterated BZB inhibitor. NR 12 TC 7 Z9 7 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1431 EP 1434 DI 10.1107/S1600576714010772 PN 4 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000030 ER PT J AU Parkhurst, JM Brewster, AS Fuentes-Montero, L Waterman, DG Hattne, J Ashton, AW Echols, N Evans, G Sauter, NK Winter, G AF Parkhurst, James M. Brewster, Aaron S. Fuentes-Montero, Luis Waterman, David G. Hattne, Johan Ashton, Alun W. Echols, Nathaniel Evans, Gwyndaf Sauter, Nicholas K. Winter, Graeme TI dxtbx: the diffraction experiment toolbox SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Software Review ID COLLECTION; PYTHON AB Data formats for recording X-ray diffraction data continue to evolve rapidly to accommodate new detector technologies developed in response to more intense light sources. Processing the data from single-crystal X-ray diffraction experiments therefore requires the ability to read, and correctly interpret, image data and metadata from a variety of instruments employing different experimental representations. Tools that have previously been developed to address this problem have been limited either by a lack of extensibility or by inconsistent treatment of image metadata. The dxtbx software package provides a consistent interface to both image data and experimental models, while supporting a completely generic user-extensible approach to reading the data files. The library is written in a mixture of C++ and Python and is distributed as part of the cctbx under an open-source licence at http://cctbx.sourceforge.net. C1 [Parkhurst, James M.; Fuentes-Montero, Luis; Ashton, Alun W.; Evans, Gwyndaf; Winter, Graeme] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Brewster, Aaron S.; Hattne, Johan; Echols, Nathaniel; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Waterman, David G.] STFC Rutherford Appleton Lab, Didcot OX11 0FA, Oxon, England. [Waterman, David G.] Rutherford Appleton Lab, CCP4, Didcot OX11 0FA, Oxon, England. RP Winter, G (reprint author), Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. EM graeme.winter@diamond.ac.uk RI Sauter, Nicholas/K-3430-2012; OI Evans, Gwyndaf/0000-0002-6079-2201 FU European Community's Seventh Framework Programme (FP7) under BioStruct-X [283570]; US National Institutes of Health/National Institute of General Medical Sciences [R01GM095887]; National Institutes of Health/National Institute of General Medical Sciences [1P01GM063210] FX JMP and LFM were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement No. 283570). ASB, JH and NKS were supported by the US National Institutes of Health/National Institute of General Medical Sciences grant R01GM095887. NE was supported by the National Institutes of Health/National Institute of General Medical Sciences grant 1P01GM063210 to Paul Adams (LBNL), which also supports the broad development of the cctbx. NR 17 TC 6 Z9 6 U1 0 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2014 VL 47 BP 1459 EP 1465 DI 10.1107/S1600576714011996 PN 4 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AN1RT UT WOS:000340362000036 PM 25242914 ER PT J AU Newsom, RK Berg, LK Pekour, M Fast, J Xu, Q Zhang, PF Yang, Q Shaw, WJ Flaherty, J AF Newsom, Rob K. Berg, Larry K. Pekour, Mikhail Fast, Jerome Xu, Qin Zhang, Pengfei Yang, Qing Shaw, William J. Flaherty, Julia TI Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID ERROR COVARIANCE FUNCTIONS; QUALITY-CONTROL; DATA ASSIMILATION; MIGRATING BIRDS; PHOENIX-II; VELOCITY; SYSTEM; FACILITY; WSR-88D; 3DVAR AB The accuracy of winds derived from Next Generation Weather Radar (NEXRAD) level-II data is assessed by comparison with independent observations from 915-MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeastern Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory's two-dimensional variational data assimilation (2DVar) algorithm is used to retrieve wind fields from the KPDT (Pendleton, Oregon) and KMLB (Melbourne, Florida) NEXRAD radars. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of 1-2 m s(-1). Wind speed difference distributions were broad, with standard deviations in the range from 3 to 4 m s(-1). Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (similar to 300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest. C1 [Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail; Fast, Jerome; Yang, Qing; Shaw, William J.; Flaherty, Julia] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xu, Qin] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Zhang, Pengfei] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. RP Newsom, RK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-30, Richland, WA 99352 USA. EM rob.newsom@pnnl.gov RI Berg, Larry/A-7468-2016; OI Berg, Larry/0000-0002-3362-9492; Shaw, William/0000-0002-9979-1089 FU U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy; DOE [DE-AC06-76RL0 1830] FX This work was supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and made use of instrumentation provided by the DOE Office of Biological and Environmental Research Atmospheric Radiation Measurement. Program. Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC06-76RL0 1830. NR 34 TC 2 Z9 2 U1 1 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2014 VL 53 IS 8 BP 1920 EP 1931 DI 10.1175/JAMC-D-13-0297.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AN3TS UT WOS:000340512200005 ER PT J AU Li, H Nieman, R Aquino, AJA Lischka, H Tretiak, S AF Li, Hao Nieman, Reed Aquino, Adelia J. A. Lischka, Hans Tretiak, Sergei TI Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TRANSFER EXCITED-STATES; COUPLED-CLUSTER METHODS; GAUSSIAN-BASIS SETS; CONJUGATED POLYMERS; OPTICAL-EXCITATIONS; PROPAGATOR APPROACH; CONFIGURATION-INTERACTION; POLARIZATION PROPAGATOR; ELECTRONIC EXCITATIONS AB Long-range corrected time-dependent density functional theory (LC-TDDFT) has been applied to compute singlet vertical electronic excitations of oligothiophene molecules and their dimers and compared with the algebraic diagrammatic construction method to second order [ADC(2)], a wave function-based polarization propagator method. The excitation energies obtained from both methods agree to each other excellently. In particular, energetics of charge transfer states is concertedly reproduced. The linear response (LR) and the state specific (SS) approaches have been evaluated to appraise solvent effect on excited states. Benchmarked by the reference wave function method, the necessity of the SS treatment is justified in the prediction of charge transfer (CT) states under the TDDFT framework. C1 [Li, Hao; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Theoret Div, Los Alamos, NM 87545 USA. [Nieman, Reed; Aquino, Adelia J. A.; Lischka, Hans] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Lischka, Hans] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Lischka, H (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM hans.lischka@univie.ac.at; serg@lanl.gov RI Tretiak, Sergei/B-5556-2009; Lischka, Hans/A-8802-2015; Aquino, Adelia/F-3226-2016 OI Tretiak, Sergei/0000-0001-5547-3647; FU U.S. Department of Energy; Los Alamos National Laboratory (LANL) Directed Research and Development program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT) [C2013A0070]; Center for Nonlinear Studies (CNLS) at LANL; National Science Foundation [CHE-1213263]; Robert A. Welch Foundation [D-0005] FX H.L. and S.T. acknowledge support from the U.S. Department of Energy and Los Alamos National Laboratory (LANL) Directed Research and Development program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT) under Project No. C2013A0070, and Center for Nonlinear Studies (CNLS) at LANL. This work was also supported by the National Science Foundation under Project No. CHE-1213263 and by the Robert A. Welch Foundation under Grant No. D-0005. We thank Andreas Kohn, University Mainz, Germany, for providing us with the development version of Turbomole for the ADC(2) COSMO calculations. NR 92 TC 12 Z9 12 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD AUG PY 2014 VL 10 IS 8 BP 3280 EP 3289 DI 10.1021/ct500072f PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN1NS UT WOS:000340351200039 PM 26588297 ER PT J AU Benali, A Shulenburger, L Romero, NA Kim, J von Lilienfeld, OA AF Benali, Anouar Shulenburger, Luke Romero, Nichols A. Kim, Jeongnim von Lilienfeld, O. Anatole TI Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL-THEORY; MANY-ELECTRON SYSTEMS; RARE-GAS SOLIDS; DNA-BASE PAIRS; NONCOVALENT INTERACTIONS; WAVE-FUNCTIONS; STACKING INTERACTIONS; INTERACTION ENERGIES; MOLECULES; FORCES AB van der Waals forces are notoriously difficult to account for from first principles. We have performed extensive calculations to assess the usefulness and validity of diffusion quantum Monte Carlo when predicting van der Waals forces. We present converged results for noble gas solids and clusters, archetypical van der Waals dominated systems, as well as the highly relevant pi-pi stacking supramolecular complex: DNA + intercalating anticancer drug ellipticine. Analysis of the calculated binding energies underscores the existence of significant interatomic many-body contributions. C1 [Benali, Anouar; Romero, Nichols A.; von Lilienfeld, O. Anatole] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Shulenburger, Luke] Sandia Natl Labs, HEDP Theory Dept, Albuquerque, NM 87185 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [von Lilienfeld, O. Anatole] Univ Basel, Dept Chem, Inst Phys Chem, CH-4056 Basel, Switzerland. RP Benali, A (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. EM benali@anl.gov; lshulen@sandia.gov; naromero@anl.gov; jnkim@ornl.gov; anatole.vonlilienfeld@unibas.ch RI von Lilienfeld, O. Anatole/D-8529-2011 FU Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; Lockheed Martin Corporation [DE-AC04-94AL85000]; Swiss National Science foundation [PPOOP2_ 138932]; Predictive Theory and Modeling for Materials and Chemical Science program by the Basic Energy Science (BES), Department of Energy (DOE) FX We thank the authors of ref 71 (A. Tkatchenko and A. Ambrosetti) for providing an MBDr value for the ellipticine binding (Table 3). This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This work was done, in part, under the ALCF-2 Early Science Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. O.A.v.L. acknowledges finding from the Swiss National Science foundation (No. PPOOP2_ 138932). L.S., N.A.R, and J.K. are supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Basic Energy Science (BES), Department of Energy (DOE). NR 70 TC 24 Z9 24 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD AUG PY 2014 VL 10 IS 8 BP 3417 EP 3422 DI 10.1021/ct5003225 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AN1NS UT WOS:000340351200052 PM 26588310 ER PT J AU Kershenbaum, A Price, J Nagle, NN Erwin, PC AF Kershenbaum, Anne Price, Joshua Nagle, Nicholas N. Erwin, Paul Campbell TI The Pattern of Association between US Economic Indicators and Infant Mortality Rates at the State Level SO JOURNAL OF HEALTH CARE FOR THE POOR AND UNDERSERVED LA English DT Article DE Infant mortality; income; poverty; confounding factors ID INCOME INEQUALITY; UNITED-STATES; POPULATION HEALTH; WELL; OUTCOMES; POVERTY; RACE; RICH AB This cross-sectional ecological study examines the pattern of association of state income and income inequality (measured by Gini coefficient) with state infant mortality rates (IMRs) in the U.S. Scatter plots and correlation coefficients were used to examine bivariate associations and bubble plots to examine three-way relationships. Infant mortality rate was positively associated with Gini (R=0.397, p=.004) and negatively with income (R=-0.482, p <.001). However using Black and White IMRs, the associations with Gini were non-significant, but with income remained significant. The bubble plot of Gini versus White IMR (income represented by bubble size) showed increasing IMR as Gini increases and income decreases, except for a subgroup of high-gini, high-income states with low IMRs. State income appears to be a stronger and more consistent predictor of U.S. IMRs for both Black and White races and can explain the pattern of association of White IMR with state Gini coefficient. C1 [Kershenbaum, Anne; Erwin, Paul Campbell] Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA. [Price, Joshua] Univ Tennessee, Off Informat Technol, Knoxville, TN USA. [Nagle, Nicholas N.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. [Nagle, Nicholas N.] Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA. RP Kershenbaum, A (reprint author), Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA. EM annekersh@gmail.com NR 42 TC 1 Z9 1 U1 0 U2 7 PU JOHNS HOPKINS UNIV PRESS PI BALTIMORE PA JOURNALS PUBLISHING DIVISION, 2715 NORTH CHARLES ST, BALTIMORE, MD 21218-4363 USA SN 1049-2089 EI 1548-6869 J9 J HEALTH CARE POOR U JI J. Health Care Poor Underserved PD AUG PY 2014 VL 25 IS 3 BP 1432 EP 1448 PG 17 WC Health Policy & Services; Public, Environmental & Occupational Health SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA AN0XC UT WOS:000340306300035 PM 25130250 ER PT J AU Kihm, KD Hight, B Kirchoff, E Yi, H Rosenfeld, J Rawal, S Hussey, D Jacobson, D Bilheux, H Walker, L Voisin, S Pratt, D Swanson, A AF Kihm, K. D. Hight, B. Kirchoff, E. Yi, H. Rosenfeld, J. Rawal, S. Hussey, D. Jacobson, D. Bilheux, H. Walker, L. Voisin, S. Pratt, D. Swanson, A. TI Neutron Tomography of Lithium (Li) Coolant inside a Niobium (Nb) Heat Pipe SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 [Kihm, K. D.; Hight, B.; Kirchoff, E.; Yi, H.] Univ Tennessee, Knoxville, TN 37996 USA. [Rosenfeld, J.] Thermacore Inc, Lancaster, PA USA. [Rawal, S.] Lockheed Martin Space Syst Co, Denver, CO USA. [Hussey, D.; Jacobson, D.] NIST, Gaithersburg, MD 20899 USA. [Bilheux, H.; Walker, L.; Voisin, S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Pratt, D.; Swanson, A.] Air Force Res Lab, Wright Patterson AFB, OH USA. RP Kihm, KD (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Bilheux, Hassina/H-4289-2012 OI Bilheux, Hassina/0000-0001-8574-2449 NR 0 TC 0 Z9 0 U1 0 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD AUG PY 2014 VL 136 IS 8 AR 080903 PG 1 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AN2RQ UT WOS:000340433400004 ER PT J AU Sun, JG AF Sun, J. G. TI Pulsed Thermal Imaging Measurement of Thermal Properties for Thermal Barrier Coatings Based on a Multilayer Heat Transfer Model SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE thermal property; multilayer analysis; pulsed thermal imaging; thermal barrier coating ID CONDUCTIVITY; RADIOMETRY; COEFFICIENTS; DIFFUSIVITY AB Thermal properties of thermal barrier coatings (TBCs) are important parameters for the safe and efficient operation of advanced turbine engines. This paper presents a new method, the pulsed thermal imaging-multilayer analysis (PTI-MLA) method, which can measure the coating thermal conductivity and heat capacity distributions over an entire engine component surface. This method utilizes a multilayer heat transfer model to analyze the surface temperature response acquired from a one-sided pulsed thermal imaging experiment. It was identified that several experimental system parameters and TBC material parameters may affect the coating surface temperature response. All of these parameters were evaluated and incorporated as necessary into the formulations. The PTI-MLA method was demonstrated by analyzing three TBC samples, and the experimental results were compared with those obtained from other methods. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Sun, JG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sun@anl.gov FU U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development/Materials Program FX The author thanks Dr. A. M. Limarga and Dr. D. R. Clarke of Harvard University and Dr. Y. Tan of Stony Brook University for providing test specimens for this study. This work was sponsored by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development/Materials Program. NR 40 TC 5 Z9 5 U1 3 U2 15 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD AUG PY 2014 VL 136 IS 8 AR 081601 DI 10.1115/1.4027551 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AN2RQ UT WOS:000340433400026 ER PT J AU Liraz-Zaltsman, S Alexandrovich, AG Yaka, R Shohami, E Biegon, A AF Liraz-Zaltsman, S. Alexandrovich, A. G. Yaka, R. Shohami, E. Biegon, A. TI D-cycloserine improves cognitive deficits in a mouse model of global neuroinflammation with a wide treatment window - a novel treatment approach SO JOURNAL OF MOLECULAR NEUROSCIENCE LA English DT Meeting Abstract CT 22nd Annual Meeting of the Israel-Society-for-Neuroscience (ISFN) / 2nd Bi National Italy-Israel Neuroscience Meeting CY DEC 14-17, 2013 CL Eilat, ISRAEL SP Israel Soc Neuroscience C1 [Liraz-Zaltsman, S.; Alexandrovich, A. G.; Yaka, R.; Shohami, E.] Hebrew Univ Jerusalem, Dept Pharmacol, Jerusalem, Israel. [Liraz-Zaltsman, S.; Biegon, A.] Chaim Sheba Med Ctr, Joseph Sagol Neurosci Ctr, Tel Hashomer, Israel. [Biegon, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0895-8696 EI 1559-1166 J9 J MOL NEUROSCI JI J. Mol. Neurosci. PD AUG PY 2014 VL 53 SU 1 BP S79 EP S79 PG 1 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA AN3GN UT WOS:000340474000208 ER PT J AU Meyers, LA LaMont, SP Stalcup, AM Spitz, HB AF Meyers, Lisa A. LaMont, Stephen P. Stalcup, Apryll M. Spitz, Henry B. TI Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Nuclear forensics; Isotopic signatures; Uranium; Thorium; MC-ICP-MS ID ICP-MS; DEPLETED URANIUM; MASS-SPECTROMETRY; PLUTONIUM; RATIOS; SOIL AB Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures. C1 [Meyers, Lisa A.; Stalcup, Apryll M.; Spitz, Henry B.] Univ Cincinnati, Cincinnati, OH 45221 USA. [LaMont, Stephen P.] US DOE, Nucl Mat Informat Program, Washington, DC 20585 USA. RP Meyers, LA (reprint author), Univ Cincinnati, 404 Crosley Tower, Cincinnati, OH 45221 USA. EM meyersls@mail.uc.edu RI Stalcup, A. M./E-9386-2013 OI Stalcup, A. M./0000-0003-1537-0437 FU U.S. Department of Energy's Nuclear Materials Information Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Homeland Security [2012-DN-130- NF0001-02]; U.S. Department of Homeland Security, Domestic Nuclear Detection Office; U.S. Department of Defense, Defense Threat Reduction Agency FX The authors would like to thank Dr. Ross Williams from Lawrence Livermore National Laboratory for his expertise and assistance with this research. The authors would also like to thank the U.S. Department of Energy's Nuclear Materials Information Program for funding this project. This work was part performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research was part based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130- NF0001-02. This research was part performed under the Nuclear Forensics Graduate Fellowship Program, which is sponsored by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 21 TC 5 Z9 5 U1 2 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD AUG PY 2014 VL 301 IS 2 BP 307 EP 313 DI 10.1007/s10967-014-3187-x PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AN3LW UT WOS:000340490600002 ER PT J AU Terrani, KA Pint, BA Parish, CM Silva, CM Snead, LL Katoh, Y AF Terrani, Kurt A. Pint, Bruce A. Parish, Chad M. Silva, Chinthaka M. Snead, Lance L. Katoh, Yutai TI Silicon Carbide Oxidation in Steam up to 2 MPa SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE OXIDATION; CERAMIC-MATRIX COMPOSITES; SIO2 SCALE VOLATILITY; LIGHT-WATER REACTORS; SIC-FIBER; MICROSTRUCTURAL EVOLUTION; THERMODYNAMIC PROPERTIES; COMBUSTION ENVIRONMENTS; ELEVATED-TEMPERATURES; ELECTRON-MICROSCOPY AB Growth and microstructure of a protective or nonprotective SiO2 scale and the subsequent volatilization of scale formed on high-purity chemical vapor deposited (CVD) SiC and nuclear-grade SiC/SiC composites have been studied during high-temperature 100% steam exposure. The environmental parameters of interest were temperature from 1200 degrees C to 1700 degrees C, pressure of 0.1 to 2 MPa and flow velocities of 0.23 to 145 cm/s. Scale microstructure was characterized via electron microscopy and X-ray diffractometry. The Arrhenius dependence of the parabolic oxidation and linear volatilization rate constants were determined. The linear volatilization rate exhibited a strong dependence on steam partial pressure with a weaker dependence on flow velocity. At high steam pressures, the oxide scale developed substantial porosity, which significantly accelerated material recession. The dominant oxide phase for the conditions studied was cristobalite. The oxidation behavior of SiC/SiC composite was strongly dependent on the state of the surface, specifically whether steam could find easy entry into the material via surface-exposed interface layers. For the case where these as-machined interfaces were surface coated with matrix CVD SiC, composite recession was found to be essentially that of high-purity CVD SiC. C1 [Terrani, Kurt A.; Pint, Bruce A.; Parish, Chad M.; Silva, Chinthaka M.; Snead, Lance L.; Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM terranika@ornl.gov RI Parish, Chad/J-8381-2013; Pint, Bruce/A-8435-2008; Silva, Chinthaka/E-1416-2017 OI Pint, Bruce/0000-0002-9165-3335; Silva, Chinthaka/0000-0003-4637-6030 FU Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The aid and technical insights of Mike Howell, James Keiser, Dongwon Shin, Dorothy Coffey, Tom Geer, Jiageng Su, and Chunghao Shih at ORNL are gratefully acknowledged. Elizabeth Opila at University of Virginia provided valuable comments and insights. Thorough review of the manuscript by Cristian Contescu and Sebastien Dryepondt at ORNL is also recognized. The work presented in this paper was supported by the Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy, and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 83 TC 29 Z9 30 U1 7 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2014 VL 97 IS 8 BP 2331 EP 2352 DI 10.1111/jace.13094 PG 22 WC Materials Science, Ceramics SC Materials Science GA AN4AE UT WOS:000340529200001 ER PT J AU Liu, QY Bhattacharya, S Helmick, L Donegan, SP Rollett, AD Rohrer, GS Salvador, PA AF Liu, Qinyuan Bhattacharya, Sudip Helmick, Lam Donegan, Sean P. Rollett, Anthony D. Rohrer, Gregory S. Salvador, Paul A. TI Crystallography of Interfaces and Grain Size Distributions in Sr-Doped LaMnO3 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID OXIDE FUEL-CELLS; 5 MACROSCOPIC PARAMETERS; 3-DIMENSIONAL RECONSTRUCTION; (LA,SR)MNO3 ELECTRODES; INTERNAL INTERFACES; CRACK NUCLEATION; BOUNDARY ENERGY; GROWTH; MICROSTRUCTURE; CATHODES AB Grain-boundary plane distributions (GBPDs), grain size distribution (GSDs), and upper tail departure from log-normal GSDs were quantified in dense and porous La0.8Sr0.2MnO3 samples to understand expected microstructures in solid oxide fuel cells. Samples were sintered at 1450 degrees C for 4 h and then annealed between 800 degrees C and 1450 degrees C. The GBPDs and normalized GSDs reached steady state during sintering and little variation occurred during annealing. The GBPDs were nearly isotropic, with the relative areas of {001} planes being slightly higher than random (and the relative areas of {111} planes being less than random). The porous sample had an almost identical GBPD, whereas the almost isotropic pore boundary plane distribution was essentially opposite to the GBPD. The upper tails of the experimental GSDs, and several theoretical distributions, were characterized using peaks-over-threshold analysis. Dense samples, and all normal grain growth models, exhibit lower frequencies of large grains in the upper tail than would a log-normal distribution, and the experimental distributions are similar to the Mullins distribution. Porous samples, however, have an anomalous increased frequency of large grains in the upper tail, as compared to all the model distributions, even though other metrics of the microstructure indicate the dense and porous systems are similar. C1 [Liu, Qinyuan; Bhattacharya, Sudip; Helmick, Lam; Donegan, Sean P.; Rollett, Anthony D.; Rohrer, Gregory S.; Salvador, Paul A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Bhattacharya, Sudip; Helmick, Lam; Salvador, Paul A.] NETL, Morgantown, WV 26507 USA. RP Salvador, PA (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM paulsalvador@cmu.edu RI Salvador, Paul/A-9435-2011; Rollett, Anthony/A-4096-2012; Rohrer, Gregory/A-9420-2008 OI Salvador, Paul/0000-0001-7106-0017; Rollett, Anthony/0000-0003-4445-2191; Rohrer, Gregory/0000-0002-9671-3034 FU National Energy Technology Laboratory under the RDS [DE-AC26-04NT41817]; University Coal Research Program from the Department of Energy as part of the University Coal Research Program [DE-FE0003840]; Pennsylvania DCED FX The authors thank Kirk Gerdes (NETL) for useful discussions and encouragement. The project was performed in support of the National Energy Technology Laboratory's on-going research in Materials Science & Engineering: Solid Oxide Fuel Cell under the RDS contract DE-AC26-04NT41817. Authors also acknowledge support by the University Coal Research Program under Grant Number DE-FE0003840 from the Department of Energy as part of the University Coal Research Program. This work was partially supported by the Pennsylvania DCED. NR 72 TC 2 Z9 2 U1 1 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2014 VL 97 IS 8 BP 2623 EP 2630 DI 10.1111/jace.12984 PG 8 WC Materials Science, Ceramics SC Materials Science GA AN4AE UT WOS:000340529200050 ER PT J AU Thakur, VK Grewell, D Thunga, M Kessler, MR AF Thakur, Vijay Kumar Grewell, David Thunga, Mahendra Kessler, Michael R. TI Novel Composites from Eco-Friendly Soy Flour/SBS Triblock Copolymer SO MACROMOLECULAR MATERIALS AND ENGINEERING LA English DT Article DE bioplastics; biocomposites; carbohydrates; mechanical properties; protein; soy flour; triblock copolymer ID GREEN COMPOSITES; SURFACE-TREATMENT; GRAFT-COPOLYMERS; CELLULOSE; BIOCOMPOSITES; BIOPOLYMERS; PERFORMANCE; FABRICATION; POLYMER; FIBERS AB With the growing demand for bio-based materials, the present study investigates the use of soy flour (SF) as potential reinforcement in thermoplastic elastomers (TPEs). Soy and poly(styrene-butadiene-styrene) triblock copolymer composite films are prepared using conventional thermoplastic polymer processing techniques. These composite films are investigated to evaluate the influence of SF concentration on the thermo-mechanical and rheological properties. The results suggest that environmentally friendly soy flour reinforced thermoplastic elastomers exhibit excellent properties and offer great potential to replace traditional synthetic elastomeric materials. C1 [Thakur, Vijay Kumar; Thunga, Mahendra; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Grewell, David] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50011 USA. [Thunga, Mahendra; Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA. [Thakur, Vijay Kumar; Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM michaelr.kessler@wsu.edu RI Kessler, Michael/C-3153-2008; Thakur, Vijay Kumar/J-1691-2015 OI Kessler, Michael/0000-0001-8436-3447; Thakur, Vijay Kumar/0000-0002-0790-2264 FU United Soybean Board [2423]; Consortium for Plant Biotechnology Research (CPBR) through USEPA grant [EM-83438801] FX Funding from the United Soybean Board (Project 2423), and the Consortium for Plant Biotechnology Research (CPBR) through USEPA grant EM-83438801, is gratefully acknowledged. The contents of the paper are solely the responsibility of the grantee and do not necessarily represent the views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in this publication. NR 33 TC 7 Z9 7 U1 6 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-7492 EI 1439-2054 J9 MACROMOL MATER ENG JI Macromol. Mater. Eng. PD AUG PY 2014 VL 299 IS 8 BP 953 EP 958 DI 10.1002/mame.201300368 PG 6 WC Materials Science, Multidisciplinary; Polymer Science SC Materials Science; Polymer Science GA AN4CE UT WOS:000340534400004 ER PT J AU Ruberti, C Costa, A Pedrazzini, E Lo Schiavo, F Zottini, M AF Ruberti, Cristina Costa, Alex Pedrazzini, Emanuela Lo Schiavo, Fiorella Zottini, Michela TI FISSION1A, an Arabidopsis Tail-Anchored Protein, Is Localized to Three Subcellular Compartments SO MOLECULAR PLANT LA English DT Letter ID MITOCHONDRIA; PLANTS; CELLS C1 [Ruberti, Cristina; Lo Schiavo, Fiorella; Zottini, Michela] Univ Padua, Dept Biol, I-35131 Padua, Italy. [Costa, Alex] Univ Milan, Dept Biosci, I-20133 Milan, Italy. [Costa, Alex] CNR, Inst Biophys, I-20133 Milan, Italy. [Pedrazzini, Emanuela] CNR, Inst Agr Biol & Biotechnol, I-20133 Milan, Italy. RP Ruberti, C (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, 612 Wilson Rd, E Lansing, MI 48824 USA. EM cristina.ruberti@gmail.com; michela.zottini@unipd.it RI Costa, Alex/I-5172-2015; OI Costa, Alex/0000-0002-2628-1176; PEDRAZZINI, EMANUELA/0000-0002-9238-3840; Ruberti, Cristina/0000-0002-9013-1412 NR 10 TC 7 Z9 7 U1 2 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 EI 1752-9867 J9 MOL PLANT JI Mol. Plant. PD AUG PY 2014 VL 7 IS 8 BP 1393 EP 1396 DI 10.1093/mp/ssu027 PG 4 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA AN2TM UT WOS:000340438200013 PM 24658461 ER PT J AU Jain, J Mcintyre, D Ayyalasomayajula, K Dikshit, V Goueguel, C Yu-Yueh, F Singh, J AF Jain, Jinesh Mcintyre, Dustin Ayyalasomayajula, Krishna Dikshit, Vivek Goueguel, Christian Yu-Yueh, F. Singh, Jagdish TI Application of laser-induced breakdown spectroscopy in carbon sequestration research and development SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT Topical Conference on Interaction of Lasers with Atoms, Molecules and Clusters CY JAN, 2012 CL Hyderabad, INDIA DE Carbon sequestration; laser-induced breakdown spectroscopy; CO2 monitor ID BULK AQUEOUS-SOLUTIONS; OCEANIC PRESSURES; MAMMOTH MOUNTAIN; SOIL CARBON; ONLINE; LIBS; CO2 AB The success of carbon capture and storage (CCS) programme relies on the long-term isolation of CO2 from the atmosphere. Therefore, technologies concomitant to physical storage of CO2 such as reliable measurement, monitoring, and verification (MMV) techniques are needed to ensure that the integrity of the storage site is maintained. We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time monitoring capability and can be reliably used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fibre optics make it a suitable technique for real time measurements in harsh conditions and at hard-to-reach places. Proposed monitoring with LIBS includes terrestrial soil samples, water samples from monitoring wells or from different formations, air samples from monitoring wells or suspected leakage areas. This work details the laboratory scale experiments to measure carbon contents in rock, soil, aqueous, and air samples. The potential of the technology for measurements in high pressure high-temperature conditions will also be discussed. C1 [Jain, Jinesh; Mcintyre, Dustin; Ayyalasomayajula, Krishna; Goueguel, Christian] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Ayyalasomayajula, Krishna; Dikshit, Vivek; Yu-Yueh, F.; Singh, Jagdish] Mississippi State Univ, Starkville, MS 39759 USA. RP Jain, J (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM Jinesh.Jain@contr.netl.doe.gov RI Goueguel, Christian/J-9316-2015 OI Goueguel, Christian/0000-0003-0521-3446 NR 24 TC 4 Z9 4 U1 1 U2 16 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD AUG PY 2014 VL 83 IS 2 SI SI BP 179 EP 188 DI 10.1007/s12043-014-0788-4 PG 10 WC Physics, Multidisciplinary SC Physics GA AN3GU UT WOS:000340474800003 ER PT J AU Cronin, A Pulver, S Cormode, D Jordan, D Kurtz, S Smith, R AF Cronin, Alex Pulver, Stephen Cormode, Daniel Jordan, Dirk Kurtz, Sarah Smith, Ryan TI Measuring degradation rates of PV systems without irradiance data SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE degradation; yield; photovoltaic test yard; irradiance ID PERFORMANCE; RELIABILITY AB A method to report photovoltaic (PV) system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is estimated using a Bayesian statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies. Copyright (C) 2013 John Wiley & Sons, Ltd. C1 [Cronin, Alex; Pulver, Stephen; Cormode, Daniel] Univ Arizona, Tucson, AZ 85721 USA. [Jordan, Dirk; Kurtz, Sarah; Smith, Ryan] Natl Renewable Energy Lab, Golden, CO USA. RP Cronin, A (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM cronin@physics.arizona.edu FU NREL [99043]; Arizona Research Institute for Solar Energy (AZRISE); U.S. Department of Energy [DE-AC36-08-GO28308] FX This work was supported under NREL contract 99043. We acknowledge Bill Henry of TEP for providing the data. We acknowledge the Arizona Research Institute for Solar Energy (AZRISE) for financial support. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. NR 15 TC 1 Z9 1 U1 2 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2014 VL 22 IS 8 BP 851 EP 862 DI 10.1002/pip.2310 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AN4WH UT WOS:000340589300001 ER PT J AU Pantoya, M Maienschein, J AF Pantoya, Michelle Maienschein, Jon TI Safety in Energetic Materials Research and Development - Approaches in Academia and a National Laboratory SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Editorial Material C1 [Pantoya, Michelle] Texas Tech Univ, Lubbock, TX 79409 USA. [Maienschein, Jon] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Pantoya, M (reprint author), Texas Tech Univ, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu; maienschein1@llnl.gov NR 0 TC 1 Z9 1 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2014 VL 39 IS 4 BP 483 EP 485 DI 10.1002/prep.201480152 PG 3 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA AN3IY UT WOS:000340482100001 ER PT J AU Jiao, LY Ouyang, SY Shaw, N Song, GJ Feng, YG Niu, FF Qiu, WC Zhu, HT Hung, LW Zuo, XB Shtykova, VE Zhu, P Dong, YH Xu, RX Liu, ZJ AF Jiao, Lianying Ouyang, Songying Shaw, Neil Song, Gaojie Feng, Yingang Niu, Fengfeng Qiu, Weicheng Zhu, Hongtao Hung, Li-Wei Zuo, Xiaobing Shtykova, V. Eleonora Zhu, Ping Dong, Yu-Hui Xu, Ruxiang Liu, Zhi-Jie TI Mechanism of the Rpn13-induced activation of Uch37 SO PROTEIN & CELL LA English DT Article DE Uch37-Rpn13 complex; de-ubiquitination; SAXS analysis; oligomerization; iso-peptidase ID DEUBIQUITINATING ENZYME UCH37; C-TERMINAL HYDROLASES; SITE CROSSOVER LOOP; 26S PROTEASOME; SOLUTION SCATTERING; UBIQUITIN RECEPTOR; CRYSTAL-STRUCTURE; NMR; SUBSTRATE; PROTEINS AB Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homo-dimer of Uch37, each of the catalytic domains was blocking the other's ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and small-angle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37 Delta(Hb,Hc,KEKE), a truncation removal of the C-terminal extension region (residues 256-329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. We also demonstrated that Rpn13C (Rpn13 residues 270-407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub. C1 [Jiao, Lianying; Ouyang, Songying; Shaw, Neil; Niu, Fengfeng; Qiu, Weicheng; Zhu, Hongtao; Zhu, Ping; Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. [Song, Gaojie] ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China. [Feng, Yingang; Liu, Zhi-Jie] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Prov Key Lab Energy Genet, Qingdao 266101, Peoples R China. [Hung, Li-Wei] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Shtykova, V. Eleonora] Russian Acad Sci, Inst Crystallog, Moscow 117333, Russia. [Dong, Yu-Hui] Chinese Acad Sci, Inst High Energy Phys, Ctr Multidisciplinary Res, Beijing 100049, Peoples R China. [Xu, Ruxiang] Mil Gen Hosp Beijing PLA, Dept Neurosurg, Beijing 100700, Peoples R China. RP Xu, RX (reprint author), Mil Gen Hosp Beijing PLA, Dept Neurosurg, Beijing 100700, Peoples R China. EM zjxuruxiang@163.com; zjliu@ibp.ac.cn RI Feng, Yingang/B-6304-2008; Shtykova, Eleonora/G-6241-2013; OI Feng, Yingang/0000-0002-0879-1316; Shtykova, Eleonora/0000-0003-4347-7266; Hung, Li-Wei/0000-0001-6690-8458 FU National Basic Research Program (973 Program) [2014CB910400, 2013CB911103]; Ministry of Health of China [2013ZX10004-602]; National Key Technology Research and Development Program of the Ministry of Science and Technology of China [2014BAI07B02]; National Natural Science Foundation of China [31330019, 31200559]; DOE program Integrated Diffraction Analysis Technologies (IDAT); DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently (MAGGIE) [DE-AC02-05CH11231]; DOE; Office of Science, Office of Basic Energy Sciences of the DOE [DE-AC02-05CH11231]; U.S. DOE [DE-AC02-06CH11357]; National Center for Research Resources [2P41RR008630-17]; National Institute of General Medical Sciences from the National Institutes of Health [9 P41 GM103622-17] FX This work was supported by the National Basic Research Program (973 Program) (Nos. 2014CB910400 and 2013CB911103), the Ministry of Health of China (Grant No. 2013ZX10004-602), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAI07B02) and the National Natural Science Foundation of China (Grant Nos. 31330019, 31200559).; The authors would also like to thank the staff at beamline BL13.3.1 at ALS for their technical support with the SAXS data collection. BL13.3.1 is supported in part by the DOE program Integrated Diffraction Analysis Technologies (IDAT) and the DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently (MAGGIE) under Contract Number DE-AC02-05CH11231 with the DOE. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences of the DOE under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source, an Office of the Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. BioCAT was supported by grants from the National Center for Research Resources (2P41RR008630-17) and the National Institute of General Medical Sciences (9 P41 GM103622-17) from the National Institutes of Health. The authors would like to thank the staff at 12ID and 18ID for the setup support. NR 48 TC 7 Z9 8 U1 2 U2 15 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 1674-800X EI 1674-8018 J9 PROTEIN CELL JI Protein Cell PD AUG PY 2014 VL 5 IS 8 BP 616 EP 630 DI 10.1007/s13238-014-0046-z PG 15 WC Cell Biology SC Cell Biology GA AN4OD UT WOS:000340566500005 PM 24752541 ER PT J AU Li, Y Gao, WZ Jiang, JC Wang, CS Muljadi, E AF Li Yan Gao WenZhong Jiang JiuChun Wang ChenShan Muljadi, Eduard TI Unified calculation of eigen-solutions in power systems based on matrix perturbation theory SO SCIENCE CHINA-TECHNOLOGICAL SCIENCES LA English DT Article DE matrix perturbation; matrix spectrum decomposition; shift method; unified solution approach; eigen-solutions AB Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems. In this paper, a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system. Rigorous theoretical analysis is conducted on the solution of distinct, multiple, and close eigen-solutions, respectively, under perturbations of parameters. The computational flowchart of the unified solution of eigen-solutions is then proposed, aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly. Finally, the effectiveness of the matrix perturbation based approach for eigen-solutions' calculation in power systems is verified by numerical examples on a two-area four-machine system. C1 [Li Yan; Jiang JiuChun] Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China. [Li Yan; Gao WenZhong] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA. [Wang ChenShan] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gao, WZ (reprint author), Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA. EM wenzhong.gao@du.edu RI 姜, 久春/B-8896-2015 OI 姜, 久春/0000-0003-4682-9191 FU National Science Foundation of United States (NSF) [0844707]; International S&T Cooperation Program of China (ISTCP) [2013DFA60930] FX This work was supported in part by the National Science Foundation of United States (NSF) (Grant No. 0844707) and in part by the International S&T Cooperation Program of China (ISTCP) (Grant No. 2013DFA60930). NR 14 TC 0 Z9 0 U1 0 U2 7 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7321 EI 1869-1900 J9 SCI CHINA TECHNOL SC JI Sci. China-Technol. Sci. PD AUG PY 2014 VL 57 IS 8 BP 1594 EP 1601 DI 10.1007/s11431-014-5598-x PG 8 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA AN3AC UT WOS:000340456200014 ER EF