FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Iskandar, W Matsumoto, J Leredde, A Flechard, X Gervais, B Guillous, S Hennecart, D Mery, A Rangama, J Zhou, CL Shiromaru, H Cassimi, A AF Iskandar, W. Matsumoto, J. Leredde, A. Flechard, X. Gervais, B. Guillous, S. Hennecart, D. Mery, A. Rangama, J. Zhou, C. L. Shiromaru, H. Cassimi, A. TI Atomic Site-Sensitive Processes in Low Energy Ion-Dimer Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-CAPTURE; CROSS-SECTIONS; IONIZATION; MOLECULES; IMPACT; MODEL AB Electron capture processes for low energy Ar9+ ions colliding with Ar-2 dimer targets are investigated, focusing attention on charge sharing between the two Ar atoms as a function of the molecular orientation and the impact parameter. A preference for charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements here provide clear evidence that projectiles distinguish each atom in the target and that electron capture from near-site atoms is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give new insight into the dynamics of the collision by providing, for the different electron capture channels, the two-dimensional probability maps p((b) over right arrow) where (b) over right arrow is the impact parameter vector in the molecular frame. C1 [Iskandar, W.; Gervais, B.; Guillous, S.; Hennecart, D.; Mery, A.; Rangama, J.; Zhou, C. L.; Cassimi, A.] CEA, CNRS, CIMAP, ENSICAEN, F-14070 Caen 5, France. [Matsumoto, J.; Shiromaru, H.] Tokyo Metropolitan Univ, Dept Chem, Hachioji, Tokyo 1920397, Japan. [Leredde, A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Flechard, X.] Univ Caen, CNRS, IN2P3, LPC Caen,ENSICAEN, F-14050 Caen 04, France. RP Iskandar, W (reprint author), CEA, CNRS, CIMAP, ENSICAEN, BP 5133, F-14070 Caen 5, France. EM flechard@lpccaen.in2p3.fr RI RANGAMA, Jimmy/O-9880-2015; OI RANGAMA, Jimmy/0000-0002-8083-6881; Iskandar, Wael/0000-0003-4604-4431 FU TMU Research Program FX We thank the CIMAP and GANIL staff for their contribution in the preparation of the experiment. This work is partly supported by TMU Research Program in the financial years 2013-2014. NR 17 TC 5 Z9 5 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2014 VL 113 IS 14 AR 143201 DI 10.1103/PhysRevLett.113.143201 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ2TI UT WOS:000342641700002 PM 25325640 ER PT J AU Krycka, KL Borchers, JA Booth, RA Ijiri, Y Hasz, K Rhyne, JJ Majetich, SA AF Krycka, K. L. Borchers, J. A. Booth, R. A. Ijiri, Y. Hasz, K. Rhyne, J. J. Majetich, S. A. TI Origin of Surface Canting within Fe3O4 Nanoparticles SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE NEUTRON-SCATTERING; POLARIZED NEUTRONS; MAGNETITE; SEPARATION; ANISOTROPY; SANS AB The nature of near-surface spin canting within Fe3O4 nanoparticles is highly debated. Here we develop a neutron scattering asymmetry analysis which quantifies the canting angle to between 23 degrees and 42 degrees at 1.2 T. Simultaneously, an energy-balance model is presented which reproduces the experimentally observed evolution of shell thickness and canting angle between 10 and 300 K. The model is based on the concept of T-d site reorientation and indicates that surface canting involves competition between magnetocrystalline, dipolar, exchange, and Zeeman energies. C1 [Krycka, K. L.; Borchers, J. A.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Booth, R. A.; Majetich, S. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Ijiri, Y.; Hasz, K.] Oberlin Coll, Oberlin, OH 44074 USA. [Rhyne, J. J.] US DOE, Washington, DC 20585 USA. RP Krycka, KL (reprint author), NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM kathryn.krycka@nist.gov RI Majetich, Sara/B-1022-2015 OI Majetich, Sara/0000-0003-0848-9317 FU National Science Foundation [DMR-0944772, DMR-1104489]; Department of Energy [DE-FG02-08ER46481] FX This work utilized facilities supported in part by National Science Foundation Grants No. DMR-0944772 (neutron instrumentation used by all authors) and No. DMR-1104489 (Y. I.) and Department of Energy Grant No. DE-FG02-08ER46481 (S. M.). We thank W. C. Chen and S. M. Watson for their assistance with the polarized 3He spin filters and P. Kienzle for his discussions regarding locating energy minima. NR 32 TC 14 Z9 14 U1 3 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2014 VL 113 IS 14 AR 147203 DI 10.1103/PhysRevLett.113.147203 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ2TI UT WOS:000342641700005 PM 25325655 ER PT J AU Ma, YQ Qiu, JW Sterman, G Zhang, H AF Ma, Yan-Qing Qiu, Jian-Wei Sterman, George Zhang, Hong TI Factorized Power Expansion for High-p(T) Heavy Quarkonium Production SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRAGMENTATION AB We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high p(T) results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S-3(1)[1] and S-1(0)[8], are dominated by the next-to-leading power contributions for a very wide p(T) range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed. C1 [Ma, Yan-Qing; Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Qiu, Jian-Wei; Sterman, George; Zhang, Hong] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Ma, YQ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM yqma@bnl.gov; jqiu@bnl.gov; sterman@insti.physics.sunysb.edu; hong.zhang@stonybrook.edu FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; National Science Foundation [PHY-0969739, PHY-1316617] FX We thank G. T. Bodwin and Z.-B. Kang for many helpful discussions. This work was supported in part by the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 and No. DE-AC02-98CH10886, and the National Science Foundation under Grants No. PHY-0969739 and No. PHY-1316617. NR 27 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2014 VL 113 IS 14 AR 142002 DI 10.1103/PhysRevLett.113.142002 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ2TI UT WOS:000342641700001 PM 25325634 ER PT J AU Balhorn, MC Mirick, G Cheng, D Ma, ZP Lau, EY Hok, S DeNardo, GL Balhorn, R AF Balhorn, Monique C. Mirick, Gary Cheng, Dong Ma, Zhengping Lau, Edmond Y. Hok, Saphon DeNardo, Gerald L. Balhorn, Rod TI Intracellular uptake and metabolism of SH7139: Is it a targeted prodrug for B-cell lymphomas SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Balhorn, Monique C.; Balhorn, Rod] SHAL Technol Inc, Livermore, CA USA. [Mirick, Gary; DeNardo, Gerald L.] Univ Calif Davis, Davis Med Ctr, Davis, CA 95616 USA. [Cheng, Dong; Ma, Zhengping] Bristol Myers Squibb Co, Princeton, NJ USA. [Lau, Edmond Y.; Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 5460 DI 10.1158/1538-7445.AM2014-5460 PG 1 WC Oncology SC Oncology GA CB8VR UT WOS:000349910204378 ER PT J AU Balhorn, R Mirick, G DeNardo, GL Beckett, L Li, J Hok, S Balhorn, M AF Balhorn, Rodney Mirick, Gary DeNardo, Gerald L. Beckett, Laurel Li, Judy Hok, Saphon Balhorn, Monique TI Effect of route and dosing regimen on efficacy of SH7139 in mouse Burkitt's lymphoma xenografts SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Balhorn, Rodney; Balhorn, Monique] SHAL Technol Inc, Livermore, CA USA. [Mirick, Gary; DeNardo, Gerald L.; Beckett, Laurel; Li, Judy] Univ Calif Davis, Davis Med Ctr, Davis, CA 95616 USA. [Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 2703 DI 10.1158/1538-7445.AM2014-2703 PG 1 WC Oncology SC Oncology GA CB8UN UT WOS:000349906903455 ER PT J AU Horiuchi, D Zhou, AY Corella, AN Yau, C Lawson, DA Bazarov, AV Yaswen, P McManus, MT Werb, Z Welm, AL Goga, A AF Horiuchi, Dai Zhou, Alicia Y. Corella, Alexandra N. Yau, Christina Lawson, Devon A. Bazarov, Alexey V. Yaswen, Paul McManus, Michael T. Werb, Zena Welm, Alana L. Goga, Andrei TI PIM1 kinase inhibition halts the growth of MYC-overexpressing triple-negative breast tumors SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Horiuchi, Dai; Zhou, Alicia Y.; Corella, Alexandra N.; Yau, Christina; Lawson, Devon A.; Bazarov, Alexey V.; McManus, Michael T.; Werb, Zena; Goga, Andrei] UCSF, San Francisco, CA USA. [Yaswen, Paul] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Welm, Alana L.] Univ Utah, Salt Lake City, UT USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA LB-122 DI 10.1158/1538-7445.AM2014-LB-122 PG 1 WC Oncology SC Oncology GA CB8VR UT WOS:000349910205155 ER PT J AU Melchionna, R Iapicca, P Modugno, FD Trono, P Gualtieri, N Diodoro, MG Spada, S Falasca, G Grazi, GL Bissell, MJ Nistico, P AF Melchionna, Roberta Iapicca, Pierluigi Modugno, Francesca D. Trono, Paola Gualtieri, Novella Diodoro, Maria Grazia Spada, Sheila Falasca, Giuliana Grazi, Gian Luca Bissell, Mina J. Nistico, Paola TI hMENA splicing program and TGF-beta 1-mediated EMT in pancreatic cancer SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Melchionna, Roberta; Iapicca, Pierluigi; Modugno, Francesca D.; Trono, Paola; Gualtieri, Novella; Diodoro, Maria Grazia; Spada, Sheila; Falasca, Giuliana; Grazi, Gian Luca; Nistico, Paola] Regina Elena Inst Canc Res, Rome, Italy. [Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 1035 DI 10.1158/1538-7445.AM2014-1035 PG 2 WC Oncology SC Oncology GA CB8UN UT WOS:000349906900264 ER PT J AU Miller, MS Schmidt-Kittler, O Bolduc, DM Brower, ET Chaves-Moreira, D Allaire, M Kinzler, KW Jennings, IG Thompson, PE Cole, PA Amzel, LM Vogelstein, B Gabelli, SB AF Miller, Michelle S. Schmidt-Kittler, Oleg Bolduc, David M. Brower, Evan T. Chaves-Moreira, Daniele Allaire, Marc Kinzler, Kenneth W. Jennings, Ian G. Thompson, Philip E. Cole, Philip A. Amzel, L. Mario Vogelstein, Bert Gabelli, Sandra B. TI Structural basis of lipid-binding and regulation in PI3K alpha SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Miller, Michelle S.; Schmidt-Kittler, Oleg; Bolduc, David M.; Brower, Evan T.; Chaves-Moreira, Daniele; Cole, Philip A.; Amzel, L. Mario; Gabelli, Sandra B.] Johns Hopkins Univ, Sch Med, Baltimore, MD USA. [Allaire, Marc] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kinzler, Kenneth W.; Vogelstein, Bert] Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD USA. [Jennings, Ian G.; Thompson, Philip E.] Monash Inst Pharmaceut Sci, Melbourne, Vic, Australia. RI Chaves-Moreira, daniele/L-5133-2015; Gabelli, Sandra/A-3705-2008 OI Gabelli, Sandra/0000-0003-1205-5204 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA LB-326 DI 10.1158/1538-7445.AM2014-LB-326 PG 1 WC Oncology SC Oncology GA CB8VR UT WOS:000349910205362 ER PT J AU Moshfegh, A Hogfeldt, T Jaing, C Lundahl, J Osterborg, A Loughlin, KM Gardner, SN Gharizadeh, B Porwit, A Bahnassy, AA Zekri, ARN Khaled, HM Mellstedt, H AF Moshfegh, Ali Hogfeldt, Therese Jaing, Crystal Lundahl, Joachim Osterborg, Anders Loughlin, Kevin M. Gardner, Shea N. Gharizadeh, Baback Porwit, Anna Bahnassy, Abeer A. Zekri, Abdel-Rahman N. Khaled, Hussein M. Mellstedt, Hakan TI Differential expression of viral agents in lymphoma tissues of patients with ABC diffuse large B-cell lymphoma from high and low endemic infectious disease region SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Moshfegh, Ali; Hogfeldt, Therese; Lundahl, Joachim; Osterborg, Anders; Mellstedt, Hakan] Karoliniska Inst, Stockholm, Sweden. [Jaing, Crystal; Loughlin, Kevin M.; Gardner, Shea N.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gharizadeh, Baback] Stanford Univ, Palo Alto, CA 94304 USA. [Porwit, Anna] Univ Toronto, Toronto, ON, Canada. [Bahnassy, Abeer A.; Zekri, Abdel-Rahman N.; Khaled, Hussein M.] Cairo Univ, Cairo, Egypt. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 3184 DI 10.1158/1538-7445.AM2014-3184 PG 2 WC Oncology SC Oncology GA CB8VR UT WOS:000349910200188 ER PT J AU Pan, AW Wang, SS Zhang, HY Vinall, R Lin, TY Malfatti, M Zimmermann, M Scharadin, T Turteltaub, K White, RD Pan, CX Henderson, P AF Pan, Amy W. Wang, Sisi Zhang, Hongyong Vinall, Ruth Lin, Tzu-yin Malfatti, Michael Zimmermann, Maike Scharadin, Tiffany Turteltaub, Kenneth White, Ralph de Vere Pan, Chong-xian Henderson, Paul TI Molecular dissection of platinum resistance through functional analysis SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Pan, Amy W.] Univ Calif San Diego, San Diego, CA 92103 USA. [Wang, Sisi] Jilin Univ, Hosp 1, Changchun, Jilin, Peoples R China. [Zhang, Hongyong; Lin, Tzu-yin; Zimmermann, Maike; Scharadin, Tiffany; White, Ralph de Vere; Pan, Chong-xian; Henderson, Paul] Univ Calif Davis, Sacramento, CA 95817 USA. [Vinall, Ruth] Calif Northstate Univ, Coll Pharm, Rancho Cordova, CA USA. [Malfatti, Michael; Turteltaub, Kenneth] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 905 DI 10.1158/1538-7445.AM2014-905 PG 1 WC Oncology SC Oncology GA CB8UN UT WOS:000349906905365 ER PT J AU Refaat, T West, D Harris, KR Parini, V Liu, W Wanzer, B Finney, L Larson, AC Bautista, J Sathiaseelan, V Mittal, B Paunesku, T Woloschak, G AF Refaat, Tamer West, Derek Harris, Kathleen R. Parini, Vamsi Liu, William Wanzer, Beau Finney, Lydia Larson, Andrew C. Bautista, Jonathan Sathiaseelan, Vythialinga Mittal, Bharat Paunesku, Tatjana Woloschak, Gayle TI Development of Fe3O4@TiO2 core-shell nanocomposites as radiosensitizers SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Refaat, Tamer; West, Derek; Harris, Kathleen R.; Parini, Vamsi; Liu, William; Wanzer, Beau; Larson, Andrew C.; Bautista, Jonathan; Sathiaseelan, Vythialinga; Mittal, Bharat; Paunesku, Tatjana; Woloschak, Gayle] Northwestern Univ, Chicago, IL 60611 USA. [Finney, Lydia] Argonne Natl Lab, Lemont, IL USA. RI Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017 OI Paunesku, Tatjana/0000-0001-8698-2938; Woloschak, Gayle/0000-0001-9209-8954 NR 0 TC 0 Z9 0 U1 1 U2 12 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 4913 DI 10.1158/1538-7445.AM2014-4913 PG 2 WC Oncology SC Oncology GA CB8VR UT WOS:000349910203376 ER PT J AU Shi, TJ He, JT Wu, CC Fillmore, TL Schepmoes, AA Rubin, M Siddiqui, J Wei, J Chinnaiyan, A Liu, A Smith, RD Kagan, J Srivastava, S Rodland, KD Qian, WJ Liu, T Camp, DG AF Shi, Tujin He, Jintang Wu, Chaochao Fillmore, Thomas L. Schepmoes, Athena A. Rubin, Mark Siddiqui, Javed Wei, John Chinnaiyan, Arul Liu, Alvin Smith, Richard D. Kagan, Jacob Srivastava, Sudhir Rodland, Karin D. Qian, Wei-Jun Liu, Tao Camp, David G. TI An antibody-independent, complementary SRM strategy for ultrasensitive and multiplexed quantification of cancer biomarker candidates SO CANCER RESEARCH LA English DT Meeting Abstract CT 105th Annual Meeting of the American-Association-for-Cancer-Research (AACR) CY APR 05-09, 2014 CL San Diego, CA SP Amer Assoc Canc Res C1 [Shi, Tujin; He, Jintang; Wu, Chaochao; Fillmore, Thomas L.; Schepmoes, Athena A.; Smith, Richard D.; Rodland, Karin D.; Qian, Wei-Jun; Liu, Tao; Camp, David G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rubin, Mark] Weill Cornell Med Coll, New York, NY USA. [Siddiqui, Javed; Wei, John; Chinnaiyan, Arul] Univ Michigan Med Sch, Ann Arbor, MI USA. [Liu, Alvin] Univ Washington, Seattle, WA 98195 USA. [Kagan, Jacob; Srivastava, Sudhir] NCI, Rockville, MD USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2014 VL 74 IS 19 SU S MA 2483 DI 10.1158/1538-7445.AM2014-2483 PG 2 WC Oncology SC Oncology GA CB8UN UT WOS:000349906903216 ER PT J AU Pennington, MR AF Pennington, M. R. TI Why is GeV physics relevant in the age of the LHC? SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 11th International Conference on Low Energy Antiproton Physics (LEAP) CY JUN 10-15, 2013 CL Uppsala Univ, Dept Phys & Astron, Uppsala, SWEDEN SP Uppsala Univ, Dept Chem, Uppsala Univ, Angstrom Lab HO Uppsala Univ, Dept Phys & Astron DE QCD; Baryons; Mesons; Spectrum; Decays; Structure ID PARTIAL-WAVE ANALYSIS; NUCLEON; RESONANCES; REGION; MESON; PION AB The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. This physics at the GeV scale is essential even in TeV collisions. C1 Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Pennington, MR (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM michaelp@jlab.org NR 35 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD OCT PY 2014 VL 229 IS 1-3 BP 59 EP 68 DI 10.1007/s10751-014-1033-8 PG 10 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA AR9UU UT WOS:000343925100008 ER PT J AU von der Heyden, BP Hauser, EJ Mishra, B Martinez, GA Bowie, AR Tyliszczak, T Mtshali, TN Roychoudhury, AN Myneni, SCB AF von der Heyden, Bjorn P. Hauser, Emily J. Mishra, Bhoopesh Martinez, Gustavo A. Bowie, Andrew R. Tyliszczak, Tolek Mtshali, Thato N. Roychoudhury, Alakendra N. Myneni, Satish C. B. TI Ubiquitous Presence of Fe(II) in Aquatic Colloids and Its Association with Organic Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID X-RAY MICROSCOPY; IRON; OCEAN; SPECTROSCOPY; SPECIATION; REDUCTION; OXIDATION; SEDIMENTS; MINERALS; KINETICS AB Despite being thermodynamically less stable, small ferrous colloids (60 nm to 3 mu m in diameter) remain an important component of the biogeochemical cycle at the Earth's surface, yet their composition and structure and the reasons for their persistence are still poorly understood. Here we use X-ray-based Fe L-edge and carbon K-edge spectromicroscopy to address the speciation and organic-mineral associations of ferrous, ferric, and Fe-poor particles collected from sampling sites in both marine and freshwater environments. We show that Fe(II)-rich phases are prevalent throughout different aquatic regimes yet exhibit a high degree of chemical heterogeneity. Furthermore, we show that Fe-rich particles show strong associations with organic carbon. The observed association of Fe(II) particles with carboxamide functional groups suggests a possible microbial role in the preservation of Fe(II). These finding have significant implications for the behavior of Fe(II) colloids in oxygenated waters, and their role in different aquatic biogeochemical processes. C1 [von der Heyden, Bjorn P.; Roychoudhury, Alakendra N.] Univ Stellenbosch, Dept Earth Sci, ZA-7602 Matieland, South Africa. [Hauser, Emily J.; Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Mishra, Bhoopesh] IIT, Dept Phys, Chicago, IL 60616 USA. [Martinez, Gustavo A.] Univ Puerto Rico, Coll Agr Sci, Crops & Agroenvironm Dept, Mayaguez, PR USA. [Bowie, Andrew R.] Antarctic Climate & Ecosyst CRC, Hobart, Tas 7001, Australia. [Bowie, Andrew R.] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mtshali, Thato N.] CSIR, ZA-7600 Stellenbosch, South Africa. RP von der Heyden, BP (reprint author), Univ Stellenbosch, Dept Earth Sci, Private Bag X1, ZA-7602 Matieland, South Africa. EM bjorn.vonderheyden@exxaro.com OI von der Heyden, Bjorn/0000-0002-4006-9278 FU NRF, South Africa (Blue Skies Program); Stellenbosch University VR(R) fund; National Science Foundation (chemical sciences); U.S. Department of Energy (BES and SBR); Princeton in Africa program; Australia Marine National Facility; GEOTRACES; CSIR (SOCCO); IRGS Grant from the University of Tasmania [L0018934] FX This research is supported by grants from NRF, South Africa (Blue Skies Program), the Stellenbosch University VR(R) fund, the National Science Foundation (chemical sciences), the U.S. Department of Energy (BES and SBR), and the Princeton in Africa program. Field work was partly funded by the Australia Marine National Facility, GEOTRACES, CSIR (SOCCO), and IRGS Grant L0018934 from the University of Tasmania. We thank the support staff at the Advanced Light Source for helping with data collection and sample preparation. We further acknowledge J. Compton and M. Lohan and three anonymous reviewers for their useful comments during review. This is AEON publication 120. NR 30 TC 3 Z9 3 U1 6 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD OCT PY 2014 VL 1 IS 10 BP 387 EP 392 DI 10.1021/ez500164v PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JQ UT WOS:000350831600002 ER PT J AU Vandehey, NT Northen, TR Brodie, EL O'Neil, JP AF Vandehey, Nicholas T. Northen, Trent R. Brodie, Eoin L. O'Neil, James P. TI Noninvasive Mapping of Photosynthetic Heterogeneity in Biological Soil Crusts by Positron Emission Tomography: Carbon Fixation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID HYDRATION; INDEX AB Biological soil crusts (BSCs) are critical contributors to the biogeochetnistry of ecosystems in arid and semi-arid regions worldwide. Photosynthetic microorganisms such as cyanobacteria are often the predominant primary producers, fixing both carbon and nitrogen and producing polysaccharides that aid in soil stabilization. Here, we exposed BSCs to (CO2)-C-11 and quantified the spatial distribution of carbon fixation in BSCs on a millimeter scale using positron emission tomography (PET). These experiments showed that live BSCs fixed up to 20 times more carbon than abiotic controls. The results present values for correlations between biological carbon fixation and a proxy for chlorophyll concentration derived from photographs. For the first time, we apply PET imaging, a tool that holds great potential for noninvasively characterizing and mapping biological function either on the surface or deep within opaque environmental matrices, to gain a better understanding of system function and organization with application to photosynthetic microbes in biological soil crusts. C1 [Vandehey, Nicholas T.; Northen, Trent R.; O'Neil, James P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Vandehey, NT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM nick@nickvandehey.com RI Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Vandehey, Nicholas/0000-0003-0286-7532; Northen, Trent/0000-0001-8404-3259 FU Laboratory Directed Research and Development program at Lawrence Berkeley National Laboratory; Radiochemistry and Instrumentation Scientific focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; Department of Energy, Early Career Research Program; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Mustafa Janabi for his help preparing radioisotopes and Alissa Bruno for preparing the image for the abstract graphic and the table of contents graphic. This material is based in part on work supported by the Laboratory Directed Research and Development program at Lawrence Berkeley National Laboratory and the Radiochemistry and Instrumentation Scientific focus Area as funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. T.R.N. is supported by the Department of Energy, Early Career Research Program. This manuscript was written by an author at Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 with the U.S. Department of Energy. NR 20 TC 1 Z9 1 U1 4 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD OCT PY 2014 VL 1 IS 10 BP 393 EP 398 DI 10.1021/ez500209c PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JQ UT WOS:000350831600003 ER PT J AU Qian, Y Yin, XP Lin, H Rao, B Brooks, SC Liang, LY Gu, BH AF Qian, Yun Yin, Xiangping Lin, Hui Rao, Balaji Brooks, Scott C. Liang, Liyuan Gu, Baohua TI Why Dissolved Organic Matter Enhances Photodegradation of Methylmercury SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID ARCTIC ALASKAN LAKE; MERCURY METHYLATION; HUMIC SUBSTANCES; ANOXIC ENVIRONMENTS; FLORIDA EVERGLADES; SINGLET OXYGEN; WATER; DEGRADATION; COMPLEXATION; ECOSYSTEMS AB Methylmercury (MeHg) is known to degrade photochemi-cally, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased the rate of MeHg photodegradation under solar irradiation, but the first-order rate constants,varied depending on the oxidation state of DOM and the type and concentration of the ligands. Reduced DOM photochemi-cally degraded MeHg 3 times faster than oxidized DOM. Compounds containing both thiol and aromatic moieties within the same molecule (e.g., 'thiosalicylate and reduced DOM) increased MeHg photodegradation rates far more than those containing only aromatics or thiols (e.g., salicylate or glutathione, or their combinations). The mechanism is attributed in part to strong binding between MeHg and thiolates that resulted in direct energy transfer from excited triplet state of the aromatics to break the Hg-C bond in MeHg. Our results suggest that, among other factors, the synergistic effects of thiol and aromatics in DOM greatly enhance MeHg photodegradation. C1 [Qian, Yun; Yin, Xiangping; Lin, Hui; Rao, Balaji; Brooks, Scott C.; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. EM gub1@ornl.gov RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012 OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956 FU Office of Biological and Environmental Research; Office of Science, U.S. Department of Energy (DOE), Mercury Science Focus Area Program at Oak Ridge National Laboratory; DOE [DE-AC05-00OR22725] FX We thank three anonymous reviewers for their helpful comments. This research was sponsored by the Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), as part of the Mercury Science Focus Area Program at Oak Ridge National Laboratory, which is managed by UT-Battelle LLC for DOE under Contract DE-AC05-00OR22725. NR 42 TC 12 Z9 12 U1 12 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD OCT PY 2014 VL 1 IS 10 BP 426 EP 431 DI 10.1021/ez500254z PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD1JQ UT WOS:000350831600009 ER PT J AU Nadiga, BT AF Nadiga, Balasubramanya T. TI Nonlinear evolution of a baroclinic wave and imbalanced dissipation SO JOURNAL OF FLUID MECHANICS LA English DT Article DE baroclinic flows; geostrophic turbulence; quasi-geostrophic flows ID ROTATING STRATIFIED TURBULENCE; POTENTIAL VORTICITY; GEOPHYSICAL FLOWS; ENERGY; INSTABILITY; GENERATION; BALANCE; OCEAN; SPECTRUM; EQUATION AB We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere: a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic (QG) equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. That is, analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales whereas the bulk of the energy is confined to large balanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These two processes acting together lead to a quick rise in dissipation rate which then reaches a peak and begins to fall slowly when frontogenesis slows down; eventually balanced and imbalanced modes decouple. A measurement of the dissipation of balanced energy by imbalanced processes reveals that it scales exponentially with Rossby number of the base flow. We expect that this scaling will hold more generally than for the specific set-up we consider given the fundamental nature of the dynamics involved. In other results, (a) a break is seen in the total energy (TE) spectrum at small scales: while a steep k(-3) geostrophic scaling (where k is the three-dimensional wavenumber) is seen at intermediate scales, the smaller scales display a shallower k(-5/3) scaling, reminiscent of the atmospheric spectra of Nastrom & Gage and (b) at the higher of the Rossby numbers considered a minimum is seen in the vertical shear spectrum, reminiscent of similar spectra obtained using in situ measurements. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nadiga, BT (reprint author), Los Alamos Natl Lab, MS-B214, Los Alamos, NM 87545 USA. EM balu@lanl.gov FU Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory [20110150ER] FX This research was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (project number 20110150ER). Computational resources were provided by Institutional Computing at the Los Alamos National Laboratory. Thanks go to M. Taylor for sharing his spectral code. Brief discussions with P. Bartello, R. Ferrari, P. Klein, J. McWilliams, J. Riley, S. Smith, D. Straub, J. Vanneste and V. Zeitlin are gratefully acknowledged. Comments and suggestions by three reviewers helped improve both the content and presentation. NR 42 TC 3 Z9 3 U1 1 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD OCT PY 2014 VL 756 BP 965 EP 1006 DI 10.1017/jfm.2014.464 PG 42 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CD2AM UT WOS:000350875900007 ER PT J AU Casper, KM Beresh, SJ Schneider, SP AF Casper, Katya M. Beresh, Steven J. Schneider, Steven P. TI Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer SO JOURNAL OF FLUID MECHANICS LA English DT Article DE high-speed flow; instability; transition to turbulence ID SHOCK-TUNNEL; LAMINAR; TRANSITION; FLOW; GRADIENT; GROWTH; GENERATION AB To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained. C1 [Casper, Katya M.; Beresh, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Casper, Katya M.; Schneider, Steven P.] Purdue Univ, Dept Aeronaut & Astronaut, W Lafayette, IN 47907 USA. RP Casper, KM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kmcaspe@sandia.gov FU National Science Foundation Graduate Research Fellowship Program; Sandia National Laboratories; AFOSR; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work could not have been completed without funding provided in part by the National Science Foundation Graduate Research Fellowship Program, Sandia National Laboratories, and AFOSR. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Purdue School of Aeronautics and Astronautics machine shop built the experimental hardware used for this work. J. Phillips, the Purdue AAE department electronics technician, designed and built the perturber used for these measurements. NR 74 TC 7 Z9 7 U1 1 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD OCT PY 2014 VL 756 BP 1058 EP 1091 DI 10.1017/jfm.2014.475 PG 34 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CD2AM UT WOS:000350875900010 ER PT J AU Golic, DL Cirkovic, J Scepanovic, M Sreckovic, T Longo, E Varela, JA Daneu, N Stamenkovic, V Brankovic, G Brankovic, Z AF Golic, D. Lukovic Cirkovic, J. Scepanovic, M. Sreckovic, T. Longo, E. Varela, J. A. Daneu, N. Stamenkovic, V. Brankovic, G. Brankovic, Z. TI The modification of structural and optical properties of nano- and submicron ZnO powders by variation of solvothermal syntheses conditions SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE ZnO; Nano- and submicron particles; Solvothermal synthesis; Growth mechanism; Structure ordering; Photoluminescence ID FILMS; PHOTOLUMINESCENCE; NANOSTRUCTURES; DEPENDENCE; PRESSURE AB Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed. C1 [Golic, D. Lukovic; Cirkovic, J.; Sreckovic, T.; Brankovic, G.; Brankovic, Z.] Univ Belgrade, Inst Multidisciplinary Res, Belgrade 11030, Serbia. [Scepanovic, M.] Univ Belgrade, Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Longo, E.; Varela, J. A.] Univ Estadual Paulista, Dept Fis Quim IQ, BR-14801907 Araraquara, SP, Brazil. [Daneu, N.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Stamenkovic, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Golic, DL (reprint author), Univ Belgrade, Inst Multidisciplinary Res, Kneza Viseslava 1a, Belgrade 11030, Serbia. EM danijeluk@gmail.com RI Longo, Elson/B-9395-2012; FAPESP, CDMF/J-3591-2015 OI Longo, Elson/0000-0001-8062-7791; FU Ministry of Education and Science of Republic of Serbia [III45007] FX The authors acknowledge the financial support of the Ministry of Education and Science of Republic of Serbia (project number III45007). NR 29 TC 0 Z9 0 U1 1 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PD OCT 1 PY 2014 VL 16 IS 10 AR 2670 DI 10.1007/s11051-014-2670-1 PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9LE UT WOS:000349952300001 ER PT J AU Chan, H Konijnenberg, M Anderson, T Nysus, M Makvandi, M de Blois, E Atcher, R Breeman, WA de Jong, M Norenberg, JP AF Chan, H. Konijnenberg, M. Anderson, T. Nysus, M. Makvandi, M. de Blois, E. Atcher, R. Breeman, W. A. de Jong, M. Norenberg, J. P. TI Dose finding and efficacy of 213Bi-[DOTA0, Tyr3] octreotate as targeted alpha-therapy in tumour-bearing mice. SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING LA English DT Meeting Abstract CT Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) CY OCT 18-22, 2014 CL Gothenburg, SWEDEN SP European Assoc Nucl Med C1 [Chan, H.; Konijnenberg, M.; de Blois, E.; Breeman, W. A.; de Jong, M.] Erasmus MC, Rotterdam, Netherlands. [Anderson, T.; Nysus, M.; Makvandi, M.; Norenberg, J. P.] Univ New Mexico, Hlth Sci Ctr, Coll Pharm, Radiopharmaceut Sci Program, Albuquerque, NM 87131 USA. [Atcher, R.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1619-7070 EI 1619-7089 J9 EUR J NUCL MED MOL I JI Eur. J. Nucl. Med. Mol. Imaging PD OCT PY 2014 VL 41 SU 2 MA OP145 BP S192 EP S192 PG 1 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA CA3YT UT WOS:000348841900092 ER PT J AU Miller, BW Frost, SH Frayo, SL Kenoyer, AL Orozco, JJ Hernandez, AH Green, DJ Hylarides, MD Wilbur, DS Fisher, DR Press, OW Pagel, JM Sandmaier, BM AF Miller, B. W. Frost, S. H. Frayo, S. L. Kenoyer, A. L. Orozco, J. J. Hernandez, A. H. Green, D. J. Hylarides, M. D. Wilbur, D. S. Fisher, D. R. Press, O. W. Pagel, J. M. Sandmaier, B. M. TI Single-Particle Digital Autoradiography of alpha and beta Emitters with the iQID Camera SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING LA English DT Meeting Abstract CT Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) CY OCT 18-22, 2014 CL Gothenburg, SWEDEN SP European Assoc Nucl Med C1 [Miller, B. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Miller, B. W.] Univ Arizona, Coll Opt Sci, Tucson, AZ USA. [Frost, S. H.; Frayo, S. L.; Kenoyer, A. L.; Orozco, J. J.; Hernandez, A. H.; Green, D. J.; Hylarides, M. D.; Press, O. W.; Pagel, J. M.; Sandmaier, B. M.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Orozco, J. J.; Green, D. J.; Press, O. W.; Pagel, J. M.; Sandmaier, B. M.] Univ Washington, Dept Med, Seattle, WA USA. [Wilbur, D. S.] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Fisher, D. R.] Dade Moeller Hlth Grp, Richland, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1619-7070 EI 1619-7089 J9 EUR J NUCL MED MOL I JI Eur. J. Nucl. Med. Mol. Imaging PD OCT PY 2014 VL 41 SU 2 MA OP672 BP S308 EP S308 PG 1 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA CA3YT UT WOS:000348841900488 ER PT J AU Seo, D Farlow, J Southard, K Jun, YW Gartner, ZJ AF Seo, Daeha Farlow, Justin Southard, Kade Jun, Young-wook Gartner, Zev J. TI Production and Targeting of Monovalent Quantum Dots SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article ID LIVING CELLS AB The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety. C1 [Seo, Daeha; Southard, Kade; Jun, Young-wook] Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA. [Seo, Daeha] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Seo, Daeha] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA. [Farlow, Justin; Southard, Kade; Gartner, Zev J.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Farlow, Justin; Gartner, Zev J.] Univ Calif San Francisco, Tetrad Grad Program, San Francisco, CA 94143 USA. [Farlow, Justin; Gartner, Zev J.] Univ Calif San Francisco, Ctr Syst & Synthet Biol, San Francisco, CA 94143 USA. [Southard, Kade; Jun, Young-wook; Gartner, Zev J.] Univ Calif San Francisco, Chem & Chem Biol Grad Program, San Francisco, CA 94143 USA. RP Jun, YW (reprint author), Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA. EM YJun@ohns.ucsf.edu; zevgartner@gmail.com FU DOD [W81XWH-10-1-1023]; UCSF Center for Systems and Synthetic Biology [P50 GM081879]; NIH [5R21EB015088-02, 1R21EB018044]; Human Frontier Science Program Cross-disciplinary postdoc research fellowship FX Funding provided by DOD W81XWH-10-1-1023 (Z.J.G.), grant P50 GM081879 from the UCSF Center for Systems and Synthetic Biology (Z.J.G.), NIH 5R21EB015088-02 (Y.J.) and NIH 1R21EB018044 (Z.J.G. & Y.J.). D.S. was supported by Human Frontier Science Program Cross-disciplinary postdoc research fellowship. NR 13 TC 1 Z9 1 U1 2 U2 14 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD OCT PY 2014 IS 92 AR e52198 DI 10.3791/52198 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB0GF UT WOS:000349303100081 PM 25407345 ER PT J AU Altun, AO Bond, T Park, HG AF Altun, Ali Ozhan Bond, Tiziana Park, Hyung Gyu TI Manufacturing Over Many Scales: High Fidelity Macroscale Coverage of Nanoporous Metal Arrays via Lift-Off-Free Nanofabrication SO ADVANCED MATERIALS INTERFACES LA English DT Article ID BLOCK-COPOLYMER LITHOGRAPHY; ENHANCED RAMAN-SCATTERING; THIN-FILMS; SURFACE; GOLD; ROUGHNESS; TEMPLATES; MONOLAYER; KINETICS; NANOHOLE C1 [Altun, Ali Ozhan; Park, Hyung Gyu] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland. [Bond, Tiziana] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Mat Engn Directorate, Livermore, CA 94550 USA. RP Altun, AO (reprint author), ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland. EM bond7@llnl.gov; parkh@ethz.ch RI Park, Hyung Gyu/F-3056-2013 OI Park, Hyung Gyu/0000-0001-8121-2344 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; LLNL Laboratory Directorate Research and Development [LLNL-JRNL-656009] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. T.B. and a part of the experiments were supported by LLNL Laboratory Directorate Research and Development (LLNL-JRNL-656009). NR 47 TC 0 Z9 0 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD OCT PY 2014 VL 1 IS 7 AR 1400084 DI 10.1002/admi.201400084 PG 8 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5UH UT WOS:000348285700006 ER PT J AU Dupont, SR Voroshazi, E Nordlund, D Vandewal, K Dauskardt, RH AF Dupont, Stephanie R. Voroshazi, Eszter Nordlund, Dennis Vandewal, Koen Dauskardt, Reinhold H. TI Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells SO ADVANCED MATERIALS INTERFACES LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; PHOTOVOLTAIC DEVICES; X-RAY; MORPHOLOGY; BLEND; PERFORMANCE; COHESION; FILMS C1 [Dupont, Stephanie R.; Vandewal, Koen; Dauskardt, Reinhold H.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Voroshazi, Eszter] IMEC VZW, B-3000 Louvain, Belgium. [Nordlund, Dennis] SLAC, Synchrotron Radiat Lightsource, Menlo Pk, CA USA. RP Dupont, SR (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM dauskardt@stanford.edu RI Nordlund, Dennis/A-8902-2008; OI Nordlund, Dennis/0000-0001-9524-6908; Vandewal, Koen/0000-0001-5471-383X FU Center for Advanced Molecular Photovoltaics (CAMP) - King Abdullah University of Science and Technology (KAUST) [KUS-C1-015-21] FX This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. NR 32 TC 9 Z9 9 U1 2 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD OCT PY 2014 VL 1 IS 7 AR 1400135 DI 10.1002/admi.201400135 PG 8 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5UH UT WOS:000348285700009 ER PT J AU Vitol, EA Rozhkova, EA Rose, V Stripe, BD Young, NR Cohen, EEW Leoni, L Novosad, V AF Vitol, Elina A. Rozhkova, Elena A. Rose, Volker Stripe, Benjamin D. Young, Natalie R. Cohen, Ezra E. W. Leoni, Lara Novosad, Valentyn TI Efficient Cisplatin Pro-Drug Delivery Visualized with Sub-100 nm Resolution: Interfacing Engineered Thermosensitive Magnetomicelles with a Living System SO ADVANCED MATERIALS INTERFACES LA English DT Article ID RECEPTOR-MEDIATED ENDOCYTOSIS; RAY-FLUORESCENCE MICROSCOPY; OXIDE NANOPARTICLES; CELLULAR UPTAKE; CANCER-CELLS; THERAPY; MICELLES; COMPLEX; BLOCK; DNA AB Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this work, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe3O4 nanoparticles though self-assembly. The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. Finally, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo. C1 [Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vitol, Elina A.; Novosad, Valentyn] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rose, Volker; Stripe, Benjamin D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Young, Natalie R.; Cohen, Ezra E. W.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. [Leoni, Lara] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. RP Vitol, EA (reprint author), Nalco Co, 1601 W Diehl Rd, Naperville, IL 60563 USA. EM rozhkova@anl.gov RI Rose, Volker/B-1103-2008; Novosad, V /J-4843-2015 OI Rose, Volker/0000-0002-9027-1052; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX Use of the Center for Nanoscale Materials and the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC0206CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory. The U.S. Government retains for itself and others acting on its behalf a paid-up nonexclusive, irrevocable worldwide license of said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Animal imaging was performed at the Integrated Small Animal Imaging Research Resource at the University of Chicago. Mice were maintained in a specific pathogen-free animal facility in accordance with the University of Chicago Animal Care and Use Committee under ACUP # 71718. NR 51 TC 0 Z9 0 U1 1 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD OCT PY 2014 VL 1 IS 7 AR 1400182 DI 10.1002/admi.201400182 PG 9 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AZ5UH UT WOS:000348285700012 ER PT J AU Lucker, BF Hall, CC Zegarac, R Kramer, DM AF Lucker, Ben F. Hall, Christopher C. Zegarac, Robert Kramer, David M. TI The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algae biomass; Photobioreactor; Algae pond depth; Environmental simulation ID CHLORELLA-SOROKINIANA; CHLAMYDOMONAS-REINHARDTII; MICROALGAE PRODUCTION; TEMPERATURE; LIGHT; PHYTOPLANKTON; GROWTH; PONDS; PHOTOSYNTHESIS; PRODUCTIVITY AB Algae in natural or production setting experience fluctuating environmental conditions including changes in light, temperature, CO2 and nutrient availability, oxygen and mixing. In response, algae respond to environmental changes dynamically, adjusting light energy capture strategies, physiological processes and cell cycle control. It is thus the combination of environmental conditions and biological responses that determines the performance of the algae. In contrast, much algal research is performed under artificially static laboratory environments, where different constraints determine performance. Consequently, algal strains selected for mass production in the laboratory may fail to perform well or outcompete local algal strains under outdoor production conditions. To address these issues, we have developed a novel environmental photobioreactor (ePBR), designed to mimic lighting from natural pond environments while controlling key environmental parameters including temperature, pH and CO2 levels, mixing, and culture density. Natural lighting is simulated by illuminating from the top of a columnar culture vessel with a single high power white LED. This combination of lighting and geometry provides light intensities up to full sunlight at the culture surface, with light attenuation through the culture column similar to that observed in race ways or high rate algal ponds. Environmental parameters can be imposed in complex sequences with high time resolution via a user-programmable scripting language. Multiple ePBR units can be networked to perform parallel experiments, enabling semi-high throughput operations. In this report, we demonstrate the utility of this system by showing that fluctuating environmental conditions in ePBR significantly impact algal growth. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kramer, David M.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Lucker, Ben F.; Hall, Christopher C.; Zegarac, Robert; Kramer, David M.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Kramer, DM (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, S222 Plant Biol Bldg, E Lansing, MI 48824 USA. EM Kramerd8@msu.edu FU U.S. Department of Energy Office of Biomass Program [DE-EE0003046] FX The authors thank Drs. Quentin Bechet and Benoit Guieysse of Massey University for their assistance in modeling water temperature, and the participating members of the National Alliance for the Advancement of Biofuels and Bioproducts (NAABB) for their valuable input on the design of the ePBR. We would also like to thank Jeffery Cruz for the valuable discussions and Joel Carpenter for contributions to design efforts during initial prototyping. This work was a subcontract of the NAABB consortium and funded by U.S. Department of Energy Office of Biomass Program grant DE-EE0003046. NR 45 TC 14 Z9 14 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2014 VL 6 BP 242 EP 249 DI 10.1016/j.algal.2013.12.007 PN B PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AY8CP UT WOS:000347782400019 ER PT J AU Coons, JE Kalb, DM Dale, T Marrone, BL AF Coons, James E. Kalb, Daniel M. Dale, Taraka Marrone, Babetta L. TI Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Harvesting; Extraction; Membrane filtration; Electrocoagulation; Centrifugation; Ultrasound ID ULTRASOUND-ASSISTED EXTRACTION; HIGH-PRESSURE HOMOGENIZATION; TANGENTIAL FLOW FILTRATION; SYNECHOCYSTIS PCC 6803; CELL-DISRUPTION; MICROALGAL BIOMASS; LIPID EXTRACTION; BIODIESEL PRODUCTION; ENERGY-REQUIREMENTS; SUSPENDED PARTICLES AB Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. In this monograph, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy-cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologies Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigmis developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Lastly, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. However, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Coons, James E.; Kalb, Daniel M.; Dale, Taraka; Marrone, Babetta L.] Los Alamos Natl Lab, Chem & Biosci Div, Los Alamos, NM 87545 USA. RP Coons, JE (reprint author), Los Alamos Natl Lab, Div Chem, MS J964, Los Alamos, NM 87545 USA. EM jimc@lanl.gov OI Coons, Jim/0000-0003-1392-298X FU U.S. Department of Energy (DOE) [DE-EE0003046]; DOE Bioenergy Technologies Office FX The authors would like to acknowledge funding of this work by the U.S. Department of Energy (DOE) under Contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts (NAABB), and funding provided by the DOE Bioenergy Technologies Office. The authors would also like to thank Dr. Ryan Davis of the National Renewable Energy Laboratory for the discussions related to nomenclature and conversions between fuel types. NR 129 TC 24 Z9 24 U1 7 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2014 VL 6 BP 250 EP 270 DI 10.1016/j.algal.2014.08.005 PN B PG 21 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AY8CP UT WOS:000347782400020 ER PT J AU Kijak, GH Sanders-Buell, E Chenine, AL Eller, M Goonetilleke, N Thomas, R Leviyang, S Harbolick, E Bose, M Pham, P Oropeza, C Poltavee, K O'Sullivan, AM Merbah, M Costanzo, M Li, H Fischer, W Gao, F Eller, LA O'Connell, RJ Sinei, S Maganga, L Kibuuka, H Nitayaphan, S Rolland, M Korber, B McCutchan, F Shaw, G Michael, N Robb, M Tovanabutra, S Kim, J AF Kijak, Gustavo Hernan Sanders-Buell, Eric Chenine, Agnes-Laurance Eller, Michael Goonetilleke, Nilu Thomas, Rasmi Leviyang, Sivan Harbolick, Elizabeth Bose, Meera Phuc Pham Oropeza, Celina Poltavee, Kultida O'Sullivan, Anne Marie Merbah, Melanie Costanzo, Margaret Li, Hui Fischer, Will Gao, Feng Eller, Leigh Anne O'Connell, Robert J. Sinei, Samuel Maganga, Lucas Kibuuka, Hannah Nitayaphan, Sorachai Rolland, Morgane Korber, Bette McCutchan, Francine Shaw, George Michael, Nelson Robb, Merlin Tovanabutra, Sodsai Kim, Jerome TI Cryptic Multiple HIV-1 Infection Revealed by Early, Frequent, and Deep Sampling during Acute Infection SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Symposium on HIV Research for Prevention (HIV R4P) CY OCT 28-31, 2014 CL Cape Town, SOUTH AFRICA C1 [Kijak, Gustavo Hernan; Sanders-Buell, Eric; Chenine, Agnes-Laurance; Eller, Michael; Thomas, Rasmi; Harbolick, Elizabeth; Bose, Meera; Phuc Pham; Oropeza, Celina; Poltavee, Kultida; O'Sullivan, Anne Marie; Merbah, Melanie; Costanzo, Margaret; Eller, Leigh Anne; Rolland, Morgane; Michael, Nelson; Robb, Merlin; Tovanabutra, Sodsai; Kim, Jerome] Walter Reed Army Inst Res, US Mil HIV Res Program MHRP, Silver Spring, MD USA. [Kijak, Gustavo Hernan; Sanders-Buell, Eric; Chenine, Agnes-Laurance; Eller, Michael; Thomas, Rasmi; Harbolick, Elizabeth; Bose, Meera; Phuc Pham; Oropeza, Celina; Poltavee, Kultida; O'Sullivan, Anne Marie; Merbah, Melanie; Costanzo, Margaret; Eller, Leigh Anne; Rolland, Morgane; Robb, Merlin; Tovanabutra, Sodsai] Henry M Jackson Fdn, US Mil HIV Res Program MHRP, Silver Spring, MD USA. [Goonetilleke, Nilu] Univ N Carolina, Sch Med, Chapel Hill, NC USA. [Leviyang, Sivan] Georgetown Univ, Dept Math & Stat, Washington, DC USA. [Li, Hui; Shaw, George] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA. [Fischer, Will; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA. [Gao, Feng] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC USA. [O'Connell, Robert J.; Nitayaphan, Sorachai] Armed Forces Res Inst Med Sci, Bangkok 10400, Thailand. [Sinei, Samuel] Walter Reed Project, Kericho, Kenya. [Maganga, Lucas] Mbeya Med Res Programme, Mbeya, Tanzania. [Kibuuka, Hannah] Makerere Univ, Walter Reed Project, Kampala, Uganda. NR 0 TC 2 Z9 2 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT 1 PY 2014 VL 30 SU 1 MA OA21.06 LB BP A58 EP A58 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA AT2OO UT WOS:000344774400127 ER PT J AU Bhat, R Chakraborty, M Mian, IS Newman, SA AF Bhat, Ramray Chakraborty, Mahul Mian, I. S. Newman, Stuart A. TI Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype Galectin SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE prototype galectin; galectin-1; sauropsids; protein fold; homology ID GENE DUPLICATION; SEQUENCE ALIGNMENT; CHICKEN TISSUES; BINDING LECTINS; MUSCLE; LIKELIHOOD; FAMILY; PURIFICATION; EXPRESSION; EVOLUTION AB Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can be traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage. C1 [Bhat, Ramray] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Chakraborty, Mahul] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA. [Mian, I. S.] UCL, Dept Comp Sci, London WC1E 6BT, England. [Newman, Stuart A.] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA. RP Bhat, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rbhat@lbl.gov NR 45 TC 2 Z9 2 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD OCT PY 2014 VL 6 IS 10 BP 2721 EP 2730 DI 10.1093/gbe/evu215 PG 10 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA AX2LQ UT WOS:000346775800012 PM 25260584 ER PT J AU Corry, E O'Donnell, J Curry, E Coakley, D Pauwels, P Keane, M AF Corry, Edward O'Donnell, James Curry, Edward Coakley, Daniel Pauwels, Pieter Keane, Marcus TI Using semantic web technologies to access soft AEC data SO ADVANCED ENGINEERING INFORMATICS LA English DT Article DE Social media; Twitter; Linked data; Performance metrics; Building performance; RDF ID BUILDING PERFORMANCE ASSESSMENT; DRIVEN HVAC OPERATIONS; OCCUPANCY; SYSTEM; ROLES AB Building related data tends to be generated, used and retained in a domain-specific manner. The lack of interoperability between data domains in the architecture, engineering and construction (AEC) industry inhibits the cross-domain use of data at an enterprise level. Semantic web technologies provide a possible solution to some of the noted interoperability issues. Traditional methods of information capture fail to take into account the wealth of soft information available throughout a building. Several sources of information are not included in performance assessment frameworks, including social media, occupant communication, mobile communication devices, occupancy patterns, human resource allocations and financial information. The paper suggests that improved data interoperability can aid the integration of untapped silos of information into existing structured performance measurement frameworks, leading to greater awareness of stakeholder concerns and building performance. An initial study of how building-related data can be published following semantic web principles and integrated with other 'soft-data' sources in a cross-domain manner is presented. The paper goes on to illustrate how data sources from outside the building operation domain can be used to supplement existing sources. Future work will include the creation of a semantic web based performance framework platform for building performance optimisation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Corry, Edward; Coakley, Daniel; Keane, Marcus] Natl Univ Ireland Galway, Informat Res Unit Sustainable Engn, Galway, Ireland. [O'Donnell, James] Natl Univ Ireland Univ Coll Dublin, Sch Mech & Mat Engn, Elect Res Ctr, Dublin 4, Ireland. [O'Donnell, James] Natl Univ Ireland Univ Coll Dublin, Sch Mech & Mat Engn, UCD Energy Inst, Dublin 4, Ireland. [O'Donnell, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Berkeley, CA 94720 USA. [Curry, Edward] Natl Univ Ireland Galway, Digital Enterprise Res Inst, Galway, Ireland. [Pauwels, Pieter] Univ Ghent, Dept Architecture & Urban Planning, B-9000 Ghent, Belgium. RP Corry, E (reprint author), Natl Univ Ireland Galway, Informat Res Unit Sustainable Engn, Galway, Ireland. EM edwardcorry@nuigalway.ie; james.odonnell@ucd.ie; ed.curry@deri.org; Daniel.coakley@nuigalway.ie; p.pauwels@uva.nl; marcus.keane@nuigalway.ie RI Pauwels, Pieter/I-8256-2015; OI Pauwels, Pieter/0000-0001-8020-4609; Curry, Edward/0000-0001-8236-6433 FU Irish Research Council; Science Foundation Ireland [SFI/08/CE/I1380 (Lion-2)] FX This work has been funded by the Irish Research Council. This work has been funded by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). NR 43 TC 3 Z9 3 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1474-0346 EI 1873-5320 J9 ADV ENG INFORM JI Adv. Eng. Inform. PD OCT PY 2014 VL 28 IS 4 BP 370 EP 380 DI 10.1016/j.aei.2014.05.002 PG 11 WC Computer Science, Artificial Intelligence; Engineering, Multidisciplinary SC Computer Science; Engineering GA AW4AR UT WOS:000346224500010 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Bessner, M Besana, MI Besjes, GJ Bessidskaia, O Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, J Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandta, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell' Acqua, A Dell' Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Valec, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Dunford, M Yildiz, HD Dueren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Erikssona, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillok, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS GarayWalls, FM Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudioa, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstroem, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddade, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hann, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Heng, Y Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higoon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmanna, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsuc, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huelsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczkab, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kudaya, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Maettig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C MelladoGarciac, BR Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindura, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Orama, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, V Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, D Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidotia, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Struebig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorachea, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakird, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogela, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, W Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Bessner, M. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, J. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandta, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell' Acqua, A. Dell' Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Valec, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Erikssona, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillok, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. GarayWalls, F. M. Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudioa, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddade, N. Haefner, P. Hageboeeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hann, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Heng, Y. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmanna, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Horii, Y. Hostachy, J. -Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsuc, C. Hsu, P. J. Hsu, S. C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczkab, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kudaya, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. MelladoGarciac, B. R. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindura, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Orama, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidotia, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Struebig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorachea, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakird, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogela, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W. -M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CALORIMETER; PARTICLE; BOSON AB This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV. C1 [Jackson, P.; Lee, L.; Papageorgiou, K.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Dueren, M.; Kudaya, S.] Ankara Univ, Dept Phys, Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakird, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Havranek, M.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Citron, Z. H.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Citron, Z. H.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell' Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Valec, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Aloisio, A.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorachea, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Armbruster, A. J.; Catinaccio, A.; Cattai, A.; Chromek-Burckhart, D.; Dell' Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dobos, D.; Dudarev, A.; Francis, D.; Froidevaux, D.; Gillberg, D.; Gorini, B.; Helsens, C.; Correia, A. M. Henriques; Hoecker, A.; Krasznahorkay, A.; Lenzi, B.; Macina, D.; Mandelli, B.; Martin, B.; Marzin, A.; Messina, A.; Milic, A.; Nairz, A. M.; Nicquevert, B.; Petersen, B. A.; Poppleton, A.; Rembser, C.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Tricoli, A.; Tsarouchas, C.; Van der Ster, D.; Young, C. J. S.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogela, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Lab Nazl Frascati, Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindura, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Salvatore, D.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Annovi, A.; Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Aloisio, A.; Annovi, A.; Antonov, A.; Argyropoulos, S.; Artamonov, A.; Asbah, N.; Bellerive, A.; Bessner, M.; Bloch, I.; Borisov, A.; Borroni, S.; Boveia, A.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Annovi, A.; Antonov, A.; Argyropoulos, S.; Artamonov, A.; Asbah, N.; Bellerive, A.; Bessner, M.; Bloch, I.; Borisov, A.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Aloisio, A.; Alonso, A.; Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; GarayWalls, F. M.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Aloisio, A.; Amoroso, S.; Annovi, A.; Antonov, A.; Arnold, H.; Artamonov, A.; Bellerive, A.; Betancourt, C.; Boehler, M.; Borisov, A.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Annovi, A.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Barberis, D.; Djobava, T.; Durglishvili, A.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Khubua, J.; Mosidze, M.; Osculati, B.; Parodi, F.; Schiavi, C.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Annovi, A.; Baas, A.; Brandta, O.; Davygora, Y.; Dietzsch, T. A.; Yildiz, H. Duran; Hanke, P.; Hofmanna, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Annovi, A.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; Cervelli, A.; Chilingarov, A.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Casadei, D.; Cooper, B. D.; Davison, A. R.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Korn, A.; Martyniuk, A. C.; Nurse, E.; Pilkington, D.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Annovi, A.; Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Annovi, A.; Antonov, A.; Artamonov, A.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.; Struebig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] INFN Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Annovi, A.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidotia, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimic, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddade, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hann, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, Inst Rech Lois Fondamentales Univers, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsuc, C.; MelladoGarciac, B. R.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Savard, P.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Savard, P.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Orama, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Aloisio, A.; Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Alhroob, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillok, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Apolle, R.; Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Gao, J.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Gao, J.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Rozas, A. Juste; Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Phys Expt, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Hrabovsky, M (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Doyle, Anthony/C-5889-2009; Fassi, Farida/F-3571-2016; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Juste, Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Joergensen, Morten/E-6847-2015; Mitsou, Vasiliki/D-1967-2009; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Di Domenico, Antonio/G-6301-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Smirnova, Oxana/A-4401-2013; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Brooks, William/C-8636-2013; OI Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Doyle, Anthony/0000-0001-6322-6195; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Della Volpe, Domenico/0000-0001-8530-7447; Castro, Nuno/0000-0001-8491-4376; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Fassi, Farida/0000-0002-6423-7213; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Leonidopoulos, Christos/0000-0002-7241-2114; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Joergensen, Morten/0000-0002-6790-9361; Mitsou, Vasiliki/0000-0002-1533-8886; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Di Domenico, Antonio/0000-0001-8078-2759; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Smirnova, Oxana/0000-0003-2517-531X; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Brooks, William/0000-0001-6161-3570; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; ICORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, The Netherlands; NWO, The Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, UK; Royal Society, UK; Leverhulme Trust, UK; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, ICORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 37 TC 4 Z9 4 U1 8 U2 75 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT 1 PY 2014 VL 74 IS 10 AR 3071 DI 10.1140/epjc/s10052-014-3071-4 PG 48 WC Physics, Particles & Fields SC Physics GA AW6ZR UT WOS:000346414700002 ER PT J AU Albrow, M Bell, AJ Enterria, DD Hall-Wilton, R Los, S Mokhov, N Murray, M Penzo, A Popescu, S Ronzhin, A Samoylenko, VD Sobol, A Veres, G AF Albrow, M. Bell, A. J. Enterria, D. D. Hall-Wilton, R. Los, S. Mokhov, N. Murray, M. Penzo, A. Popescu, S. Ronzhin, A. Samoylenko, V. D. Sobol, A. Veres, G. TI Small angle detectors for study diffractive processes with CMS SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Conference on Instrumentation for Colliding Beam Physics CY FEB 24-MAR 01, 2014 CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA HO Budker Inst Nucl Phys DE Timing detectors; Instrumentation and methods for time-of-flight (TOF) spectroscopy; Cherenkov and transition radiation AB The approach and detectors for diffractive physics based on two current projects - Forward Shower Counter (FSC) and Proton Precision Spectrometer (PPS) are presented. FSC system consists of six (3 + 3) Stations of scintillator counters, which surround closely the beam pipes along 59 m < vertical bar z vertical bar < 140 m from IP5 on both plus (+) and minus (-) sides. These will detect showers from very forward particles with rapidity 7.5 < vertical bar eta vertical bar < 10 interacting in the beam pipe and surrounding material. FSC allow measurements of single diffraction: p + p -> p + G + X (where G is rapidity gap) for lower masses and double diffraction p + p -> X + G + X with a large central rapidity gap. The counters can also be used for beam real-time monitoring and will make an invaluable contribution to the understanding of the background environment and its topology. PPS is designed for study the central exclusive production pp -> p + X + p, where the + signs denote the absence of hadronic activity (that is, the presence of a rapidity gap) between the outgoing protons and the decay products of the central system X. The precise measurement of the kinematical parameters of the outgoing protons enables to study the properties of the central state X. In PPS part we consider the detector for high precision timing of these protons - QUARTIC. It consists of L-shape bars with quartz or sapphire radiator. The time resolution of the QUARTIC prototypes achieved approximate to 10 ps. C1 [Albrow, M.; Los, S.; Mokhov, N.; Ronzhin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bell, A. J.; Enterria, D. D.; Hall-Wilton, R.; Veres, G.] CERN, CH-1211 Geneva 23, Switzerland. [Murray, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Popescu, S.] IFIN HH, Bucharest 407, Romania. [Samoylenko, V. D.; Sobol, A.] IHEP, Protvino 142281, Russia. RP Samoylenko, VD (reprint author), IHEP, 1 Nauki Sq, Protvino 142281, Russia. EM Vladimir.Samoylenko@ihep.ru NR 12 TC 1 Z9 1 U1 3 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR C10032 DI 10.1088/1748-0221/9/10/C10032 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500032 ER PT J AU Chambliss, K Sundaram, SK Simos, N Diwan, MV AF Chambliss, K. Sundaram, S. K. Simos, N. Diwan, M. V. TI Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Cherenkov detectors; Materials for solid-state detectors; Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others); Neutrino detectors AB Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment (LBNE) project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high-speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature. C1 [Chambliss, K.; Sundaram, S. K.] Alfred Univ, Kazuo Inamori Sch Engn, Multifunct Mat Lab M&M Lab, Alfred, NY 14802 USA. [Simos, N.; Diwan, M. V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sundaram, SK (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, Multifunct Mat Lab M&M Lab, Alfred, NY 14802 USA. EM sundaram@alfred.edu FU Kyocera Corporation FX The authors acknowledge support from BNL. SKS acknowledges the support from the Kyocera Corporation in the form of Inamori Professorship. NR 13 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR T10002 DI 10.1088/1748-0221/9/10/T10002 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500062 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Beaumont, W Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Devroede, O Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Lancker, L Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Garcia, G Klein, B Lellouch, J Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG De Callatay, B Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Michotte, D Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, TDR Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DDJ Martins, CDO De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Meng, X Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Abdelalim, AA Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Bloch, D Bonnin, C Brom, JM Chabert, EC Charles, L Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Gross, L Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Baulieu, G Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Lumb, N Mathez, H Mirabito, L Perries, S Alvarez, JDR Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Zoccarato, Y Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Esser, H Feld, L Hindrichs, O Karpinski, W Klein, K Kukulies, C Lipinski, M Ostapchuk, A Perieanu, A Pierschel, G Preuten, M Raupach, F Sammet, J Schael, S Schulte, JF Schwering, G Sprenger, D Verlage, T Weber, H Wittmer, B Wlochal, M Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pistone, C Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Geiser, A Grebenyuk, A Gunnellini, P Habib, S Hampe, J Hansen, K Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Kramer, M Krucker, D Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Maser, H Melzer-Pellmann, IA Meyer, AB Mnich, J Muhl, C Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Ntomari, E Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schorner-Sadenius, T Oder, MS Spannagel, S Stein, M Trevino, ADRV Walsh, R Wissing, C Zuber, A Martin, MA Berger, LO Biskop, H Blobel, V Buhmann, P Vignali, MC Enderle, H Erfle, J Frensche, B Garutti, E Gobel, K Orner, MG Gosselink, M Haller, J Hoffmann, M Oing, RSH Junkes, A Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Maettig, S Marchesini, I Matysek, M Ott, J Peiffer, T Pietsch, N Pohlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Barvich, T Baus, C Berger, J Boegelspacher, F Boser, C Butz, E Chwalek, T Colombo, F Boer, W Descroix, A Dierlamm, A Eber, R Feindt, M Guthoff, M Hartmann, F Hauth, T Heindl, SM Held, H Hoffmann, KH Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Martschei, D Mozer, MU Mueller, T Niegel, M Nurnberg, A Oberst, O Printz, M Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Steck, P Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Jones, J Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Chatterjee, RM Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Arfaei, H Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Cariola, P Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M De Robertis, G Fiore, L Franco, M Iaselli, G Loddo, F Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Radogna, R Sala, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Saizu, MA Scinta, M Tricomi, A Tuve, C Barbagli, G Brianzi, M Ciaranfi, R Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Scarlini, E Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robutti, E Tosi, S D'Angelo, P Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Gaioni, L Manazza, A Manghisoni, M Ratti, L Ratti, SP Re, V Riccardi, C Salvini, P Traversi, G Vitulo, P Zucca, S Biasini, M Bilei, GM Bissi, L Checcucci, B Ciangottini, D Conti, E Fano, L Lariccia, P Magalotti, D Mantovani, G Menichelli, M Passeri, D Placidi, P Romeo, F Saha, A Salvatore, M Santocchia, A Servoli, L Spiezia, A Androsov, K Arezzini, S Azzurri, P Bagliesi, G Basti, A Bernardini, J Boccali, T Bosi, F Broccolo, G Calzolari, F Castaldi, R Ciampa, A Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Magazzu, G Martini, L Mazzoni, E Messineo, A Moggi, A Moon, CS Palla, F Raffaelli, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Potenza, A Rivetti, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Trapani, PP Belforte, S Candelise, V Casarsa, M Cossutti, F Ricca, G Gobbo, B Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Umer, T Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kim, MS Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kwon, E Lee, B Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Doesburg, R Reucroft, S Ahmad, A Ahmad, M Asghar, MI Butt, J Hassan, Q Hoorani, HR Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kaminskiy, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Dordevic, M Ekmedzic, M Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Willmott, C Albajar, C De Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Echeverria, RWJ Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Moya, D Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Ahmed, I Albert, E Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Berruti, GM Bianchi, G Blanchot, G Bloch, P Bocci, A Bondu, ABO Botta, C Breuker, H Camporesi, T Ceresa, D Cerminara, G Christiansen, J Christiansen, T Niemela, AOC Perez, JAC Colafranceschi, S D'Alfonso, M D'Auria, A d'Enterria, D Dabrowski, A Daguin, J David, A De Guio, F De Roeck, A De Visscher, S Detraz, S Deyrail, D Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Faccio, F Felici, D Frank, N Franzoni, G Funk, W Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Honma, A Innocente, V Janot, P Kaplon, J Karavakis, E Katopodis, T Kottelat, LJ Kousouris, K Kovacs, MI Krajczar, K Krzempek, L Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marchioro, A Marconi, S Noite, JMP Masetti, L Meijers, F Mersi, S Meschi, E Michelis, S Moll, M Moortgat, F Mulders, M Musella, P Onnela, A Orsini, L Pakulski, T Cortezon, EP Pavis, S Perez, E Pernot, JF Perrozzi, L Petagna, P Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Postema, H Racz, A Reece, W Rolandi, G Rovere, M Rzonca, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Szwarc, T Tropea, P Troska, J Tsirou, A Vasey, F Veres, GI Verlaat, B Vichoudis, P Vlimant, JR Wohri, HK Zeuner, WD Zwalinski, L Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, B Renker, D Rohe, T Streuli, S Bachmair, F Bani, L Becker, R Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Di Calafiori, DRDS Deisher, A Dissertori, G Dittmar, M Djambazov, L Donega, M Dunser, M Eller, P Grab, C Hits, D Horisberger, U Hoss, J Lustermann, W Mangano Marini, AC Del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Quittnat, M Ronga, FJ Roser, UR Rossini, M Starodumov, A Takahashi, M Tauscher, L Theofilatos, K Treille, D von Gunten, HP Wallny, R Weber, HA Amsler, C Bosiger, K Canelli, MF Chiochia, V De Cosa, A Favaro, C Hinzmann, A Hreus, T Rikova, MI Kilminster, B Lange, C Maier, R Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Wilken, R Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Richardson, C Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Gardner, M Ko, W Kopecky, A Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Shalhout, S Smith, J Squires, M Thomson, J Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Valuev, V Weber, M Babb, J Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sturdy, J Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Kovalskyi, D Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Incandela, J Justus, C Kyre, S Villalba, RM Mccoll, N Mullin, SD Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C White, D Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Chramowicz, J Cihangir, S Cooper, W Deptuch, G Derylo, G Elvira, VD Fisk, I Freeman, J Gao, Y Gingu, VC Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hirschauer, J Hoff, JR Hooberman, B Howell, J Hrycyk, M Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kwan, S Lei, CM Linacre, J Lincoln, D Lipton, R Liu, T Los, S Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D Matulik, MS McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Prosser, A Ratnikova, N Rivera, R Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Trimpl, M Uplegger, L Vaandering, EW Vidal, R Voirin, E Whitbeck, A Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Cavanaugh, R Ev-Dokimov, O Gauthier, L Gerber, CE Hofman, DJ Kapustka, B Khalatyan, S Kurt, P Moon, DH O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Anderson, I Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Nash, K Osherson, M Swartz, M Xiao, M Baringer, P Bean, A Benelli, G Gray, J Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Tinti, G Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Taylor, R Toda, S Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Monroy, J Snow, GR Dolen, J George, J Godshalk, A Iashvili, I Jain, S Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Sevova, S Stoynev, S Sung, K Trovato, M Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Arndt, K Benedetti, D Bolla, G Bortoletto, D Bubna, M Cervantes, M De Mattia, M Everett, A Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Bartz, E Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Levine, A Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Perry, T Pierro, GA Polese, G Ross, I Sakharov, A Sarangi, T Savin, A Smith, WH Woods, N AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Beaumont, W. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Lancker, L. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. De Callatay, B. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Michotte, D. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Martins, M. Correa, Jr. Martins, T. Dos Reis Pol, M. E. Souza, M. H. G. Alda, W. L., Jr. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Malek, M. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santaolalla, J. Santoro, A. Sznajder, A. Manganote, E. J. Tonelli Pereira, A. Vilela Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Meng, X. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Abdelalim, A. A. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bonnin, C. Brom, J. -M. Chabert, E. C. Charles, L. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Gross, L. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Baulieu, G. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Lumb, N. Mathez, H. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Zoccarato, Y. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Esser, H. Feld, L. Hindrichs, O. Karpinski, W. Klein, K. Kukulies, C. Lipinski, M. Ostapchuk, A. Perieanu, A. Pierschel, G. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schulte, J. F. Schwering, G. Sprenger, D. Verlage, T. Weber, H. Wittmer, B. Wlochal, M. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pistone, C. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Geiser, A. Grebenyuk, A. Gunnellini, P. Habib, S. Hampe, J. Hansen, K. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Kraemer, M. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Maser, H. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Muhl, C. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeer, M. Spannagel, S. Stein, M. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Zuber, A. Martin, M. Aldaya Berger, L. O. Biskop, H. Blobel, V. Buhmann, P. Vignali, M. Centis Enderle, H. Erfle, J. Frensche, B. Garutti, E. Goebel, K. Orner, M. G. Gosselink, M. Haller, J. Hoffmann, M. Oing, R. S. H. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Maettig, S. Marchesini, I. Matysek, M. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Barvich, T. Baus, C. Berger, J. Boegelspacher, F. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Eber, R. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Heindl, S. M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Printz, M. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Steck, P. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Jones, J. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Chatterjee, R. M. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Arfaei, H. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Cariola, P. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. De Robertis, G. Fiore, L. Franco, M. Iaselli, G. Loddo, F. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Radogna, R. Sala, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Saizu, M. A. Scinta, M. Tricomi, A. Tuve, C. Barbagli, G. Brianzi, M. Ciaranfi, R. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Scarlini, E. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robutti, E. Tosi, S. D'Angelo, P. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Gaioni, L. Manazza, A. Manghisoni, M. Ratti, L. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Traversi, G. Vitulo, P. Zucca, S. Biasini, M. Bilei, G. M. Bissi, L. Checcucci, B. Ciangottini, D. Conti, E. Fano, L. Lariccia, P. Magalotti, D. Mantovani, G. Menichelli, M. Passeri, D. Placidi, P. Romeo, F. Saha, A. Salvatore, M. Santocchia, A. Servoli, L. Spiezia, A. Androsov, K. Arezzini, S. Azzurri, P. Bagliesi, G. Basti, A. Bernardini, J. Boccali, T. Bosi, F. Broccolo, G. Calzolari, F. Castaldi, R. Ciampa, A. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Magazzu, G. Martini, L. Mazzoni, E. Messineo, A. Moggi, A. Moon, C. S. Palla, F. Raffaelli, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Potenza, A. Rivetti, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Trapani, P. P. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, B. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Moreno, S. Carrillo Valencia, F. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Ahmad, A. Ahmad, M. Asghar, M. I. Butt, J. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kaminskiy, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Dordevic, M. Ekmedzic, M. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Willmott, C. Albajar, C. De Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jaramillo Echeverria, R. W. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Moya, D. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Ahmed, I. Albert, E. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Berruti, G. M. Bianchi, G. Blanchot, G. Bloch, P. Bocci, A. Bondu, A. Bonato O. Botta, C. Breuker, H. Camporesi, T. Ceresa, D. Cerminara, G. Christiansen, J. Christiansen, T. Niemelae, A. O. Chavez Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. D'Auria, A. d'Enterria, D. Dabrowski, A. Daguin, J. David, A. De Guio, F. De Roeck, A. De Visscher, S. Detraz, S. Deyrail, D. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Faccio, F. Felici, D. Frank, N. Franzoni, G. Funk, W. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Honma, A. Innocente, V. Janot, P. Kaplon, J. Karavakis, E. Katopodis, T. Kottelat, L. J. Kousouris, K. Kovacs, M. I. Krajczar, K. Krzempek, L. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marchioro, A. Marconi, S. Noite, J. Marques Pinho Masetti, L. Meijers, F. Mersi, S. Meschi, E. Michelis, S. Moll, M. Moortgat, F. Mulders, M. Musella, P. Onnela, A. Orsini, L. Pakulski, T. Cortezon, E. Palencia Pavis, S. Perez, E. Pernot, J. F. Perrozzi, L. Petagna, P. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Postema, H. Racz, A. Reece, W. Rolandi, G. Rovere, M. Rzonca, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Szwarc, T. Tropea, P. Troska, J. Tsirou, A. Vasey, F. Veres, G. I. Verlaat, B. Vichoudis, P. Vlimant, J. R. Woehri, H. K. Zeuner, W. D. Zwalinski, L. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, B. Renker, D. Rohe, T. Streuli, S. Bachmair, F. Baeni, L. Becker, R. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Di Calafiori, D. R. Da Silva Deisher, A. Dissertori, G. Dittmar, M. Djambazov, L. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Horisberger, U. Hoss, J. Lustermann, W. Mangano Marini, A. C. Del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Quittnat, M. Ronga, F. J. Roeser, U. Rossini, M. Starodumov, A. Takahashi, M. Tauscher, L. Theofilatos, K. Treille, D. von Gunten, H. P. Wallny, R. Weber, H. A. Amsler, C. Boesiger, K. Canelli, M. F. Chiochia, V. De Cosa, A. Favaro, C. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Lange, C. Maier, R. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Wilken, R. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Richardson, C. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Gardner, M. Ko, W. Kopecky, A. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Shalhout, S. Smith, J. Squires, M. Thomson, J. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Valuev, V. Weber, M. Babb, J. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Kovalskyi, D. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wurthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kyre, S. Villalba, R. Magana Mccoll, N. Mullin, S. D. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. White, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Chramowicz, J. Cihangir, S. Cooper, W. Deptuch, G. Derylo, G. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gingu, V. C. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hoff, J. R. Hooberman, B. Howell, J. Hrycyk, M. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kwan, S. Lei, C. M. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Los, S. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. Matulik, M. S. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Prosser, A. Ratnikova, N. Rivera, R. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Trimpl, M. Uplegger, L. Vaandering, E. W. Vidal, R. Voirin, E. Whitbeck, A. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Ev-Dokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kapustka, B. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Nash, K. Osherson, M. Swartz, M. Xiao, M. Baringer, P. Bean, A. Benelli, G. Gray, J. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Tinti, G. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Taylor, R. Toda, S. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stockli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Monroy, J. Snow, G. R. Dolen, J. George, J. Godshalk, A. Iashvili, I. Jain, S. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Sevova, S. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Arndt, K. Benedetti, D. Bolla, G. Bortoletto, D. Bubna, M. Cervantes, M. De Mattia, M. Everett, A. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Bartz, E. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sakharov, A. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Description and performance of track and primary-vertex reconstruction with the CMS tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pattern recognition, cluster finding, calibration and fitting methods; Large detector-systems performance; Performance of High Energy Physics Detectors ID SILICON PIXEL SENSORS; PATTERN-RECOGNITION; SIMULATION; DETECTOR; DESIGN; EVENT; CHIP AB A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Beaumont, W.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; De Callatay, B.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Michotte, D.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Martins, M. Correa, Jr.; Martins, T. Dos Reis; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda, W. L., Jr.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J. -M.; Chabert, E. C.; Charles, L.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Gross, L.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Baulieu, G.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Esser, H.; Feld, L.; Hindrichs, O.; Karpinski, W.; Klein, K.; Kukulies, C.; Lipinski, M.; Ostapchuk, A.; Perieanu, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Schwering, G.; Sprenger, D.; Verlage, T.; Weber, H.; Wittmer, B.; Wlochal, M.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hampe, J.; Hansen, K.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kraemer, M.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Maser, H.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Muhl, C.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeer, M.; Spannagel, S.; Stein, M.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Zuber, A.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Martin, M. Aldaya; Berger, L. O.; Biskop, H.; Blobel, V.; Buhmann, P.; Vignali, M. Centis; Enderle, H.; Erfle, J.; Frensche, B.; Garutti, E.; Goebel, K.; Orner, M. G.; Gosselink, M.; Haller, J.; Hoffmann, M.; Oing, R. S. H.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Maettig, S.; Marchesini, I.; Matysek, M.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Barvich, T.; Baus, C.; Berger, J.; Boegelspacher, F.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Eber, R.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Heindl, S. M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Printz, M.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Steck, P.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Attikis, A.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Attikis, A.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Cariola, P.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Iaselli, G.; Loddo, F.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Sala, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Saizu, M. A.; Scinta, M.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Saizu, M. A.; Scinta, M.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Giordano, F.] CSFNSM, Catania, Italy. [Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Scarlini, E.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Scarlini, E.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [D'Angelo, P.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [D'Angelo, P.; Dinardo, M. E.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.; Kaminskiy, A.] Univ Trento, Trento, Italy. [Gabusi, M.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Traversi, G.; Vitulo, P.; Zucca, S.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Bissi, L.; Checcucci, B.; Ciangottini, D.; Conti, E.; Fano, L.; Lariccia, P.; Magalotti, D.; Mantovani, G.; Menichelli, M.; Passeri, D.; Placidi, P.; Romeo, F.; Saha, A.; Salvatore, M.; Santocchia, A.; Servoli, L.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Conti, E.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Romeo, F.; Salvatore, M.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Arezzini, S.; Azzurri, P.; Bagliesi, G.; Basti, A.; Bernardini, J.; Boccali, T.; Bosi, F.; Broccolo, G.; Calzolari, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Moon, C. S.; Palla, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56010 Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Calzolari, F.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, I-00161 Rome, Italy. [Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Rivetti, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Trapani, P. P.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Degano, A.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Ortona, G.; Pacher, L.; Romero, A.; Sacchi, R.; Solano, A.; Trapani, P. P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, B.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Gorski, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Wrochna, G.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; De Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jaramillo Echeverria, R. W.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Moya, D.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Evangelou, I.; Foudas, C.; Bencze, G.; Mohanty, A. K.; Giordano, F.; Chamizo Llatas, M.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Berruti, G. M.; Bianchi, G.; Blanchot, G.; Bloch, P.; Bocci, A.; Bondu, A. Bonato O.; Botta, C.; Breuker, H.; Camporesi, T.; Ceresa, D.; Cerminara, G.; Christiansen, J.; Christiansen, T.; Niemelae, A. O. Chavez; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; D'Auria, A.; d'Enterria, D.; Dabrowski, A.; Daguin, J.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Detraz, S.; Deyrail, D.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Faccio, F.; Felici, D.; Frank, N.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Honma, A.; Innocente, V.; Janot, P.; Kaplon, J.; Karavakis, E.; Katopodis, T.; Kottelat, L. J.; Kousouris, K.; Kovacs, M. I.; Krajczar, K.; Krzempek, L.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marchioro, A.; Marconi, S.; Noite, J. Marques Pinho; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Michelis, S.; Moll, M.; Moortgat, F.; Mulders, M.; Musella, P.; Onnela, A.; Orsini, L.; Pakulski, T.; Cortezon, E. Palencia; Pavis, S.; Perez, E.; Pernot, J. F.; Perrozzi, L.; Petagna, P.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Postema, H.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Rzonca, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Szwarc, T.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Veres, G. I.; Verlaat, B.; Vichoudis, P.; Vlimant, J. R.; Woehri, H. K.; Zeuner, W. D.; Zwalinski, L.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, B.; Renker, D.; Rohe, T.; Streuli, S.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Becker, R.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Di Calafiori, D. R. Da Silva; Deisher, A.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Lustermann, W.; Mangano; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Ronga, F. J.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tauscher, L.; Theofilatos, K.; Treille, D.; von Gunten, H. P.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Boesiger, K.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Lange, C.; Maier, R.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Thomson, J.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Burt, K.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Lacroix, F.; Liu, H.; Luthra, A.; Nguyen, H.; Shrinivas, A.; Sturdy, J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, San Diego, CA 92103 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kyre, S.; Villalba, R. Magana; Mccoll, N.; Mullin, S. D.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Chramowicz, J.; Cihangir, S.; Cooper, W.; Deptuch, G.; Derylo, G.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gingu, V. C.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hoff, J. R.; Hooberman, B.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Lei, C. M.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Los, S.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; Matulik, M. S.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Prosser, A.; Ratnikova, N.; Rivera, R.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Trimpl, M.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Voirin, E.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Ev-Dokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kapustka, B.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Tinti, G.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Taylor, R.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Monroy, J.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Sevova, S.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Shi, X.; Alagoz, E.; Arndt, K.; Benedetti, D.; Bolla, G.; Bortoletto, D.; Bubna, M.; Cervantes, M.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Bartz, E.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sakharov, A.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, Brazil. [Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt. [Assran, Y.] Suez Univ, Suez, Egypt. [Elgammal, S.] British Univ Egypt, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Saizu, M. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, IFIN HH, Bucharest, Romania. [Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Adzic, P.] Univ Belgrade, Fac Sci, Belgrade, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Istanbul Univ, Fac Sci, Istanbul, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Vogel, Helmut/N-8882-2014; Dudko, Lev/D-7127-2012; Servoli, Leonello/E-6766-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Calderon, Alicia/K-3658-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Manganote, Edmilson/K-8251-2013; Dahms, Torsten/A-8453-2015; Lokhtin, Igor/D-7004-2012; Ferguson, Thomas/O-3444-2014; da Cruz e Silva, Cristovao/K-7229-2013; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Leonidov, Andrey/P-3197-2014; Benussi, Luigi/O-9684-2014; Petrushanko, Sergey/D-6880-2012; Ligabue, Franco/F-3432-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Popov, Andrey/E-1052-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Mundim, Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016 OI Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Jacob, Jeson/0000-0001-6895-5493; Vidal Marono, Miguel/0000-0002-2590-5987; Vogel, Helmut/0000-0002-6109-3023; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; ORTONA, Giacomo/0000-0001-8411-2971; Ulrich, Ralf/0000-0002-2535-402X; Dudko, Lev/0000-0002-4462-3192; Servoli, Leonello/0000-0003-1725-9185; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Dahms, Torsten/0000-0003-4274-5476; Ferguson, Thomas/0000-0001-5822-3731; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Benussi, Luigi/0000-0002-2363-8889; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Androsov, Konstantin/0000-0003-2694-6542; HSIUNG, YEE/0000-0003-4801-1238; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Toback, David/0000-0003-3457-4144; Tosi, Nicolo/0000-0002-0474-0247; Marzocchi, Badder/0000-0001-6687-6214; Costa, Salvatore/0000-0001-9919-0569; Margaroli, Fabrizio/0000-0002-3869-0153; Gerosa, Raffaele/0000-0001-8359-3734; Ligabue, Franco/0000-0002-1549-7107; Malik, Sudhir/0000-0002-6356-2655; Staiano, Amedeo/0000-0003-1803-624X; Tonelli, Guido Emilio/0000-0003-2606-9156; Abbiendi, Giovanni/0000-0003-4499-7562; WANG, MIN-ZU/0000-0002-0979-8341; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Popov, Andrey/0000-0002-1207-0984; Kasemann, Matthias/0000-0002-0429-2448; Barbieri, Richard/0000-0002-7945-005X; Landsberg, Greg/0000-0002-4184-9380; Blekman, Freya/0000-0002-7366-7098; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594 FU Science and Technology Facilities Council [CMS] NR 56 TC 8 Z9 8 U1 6 U2 64 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR P10009 DI 10.1088/1748-0221/9/10/P10009 PG 82 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500052 ER PT J AU Drake, G Garcia-Scivres, M Paramonov, A Stanek, R Underwood, D AF Drake, G. Garcia-Scivres, M. Paramonov, A. Stanek, R. Underwood, D. TI Fiber-optic links based on silicon photonics for high-speed readout of trackers SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY MAY 14-16, 2014 CL Univ Penn, Philadelphia, PA HO Univ Penn DE Optical detector readout concepts; Data acquisition circuits; Radiation-hard electronics; Data acquisition concepts AB We propose to use silicon photonics technology to build radiation-hard fiber-optic links for high-bandwidth readout of tracking detectors. The CMOS integrated silicon photonics was developed by Luxtera and commercialized by Molex. The commercial off-the-shelf (COTS) fiber-optic links feature moderate radiation tolerance insufficient for trackers. A transceiver contains four RX and four TX channels operating at 10 Gbps each. The next generation will likely operate at 25 Gbps per channel. The approach uses a standard CMOS process and single-mode fibers, providing low power consumption and good scalability and reliability. C1 [Drake, G.; Paramonov, A.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Lemont, IL 60439 USA. [Garcia-Scivres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Paramonov, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM aparamonov@anl.gov NR 12 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR C10037 DI 10.1088/1748-0221/9/10/C10037 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500037 ER PT J AU Garcia-Sciveres, M Wang, X AF Garcia-Sciveres, M. Wang, X. TI Data compression considerations for detectors with local intelligence SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY MAY 14-16, 2014 CL Univ Penn, Philadelphia, PA HO Univ Penn DE Si microstrip and pad detectors; Data acquisition concepts; Data reduction methods AB This note summarizes the outcome of discussions about how data compression considerations apply to tracking detectors with local intelligence. The method for analyzing data compression efficiency is taken from a previous publication and applied to module characteristics from the WIT2014 workshop. We explore local intelligence and coupled layer structures in the language of data compression. In this context the original intelligent tracker concept of correlating hits to find matches of interest and discard others is just a form of lossy data compression. We now explore how these features (intelligence and coupled layers) can be exploited for lossless compression, which could enable full readout at higher trigger rates than previously envisioned, or even triggerless. C1 [Wang, X.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Garcia-Sciveres, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mgs@lbl.gov NR 3 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR C10011 DI 10.1088/1748-0221/9/10/C10011 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500011 ER PT J AU Lorca, D Martin-Albo, J Laing, A Ferrario, P Gomez-Cadenas, JJ Alvarez, V Borges, FIG Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Dafni, T Diaz, J Esteve, R Fernandes, LMP Ferreira, AL Freitas, EDC Gehman, VM Goldschmidt, A Gomez, H Gonzalez-Diaz, D Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Irastorza, IG Labarga, L Liubarsky, I Losada, M Luzon, G Mari, A Martinez-Lema, G Martinez, A Miller, T Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM Nebot-Guinot, M Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Renner, J Ripoll, L Rodriguez, A Rodriguez, J Santos, FP dos Santos, JMF Segui, L Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Webb, R White, JT Yahlali, N AF Lorca, D. Martin-Albo, J. Laing, A. Ferrario, P. Gomez-Cadenas, J. J. Alvarez, V. Borges, F. I. G. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Esteve, R. Fernandes, L. M. P. Ferreira, A. L. Freitas, E. D. C. Gehman, V. M. Goldschmidt, A. Gomez, H. Gonzalez-Diaz, D. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Irastorza, I. G. Labarga, L. Liubarsky, I. Losada, M. Luzon, G. Mari, A. Martinez-Lema, G. Martinez, A. Miller, T. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Perez Aparicio, J. L. Renner, J. Ripoll, L. Rodriguez, A. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Segui, L. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Webb, R. White, J. T. Yahlali, N. TI Characterisation of NEXT-DEMO using xenon K-alpha X-rays SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers ID RESOLUTION AB The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a similar to 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K-alpha X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from Na-22. C1 [Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain. [Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, Valencia 46980, Spain. [Borges, F. I. G.; Conde, C. A. N.; Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Cebrian, S.; Dafni, T.; Gomez, H.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Gehman, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Renner, J.; Shuman, D.; Toledo, J. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Esteve, R.; Mari, A.; Mora, F. J.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Valencia 46022, Spain. [Tsamalaidze, Z.] JINR, Dubna 141980, Russia. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat I3N, P-3810193 Aveiro, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela 15782, Spain. [Labarga, L.; Perez, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Perez Aparicio, J. L.] Univ Politecn Valencia, Dpto Mecan Medios Continuos & Teoria Estruct, E-46071 Valencia, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain. [Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Lorca, D (reprint author), CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain. EM david.lorca@ific.uv.es; justo.martin-albo@ific.uv.es; gomez@mail.cern.ch RI Monrabal, Francesc/A-5880-2015; Ripoll, Lluis/A-8413-2015; Gonzalez Diaz, Diego/K-7265-2014; dos Santos, Joaquim/B-3058-2015; AMADE Research Group, AMADE/B-6537-2014; Diaz, Jose/B-3454-2012; Perez-Aparicio, Jose/H-7053-2015; Fernandes, Luis/E-2372-2011; veloso, joao/J-4478-2013; Moutinho, Luis/J-6021-2013; Irastorza, Igor/B-2085-2012; Dafni, Theopisti/J-9646-2012; Gomez Cadenas, Juan Jose/L-2003-2014; OI Martin-Albo, Justo/0000-0002-7318-1469; Monrabal, Francesc/0000-0002-4047-5620; Ripoll, Lluis/0000-0001-8194-5396; Gonzalez Diaz, Diego/0000-0002-6809-5996; AMADE Research Group, AMADE/0000-0002-5778-3291; Diaz, Jose/0000-0002-7239-223X; Perez-Aparicio, Jose/0000-0003-2884-6991; Fernandes, Luis/0000-0002-7061-8768; Moutinho, Luis/0000-0001-9074-4449; Irastorza, Igor/0000-0003-1163-1687; Monteiro, Cristina Maria Bernardes/0000-0002-1912-2804; dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Dafni, Theopisti/0000-0002-8921-910X; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Munoz Vidal, Javier/0000-0002-9649-2251 FU European Research Council [339787-NEXT]; Ministerio de Economia y Competitividad of Spain [CSD2008-0037, FPA2009-13697-C04, FIS2012-37947-C04]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Portuguese FCT; FEDER [PTDC/FIS/103860/2008] FX This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008. NR 18 TC 9 Z9 9 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR P10007 DI 10.1088/1748-0221/9/10/P10007 PG 20 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500050 ER PT J AU Madrak, R Wildman, D AF Madrak, R. Wildman, D. TI A fast chopper for medium energy beams SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Subsystems and Technologies; Hardware and accelerator control systems AB The key elements have been constructed for a fast chopper system capable of removing single 2.5MeV proton bunches spaced at 325 MHz. The average chopping rate is similar to 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented. C1 [Madrak, R.; Wildman, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Madrak, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM madrak@fnal.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2014 VL 9 AR T10009 DI 10.1088/1748-0221/9/10/T10009 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AU8PK UT WOS:000345858500069 ER PT J AU Cherry, JF Frandsen, MT Shoemaker, IM AF Cherry, John F. Frandsen, Mads T. Shoemaker, Ian M. TI Halo-independent direct detection of momentum-dependent dark matter SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter detectors; dark matter experiments; dark energy theory AB We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be less than or similar to 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner. C1 [Cherry, John F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Frandsen, Mads T.; Shoemaker, Ian M.] Univ Southern Denmark, Origins CP3, DK-5230 Odense M, Denmark. [Frandsen, Mads T.; Shoemaker, Ian M.] Univ Southern Denmark, Danish Inst Adv Study, DK-5230 Odense M, Denmark. RP Cherry, JF (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM jcherry@lanl.gov; frandsen@cp3-origins.net; shoemaker@cp3-origins.net FU Danish National Research Foundation [DNRF90]; Danish Council for Independent Research [11-120829]; U.C. Office of the President; LDRD Program at LANL FX We would like to thank Andreas Crivellin, Eugenio Del Nobile, Martin Hoferichter, Ranjan Laha, and Stefano Scopel for useful comments. The CP3-Origins centre is partially funded by the Danish National Research Foundation, grant number DNRF90. MTF acknowledges a Sapere Aude Grant no. 11-120829 from the Danish Council for Independent Research. This work was also supported in part by the U.C. Office of the President in conjunction with the LDRD Program at LANL. NR 40 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2014 IS 10 AR 022 DI 10.1088/1475-7516/2014/10/022 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW0OA UT WOS:000345990800023 ER PT J AU Fox, PJ Kahn, Y McCullough, M AF Fox, Patrick J. Kahn, Yonatan McCullough, Matthew TI Taking Halo-independent dark matter methods out of the bin SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter detectors; dark matter experiments AB We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons between multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment. C1 [Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Kahn, Yonatan; McCullough, Matthew] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Fox, PJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM pjfox@fnal.gov; ykahn@mit.edu; mccull@mit.edu FU Simons Postdoctoral Fellowship; NSF; Belfast Education Library Board; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy FX We would like to thank Prateek Agrawal, Kyle Cranmer, Brian Feldstein, Felix Kahlhoefer, Joe Lykken, Christopher McCabe, and Jesse Thaler for conversations. MM thanks the Princeton PCTP workshop "The Dark Matter Paradigm: Current Status and Challenges" for stimulating a conversation with David J. E. Marsh which motivated this work. MM is grateful for the support of a Simons Postdoctoral Fellowship. YK thanks Grace Haaf, Joshua Batson, and Tiankai Liu for helpful discussions about functional optimization with inequality constraints. YK is supported by an NSF Graduate Research Fellowship. PF and MM would like to thank the Belfast Education & Library Board for support during the very early stages of this work. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 35 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2014 IS 10 AR 076 DI 10.1088/1475-7516/2014/10/076 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW0OA UT WOS:000345990800077 ER PT J AU Mortonson, MJ Seljak, U AF Mortonson, Michael J. Seljak, Uros TI A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE gravitational waves and CMBR polarization; CMBR experiments; cosmological parameters from CMBR; inflation ID MICROWAVE BACKGROUND POLARIZATION AB We analyze BICEP2 and Planck data using a model that includes CMB lensing, gravity waves, and polarized dust. Recently published Planck dust polarization maps have highlighted the difficulty of estimating the amount of dust polarization in low intensity regions, suggesting that the polarization fractions have considerable uncertainties and may be significantly higher than previous predictions. In this paper, we start by assuming nothing about the dust polarization except for the power spectrum shape, which we take to be C-l(BB,dust) proportional to l(-2.42). The resulting joint BICEP2+Planck analysis favors solutions without gravity waves, and the upper limit on the tensor-to-scalar ratio is r < 0.11, a slight improvement relative to the Planck analysis alone which gives r < 0.13 (959 c.l.). The estimated amplitude of the dust polarization power spectrum agrees with expectations for this field based on both Hi column density and Planck polarization measurements at 353 GHz in the BICEP2 field. Including the latter constraint on the dust spectrum amplitude in our analysis improves the limit further to r < 0.09, placing strong constraints on theories of inflation (e.g., models with r > 0.14 are excluded with 99.5% confidence). We address the cross-correlation analysis of BICEP2 at 150 GHz with BICEP1 at 100 GHz as a test of foreground contamination. We find that the null hypothesis of dust and lensing with r = 0 gives Delta chi(2) < 2 relative to the hypothesis of no dust, so the frequency analysis does not strongly favor either model over the other. We also discuss how more accurate dust polarization maps may improve our constraints. If the dust polarization is measured perfectly, the limit can reach r < 0.05 (or the corresponding detection significance if the observed dust signal plus the expected lensing signal is below the BICEP2 observations), but this degrades quickly to almost no improvement if the dust calibration error is 20% or larger or if the dust maps are not processed through the BICEP2 pipeline, inducing sampling variance noise. C1 [Mortonson, Michael J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mortonson, Michael J.; Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA. RP Mortonson, MJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM mmortonson@berkeley.edu; useljak@berkeley.edu FU NASA ATP grant [NNX12AG71G] FX M.M. and U.S. are supported in part by the NASA ATP grant NNX12AG71G. We thank R. Flauger, W. Holzapfel, A. Lee, L. Senatore, B. Sherwin, M. White, and M. Zaldarriaga for useful discussions. NR 22 TC 94 Z9 94 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2014 IS 10 AR 035 DI 10.1088/1475-7516/2014/10/035 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW0OA UT WOS:000345990800036 ER PT J AU Naess, S Hasselfield, M McMahon, J Niemack, MD Addison, GE Ade, PAR Allison, R Amiri, M Battaglia, N Beall, JA de Bernardis, F Bond, JR Britton, J Calabrese, E Cho, HM Coughlin, K Crichton, D Das, S Datta, R Devlin, MJ Dicker, SR Dunkley, J Dunner, R Fowler, JW Fox, AE Gallardo, P Grace, E Gralla, M Hajian, A Halpern, M Henderson, S Hill, JC Hilton, GC Hilton, M Hincks, AD Hlozek, R Ho, P Hubmayr, J Huffenberger, KM Hughes, JP Infante, L Irwin, K Jackson, R Kasanda, SM Klein, J Koopman, B Kosowsky, A Li, D Louis, T Lungu, M Madhavacheril, M Marriage, TA Maurin, L Menanteau, F Moodley, K Munson, C Newburgh, L Nibarger, J Nolta, MR Page, LA Pappas, C Partridge, B Rojas, F Schmitt, BL Sehgal, N Sherwin, BD Sievers, J Simon, S Spergel, DN Staggs, ST Switzer, ER Thornton, R Trac, H Tucker, C Uehara, M Van Engelen, A Ward, JT Wollack, EJ AF Naess, Sigurd Hasselfield, Matthew McMahon, Jeff Niemack, Michael D. Addison, Graeme E. Ade, Peter A. R. Allison, Rupert Amiri, Mandana Battaglia, Nick Beall, James A. de Bernardis, Francesco Bond, J. Richard Britton, Joe Calabrese, Erminia Cho, Hsiao-mei Coughlin, Kevin Crichton, Devin Das, Sudeep Datta, Rahul Devlin, Mark J. Dicker, Simon R. Dunkley, Joanna Duenner, Rolando Fowler, Joseph W. Fox, Anna E. Gallardo, Patricio Grace, Emily Gralla, Megan Hajian, Amir Halpern, Mark Henderson, Shawn Hill, J. Colin Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Ho, Patty Hubmayr, Johannes Huffenberger, Kevin M. Hughes, John P. Infante, Leopoldo Irwin, Kent Jackson, Rebecca Kasanda, Simon Muya Klein, Jeff Koopman, Brian Kosowsky, Arthur Li, Dale Louis, Thibaut Lungu, Marius Madhavacheril, Mathew Marriage, Tobias A. Maurin, Loic Menanteau, Felipe Moodley, Kavilan Munson, Charles Newburgh, Laura Nibarger, John Nolta, Michael R. Page, Lyman A. Pappas, Christine Partridge, Bruce Rojas, Felipe Schmitt, Benjamin L. Sehgal, Neelima Sherwin, Blake D. Sievers, Jon Simon, Sara Spergel, David N. Staggs, Suzanne T. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Uehara, Masao Van Engelen, Alexander Ward, Jonathan T. Wollack, Edward J. TI The Atacama Cosmology Telescope: CMB polarization at 200 < l < 9000 SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE CMBR polarisation; CMBR experiments; cosmological parameters from CMBR; CMBR detectors ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND POLARIZATION; SPT-SZ SURVEY; POWER SPECTRUM; CRAB-NEBULA; PARAMETERS; CATALOG; MAPS; GHZ; CONSTRAINTS AB We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 mu K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < l < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at l < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 mu K-2 at l = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7 degrees +/- 0.6 degrees when smoothed with a 5' Gaussian beam. C1 [Naess, Sigurd; Allison, Rupert; Calabrese, Erminia; Dunkley, Joanna] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Hasselfield, Matthew; Hill, J. Colin; Hlozek, Renee; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hasselfield, Matthew; Addison, Graeme E.; Amiri, Mandana; Halpern, Mark; Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [McMahon, Jeff; Coughlin, Kevin; Datta, Rahul; Jackson, Rebecca; Munson, Charles] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Niemack, Michael D.; de Bernardis, Francesco; Gallardo, Patricio; Henderson, Shawn; Koopman, Brian] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ade, Peter A. R.; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Battaglia, Nick; Trac, Hy] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Beall, James A.; Britton, Joe; Cho, Hsiao-mei; Fowler, Joseph W.; Fox, Anna E.; Hilton, Gene C.; Hubmayr, Johannes; Li, Dale] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Crichton, Devin; Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Das, Sudeep] Argonne Natl Lab, Dept High Energy Phys, Argonne, IL 60439 USA. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Lungu, Marius; Schmitt, Benjamin L.; Ward, Jonathan T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando; Gallardo, Patricio; Infante, Leopoldo; Maurin, Loic; Rojas, Felipe] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 22, Chile. [Grace, Emily; Ho, Patty; Newburgh, Laura; Page, Lyman A.; Pappas, Christine; Simon, Sara; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Hilton, Matt; Kasanda, Simon Muya; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Huffenberger, Kevin M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Irwin, Kent] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Jackson, Rebecca] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Kasanda, Simon Muya; Sievers, Jon] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Madhavacheril, Mathew; Sehgal, Neelima; Van Engelen, Alexander] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Menanteau, Felipe] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Menanteau, Felipe] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Rojas, Felipe; Uehara, Masao] Sociedad Radiosky Asesoras Ingn Ltd Lincoyan, Concepcion, Chile. [Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Switzer, Eric R.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thornton, Robert] Univ Penn, Dept Phys, W Chester, PA 19383 USA. RP Naess, S (reprint author), Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. EM sigurd.naess@astro.ox.ac.uk RI Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Sievers, Jonathan/0000-0001-6903-5074; Tucker, Carole/0000-0002-1851-3918 FU U.S. National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI) award; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under Compute Canada; Government of Ontario; Ontario Research Fund - Research Excellence; University of Toronto; NASA [NNX13AE56G, NNX14AB58G, NNX12AM32H]; ERC [259505]; NASA ATP [NNX14AB57G]; DOE [DE-SC0011114]; NSF [AST-1312991]; NASA Space Technology Research Fellowships; CONICYT [QUIMAL-120001, FONDECYT-1141113]; Mishrahi Fund; Wilkinson Fund FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund - Research Excellence; and the University of Toronto. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. CM acknowledges support from NASA grant NNX12AM32H. Funding from ERC grant 259505 supports SN, JD, EC, and TL. HT is supported by grants NASA ATP NNX14AB57G, DOE DE-SC0011114, and NSF AST-1312991. BS, BK, CM, and EG are funded by NASA Space Technology Research Fellowships. R.D received funding from the CONICYT grants QUIMAL-120001 and FONDECYT-1141113. We thank our many colleagues from ABS, ALMA, APEX, and POLARBEAR who have helped us at critical junctures. Colleagues at AstroNorte and Radio Sky provide logistical support and keep operations in Chile running smoothly. We thank Jesse Treu for multiple suggestions and comments. We also thank the Mishrahi Fund and the Wilkinson Fund for their generous support of the project. NR 89 TC 55 Z9 55 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2014 IS 10 AR 007 DI 10.1088/1475-7516/2014/10/007 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW0OA UT WOS:000345990800008 ER PT J AU Patil, AA Pandey, YN Doxastakis, M Stein, GE AF Patil, Abhijit A. Pandey, Yogendra Narayan Doxastakis, Manolis Stein, Gila E. TI Characterizing acid diffusion lengths in chemically amplified resists from measurements of deprotection kinetics SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE photoresist; stochastic simulations; chemical amplification; lithography; anomalous kinetics; acid trapping; reaction-diffusion; poly(4-hydroxystyrene-co-tertbutyl acrylate); nonisothermal kinetics; subdiffusive transport ID GLASS-TRANSITION TEMPERATURE; ANOMALOUS DIFFUSION; POLYMER-FILMS; PROBE; PHOTORESISTS; LITHOGRAPHY; CONFINEMENT; MODELS; FRONT; THIN AB The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the postexposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysis of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nano-pattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Patil, Abhijit A.; Pandey, Yogendra Narayan; Stein, Gila E.] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Doxastakis, Manolis] Argonne Natl Lab, Inst Mol Engn, Argonne, IL 60439 USA. RP Stein, GE (reprint author), Univ Houston, Dept Chem & Biomol Engn, 4800 Calhoun Rd, Houston, TX 77204 USA. EM edoxastakis@anl.gov; gestein@uh.edu RI Stein, Gila/P-1927-2016; OI Stein, Gila/0000-0002-3973-4496; Pandey, Yogendra/0000-0002-6110-428X; Doxastakis, Manolis/0000-0002-9175-9906 FU Semiconductor Research Corporation [2011-OJ-2128]; National Science Foundation [CBET-1437878, CBET-1067356] FX The authors acknowledge past funding from the Semiconductor Research Corporation that helped to initiate this research program (Contract No. 2011-OJ-2128), as well as current funding from the National Science Foundation (Grant No. CBET-1437878 to G.E.S., and Grant No. CBET-1067356 to M.D.). The authors thank Professor Vemuri Balakotaiah for helpful discussions regarding nonisothermal effects in diffusion-controlled reactions. The authors also thank DuPont Electronic Materials for supplying the P(HOST-co-TBA) resin. NR 29 TC 0 Z9 0 U1 2 U2 8 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 EI 1932-5134 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD OCT PY 2014 VL 13 IS 4 AR 043017 DI 10.1117/1.JMM.13.4.043017 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA AW6UA UT WOS:000346402500021 ER PT J AU Marcillo, O Arrowsmith, S Whitaker, R Morton, E Phillips, WS AF Marcillo, Omar Arrowsmith, Stephen Whitaker, Rod Morton, Emily Phillips, W. Scott TI Extracting changes in air temperature using acoustic coda phase delays SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID VELOCITY; ATTENUATION; WAVES AB Blast waves produced by 60 high-explosive detonations were recorded at short distances (few hundreds of meters); the corresponding waveforms show charge-configuration independent coda-like features (i.e., similar shapes, amplitudes, and phases) lasting several seconds. These features are modeled as reflected and/or scattered waves by acoustic reflectors/scatters surrounding the explosions. Using explosion pairs, relative coda phase delays are extracted and modeled as changes in sound speed due to changes in air temperature. Measurements from nearby weather towers are used for validation. C1 [Marcillo, Omar; Arrowsmith, Stephen; Whitaker, Rod; Morton, Emily; Phillips, W. Scott] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP Marcillo, O (reprint author), Los Alamos Natl Lab, Geophys Grp, POB 1663, Los Alamos, NM 87545 USA. EM omarcillo@lanl.gov; arrows@lanl.gov; rww@lanl.gov; emorton@lanl.gov; wsp@lanl.gov FU Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration; U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396. NR 10 TC 0 Z9 0 U1 0 U2 6 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD OCT PY 2014 VL 136 IS 4 BP EL309 EP EL314 DI 10.1121/1.4896404 PG 6 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AW0JF UT WOS:000345977400010 PM 25324115 ER PT J AU Sorensen, P AF Sorensen, Paul TI Black holes in cosmological natural selection SO PHYSICS TODAY LA English DT Letter C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sorensen, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM psorensen@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD OCT PY 2014 VL 67 IS 10 BP 8 EP 8 PG 1 WC Physics, Multidisciplinary SC Physics GA AW2MF UT WOS:000346121600001 ER PT J AU Zurek, WH AF Zurek, Wojciech H. TI QUANTUM DARWINISM, CLASSICAL REALITY, and the randomness of quantum jumps SO PHYSICS TODAY LA English DT Article ID DECOHERENCE; ENVIRONMENT C1 [Zurek, Wojciech H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zurek, Wojciech H.] Univ Ulm, D-89069 Ulm, Germany. RP Zurek, WH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU US Department of Energy; Foundational Questions Institute FX I thank Charles Bennett, Robin Blume-Kohout, Jim Hartle, Raymond Laflamme, Juan Pablo Paz, Hai-Tao Quan, Jess Riedel, Wolfgang Schleich, Max Tegmark, and Michael Zwolak for enjoyable and helpful discussions, and with appreciation I acknowledge support from the US Department of Energy and the Foundational Questions Institute. NR 19 TC 22 Z9 23 U1 4 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD OCT PY 2014 VL 67 IS 10 BP 44 EP 50 PG 7 WC Physics, Multidisciplinary SC Physics GA AW2MF UT WOS:000346121600021 ER PT J AU Cho, K Tanatar, MA Ni, N Prozorov, R AF Cho, K. Tanatar, M. A. Ni, N. Prozorov, R. TI Doping-evolution of the superconducting gap in single crystals of (Ca1-xLax)(10)(Pt3As8)(Fe2As2)(5) superconductor from London penetration depth measurements SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE London penetration depth; iron based superconductors; pairing mechanisms ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON PNICTIDES; T-C; KFE2AS2; STATE AB The doping-evolution of the superconducting gap structure in iron-based superconductor (Ca1-xLax)(10)(Pt3As8)(Fe2As2)(5) (x = 0.04, 0.06, 0.09, 0.11, and 0.18) was probed by high-resolution measurements of the London penetration depth, lambda(T). The samples spanned compositions from underdoped to slightly overdoped with superconducting critical temperatures, T-c, from 12.7 K (x = 0.04) through (optimal) 23.3 K (x = 0.11) to 21.9 K (x = 0.18). The low-temperature variation (up to 0.3 T-c) of lambda(T) was analysed using a power-law function, Delta lambda = AT(n). For compositions close to the optimal doping, (x = 0.09, 0.11, and 0.18), characterized by T-c > 20K, Delta lambda(T) shows a tendency to saturation, indicative of a full gap on the Fermi surface. Fitting over the lowest temperature range (T< 0.1T(c)) gives n = 2.6. This value is well outside the range 1 <= n <= 2 expected for the line-nodal superconductor. The exponent n decreased to n similar to 2 in the two most underdoped compositions x = 0.04 (T-c = 12.7 K) and 0.06 (T-c = 18.2 K), implying the development of a notable gap anisotropy revealed by the enhanced influence of pair-breaking scattering. This decrease is accompanied by a significant increase of the total variation of the penetration depth Delta lambda in a fixed temperature interval (e.g., T-min - 0.3 T-c). Both the decrease of the exponent and the increase of the absolute value of Delta lambda in the underdoped regime are similar to the observations in other charge-doped iron-based superconductors, such as doped BaFe2As2 and NaFeAs, suggesting a universal behavior in iron-based superconductors. C1 [Cho, K.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Cho, K.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ni, N.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Cho, K (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0011978] FX The work in Ames was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the US DOE by Iowa State University under contract DE-AC02-07CH11358. Ni would like to thank the support from U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0011978. NR 53 TC 2 Z9 2 U1 0 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2014 VL 27 IS 10 AR 104006 DI 10.1088/0953-2048/27/10/104006 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA AW2KD UT WOS:000346115500008 ER PT J AU Martin, NM Van den Bossche, M Hellman, A Gronbeck, H Hakanoglu, C Gustafson, J Blomberg, S Johansson, N Liu, Z Axnanda, S Weaver, JF Lundgren, E AF Martin, Natalia M. Van den Bossche, Maxime Hellman, Anders Gronbeck, Henrik Hakanoglu, Can Gustafson, Johan Blomberg, Sara Johansson, Niclas Liu, Zhi Axnanda, Stephanus Weaver, Jason F. Lundgren, Edvin TI Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films SO ACS CATALYSIS LA English DT Article DE heterogeneous catalysis; methane oxidation; palladium; PdO; (root 5 x root 5) ID ROOT-5)R27-DEGREES-O SURFACE OXIDE; AUGMENTED-WAVE METHOD; METHANE OXIDATION; PALLADIUM; COMBUSTION; ACTIVATION; TRANSITION; REACTIVITY; ALKANES; PHASE AB High-pressure X-ray photoelectron spectroscopy, mass spectrometry, and density functional theory calculations have been combined to study methane oxidation over Pd(100). The measurements reveal a high activity when a two-layer PdO(101) oriented film is formed. Although a one-layer PdO(101) film exhibits a similar surface structure, no or very little activity is observed. The calculations show that the presence of an oxygen atom directly below the coordinatively unsaturated Pd atom in the two-layer PdO(101) film is crucial for efficient methane dissociation, demonstrating a ligand effect that may be broadly important in determining the catalytic properties of oxide thin films. C1 [Martin, Natalia M.; Gustafson, Johan; Blomberg, Sara; Johansson, Niclas; Lundgren, Edvin] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden. [Van den Bossche, Maxime; Hellman, Anders; Gronbeck, Henrik] Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden. [Van den Bossche, Maxime; Hellman, Anders; Gronbeck, Henrik] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Hakanoglu, Can; Weaver, Jason F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Liu, Zhi; Axnanda, Stephanus] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Martin, NM (reprint author), Lund Univ, Div Synchrotron Radiat Res, Box 118, SE-22100 Lund, Sweden. EM natalia.martin@sljus.lu.se RI Liu, Zhi/B-3642-2009; COST, CM1104/I-8057-2015; Hellman, Anders/A-4591-2016; Gronbeck, Henrik/B-6585-2016; Lundgren, Edvin/F-5551-2010; OI Liu, Zhi/0000-0002-8973-6561; Hellman, Anders/0000-0002-1821-159X; Johansson, Niclas/0000-0002-1402-1502; Gronbeck, Henrik/0000-0002-8709-2889 FU foundation for strategic research (SSF); Swedish Research Council; Crafoord Foundation; Knut and Alice Wallenberg Foundation; Anna and Edwin Berger Foundation; COST Action [CM1104]; NordForsk; C3SE (Goteborg, Sweden); PDC (Stockholm, Sweden); U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division [DE-FG02-03ER15478]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The ALS staff is gratefully acknowledged. This work was financially supported by the foundation for strategic research (SSF), the Swedish Research Council, the Crafoord Foundation, the Knut and Alice Wallenberg Foundation, the Anna and Edwin Berger Foundation, COST Action CM1104, and NordForsk. The calculations were performed at C3SE (Goteborg, Sweden) and PDC (Stockholm, Sweden) via a SNIC grant. J.F.W. gratefully acknowledges financial support by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division, through Grant DE-FG02-03ER15478. For the ALS measurements, we acknowledge the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 45 TC 12 Z9 12 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3330 EP 3334 DI 10.1021/cs5010163 PG 5 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200003 ER PT J AU Hong, YC Zhang, H Sun, JM Ayman, KM Hensley, AJR Gu, M Engelhard, MH McEwen, JS Wang, Y AF Hong, Yongchun Zhang, He Sun, Junming Ayman, Karim M. Hensley, Alyssa J. R. Gu, Meng Engelhard, Mark H. McEwen, Jean-Sabin Wang, Yong TI Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of m-Cresol SO ACS CATALYSIS LA English DT Article DE hydrodeoxygenation; biomass conversion; bimetallic catalysis; synergistic effects; iron catalyst; noble metal catalysis; H-2 sticking probability ID BIMETALLIC NANOPARTICLE CATALYSTS; SULFIDE PARTIAL-PRESSURE; AB-INITIO; TRICHLOROETHENE HYDRODECHLORINATION; DISSOCIATIVE ADSORPTION; HYDROGEN; GUAIACOL; LIGNIN; AU; PHENOLS AB In this work, a series of Pd/Fe2O3 catalysts were synthesized, characterized, and evaluated for the hydrodeoxygenation (HDO) of m-cresol. It was found that the addition of Pd remarkably promotes the catalytic activity of Fe while the product distributions resemble that of monometallic Fe catalyst, showing high selectivity toward the production of toluene (C-O cleavage without saturation of aromatic ring and C-C cleavage). Reduced catalysts featured with Pd patches on the top of reduced Fe nanoparticle surface, and the interaction between Pd and Fe, was further confirmed using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray absorption near edge fine structure (XANES). A possible mechanism, including Pd assisted H-2 dissociation and Pd facilitated stabilization of the metallic Fe surface as well as Pd enhanced product desorption, is proposed to be responsible for the high activity and HDO selectivity in Pd-Fe catalysts. The synergic catalysis derived from Pd Fe interaction found in this work was proved to be applicable to other precious metal promoted Fe catalysts, providing a promising strategy for future design of highly active and selective HDO catalysts. C1 [Hong, Yongchun; Zhang, He; Sun, Junming; Hensley, Alyssa J. R.; McEwen, Jean-Sabin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Hong, Yongchun; Ayman, Karim M.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Hong, Yongchun; Gu, Meng; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011; Karim, Ayman/G-6176-2012; Gu, Meng/B-8258-2013; OI Sun, Junming/0000-0002-0071-9635; Karim, Ayman/0000-0001-7449-542X; Hong, Yongchun/0000-0002-8109-3282; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Voiland School of Chemical Engineering and Bioengineering; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy, Office of Basic Energy Sciences; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX We acknowledge the financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. This work was also supported by institutional funds provided to J.S.M. from the Voiland School of Chemical Engineering and Bioengineering. We thank the Franceschi Microscopy and Imaging Center (FMIC) at Washington State University for the access to TEM. A portion of the research was performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). In situ XANES and XRD studies were conducted at the National Synchrotron Light Source at Brookhaven National Laboratory. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, for the XANES experiments was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. Beam line X18A is supported, in part, by the Synchrotron Catalysis Consortium (Grant# DE-FG02-05ER15688). The authors would like to thank Dr. Steve Ehrlich and Dr. Nebojsa Marinkovic for their help and support during the in situ XANES and XRD experiments. NR 65 TC 35 Z9 35 U1 11 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3335 EP 3345 DI 10.1021/cs500578g PG 11 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200004 ER PT J AU Hensley, AJR Hong, YC Zhang, RQ Zhang, H Sun, JM Wang, Y McEwen, JS AF Hensley, Alyssa J. R. Hong, Yongchun Zhang, Renqin Zhang, He Sun, Junming Wang, Yong McEwen, Jean-Sabin TI Enhanced Fe2O3 Reducibility via Surface Modification with Pd: Characterizing the Synergy within Pd/Fe Catalysts for Hydrodeoxygenation Reactions SO ACS CATALYSIS LA English DT Article DE bimetallic catalysts; biomass conversion; hydrodeoxygenation; Pd-Fe; density functional theory; oxide doping effects; enhanced oxide reduction ID GAS-PHASE HYDRODEOXYGENATION; SULFIDED COMO/GAMMA-AL2O3; GUAIACYL GROUPS; MODEL COMPOUNDS; CO OXIDATION; FE CATALYSTS; META-CRESOL; BIO-OIL; HYDROGEN; ENERGY AB The synergistic catalysis in the hydrodeoxygenation of phenolic compounds over a Pd/Fe bimetallic surface has been well established. However, the nature of this synergy is still in part a mystery. In this work, we used a combined experimental and theoretical approach to understand a potential function of the surface Pd in the reduction of Pd/Fe2O3. This function of Pd was investigated via the comparison of the reduction properties as well as other physicochemical properties of samples synthesized by the reduction of Fe2O3 nanoparticles with and without surface Pd. Temperature-programmed reduction studies demonstrated the remarkable facilitation of reduction by addition of Pd, evidenced by a 150 degrees C shift toward lower temperature of the reduction peak of Fe3+. From X-ray photoelectron spectroscopy and theoretical calculation results, the interaction between Pd and the Fe2O3 surface occurs through the exchange of electrons with both the surface Fe and O atoms. This bonding between the Pd and surface oxide elements causes the Pd to partially donate electrons to the oxide surface, making the surface electrons more delocalized. This electron delocalization stabilizes the reduced oxide surfaces, as suggested by the TPR results and theoretical prediction. Therefore, the stabilization of the reduced Fe surface as well as the facilitated water formation by introduction of Pd is expected to significantly contribute to the Pd-Fe synergy in hydrodeoxygenation catalysis. C1 [Hensley, Alyssa J. R.; Hong, Yongchun; Zhang, Renqin; Zhang, He; Sun, Junming; Wang, Yong; McEwen, Jean-Sabin] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Hong, Yongchun; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Hong, Yongchun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM yong.wang@pnnl.gov; js.mcewen@wsu.edu RI Sun, Junming/B-3019-2011; Zhang, Renqin/Q-2789-2015; OI Sun, Junming/0000-0002-0071-9635; Zhang, Renqin/0000-0002-4489-2050; Hong, Yongchun/0000-0002-8109-3282 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Voiland School of Chemical Engineering and Bioengineering; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. This work was also supported by institutional funds provided to J.S.M. from the Voiland School of Chemical Engineering and Bioengineering. We thank the Franceschi Microscopy and Imaging Center (FMIC) in Washington State University for the access to their TEM. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We would also like to acknowledge Dr. Mark Engelhard at EMSL for his XPS measurement contributions. Finally, we acknowledge computational resources provided by the Center for Nanoscale Materials at Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 61 TC 27 Z9 27 U1 11 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3381 EP 3392 DI 10.1021/cs500565e PG 12 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200007 ER PT J AU Singh, D Mamtani, K Bruening, CR Miller, JT Ozkan, US AF Singh, Deepika Mamtani, Kuldeep Bruening, Christopher R. Miller, Jeffrey T. Ozkan, Umit S. TI Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media SO ACS CATALYSIS LA English DT Article DE H2S; FeNC; CNx; sulfur deactivation; ORR ID PEM FUEL-CELLS; NITROGEN-CONTAINING CARBON; X-RAY-ABSORPTION; SUPPORTED METAL PARTICLES; FE/N/C-CATALYSTS; ELECTROCATALYTIC ACTIVITY; O-2 ELECTROREDUCTION; MAGNETIC-PROPERTIES; CATHODE CATALYST; TRANSITION-METAL AB H2S has been used as a probe molecule both in an "in situ" poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts. C1 [Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Ozkan, Umit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43202 USA. EM ozkan.1@osu.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER15896]; E.I. DuPont de Nemours and Co.; Dow Chemical Company; Northwestern University; U.S. DOE [DE-AC02-06CH11357] FX We gratefully acknowledge the financial support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-FG02-07ER15896. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours and Co., The Dow Chemical Company, and Northwestern University. Use of the APS, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 58 TC 26 Z9 26 U1 9 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3454 EP 3462 DI 10.1021/cs500612k PG 9 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200013 ER PT J AU Li, XL Guo, ZY Xiao, CX Goh, TW Tesfagaber, D Huang, WY AF Li, Xinle Guo, Zhiyong Xiao, Chaoxian Goh, Tian Wei Tesfagaber, Daniel Huang, Wenyu TI Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal-Organic Frameworks SO ACS CATALYSIS LA English DT Article DE tandem synthesis; acetalization; bifunctional catalysts; UiO-66; acetal; solid acid; selective oxidation ID SELECTIVE OXIDATION; CASCADE REACTIONS; MULTIFUNCTIONAL CATALYSTS; HETEROGENEOUS CATALYST; LINKER SUBSTITUTION; HYDROGEN-PEROXIDE; AEROBIC OXIDATION; PRIMARY ALCOHOLS; GOLD CLUSTERS; FORMIC-ACID AB A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH2, this catalyst (Pd@UiO-66-NH2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found that alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. We further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation. C1 [Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu] US DOE, Ames Lab, Ames, IA 50011 USA. RP Huang, WY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM whuang@iastate.edu RI Xiao, Chaoxian/E-7339-2013; Guo, Zhiyong/L-5541-2014; li, xinle/B-8285-2016; Goh, Tian Wei/G-3463-2016; Huang, Wenyu/L-3784-2014 OI Xiao, Chaoxian/0000-0002-4012-0539; li, xinle/0000-0001-5747-4029; Goh, Tian Wei/0000-0002-4141-3392; Huang, Wenyu/0000-0003-2327-7259 FU Laboratory Research and Development Program of The Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. DOE [DE-AC02-06CH11357] FX We thank Ames Laboratory (Royalty Account) and Iowa State University for startup funds. This work was also supported by the Laboratory Research and Development Program of The Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank to Dale L. Brewe, Steve M. Heald, Trudy B. Bolin, Tianpin Wu, and Jeff Miller for the help during XAS measurement at APS. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We thank Robert J. Angelici for his advice during the writing of this manuscript. We thank Gordon J. Miller for use of PXRD, Brent Shanks for use of TGA, and Igor I. Slowing for use of gas adsorption analyzer and ICP-AES. NR 69 TC 49 Z9 49 U1 49 U2 244 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3490 EP 3497 DI 10.1021/cs5006635 PG 8 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200017 ER PT J AU Bays, JT Priyadarshani, N Jeletic, MS Hulley, EB Miller, DL Linehan, JC Shaw, WJ AF Bays, J. Timothy Priyadarshani, Nilusha Jeletic, Matthew S. Hulley, Elliot B. Miller, Deanna L. Linehan, John C. Shaw, Wendy J. TI The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine)(2) CO2 Hydrogenation Catalysts SO ACS CATALYSIS LA English DT Article DE CO2 hydrogenation; amino acid catalysts; outer coordination sphere; homogeneous catalysis; in situ NMR ID CARBON-DIOXIDE; HOMOGENEOUS HYDROGENATION; OXIDATION CATALYST; H-2 PRODUCTION; FORMIC-ACID; COMPLEXES; WATER; ELECTROCATALYSTS; RATES; LIGANDS AB A series of [Rh((PCH2XCH2P)-C-R)(2)](+) complexes was prepared to investigate second and outer coordination sphere effects on CO2 hydrogenation catalysis, where X is CH2 (dppp) or X-R is N-CH3, N-CH2COOH (glycine), N-CH2COOCH3 (Gly-OMe), or N-CH2C(O)N-CH(CH3)-COOCH3 (GlyAla-OMe). All of these complexes were active for CO2 reduction to formate, with the N-CH3 derivative offering an 8-fold enhancement over the dppp derivative, which is consistent with increased electron density around the metal. Despite the increase in rate with the addition of the pendant nitrogen, the addition of electron withdrawing amino acids and dipeptides to the amine resulted in complexes with reductions in rate of 1 to 2 orders of magnitude, most consistent with a change in pK(a) of the pendant amine, resulting in lower activity. Collectively, the data suggest multiple contributions of the pendant amine in this catalytic system. C1 [Bays, J. Timothy; Priyadarshani, Nilusha; Jeletic, Matthew S.; Hulley, Elliot B.; Miller, Deanna L.; Linehan, John C.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Linehan, JC (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM john.linehan@pnnl.gov; wendy.shaw@pnnl.gov OI Boralugodage, Nilusha/0000-0001-5472-6374 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Department of Energy's Office of Biological and Environmental Research FX The authors would like to thank Dr. Aaron Appel for helpful discussions. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 42 TC 9 Z9 9 U1 5 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3663 EP 3670 DI 10.1021/cs5009199 PG 8 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200039 ER PT J AU Jeletic, MS Helm, ML Hulley, EB Mock, MT Appel, AM Linehan, JC AF Jeletic, Matthew S. Helm, Monte L. Hulley, Elliott B. Mock, Michael T. Appel, Aaron M. Linehan, John C. TI A Cobalt Hydride Catalyst for the Hydrogenation of CO2: Pathways for Catalysis and Deactivation SO ACS CATALYSIS LA English DT Article DE CO2; cobalt; hydrogenation; catalysis; high-pressure NMR ID TRANSITION-METAL HYDRIDES; CARBON-DIOXIDE HYDROGENATION; AB-INITIO CALCULATIONS; DEFINED IRON CATALYST; FORMIC-ACID; HOMOGENEOUS HYDROGENATION; AMBIENT-TEMPERATURE; MECHANISTIC ASPECTS; CHELATING LIGANDS; PINCER COMPLEX AB The complex Co(dmpe)(2)H catalyzes the hydrogenation of CO2 at 1 atm and 21 degrees C with significant improvement in turnover frequency relative to previously reported second- and third-row transition-metal complexes. New studies are presented to elucidate the catalytic mechanism as well as pathways for catalyst deactivation. The catalytic rate was optimized through the choice of the base to match the pK(a) of the [Co(dmpe)(2)(H)(2)](+) intermediate. With a strong enough base, the catalytic rate has a zeroth-order dependence on the base concentration and the pressure of hydrogen and a first-order dependence on the pressure of CO2. However, for CO2:H-2 ratios greater than 1, the catalytically inactive species [(mu-dmpe)-(Co(dmpe)(2))(2)](2+) and [Co(dmpe)(2)CO](+) were observed. C1 [Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.; Mock, Michael T.; Appel, Aaron M.; Linehan, John C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Linehan, JC (reprint author), Pacific NW Natl Lab, POB 999,MS K2-57, Richland, WA 99352 USA. EM john.linehan@pnnl.gov OI Appel, Aaron/0000-0002-5604-1253 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science FX Research by M.S.J., M.T.M., A.M.A., and J.C.L. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Research by M.L.H. and E.B.H. was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. NR 67 TC 28 Z9 28 U1 7 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2014 VL 4 IS 10 BP 3755 EP 3762 DI 10.1021/cs5009927 PG 8 WC Chemistry, Physical SC Chemistry GA AU6TS UT WOS:000345735200050 ER PT J AU Jimenez-Mier, J Olalde-Velasco, P Herrera-Perez, G Carabali-Sandoval, G Chavira, E Yang, WL Denlinger, J AF Jimenez-Mier, J. Olalde-Velasco, P. Herrera-Perez, G. Carabali-Sandoval, G. Chavira, E. Yang, W. -L. Denlinger, J. TI Strongly correlated transition metal compounds investigated by soft X-ray spectroscopies and multiplet calculations SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Transition metal compounds; X-ray absorption; X-ray emission; Mott-Hubbard insulator; Charge transfer insulator; Oxidation states ID GEL ACRYLAMIDE POLYMERIZATION; SOLID-STATE REACTION; ELECTRONIC-STRUCTURE; BAND-GAPS; SPECTRA; LACOO3 AB Direct probe of Mott-Hubbard (MH) to charge-transfer (CT) insulator transition in the MF2 (M = Cr-Zn) family of compounds was observed by combining F K and M LX-ray emission spectra (XES). This transition is evident as a crossover of the F-2p and M-3d occupied states. By combining F K XES data with F K edge Xray absorption (XAS) data we directly obtained values for the M-3d Hubbard energy (U-dd) and the F-2p to M-3d charge-transfer energy (Delta(CT)). Our results are in good agreement with the Zaanen-Sawatzky-Allen theory. We also present three examples where X-ray absorption at the transition metal L-2,L-3 edges is used to study the oxidation state of various strongly correlated transition metal compounds. The metal oxidation state is obtained by direct comparison with crystal field multiplet calculations. The compounds are CrF2, members of the La1-xSrxCoO3 family, and the MVO3 (M = La and Y) perovskites. (C) 2014 Elsevier B.V. All rights reserved. C1 [Jimenez-Mier, J.; Olalde-Velasco, P.; Herrera-Perez, G.; Carabali-Sandoval, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Olalde-Velasco, P.; Yang, W. -L.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chavira, E.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico. RP Jimenez-Mier, J (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. EM jimenez@nucleares.unam.mx RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011 OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063 FU DOE [DE-AC03-76sF0009]; CONACyT Mexico [56764] FX The Advanced Light Source is supported by DOE (DE-AC03-76sF0009). This work was supported by CONACyT Mexico under research grant No. 56764. NR 28 TC 0 Z9 0 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2014 VL 196 SI SI BP 136 EP 141 DI 10.1016/j.elspec.2014.07.002 PG 6 WC Spectroscopy SC Spectroscopy GA AU8CE UT WOS:000345823400029 ER PT J AU Wen, JG Miller, DJ Chen, W Xu, T Yu, LP Darling, SB Zaluzec, NJ AF Wen, Jianguo Miller, Dean J. Chen, Wei Xu, Tao Yu, Luping Darling, Seth B. Zaluzec, Nestor J. TI Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE organic photovoltaics; energy-filtered transmission electron microscopy; chromatic aberration correction; electron energy-loss spectroscopy; X-ray energy-dispersive spectroscopy ID ELECTRON-MICROSCOPY; MORPHOLOGY; EFFICIENCY; TEM; RESOLUTION; CONTRAST; BLENDS AB Traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/PC61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC61BM polymeric solar cells at multiple length scales and expands our understanding of optimal device performance providing insight for the design of even higher performance cells. C1 [Wen, Jianguo; Miller, Dean J.; Zaluzec, Nestor J.] Argonne Natl Lab, Nanosci & Technol Div, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Chen, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xu, Tao; Yu, Luping] Univ Chicago, James Franck Inst, Dept Chem, Chicago, IL 60637 USA. [Darling, Seth B.] Argonne Natl Lab, Nanosci & Technol Div, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Wen, JG (reprint author), Argonne Natl Lab, Nanosci & Technol Div, Ctr Electron Microscopy, 9700 South Cass Ave, Argonne, IL 60439 USA. EM jgwen@anl.gov; miller@anl.gov RI Chen, Wei/G-6055-2011 OI Chen, Wei/0000-0001-8906-4278 FU US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [KC020301]; NSF; NSF-MRSEC; AFOSR; DOE; University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant; University of Chicago and the Department of Energy under Department of Energy [DE-AC02-06CH11357] FX Use of the Electron Microscopy Center, the Advanced Photon Source (APS), and the Center for Nanoscale Materials at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. W. Chen gratefully acknowledges financial support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award No. KC020301. L. Yu and T. Xu acknowledge support from NSF, NSF-MRSEC, AFOSR, and DOE on the synthesis of polymers. This work was also supported by a University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant, the University of Chicago and the Department of Energy under Department of Energy Contract No. DE-AC02-06CH11357 awarded to UChicago Argonne, LLC, the operator of Argonne National Laboratory. NR 33 TC 5 Z9 5 U1 7 U2 33 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD OCT PY 2014 VL 20 IS 5 BP 1507 EP 1513 DI 10.1017/S1431927614001615 PG 7 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA AU6WT UT WOS:000345742900021 PM 24950215 ER PT J AU Chen, X Zuo, D Kim, S Mabon, J Sardela, M Wen, JG Zuo, JM AF Chen, Xin Zuo, Daniel Kim, Seongwon Mabon, James Sardela, Mauro Wen, Jianguo Zuo, Jian-Min TI Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE electron beam-induced current (EBIC); transmission electron microscopy (TEM); X-ray diffraction reciprocal space mapping (XRD RSM); strained silicon; dislocations ID SCANNING-ELECTRON-MICROSCOPY; MISFIT DISLOCATIONS; RECOMBINATION ACTIVITY; BUFFER LAYERS; RELAXATION; EPILAYERS; DEFECT AB We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of similar to 7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results. C1 [Chen, Xin; Zuo, Jian-Min] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chen, Xin; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Chen, Xin] E China Univ Sci & Technol, Shanghai Key Lab Adv Polymer Mat, Sch Mat Sci & Engn, Key Lab Ultrafine Mat,Minist Educ, Shanghai 200237, Peoples R China. [Zuo, Daniel] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Kim, Seongwon] Korea Inst Ceram Engn & Technol, Engn Ceram Ctr, Inchon 467843, South Korea. [Wen, Jianguo] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. RP Zuo, JM (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM jianzuo@illinois.edu RI Chen, Xin/C-7667-2012 OI Chen, Xin/0000-0003-0271-2784 FU US Army Research Office [W911NF-10-1-0524]; Shanghai Leading Academic Discipline Project [B502]; Shanghai Key Laboratory Project [08DZ2230500]; Science and Technology Commission of Shanghai Municipality Project [11nm0507000] FX This work was carried out as part of the effort to establish the EBIC technique for semiconductor defect analysis at the University of Illinois supported by the US Army Research Office (Grant No. Army W911NF-10-1-0524 and monitored by Dr. William Clark) through the MURI program. Dr. Chen is also supported by the Shanghai Leading Academic Discipline Project (B502), Shanghai Key Laboratory Project (08DZ2230500), and Science and Technology Commission of Shanghai Municipality Project (11nm0507000). NR 18 TC 0 Z9 0 U1 3 U2 19 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD OCT PY 2014 VL 20 IS 5 BP 1521 EP 1527 DI 10.1017/S1431927614012963 PG 7 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA AU6WT UT WOS:000345742900023 PM 25158752 ER PT J AU Fan, JL Yan, CS Roston, R Shanklin, J Xu, CC AF Fan, Jilian Yan, Chengshi Roston, Rebecca Shanklin, John Xu, Changcheng TI Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward beta-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis SO PLANT CELL LA English DT Article ID CHLOROPLAST INNER ENVELOPE; STORAGE OIL MOBILIZATION; DIACYLGLYCEROL ACYLTRANSFERASE; ENDOPLASMIC-RETICULUM; CONTACT SITES; SACCHAROMYCES-CEREVISIAE; PHOSPHOLIPID-SYNTHESIS; PHOSPHATIDIC-ACID; CARRIER PROTEIN; BRASSICA-NAPUS AB Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal beta-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves. C1 [Fan, Jilian; Yan, Chengshi; Shanklin, John; Xu, Changcheng] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Roston, Rebecca] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Xu, CC (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM cxu@bnl.gov RI Yan, Chengshi/O-5639-2014 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DEAC0298CH10886]; Office of Basic Energy Sciences, U.S. Department of Energy [DEAC0298CH10886] FX We thank John Ohlrogge and Kent Chapman for providing pdat1-2 and cgi58 mutant seeds, respectively. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract DEAC0298CH10886. Use of the transmission electron microscope and the confocal microscope at the Center of Functional Nanomaterials was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DEAC0298CH10886. NR 95 TC 23 Z9 25 U1 11 U2 48 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD OCT PY 2014 VL 26 IS 10 BP 4119 EP 4134 DI 10.1105/tpc.114.130377 PG 16 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA AU9NO UT WOS:000345920900025 PM 25293755 ER PT J AU Gangodagamage, C Foufoula-Georgiou, E Belmont, P AF Gangodagamage, Chandana Foufoula-Georgiou, Efi Belmont, Patrick TI River basin organization around the main stem: Scale invariance in tributary branching and the incremental area function SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE tributary organization; lidar topographic analysis; width function; spatial heterogeneity; multiplicative cascades; distance between tributaries for a given incremental area; intermittency coefficient ID MULTIFRACTAL FORMALISM; GEOMORPHOLOGICAL DISPERSION; NORTHERN CALIFORNIA; TEMPORAL RAINFALL; CHANNEL NETWORKS; WIDTH FUNCTION; ELEVATION; WAVELETS; CASCADE; MODELS AB The incremental increase in contributing area along a main stem river, called here the incremental area function (IAF), has direct relevance to the spatial heterogeneity of environmental fluxes (water, sediment, nutrients, etc.) entering the stream from hillslopes and side tributaries. It also dictates, to a large extent, possible ecohydrologic discontinuities or transitions resulting from large tributary contributions. Mathematically, the IAF directly reflects the topological and geometrical structure of the river network and maps the two-dimensional landscape organization into a one-dimensional function. In this paper, we use two approaches to investigate the spatial heterogeneity of the IAF. First, we implement a multithreshold decomposition on IAF to study the distribution of distances between tributaries as a function of the imposed threshold contributing area and verify the presence of a simple power law scaling relationship between the threshold and the average distance between tributaries. Second, we use a wavelet-based multiscale approach and document the presence of statistical self-affinity (multifractality) in the IAF with a high intermittency coefficient, reflecting the complex arrangement of extreme contributions of different size tributaries. We propose a multiplicative cascade model, parameterized in terms of basin-specific properties, to statistically simulate the IAF along the main stem. Finally, we point out the relation between the IAF and the widely used width function of a basin and show how the latter can be constructed from the former via a convolution on the self-similar structure of a tree. Key Points Examine the probabilistic structure of incremental drainage areaRelate the main stem incremental area function to the width functionQuantify the spatial heterogeneity of environmental fluxes C1 [Gangodagamage, Chandana] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Gangodagamage, Chandana; Foufoula-Georgiou, Efi; Belmont, Patrick] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN USA. [Gangodagamage, Chandana; Foufoula-Georgiou, Efi; Belmont, Patrick] Univ Minnesota, Dept Civil Engn, Natl Ctr Earth Surface Dynam, Minneapolis, MN USA. [Belmont, Patrick] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA. RP Gangodagamage, C (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM chhandana@gmail.com OI Gangodagamage, Chandana/0000-0001-6511-1711 FU NSF's Division of Earth Sciences, Instrumentation and Facilities Program [EAR-1043051, 10.5069/G9639MPN]; National Center for Earth-surface Dynamics (NCED), a Science and Technology Center - NSF's Office of Integrative Activities [EAR-0120914]; NSF CDI grant [EAR-0835789]; Doctoral Dissertation Fellowship by the graduate school of the University of Minnesota; Ling Chair in Environmental Engineering FX We thank Collin Bode for providing us with the lidar data. Lidar data acquisition and processing were completed by the National Center for Airborne Laser Mapping (NCALM: http://www.ncalm.org). NCALM funding was provided by NSF's Division of Earth Sciences, Instrumentation and Facilities Program (EAR-1043051, 10.5069/G9639MPN). Lidar dataset used in this study are freely available at the following url: http://opentopo.sdsc.edu/gridsphere/gridsphere? cid=geonlidarframeportlet&gs_action =datasetMetadata&otCollectionID= OT.022013.26910.1. Discussions throughout the course of this work with William Dietrich are greatly appreciated. This work has been partially supported by the National Center for Earth-surface Dynamics (NCED), a Science and Technology Center funded by NSF's Office of Integrative Activities under agreement EAR-0120914, an NSF CDI grant EAR-0835789, a Doctoral Dissertation Fellowship by the graduate school of the University of Minnesota, and the Ling Chair in Environmental Engineering to the senior author. Computer resources were provided by the Minnesota Supercomputing Institute, Digital Technology Center, at the University of Minnesota. We thank Andrea Rinaldo and Paolo Tarolli for their extremely helpful comments and thorough review of this paper. Finally, we would like to thank the Editor Alexander Densmore and Associate Editor John Pelletier for their valuable insight and comments on this work. NR 65 TC 3 Z9 3 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD OCT PY 2014 VL 119 IS 10 BP 2174 EP 2193 DI 10.1002/2014JF003304 PG 20 WC Geosciences, Multidisciplinary SC Geology GA AU1FN UT WOS:000345366600005 ER PT J AU Ryser, C Luthi, MP Andrews, LC Catania, GA Funk, M Hawley, R Hoffman, M Neumann, TA AF Ryser, C. Luethi, M. P. Andrews, L. C. Catania, G. A. Funk, M. Hawley, R. Hoffman, M. Neumann, T. A. TI Caterpillar-like ice motion in the ablation zone of the Greenland ice sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE ice dynamics; summer variations; stress transfer ID JAKOBSHAVN ISBRAE; DRAINAGE SYSTEM; GLACIER MOTION; OUTLET GLACIER; SURFACE MELT; BASAL MOTION; DEFORMATION; ACCELERATION; FLOW; DYNAMICS AB Current understanding of ice dynamics predicts that increasing availability and variability of meltwater will have an impact on basal motion and therefore on the evolution and future behavior of the Greenland ice sheet. We present measurements of ice deformation, subglacial water pressure, and surface velocity that show periodic and episodic variations on several time scales (seasonal, multiday, and diurnal). These variations, observed with GPS and sensors at different depths throughout the ice column, are not synchronous but show delayed responses of ice deformation with increasing depth and basal water pressure in antiphase with surface velocity. With the help of a Full-Stokes ice flow model, these observations are explained as ice motion in a caterpillar-like fashion. Caused by patches of different basal slipperiness, horizontal stress transfer through the stiff central part of the ice body leads to spatially varying surface velocities and ice deformation patterns. Variation of this basal slipperiness induces characteristic patterns of ice deformation variability that explain the observed behavior. Ice flow in the ablation zone of the Greenland ice sheet is therefore controlled by activation of basal patches by varying slipperiness in the course of a melt season, leading to caterpillar-like ice motion superposed on the classical shear deformation. C1 [Ryser, C.; Luethi, M. P.; Funk, M.] ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, Zurich, Switzerland. [Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Inst Geophys, Austin, TX USA. [Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA. [Hawley, R.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Hoffman, M.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA. [Neumann, T. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ryser, C (reprint author), ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, Zurich, Switzerland. EM ryser@vaw.baug.ethz.ch RI Catania, Ginny/B-9787-2008; Neumann, Thomas/D-5264-2012; Andrews, Lauren/D-8274-2017; OI Andrews, Lauren/0000-0003-3727-4737; Luthi, Martin Peter/0000-0003-4419-8496 FU Swiss National Science Foundation [200021_127197]; US-NSF [OPP 0908156, OPP 0909454, ANT-0424589]; NASA Cryospheric Sciences; Climate Modeling Programs within the U.S. Department of Energy Office of Science FX We thank several people who were essential in this project: Cornelius Senn, Edi Imhof, Thomas Wyder, Andreas Bauder, Christian Birchler, Michael Meier, Blaine Moriss, and Fabian Walter. This project was supported by Swiss National Science Foundation grant 200021_127197; US-NSF grants OPP 0908156, OPP 0909454, and ANT-0424589 (to CRe-SIS); NASA Cryospheric Sciences; and Climate Modeling Programs within the U.S. Department of Energy Office of Science. Logistical support was provided by CH2MHill Polar Services. GPS receivers were provided by UNAVCO. We thank "Microwave and Remote Sensing, DTU Space, the Technical University of Denmark" for providing bedrock topography data of the area. We also acknowledge the help of pilots and airport cargo staff of Air Greenland in Ilulissat. Further, we thank Jason Gulley and Martin Truffer for commenting on the manuscript. We acknowledge the reviews by David Podrasky, two anonymous referees, and scientific Editor Bryn Hubbard. NR 45 TC 12 Z9 12 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD OCT PY 2014 VL 119 IS 10 BP 2258 EP 2271 DI 10.1002/2013JF003067 PG 14 WC Geosciences, Multidisciplinary SC Geology GA AU1FN UT WOS:000345366600009 ER PT J AU Viveiros, F Vandemeulebrouck, J Rinaldi, AP Ferreira, T Silva, C Cruz, JV AF Viveiros, Fatima Vandemeulebrouck, Jean Rinaldi, Antonio P. Ferreira, Teresa Silva, Catarina Cruz, Jose V. TI Periodic behavior of soil CO2 emissions in diffuse degassing areas of the Azores archipelago: Application to seismovolcanic monitoring SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE soil diffuse degassing; volcanic gases; CO2 flux; daily cycles; seasonality; hydrothermal areas ID ATMOSPHERIC-PRESSURE; SEISMIC ACTIVITY; FURNAS VOLCANO; SAO-MIGUEL; PHLEGRAEAN FIELDS; FLUX MEASUREMENTS; CANARY-ISLANDS; TIME-SERIES; EARTH TIDES; RADON AB Time series of soil CO2 efflux recorded in the Azores archipelago volcanic-hydrothermal areas feature daily and seasonal variations. The recorded CO2 efflux values were lower during summer than in the winter season. The diurnal CO2 efflux values were higher at dawn and lower in the early afternoon, contrary to that observed in biogenic environments. CO2 efflux cycles correlated well with the environmental variables, such as air temperature, wind speed, and barometric pressure, which also showed low- and high-frequency periodicities. Several simulations were performed here using the Transport of Unsaturated Groundwater and Heat 2 (TOUGH2) geothermal simulator to complement the study of Rinaldi et al. (2012). The effects of the water table depth, air temperature perturbation amplitude, and soil thermal gradient contributed to an explanation of the contrasts observed in the diurnal (S-1) and semidiurnal (S-2) soil CO2 efflux peaks for the different monitoring sites and seasons. Filtering techniques (multivariate regression analysis and fast Fourier transform filters) were also applied to the recorded time series to remove effects of external variables on the soil CO2 efflux. The resulting time series (the residuals) correspond to the best approach to the deep-seated (volcanic/hydrothermal) CO2 emissions and thus should be used in seismovolcanic monitoring programs. Even if no evident correlation can be established yet between the soil CO2 residuals and seismicity over the monitored time, a seismic swarm that occurred around the end of 2008 might have triggered some deviations from the observed daily cycles. Key Points Daily and seasonal cycles are identified in CO2 efflux in volcanic areasWater table and thermal amplitudes are explicative factors of diurnal cycles C1 [Viveiros, Fatima; Ferreira, Teresa; Silva, Catarina; Cruz, Jose V.] Univ Acores, Ctr Vulcanol & Avaliacao Riscos Geol, Ponta Delgada, Portugal. [Vandemeulebrouck, Jean] Univ Savoie, CNRS, ISTerre, Chambery, France. [Rinaldi, Antonio P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Viveiros, F (reprint author), Univ Acores, Ctr Vulcanol & Avaliacao Riscos Geol, Ponta Delgada, Portugal. EM Maria.FB.Viveiros@azores.gov.pt RI Cruz, Jose/N-1724-2013; Rinaldi, Antonio Pio/N-3284-2013; OI Cruz, Jose/0000-0002-6475-3824; Rinaldi, Antonio Pio/0000-0001-7052-8618; Viveiros, Fatima/0000-0002-0442-7955; Silva, Catarina/0000-0002-1196-306X FU Regional Civil Protection; Fundo Regional da Ciencia, Regiao Autonoma dos Acores (PROEMPREGO Operational Program); DOE-LBNL [DE-AC02-05CH11231]; Azores Regional Government/Servico Regional de Proteccao Civil e Bombeiros dos Acores; European Union [308665]; EDA Renovaveis FX The data that support this study were recorded by the permanent stations installed in the Azores archipelago, which are under the propriety of the CVARG/CIVISA. The gas monitoring activities were funded both by the Regional Civil Protection and by private companies (e.g., EDA Renovaveis), and for this reason these data can only be released under request and with approval of the above mentioned institutions. F. Viveiros is supported by a PostDoctoral grant from Fundo Regional da Ciencia, Regiao Autonoma dos Acores (PROEMPREGO Operational Program). A.P. Rinaldi is currently supported by DOE-LBNL contract DE-AC02-05CH11231. This study was supported by the Azores Regional Government/Servico Regional de Proteccao Civil e Bombeiros dos Acores, in the scope of the scientific and technical protocols to guarantee the Azores Seismovolcanic Surveillance and the Emergency Planning Studies. This study was also a part of the MED-SUV project, which received funding from the European Union Seventh Programme for Research, Technological Development and Demonstration under grant agreement 308665. The authors would like to thank Pedro Hernandez and an anonymous reviewer for their comments and suggestions that improved the quality of this paper. NR 66 TC 7 Z9 7 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT PY 2014 VL 119 IS 10 BP 7578 EP 7597 DI 10.1002/2014JB011118 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU1GH UT WOS:000345368500012 ER PT J AU Hijazi, H Bannister, ME Meyer, HM Rouleau, CM Barghouty, AF Rickman, DL Meyer, FW AF Hijazi, H. Bannister, M. E. Meyer, H. M., III Rouleau, C. M. Barghouty, A. F. Rickman, D. L. Meyer, F. W. TI Anorthite sputtering by H+ and Arq+ (q=1-9) at solar wind velocities SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE solar wind; lunar highlands; sputtering; ion-surface interactions ID QUARTZ-CRYSTAL MICROBALANCE; HIGHLY-CHARGED IONS; DECELERATED BEAMS; ENERGY-DEPENDENCE; LUNAR POLES; SURFACE; ORNL; HYDROGEN; IMPACT; YIELD AB We report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310km/s (0.25keV/amu and 0.5keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction. The QCM results show a yield increase of a factor of about 80 for Ar+ versus H+ sputtering and an enhancement by a factor of 1.67 between Ar9+ and Ar+, which is a clear indication of a potential sputtering effect. C1 [Hijazi, H.; Bannister, M. E.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Meyer, H. M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Rouleau, C. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Barghouty, A. F.; Rickman, D. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov RI Rouleau, Christopher/Q-2737-2015 OI Rouleau, Christopher/0000-0002-5488-3537 FU NASA [10-LASER10-0053]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; NASA's Solar System Exploration Research Institute (SSERVI); Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities (SUF) Division, U.S. Department of Energy FX Research supported by NASA grant 10-LASER10-0053, by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy, and in part by NASA's Solar System Exploration Research Institute (SSERVI). Work performed in part via ORNL's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, and at the Center for Nanophase Materials Sciences user facility, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities (SUF) Division, U.S. Department of Energy. H. H. was appointed through the ORNL Postdoctoral Research Associates Program administered jointly by Oak Ridge Institute of Science and Education (ORISE), Oak Ridge Associated Universities (ORAU), and Oak Ridge National Laboratory (ORNL). The data for this paper can be requested from meyerfw@ornl.gov (F.W. Meyer). NR 34 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2014 VL 119 IS 10 BP 8006 EP 8016 DI 10.1002/2014JA020140 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU2JW UT WOS:000345445400003 ER PT J AU Yue, C Wang, CP Lyons, L Liang, J Donovan, EF Zaharia, SG Henderson, M AF Yue, Chao Wang, Chih-Ping Lyons, Larry Liang, Jun Donovan, Eric F. Zaharia, Sorin G. Henderson, Michael TI Current sheet scattering and ion isotropic boundary under 3-D empirical force-balanced magnetic field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE 3-D force-balanced magnetic field; current sheet scattering; isotropic boundary ID MT-INDEX; PRECIPITATION; CONFIGURATION; MAGNETOTAIL; IONOSPHERE; B2I AB To determine statistically the extent to which current sheet scattering is sufficient to account for the observed ion isotropic boundaries (IBs) for <30keV ions, we have computed IBs from our 3-D empirical force-balanced magnetic field, identified IBs in FAST observations, and investigated the model-observation consistency. We have found in both model and FAST results the same dependences of IB latitudes on magnetic local time, ion energy, Kp, and solar wind dynamic pressure (P-SW) levels: IB moves to higher latitudes from midnight toward dawn/dusk and to lower latitudes as energy increases and as Kp or P-SW increases. The model predicts well the observed energy dependence, and the modeled IB latitudes match fairly well with those from FAST for Kp=0. As Kp increases, the latitude agreement at midnight remains good but a larger discrepancy is found near dusk. The modeled IBs at the equator are located around the earthward boundary of highly isotropic ions observed by Time History of Events and Macroscale Interactions during Substorms at midnight and postmidnight, but with some discrepancy near dusk under high Kp. Thus, our results indicate that current sheet scattering generally plays the dominant role. The discrepancies suggest the importance of pitch angle scattering by electromagnetic ion cyclotron waves, which occur more often from dusk to noon and are more active during higher Kp. The comparison with the observed IBs is better with our model than under the nonforce-balanced T89, indicating that using a forced-balanced model improves the description of the magnetic field configuration and reinforces our conclusions regarding the role of current sheet scattering. C1 [Yue, Chao; Wang, Chih-Ping; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Liang, Jun; Donovan, Eric F.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Zaharia, Sorin G.; Henderson, Michael] Los Alamos Natl Lab, Los Alamos, NM USA. RP Yue, C (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM yuechao@atmos.ucla.edu RI Yue, Chao/C-2535-2015; OI Yue, Chao/0000-0001-9720-5210; Donovan, Eric/0000-0002-8557-4155; Henderson, Michael/0000-0003-4975-9029 FU NASA [NNX11AJ12G, NNX08A135G, NNH10AP09I]; NSF [ATM-1003595, 1131873, 1203460]; IGPPS Program at Los Alamos National Laboratory FX The work by C. Yue, C.-P. Wang, and L. R. Lyons at UCLA has been supported by NASA grants NNX11AJ12G and NNX08A135G, NSF grant ATM-1003595, and IGPPS Program at Los Alamos National Laboratory. The work by S. G. Zaharia has been supported by NSF grants 1131873 and 1203460, NASA grant NNH10AP09I, and by the IGPPS Program at Los Alamos National Laboratory. The FAST data used in this study come exclusively from the publicly available ESA ion data provided by CDAWeb. NR 19 TC 5 Z9 5 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2014 VL 119 IS 10 BP 8202 EP 8211 DI 10.1002/2014JA020172 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU2JW UT WOS:000345445400016 ER PT J AU Fu, XR Cowee, MM Friedel, RH Funsten, HO Gary, SP Hospodarsky, GB Kletzing, C Kurth, W Larsen, BA Liu, KJ MacDonald, EA Min, K Reeves, GD Skoug, RM Winske, D AF Fu, Xiangrong Cowee, Misa M. Friedel, Reinhard H. Funsten, Herbert O. Gary, S. Peter Hospodarsky, George B. Kletzing, Craig Kurth, William Larsen, Brian A. Liu, Kaijun MacDonald, Elizabeth A. Min, Kyungguk Reeves, Geoffrey D. Skoug, Ruth M. Winske, Dan TI Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE chorus; particle-in-cell simulation; HOPE; Van Allen Probes ID RADIATION-BELT ELECTRONS; MAGNETOSPHERIC CHORUS; ACCELERATION; WAVES; EMISSIONS AB Magnetospheric banded chorus is enhanced whistler waves with frequencies (r)<(e), where (e) is the electron cyclotron frequency, and a characteristic spectral gap at (r)similar or equal to(e)/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at approximate to(e)/2 is a natural consequence of the growth of two whistler modes with different properties. C1 [Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Larsen, Brian A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gary, S. Peter] Space Sci Inst, Boulder, CO USA. [Hospodarsky, George B.; Kletzing, Craig; Kurth, William] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Liu, Kaijun; Min, Kyungguk] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [MacDonald, Elizabeth A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fu, XR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM xrfu@lanl.gov RI Funsten, Herbert/A-5702-2015; Friedel, Reiner/D-1410-2012; Larsen, Brian/A-7822-2011; Fu, Xiangrong/C-7895-2016; Reeves, Geoffrey/E-8101-2011; OI Funsten, Herbert/0000-0002-6817-1039; Friedel, Reiner/0000-0002-5228-0281; Larsen, Brian/0000-0003-4515-0208; Fu, Xiangrong/0000-0002-4305-6624; Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878 FU U.S. Department of Energy; Defense Threat Reduction Agency; National Aeronautics and Space Administration; National Science Foundation; JHU/APL under NASA [921647, NAS5-01072]; NSF [AGS-1303300]; NASA [NNX14AD62G] FX The Los Alamos portion of this research was performed under the auspices of the U.S. Department of Energy. This research was supported in part by the Defense Threat Reduction Agency, by the National Aeronautics and Space Administration, and by the National Science Foundation. The work at the University of Iowa was supported by JHU/APL through contract 921647 under NASA Prime contract NAS5-01072. S.P.G.'s contributions to this research were supported by NSF award AGS-1303300. The work at Auburn University was supported by NASA grant NNX14AD62G. NR 32 TC 25 Z9 25 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2014 VL 119 IS 10 BP 8288 EP 8298 DI 10.1002/2014JA020364 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU2JW UT WOS:000345445400023 ER PT J AU Denton, RE Jordanova, VK Fraser, BJ AF Denton, R. E. Jordanova, V. K. Fraser, B. J. TI Effect of spatial density variation and O plus concentration on the growth and evolution of electromagnetic ion cyclotron waves SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE electromagnetic ion cyclotron waves; EMIC; magnetosphere; density; ion concentration; O ID 1-2 MAGNETIC PULSATIONS; EMIC WAVES; EQUATORIAL MAGNETOSPHERE; ANISOTROPY INSTABILITY; STATISTICAL-ANALYSIS; PROTON; LOSSES; PLASMA; MODEL; RING AB We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full-scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at magnetic local time = 18 and at 1900 UT within a range of L shell from L=4.9 to 6.7. EMIC waves were observed during 9 June 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wavefronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+. C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Fraser, B. J.] Univ Newcastle, Ctr Space Phys, Callaghan, NSW 2308, Australia. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu OI Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX10AQ60G, NNX13AD65G, NNX08AM58G, NNH10AP09I, NNH13AW83I]; United States Department of Energy; NSF [AGR1203460]; ARC [DP0772504] FX We thank Alexa Halford, Jay Johnson, and Jacob Bortnik for helpful discussions. Work at Dartmouth was supported by NASA grants NNX10AQ60G, NNX13AD65G, and NNX08AM58G. Work at Los Alamos was conducted under the auspices of the United States Department of Energy with partial support from NASA grants NNH10AP09I and NNH13AW83I and NSF grant AGR1203460. Work at Newcastle Australia was supported by ARC grant DP0772504. We thank Howard Singer for supplying GOES magnetometer data. Numerical data shown in this paper are available from the lead author upon request. NR 68 TC 19 Z9 19 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2014 VL 119 IS 10 BP 8372 EP 8395 DI 10.1002/2014JA020384 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU2JW UT WOS:000345445400028 ER PT J AU Li, Z Hudson, M Jaynes, A Boyd, A Malaspina, D Thaller, S Wygant, J Henderson, M AF Li, Zhao Hudson, Mary Jaynes, Allison Boyd, Alexander Malaspina, David Thaller, Scott Wygant, John Henderson, Michael TI Modeling gradual diffusion changes in radiation belt electron phase space density for the March 2013 Van Allen Probes case study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radial diffusion; March 2013; Van Allen Probes ID RELATIVISTIC ELECTRONS; MAGNETIC STORM; ACCELERATION; CHORUS AB March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two time scales of variation, diffusive and rapid dropout and restoration. A radial diffusion model was applied to the monthlong interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant 400MeV/G but peaks in phase space density observed by the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. The model does well for much of the monthlong interval, capturing three of four enhancements in phase space density which emerge from the outer boundary, while the strong enhancement following dropout on 17-18 March requires local acceleration at higher first invariant (M=1000 MeV/G versus 200 MeV/G) not included in our model. We have incorporated phase space density from ECT measurement at the outer boundary and plasmapause determination from the Electric Field and Waves (EFW) instrument to separate hiss and chorus loss models. C1 [Li, Zhao; Hudson, Mary] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Jaynes, Allison; Malaspina, David] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Boyd, Alexander] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Thaller, Scott; Wygant, John] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Henderson, Michael] Los Alamos Natl Lab, Los Alamos, NM USA. RP Li, Z (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM zhao.li.gr@dartmouth.edu RI Henderson, Michael/A-3948-2011; OI Henderson, Michael/0000-0003-4975-9029; Boyd, Alexander/0000-0002-9725-508X FU JHU/APL under NASA [NAS5-01072]; ECT [967399]; UNH; EFW [922613]; UMN FX This work was supported by JHU/APL under NASA's prime contract NAS5-01072, with work at Dartmouth supported under ECT (967399) sub-contract from UNH and EFW (922613) subcontract from UMN. Solar wind data and geomagnetic indexes are obtained from NSSDC OMNIWeb. We thank Van Allen Probes ECT and EFW teams for phase space density and plasmapause data. NR 26 TC 4 Z9 4 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2014 VL 119 IS 10 BP 8396 EP 8403 DI 10.1002/2014JA020359 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AU2JW UT WOS:000345445400029 ER PT J AU Clear, R Rubinstein, F AF Clear, Robert Rubinstein, Francis TI A Time-Dependent Risk Assessment for Broken Compact Fluorescent Lamps SO RISK ANALYSIS LA English DT Article DE Body or tissue burden model; compact fluorescent lamp (CFL); mercury; no observable adverse effect level (NOAEL) ID MERCURY; EXPOSURE AB Environmental Protection Agency (EPA) ambient air quality guidelines are meant to limit long-term exposures of toxins to safe levels. Unfortunately, there is little guidance for what constitutes a safe level from a one-time (or very infrequent) short exposure(s). In the case of mercury, a review of the derivation of the EPA ambient air quality standard shows that it implicitly assumes a tissue burden model. The time dependence of the tissue burden is commonly described in terms of a half-life, a modeling assumption that presumes that the decline in the tissue burden after a single exposure can be approximately described as an exponential decay. In this article, we use a simple exponential tissue burden model to derive a time-dependent no observable adverse effect level (NOAEL) for mercury concentrations in air. The model predicts that tissue body burden will asymptotically approach the EPA air quality level for long exposure times, and reach workplace standard levels for exposures of a few hours. The model was used along with data on mercury levels from experimental work done by the Maine Department of Environmental Protection to evaluate the risks from a broken compact fluorescent lamp in a residential setting. Mercury levels approached the NOAEL only when the debris was left in an almost sealed room. Normal common-sense cleaning measures: removal of debris to an outside area, and ventilation of the room for several minutes, reduced exposures to less than 1% of the NOAEL. C1 [Clear, Robert; Rubinstein, Francis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rubinstein, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Bldg 90R3111, Berkeley, CA 94720 USA. EM FMRubinstein@lbl.gov NR 24 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD OCT PY 2014 VL 34 IS 10 BP 1957 EP 1967 DI 10.1111/risa.12229 PG 11 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA AU0NR UT WOS:000345320600016 PM 24975461 ER PT J AU Ge, QW Liu, XP Parada, G Mallapragada, SK Akinc, M AF Ge, Qinwen Liu, Xunpei Parada, German Mallapragada, Surya K. Akinc, Mufit TI Synthesis of Mesoporous Zirconia Templated by Block Copolymer-Lysozyme Conjugate in Aqueous Media SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE Mesoporous; Zirconia; Templation; Block Copolymer; Synthesis ID HIGH-SURFACE-AREA; NANOCRYSTALLINE ZIRCONIA; PRECIPITATING AGENT; ZRO2 NANOPARTICLES; PROCESS PARAMETERS; SULFATED ZIRCONIA; HYDROUS ZIRCONIA; CRYSTALLIZATION; POWDER; MORPHOLOGY AB A high surface area mesoporous zirconia/polymer nanocomposite was obtained using a block copolymer-lysozyme conjugate template and applying aqueous sol-gel method. The effects of several parameters, such as pH, zirconyl ion concentration, and calcination temperature on the structure and morphology of the resulting mesoporous zirconia were studied. Samples were characterized by X-ray diffraction (XRD), nitrogen sorption, and transmission electron microscopy (TEM). The results showed that tetragonal zirconia started to crystallize from amorphous precipitate above 300 degrees C, became fully crystalline above 500 degrees C, grew larger with higher temperatures, and a monoclinic phase formed above 900 degrees C. It was also found that a more dilute precursor solution led to more thermally stable and smaller particles with higher surface area. Likewise, higher pH (e. g., pH = 10) facilitated obtainment of higher surface area, thermally stable tetragonal zirconia with smaller particle sizes compared to samples precipitated at lower pH (e.g., pH = 4, 6, and 8). The aging at pH = 4 formed ill-defined gels rather than distinct particles. The surface area of the synthesized zirconia increased with calcination temperature up to 500 degrees C, reaching a maximum with a specific surface area of 348 m(2)/g using 0.08 mol/L [ZrO2+] and precipitating at pH = 10 before decreasing at higher temperatures. C1 [Ge, Qinwen; Liu, Xunpei; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Ge, Qinwen; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Liu, Xunpei; Parada, German; Mallapragada, Surya K.; Akinc, Mufit] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Akinc, M (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM makinc@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 49 TC 0 Z9 0 U1 4 U2 27 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 EI 1947-2943 J9 SCI ADV MATER JI Sci. Adv. Mater. PD OCT PY 2014 VL 6 IS 10 BP 2106 EP 2114 DI 10.1166/sam.2014.1976 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AT6QD UT WOS:000345062900003 ER PT J AU Millstein, DE Fischer, ML AF Millstein, D. E. Fischer, M. L. TI Reflective 'cool' roofs under aerosol-burdened skies: radiative benefits across selected Indian cities SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE cool roof; mitigation; radiative transfer; aerosols ID ENERGY SAVINGS; HEAT-ISLAND; SOUTH-ASIA; CALIFORNIA; BUILDINGS; STRATEGY AB The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective 'cool' roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008-2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and -2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m(2) of roof area by 0.5 would reflect to space 0.9-1.2 kWh daily from 08:30-15:30 LST, depending on location. This is equivalent to a constant forcing of 37-50Wm(-2) (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m(-2) roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23-74%, with the largest potential increase found at Delhi and the smallest change found at Nainital. C1 [Millstein, D. E.; Fischer, M. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Millstein, DE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM dmillstein@lbl.gov FU US DOE Office of Energy Efficiency and Renewable Energy; US DOE Office of Science, Atmospheric Radiation Measurement program [DE-AC02-05CH11231] FX We thank Ram Sagar, Rao Kotamarthi, Bipin Shah, Ken Reichl, Jyotirmay Mathur, Jaipur J Niranjan for assistance during and in support of the RAWEX-GVAEX campaign and subsequent analysis. We also thank Shaheen Tonse, Surabi Menon, Francisco Salamanca, Vishal Garg, Krishna P Singh and Manish Naja for assistance with field measurements at Pantnagar and Nainital, and RRTMG configuration. We thank Ronnen Levinson for helpful discussions. Computing resources were provided by the Lawrencium cluster at LBNL. This work is supported by the US DOE Office of Energy Efficiency and Renewable Energy, and the US DOE Office of Science, Atmospheric Radiation Measurement program, under contract DE-AC02-05CH11231. NR 43 TC 1 Z9 1 U1 1 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT PY 2014 VL 9 IS 10 AR 104014 DI 10.1088/1748-9326/9/10/104014 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AT5DP UT WOS:000344964000018 ER PT J AU Sharma, V Fricke, B Bansal, P AF Sharma, Vishaldeep Fricke, Brian Bansal, Pradeep TI Comparative analysis of various CO2 configurations in supermarket refrigeration systems SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE Refrigeration; Transcritical booster system; Cascade system; Secondary loop system; Carbon dioxide; Thermodynamics ID CYCLES AB This paper presents an analysis of various CO2 transcritical and cascade/secondary loop refrigeration systems that are becoming popular in supermarket applications with the objective of optimizing the operating parameters of these systems. In addition, the performance of selected CO2-based refrigeration systems is compared to the baseline R404A multiplex direct expansion system using bin analyses in the eight climate zones of the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) had the lowest energy consumption for ambient temperatures (T-amb) less than 8 degrees C, and for higher ambient temperatures the R404A direct expansion system was found to have the lowest energy consumption. Also, the TBS-BC performs equivalent to or better than the R404A direct expansion system in the northern two-thirds of the US. For the southern portion of the US, the R404A multiplex DX system performs better than CO2 systems. (C) 2014 Elsevier Ltd and IIR. All rights reserved. C1 [Sharma, Vishaldeep; Fricke, Brian; Bansal, Pradeep] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fricke, B (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM frickeba@ornl.gov OI Fricke, Brian/0000-0001-8197-3477 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 22 TC 15 Z9 15 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD OCT PY 2014 VL 46 BP 86 EP 99 DI 10.1016/j.ijrefrig.2014.07.001 PG 14 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AT9FN UT WOS:000345233500011 ER PT J AU Chandross, M AF Chandross, Michael TI Energetics of the formation of Cu-Ag core-shell nanoparticles SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE nanoparticles; core/shell; molecular dynamics; Monte Carlo; embedded-atom method; silver; copper AB This work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core-shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core-shell structure from two previously distinct, non-interacting nanoparticles. In the majority of cases, the core-shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core-shell structure forms. In general, it was found that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. For two separate particles, both Cu and Ag contribute to the surface energy; however, for a core-shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu-Ag interfacial energy, which is always smaller. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chandross, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mechand@sandia.gov FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 9 TC 1 Z9 1 U1 3 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2014 VL 22 IS 7 AR 075012 DI 10.1088/0965-0393/22/7/075012 PG 11 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AT4XW UT WOS:000344946700012 ER PT J AU Luscher, DJ Buechler, MA Miller, NA AF Luscher, D. J. Buechler, M. A. Miller, N. A. TI Self-consistent modeling of the influence of texture on thermal expansion in polycrystalline TATB SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE self-consistent; thermoelastic; TATB; texture; anisotropy ID 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE TATB; VISCOPLASTIC POLYCRYSTALS; CRYSTALLINE TATB; STRAIN; FIELD; SIMULATIONS; COMPOSITE; BEHAVIOR; SPHERE; GROWTH AB This paper presents a modeling approach for simulating the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives which utilizes microstructural information including the porosity, crystal aspect ratio and processing-induced texture. A self-consistent homogenization procedure is used to relate the macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of the grain aspect ratio, porosity and, crystallographic texture attributed to the consolidation process. A quantitative model is proposed for describing the evolution of the preferred orientation of basal planes in TATB during consolidation and an algorithm constructed for developing a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatically and uniaxially 'die-pressed' specimens. Predicted thermal strain versus temperature results for textured specimens are shown to be in agreement with corresponding experimental measurements. Results from these simulations are used to identify qualitative trends. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB, considering realistic material variability. The preferred orientation of the single-crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of the deformation and, consequently, is expected to vary spatially throughout manufactured components much like the porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering models. C1 [Luscher, D. J.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. [Buechler, M. A.; Miller, N. A.] Los Alamos Natl Lab, Weapon Engn Div, Adv Engn Anal Grp, Los Alamos, NM 87545 USA. RP Luscher, DJ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, POB 1663, Los Alamos, NM 87545 USA. EM djl@lanl.gov FU US Department of Energy [DE-AC52-06NA25396] FX The authors are grateful for technical discussions with Ricardo Lebensohn and Ricardo Schwarz on details of this work. Additionally, feedback from Matt Lewis, Devin Shunk and Bob Stevens improved the communication of key points. The authors are also appreciative of correspondence with Bruce Cunningham to clarify details of the experiments used for comparisons with this work, and Cary Skidmore for tracking down internal correspondence containing the orientation distributions measured by Cady. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-06NA25396. NR 38 TC 5 Z9 5 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2014 VL 22 IS 7 AR 075008 DI 10.1088/0965-0393/22/7/075008 PG 21 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AT4XW UT WOS:000344946700008 ER PT J AU Schuetz, M Benske, A Smith, RA Watanabe, Y Tobimatsu, Y Ralph, J Demura, T Ellis, B Samuels, AL AF Schuetz, Mathias Benske, Anika Smith, Rebecca A. Watanabe, Yoichiro Tobimatsu, Yuki Ralph, John Demura, Taku Ellis, Brian Samuels, A. Lacey TI Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem SO PLANT PHYSIOLOGY LA English DT Article ID TRACHEARY ELEMENT DIFFERENTIATION; FLUORESCENCE-TAGGED MONOLIGNOLS; VASCULAR-RELATED NAC-DOMAIN6; ZINNIA MESOPHYLL-CELLS; ARABIDOPSIS-THALIANA; LIGNIN BIOSYNTHESIS; VESSEL FORMATION; VECTOR SET; TRANSPORT; PROTEIN AB Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition. C1 [Schuetz, Mathias; Benske, Anika; Smith, Rebecca A.; Watanabe, Yoichiro; Samuels, A. Lacey] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Benske, Anika; Smith, Rebecca A.; Ellis, Brian] Univ British Columbia, Michael Smith Labs, Vancouver, BC V6T 1Z4, Canada. [Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, Dept Biochem, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Madison, WI 53705 USA. [Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst, Madison, WI USA. [Demura, Taku] Nara Inst Sci & Technol, Nara 6300192, Japan. [Tobimatsu, Yuki] Kyoto Univ, Grad Sch Agr, Kyoto 6068502, Japan. RP Samuels, AL (reprint author), Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. EM lsamuels@mail.ubc.ca FU Natural Sciences and Engineering Research Council of Canada; Japan Society for the Promotion of Science (Kakenhi) [24114002, 25291062]; Nara Institute of Science and Technology Global Initiative Program; U.S. Department of Energy Office of Science [DE-SC0006930]; U.S. Department of Energy Great Lakes Bioenergy Research Center [BER DE-FC02-07ER64494] FX This work was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery and Collaborative Research and Training Experience Program grants to B.E. and A.L.S.), the Japan Society for the Promotion of Science (Kakenhi grant nos. 24114002 and 25291062 to T.D.), the Nara Institute of Science and Technology Global Initiative Program (to T.D.), the U.S. Department of Energy Office of Science (grant no. DE-SC0006930 to Y.T. and J.R.), and the U.S. Department of Energy Great Lakes Bioenergy Research Center (grant no. BER DE-FC02-07ER64494 to Y.T. and J.R.). NR 41 TC 31 Z9 33 U1 3 U2 40 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD OCT PY 2014 VL 166 IS 2 BP 798 EP U489 DI 10.1104/pp.114.245597 PG 16 WC Plant Sciences SC Plant Sciences GA AT6TH UT WOS:000345071500031 PM 25157028 ER PT J AU Roschzttardtz, H Paez-Valencia, J Dittakavi, T Jali, S Reyes, FC Baisa, G Anne, P Gissot, L Palauqui, JC Masson, PH Bednarek, SY Otegui, MS AF Roschzttardtz, Hannetz Paez-Valencia, Julio Dittakavi, Tejaswi Jali, Sathya Reyes, Francisca C. Baisa, Gary Anne, Pauline Gissot, Lionel Palauqui, Jean-Christophe Masson, Patrick H. Bednarek, Sebastian Y. Otegui, Marisa S. TI The VASCULATURE COMPLEXITY AND CONNECTIVITY Gene Encodes a Plant-Specific Protein Required for Embryo Provasculature Development SO PLANT PHYSIOLOGY LA English DT Article ID ARABIDOPSIS-THALIANA; AUXIN TRANSPORT; TISSUE-DEVELOPMENT; PATTERN-FORMATION; PRIMARY ROOT; EXPRESSION; POLARITY; KINASE; MUTATION; MUTANTS AB The molecular mechanisms by which vascular tissues acquire their identities are largely unknown. Here, we report on the identification and characterization of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC), a member of a 15-member, plant-specific gene family in Arabidopsis (Arabidopsis thaliana) that encodes proteins of unknown function with four predicted transmembrane domains. Homozygous vcc mutants displayed cotyledon vein networks of reduced complexity and disconnected veins. Similar disconnections or gaps were observed in the provasculature of vcc embryos, indicating that defects in vein connectivity appear early in mutant embryo development. Consistently, the overexpression of VCC leads to an unusually high proportion of cotyledons with high-complexity vein networks. Neither auxin distribution nor the polar localization of the auxin efflux carrier were affected in vcc mutant embryos. Expression of VCC was detected in developing embryos and procambial, cambial, and vascular cells of cotyledons, leaves, roots, hypocotyls, and anthers. To evaluate possible genetic interactions with other genes that control vasculature patterning in embryos, we generated a double mutant for VCC and OCTOPUS (OPS). The vcc ops double mutant embryos showed a complete loss of high-complexity vascular networks in cotyledons and a drastic increase in both provascular and vascular disconnections. In addition, VCC and OPS interact physically, suggesting that VCC and OPS are part of a complex that controls cotyledon vascular complexity. C1 [Roschzttardtz, Hannetz; Paez-Valencia, Julio; Dittakavi, Tejaswi; Reyes, Francisca C.; Otegui, Marisa S.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. [Jali, Sathya; Masson, Patrick H.; Otegui, Marisa S.] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Baisa, Gary; Bednarek, Sebastian Y.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Roschzttardtz, Hannetz; Jali, Sathya; Baisa, Gary] Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Anne, Pauline; Gissot, Lionel; Palauqui, Jean-Christophe] INRA, F-78000 Versailles, France. [Gissot, Lionel; Palauqui, Jean-Christophe] AgroParisTech, Inst Jean Pierre Bourgin, Unite Mixte Rech 1318, Saclay Plant Sci, F-78000 Versailles, France. RP Roschzttardtz, H (reprint author), Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. EM hannetz@gmail.com; otegui@wisc.edu RI Paez-Valencia, Julio /N-1928-2015 FU Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; National Science Foundation [MCB1157824]; University of Wisconsin Graduate School FX This work was supported by the Department of Energy Great Lakes Bioenergy Research Center (grant no. DE-FC02-07ER64494), the National Science Foundation (grant no. MCB1157824), and the University of Wisconsin Graduate School (grant to M.S.O.). NR 66 TC 3 Z9 3 U1 4 U2 18 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD OCT PY 2014 VL 166 IS 2 BP 889 EP U640 DI 10.1104/pp.114.246314 PG 22 WC Plant Sciences SC Plant Sciences GA AT6TH UT WOS:000345071500038 PM 25149602 ER PT J AU Odunowo, TO Moridis, GJ Blasingame, TA Olorode, OM Freeman, CM AF Odunowo, T. O. Moridis, G. J. Blasingame, T. A. Olorode, O. M. Freeman, C. M. TI Evaluation of Well Performance for the Slot-Drill Completion in Low- and Ultralow-Permeability Oil and Gas Reservoirs SO SPE JOURNAL LA English DT Article AB Low- to ultralow-permeability formations require "special" treatments/stimulation to make them produce economical quantities of hydrocarbon, and at the moment, multistage hydraulic fracturing (MSHF) is the most commonly used stimulation method for enhancing the exploitation of these reservoirs. Recently, the slot-drill (SD) completion technique was proposed as an alternative treatment method in such formations (Carter 2009). This paper documents the results of a comprehensive numerical- simulation study conducted to evaluate the production performance of the SD technique and compare its performance to that of the standard MSHF approach. We investigated three low-permeability formations of interest-namely, a shale-gas formation, a tight-gas formation, and a tight/shale-oil formation. The simulation domains were discretized with Voronoi-gridding schemes to create representative meshes of the different reservoir and completion systems modeled in this study. The results from this study indicated that the SD method does not, in general, appear to be competitive in terms of reservoir performance and recovery compared with the more traditional MSHF method. Our findings indicate that the larger surface area to flow that results from the application of MSHF is much more significant than the higher conductivity achieved by use of the SD technique. However, there may exist cases, for example, a lack of adequate water volumes for hydraulic fracturing, or very high irreducible water saturation that leads to adverse relative permeability conditions and production performance, in which the low-cost SD method may make production feasible from an otherwise challenging (if not inaccessible) resource. C1 [Odunowo, T. O.] DeGolyer & MacNaughton, Dallas, TX 75244 USA. [Odunowo, T. O.; Moridis, G. J.; Blasingame, T. A.; Olorode, O. M.; Freeman, C. M.] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Moridis, G. J.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Moridis, G. J.] Middle E Tech Univ, Petr & Nat Gas Engn Dept, TR-06531 Ankara, Turkey. RP Odunowo, TO (reprint author), DeGolyer & MacNaughton, Dallas, TX 75244 USA. FU RPSEA [08122-45] FX This work was supported by RPSEA (Contract No. 08122-45) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program as authorized by the US Energy Policy Act (EPAct) of 2005. NR 18 TC 0 Z9 0 U1 3 U2 18 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD OCT PY 2014 VL 19 IS 5 BP 748 EP 760 PG 13 WC Engineering, Petroleum SC Engineering GA AU0AX UT WOS:000345286600001 ER PT J AU Wu, YS Li, JF Ding, DY Wang, C Di, Y AF Wu, Yu-Shu Li, Jianfang Ding, Didier-Yu Wang, Cong Di, Yuan TI A Generalized Framework Model for the Simulation of Gas Production in Unconventional Gas Reservoirs SO SPE JOURNAL LA English DT Article ID POROUS-MEDIA; FLUID-FLOW AB Unconventional gas resources from tight-sand and shale gas reservoirs have received great attention in the past decade around the world because of their large reserves and technical advances in developing these resources. As a result of improved horizontal-drilling and hydraulic-fracturing technologies, progress is being made toward commercial gas production from such reservoirs, as demonstrated in the US. However, understandings and technologies needed for the effective development of unconventional reservoirs are far behind the industry needs (e.g., gas-recovery rates from those unconventional resources remain very low). There are some efforts in the literature on how to model gas flow in shale gas reservoirs by use of various approaches-from modified commercial simulators to simplified analytical solutions-leading to limited success. Compared with conventional reservoirs, gas flow in ultralow-permeability unconventional reservoirs is subject to more nonlinear, coupled processes, including nonlinear adsorption/desorption, non-Darcy flow (at both high flow rate and low flow rate), strong rock/fluid interaction, and rock deformation within nanopores or microfractures, coexisting with complex flow geometry and multiscaled heterogeneity. Therefore, quantifying flow in unconventional gas reservoirs has been a significant challenge, and the traditional representative-elementary-volume-(REV) based Darcy's law, for example, may not be generally applicable. In this paper, we discuss a generalized mathematical framework model and numerical approach for unconventional-gas-reservoir simulation. We present a unified framework model able to incorporate known mechanisms and processes for two-phase gas flow and transport in shale gas or tight gas formations. The model and numerical scheme are based on generalized flow models with unstructured grids. We discuss the numerical implementation of the mathematical model and show results of our model-verification effort. Specifically, we discuss a multidomain, multicontinuum concept for handling multiscaled heterogeneity and fractures [i.e., the use of hybrid modeling approaches to describe different types and scales of fractures or heterogeneous pores-from the explicit modeling of hydraulic fractures and the fracture network in stimulated reservoir volume (SRV) to distributed natural fractures, microfractures, and tight matrix]. We demonstrate model application to quantify hydraulic fractures and transient flow behavior in shale gas reservoirs. C1 [Wu, Yu-Shu; Wang, Cong] Colorado Sch Mines, Golden, CO 80401 USA. [Wu, Yu-Shu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Li, Jianfang] PetroChina, RIPED, Beijing, Peoples R China. [Ding, Didier-Yu] IFP Energies Nouvelles, Nouvelles, France. [Di, Yuan] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing, Peoples R China. RP Wu, YS (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. RI Wu, Yu-Shu/A-5800-2011; R16, Direction Geoscience/H-9011-2012; IFPEN, Publications/A-8028-2008 FU EMG Research Center; UNGI of the Petroleum Engineering Department at Colorado School of Mines; CMG; RIPED of PetroChina Company; IFPEN FX This work was supported in part by EMG Research Center and UNGI of the Petroleum Engineering Department at Colorado School of Mines; by Foundation CMG; by RIPED of PetroChina Company; and by IFPEN. NR 39 TC 19 Z9 21 U1 3 U2 26 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD OCT PY 2014 VL 19 IS 5 BP 845 EP 857 PG 13 WC Engineering, Petroleum SC Engineering GA AU0AX UT WOS:000345286600009 ER PT J AU Ruddell, BL Adams, EA Rushforth, R Tidwell, VC AF Ruddell, Benjamin L. Adams, Elizabeth A. Rushforth, Richard Tidwell, Vincent C. TI Embedded resource accounting for coupled natural-human systems: An application to water resource impacts of the western US electrical energy trade SO WATER RESOURCES RESEARCH LA English DT Article DE water resources; virtual water; economics; water and energy; networks ID INPUT-OUTPUT-ANALYSIS; VIRTUAL WATER; ECOLOGICAL FOOTPRINT; INTERNATIONAL-TRADE; NATIONS; CONSUMPTION; SCARCITY; POLICY; FLOWS; SUSTAINABILITY AB In complex coupled natural-human systems (CNH), multitype networks link social, environmental, and economic systems with flows of matter, energy, information, and value. Embedded Resource Accounting (ERA) is a systems analysis framework that includes the indirect connections of a multitype CNH network. ERA is conditioned on perceived system boundaries, which may vary according to the accountant's point of view. Both direct and indirect impacts are implicit whenever two subnetworks interact in such a system; the ratio of two subnetworks' impacts is the embedded intensity. For trade in the services of water, this is understood as the indirect component of a water footprint, and as virtual water trade. ERA is a generalization of input-output, footprint, and substance flow methods, and is a type of life cycle analysis. This paper presents results for the water and electrical energy system in the western U.S. This system is dominated by California, which outsources the majority of its water footprint of electrical energy. Electricity trade increases total water consumption for electricity production in the western U.S. by 15% and shifts water use to water-stressed Colorado River Basin States. A systemic underaccounting for water footprints occurs because state-level processes discount a portion of the water footprint occurring outside of the state boundary. C1 [Ruddell, Benjamin L.; Adams, Elizabeth A.; Rushforth, Richard] Arizona State Univ, Fulton Sch Engn, Tempe, AZ 85287 USA. [Ruddell, Benjamin L.] Arizona State Univ, Global Inst Sustainabil, Tempe, AZ USA. [Tidwell, Vincent C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ruddell, BL (reprint author), Arizona State Univ, Fulton Sch Engn, Tempe, AZ 85287 USA. EM bruddell@asu.edu OI Rushforth, Richard/0000-0001-9179-7665 FU U.S. Department of Energy's Sandia National Laboratories; Great Lakes Protection Fund [946]; U.S. National Science Foundation (NSF), under Water Sustainability and Climate grant [EAR-1360509]; U.S. National Science Foundation (NSF), under Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) grant [BCS-1026865] FX Interested parties are invited to contact the authors for access to the ERA 1.0 Matlab code that calculates ERA results, and to cite this publication in reference to that software. Readers may also wish to examine Martin and Ruddell [2012] because that work's approximations provide a shortcut to some results without employing the full theoretical rigor of the ERA framework and its detailed assumptions. This work was supported by the U.S. Department of Energy's Sandia National Laboratories, by the Great Lakes Protection Fund via grant 946, and by the U.S. National Science Foundation (NSF), under Water Sustainability and Climate grant EAR-1360509 and Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) grant BCS-1026865. We gratefully acknowledge correspondence with Mikhail Chester, Martin Pasqualetti, Kerry Smith, David Iwaniec at Arizona State University, Eli Fenichel at Yale University, and Daniel Nidzgorski at the University of Minnesota. The arguments in this paper are those of the authors, and not necessarily those of the sponsors and correspondents. NR 101 TC 9 Z9 9 U1 12 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2014 VL 50 IS 10 BP 7957 EP 7972 DI 10.1002/2013WR014531 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AT2RX UT WOS:000344783800025 ER PT J AU McClintock, ME Hepp, GR Kennamer, RA AF McClintock, Maureen E. Hepp, Gary R. Kennamer, Robert A. TI Plasticity of incubation behaviors helps Wood Ducks (Aix sponsa) maintain an optimal thermal environment for developing embryos SO AUK LA English DT Article DE Aix sponsa; Anatidae; incubation behaviors; incubation temperature; reproduction costs; tradeoffs; Wood Duck ID SWALLOWS TACHYCINETA-BICOLOR; TREE SWALLOWS; TEMPERATURE AFFECTS; CLUTCH SIZE; REPRODUCTIVE-PERFORMANCE; SOMATERIA-MOLLISSIMA; GEOGRAPHIC-VARIATION; NEST TEMPERATURE; HORNED LARKS; BLUE TIT AB Optimal development of avian embryos occurs within a narrow range of incubation temperatures. Most parents that physically incubate their eggs through direct contact are challenged to balance their time on the nest with taking foraging recesses to satisfy their energetic requirements. To explore the costs and investment strategies of incubating female Wood Ducks (Aix sponsa), we manipulated the nnicroclimate of nests by reducing down insulation from the typical 4.0 g to 0.5 g. Cooling rates of clutches during morning recesses increased when down insulation was reduced, especially at low ambient temperatures. Females with reduced down responded to increased cooling rates by shortening morning recesses and increasing daily incubation constancy, and these behavioral changes were independent of their body mass at the start of incubation. Females in both treatment groups responded similarly to changes in ambient temperature and spent less time incubating as ambient temperatures increased. Clutch temperatures at the end of morning recesses were similar for females with reduced and normal insulation. Average clutch temperatures for the full incubation period did not differ between treatments, and, correspondingly, there were no differences in length of the incubation period, hatching success, or duckling phenotype. Our results show that female Wood Ducks were sensitive to changes in both clutch temperature and ambient temperature and that they modified their time on the nest to provide developing eggs with an optimal thermal environment without negatively affecting their body mass at the end of incubation. Further examination of the limits of behavioral plasticity in incubating birds will be essential, particularly in light of future challenges presented by climate change. C1 [McClintock, Maureen E.; Hepp, Gary R.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. [Kennamer, Robert A.] Savannah River Ecol Lab, Aiken, SC USA. RP Hepp, GR (reprint author), Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. EM heppgar@auburn.edu FU National Science Foundation [IOB-0615361]; Alabama Agricultural Experiment Station; Department of Energy [DE-FC09-07SR22506] FX Thanks are due to our field crew, J. McPherson, N. Allen, C. Weithman, and C. Gesmundo. We also thank T. Steury for statistical assistance, and the staff at the Savannah River Ecology Lab for support and hospitality. The Institutional Animal Care and Use Committee of Auburn University approved our research (PRN 2010-1691). Ducklings were collected under permits issued by the U.S. Fish and Wildlife Service (MB 748024-0) and South Carolina (G-10-02). Research was supported by National Science Foundation grant IOB-0615361 to G.R.H., the Alabama Agricultural Experiment Station, and the Department of Energy under award DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 62 TC 5 Z9 5 U1 8 U2 37 PU AMER ORNITHOLOGISTS UNION PI LAWRENCE PA ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA SN 0004-8038 EI 1938-4254 J9 AUK JI AUK PD OCT PY 2014 VL 131 IS 4 BP 672 EP 680 DI 10.1642/AUK-14-57.1 PG 9 WC Ornithology SC Zoology GA AT3GF UT WOS:000344823200018 ER PT J AU Dai, XG Hu, QJ Cai, QL Feng, K Ye, N Tuskan, GA Milne, R Chen, YN Wan, ZB Wang, ZF Luo, WC Wang, K Wan, DS Wang, MX Wang, J Liu, JQ Yin, TM AF Dai, Xiaogang Hu, Quanjun Cai, Qingle Feng, Kai Ye, Ning Tuskan, Gerald A. Milne, Richard Chen, Yingnan Wan, Zhibing Wang, Zefu Luo, Wenchun Wang, Kun Wan, Dongshi Wang, Mingxiu Wang, Jun Liu, Jianquan Yin, Tongming TI The willow genome and divergent evolution from poplar after the common genome duplication SO CELL RESEARCH LA English DT Letter ID POPULUS; SALIX; RATES C1 [Dai, Xiaogang; Feng, Kai; Ye, Ning; Chen, Yingnan; Wan, Zhibing; Wang, Mingxiu; Yin, Tongming] Nanjing Forestry Univ, Southern Modern Forestry Collaborat Innovat Ctr, Nanjing 210037, Jiangsu, Peoples R China. [Hu, Quanjun; Wang, Zefu; Luo, Wenchun; Wang, Kun; Wan, Dongshi; Liu, Jianquan] Lanzhou Univ, Coll Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China. [Cai, Qingle; Wang, Jun] BGI Shenzhen, Shenzhen 518083, Peoples R China. [Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Milne, Richard] Univ Edinburgh, Inst Mol Plant Sci, Edinburgh EH9 3JH, Midlothian, Scotland. RP Yin, TM (reprint author), Nanjing Forestry Univ, Southern Modern Forestry Collaborat Innovat Ctr, Nanjing 210037, Jiangsu, Peoples R China. EM wangj@genomics.org.cn; liujq@lzu.edu.cn; tmyin@njfu.edu.cn RI Ye, Ning/O-3246-2015; Wang, Jun/C-8434-2016; Tuskan, Gerald/A-6225-2011; Wang, Jun/B-9503-2016 OI Ye, Ning/0000-0001-7249-8352; Wang, Jun/0000-0002-8540-8931; Tuskan, Gerald/0000-0003-0106-1289; Hu, Quanjun/0000-0001-6922-2144; Wang, Jun/0000-0002-2113-5874 NR 10 TC 26 Z9 29 U1 4 U2 27 PU INST BIOCHEMISTRY & CELL BIOLOGY PI SHANGHAI PA SIBS, CAS, 319 YUEYANG ROAD, SHANGHAI, 200031, PEOPLES R CHINA SN 1001-0602 EI 1748-7838 J9 CELL RES JI Cell Res. PD OCT PY 2014 VL 24 IS 10 BP 1274 EP 1277 DI 10.1038/cr.2014.83 PG 4 WC Cell Biology SC Cell Biology GA AT5OZ UT WOS:000344993300015 PM 24980958 ER PT J AU Sahajpal, R Zhang, XS Izaurralde, RC Gelfand, I Hurtt, GC AF Sahajpal, Ritvik Zhang, Xuesong Izaurralde, Roberto C. Gelfand, Ilya Hurtt, George C. TI Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt SO COMPUTERS AND ELECTRONICS IN AGRICULTURE LA English DT Article DE Cropland data layer; Crop rotations; US Midwest; RECRUIT algorithm; Prairie pothole region ID AGRICULTURAL LANDSCAPE SIMPLIFICATION; MISSISSIPPI RIVER-BASIN; LAND-USE CHANGE; UNITED-STATES; RESOURCESAT-1 AWIFS; INSECTICIDE USE; NDVI DATA; SEQUESTRATION; BIOENERGY; SWAT AB Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sahajpal, Ritvik; Izaurralde, Roberto C.; Hurtt, George C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Zhang, Xuesong; Hurtt, George C.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Zhang, Xuesong; Hurtt, George C.] Univ Maryland, College Pk, MD 20740 USA. [Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Gelfand, Ilya] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. RP Sahajpal, R (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. EM ritvik@umd.edu RI zhang, xuesong/B-7907-2009; Gelfand, Ilya/J-9017-2012; OI Gelfand, Ilya/0000-0002-8576-0978; sahajpal, ritvik/0000-0002-6418-289X FU US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; US DOE Office of Science (DOE BER Office of Science) [DE-AC06-76RLO 1830]; NASA [NNH08ZDA001N, NNX10AO03G, NNH12AU03I, NNH13ZDA001N] FX We gratefully acknowledge the support provided by the US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and US DOE Office of Science (DOE BER Office of Science DE-AC06-76RLO 1830) and NASA (NNH08ZDA001N, NNX10AO03G, NNH12AU03I and NNH13ZDA001N). Thanks to Dr. Jonathan Resop from the University of Maryland for providing useful feedback on a draft version of the manuscript. We would like to thank two anonymous reviewers and the editor Dr. Qin Zhang for their guidance in improving this manuscript. NR 58 TC 7 Z9 7 U1 4 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0168-1699 EI 1872-7107 J9 COMPUT ELECTRON AGR JI Comput. Electron. Agric. PD OCT PY 2014 VL 108 BP 173 EP 182 DI 10.1016/j.compag.2014.08.005 PG 10 WC Agriculture, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Agriculture; Computer Science GA AS7KX UT WOS:000344436100020 ER PT J AU Howard, DC Saha, PK Shankar, S England, TD Cardoso, AS Diestelhorst, RM Jung, S Cressler, JD AF Howard, Duane C. Saha, Prabir K. Shankar, Subramaniam England, Troy D. Cardoso, Adilson S. Diestelhorst, Ryan M. Jung, Seungwoo Cressler, John D. TI A SiGe 8-18-GHz Receiver With Built-In-Testing Capability for Self-Healing Applications SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Built-in test (BIT); built-in self-test (BIST); SiGe BiCMOS; microwave integrated circuits (ICs); signal generation; tunable microwave circuits ID CIRCUITS; AMPLIFIER AB A wideband (8-18 GHz) built-in test receiver in silicon-germanium technology is presented. The receiver chain consists of a low-noise amplifier (LNA), an image-reject mixer, on-chip automatic gain control ring oscillator sources that are used to provide test signals of a predefined amplitude, and control circuitry in the form of digital-to-analog converters and data registers. Both the LNA and the mixer circuit blocks incorporate tuning knobs to enable tuning of RF metrics to ensure consistent performance and mitigate the negative effects of process, voltage, and temperature variations, aging, and damage from extreme environments such as ionizing radiation. A maximum post-healed gain greater than 30 dB, an image rejection ratio exceeding 30 dB, output third-order intercept point greater than 8 dBm, and noise figure less than 9 dB are obtained in measurement. An automated healing algorithm was developed and shown to be effective at improving the overall performance of the receiver. The receiver was fabricated in an 0.18-mu m SiGe BiCMOS process with a peak f(T) of 150 GHz, and consumes 240-260 mA from a 4-V supply. C1 [Howard, Duane C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Saha, Prabir K.; Cardoso, Adilson S.; Jung, Seungwoo; Cressler, John D.] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA. [Shankar, Subramaniam] Inphi Corp, Thousand Oaks, CA 91362 USA. [England, Troy D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Diestelhorst, Ryan M.] NextInput Inc, Atlanta, GA 30308 USA. RP Howard, DC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM duane.c.howard@jpl.nasa.gov FU Defense Advanced Research Projects Agency (DARPA) under HEALICs Program FX This work was supported by the Defense Advanced Research Projects Agency (DARPA) under the HEALICs Program. NR 21 TC 5 Z9 5 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD OCT PY 2014 VL 62 IS 10 BP 2370 EP 2380 DI 10.1109/TMTT.2014.2345334 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA AT5NX UT WOS:000344990600015 ER PT J AU Dennis, GR Hudson, SR Hole, MJ AF Dennis, Graham R. Hudson, Stuart R. Hole, Matthew J. TI Modeling the Single-Helical Axis State in the Reversed-Field Pinch SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Magnetic confinement; plasma simulation AB The classical paradigm of the reversed-field pinch as a chaotic plasma has been challenged in recent years by the observation of the high-confinement single-helical axis (SHAx) state in which the plasma spontaneously develops a helical core. A reconstruction of this state using a minimally constrained model that captures the self-organized nature of the SHAx state is presented. C1 [Dennis, Graham R.; Hole, Matthew J.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Hudson, Stuart R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dennis, GR (reprint author), Australian Natl Univ, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM graham.dennis@anu.edu.au; shudson@pppl.gov; matthew.hole@anu.edu.au RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU Australian Research Council FX Manuscript received November 3, 2013; accepted March 26, 2014. Date of publication July 1, 2014; date of current version October 21, 2014. This work was supported by the Australian Research Council. NR 4 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2514 EP 2515 DI 10.1109/TPS.2014.2314469 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300095 ER PT J AU Anders, A Ni, P Andersson, J AF Anders, Andre Ni, Pavel Andersson, Joakim TI Drifting Ionization Zone in DC Magnetron Sputtering Discharges at Very Low Currents SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Plasma diagnostics; plasma materials processing; plasma measurements; plasma sources; plasma stability ID PLASMA AB Discharges with crossed electric and magnetic fields are known to develop instabilities that are crucial in the transport of charged particles. Sputtering magnetrons are no exception. While most recent studies focused on traveling ionization zones in high-power impulse magnetron sputtering, we show here fast camera images of magnetron discharges at very low current. A single drifting ionization zone is always present, even down to the threshold current of similar to 10 mA. C1 [Anders, Andre; Ni, Pavel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM aanders@lbl.gov; pani@lbl.gov; profoss@gmail.com RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Research Foundation; Ministry of Education, Singapore FX The work of A. Anders and P. Ni was supported by the U.S. Department of Energy under Contract DE-AC02-05CH11231. The work of J. Andersson was supported in part by the National Research Foundation and in part by the Ministry of Education, Singapore. NR 11 TC 7 Z9 7 U1 2 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2578 EP 2579 DI 10.1109/TPS.2014.2334601 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300127 ER PT J AU Frayer, D Ekdahl, CA Johnson, D AF Frayer, Daniel Ekdahl, Carl A. Johnson, Douglas TI Fidelity of a Time-Resolved Imaging Diagnostic for Electron Beam Profiles SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Beams; instumentation and measurement; lenses; measurements; optics; particle beam measurements physics; particle imaging; reconstruction algorithms lasers and electrooptics; tomography AB An optical tomographic diagnostic instrument has been fielded at the Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory. Four optical lines of sight create projections of an image of an electron beam on a Cerenkov target, which are relayed via optical fiber to streak cameras. From these projections, a reconstruction algorithm creates time histories of the beam's cross section. The instrument was fielded during and after facility commissioning, and tomographic reconstructions reported beam parameters. Results from reconstructions and analysis are noted. C1 [Frayer, Daniel; Johnson, Douglas] Natl Secur Technol, Los Alamos, NM 87544 USA. [Ekdahl, Carl A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frayer, D (reprint author), Natl Secur Technol, Los Alamos, NM 87544 USA. EM frayerdk@nv.doe.gov; cekdahl@lanl.gov; johnsode@nv.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2594 EP 2595 DI 10.1109/TPS.2014.2348797 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300135 ER PT J AU Kolbeck, J Anders, A AF Kolbeck, Jonathan Anders, Andre TI Unusual Cathode Erosion Patterns Observed for Steered Arc Sources SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Arc discharges; cathodes; plasma devices; plasma sources AB A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Cathodic arc spot and plasma distributions were photographed during the transition from a pure argon background (0.5 Pa) to a mixture of argon and oxygen. We report about unusual cathode erosion patterns, which were narrow (similar to 2 mm) with periodic pits when operating in argon, and broad (similar to 10 mm) with periodic groves and ridges when operating in argon and oxygen mixtures. C1 [Kolbeck, Jonathan; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kolbeck, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jonathan_kolbeck@hotmail.com; aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 6 TC 0 Z9 0 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2602 EP 2603 DI 10.1109/TPS.2014.2328333 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300139 ER PT J AU Huebl, A Pugmire, D Schmitt, F Pausch, R Bussmann, M AF Huebl, Axel Pugmire, David Schmitt, Felix Pausch, Richard Bussmann, Michael TI Visualizing the Radiation of the Kelvin-Helmholtz Instability SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE (Data) visualization; electromagnetic radiation; parallel machines; plasma simulation; plasma stability ID MAGNETIC-FIELD; SIMULATIONS; PLASMA AB Emerging new technologies in plasma simulations allow tracking billions of particles while computing their radiative spectra. We present a visualization of the relativistic Kelvin-Helmholtz instability from a simulation performed with the fully-relativistic particle-in-cell code PIConGPU powered by 18,000 GPUs on the USA's fastest supercomputer Titan. C1 [Huebl, Axel; Pausch, Richard; Bussmann, Michael] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, D-01328 Dresden, Germany. [Pugmire, David] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Schmitt, Felix] Tech Univ Dresden, D-01069 Dresden, Germany. RP Huebl, A (reprint author), Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, D-01328 Dresden, Germany. EM a.huebl@hzdr.de; pugmire@ornl.gov; felix.schmitt@zih.tu-dresden.de; r.pausch@hzdr.de; m.bussmann@hzdr.de RI Bussmann, Michael/A-3422-2009; OI Bussmann, Michael/0000-0002-8258-3881; Hubl, Axel/0000-0003-1943-7141 FU Office of Science, U.S. Department of Energy through the Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge, TN, USA [DE-AC05-00OR22725] FX This work was supported by the Office of Science, U.S. Department of Energy, under Contract DE-AC05-00OR22725, through the Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge, TN, USA. NR 9 TC 0 Z9 0 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2638 EP 2639 DI 10.1109/TPS.2014.2327392 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300157 ER PT J AU Muscatello, CM Domier, CW Hu, X Luhmann, NC Ren, XX Riemenschneider, P Spear, A Yu, LB Tobias, B AF Muscatello, Christopher M. Domier, Calvin W. Hu, Xing Luhmann, Neville C., Jr. Ren, Xiaoxin Riemenschneider, Paul Spear, Alexander Yu, Liubing Tobias, Benjamin TI Multidimensional Visualization of MHD and Turbulence in Fusion Plasmas SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article AB Quasi-optical imaging at sub-THz frequencies has a major impact on fusion plasma diagnostics. Millimeter-wave imaging reflectometry utilizes microwaves to actively probe fusion plasmas, inferring the local properties of electron density fluctuations. Electron cyclotron emission imaging is a multichannel radiometer that passively measures the spontaneous emission of microwaves from the plasma to infer local properties of electron temperature fluctuations. These imaging diagnostics work together to diagnose the characteristics of turbulence and magnetohydrodynamic activity. Important quantities, such as amplitude and wavenumber of coherent fluctuations, correlation lengths and decorrelation times of turbulence, and poloidal flow velocity of the plasma, are readily inferred. C1 [Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; Luhmann, Neville C., Jr.; Ren, Xiaoxin; Riemenschneider, Paul; Spear, Alexander; Yu, Liubing] Univ Calif Davis, Davis, CA 95616 USA. [Tobias, Benjamin] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Muscatello, CM (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM cmuscate@ucdavis.edu; cwdomier@ucdavis.edu; imxhu@ucdavis.edu; ncluhmann@ucdavis.edu; xren@ucdavis.edu; periemens@ucdavis.edu; agspear@ucdavis.edu; yuliubing@gmail.com; bjtobias@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54531, DE-FC02-04ER54698] FX This work was supported by the U.S. Department of Energy under Grant DE-AC02-09CH11466, Grant DE-FG02-99ER54531, and Grant DE-FC02-04ER54698. NR 7 TC 1 Z9 1 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2734 EP 2735 DI 10.1109/TPS.2014.2345275 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300205 ER PT J AU Andersson, J Ni, P Anders, A AF Andersson, Joakim Ni, Pavel Anders, Andre TI Smoothing of Discharge Inhomogeneities at High Currents in Gasless High Power Impulse Magnetron Sputtering SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Plasma diagnostics; plasma materials processing; plasma measurements; plasma sources; plasma stability AB The discharges in high-power impulse magnetron sputtering (HiPIMS) have been reported to consist of azimuthally inhomogeneous plasma with locally increased light emission. The luminous zones seemingly travel around the racetrack and are implicated in generation of the high ion kinetic energies observed in HiPIMS. We show that the inhomogeneities smooth out at high discharge current to yield azimuthally homogeneous plasma. This may have implications for the spatial and kinetic energy distribution of sputtered particles, and therefore also on the thin films deposited by HiPIMS. C1 [Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. [Ni, Pavel; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Andersson, J (reprint author), Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. EM aanders@lbl.gov; pani@lbl.gov; profoss@gmail.com RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Research Foundation; Ministry of Education, Singapore FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-05CH11231, in part by the National Research Foundation, and in part by the Ministry of Education, Singapore. NR 8 TC 2 Z9 2 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2856 EP 2857 DI 10.1109/TPS.2014.2334600 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AS9FK UT WOS:000344548300266 ER PT J AU Reass, WA Baca, DM Griego, JR Oro, DM Reinovsky, RE Rousculp, CL Turchi, PJ AF Reass, William A. Baca, David M. Griego, Jeffrey R. Oro, David M. Reinovsky, Robert E. Rousculp, Christopher L. Turchi, Peter J. TI Electrical Design and Operation of the Phelix Pulsed Power System SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Hydrodynamics; marx banks; pulse transformer; pulsed power AB The Precision High Energy-Density Liner Implosion Experiment (PHELIX) is a pulsed power driver capable of delivering multimegampere currents to cylindrical loads. The PHELIX hardware includes novel design features to provide a high-energy conversion efficiency of approximately 10-MA output current per megajoule of stored energy. This is achieved by a rail-gap switched low-inductance Marx design (resistively damped) driving a multifilar air-core pulse transformer. The Marx output cables form the toroidal transformer that is an integral part of the disc line and removable load cassette assembly. The transformer and disc line uses conformal insulation methods and does not require replacement; after each shot, the transformer is completely reusable. Load cassettes can be easily exchanged to facilitate experimental variation. PHELIX is self-contained within its own transport container and Faraday cage that can be moved from the maintenance building to the Los Alamos Neutron Science Center 800-MeV proton accelerator facility to perform multipulse proton radiography. This paper details the electrical and mechanical design of the Marx and multifilar transformer assemblies as well as presenting the operational performance achieved to date. C1 [Reass, William A.; Baca, David M.; Griego, Jeffrey R.; Oro, David M.; Reinovsky, Robert E.; Rousculp, Christopher L.; Turchi, Peter J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reass, WA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wreass@lanl.gov; dbaca@lanl.gov; jrgriego@lanl.gov; oro@lanl.gov; bobr@lanl.gov; rousculp@lanl.gov; turchi@lanl.gov FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. NR 8 TC 4 Z9 5 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 2934 EP 2942 DI 10.1109/TPS.2014.2326335 PN 2 PG 9 WC Physics, Fluids & Plasmas SC Physics GA AS9EP UT WOS:000344546200009 ER PT J AU Vanderburg, A Stefani, F Sitzman, A Crawford, M Surls, D Ling, C McDonald, J AF Vanderburg, Andrew Stefani, Francis Sitzman, Alex Crawford, Mark Surls, Dwayne Ling, Chloe McDonald, Jason TI The Electrical Specific Action to Melt of Structural Copper and Aluminum Alloys SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Al6061; Al7075; aluminum alloy; C10100; C11000; C18000; C18200; electrical action to melt; exploding wire experiment; specific action to melt AB This paper describes an exploding wire experiment to measure the electrical specific action to melt of structural alloys of copper and aluminum, including C10100, C11000, C18000, C18200, Al6061, and Al7075. These alloys, which are commonly used in railguns and other pulsed power devices, are not produced in fine wire form. Instead of wires, we developed a technique to test macroscopic samples (0.25 mm x 0.5 mm cross section) manufactured with wire electrical discharge machining. This paper includes a description of the design considerations for such macroscopic exploding wire experiments. C1 [Vanderburg, Andrew] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stefani, Francis] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA. [Sitzman, Alex] Univ Texas Austin, Dept Elect Engn, Austin, TX 78712 USA. [Crawford, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Surls, Dwayne] Univ Texas Austin, Ctr Electromech, Austin, TX 78712 USA. [Ling, Chloe] CALTECH, Pasadena, CA 91125 USA. [McDonald, Jason] Bowhead Sci & Technol, Aberdeen, MD 21005 USA. RP Vanderburg, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM andrew.vanderburg@berkeley.edu; stefani@utexas.edu; asitzman@gmail.com; mtc@lanl.gov; d.surls@cem.utexas.edu; cling@caltech.edu; jason.r.mcdonald27.ctr@mail.mil FU U.S. Army Research Laboratory [W911QX-07-D-0002] FX This work was supported by the U.S. Army Research Laboratory under Contract W911QX-07-D-0002. NR 8 TC 3 Z9 3 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 3167 EP 3172 DI 10.1109/TPS.2014.2313292 PN 2 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AS9EP UT WOS:000344546200041 ER PT J AU Baxter, EA Kovaleski, SD Gall, BB VanGordon, JA Norgard, P Dale, GE AF Baxter, Emily A. Kovaleski, Scott D. Gall, Brady B. VanGordon, James A. Norgard, Peter Dale, Gregory E. TI Hydrogen and Deuterium Ion Extraction From a Piezoelectric Transformer Plasma Source SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Ion sources; piezoelectric materials; plasma generation ID HIGHLY ENRICHED URANIUM; ACTIVE INTERROGATION; CROSS-SECTIONS; NEUTRON; ACCELERATORS AB A piezoelectric transformer plasma source (PTPS) has been developed as a plasma ion source for D(d,n)He-3 neutron production. This neutron production system is compact, radioisotope free, and can be easily turned ON and OFF. The PTPS consists of a lithium niobate piezoelectric disk in a differentially pumped chamber with controlled gas flow from an external source. The PTPS was previously characterized using a range of gas flows, extraction voltages, and aperture geometries to demonstrate its capabilities as an ion source. Ion current measurements are presented for deuterium and hydrogen gas at PTPS pressures from 1.5 to 8.5 torr, RF driving voltages from 200 to 400 V, and extraction voltages up to 2000 V. Ion current yields on the order of 10 mu A were measured. C1 [Baxter, Emily A.; Kovaleski, Scott D.; Gall, Brady B.; VanGordon, James A.; Norgard, Peter] Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA. [Dale, Gregory E.] Los Alamos Natl Lab, Power Electrodynam Grp, Los Alamos, NM 87545 USA. RP Baxter, EA (reprint author), Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA. EM eab7rf@mail.missouri.edu; kovaleskis@missouri.edu; bbgb62@mail.missouri.edu; jav4zc@mail.missouri.edu; norgardp@missouri.edu; gedale@lanl.gov OI Norgard, Peter/0000-0002-5332-5998 FU Los Alamos National Laboratory, Los Alamos, NM, USA FX This work was supported by the Los Alamos National Laboratory, Los Alamos, NM, USA. NR 22 TC 0 Z9 0 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2014 VL 42 IS 10 SI SI BP 3253 EP 3257 DI 10.1109/TPS.2014.2345019 PN 2 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AS9EP UT WOS:000344546200055 ER PT J AU Gao, MC AF Gao, Michael C. TI Progress in High-Entropy Alloys SO JOM LA English DT Editorial Material ID MULTICOMPONENT ALLOYS C1 URS Corp, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Gao, MC (reprint author), URS Corp, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM michael.gao@contr.netl.doe.gov NR 9 TC 3 Z9 3 U1 3 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD OCT PY 2014 VL 66 IS 10 BP 1964 EP 1965 DI 10.1007/s11837-014-1136-3 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AT0HG UT WOS:000344617000002 ER PT J AU Antonaglia, J Xie, X Tang, Z Tsai, CW Qiao, JW Zhang, Y Laktionova, MO Tabachnikova, ED Yeh, JW Senkov, ON Gao, MC Uhl, JT Liaw, PK Dahmen, KA AF Antonaglia, J. Xie, X. Tang, Z. Tsai, C. -W. Qiao, J. W. Zhang, Y. Laktionova, M. O. Tabachnikova, E. D. Yeh, J. W. Senkov, O. N. Gao, M. C. Uhl, J. T. Liaw, P. K. Dahmen, K. A. TI Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs) SO JOM LA English DT Article ID PRINCIPAL-ELEMENT ALLOYS; V-ZR SYSTEM; MULTICOMPONENT ALLOYS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; STRAIN-RATE; CORROSION-RESISTANCE; ACTIVATION-ENERGY; PHASE-COMPOSITION; SOLID-SOLUTION AB Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress-strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. The model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed. C1 [Antonaglia, J.; Dahmen, K. A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Xie, X.; Tang, Z.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Tsai, C. -W.; Yeh, J. W.] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. [Qiao, J. W.] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China. [Zhang, Y.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Laktionova, M. O.; Tabachnikova, E. D.] Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. [Senkov, O. N.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Gao, M. C.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, M. C.] USR Corp, Albany, OR 97321 USA. RP Antonaglia, J (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM dahmen@illinois.edu RI ZHANG, Yong/B-7928-2009; OI ZHANG, Yong/0000-0002-6355-9923; Senkov, Oleg/0000-0001-5587-415X FU U.S. National Science Foundation [DMR-0909037, CMMI-0900271, CMMI-1100080]; Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) [00119262]; DOE, Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855]; NSF [DMR-1005209, DMS-1069224]; DOE [FE0011194]; National Natural Science Foundation of China [51010001, 51001009]; 111 Project [B07003]; Program for Changjiang Scholars and the Innovative Research Team of the University; U.S. Army Research Office [W911NF-13-1-0438]; Air Force [FA8650-10-D-5226] FX X.X., Z.T., and P. K. L. appreciate the financial support from the U.S. National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080), the Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) 00119262, and the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855) with C. Huber, C. V. Cooper, D. Finotello, A. Ardell, E. Taleff, V. Cedro, R.O. Jensen, L. Tan, and S. Lesica as contract monitors. K. A. D. and J.A. gratefully acknowledge the NSF Grants DMR-1005209 and DMS-1069224 with D. Hess and J. Curry as contract monitors. K. A. D., X. X., and P. K. L. thank DOE for the support through project FE0011194 with the project manager S. Markovich. Y.Z. appreciates the financial support from the National Natural Science Foundation of China (Nos. 51010001 and 51001009), 111 Project (B07003), and the Program for Changjiang Scholars and the Innovative Research Team of the University. M. C. G. and P. K. L. very much appreciate the support from the U.S. Army Research Office project (W911NF-13-1-0438) with the program manager S.N. Mathaudhu. Work of ONS was supported through the Air Force on-site contract FA8650-10-D-5226 conducted by UES, Inc., Dayton, Ohio. All authors are grateful to the suggestions and comments of Dr. D. B. Miracle. NR 59 TC 21 Z9 21 U1 7 U2 98 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD OCT PY 2014 VL 66 IS 10 BP 2002 EP 2008 DI 10.1007/s11837-014-1130-9 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AT0HG UT WOS:000344617000007 ER PT J AU Salehinia, I Shao, S Wang, J Zbib, HM AF Salehinia, I. Shao, S. Wang, J. Zbib, H. M. TI Plastic Deformation of Metal/Ceramic Nanolayered Composites SO JOM LA English DT Review ID TRANSMISSION ELECTRON-MICROSCOPY; METAL-CERAMIC COMPOSITES; MECHANICAL-PROPERTIES; THIN-FILMS; NANOINDENTATION BEHAVIOR; INTERATOMIC POTENTIALS; ATOMISTIC SIMULATIONS; INDENTATION BEHAVIOR; INTERFACE STRUCTURES; W/NBN SUPERLATTICES AB Metal/ceramic multilayers combine high hardness of the ceramic layer and the high ductility of the metallic layer, enabling the design of novel composite coatings with high hardness and measurable ductility when the layer thickness reduces to a few nanometers. In this article, we review recent work with a focus on plastic deformation of metal/ceramic nanolayered composites from three aspects: experiment, theory, and atomistic modeling, and we propose several research directions in this topic. C1 [Salehinia, I.; Zbib, H. M.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Shao, S.; Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Salehinia, I (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM iman.salehinia@email.wsu.edu RI Shao, Shuai/B-2037-2014; Wang, Jian/F-2669-2012 OI Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences [DE-FG02-07ER46435]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences (DE-FG02-07ER46435). J.W. acknowledges the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450). NR 75 TC 10 Z9 10 U1 5 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD OCT PY 2014 VL 66 IS 10 BP 2078 EP 2085 DI 10.1007/s11837-014-1132-7 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AT0HG UT WOS:000344617000015 ER PT J AU Carsley, JE Hovanski, Y Clarke, KD Krajewski, PE AF Carsley, John E. Hovanski, Yuri Clarke, Kester D. Krajewski, Paul E. TI Deformation and Forming of Joined Materials SO JOM LA English DT Article AB As manufacturers strive to improve product performance and reduce weight, particularly in the transportation industries, designers are optimizing material usage with combinations of many different materials and alloys. The goal is to optimize mechanical behavior by selecting material specifically tailored for locations within a product or component. Such mixed material solutions require innovative joining technologies to combine, for example, aluminum and steel or magnesium and carbon fiber composite, etc. Critical to expanding the use of such joined materials in structural applications is the relevant technical understanding of how they form and deform across varying strain rates ranging from superplastic forming to stamping to crash events. With an increasingly rapid development of advanced materials, knowledge gained by assessing the post-weld formability of joined similar and multimaterial structures is crucial to providing the data needed to enable more widespread utilization. On the other end of the spectrum, increased insight characterizing the deformation of these joined structures is also critical to paving the way toward successful implementation. Characterizations via experimentation as well as predictive capabilities are essential to this effort as explored by the articles included in this issue. First, Judy Schneider and Ron Radzilowski provide a history of various processes for joining aluminum and iron-based materials in "Welding of Very Dissimilar Materials (Fe-Al).'' They discuss how welding technologies were developed for specific families of materials followed by the joining of dissimilar materials and how such technologies are implemented in the automotive industry. C1 [Carsley, John E.; Krajewski, Paul E.] Gen Motors Co, Warren, MI 48092 USA. [Hovanski, Yuri] Pacific NW Natl Lab, Richland, WA 99352 USA. [Clarke, Kester D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Carsley, JE (reprint author), Gen Motors Co, Warren, MI 48092 USA. EM john.carsley@gm.com; yuri.hovanski@pnnl.gov; kclarke@lanl.gov; paul.e.krajewski@gm.com NR 0 TC 0 Z9 0 U1 3 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD OCT PY 2014 VL 66 IS 10 BP 2121 EP 2122 DI 10.1007/s11837-014-1150-5 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AT0HG UT WOS:000344617000019 ER PT J AU Miles, M Karki, U Hovanski, Y AF Miles, M. Karki, U. Hovanski, Y. TI Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel SO JOM LA English DT Article ID ULTRAHIGH CARBON-STEEL; PHASE DP600 STEELS; RESISTANCE; MICROSTRUCTURE; REQUIREMENTS; SHEETS AB Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge (R) software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results. C1 [Miles, M.; Karki, U.] Brigham Young Univ, Provo, UT 84602 USA. [Hovanski, Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miles, M (reprint author), Brigham Young Univ, Provo, UT 84602 USA. EM mmiles@byu.edu FU National Science Foundation [CMMI-1131203]; Department of Energy, EERE-Vehicle Technologies Office, via PNNL [116126] FX This work was supported by National Science Foundation grant CMMI-1131203 and by funding from the Department of Energy, EERE-Vehicle Technologies Office, via PNNL subcontract 116126. NR 26 TC 1 Z9 1 U1 3 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD OCT PY 2014 VL 66 IS 10 BP 2130 EP 2136 DI 10.1007/s11837-014-1125-6 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AT0HG UT WOS:000344617000021 ER PT J AU Lin, HJ Tang, JJ Yu, Q Wang, H Ouyang, LZ Zhao, YJ Liu, JW Wang, WH Zhu, M AF Lin, Huai-Jun Tang, Jia-Jun Yu, Qian Wang, Hui Ouyang, Liu-Zhang Zhao, Yu-Jun Liu, Jiang-Wen Wang, Wei-Hua Zhu, Min TI Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump SO NANO ENERGY LA English DT Article DE Hydrogen storage; MgH2; Symbiotic CeH2.73/CeO2; Catalysis; In situ HRTEM; Theoretical calculations ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; MG-BASED MATERIALS; WAVE BASIS-SET; SORPTION KINETICS; SADDLE-POINTS; METAL-OXIDES; STORAGE; MECHANISM; NICKEL AB Using additives/catalysts to destabilize hydrides of high hydrogen storage density, e.g. MgH2 with 7.6 wt%-H and desorption temperature as high as 300-400 degrees C, is one of the most important strategies to overcome the hurdle of applying hydrogen storage materials in technologies related to hydrogen energy. Despite tremendous efforts, to develop additives/catalysts with high catalytic activity and easy doping remains a great challenge. Here, we report a simple method to induce a novel symbiotic CeH2.73/CeO2 catalyst in Mg-based hydrides, which is capable of massive fabrication. More importantly, we reveal a spontaneous hydrogen release effect at the CeH2.73/CeO2 interface, which leads to dramatic increase of catalysis than either sole CeH2.73 or CeO2 catalyst. Maximum hydrogen desorption temperature reduction of MgH2 could reach down to similar to 210 degrees C as molar ratio of CeH2.73 to CeO2 was 1:1. The dynamic boundary evolution during hydrogen desorption was observed in the symbiotic CeH2.73/CeO2 at atomic resolution using in situ High-Resolution Transmission Electron Microscope (HRTEM). Combining the ab-initio calculations, which show significant reduction of the formation energy of V-H (hydrogen vacancy) in the CeH2.73/CeO2 boundary region in comparison to those in the bulk MgH2 and CeH2.73, we demonstrate that the outstanding catalytic activity can be attributed to the spontaneous hydrogen release effect at the CeH2.73/CeO2 interface. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lin, Huai-Jun; Tang, Jia-Jun; Wang, Hui; Ouyang, Liu-Zhang; Liu, Jiang-Wen; Zhu, Min] S China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510640, Peoples R China. [Yu, Qian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Tang, Jia-Jun; Zhao, Yu-Jun] S China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China. [Wang, Wei-Hua] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Yu, Qian] Zhejiang Univ, Ctr Electron Microscopy, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. RP Yu, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM gyu@lbl.gov; whw@iphy.ac.cn; memzhu@scut.edu.cn RI Zhao, Yu-Jun/A-1219-2011; Lin, Huaijun/D-5108-2014; Ouyang, Liuzhang/K-8371-2012; Tang, Jia-Jun/J-1320-2014 OI Zhao, Yu-Jun/0000-0002-6923-1099; Lin, Huaijun/0000-0002-4505-9562; Ouyang, Liuzhang/0000-0002-2754-4011; Tang, Jia-Jun/0000-0002-0413-8862 FU Ministry of Science and Technology of China [2010CB631302]; National Natural Science Foundation of China [U1201241, 51071068, 51271078]; KLGHEI [KLB11003]; Fundamental Research Funds for the Central Universities FX This work was financially supported by the Ministry of Science and Technology of China (No. 2010CB631302), the National Natural Science Foundation of China (Nos. U1201241, 51071068 and 51271078) and KLGHEI (KLB11003) and the Fundamental Research Funds for the Central Universities. NR 37 TC 14 Z9 14 U1 14 U2 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2014 VL 9 BP 80 EP 87 DI 10.1016/j.nanoen.2014.06.026 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT0NN UT WOS:000344632800009 ER PT J AU An, CH Liu, JX Wang, ST Zhang, J Wang, ZJ Long, R Sun, YG AF An, Changhua Liu, Junxue Wang, Shutao Zhang, Jun Wang, Zhaojie Long, Ran Sun, Yugang TI Concaving Agl sub-microparticles for enhanced photocatalysis SO NANO ENERGY LA English DT Article DE Concave Agl nanopartides; Photocatalysis; Controlled etching; Silver halide ID ROOM-TEMPERATURE; BETA-AGI; TIO2; NANOPARTICLES; COMPOSITE; NANOSTRUCTURES; CONDUCTIVITY; MORPHOLOGY; PARTICLES; PHASE AB Concave particles represent a new class of structures with their surfaces curving in or hollowed inward and thus presence of regions with negative curvatures. Owing to the potential high-index facets and negative curvatures, crystalline particles with concave surfaces are expected to show unexplored or substantially enhanced performance in comparison with the counterpart particles with convex surfaces. In this report, we highlight a facile approach for the first-time synthesis of concave Agl nanoparticles through a controlled etching of spherical Agl particles in a solution containing ethylenediamine, absolute alcohol, and polyvinylpyrrolidone. Physical parameters including morphology and size of the resulting concave Agl particles can be tuned by carefully controlling the reaction conditions such as the amount of precursors and the injection rate of precursor solutions. Most importantly, the concave Agl particles exhibit a much higher efficiency towards photocatalytic degradation of organic molecules than the corresponding spherical Agl particles. The as-synthesized concave Agl particles are expected to be useful not only for the fundamental investigation on shape- and composition-dependent properties but also for potential applications in photocatalysis, electrocatalysis, photonics, etc. (C) 2014 Elsevier Ltd. All rights reserved. C1 [An, Changhua; Liu, Junxue; Wang, Shutao; Zhang, Jun; Wang, Zhaojie] China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China. [An, Changhua; Liu, Junxue; Wang, Shutao; Zhang, Jun; Wang, Zhaojie] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China. [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Long, Ran] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China. RP An, CH (reprint author), China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China. EM anchh@upc.edu.cn; ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Zhang, Jun/A-9732-2012; Liu, Junxue/L-8206-2013 OI Sun, Yugang /0000-0001-6351-6977; Zhang, Jun/0000-0002-7068-5135; Liu, Junxue/0000-0001-8349-1017 FU National Natural Science Foundation of China [21001116]; China Postdoctoral Science Foundation [2013M541963]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [13CX05022A]; [13CX02002A] FX The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (Grant no. 21001116), China Postdoctoral Science Foundation (2013M541963), and the (13CX05022A, 13CX02002A). Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 33 TC 15 Z9 15 U1 8 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2014 VL 9 BP 204 EP 211 DI 10.1016/j.nanoen.2014.07.015 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT0NN UT WOS:000344632800023 ER PT J AU Wang, C Higgins, D Wang, FF Li, DY Liu, RQ Xia, GF Li, N Li, Q Xu, H Wu, G AF Wang, Chen Higgins, Drew Wang, Fangfang Li, Deyu Liu, Ruiqing Xia, Guofeng Li, Ning Li, Qing Xu, Hui Wu, Gang TI Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries SO NANO ENERGY LA English DT Article DE Copper oxide; Morphology dependence; Electrochemical performance; Anode; Lithium ion batteries ID ELECTROCHEMICAL PERFORMANCE; FACILE FABRICATION; IMPEDANCE SPECTROSCOPY; ENHANCED PERFORMANCE; STORAGE PERFORMANCE; HOLLOW MICROSPHERES; ELECTRODE MATERIALS; METAL-OXIDES; MORPHOLOGY; CONVERSION AB Three different morphology controlled copper oxide materials (porous microspheres, flower-like, and thom-like CuO) were prepared by facile and environmentally friendly processes, which were further investigated for their electrochemical properties and performance at lithium-ion battery anodes. CuO microspheres were prepared by simply solution chemistry, whereas flower-like and thorn-like CuO structures were prepared hydrothermally, with the structural transformations arising due to selection of chloride or sulfate counter ions in the precursor salts, respectively. After a 400 C heat treatment in air, the morphology controlled materials demonstrated excellent phase purity as indicated by X-ray diffraction (XRD), and we propose a growth mechanism for the various materials based on systematic investigation of the structure and properties of the intermediate species. The electrochemical and lithium-ion battery performance employing the shape controlled CuO materials was investigated, allowing for elucidation of the synthesis-structure-performance correlations of CuO-based anodes. The performance of lithium-ion batteries was found to be highly dependent on the CuO morphology. The CuO microspheres exhibit a superior electrochemical performance to the other two CuO samples in terms of cycle capacity and rate performance, indicating a viable strategy to prepare next-generation lithium-ion battery systems with improved storage capacities. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Wang, Chen; Wang, Fangfang; Li, Deyu; Liu, Ruiqing; Xia, Guofeng; Li, Ning] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Higgins, Drew; Li, Qing; Xu, Hui; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wu, Gang] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. RP Li, N (reprint author), SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. EM ninglihit@263.net; qinglilanl@gmail.com; gangwu@buffalo.edu RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011 OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X FU Los Alamos National Laboratory Laboratory-Directed Research and Development (LDRD) Program; University at Buffalo, SUNY FX Financial support from the Los Alamos National Laboratory Laboratory-Directed Research and Development (LDRD) Program and the start-up funding from the University at Buffalo, SUNY for this work is gratefully acknowledged. NR 63 TC 39 Z9 39 U1 12 U2 141 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2014 VL 9 BP 334 EP 344 DI 10.1016/j.nanoen.2014.08.009 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT0NN UT WOS:000344632800038 ER PT J AU Liao, JY Chabot, V Gu, M Wang, CM Xiao, XC Chen, ZW AF Liao, Jin-Yun Chabot, Victor Gu, Meng Wang, Chongmin Xiao, Xingcheng Chen, Zhongwei TI Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries SO NANO ENERGY LA English DT Article DE Li-ion batteries; Li4Ti5O12-TiO2; Dual phase; Nanowire arrays ID PERFORMANCE; ELECTRODES; NANOSHEETS; NANOTUBE; LIFE AB Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g(-1)) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ionexchange route to synthesize the self-supported dual-phase Li4Ti5O12-TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12-TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g(-1) at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Liao, Jin-Yun; Chabot, Victor; Chen, Zhongwei] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Xiao, Xingcheng] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA. RP Xiao, XC (reprint author), Gen Motors Global Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA. EM xingcheng.xiao@gm.com; zhwchen@uwaterloo.ca RI chen, zhongwei/A-5605-2015; Liao, Jin-Yun/E-3798-2013; Gu, Meng/B-8258-2013 FU Natural Sciences and Engineering Research Council of Canada (NSERC) [CRDPJ418270]; University of Waterloo; Waterloo Institute for Nanotechnology; Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy [DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies (BATT) Program [7056410]; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE) [DE-AC05-76RLO1830]; DOE's Office of Biological and Environmental Research and located at PNNL FX This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant no. CRDPJ418270), the University of Waterloo and the Waterloo Institute for Nanotechnology. The authors thank Mr. Hey Woong Park, Mr. Drew Higgins, and Mr. Gregory Lui at the University of Waterloo for their help in editing the manuscript. X. Xiao also acknowledges the support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, subcontract No. 7056410 under the Batteries for Advanced Transportation Technologies (BATT) Program. M. Gu and C. M. Wang acknowledge the support of Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle under Contract DE-AC05-76RLO1830 for the U.S. Department of Energy (DOE). The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. NR 32 TC 31 Z9 31 U1 20 U2 126 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2014 VL 9 BP 383 EP 391 DI 10.1016/j.nanoen.2014.06.032 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT0NN UT WOS:000344632800043 ER PT J AU Lin, Z Nan, CY Ye, YF Guo, JH Zhu, JF Cairns, EJ AF Lin, Zhan Nan, Caiyun Ye, Yifan Guo, Jinghua Zhu, Junfa Cairns, Elton J. TI High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode SO NANO ENERGY LA English DT Article DE Lithium/sulfur cell; Lithium sulfide; Sulfur composite cathode; Core-shell nanoparticles; Lithium sulfide cell; Carbon coating ID POLYMER ELECTROLYTES; ELECTRONIC-STRUCTURE; GRAPHENE OXIDE; ION BATTERIES; SULFIDE; COMPOSITES; NANOFIBERS; PARTICLES; NANOTUBES; ENERGY AB Lithium/sulfur (Li/S) cells have a theoretical specific energy five times higher than that of Lithium-ion (Li-ion) cells (2600 vs. similar to 500 Wh kg(-1)). The conventional Li/S cells that use an organic liquid electrolyte are short-lived with low coulombic efficiency due to the polysulfide shuttle. We herein design carbon-coated NanoLi(2)S (NanoLi(2)S@carbon) composites, which consist of Li2S nanoparticles as the core and a carbon coating as the shell. The carbon shell prevents the NanoLi(2)S core from directly contacting the liquid electrolyte, which improves the performance of Li/S cells to provide longer cycle life and high sulfur utilization. The cyclability of Li/S cells is further enhanced by mixing the core-shell NanoLi(2)S carbon composites with graphene oxide, which chemically immobilizes polysulfides in the cathode through their functional groups. The resulting Li/S cell shows an initial specific discharge capacity of 1263 mAh g(-1) (normalized to sulfur) at the C/10 rate and a capacity retention of 65.4% after 200 cycles. The capacity decay mechanism during cycling is also characterized in detail using near edge X-ray absorption fine structure (NEXAFS) spectra. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lin, Zhan; Nan, Caiyun; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Lin, Zhan; Nan, Caiyun; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Nan, Caiyun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Ye, Yifan; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM ejcairns@lbl.gov RI Foundry, Molecular/G-9968-2014; Zhu, Junfa/E-4020-2010; Lin, Zhan/C-6806-2011; Cairns, Elton/E-8873-2012 OI Zhu, Junfa/0000-0003-0888-4261; Lin, Zhan/0000-0001-5009-8198; Cairns, Elton/0000-0002-1179-7591 FU Robert Bosch LLC through the Bosch Energy Research Network [16.11.BS11]; University of California-Berkeley, Energy and Climate Research Innovation Seed Fund; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [U1232102] FX This work was sponsored by Robert Bosch LLC through the Bosch Energy Research Network Grant no. 16.11.BS11, and by the University of California-Berkeley, Energy and Climate Research Innovation Seed Fund. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank Dr. Tev Kuykendall for his support in the Molecular Foundry of LBNL. Y.EY. and J.F.Z. greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant no. U1232102). NR 34 TC 19 Z9 19 U1 13 U2 139 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2014 VL 9 BP 408 EP 416 DI 10.1016/j.nanoen.2014.08.003 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AT0NN UT WOS:000344632800046 ER PT J AU Olson, BJ Greenough, JA AF Olson, Britton J. Greenough, Jeffrey A. TI Comparison of two- and three-dimensional simulations of miscible Richtmyer-Meshkov instability with multimode initial conditions SO PHYSICS OF FLUIDS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; SCHEMES AB A comparison between two- and three-dimensional large-eddy simulations of the planar Richtmyer-Meshkov instability with multimode initial conditions is made. The three-dimensional calculation achieves a turbulent state where an inertial range of length scales is present after the second shock wave impacts the interface. Grid independence of the mixing width up until the time of reshock is demonstrated through mesh refinement in both two and three dimensions. Quantitative measures of mixing are compared including the mixing width, mixedness, mixed mass, and spectra of velocity and density. A proposed approximate relation for the mixed mass is evaluated in one, two, and three dimensions and is proportional to the product of the mixing width and the mass fraction variance in the layer. The variance of the velocity field and the scalar mass fraction are compared in two and three dimensions and demonstrate large differences in behavior. (C) 2014 AIP Publishing LLC. C1 [Olson, Britton J.; Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Olson, BJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors wish to thank A. Cook, W. Cabot, O. Schilling, and B. Morgan for many valuable discussions. NR 17 TC 3 Z9 3 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2014 VL 26 IS 10 AR 101702 DI 10.1063/1.4898157 PG 7 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AS9YC UT WOS:000344593300010 ER PT J AU Sun, GY Lignell, DO Hewson, JC Gin, CR AF Sun, Guangyuan Lignell, David O. Hewson, John C. Gin, Craig R. TI Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model SO PHYSICS OF FLUIDS LA English DT Article ID FLOW; FORMULATION; SIMULATION; MOTION; FLAMES; JET; DIFFUSION; TRANSPORT; SPHERE AB Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter beta(p), and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations. (C) 2014 AIP Publishing LLC. C1 [Sun, Guangyuan; Lignell, David O.] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. [Hewson, John C.] Sandia Natl Labs, Fire Sci & Technol Dept, Albuquerque, NM 87123 USA. [Gin, Craig R.] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. RP Sun, GY (reprint author), Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. EM gysungrad@gmail.com; davidlignell@byu.edu; jchewso@sandia.gov; cgin@math.tamu.edu FU Defense Threat Reduction Agency [HDTRA-11-4503I]; (U.S.) Department of Energy's (DOE) National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge helpful discussions with Alan Kerstein. This work was supported by the Defense Threat Reduction Agency under Award No. HDTRA-11-4503I. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the (U.S.) Department of Energy's (DOE) National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 33 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2014 VL 26 IS 10 AR 103301 DI 10.1063/1.4896555 PG 18 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AS9YC UT WOS:000344593300022 ER PT J AU Barnat, EV Laity, GR Baalrud, SD AF Barnat, E. V. Laity, G. R. Baalrud, S. D. TI Response of the plasma to the size of an anode electrode biased near the plasma potential SO PHYSICS OF PLASMAS LA English DT Article ID SHEATHS AB As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode. (C) 2014 AIP Publishing LLC. C1 [Barnat, E. V.; Laity, G. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Baalrud, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Barnat, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Office of Fusion Energy Science at the U.S. Department of Energy [DE-AC04-94SL85000] FX This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract No. DE-AC04-94SL85000. NR 21 TC 8 Z9 8 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2014 VL 21 IS 10 AR 103512 DI 10.1063/1.4897927 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AS9YG UT WOS:000344593700094 ER PT J AU Bessho, N Bhattacharjee, A AF Bessho, N. Bhattacharjee, A. TI Instability of the current sheet in the Earth's magnetotail with normal magnetic field SO PHYSICS OF PLASMAS LA English DT Article ID 2-DIMENSIONAL MAGNETOTAIL; COLLISIONLESS RECONNECTION; TEARING STABILITY; EQUILIBRIA; DYNAMICS; ONSET; TAIL AB Instability of a current sheet in the Earth's magnetotail has been investigated by two-dimensional fully kinetic simulations. Two types of magnetic configuration have been studied; those with uniform normal magnetic field along the current sheet and those in which the normal magnetic field has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys. Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of configuration exhibits electron tearing modes when the normal magnetic field is small. The second type of configuration exhibits an instability which does not tear or change the topology of magnetic field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime, leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions where the normal magnetic field is very weak. Under no conditions do we find the ion tearing instability. (C) 2014 AIP Publishing LLC. C1 [Bessho, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bessho, N.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Ctr Heliophys, Princeton, NJ 08543 USA. [Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bessho, N (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM naoki.bessho@nasa.gov FU NSF [ATM-090315, AGS-1338944]; NASA [NNX09AJ86G]; DOE under Center for Integrated Computation and Analysis of Reconnection and Turbulence [DE-FG02-14-07ER46372] FX It is a pleasure to acknowledge trenchant discussions with Dr. M. Sitnov on the subject of ion tearing modes, and we thank him for his encouragement to continue with our research on this problem. This work was supported by NSF Grant Nos. ATM-090315 and AGS-1338944, NASA Grant No. NNX09AJ86G, and DOE Grant No. DE-FG02-14-07ER46372, under the auspices of the Center for Integrated Computation and Analysis of Reconnection and Turbulence. We acknowledge the use of computer resources at the National Energy Research Scientific Computing Center. NR 21 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2014 VL 21 IS 10 AR 102905 DI 10.1063/1.4899043 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AS9YG UT WOS:000344593700067 ER PT J AU Brennan, DP Finn, JM AF Brennan, D. P. Finn, J. M. TI Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain SO PHYSICS OF PLASMAS LA English DT Article ID ACTIVE FEEDBACK STABILIZATION; EXTERNAL-MODES; TOKAMAKS; SHELL; INSTABILITIES; STABILITY; GEOMETRY; KINK AB Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite beta and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for beta = 0 and the marginal stability values beta(rp,rw)< beta(rp,iw) 2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results. (C) 2014 AIP Publishing LLC. C1 [Yalin, Azer P.; Dumitrache, Ciprian; Joshi, Sachin] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Wilvert, Nick] Sandia Lab, Albuquerque, NM 87123 USA. [Joshi, Sachin] Cummins Inc, Columbus, IN 47201 USA. [Shneider, Mikhail N.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Yalin, AP (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM ayalin@engr.colostate.edu FU NSF/DOE Partnership in Basic Plasma Science and Engineering (NSF) [PHY-1418845]; NSF/DOE Partnership in Basic Plasma Science and Engineering (DOE) [DE-SC0012454] FX The authors acknowledge support from the NSF/DOE Partnership in Basic Plasma Science and Engineering (NSF award PHY-1418845 and DOE award DE-SC0012454). NR 31 TC 6 Z9 6 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2014 VL 21 IS 10 AR 103511 DI 10.1063/1.4898059 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AS9YG UT WOS:000344593700093 ER PT J AU Zhou, Y Qin, H Burby, JW Bhattacharjee, A AF Zhou, Yao Qin, Hong Burby, J. W. Bhattacharjee, A. TI Variational integration for ideal magnetohydrodynamics with built-in advection equations SO PHYSICS OF PLASMAS LA English DT Article ID CONTINUUM-THEORIES; MHD AB Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically. (C) 2014 AIP Publishing LLC. C1 [Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Zhou, Y (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466] FX Y. Zhou would like to thank K. Crane, Y. Huang, S. Jardin, M. Kraus, C. Liu, Z. Lu, Y. Shi, J. Squire, and J. Stone for helpful discussion. This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-09CH11466. NR 24 TC 12 Z9 12 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2014 VL 21 IS 10 AR 102109 DI 10.1063/1.4897372 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AS9YG UT WOS:000344593700015 ER PT J AU Barnhoorn, S Uittenboogaard, LM Jaarsma, D Vermeij, WP Tresini, M Weymaere, M Menoni, H Brandt, RMC de Waard, MC Botter, SM Sarker, AH Jaspers, NGJ van der Horst, GTJ Cooper, PK Hoeijmakers, JHJ van der Pluijm, I AF Barnhoorn, Sander Uittenboogaard, Lieneke M. Jaarsma, Dick Vermeij, Wilbert P. Tresini, Maria Weymaere, Michael Menoni, Herve Brandt, Renata M. C. de Waard, Monique C. Botter, Sander M. Sarker, Altaf H. Jaspers, Nicolaas G. J. van der Horst, Gijsbertus T. J. Cooper, Priscilla K. Hoeijmakers, Jan H. J. van der Pluijm, Ingrid TI Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency SO PLOS GENETICS LA English DT Article ID NUCLEOTIDE-EXCISION-REPAIR; TRANSCRIPTION-COUPLED REPAIR; UV-SENSITIVE SYNDROME; OXIDATIVE DNA-DAMAGE; PIGMENTOSUM GROUP-A; RNA-POLYMERASE-II; SHORT LIFE-SPAN; GROUP-G GENE; COCKAYNE-SYNDROME; XERODERMA-PIGMENTOSUM AB As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg(-/-) mouse model which -in a C57BL6/FVB F1 hybrid genetic background-displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e. g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue-and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg(-/-) mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. C1 [Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Herve; Brandt, Renata M. C.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid] Erasmus Univ, Med Ctr, Dept Genet, Rotterdam, Netherlands. [Jaarsma, Dick] Erasmus Univ, Med Ctr, Dept Neurosci, Rotterdam, Netherlands. [de Waard, Monique C.] Vrije Univ Amsterdam, Med Ctr, Dept Intens Care, Amsterdam, Netherlands. [Botter, Sander M.] Uniklin Balgrist, Zurich, Switzerland. [Sarker, Altaf H.; Cooper, Priscilla K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [van der Pluijm, Ingrid] Erasmus Univ, Dept Vasc Surg, Med Ctr, Rotterdam, Netherlands. RP Barnhoorn, S (reprint author), Erasmus Univ, Med Ctr, Dept Genet, Rotterdam, Netherlands. EM j.hoeijmakers@erasmusmc.nl; i.vanderpluijm@erasmusmc.nl RI van der Horst, Gijsbertus/E-3661-2015; OI Tresini, Maria/0000-0001-7711-3204; Vermeij, Wilbert/0000-0002-9690-1385 FU European commission FP7 Markage [FP7-Health-2008-200880]; European commission DNA Repair [LSHG-CT-2005-512113]; European commission LifeSpan [LSHG-CT-2007-036894]; National Institute of Health (NIH)/National Institute of Ageing (NIA) [1PO1 AG-17242-02]; NIEHS [1UO1 ES011044]; NIH/National Cancer Institute [R01 CA063503, P01 CA092584]; Royal Academy of Arts and Sciences of the Netherlands; European Research Council; European Community [HEALTH-F2-2010-259893] FX We acknowledge financial support of the European commission FP7 Markage (FP7-Health-2008-200880), DNA Repair (LSHG-CT-2005-512113) and LifeSpan (LSHG-CT-2007-036894), National Institute of Health (NIH)/National Institute of Ageing (NIA) (1PO1 AG-17242-02), NIEHS (1UO1 ES011044), NIH/National Cancer Institute R01 CA063503 and P01 CA092584 to PKC, and the Royal Academy of Arts and Sciences of the Netherlands (academia professorship to JHJH) and a European Research Council Advanced Grant to JHJH. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. HEALTH-F2-2010-259893. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 124 TC 8 Z9 9 U1 2 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2014 VL 10 IS 10 AR e1004686 DI 10.1371/journal.pgen.1004686 PG 21 WC Genetics & Heredity SC Genetics & Heredity GA AT0UR UT WOS:000344650700050 PM 25299392 ER PT J AU Pena, J Plante, JA Carillo, AC Roberts, KK Smith, JK Juelich, TL Beasley, DWC Freiberg, AN Labute, MX Naraghi-Arani, P AF Pena, Jose Plante, Jessica A. Carillo, Alda Celena Roberts, Kimberly K. Smith, Jennifer K. Juelich, Terry L. Beasley, David W. C. Freiberg, Alexander N. Labute, Montiago X. Naraghi-Arani, Pejman TI Multiplexed Digital mRNA Profiling of the Inflammatory Response in the West Nile Swiss Webster Mouse Model SO PLOS NEGLECTED TROPICAL DISEASES LA English DT Article ID CENTRAL-NERVOUS-SYSTEM; TOLL-LIKE RECEPTOR-3; LARGE GENE LISTS; CD8(+) T-CELLS; VIRUS-INFECTION; CLINICAL CHARACTERISTICS; COMPLEMENT ACTIVATION; CHEMOKINE EXPRESSION; LETHAL ENCEPHALITIS; ADAPTIVE IMMUNITY AB Background and purpose: The ability to track changes in gene expression following viral infection is paramount to understanding viral pathogenesis. This study was undertaken to evaluate the nCounter, a high throughput digital gene expression system, as a means to better understand West Nile virus (WNV) dissemination and the inflammatory response against WNV in the outbred Swiss Webster (SW) mouse model over the course of infection. Methodology: The nCounter Mouse Inflammation gene expression kit containing 179 inflammation related genes was used to analyze gene expression changes in multiple tissues over a nine day course of infection in SW mice following intraperitoneal injection with WNV. Protein expression levels for a subset of these cytokine/chemokine genes were determined using a multiplex protein detection system (BioPlex) and comparisons of protein/RNA expression levels made. Results: Expression analysis of spleen, lung, liver, kidney and brain of SW mice infected with WNV revealed that Cxcl10 and Il12b are differentially expressed in all tissues tested except kidney. Data stratification of positively confirmed infected (WNV (+)) versus non-infected (WNV (-) tissues allowed differentiation of the systemic inflammatory gene response from tissuespecific responses arising from WNV infection. Significant (p<0.05) decrease in C3ar1 was found in WNV (-) spleen. Il23a was significantly upregulated, while Il10rb was down-regulated in WNV (-) lung. Il3 and Mbl2 were down-regulated in WNV (-) liver. In WNV (+) livers, Stat1, Tlr2, chemokines Cxcl1, Cxcl3, Cxcl9, Cxcl10, cytokines Il6, Il18, cytokine-related gene Il1r and cytokine agonist Ilrn were significantly upregulated. In WNV (-) brain tissues, Csf2 and Cxcl10 were significantly upregulated. Similar gene and protein expression kinetics were found for Ccl2, Ccl3, Ccl4 and Ccl5 and correlated with the presence of infectious virus. In summary, the utility of the nCounter platform for rapid identification of gene expression changes in SW mice associated with WNV infection was demonstrated. C1 [Pena, Jose; Carillo, Alda Celena; Labute, Montiago X.; Naraghi-Arani, Pejman] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Plante, Jessica A.; Smith, Jennifer K.; Juelich, Terry L.; Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA. [Plante, Jessica A.; Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Sealy Ctr Vaccine Dev, Galveston, TX 77555 USA. [Roberts, Kimberly K.; Beasley, David W. C.] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA. [Beasley, David W. C.; Freiberg, Alexander N.] Univ Texas Med Branch, Ctr Biodef & Emerging Infect Dis, Galveston, TX 77555 USA. RP Pena, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM naraghiarani2@llnl.gov FU National Institutes of Health [AI093500]; Biodefense Training Program, NIH [T32-AI060549] FX This work was supported by National Institutes of Health grant AI093500 to PNA. JAP was supported by the Biodefense Training Program, NIH grant T32-AI060549. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 5 Z9 5 U1 2 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1935-2735 J9 PLOS NEGLECT TROP D JI Plos Neglect. Trop. Dis. PD OCT PY 2014 VL 8 IS 10 AR e3216 DI 10.1371/journal.pntd.0003216 PG 21 WC Infectious Diseases; Parasitology; Tropical Medicine SC Infectious Diseases; Parasitology; Tropical Medicine GA AS9WJ UT WOS:000344589000034 PM 25340818 ER PT J AU Barajas, D Xu, K Martin, IFD Sasvari, Z Brandizzi, F Risco, C Nagy, PD AF Barajas, Daniel Xu, Kai de Castro Martin, Isabel Fernandez Sasvari, Zsuzsanna Brandizzi, Federica Risco, Cristina Nagy, Peter D. TI Co-opted Oxysterol-Binding ORP and VAP Proteins Channel Sterols to RNA Virus Replication Sites via Membrane Contact Sites SO PLOS PATHOGENS LA English DT Article ID BUSHY-STUNT-VIRUS; GENES AFFECTING REPLICATION; HOST FACTORS; HEPATITIS-C; ENDOPLASMIC-RETICULUM; TOMBUSVIRUS REPLICATION; LIPID-METABOLISM; VIRAL-RNA; MODEL HOST; SCREEN REVEALS AB Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication. C1 [Barajas, Daniel; Xu, Kai; Sasvari, Zsuzsanna; Nagy, Peter D.] Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA. [de Castro Martin, Isabel Fernandez; Risco, Cristina] Ctr Nacl Biotecnol CNB CSIC, Cell Struct Lab, Madrid, Spain. [Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Nagy, PD (reprint author), Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA. EM pdnagy2@uky.edu OI Xu, Kai/0000-0003-2036-3469; Barajas, Daniel/0000-0002-5758-5631 FU NSF [MCB 1122039]; FPI program fellowship for IFdCM; Spanish Ministry of Economy and Competitiveness [BIO2009-07255, BIO2012-33314] FX This research is supported by NSF (MCB 1122039) for PDN, and an FPI program fellowship for IFdCM and research grants BIO2009-07255 and BIO2012-33314 from the Spanish Ministry of Economy and Competitiveness for CR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 98 TC 25 Z9 25 U1 2 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2014 VL 10 IS 10 AR e1004388 DI 10.1371/journal.ppat.1004388 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA AS9FO UT WOS:000344548800008 PM 25329172 ER PT J AU Ouyang, SQ Park, G Atamian, HS Han, CS Stajich, JE Kaloshian, I Borkovich, KA AF Ouyang, Shouqiang Park, Gyungsoon Atamian, Hagop S. Han, Cliff S. Stajich, Jason E. Kaloshian, Isgouhi Borkovich, Katherine A. TI MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum SO PLOS PATHOGENS LA English DT Article ID SMALL RNAS; SIRNA BIOGENESIS; LRR PROTEIN; MI-1-MEDIATED RESISTANCE; ARABIDOPSIS-THALIANA; DISEASE RESISTANCE; IMMUNE RECEPTORS; PLANT MICRORNAS; DOWN-REGULATION; MESSENGER-RNAS AB MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. C1 [Ouyang, Shouqiang; Park, Gyungsoon; Stajich, Jason E.; Borkovich, Katherine A.] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Inst Integrat Genome Biol, Riverside, CA 92521 USA. [Atamian, Hagop S.; Kaloshian, Isgouhi] Univ Calif Riverside, Dept Nematol, Inst Integrat Genome Biol, Riverside, CA 92521 USA. [Han, Cliff S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Ouyang, SQ (reprint author), Univ Calif Riverside, Dept Plant Pathol & Microbiol, Inst Integrat Genome Biol, Riverside, CA 92521 USA. EM Katherine.Borkovich@ucr.edu RI Stajich, Jason/C-7297-2008 OI Stajich, Jason/0000-0002-7591-0020 FU Los Alamos National Laboratory-UC Riverside Collaborative Program in Infectious Disease FX Seed funding from the Los Alamos National Laboratory-UC Riverside Collaborative Program in Infectious Disease was provided to KAB and IK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 88 TC 12 Z9 12 U1 6 U2 59 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2014 VL 10 IS 10 AR e1004464 DI 10.1371/journal.ppat.1004464 PG 15 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA AS9FO UT WOS:000344548800051 PM 25330340 ER PT J AU Grossan, B Kumar, P Perley, D Smoot, GF AF Grossan, B. Kumar, P. Perley, D. Smoot, G. F. TI A Small, Rapid Optical-IR Response Gamma-Ray Burst Space Observatory Concept: The NGRG SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID AFTERGLOW EMISSION; DUST DESTRUCTION; PROMPT EMISSION; REVERSE SHOCK; GRB 080319B; ROTSE-III; X-RAY; TELESCOPE; CATALOG; CONSTRAINTS AB After Swift, there is no sure plan to furnish a replacement for the rapidly disseminated, high-precision GRB positions it provides, nor a new type of observatory to probe new GRB parameter space. We propose a new GRB mission concept, the Next Generation Rapid Optical-NIR (near infrared) Response GRB Observatory (NGRG) concept, and demonstrate, through analysis of Swift BAT data, studies of new GRB samples, and extinction predictions, that a relatively modest size observatory will produce valuable new measurements and good GRB detection rates. As with Swift, GRBs are initially located with a coded-mask X-ray camera. However, the NGRG has two distinguishing features: first, a beam-steering system to begin optical observations within similar to 1 s after location; second, in addition to the optical camera, a separate near-IR (NIR) camera viewing the same field, greatly increasing sensitivity to extinguished bursts. These features yield the unique capability of exploring the rise phase of GRB optical-NIR emission. Thus far, among GRBs with optical afterglow detections, a peak is measured in only similar to 26-40% of the light curves. The rise time for prompt, or pre-afterglow, optical emission is rarely measured, as is the transition to afterglow emission. Prompt or pre-afterglow NIR emission is even less frequently measured. Rapid-response measurements give new tools for exploration of many science topics, including optical emission mechanisms (synchrotron vs. SSC, photospheric emission) and jet characteristics (reverse vs. forward shock emission, baryon-dominated vs. magnetic dominated). The rapid-response capability also allows measurement of dynamic evolution of extinction due to vaporization of progenitor system dust. This dynamic dust measurement is the only tool we know of to separate the effects of star-system-scale dust and galactic-structure-scale dust; it is remarkable that this probe of small-scale phenomena can be used at the high redshifts where GRBs are observed. In this paper, we discuss techniques and the feasibility of these measurements, and give detection rate estimates using only measured Swift performance (without extrapolations). The NGRG will explore two new frontiers: optical and NIR GRB emission measured earlier than ever before, via rapid-response, and potentially fainter, more extinguished GRBs than ever before, via sensitive, early NIR measurements. In an era with little funding for new extragalactic science space missions, costs are important. Our modest NGRG concept will produce new GRB science, while providing crucial access to rapid GRB alerts for the community. An X-ray instrument barely 1/5 the detecting area of Swift BAT, 1024 cm(2), will yield a significant fraction of BAT's GRB detection rate: more than 65 X-ray detections per year. With a 30 cm optical-IR telescope and modern cameras, more than 19 NIR and 14 optical band detections would be produced each year for community follow-up. In addition, active control of the beam-steering system, via feedback from a fast-read optical camera, would remove the need for arcsec pointing stabilization of the spacecraft platform, for a substantial cost saving and a wider range of potential space platforms. C1 [Grossan, B.; Smoot, G. F.] Moscow MV Lomonosov State Univ, Extreme Universe Lab, Moscow 119991, Russia. [Grossan, B.] Univ Calif Berkeley, Space Sci Lab, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kumar, P.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Perley, D.] CALTECH, Pasadena, CA 91125 USA. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Grossan, B (reprint author), Moscow MV Lomonosov State Univ, Extreme Universe Lab, GSP 1, Moscow 119991, Russia. EM Bruce_Grossan@lbl.gov; pk@surya.as.utexas.edu; dperley@astro.caltech.edu; GFSmoot@lbl.gov FU Ministry of Education of the Russian Federation; NSF [1133016] FX This work was supported, in part, by a "Mega Grant" from the Ministry of Education of the Russian Federation, for operation of the Extreme Universe Laboratory at Moscow State University. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. We acknowledge support from NSF grant Award Number 1133016 for support for this project. The authors wish to thank the following students at Moscow State University, B. Goncharov, G. Rozhkov, K. Saleev, and E. Grobovskoj, for their work in obtaining and checking data. We thank Paul Connell for sharing his expertise during numerous discussions and exceptional work on projects leading up to this one. We also thank Nikolay Vedenkin for helpful discussions on spacecraft and instrument communications. NR 66 TC 1 Z9 1 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2014 VL 126 IS 944 BP 885 EP 900 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT1WD UT WOS:000344720900001 ER PT J AU Alvine, KJ Kafentzis, TA Pitman, SG Johnson, KI Skorski, D Tucker, JC Roosendaal, TJ Dahl, ME AF Alvine, K. J. Kafentzis, T. A. Pitman, S. G. Johnson, K. I. Skorski, D. Tucker, J. C. Roosendaal, T. J. Dahl, M. E. TI An in situ tensile test apparatus for polymers in high pressure hydrogen SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DECOMPRESSION; SOLUBILITY; FRACTURE; PB(ZR AB Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air. (C) 2014 AIP Publishing LLC. C1 [Alvine, K. J.; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Alvine, KJ (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM kyle.alvine@pnnl.gov FU Pacific Northwest National Laboratory, Richland WA under DOE [DE-AC05-76RL01830]; DOE Hydrogen and Fuel Cells Technology Program office FX This work was performed at the Pacific Northwest National Laboratory, Richland WA under DOE Contract No. DE-AC05-76RL01830. Funding provided by the DOE Hydrogen and Fuel Cells Technology Program office is gratefully acknowledged. Conversations with staff from Boeing and Quantum with regards to testing requirements are also gratefully acknowledged. NR 23 TC 0 Z9 0 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 105110 DI 10.1063/1.4899315 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200094 PM 25362459 ER PT J AU Benafan, O Padula, SA Skorpenske, HD An, K Vaidyanathan, R AF Benafan, O. Padula, S. A., II Skorpenske, H. D. An, K. Vaidyanathan, R. TI Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SHAPE-MEMORY ALLOY; SUPERELASTIC NITI; ELASTIC STRAINS; HIGH-PRESSURE; DIFFRACTION; TEXTURE; EVOLUTION; BEHAVIOR; VULCAN; STRESS AB A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel (R) R 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to similar to 1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes. (C) 2014 AIP Publishing LLC. C1 [Benafan, O.; Padula, S. A., II] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. [Benafan, O.; Vaidyanathan, R.] Univ Cent Florida, Mat Sci & Engn Dept, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Skorpenske, H. D.; An, K.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Benafan, O (reprint author), NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. EM othmane.benafan@nasa.gov RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC.; ORNL User Partnership Program for Sample Environment Equipment Development, NASA [NNX08AB51A, NNX11AI57A]; NASA Fundamental Aeronautics Program FX This work has benefited from the use of the Spallation Neutron Source at Oak Ridge National Laboratory, which is funded by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Financial support from the ORNL User Partnership Program for Sample Environment Equipment Development, NASA (Grants NNX08AB51A and NNX11AI57A to UCF) and NASA Fundamental Aeronautics Program is gratefully acknowledged. The authors thank D. E. Nicholson (University of Central Florida), D. P. Armitage (ORNL), and D. Leech (Leech Industries, Inc.) for technical support and experimental assistance. NR 33 TC 2 Z9 2 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 103901 DI 10.1063/1.4896042 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200045 PM 25362410 ER PT J AU Dubuis, G He, X Bozovic, I AF Dubuis, Guy He, Xi Bozovic, Ivan TI Sub-millikelvin stabilization of a closed cycle cryocooler SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TEMPERATURE; HELIUM AB Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties. (C) 2014 AIP Publishing LLC. C1 [Dubuis, Guy; He, Xi; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dubuis, Guy] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Dubuis, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Dubuis, Guy/A-6849-2012 OI Dubuis, Guy/0000-0002-8199-4953 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Laboratory for Physics of Complex Matter-EPFL; Swiss National Science Foundation FX This research was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. G.D. was supported by the Laboratory for Physics of Complex Matter-EPFL, and the Swiss National Science Foundation. NR 9 TC 6 Z9 6 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 103902 DI 10.1063/1.4896049 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200046 PM 25362411 ER PT J AU Grierson, BA Burrell, KH Crowley, B Grisham, L Scoville, JT AF Grierson, B. A. Burrell, K. H. Crowley, B. Grisham, L. Scoville, J. T. TI High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PLASMA; SPECTROSCOPY; DESIGN AB Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 mu s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2-3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient. (C) 2014 AIP Publishing LLC. C1 [Grierson, B. A.; Grisham, L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Crowley, B.; Scoville, J. T.] Gen Atom Co, San Diego, CA 92186 USA. RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bgriers@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698] FX This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-AC02-09CH11466 and DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. The originating developer of ADAS is the JET Joint Undertaking. The author gratefully acknowledges discussions with D. M. Thomas, W. W. Heidbrink, and J. Rauch. NR 16 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 103502 DI 10.1063/1.4896514 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200023 PM 25362388 ER PT J AU Rosenberg, MJ Zylstra, AB Frenje, JA Rinderknecht, HG Johnson, MG Waugh, CJ Seguin, FH Sio, H Sinenian, N Li, CK Petrasso, RD Glebov, VY Hohenberger, M Stoeckl, C Sangster, TC Yeamans, CB LePape, S Mackinnon, AJ Bionta, RM Talison, B Casey, DT Landen, OL Moran, MJ Zacharias, RA Kilkenny, JD Nikroo, A AF Rosenberg, M. J. Zylstra, A. B. Frenje, J. A. Rinderknecht, H. G. Johnson, M. Gatu Waugh, C. J. Seguin, F. H. Sio, H. Sinenian, N. Li, C. K. Petrasso, R. D. Glebov, V. Yu. Hohenberger, M. Stoeckl, C. Sangster, T. C. Yeamans, C. B. LePape, S. Mackinnon, A. J. Bionta, R. M. Talison, B. Casey, D. T. Landen, O. L. Moran, M. J. Zacharias, R. A. Kilkenny, J. D. Nikroo, A. TI A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and rho R are determined in thin-shell inertial-confinement-fusion implosions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL-IGNITION-FACILITY; DIRECT-DRIVE; OMEGA; DETECTORS; CAPSULES; PLASMAS AB A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (rho R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of similar to 1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are +/-<10% in yield and +/-120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF. (C) 2014 AIP Publishing LLC. C1 [Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Johnson, M. Gatu; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; Casey, D. T.; Landen, O. L.; Moran, M. J.; Zacharias, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Rosenberg, MJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mrosenbe@mit.edu RI MacKinnon, Andrew/P-7239-2014; lepape, sebastien/J-3010-2015 OI MacKinnon, Andrew/0000-0002-4380-2906; FU US DoE [DE-NA0001857]; NLUF [DE-NA0002035]; LLE [415935-G]; LLNL [B600100]; FSC [5-24431] FX The authors thank the OMEGA and NIF operations and target fabrication crews for their assistance in carrying out these experiments and R. Frankel, E. Doeg, M. Valadez, M. Cairel, and M. McKernan for their help in processing of CR-39 data used in this work. The authors also thank G. Grim (LANL) for access to two OMEGA shots. This work was performed in partial fulfillment of the first author's Ph.D. thesis and supported in part by US DoE (Grant No. DE-NA0001857), NLUF (Grant No. DE-NA0002035), LLE (Grant No. 415935-G), LLNL (Grant No. B600100), and FSC (Grant No. 5-24431). NR 29 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 103504 DI 10.1063/1.4897193 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200025 PM 25362390 ER PT J AU Sears, J Intrator, TP Feng, Y Swan, HO Klarenbeek, J Gao, K AF Sears, Jason Intrator, T. P. Feng, Y. Swan, H. O. Klarenbeek, J. Gao, K. TI Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within +/- 1.5 mm of their absolute 3D position in the vessel and to within +/- 0.7 mm relative to other probes, on the order of the electron inertial length (1-2 mm). (C) 2014 AIP Publishing LLC. C1 [Sears, Jason; Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sears, J (reprint author), Lawrence Livermore Natl Lab, POB 808 L-153, Livermore, CA 94551 USA. EM jason.sears@alum.mit.edu FU Center for Magnetic Self Organization, NASA Geospace [NNHIOA044I-Basic]; Department of Energy [DE-AC52-06NA25369]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Supported by Center for Magnetic Self Organization, NASA Geospace NNHIOA044I-Basic, Department of Energy DE-AC52-06NA25369. J.S. acknowledges support from the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. In memory of Tom Intrator, a magnanimous friend and mentor, who passed away on June 3, 2014. NR 18 TC 0 Z9 0 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 103509 DI 10.1063/1.4898176 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200030 PM 25362395 ER PT J AU Zastrau, U Fletcher, LB Forster, E Galtier, EC Gamboa, E Glenzer, SH Heimann, P Marschner, H Nagler, B Schropp, A Wehrhan, O Lee, HJ AF Zastrau, Ulf Fletcher, Luke B. Foerster, Eckhart Galtier, Eric Ch. Gamboa, Eliseo Glenzer, Siegfried H. Heimann, Philipp Marschner, Heike Nagler, Bob Schropp, Andreas Wehrhan, Ortrud Lee, Hae Ja TI Bent crystal spectrometer for both frequency and wavenumber resolved x- ray scattering at a seeded free- electron laser (vol 85, 093106, 2014) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Zastrau, Ulf; Foerster, Eckhart; Marschner, Heike; Wehrhan, Ortrud] Univ Jena, Inst Opt & Quantum Elect, D-07743 Jena, Germany. [Zastrau, Ulf; Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja] SLAC, Menlo Pk, CA 94025 USA. [Foerster, Eckhart] Helmholtz Inst Jena, D-07743 Jena, Germany. RP Zastrau, U (reprint author), Univ Jena, Inst Opt & Quantum Elect, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de NR 1 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2014 VL 85 IS 10 AR 109902 DI 10.1063/1.4897476 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AS9YL UT WOS:000344594200103 PM 25362468 ER PT J AU Sachan, R Malasi, A Ge, JX Yadavali, S Krishna, H Gangopadhyay, AK Garcia, H Duscher, G Kalyanaraman, R AF Sachan, Ritesh Malasi, Abhinav Ge, Jingxuan Yadavali, Sagar Krishna, Hare Gangopadhyay, Anup K. Garcia, Hernando Duscher, Gerd Kalyanaraman, Ramki TI Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles SO ACS NANO LA English DT Article DE localized surface plasmon resonance; electron energy-loss spectroscopy; bimetallic nanoparticles; hybridization; silver; scanning transmission electron microscopy; ferromagnet ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; ENHANCED RAMAN-SCATTERING; ELECTRON-ENERGY-LOSS; FANO RESONANCES; DIFFRACTION LIMIT; NANOSTRUCTURES; HETERODIMERS; MODEL; SPECTROSCOPY; NANOROD AB Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-ferromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other. C1 [Sachan, Ritesh; Ge, Jingxuan; Duscher, Gerd; Kalyanaraman, Ramki] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Malasi, Abhinav; Yadavali, Sagar; Kalyanaraman, Ramki] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Krishna, Hare; Gangopadhyay, Anup K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Garcia, Hernando] So Illinois Univ, Dept Phys, Edwardsville, IL 62026 USA. [Duscher, Gerd] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Duscher, G (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM gduscher@utk.edu; ramki@utk.edu RI Malasi, Abhinav/J-6025-2015; Duscher, Gerd/G-1730-2014 OI Duscher, Gerd/0000-0002-2039-548X FU Army Research Office [W911NF-13-1-0428]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2013-284]; Sustainable Energy Education and Research Center; TN-SCORE; Center for Materials Processing; NSF [CMMI-0855949]; NSF EAGER Grant [CBET-1349507]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [ERKCS81] FX For the experimental work performed on various substrates as well as the analysis of the work, we acknowledge discussions with Dr. Rich Hammond and support by the Army Research Office through grant W911NF-13-1-0428. For the characterization and analysis portion of this work, the authors thank the Joint Institute of Advanced Materials (JIAM) at University of Tennessee-Knoxville (UTK) and Grant CNMS2013-284 at the Center for Nanophase Materials Science, which is sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. For the materials synthesis aspects of this work, the authors also acknowledge support by the Sustainable Energy Education and Research Center, TN-SCORE, Center for Materials Processing, and the NSF through Grant CMMI-0855949. S.Y. was supported by NSF EAGER Grant CBET-1349507. G.D. acknowledges support by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under Award No. ERKCS81. NR 52 TC 16 Z9 16 U1 6 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 9790 EP 9798 DI 10.1021/nn5031719 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600011 PM 25068441 ER PT J AU Srivastava, S Nykypanchuk, D Fukuto, M Gang, O AF Srivastava, Sunita Nykypanchuk, Dmytro Fukuto, Masafumi Gang, Oleg TI Tunable Nanoparticle Arrays at Charged Interfaces SO ACS NANO LA English DT Article DE self-assembly; lipid membrane; liquid interfaces; charged nanoparticle ID SENSITIZED SOLAR-CELLS; GOLD NANOPARTICLES; IONIC-STRENGTH; POLYELECTROLYTE BRUSHES; DRUG-DELIVERY; DNA; MONOLAYERS; FILMS; CRYSTALLIZATION; COMPACTION AB Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells. C1 [Srivastava, Sunita; Nykypanchuk, Dmytro; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Fukuto, Masafumi] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Fukuto, Masafumi] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. M.F. acknowledges support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 46 TC 12 Z9 12 U1 12 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 9857 EP 9866 DI 10.1021/nn5042416 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600019 PM 25197949 ER PT J AU Sinitskii, A Erickson, KJ Lu, W Gibb, AL Zhi, CY Bando, Y Golberg, D Zettl, A Tour, JM AF Sinitskii, Alexander Erickson, Kristopher J. Lu, Wei Gibb, Ashley L. Zhi, Chunyi Bando, Yoshio Golberg, Dmitri Zettl, Alex Tour, James M. TI High-Yield Synthesis of Boron Nitride Nanoribbons via Longitudinal Splitting of Boron Nitride Nanotubes by Potassium Vapor SO ACS NANO LA English DT Article DE boron nitride nanotubes; potassium splitting; boron nitride nanoribbons ID CARBON NANOTUBES; GRAPHENE NANORIBBONS; FACILE SYNTHESIS; BN NANOTUBES; EXFOLIATION; NANOSHEETS AB Boron nitride nanoribbons (BNNRs) are theorized to have interesting electronic and magnetic properties, but their high-yield synthesis remains challenging. Here we demonstrate that potassium-induced splitting of BN nanotubes (BNNTs) is an effective high-yield method to obtain bulk quantities of high-quality BNNRs if a proper precursor material is chosen. The resulting BNNRs are crystalline; many of them have a high aspect ratio and straight parallel edges. We have observed numerous few-layer and monolayer BNNRs; the multilayered ribbons predominantly have an AA' stacking. We present a detailed microscopy study of BNNRs that provides important insights into the mechanism of the formation of BNNRs from BNNTs. We also demonstrate that the BNNTs prepared by different synthetic approaches could exhibit dramatically different reactivities in the potassium splitting reaction, which highlights the need for future comparison studies of BN nanomaterials prepared using different methods to better understand their preparation-dependent physical and chemical properties. C1 [Sinitskii, Alexander] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Erickson, Kristopher J.; Gibb, Ashley L.; Zettl, Alex] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Erickson, Kristopher J.; Gibb, Ashley L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Erickson, Kristopher J.; Gibb, Ashley L.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lu, Wei; Tour, James M.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Zhi, Chunyi] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Bando, Yoshio; Golberg, Dmitri] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan. [Tour, James M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Tour, James M.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. RP Sinitskii, A (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM sinitskii@unl.edu; azettl@berkeley.edu; tour@rice.edu RI Sinitskii, Alexander/J-6619-2015; Golberg, Dmitri/H-2776-2011; Zettl, Alex/O-4925-2016; OI Sinitskii, Alexander/0000-0002-8688-3451; Golberg, Dmitri/0000-0003-2298-6539; Zettl, Alex/0000-0001-6330-136X; ZHI, Chunyi/0000-0001-6766-5953; Tour, James/0000-0002-8479-9328 FU Air Force Research Laboratory through University Technology Corporation [09-S568-064-01-C1]; Air Force Office of Scientific Research [FA9550-09-1-0581]; Office of Naval Research MURI Graphene Program [N00014-09-1-1066]; Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Center of Integrated Nanomechanical Systems under NSF Grant [EED-0832819]; NIMS [BE063]; NSF through Nebraska MRSEC [DMR-0820521]; EPSCoR [EPS-1004094] FX This work was supported in part by the Air Force Research Laboratory through University Technology Corporation (09-S568-064-01-C1); the Air Force Office of Scientific Research (FA9550-09-1-0581); the Office of Naval Research MURI Graphene Program (N00014-09-1-1066); the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, which provided for student support and detailed TEM and SEM characterization; and the Center of Integrated Nanomechanical Systems under NSF Grant EED-0832819, which provided for staff support. D.G. acknowledges support from the NIMS Grant No. BE063. A.S. also acknowledges support from the NSF through Nebraska MRSEC (DMR-0820521) and EPSCoR (EPS-1004094). NR 31 TC 9 Z9 9 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 9867 EP 9873 DI 10.1021/nn504809n PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600020 PM 25227319 ER PT J AU Balke, N Maksymovych, P Jesse, S Kravchenko, II Li, Q Kalinin, SV AF Balke, Nina Maksymovych, Petro Jesse, Stephen Kravchenko, Ivan I. Li, Qian Kalinin, Sergei V. TI Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity SO ACS NANO LA English DT Article DE scanning probe microscopy; electrostatics; charge storage; HfO2; thin films ID ACOUSTIC MICROSCOPY; NANOSCALE; HFO2 AB The implementation of contact mode Kelvin probe force microscopy (cKPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional noncontact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with higher lateral and temporal resolution compared to traditional noncontact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at a nonferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy. C1 [Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Kravchenko, Ivan I.; Li, Qian; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Rige, TN 37831 USA. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Rige, TN 37831 USA. EM balken@ornl.gov RI Kravchenko, Ivan/K-3022-2015; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016 OI Kravchenko, Ivan/0000-0003-4999-5822; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Personal support was provided by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, through the Office of Science Early Career Research Program (N.B., Q.L.).The experiments were performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, which also provided personal support (P.M., S.J., I.I.K., S.V.K.). NR 28 TC 24 Z9 24 U1 7 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10229 EP 10236 DI 10.1021/nn505176a PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600057 PM 25257028 ER PT J AU Lynch, J Kotiuga, M Doan-Nguyen, VVT Queen, WL Forster, JD Schlitz, RA Murray, CB Neaton, JB Chabinyc, ML Urban, JJ AF Lynch, Jared Kotiuga, Michele Doan-Nguyen, Vicky V. T. Queen, Wendy L. Forster, Jason D. Schlitz, Ruth A. Murray, Christopher B. Neaton, Jeffrey B. Chabinyc, Michael L. Urban, Jeffrey J. TI Ligand Coupling Symmetry Correlates with Thermopower Enhancement in Small-Molecule/Nanocrystal Hybrid Materials SO ACS NANO LA English DT Article DE thermoelectrics; coupling; ligand exchange; copper selenide; nanocrystal; composite; hybrid; organic ID NANOSTRUCTURED THERMOELECTRICS; MOLECULAR HETEROJUNCTIONS; ELECTRICAL-PROPERTIES; SURFACE-CHEMISTRY; PBSE; NANOCRYSTALS; TRANSPORT; FILMS; SEMICONDUCTOR; SUPERLATTICES AB We investigate the impact of the coupling symmetry and chemical nature of organic-inorganic interfaces on thermoelectric transport in Cu-2-Se-x nanocrystal thin films. By coupling ligand-exchange techniques with layer-by-layer assembly methods, we are able to systematically vary nanocrystal-organic linker interfaces, demonstrating how the functionality of the polar headgroup and the coupling symmetry of the organic linkers can change the power factor (S-2 sigma) by nearly 2 orders of magnitude. Remarkably, we observe that ligand-coupling symmetry has a profound effect on thermoelectric transport in these hybrid materials. We shed light on these results using intuition from a simplified model for interparticle charge transport via tunneling through the frontier orbital of a bound ligand. Our analysis indicates that ligand-coupling symmetry and binding mechanisms correlate with enhanced conductivity approaching 2000 S/cm, and we employ this concept to demonstrate among the highest power factors measured for quantum-dot based thermoelectric inorganic-organic composite materials of similar to 30 mu W/m.K(2). C1 [Lynch, Jared; Kotiuga, Michele; Queen, Wendy L.; Forster, Jason D.; Neaton, Jeffrey B.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Div Mat Sci, Berkeley, CA 94720 USA. [Kotiuga, Michele; Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Doan-Nguyen, Vicky V. T.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Neaton, Jeffrey B.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA USA. [Schlitz, Ruth A.; Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Div Mat Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; OI Neaton, Jeffrey/0000-0001-7585-6135; Queen, Wendy/0000-0002-8375-2341 FU AFOSR MURI [FA9550-12-1-0002]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. DOE [DE-AC02-06CH11357]; NSF MRSEC [DMR-0520020] FX This work is supported by AFOSR MURI FA9550-12-1-0002. Portions of this work were done at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 and supported by NSF MRSEC DMR-0520020. We acknowledge Dr. Nelson Coates for his thoughtful insight and helpful discussion of the transport properties in our composite systems. We alsoacknowledge Amy Bergerud for her assistance in measuring XPS spectra of our composite thin films. NR 33 TC 7 Z9 7 U1 8 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10528 EP 10536 DI 10.1021/nn503972v PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600088 PM 25211028 ER PT J AU Yager, KG Lai, E Black, CT AF Yager, Kevin G. Lai, Erica Black, Charles T. TI Self-Assembled Phases of Block Copolymer Blend Thin Films SO ACS NANO LA English DT Article DE block copolymers; thin films; block copolymer blends; self-assembly; phase diagram ID LINEAR FLEXIBLE MACROMOLECULES; FORMING COPOLYMERS; ORDERED STRUCTURE; POLYMER; SURFACE; HOMOPOLYMERS; BEHAVIOR; MIXTURES; CONFORMATIONS; ORIENTATION AB The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing. C1 [Yager, Kevin G.; Lai, Erica; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Black, CT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ctblack@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors thank C. J. Hawker (U. C. Santa Barbara) for synthesis of the random copolymer used in these experiments. Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 41 TC 12 Z9 12 U1 10 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10582 EP 10588 DI 10.1021/nn504977r PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600093 PM 25285733 ER PT J AU Ma, XD Roslyak, O Wang, F Duque, JG Piryatinski, A Doorn, SK Htoon, H AF Ma, Xuedan Roslyak, Oleksiy Wang, Feng Duque, Juan G. Piryatinski, Andrei Doorn, Stephen K. Htoon, Han TI Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; quantum-confined Stark effect; surface plasmons; photoluminescence; spectral diffusion ID QUANTUM DOTS; FLUORESCENCE; EMISSION; PHOTOLUMINESCENCE; INTERMITTENCY; TEMPERATURE; PLASMONICS AB We study temporal evolution of photoluminescence (PL) spectra from individual single-walled carbon nanotubes (SWCNTs) at cryogenic and room temperatures. Sublinear and superlinear correlations between fluctuating PL spectral positions and line widths are observed at cryogenic and room temperatures, respectively. We develop a simple model to explain these two different spectral diffusion behaviors in the framework of quantum-confined Stark effect (QCSE) caused by surface charges trapped in the vicinity of SWCNTs. We show that the wave function properties of excitons, namely, localization at cryogenic temperature and delocalization at room temperature, play a critical role in defining sub- and superlinear correlations. Room temperature PL spectral positions and line widths of SWCNTs coupled to gold dimer nanoantennas on the other hand exhibit sublinear correlations, indicating that excitonic emission mainly originates from nanometer range regions and excitons appear to be localized. Our numerical simulations show that such apparent localization of excitons results from plasmonic confinement of excitation and an enhancement of decay rates in the gap of the dimer nanoantennas. C1 [Ma, Xuedan; Roslyak, Oleksiy; Wang, Feng; Doorn, Stephen K.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Roslyak, Oleksiy; Piryatinski, Andrei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp, Los Alamos, NM 87545 USA. RP Ma, XD (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM xma@lanl.gov; htoon@lanl.gov RI Piryatinski, Andrei/B-5543-2009; OI Htoon, Han/0000-0003-3696-2896 FU Los Alamos National Laboratory Directed Research and Development Funds FX This work was conducted at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences (OBES) user facility and supported in part by Los Alamos National Laboratory Directed Research and Development Funds. NR 43 TC 6 Z9 6 U1 6 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10613 EP 10620 DI 10.1021/nn504138m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600097 PM 25251324 ER PT J AU Punjabi, A Wu, X Tokatli-Apollon, A El-Rifai, M Lee, H Zhang, YW Wang, C Liu, Z Chan, EM Duan, CY Han, G AF Punjabi, Amol Wu, Xiang Tokatli-Apollon, Amira El-Rifai, Mahmoud Lee, Hyungseok Zhang, Yuanwei Wang, Chao Liu, Zhuang Chan, Emory M. Duan, Chunying Han, Gang TI Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy SO ACS NANO LA English DT Article DE upconverting; nanoparticles; red-emission; prodrug; photodynamic therapy ID UP-CONVERSION NANOPARTICLES; NEAR-INFRARED LIGHT; RESONANCE ENERGY-TRANSFER; SINGLET OXYGEN; DRUG-DELIVERY; CORE/SHELL NANOPARTICLES; SHELL NANOPARTICLES; CANCER-CELLS; PHOTOSENSITIZER; NANOTRANSDUCERS AB A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal beta-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP-PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors. It also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics. C1 [Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Han, Gang] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. [Wu, Xiang; Duan, Chunying] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116012, Liaoning, Peoples R China. [Wang, Chao; Liu, Zhuang] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China. [Chan, Emory M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Han, G (reprint author), Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. EM gang.han@umassmed.edu RI Liu, Zhuang/H-4352-2011; Foundry, Molecular/G-9968-2014; OI Liu, Zhuang/0000-0002-1629-1039; han, gang/0000-0002-2300-5862 FU University of Massachusetts Medical School, UMass CVIP Technology Development Award; National Institute of Health [R01MH103133]; Human Frontier Science Program; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX G.H. was supported by a start-up fund through the University of Massachusetts Medical School, UMass CVIP Technology Development Award, and by National Institute of Health R01MH103133 and the Human Frontier Science Program. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 75 Z9 76 U1 27 U2 258 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10621 EP 10630 DI 10.1021/nn505051d PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600098 PM 25291544 ER PT J AU Keene, JD McBride, JR Orfield, NJ Rosenthal, SJ AF Keene, Joseph D. McBride, James R. Orfield, Noah J. Rosenthal, Sandra J. TI Elimination of Hole-Surface Overlap in Graded CdSxSe1-x Nanocrystals Revealed by Ultrafast Fluorescence Upconversion Spectroscopy SO ACS NANO LA English DT Article DE ultrafast fluorescence upconversion; nanocrystal spectroscopy; quasi-type-II; CdSxSe1-x; core/shell; graded alloy ID SEMICONDUCTOR QUANTUM DOTS; CDSE NANOCRYSTALS; AUGER RECOMBINATION; RELAXATION DYNAMICS; SOLVATION DYNAMICS; CARRIER DYNAMICS; STATE; NANOPARTICLES; TRANSITIONS; ABSORPTION AB Interaction of charge carriers with the surface of semiconductor nanocrystals plays an integral role in determining the ultimate fate of the excited state. The surface contains a dynamic ensemble of trap states that can localize excited charges, preventing radiative recombination and reducing fluorescence quantum yields. Here we report quasi-type-II band alignment in graded alloy CdSxSe1-x nanocrystals revealed by femtosecond fluorescence upconversion spectroscopy. Graded alloy CdSxSe1-x quantum dots are a compositionally inhomogeneous nano-heterostructure designed to decouple the exciton from the nanocrystal surface. The large valence band offset between the CdSe-rich core and CdS-rich shell separates the excited hole from the surface by confining it to the core of the nanocrystal. The small conduction band offset, however, allows the electron to delocalize throughout the entire nanocrystal and maintain overlap with the surface. Indeed, the ultrafast charge carrier dynamics reveal that the fast 1-3 ps hole-trapping process is fully eliminated with increasing sulfur composition and the decay constant for electron trapping (similar to 20-25 ps) shows a slight increase. These findings demonstrate progress toward highly efficient nanocrystal fluorophores that are independent of their surface chemistry to ultimately enable their incorporation into a diverse range of applications without experiencing adverse effects arising from dissimilar environments. C1 [Keene, Joseph D.; McBride, James R.; Orfield, Noah J.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Keene, Joseph D.; McBride, James R.; Orfield, Noah J.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP McBride, JR (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. EM james.r.mcbride@vanderbilt.edu; sandra.j.rosenthal@vanderbilt.edu RI Keene, Joseph/F-8874-2010; McBride, James/D-2934-2012; Orfield, Noah/K-4548-2014; OI McBride, James/0000-0003-0161-7283; Orfield, Noah/0000-0003-4555-8668 FU National Science Foundation [CHE-1213758] FX J.D.K. and N.J.O. were supported by the National Science Foundation (CHE-1213758). HRTEM and EDS-STEM images were acquired using an FEI Tecnai Osiris electron microscope supported by the National Science Foundation (EPS-1004083). NR 41 TC 21 Z9 21 U1 10 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10665 EP + DI 10.1021/nn504235w PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600102 PM 25203834 ER PT J AU Jensen, KMO Andersen, HL Tyrsted, C Bojesen, ED Dippel, AC Lock, N Billinge, SJL Iversen, BB Christensen, M AF Jensen, Kirsten M. O. Andersen, Henrik L. Tyrsted, Christoffer Bojesen, Espen D. Dippel, Ann-Christin Lock, Nina Billinge, Simon J. L. Iversen, Bo B. Christensen, Mogens TI Mechanisms for Iron Oxide Formation under Hydrothermal Conditions: An in Situ Total Scattering Study SO ACS NANO LA English DT Article DE maghemite; hydrothermal; pair distribution function analysis; total scattering; in situ ID PAIR DISTRIBUTION-FUNCTIONS; X-RAY; SUPERCRITICAL WATER; MAGNETIC-PROPERTIES; SYNCHROTRON-RADIATION; POWDER DIFFRACTION; NANOPARTICLE FORMATION; NEUTRON-DIFFRACTION; FE3O4 NANOPARTICLES; INORGANIC MATERIALS AB The formation and growth of maghemite (gamma-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C6O7H6Fe3+NH4) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO6] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO6] units form (with extent of the structural order <5 angstrom). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues the clusters slowly assemble into crystalline maghemite, giving rise to clear Brag peaks after 90 s at 320 degrees C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration. C1 [Jensen, Kirsten M. O.; Andersen, Henrik L.; Tyrsted, Christoffer; Bojesen, Espen D.; Lock, Nina; Iversen, Bo B.; Christensen, Mogens] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. [Jensen, Kirsten M. O.; Andersen, Henrik L.; Tyrsted, Christoffer; Bojesen, Espen D.; Lock, Nina; Iversen, Bo B.; Christensen, Mogens] Aarhus Univ, INANO, DK-8000 Aarhus C, Denmark. [Jensen, Kirsten M. O.; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Dippel, Ann-Christin] Deutsch Elekt Synchrotron DESY, D-22607 Hamburg, Germany. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Iversen, BB (reprint author), Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. EM bo@chem.au.dk; mch@chem.au.dk RI Jensen, Kirsten Marie Ornsbj/I-9367-2012; Bojesen, Espen/O-7391-2015 OI Jensen, Kirsten Marie Ornsbj/0000-0003-0291-217X; Bojesen, Espen/0000-0002-9352-9514 FU Danish National Research Foundation (Center for Materials Crystallography) [DNRF93]; Danish Research Council for Technology and Production Sciences (Improved Permanent Magnets through Nanosctructuring); Danish Research Council for Nature and Universe (Danscatt); Villum Foundation; U.S. DOE [DE-AC02-98CH10886] FX This work was supported by the Danish National Research Foundation (Center for Materials Crystallography, DNRF93), the Danish Research Council for Technology and Production Sciences (Improved Permanent Magnets through Nanosctructuring), and the Danish Research Council for Nature and Universe (Danscatt). K.M.O.J is funded by the Individual Postdoc Grant program from the Villum Foundation. S.J.L.B. acknowledges funding from U.S. DOE under contract no. DE-AC02-98CH10886. We are grateful for beamtime granted at PO2.1 at PETRA III and at ID11 at the European Synchrotron Radiation Facility and thank G. Vaughan for assistance in using beamline ID11. Haraldur P. Gunnlaugsson is thanked for Mossbauer data collection and analysis. NR 66 TC 18 Z9 18 U1 14 U2 111 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10704 EP 10714 DI 10.1021/nn5044096 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600107 PM 25256366 ER PT J AU Huang, Y Sutter, E Sadowski, JT Cotlet, M Monti, OLA Racke, DA Neupane, MR Wickramaratne, D Lake, RK Parkinson, BA Sutter, P AF Huang, Yuan Sutter, Eli Sadowski, Jerzy T. Cotlet, Mircea Monti, Oliver L. A. Racke, David A. Neupane, Mahesh R. Wickramaratne, Darshana Lake, Roger K. Parkinson, Bruce A. Sutter, Peter TI Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics SO ACS NANO LA English DT Article DE tin disulfide; 2D materials; monolayer; field-effect transistor; photodetector; charge transport ID FIELD-EFFECT TRANSISTORS; HEXAGONAL BORON-NITRIDE; BAND-STRUCTURE; MONOLAYER MOS2; GRAPHENE HETEROSTRUCTURES; STRUCTURAL POLYTYPISM; MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; THIN-FILMS; SNS2 AB Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios >10(6), as well as carrier mobilities up to 230 cm(2)/(V s), minimal hysteresis, and near-ideal subthreshold swing for devices screened by a high-k (deionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states. C1 [Huang, Yuan; Sutter, Eli; Sadowski, Jerzy T.; Cotlet, Mircea; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Monti, Oliver L. A.; Racke, David A.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Neupane, Mahesh R.; Wickramaratne, Darshana; Lake, Roger K.] Univ Calif Riverside, Dept Elect & Comp Engn, Lab Terahertz & Terascale Elect, Riverside, CA 92521 USA. [Parkinson, Bruce A.] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA. [Parkinson, Bruce A.] Univ Wyoming, Dept Chem, Laramie, WY 82071 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov OI Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [CHE-1213243, 1124733, 1128304]; FAME, one of six centers of STARnet, a Semiconductor Research Corporation program - MARCO; DARPA; NSF [OCI-1053575] FX Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. OLAM and DAR gratefully acknowledge support under National Science Foundation Grant No. CHE-1213243. MRN, DW, and RKL acknowledge support from the National Science Foundation Grants No. 1124733 and 1128304 and FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. OCI-1053575, and Information Technology at Purdue University, West Lafayette, IN, USA. NR 73 TC 60 Z9 61 U1 26 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10743 EP 10755 DI 10.1021/nn504481r PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600111 PM 25247490 ER PT J AU Ma, XD Adamska, L Yamaguchi, H Yalcin, SE Tretiak, S Doorn, SK Htoon, H AF Ma, Xuedan Adamska, Lyudmyla Yamaguchi, Hisato Yalcin, Sibel Ebru Tretiak, Sergei Doorn, Stephen K. Htoon, Han TI Electronic Structure and Chemical Nature of Oxygen Dopant States in Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; electronic structure; oxygen doping; photoluminescence; exciton localization ID PHOTOLUMINESCENCE; FLUORESCENCE; EXCITONS; BRIGHT; DEFECTS AB We performed low temperature photoluminescence (PL) studies on individual oxygen-doped single-walled carbon nanotubes (SWCNTs) and correlated our observations to electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the E-11 bright exciton peak. Our simulation suggests an association of these peaks with deep trap states tied to different specific chemical adducts. In addition, oxygen doping is also observed to split the E-11 exciton into two or more states with an energy splitting <40 meV. We attribute these states to dark states that are brightened through defect-induced symmetry breaking. While the wave functions of these brightened states are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with our experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from interaction between pinned excitons and one-dimensional phonons. Exciton pinning also increases the sensitivity of the deep traps to the local dielectric environment, leading to a large inhomogeneous broadening. Observations of multiple spectral features on single nanotubes indicate the possibility of different chemical adducts coexisting on a given nanotube. C1 [Ma, Xuedan; Yamaguchi, Hisato; Yalcin, Sibel Ebru; Tretiak, Sergei; Doorn, Stephen K.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Adamska, Lyudmyla; Tretiak, Sergei] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov; htoon@lanl.gov RI Yamaguchi, Hisato/C-5571-2008; Tretiak, Sergei/B-5556-2009; OI Yamaguchi, Hisato/0000-0002-6703-8826; Tretiak, Sergei/0000-0001-5547-3647; Htoon, Han/0000-0003-3696-2896 FU Los Alamos National Laboratory (LANL) Directed Research and Development Funds; LANL Director's postdoctoral fellowship FX This work was conducted, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility and supported in part by Los Alamos National Laboratory (LANL) Directed Research and Development Funds. We thank Nicholas Parra-Vasquez of LANL for insightful discussion on ozonation chemistry of SWCNTs and Juan Duque of LANL for providing (6,5) enriched SWCNT samples. H.Y. acknowledges the LANL Director's postdoctoral fellowship for financial support. NR 54 TC 31 Z9 31 U1 9 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10782 EP 10789 DI 10.1021/nn504553y PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600115 PM 25265272 ER PT J AU Brown, KA Song, Q Mulder, DW King, PW AF Brown, Katherine A. Song, Qing Mulder, David W. King, Paul W. TI Diameter Dependent Electron Transfer Kinetics in Semiconductor-Enzyme Complexes SO ACS NANO LA English DT Article DE nanoparticle; biohybrid; binding complex; interfacial electron-transfer; photochemical; hydrogen ID CDSE QUANTUM DOTS; HYDROGEN-PRODUCTION; NANOROD HETEROSTRUCTURES; H-2 GENERATION; NANOCRYSTALS; NANOPARTICLES; REDUCTION; PHOTOCATALYSIS; CONFINEMENT; PRINCIPLES AB Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (k(ET)) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to kET values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (triangle GET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that kET and H2 production for CdTe-CaI complexes are not strictly controlled by triangle GET and that other factors must be considered. C1 [Brown, Katherine A.; Mulder, David W.; King, Paul W.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Song, Qing] IBM Almaden Res Ctr, San Jose, CA 95120 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM paul.king@nrel.gov RI King, Paul/D-9979-2011 OI King, Paul/0000-0001-5039-654X FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX K.A.B, D.W.M, and P.W.K. gratefully acknowledge funding support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; and support of the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Q.S gratefully acknowledges insightful discussions with X. Ai, and research support from IBM for synthesis of CdTe nanoparticles. K.A.B acknowledges the assistance of A. Ferguson of the NREL Solar Photochemistry Group with TRPL measurements. All the authors gratefully acknowledge M. W. Ratzloff, G. Dukovic and M. Wilker for helpful and insightful discussions. NR 55 TC 7 Z9 7 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10790 EP 10798 DI 10.1021/nn504561v PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600116 PM 25244026 ER PT J AU Zhao, PD Kiriya, D Azcatl, A Zhang, CX Tosun, M Liu, YS Hettick, M Kang, JS McDonnell, S Santosh, KC Guo, JH Cho, K Wallace, RM Javey, A AF Zhao, Peida Kiriya, Daisuke Azcatl, Angelica Zhang, Chenxi Tosun, Mahmut Liu, Yi-Sheng Hettick, Mark Kang, Jeong Seuk McDonnell, Stephen Santosh, K. C. Guo, Jinghua Cho, Kyeongjae Wallace, Robert M. Javey, Ali TI Air Stable p-Doping of WSe2 by Covalent Functionalization SO ACS NANO LA English DT Article DE layered materials; covalent binding; NO2; chemisorption; doping ID TRANSITION-METAL DICHALCOGENIDES; AUGMENTED-WAVE METHOD; THERMAL-DECOMPOSITION; TUNGSTEN-OXIDE; SPECTROSCOPY; NO; ENERGY; PHOTOEMISSION; ADSORPTION; DYNAMICS AB Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe2 via NOx chemisorption at 150 degrees C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe2-x-yOxNy species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe2:NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of similar to 10(19) cm(-3) is obtained from XPS and electrical measurements, which is found to be independent of WSe2 thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe2. More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization. C1 [Zhao, Peida; Kiriya, Daisuke; Tosun, Mahmut; Hettick, Mark; Kang, Jeong Seuk; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Zhao, Peida; Kiriya, Daisuke; Tosun, Mahmut; Hettick, Mark; Kang, Jeong Seuk; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Azcatl, Angelica; Zhang, Chenxi; McDonnell, Stephen; Santosh, K. C.; Cho, Kyeongjae; Wallace, Robert M.] Univ Texas Dallas, Richardson, TX 75080 USA. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI McDonnell, Stephen/E-1868-2011; Javey, Ali/B-4818-2013; Wallace, Robert/A-5283-2008 OI McDonnell, Stephen/0000-0001-9173-2060; Wallace, Robert/0000-0001-5566-4806 FU LEAST Center; U.S. Department of Energy [DE-AC02-05CH11231] FX The device fabrication and characterization components of this work were supported by NSF E3S Center. The materials characterization and ab initio simulation were funded by the LEAST Center. The work at ALS is supported by the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231. All the DFT calculations were performed using computational resources of Texas Advanced Computer Center (TACC) at University of Texas at Austin. NR 31 TC 39 Z9 39 U1 11 U2 111 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10808 EP 10814 DI 10.1021/nn5047844 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600118 PM 25229426 ER PT J AU Vasudevan, RK Tselev, A Baddorf, AP Kalinin, SV AF Vasudevan, Rama K. Tselev, Alexander Baddorf, Arthur P. Kalinin, Sergei V. TI Big-Data Reflection High Energy Electron Diffraction Analysis for Understanding Epitaxial Film Growth Processes SO ACS NANO LA English DT Article DE RHEED; big data; surface diffraction; multivariate statistics; oxides; epitaxial film growth ID MOLECULAR-BEAM EPITAXY; PULSED-LASER DEPOSITION; STEP DENSITY MODEL; HOMOEPITAXIAL GROWTH; OSCILLATION; PHASE; DECOMPOSITION; SYSTEM; GAAS; GAN AB Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality. C1 [Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, ORNL Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM rvv@ornl.gov; sergei2@ornl.gov RI Tselev, Alexander/L-8579-2015; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Baddorf, Arthur/I-1308-2016 OI Tselev, Alexander/0000-0002-0098-6696; Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Baddorf, Arthur/0000-0001-7023-2382 FU Division of Materials Sciences and Engineering, BES, DOE; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE (R.K.V, A. T., S.V.K.). This research was conducted and partially supported (A.P.B.) at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 31 TC 4 Z9 4 U1 3 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10899 EP 10908 DI 10.1021/nn504730n PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600129 PM 25268549 ER PT J AU Meng, XB Comstock, DJ Fister, TT Elam, JW AF Meng, Xiangbo Comstock, David J. Fister, Timothy T. Elam, Jeffrey W. TI Vapor-Phase Atomic-Controllable Growth of Amorphous Li2S for High-Performance Lithium-Sulfur Batteries SO ACS NANO LA English DT Article DE atomic layer deposition; lithium-sulfur battery; nanoscale Li2S films ID MESOCARBON MICROBEADS MCMB; LAYER DEPOSITION; ION BATTERIES; CATHODE MATERIAL; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LIQUID ELECTROLYTE; ENERGY-STORAGE; GRAPHENE OXIDE; FILM GROWTH AB Lithium-sulfur (Li-S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li2S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li2S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li2S. Besides a comprehensive investigation of the ALD Li2S growth mechanism, we further describe the high performance of the resulting amorphous Li2S nanofilms as cathodes in Li-S batteries, achieving a stable capacity of similar to 800 mA.h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li2S holds great potential for both bulk-type and thin-film high-energy Li-S batteries. C1 [Meng, Xiangbo; Comstock, David J.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Fister, Timothy T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov OI Meng, Xiangbo/0000-0002-4631-7260 FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-GeoSciences [DE-FG02-94ER14466]; Canada NSERC FX This work was supported as part of the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Electron microscopy was performed at the Electron Microscopy Center for Materials Research (EMCMR) at Argonne National Laboratory. Use of the EMCMR was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 operated by UChicago Argonne, LLC. XAS was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We greatly appreciate Dr. Paul A. Fenter, a Scientist in Chemical Sciences and Engineering Division at Argonne National Laboratory, for his valuable discussions and review of the paper, and the generous use of his experimental facilities. X.M. appreciates the financial support from a Canada NSERC Postdoctoral Fellowship. NR 60 TC 26 Z9 26 U1 21 U2 200 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 10963 EP 10972 DI 10.1021/nn505480w PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600136 PM 25321606 ER PT J AU Worsley, MA Pham, TT Yan, AM Shin, SJ Lee, JRI Bagge-Hansen, M Mickelson, W Zettl, A AF Worsley, Marcus A. Pham, Thang T. Yan, Aiming Shin, Swanee J. Lee, Jonathan R. I. Bagge-Hansen, Michael Mickelson, William Zettl, Alex TI Synthesis and Characterization of Highly Crystalline Graphene Aerogels SO ACS NANO LA English DT Article DE aerogel; graphene ID HIGH-SURFACE-AREA; THERMAL-CONDUCTIVITY; SENSING INDENTATION; CARBON AEROGELS; GRAPHITE; OXIDE; ARCHITECTURES; CAPACITANCE; LIGHT; FILMS AB Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature is characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a similar to 200 degrees C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity. C1 [Worsley, Marcus A.; Shin, Swanee J.; Lee, Jonathan R. I.; Bagge-Hansen, Michael] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Pham, Thang T.; Mickelson, William; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pham, Thang T.; Yan, Aiming; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mickelson, William; Zettl, Alex] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Worsley, Marcus/0000-0002-8012-7727 FU UC Lab Fees Research Program [12-LR-235323]; Lawrence Livermore National Laboratory under U.S. Department of Energy [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory through LDRD [13-LW-099]; National Science Foundation under the Center of Integrated Nanomechanical Systems [EEC-0832819]; Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy of the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231, 1770]; Office of Science, OBES of the US DoE [DE-AC02-05CH11231] FX This work was supported by the UC Lab Fees Research Program under Award No. 12-LR-235323; by Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344, through LDRD Award No. 13-LW-099; by the National Science Foundation under the Center of Integrated Nanomechanical Systems Grant No. EEC-0832819; by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231, within the sp2-bonded Materials Program, and the National Center for Electron Microscopy of the Lawrence Berkeley National Laboratory, under Contract DE-AC02-05CH11231 (Proposal No. 1770), which provided for aberration corrected microscopy measurements. The Advanced Light Source is supported by the Director, Office of Science, OBES, of the US DoE under Contract No. DE-AC02-05CH11231. NR 55 TC 38 Z9 38 U1 30 U2 230 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2014 VL 8 IS 10 BP 11013 EP 11022 DI 10.1021/nn505335u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AS0FC UT WOS:000343952600142 PM 25283720 ER PT J AU Tang, JY Cao, PQ Fu, YB Li, PH Ma, XH AF Tang Jia-Yong Cao Pei-Qi Fu Yan-Bao Li Peng-Hui Ma Xiao-Hua TI Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors SO ACTA PHYSICO-CHIMICA SINICA LA English DT Article DE Manganese oxide; Graphene; Composite; Supercapacitor; Hydrothermal method; Energy storage ID HYDROTHERMAL SYNTHESIS; ELECTROCHEMICAL PROPERTIES; NANOSTRUCTURED MNO2; ENERGY-STORAGE; ELECTRODES; CAPACITANCE; ULTRACAPACITORS; NANOSPHERES; BATTERIES; DESIGN AB A manganese dioxide (MnO2)-graphene composite material with a unique structure consisting of MnO2 surrounded by graphene sheets was prepared by a simple hydrothermal and thermal decomposition method. The morphology and structure of the obtained materials were examined by scanning electron microscopy, transition electron microscopy, Raman spectroscopy, X-ray diffraction, and N-2 adsorption-desorption. Electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge- discharge and electrochemical impedance spectroscopy. The specific surface area increased from 109 to 168 m(2).g(-1) for the composite containing 15% (w) graphene. The specific capacitance also increased from 294 to 454 F.g(-1) at a current density of 0.2 A.g(-1) in an aqueous electrolyte supercapacitor. Moreover, after 2000 cycles of a galvanostatic charge-discharge test, the hybrid electrode still had excellent cycle stability (92% retention rate). C1 [Tang Jia-Yong; Cao Pei-Qi; Li Peng-Hui; Ma Xiao-Hua] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Fu Yan-Bao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm & Energy Technol Div, Berkeley, CA 94720 USA. RP Ma, XH (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. EM xhma@fudan.edu.cn RI Fu, Yanbao/F-9583-2011 OI Fu, Yanbao/0000-0001-7752-680X FU Ministry of Science and Technology of China [51201035] FX The project was supported by the Ministry of Science and Technology of China (51201035). NR 40 TC 0 Z9 1 U1 5 U2 30 PU PEKING UNIV PRESS PI BEIJING PA PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA SN 1000-6818 J9 ACTA PHYS-CHIM SIN JI Acta Phys.-Chim. Sin. PD OCT PY 2014 VL 30 IS 10 BP 1876 EP 1882 DI 10.3866/PKU.WHXB201407172 PG 7 WC Chemistry, Physical SC Chemistry GA AS4BQ UT WOS:000344218900013 ER PT J AU Ko, JH Jeon, HW Kim, WC Kim, JY Han, KH AF Ko, J. -H. Jeon, H. -W. Kim, W. -C. Kim, J. -Y. Han, K. -H. TI The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis SO ANNALS OF BOTANY LA English DT Review DE Plant cell wall; secondary wall biosynthesis; MYB46; transcription factor; At5g12870; transcriptional regulation; biomass; Arabidopsis thaliana ID SYRINGYL LIGNIN BIOSYNTHESIS; VASCULAR-RELATED NAC-DOMAIN7; XYLEM VESSEL FORMATION; CELL-WALL; ARABIDOPSIS-THALIANA; CELLULOSE SYNTHESIS; GLUCURONOXYLAN BIOSYNTHESIS; ANTHER DEHISCENCE; MASTER SWITCH; FACTOR FAMILY AB Background The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary walls also constitute the majority of plant biomass. Formation of secondary walls requires co-ordinated transcriptional regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated control appears to involve a multifaceted and multilayered transcriptional regulatory programme. Scope Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46. Conclusions and Outlook MYB46 is a unique transcription factor in that it directly regulates the biosynthesis genes for all of the three major components of the secondary wall as well as the transcription factors in the biosynthesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall biosynthesis. However, realization of this potential requires additional information on the 'MYB46-mediated transcriptional regulatory programme', such as downstream direct targets, upstream regulators and interacting partners of MYB46. C1 [Ko, J. -H.; Jeon, H. -W.] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea. [Kim, W. -C.; Kim, J. -Y.; Han, K. -H.] Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA. [Kim, W. -C.; Han, K. -H.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Han, K. -H.] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA. RP Han, KH (reprint author), Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA. EM hanky@msu.edu OI Jeon, Hyung-Woo/0000-0001-7587-6689 FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DR-FC02-07ER64494]; National Research Foundation of Korea (NRF) [2011-0008840]; Korea Forest Service [S111213L080110] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DR-FC02-07ER64494), in part by a grant to J.-H.K. from the Basic Science Research Program through the National Research Foundation of Korea (NRF) (2011-0008840) and a grant to J.-H.K. from the Korea Forest Service (S111213L080110). NR 91 TC 12 Z9 13 U1 1 U2 25 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 EI 1095-8290 J9 ANN BOT-LONDON JI Ann. Bot. PD OCT PY 2014 VL 114 IS 6 SI SI BP 1099 EP 1107 DI 10.1093/aob/mcu126 PG 9 WC Plant Sciences SC Plant Sciences GA AS6FJ UT WOS:000344359600006 PM 24984711 ER PT J AU Serra, P Lagache, G Dore, O Pullen, A White, M AF Serra, P. Lagache, G. Dore, O. Pullen, A. White, M. TI Cross-correlation of cosmic far-infrared background anisotropies with large scale structures SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; infrared: diffuse background; galaxies: evolution; large-scale structure of Universe; galaxies: statistics ID STAR-FORMING GALAXIES; PHOTOMETRIC LUMINOUS GALAXIES; POWER SPECTRUM ANALYSIS; SOUTH-POLE TELESCOPE; DARK-MATTER HALOES; DUST EMISSION; SDSS-III; COSMOLOGICAL IMPLICATIONS; SUBMILLIMETER GALAXIES; HIGH-REDSHIFT AB We measure the cross-power spectra between luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS)-III data release 8 (DR8) and cosmic infrared background (CIB) anisotropies from Planck and data from the Improved Reprocessing (IRIS) of the Infrared Astronomical Satellite (IRAS) at 353, 545, 857, and 3000 GHz, corresponding to 850, 550, 350 and 100 mu m, respectively, in the multipole range 100 < l < 1000. Using approximately 6.5 x 10(5) photometrically determined LRGs in 7760 deg(2) of the northern hemisphere in the redshift range 0.45 < z < 0.65, we model the far-infrared background (FIRB) anisotropies with an extended version of the halo model. With these methods, we confirm the basic picture obtained from recent analyses of FIRB anisotropies with Herschel and Planck that the most efficient halo mass at hosting star forming galaxies is log(M-eff = M-circle dot) = 12.84 +/- 0.15. We estimate the percentage of FIRB anisotropies correlated with LRGs as approximately 11.8%, 3.9%, 1.8%, and 1.0% of the total at 3000, 857, 545, and 353 GHz, respectively. At redshift z similar to 0.55, the bias of FIRB galaxies with respect to the dark matter density field has the value b(FIRB) similar to 1.45, and the mean dust temperature of FIRB galaxies is T-d = 26 K. Finally, we discuss the impact of present and upcoming cross-correlations with far-infrared background anisotropies on the determination of the global star formation history and the link between galaxies and dark matter. C1 [Serra, P.; Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Serra, P.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Dore, O.; Pullen, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dore, O.; Pullen, A.] CALTECH, Pasadena, CA 91125 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Serra, P (reprint author), Univ Paris 11, IAS, Bat 121, F-91405 Orsay, France. EM pserra@ias.u-psud.fr RI Pullen, Anthony/I-7007-2015; White, Martin/I-3880-2015 OI Pullen, Anthony/0000-0002-2091-8738; White, Martin/0000-0001-9912-5070 FU ESA (France); CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); National Aeronautics and Space Administration FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php? project=planck&page=Planck_Collaboration. We would like to thank the anonymous referee for providing us with constructive comments and suggestions. P.S. would like to thank Alex Amblard and Shirley Ho for useful discussions. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 77 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2014 VL 570 AR A98 DI 10.1051/0004-6361/201423958 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AS3EE UT WOS:000344158500057 ER PT J AU Metcalfe, TS Creevey, OL Dogan, G Mathur, S Xu, H Bedding, TR Chaplin, WJ Christensen-Dalsgaard, J Karoff, C Trampedach, R Benomar, O Brown, BP Buzasi, DL Campante, TL Celik, Z Cunha, MS Davies, GR Deheuvels, S Derekas, A Di Mauro, MP Garcia, RA Guzik, JA Howe, R MacGregor, KB Mazumdar, A Montalban, J Monteiro, MJPFG Salabert, D Serenelli, A Stello, D Steslicki, M Suran, MD Yildiz, M Aksoy, C Elsworth, Y Gruberbauer, M Guenther, DB Lebreton, Y Molaverdikhani, K Pricopi, D Simoniello, R White, TR AF Metcalfe, T. S. Creevey, O. L. Dogan, G. Mathur, S. Xu, H. Bedding, T. R. Chaplin, W. J. Christensen-Dalsgaard, J. Karoff, C. Trampedach, R. Benomar, O. Brown, B. P. Buzasi, D. L. Campante, T. L. Celik, Z. Cunha, M. S. Davies, G. R. Deheuvels, S. Derekas, A. Di Mauro, M. P. Garcia, R. A. Guzik, J. A. Howe, R. MacGregor, K. B. Mazumdar, A. Montalban, J. Monteiro, M. J. P. F. G. Salabert, D. Serenelli, A. Stello, D. Steslicki, M. Suran, M. D. Yildiz, M. Aksoy, C. Elsworth, Y. Gruberbauer, M. Guenther, D. B. Lebreton, Y. Molaverdikhani, K. Pricopi, D. Simoniello, R. White, T. R. TI PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE methods: numerical; stars: evolution; stars: interiors; stars: oscillations ID MAIN-SEQUENCE STARS; STELLAR EVOLUTION CODE; TURBULENT CONVECTION; HELIUM ABUNDANCE; OSCILLATION FREQUENCIES; AUTOMATIC-DETERMINATION; BOLOMETRIC CORRECTIONS; FUNDAMENTAL PROPERTIES; PULSATIONAL STABILITY; INPUT CATALOG AB Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications. C1 [Metcalfe, T. S.; Mathur, S.] Space Sci Inst, Boulder, CO 80301 USA. [Metcalfe, T. S.; Dogan, G.; Christensen-Dalsgaard, J.; Karoff, C.; Trampedach, R.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Creevey, O. L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Dogan, G.; Mathur, S.; MacGregor, K. B.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Xu, H.] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA. [Bedding, T. R.; Benomar, O.; Stello, D.; White, T. R.] Univ Sydney, Sydney Inst Astron SIfA, Sch Phys, Sydney, NSW 2006, Australia. [Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Trampedach, R.] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Benomar, O.] Univ Tokyo, Dept Astron, Tokyo 1130033, Japan. [Brown, B. P.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Brown, B. P.] Univ Wisconsin, Ctr Magnet Self Org, Lab & Astrophys Plasmas, Madison, WI 53706 USA. [Brown, B. P.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Buzasi, D. L.] Florida Gulf Coast Univ, Dept Chem & Phys, Ft Myers, FL 33965 USA. [Celik, Z.; Yildiz, M.; Aksoy, C.] Ege Univ, Dept Astron & Space Sci, TR-35100 Izmir, Turkey. [Cunha, M. S.; Monteiro, M. J. P. F. G.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Cunha, M. S.; Monteiro, M. J. P. F. G.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Deheuvels, S.] Univ Toulouse, UPS, OMP, IRAP, Toulouse, France. [Deheuvels, S.] CNRS, IRAP, F-31400 Toulouse, France. [Derekas, A.] MTA CSFK, Konkoly Observ, H-1121 Budapest, Hungary. [Derekas, A.] ELTE Gothard Astrophys Observ, H-9704 Szombathely, Hungary. [Di Mauro, M. P.] Ist Astrofis & Planetol Spaziali, INAF IAPS, I-00133 Rome, Italy. [Garcia, R. A.; Salabert, D.; Simoniello, R.] Univ Paris Diderot, Ctr Saclay, Lab AIM, CEA DSM CNRS,IRFU SAp, F-91191 Gif Sur Yvette, France. [Guzik, J. A.] Los Alamos Natl Lab, XTD NTA, Los Alamos, NM 87545 USA. [Mazumdar, A.] Homi Bhabha Ctr Sci Educ, TIFR, Bombay 400088, Maharashtra, India. [Montalban, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Serenelli, A.] CSIC, IEEC, Inst Space Sci, E-08193 Bellaterra, Spain. [Steslicki, M.] Polish Acad Sci, Space Res Ctr, Wroclaw, Poland. [Suran, M. D.; Pricopi, D.] Acad Romana, Astron Inst, RO-040557 Bucharest, Romania. [Gruberbauer, M.; Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada. [Lebreton, Y.] CNRS, GEPI, Observ Paris, F-92195 Meudon, France. [Lebreton, Y.] Univ Rennes 1, CNRS, UMR 6251, Inst Phys Rennes, F-35042 Rennes, France. [Molaverdikhani, K.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [White, T. R.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. RP Metcalfe, TS (reprint author), Space Sci Inst, 4750 Walnut St Suite 205, Boulder, CO 80301 USA. RI Monteiro, Mario J.P.F.G./B-4715-2008; Derekas, Aliz/G-2091-2016; OI Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Serenelli, Aldo/0000-0001-6359-2769; Di Mauro, Maria Pia/0000-0001-7801-7484; Davies, Guy/0000-0002-4290-7351; Derekas, Aliz/0000-0002-6526-9444; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Garcia, Rafael/0000-0002-8854-3776 FU NASA [NNX13AC44G, NNX13AE91G]; White Dwarf Research Corporation through the Pale Blue Dot project; Danish National Research Foundation [DNRF106]; European Research Council [267864]; Scientific and Technological Research Council of Turkey [TUBITAK:112T989]; European Commission grant for the SPACEINN project [FP7-SPACE-2012-312844]; NSF Astronomy and Astrophysics postdoctoral fellowship [AST 09-02004]; NSF [PHY 08-21899, PHY 11-25915]; Investigador FCT contract - FCT/MCTES (Portugal); POPH/FSE (EC); Hungarian OTKA [K83790, KTIA URKUT_10-1-2011-0019]; Lendulet Young Researchers Programme of the Hungarian Academy of Sciences; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences; City of Szombathely [S-11-1027]; European Community Seventh Framework Programme (FP7) [269194 (IRSES/ASK)]; CNES grant at CEA-Saclay; NIUS programme of HBCSE (TIFR); MICINN grant [AYA2011-24704]; ESF EUROCORES Program EuroGENESIS (MICINN) [EUI2009-04170]; Australian Research Council FX We would like to thank Victor Silva Aguirre for helpful discussions. This work was supported in part by NASA grants NNX13AC44G and NNX13AE91G, and by White Dwarf Research Corporation through the Pale Blue Dot project (http://whitedwarf.org/palebluedot/). Computational time on Kraken at the National Institute of Computational Sciences was provided through XSEDE allocation TG-AST090107. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant DNRF106). We acknowledge the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement No.: 267864), the Scientific and Technological Research Council of Turkey (TUBITAK:112T989), and a European Commission grant for the SPACEINN project (FP7-SPACE-2012-312844). B.P.B. was supported in part by NSF Astronomy and Astrophysics postdoctoral fellowship AST 09-02004. C.M.S.O. is supported by NSF grant PHY 08-21899 and K.I.T.P. is supported by NSF grant PHY 11-25915. M.S.C. is supported by an Investigador FCT contract funded by FCT/MCTES (Portugal) and POPH/FSE (EC). A.D. has been supported by the Hungarian OTKA grants K83790, KTIA URKUT_10-1-2011-0019 grant, the Lendulet-2009 Young Researchers Programme of the Hungarian Academy of Sciences, the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences and the City of Szombathely under agreement No. S-11-1027. A.D. and R.A.G. acknowledge the support of the European Community Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 269194 (IRSES/ASK). R.A.G. and D. Salabert acknowledge the support of the CNES grant at CEA-Saclay. A.M. acknowledges support from the NIUS programme of HBCSE (TIFR). A.S. is supported by the MICINN grant AYA2011-24704 and by the ESF EUROCORES Program EuroGENESIS (MICINN grant EUI2009-04170). D. Stello is supported by the Australian Research Council. NR 97 TC 43 Z9 43 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2014 VL 214 IS 2 AR 27 DI 10.1088/0067-0049/214/2/27 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AS2YE UT WOS:000344141500013 ER PT J AU Weissenrieder, J Gustafson, J Stacchiola, D AF Weissenrieder, Jonas Gustafson, Johan Stacchiola, Dario TI Reactivity and Mass Transfer of Low-Dimensional Catalysts SO CHEMICAL RECORD LA English DT Article DE cluster compounds; heterogeneous catalysis; surface analysis; surface chemistry; thin films ID RAY PHOTOELECTRON-SPECTROSCOPY; GAS SHIFT REACTION; MODEL HYDROGENATION CATALYSTS; CO OXIDATION; IN-SITU; METAL-OXIDE; ELECTRON-MICROSCOPY; BOND-BREAKING; SURFACE; GOLD AB Understanding the mechanisms governing chemical and morphological changes induced by an ambient-pressure gas and how such changes influence the activity of heterogeneous catalysts is central to the formation of a predictive capability for structure-reactivity relationships. With techniques such as ambient-pressure photoelectron spectroscopy, scanning tunneling microscopy, and surface X-ray diffraction, active phases and reaction intermediates can be probed in situ on relevant samples to form a comprehensive picture of this dynamic interplay between gases and surfaces. Of particular interest is the interaction of oxygen and carbon monoxide with catalysts. We will describe how model systems of increased complexity can be used to investigate gas-mediated mass transfer processes that may occur even at relatively modest temperatures. Furthermore, we will discuss how the morphology may be tailored to study specific contributions from defect sites and charge transfer to catalytic activity. C1 [Weissenrieder, Jonas] KTH Royal Inst Technol, S-16440 Kista, Sweden. [Gustafson, Johan] Lund Univ, Div Synchrotron Radiat Res, S-22100 Lund, Sweden. [Stacchiola, Dario] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Weissenrieder, J (reprint author), KTH Royal Inst Technol, S-16440 Kista, Sweden. EM jonas@kth.se RI Stacchiola, Dario/B-1918-2009; OI Stacchiola, Dario/0000-0001-5494-3205; Weissenrieder, Jonas/0000-0003-1631-4293 FU Swedish Research Council (VR); Knut and Alice Wallenberg Foundation; U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences FX The Swedish Research Council (VR) and the Knut and Alice Wallenberg Foundation are acknowledged for their financial support. The work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences. NR 85 TC 2 Z9 2 U1 2 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1527-8999 EI 1528-0691 J9 CHEM REC JI Chem. Rec. PD OCT PY 2014 VL 14 IS 5 SI SI BP 857 EP 868 DI 10.1002/tcr.201402006 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA AS1CB UT WOS:000344013300011 PM 25065579 ER PT J AU Wu, ZL AF Wu, Zili TI Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification SO CHINESE JOURNAL OF CATALYSIS LA English DT Review DE Multi-wavelength; Raman spectroscopy; Resonance Raman; Vanadia; Silica; Ceria ID METAL-OXIDE CATALYSTS; DENSITY-FUNCTIONAL THEORY; DEFINED SURFACE PLANES; DIFFUSE-REFLECTANCE SPECTROSCOPY; TEMPERATURE-PROGRAMMED REDUCTION; PROBING DEFECT SITES; OXIDATIVE DEHYDROGENATION; MOLECULAR-STRUCTURE; METHANOL OXIDATION; CEO2 NANOCRYSTALS AB Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure-catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In this review, we make use of two supported vanadia systems, VOx/SiO2 and VOx/CeO2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand the complex interaction between the oxide clusters and the support. The qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. C1 [Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wu, Zili] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov RI Wu, Zili/F-5905-2012 OI Wu, Zili/0000-0002-4468-3240 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Part of the work including the synthesis of ceria nanoshapes was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 107 TC 1 Z9 1 U1 6 U2 47 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0253-9837 EI 1872-2067 J9 CHINESE J CATAL JI Chin. J. Catal. PD OCT PY 2014 VL 35 IS 10 BP 1591 EP 1608 DI 10.1016/S1872-2067(14)60082-6 PG 18 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AS2WE UT WOS:000344136500001 ER PT J AU Vay, JL Godfrey, BB AF Vay, Jean-Luc Godfrey, Brendan B. TI Modeling of relativistic plasmas with the Particle-In-Cell method SO COMPTES RENDUS MECANIQUE LA English DT Article DE Particle-In-Cell; Plasma simulation; Special relativity; Numerical instability ID NONSTANDARD FINITE-DIFFERENCES; PIC SIMULATIONS; NUMERICAL SIMULATION; CHARGE CONSERVATION; GAUSS LAW; ALGORITHM; CODES; INSTABILITY; STABILITY; SOLVERS AB Standard methods employed in relativistic electromagnetic Particle-In-Cell codes are reviewed, as well as novel techniques that were introduced recently. Advances in the analysis and mitigation of the numerical Cherenkov instability are also presented with comparison between analytical theory and numerical experiments. The algorithmic and numerical analytic advances are expanding the range of applicability of the method in the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the strongest without corrective measures. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Vay, Jean-Luc; Godfrey, Brendan B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Godfrey, Brendan B.] Univ Maryland, College Pk, MD 20742 USA. RP Vay, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. OI Godfrey, Brendan/0000-0003-2311-7060 FU US-DOE [DE-AC02-05CH11231, DE-AC52-07NA27344]; US-DOE SciDAC program ComPASS [DE-AC02-05CH11231]; United States Government FX We are thankful to David Grote for his support of the code Warp. This work was supported in part by US-DOE Contracts DE-AC02-05CH11231 and DE-AC52-07NA27344, and US-DOE SciDAC program ComPASS (Grant no. DE-AC02-05CH11231). It used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.r This document was prepared as an account of work sponsored in part by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, nor the authors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 42 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0721 EI 1873-7234 J9 CR MECANIQUE JI C. R. Mec. PD OCT-NOV PY 2014 VL 342 IS 10-11 BP 610 EP 618 DI 10.1016/j.crme.2014.07.006 PG 9 WC Mechanics SC Mechanics GA AS4BC UT WOS:000344217500006 ER PT J AU Chapman, JL Lu, L Anderson-Cook, CM AF Chapman, Jessica L. Lu, Lu Anderson-Cook, Christine M. TI Incorporating response variability and estimation uncertainty into Pareto front optimization SO COMPUTERS & INDUSTRIAL ENGINEERING LA English DT Article DE Response surface; Multiple response optimization; Incorporating estimation uncertainty; Trade-offs; Graphical summaries ID MULTIDISCIPLINARY DESIGN OPTIMIZATION; POLYNOMIAL CHAOS EXPANSION; RELIABILITY-ANALYSIS; MULTIPLE CRITERIA; SURFACE DESIGN AB Pareto front optimization has been commonly used for balancing trade-offs between different estimated responses. Using maximum likelihood or least squares point estimates or the worst case confidence bound values of the response surface, it is straightforward to find preferred locations in the input factor space that simultaneously perform well for the various responses. A new approach is proposed that directly incorporates model parameter estimation uncertainty into the Pareto front optimization. This step-by-step approach provides more realistic information about variability in the estimated Pareto front and how it affects our decisions about the potential best input factor locations. The method is illustrated with a manufacturing example involving three responses and two input factors. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Chapman, Jessica L.] St Lawrence Univ, Dept Math Comp Sci & Stat, Canton, NY 13617 USA. [Lu, Lu] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Chapman, JL (reprint author), St Lawrence Univ, Dept Math Comp Sci & Stat, Canton, NY 13617 USA. NR 17 TC 9 Z9 9 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-8352 EI 1879-0550 J9 COMPUT IND ENG JI Comput. Ind. Eng. PD OCT PY 2014 VL 76 BP 253 EP 267 DI 10.1016/j.cie.2014.07.028 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Computer Science; Engineering GA AS7LY UT WOS:000344438700022 ER PT J AU Dodds, WK Collins, SM Hamilton, SK Tank, JL Johnson, S Webster, JR Simon, KS Whiles, MR Rantala, HM McDowell, WH Peterson, SD Riis, T Crenshaw, CL Thomas, SA Kristensen, PB Cheever, BM Flecker, AS Griffiths, NA Crowl, T Rosi-Marshall, EJ El-Sabaawi, R Marti, E AF Dodds, W. K. Collins, S. M. Hamilton, S. K. Tank, J. L. Johnson, S. Webster, J. R. Simon, K. S. Whiles, M. R. Rantala, H. M. McDowell, W. H. Peterson, S. D. Riis, T. Crenshaw, C. L. Thomas, S. A. Kristensen, P. B. Cheever, B. M. Flecker, A. S. Griffiths, N. A. Crowl, T. Rosi-Marshall, E. J. El-Sabaawi, R. Marti, E. TI You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies SO ECOLOGY LA English DT Article DE N-15; consumer; food resources; food web; label mismatch; nitrogen cycling; stable isotope tracer addition ID WATER FOOD WEBS; STABLE-ISOTOPE; ORGANIC-MATTER; PRAIRIE STREAM; FOREST STREAM; NITROGEN DYNAMICS; AQUATIC CONSUMERS; TROPHIC BASIS; ECOSYSTEM; FLOW AB Analyses of 21 N-15 stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33-50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers. Food web studies that use putative food samples composed of actively cycling (more readily assimilable) and refractory (less assimilable) N fractions may draw erroneous conclusions about diets, N turnover, and trophic linkages of consumers. By extension, food web studies using stoichiometric or natural abundance approaches that rely on an accurate description of food-source composition could result in errors when an actively cycling pool that is only a fraction of the N pool in sampled food resources is not accounted for. C1 [Dodds, W. K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Collins, S. M.; Flecker, A. S.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA. [Hamilton, S. K.] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Tank, J. L.] Univ Notre Dame, Dept Biol Sci, Galvin Life Sci Ctr 100, Notre Dame, IN 46556 USA. [Johnson, S.] US Forest Serv, USDA, Pacific NW Res Stn, Corvallis, OR 97331 USA. [Webster, J. R.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24601 USA. [Simon, K. S.] Univ Auckland, Sch Environm, Auckland 1142, New Zealand. [Whiles, M. R.; Rantala, H. M.] So Illinois Univ, Dept Zool, Carbondale, IL 62901 USA. [Whiles, M. R.; Rantala, H. M.] So Illinois Univ, Ctr Ecol, Carbondale, IL 62901 USA. [McDowell, W. H.] Univ New Hampshire, Durham, NH 03824 USA. [Peterson, S. D.] Murray State Univ, Dept Biol Sci, Watershed Studies Inst, Murray, KY 42071 USA. [Riis, T.; Kristensen, P. B.] Aarhus Univ, Dept Biosci, DK-8000 Aarhus C, Denmark. [Crenshaw, C. L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Thomas, S. A.] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA. [Cheever, B. M.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Griffiths, N. A.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Griffiths, N. A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Crowl, T.] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Crowl, T.] Florida Int Univ, Dept Biol, Miami, FL 33199 USA. [Rosi-Marshall, E. J.] Cary Inst Ecosyst Studies, Millbrook, NY 12545 USA. [El-Sabaawi, R.] Univ Victoria, Dept Biol, Victoria, BC V8P 5C2, Canada. [Marti, E.] CSIC, CEAB, Biogeodynam & Biodivers Grp, Blanes, Catalonia, Spain. RP Dodds, WK (reprint author), Kansas State Univ, Div Biol, 106 Ackert Hall, Manhattan, KS 66506 USA. EM wkdodds@ksu.edu RI McDowell, William/E-9767-2010; Hamilton, Stephen/N-2979-2014; Marti, Eugenia/J-9146-2012; Riis, Tenna/K-8346-2013; OI McDowell, William/0000-0002-8739-9047; Hamilton, Stephen/0000-0002-4702-9017; Marti, Eugenia/0000-0002-6910-4874; Griffiths, Natalie/0000-0003-0068-7714; Collins, Sarah/0000-0001-5503-7386 FU U.S. National Science Foundation [DEB 1052399]; U.S. DOE [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank all the researchers involved in the isotopic release experiments that we report on; in particular, we are grateful to Pat Mulholland for his intellectual inspiration and fantastic leadership. The workshop that generated this paper was funded by grant DEB 1052399 by the U.S. National Science Foundation. This is contribution 14-334-J from the Kansas Agricultural Experiment Station. Partial support during manuscript preparation to N. A. Griffiths was from the Department of Energy's Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, for the U.S. DOE under contract DE-AC05-00OR22725. The manuscript has been authored by UT-Battelle, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 61 TC 11 Z9 11 U1 12 U2 99 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD OCT PY 2014 VL 95 IS 10 BP 2757 EP 2767 DI 10.1890/13-2276.1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA AS5NL UT WOS:000344317300009 ER PT J AU Bonner, IJ Cafferty, KG Muth, DJ Tomer, MD James, DE Porter, SA Karlen, DL AF Bonner, Ian J. Cafferty, Kara G. Muth, David J., Jr. Tomer, Mark D. James, David E. Porter, Sarah A. Karlen, Douglas L. TI Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability SO ENERGIES LA English DT Article DE biomass; subfield management; switchgrass; corn stover; Landscape Environmental Assessment Framework (LEAF) ID AGRICULTURAL RESIDUE REMOVAL; SWITCHGRASS PANICUM-VIRGATUM; UNITED-STATES; NITROGEN-FERTILIZATION; BIOENERGY; BIOMASS; CORN; IMPACTS; LAND; FEEDSTOCKS AB Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L.) grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF). The strategy used in the case study integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection), while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26$.kg(-1)) and dependent on the acceptable subfield net loss for corn production (ranging from 0 to -1000$.ha(-1)) and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices. C1 [Bonner, Ian J.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. [Cafferty, Kara G.] Idaho Natl Lab, Environm Engn & Technol Dept, Idaho Falls, ID 83415 USA. [Muth, David J., Jr.] AgSolver Inc, Ames, IA 50010 USA. [Tomer, Mark D.; James, David E.; Porter, Sarah A.; Karlen, Douglas L.] ARS, Natl Lab Agr & Environm, USDA, Ames, IA 50011 USA. RP Bonner, IJ (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. EM ian.bonner@inl.gov; kara.cafferty@inl.gov; david.muth@agsolver.com; mark.tomer@ars.usda.gov; david.james@ars.usda.gov; sarah.porter@ars.usda.gov; doug.karlen@ars.usda.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office [DE-AC07-05ID14517]; agency of the U.S. Government FX This work is supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.; U.S. Department of Energy Disclaimer; This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that is use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. NR 47 TC 9 Z9 9 U1 3 U2 21 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD OCT PY 2014 VL 7 IS 10 BP 6509 EP 6526 DI 10.3390/en7106509 PG 18 WC Energy & Fuels SC Energy & Fuels GA AS7YG UT WOS:000344467200016 ER PT J AU Lister, TE Wang, PM Anderko, A AF Lister, Tedd E. Wang, Peiming Anderko, Andre TI Recovery of critical and value metals from mobile electronics enabled by electrochemical processing SO HYDROMETALLURGY LA English DT Article DE Critical materials; Mobile electronics scrap; Recycling; Electrochemistry; Electrowinning; Metal dissolution ID PRINTED-CIRCUIT BOARDS; SOLVENT ELECTROLYTE SYSTEMS; SPOUTED-BED ELECTRODES; VALUABLE METALS; RARE-EARTHS; COPPER; WASTE; TECHNOLOGIES; DISSOLUTION; BATTERIES AB Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metal dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling were proposed: 1) initial dissolution of Cu, Sn,Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl-2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at similar to 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lister, Tedd E.] Idaho Natl Lab, Idaho Falls, ID 83404 USA. [Wang, Peiming; Anderko, Andre] OLI Syst Inc, Cedar Knolls, NJ 07927 USA. RP Lister, TE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83404 USA. EM tedd.lister@inl.gov OI Anderko, Andrzej/0000-0002-1522-4889 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; Battelle Energy Alliance, LLC [DE-AC07-051D14517] FX This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-051D14517. We thank Byron White for providing analytical services that supported this work. NR 52 TC 10 Z9 10 U1 4 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-386X EI 1879-1158 J9 HYDROMETALLURGY JI Hydrometallurgy PD OCT PY 2014 VL 149 BP 228 EP 237 DI 10.1016/j.hydromet.2014.08.011 PG 10 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AS3UW UT WOS:000344204400027 ER PT J AU Cao, T Azmoun, B Babst, B Blatnik, M Purschke, ML Stoll, S Vaska, P Woody, C AF Cao, T. Azmoun, B. Babst, B. Blatnik, M. Purschke, M. L. Stoll, S. Vaska, P. Woody, C. TI A Study of a GEM Tracking Detector for Imaging Positrons from PET Radioisotopes in Plants SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gas Electron Multiplier (GEM); plant; Positron Emission Tomography (PET); positron imaging ID TRANSPORT; RICE AB Positron Emission Tomography is a powerful imaging technique used for humans and animals that can also be used to study plant biology. However, since many of the structures found on plants (e. g., leaves) are very thin, a large portion of the positrons emitted from PET isotopes escape before annihilation, leading to low efficiency and quantification inaccuracies. In this study, a gas tracking detector was used to measure escaping positrons from PET radiotracer isotopes which has the ability to reconstruct three dimensional tracks that can be used to form an image of the emitting object. This device uses a triple GEM detector with a short drift region and an XY strip readout plane to measure a vector for positrons passing through a drift gap. By projecting each particle track back to the object surface, a 2-D image of the spatial distribution of the positrons that escaped from that surface can be reconstructed. In this paper, we will describe the basic principle of the GEM detector and present results on its performance using various types of phantoms and actual plant specimens. Monte Carlo simulations are also used to better understand the detector performance and compare to actual measurements. C1 [Cao, T.; Vaska, P.] SUNY Stony Brook, Stony Brook, NY 11790 USA. [Azmoun, B.; Babst, B.; Purschke, M. L.; Stoll, S.; Vaska, P.; Woody, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blatnik, M.] Cleveland State Univ, Cleveland, OH 44115 USA. RP Cao, T (reprint author), SUNY Stony Brook, Stony Brook, NY 11790 USA. EM tuoyucao@bnl.gov OI Babst, Benjamin/0000-0001-5657-0633 FU U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported in part by the U.S. Department of Energy under Prime Contract No. DE-AC02-98CH10886. NR 21 TC 1 Z9 1 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2014 VL 61 IS 5 BP 2464 EP 2471 DI 10.1109/TNS.2014.2333740 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AS0PJ UT WOS:000343979600006 ER PT J AU Lee, K Bolotnikov, A Bae, S Roy, U Camarda, G Petryk, M Cui, YG Hossain, A Yang, G Dedic, V Kim, K James, RB AF Lee, Kisung Bolotnikov, Aleksey Bae, Seungbin Roy, Utpal Camarda, Giuseppe Petryk, Matthew Cui, Yonggang Hossain, Anwar Yang, Ge Dedic, Vaclav Kim, Kihyun James, Ralph B. TI New Virtual Frisch-Grid CdZnTe Detector Design With Sub-Millimeter Spatial Resolution SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE CdZnTe; Frisch-grid; position-sensitive; positioning algorithm; radiation detector ID READOUT AB We evaluated the performance of a position-sensitive virtual Frisch-grid (VFG) CdZnTe detector, mm mm mm, via sensing strips on its side surfaces. Once the signals were collected from the anode, and from four or eight strips attached to the detector's sides, we assessed the anode's energy spectra and derived histograms from the side electrodes to evaluate the feasibility of achieving sub-millimeter spatial resolution in the X-Y plane. Using a highly collimated 30-keV X-ray beam at the National Synchrotron Light Source, and applying corrections to the raw data, we determined the photon-interaction points by conventional Anger logic and via a more sophisticated statistics-based positioning (SBP) algorithm. With the VFG detector's current configuration, we achieved a resolution below 1 mm, even for low-energy X-rays. C1 [Lee, Kisung; Bae, Seungbin; Kim, Kihyun] Korea Univ, Seoul 136701, South Korea. [Bolotnikov, Aleksey; Roy, Utpal; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Yang, Ge; James, Ralph B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Petryk, Matthew] SUNY Binghamton, Binghamton, NY 13902 USA. [Dedic, Vaclav] Charles Univ Prague, CR-11636 Prague, Czech Republic. RP Lee, K (reprint author), Korea Univ, Seoul 136701, South Korea. EM kisung@korea.ac.kr; bolotnik@bnl.gov RI Dedic, Vaclav/Q-3847-2016; Dedic, Vaclav/A-2946-2017 OI Dedic, Vaclav/0000-0001-7159-5521 FU U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development; DNN RD; Defense Threat Reduction Agency; Basic Atomic Energy Research Institute (BAERI) [2010-0018616]; U.S. Department of Energy [DE-AC02-98CH1-886] FX This work was supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development, DNN R&D and Defense Threat Reduction Agency and also jointly supported by the Basic Atomic Energy Research Institute (BAERI, 2010-0018616). The manuscript was authored by Brookhaven Science Associates, LLC under Contract DE-AC02-98CH1-886 with the U.S. Department of Energy. NR 12 TC 0 Z9 0 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2014 VL 61 IS 5 BP 2567 EP 2572 DI 10.1109/TNS.2014.2348572 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AS0PX UT WOS:000343980900008 ER PT J AU Kouzes, RT Ely, JH Lintereur, AT Siciliano, ER AF Kouzes, Richard T. Ely, James H. Lintereur, Azaree T. Siciliano, Edward R. TI Boron-10 Based Neutron Coincidence Counter for Safeguards SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Alternative neutron detectors; boron-10; coincidence counter; helium-3 alternative; neutron detection; safeguards; UNCL ID HE-3 AB The shortage of He-3 has triggered the search for effective alternative neutron detection technologies for national security applications, including international nuclear safeguards. Any alternative neutron detection technology must meet a neutron detection efficiency requirement while being insensitive to gamma-ray interference at a prescribed level. For nuclear safeguards, a system must perform measurements in the field with a prescribed precision in a specified time. This paper describes an effort to design, model and test an alternatives-based neutron coincidence counter for nuclear safeguards applications. The technology chosen for use in an alternatives-based uranium neutron coincidence collar was boron-lined proportional counters. Extensive modeling was performed of various system configurations and comparisons were made to measurements on a commercial prototype boron-10 based uranium neutron coincidence collar. C1 [Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kouzes, RT (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM rkouzes@pnnl.gov; james.ely@pnnl.gov; azaree.lintereur@pnnl.gov; edward.siciliano@pnnl.gov FU U.S. Department of Energy Office of Nuclear Safeguards and Security [NA-241]; U.S. Department of Energy [DE-AC05-76RLO 1830]; Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration FX This work was supported by the U.S. Department of Energy Office of Nuclear Safeguards and Security (NA-241). The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830. A. Lintereur was a post Masters Research Assistant supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration. NR 42 TC 0 Z9 0 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2014 VL 61 IS 5 BP 2608 EP 2618 DI 10.1109/TNS.2014.2353619 PN 2 PG 11 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AS0PX UT WOS:000343980900014 ER PT J AU VanDevender, BA Dion, MP Fast, JE Rodriguez, DC Taubman, MS Wilen, CD Wood, LS Wright, ME AF VanDevender, Brent A. Dion, Michael P. Fast, James E. Rodriguez, Douglas C. Taubman, Matthew S. Wilen, Christopher D. Wood, Lynn S. Wright, Michael E. TI High-Purity Germanium Spectroscopy at Rates in Excess of 10(6) Events/s SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Digital filters; finite impulse response filters; gamma-ray detectors; germanium; nuclear electronics; preamplifiers; semiconductor radiation detectors; signal processing algorithms; spectroscopy ID GAMMA-RAY SPECTROMETRY; REAL-TIME; POSITION AB In gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at event rates up to and exceeding per second. We report the performance of an HPGe spectrometer system adapted to run under such conditions. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltage-rail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-width-at-half-maximum energy resolution approximately 8 keV measured at 662 keV with per second incoming event rate and 39% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of rising edge pileup that passes the first pileup cut, reducing throughput to 25%. While better resolution has been reported by other authors, our throughput is an order of magnitude higher than any other reported HPGe system operated at such an event rate. C1 [VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP VanDevender, BA (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM brent.vandevender@pnnl.gov; michael.dion@pnnl.gov; james.fast@pnnl.gov; Douglas.Rodriguez@pnnl.gov; matthew.taubman@pnnl.gov; cwilen@wisc.edu; lynn.wood@pnnl.gov; michael.wright@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 FU U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. Department of Energy National Nuclear Security Administration, Office of Nonproliferation Research and Development; Next Generation Safeguards Initiative Human Capital Development Program FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. This research was supported by the U.S. Department of Energy National Nuclear Security Administration, Office of Nonproliferation Research and Development. D. C. Rodriguez was supported by the Next Generation Safeguards Initiative Human Capital Development Program. NR 18 TC 4 Z9 4 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2014 VL 61 IS 5 BP 2619 EP 2627 DI 10.1109/TNS.2014.2357059 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AS0PX UT WOS:000343980900015 ER PT J AU Payne, SA Hunter, S Ahle, L Cherepy, NJ Swanberg, E AF Payne, Stephen A. Hunter, Steven Ahle, Larry Cherepy, Nerine J. Swanberg, Erik TI Nonproportionality of Scintillator Detectors. III. Temperature Dependence Studies SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma ray detectors; luminescence; solid scintillation detectors ID LIGHT YIELD NONPROPORTIONALITY; GAMMA-RAY SPECTROMETERS; ENERGY RESOLUTION; NON-PROPORTIONALITY; COMPTON ELECTRONS; CRYSTALS; NAI(TL); CSI(TL) AB This paper is the third in a series of articles on the basic physics of nonproportionality in scintillators. Here, we focus on the temperature dependence of six scintillators, NaI(Tl), CsI(Tl), CsI(Na), CeBr3, LaBr3(Ce), and undoped SrI2, and report their nonproportionality curves at -40 degrees C, 0 degrees C and +40 degrees C. We fit the data to a modified form of our previously employed model, including the competition of carrier trapping with the Onsager-mediated attraction between electrons and holes. C1 [Payne, Stephen A.; Hunter, Steven; Ahle, Larry; Cherepy, Nerine J.; Swanberg, Erik] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Payne, SA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM payne3@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development Office of the U.S.DOE [DE-AC03-765F00098]; U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development Office of the U.S.DOE under Contract DE-AC03-765F00098, and was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 44 TC 6 Z9 6 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2014 VL 61 IS 5 BP 2771 EP 2777 DI 10.1109/TNS.2014.2343572 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AS0PX UT WOS:000343980900034 ER PT J AU Langston, MA Levine, RS Kilbourne, BJ Rogers, GL Kershenbaum, AD Baktash, SH Coughlin, SS Saxton, AM Agboto, VK Hood, DB Litchveld, MY Oyana, TJ Matthews-Juarez, P Juarez, PD AF Langston, Michael A. Levine, Robert S. Kilbourne, Barbara J. Rogers, Gary L., Jr. Kershenbaum, Anne D. Baktash, Suzanne H. Coughlin, Steven S. Saxton, Arnold M. Agboto, Vincent K. Hood, Darryl B. Litchveld, Maureen Y. Oyana, Tonny J. Matthews-Juarez, Patricia Juarez, Paul D. TI Scalable Combinatorial Tools for Health Disparities Research SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE combinatorial algorithms; data science; graph theoretical techniques; health disparities research; heterogeneous data analysis; high performance computing; public health exposome; relevance networks; scalable computation ID FALSE DISCOVERY RATE; PUBLIC-HEALTH; MORTALITY; 21ST-CENTURY; EPIDEMIOLOGY; NETWORKS; VALIDITY; GENOME; FPT AB Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual's genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject. C1 [Langston, Michael A.; Baktash, Suzanne H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Levine, Robert S.; Kilbourne, Barbara J.; Agboto, Vincent K.] Meharry Med Coll, Dept Family & Community Med, Nashville, TN 37208 USA. [Rogers, Gary L., Jr.] Oak Ridge Natl Lab, Natl Inst Computat Sci, Oak Ridge, TN 37831 USA. [Kershenbaum, Anne D.] Univ Tennessee, Dept Publ Hlth, Knoxville, TN 37996 USA. [Coughlin, Steven S.] Emory Univ, Dept Epidemiol, Atlanta, GA 30322 USA. [Saxton, Arnold M.] Univ Tennessee, Inst Agr, Dept Anim Sci, Knoxville, TN 37996 USA. [Hood, Darryl B.] Ohio State Univ, Div Environm Hlth Sci, Coll Publ Hlth, Columbus, OH 43210 USA. [Litchveld, Maureen Y.] Tulane Univ, Dept Global Environm Hlth Sci, New Orleans, LA 70112 USA. [Oyana, Tonny J.; Matthews-Juarez, Patricia; Juarez, Paul D.] Univ Tennessee, Hlth Sci Ctr, Res Ctr Hlth Dispar Equ & Exposome, Memphis, TN 38163 USA. RP Langston, MA (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM langston@eecs.utk.edu; rlevine@mmc.edu; bkilbourne@mmc.edu; grogers3@utk.edu; akershen@utk.edu; sbaktash@utk.edu; stevecatlanta@aol.com; asaxton@utk.edu; vagboto@mmc.edu; dhood@cph.osu.edu; mlichtve@tulane.edu; toyana@uthsc.edu; pmatthe3@uthsc.edu; pjuarez@uthsc.edu OI Oyana, Tonny/0000-0003-0108-2370 FU National Institute on Minority Health and Health Disparities [P20MD000516]; National Institute on Alcohol Abuse and Alcoholism [R01AA018776]; National Institute on Drug Abuse [R01AA018776]; University of Tennessee Research Center on Health Disparities, Equity, and the Exposome FX This research has been supported in part by the National Institute on Minority Health and Health Disparities under grant P20MD000516, jointly by the National Institute on Alcohol Abuse and Alcoholism and the National Institute on Drug Abuse under grant R01AA018776, and by the University of Tennessee Research Center on Health Disparities, Equity, and the Exposome. The content is solely the responsibility of the authors, and does not necessarily represent the official views of the National Institutes of Health or the University of Tennessee. We thank the anonymous reviewers for their thoughtful critiques and helpful comments. NR 58 TC 3 Z9 3 U1 0 U2 14 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD OCT PY 2014 VL 11 IS 10 BP 10419 EP 10443 DI 10.3390/ijerph111010419 PG 25 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA AS6FA UT WOS:000344358700030 PM 25310540 ER PT J AU Canini, L Perelson, AS AF Canini, Laetitia Perelson, Alan S. TI Viral kinetic modeling: state of the art SO JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS LA English DT Review DE Viral kinetics; Hepatitis C; Influenza; Mathematical modeling; Antiviral drug; Resistance emergence ID HEPATITIS-C VIRUS; INFLUENZA-A VIRUS; COMPLEX DECAY PROFILES; DYNAMICS IN-VIVO; B-VIRUS; ANTIVIRAL THERAPY; IMMUNE-RESPONSE; PEGYLATED INTERFERON-ALPHA-2B; DRUG EFFECTIVENESS; NS5A INHIBITOR AB Viral kinetic (VK) modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how VK modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viral replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, VK modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. We expect that VK modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases. C1 [Canini, Laetitia; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; NIH [R01-AI028433, P20-GM10345, R01-AI078881, R34-HL109334]; National Center for Research Resources; Office of Research Infrastructure Programs (ORIP) [R01-OD011095] FX This work was done under the auspices of US Department of Energy under contract DE-AC52-06NA25396, and supported by NIH Grants R01-AI028433, P20-GM10345, R01-AI078881, R34-HL109334, and the National Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) through Grant R01-OD011095. NR 101 TC 13 Z9 13 U1 5 U2 26 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1567-567X EI 1573-8744 J9 J PHARMACOKINET PHAR JI J. Pharmacokinet. Pharmacodyn. PD OCT PY 2014 VL 41 IS 5 SI SI BP 431 EP 443 DI 10.1007/s10928-014-9363-3 PG 13 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA AS5TE UT WOS:000344331600004 PM 24961742 ER PT J AU Mullner, T Zankel, A Svec, F Tallarek, U AF Muellner, Tibor Zankel, Armin Svec, Frantisek Tallarek, Ulrich TI Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers SO MATERIALS TODAY LA English DT Article ID ANALYTICAL SILICA MONOLITHS; FOCUSED ION-BEAM; ELECTROCHEMICALLY ACTIVE POLYMERS; LASER-SCANNING MICROSCOPY; RANDOM SPHERE PACKINGS; FUEL-CELL MATERIALS; ELECTRON-MICROSCOPY; CHORD-LENGTH; PORE-SCALE; GEOMETRICAL PARAMETERS AB The morphology of porous polymers determines their transport characteristics and thus their efficiency in numerous applications. Tailoring the properties of a structure to the intended use presents a major challenge to materials scientists, as long as methods for an accurate morphological characterization are lacking. We demonstrate the large-volume reconstruction and analysis of a polymeric monolith using serial block face scanning electron microscopy. Skeleton and void space of the monolith are statistically evaluated to extract key structural parameters relevant to mass transport, and to quantify finite-size effects, which are usually neglected, on their values. C1 [Muellner, Tibor; Tallarek, Ulrich] Univ Marburg, Dept Chem, D-35032 Marburg, Germany. [Zankel, Armin] Graz Univ Technol, Inst Elect Microscopy, A-8010 Graz, Austria. [Zankel, Armin] Ctr Elect Microscopy Graz, A-8010 Graz, Austria. [Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Tallarek, U (reprint author), Univ Marburg, Dept Chem, Hans Meerwein Str, D-35032 Marburg, Germany. EM tallarek@staff.uni-marburg.de NR 97 TC 18 Z9 18 U1 5 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD OCT PY 2014 VL 17 IS 8 BP 404 EP 411 DI 10.1016/j.mattod.2014.07.003 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AS3YA UT WOS:000344209800020 ER PT J AU He, JT Sun, XF Shi, TJ Schepmoes, AA Fillmore, TL Petyuk, VA Xie, F Zhao, R Gritsenko, MA Yang, F Kitabayashi, N Chae, SS Rubin, MA Siddiqui, J Wei, JT Chinnaiyan, AM Qian, WJ Smith, RD Kagan, J Srivastava, S Rodland, KD Liu, T Camp, DG AF He, Jintang Sun, Xuefei Shi, Tujin Schepmoes, Athena A. Fillmore, Thomas L. Petyuk, Vladislav A. Xie, Fang Zhao, Rui Gritsenko, Marina A. Yang, Feng Kitabayashi, Naoki Chae, Sung-Suk Rubin, Mark A. Siddiqui, Javed Wei, John T. Chinnaiyan, Arul M. Qian, Wei-Jun Smith, Richard D. Kagan, Jacob Srivastava, Sudhir Rodland, Karin D. Liu, Tao Camp, David G., II TI Antibody-independent targeted quantification of TMPRSS2-ERG fusion protein products in prostate cancer SO MOLECULAR ONCOLOGY LA English DT Article DE TMPRSS2-ERG gene fusion; ERG protein isoform; PRISM-SRM; Targeted quantification; Prostate cancer ID ABSOLUTE QUANTIFICATION; TRANSCRIPTION FACTORS; MASS-SPECTROMETRY; GENE FUSIONS; PROTEOMICS; DISCOVERY; PLASMA; CELLS AB Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. Studies of TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies suitable for quantitative studies. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays provided confident detection of 6 unique ERG peptides in both TMPRSS2-ERG positive cell lines and tissues, but not in cell lines or tissues lacking the TMPRSS2-ERG rearrangement, clearly indicating that ERG protein expression is significantly increased in the presence of the TMPRSS2ERG gene fusion. Significantly, our results provide evidence that two distinct ERG protein isoforms are simultaneously expressed in TMPRSS2-ERG positive samples as evidenced by the concomitant detection of two mutually exclusive peptides in two patient tumors and in the VCaP prostate cancer cell line. Three peptides, shared across almost all fusion protein products, were determined to be the most abundant peptides, providing "signature" peptides for detection of ERG over-expression resulting from TMPRSS2-ERG gene fusion. The PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products in prostate cancer. (C) 2014 Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. C1 [He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Petyuk, Vladislav A.; Xie, Fang; Gritsenko, Marina A.; Yang, Feng; Qian, Wei-Jun; Smith, Richard D.; Rodland, Karin D.; Liu, Tao; Camp, David G., II] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Fillmore, Thomas L.; Zhao, Rui] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kitabayashi, Naoki; Chae, Sung-Suk; Rubin, Mark A.] Weill Cornell Med Coll, Dept Pathol & Lab Med, New York, NY USA. [Siddiqui, Javed; Wei, John T.] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI USA. [Siddiqui, Javed; Chinnaiyan, Arul M.] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Ann Arbor, MI USA. [Kagan, Jacob; Srivastava, Sudhir] NCI, Div Canc Prevent, Rockville, MD USA. RP Liu, T (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM tao.liu@pnnl.gov; dave.camp@pnnl.gov RI Shi, Tujin/O-1789-2014; Smith, Richard/J-3664-2012; Wei, John/E-8967-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X; Rubin, Mark/0000-0002-8321-9950 FU National Cancer Institute (NCI) Early Detection Research Network Interagency Agreement [Y01-CN-05013-29]; National Institutes of Health [P41 GM103493]; Environmental Molecular Sciences Laboratory; Department of Energy and located at Pacific Northwest National Laboratory; Battelle Memorial Institute for the Department of Energy [DE-ACO5-76RL0 1830] FX Portions of this work were supported by the National Cancer Institute (NCI) Early Detection Research Network Interagency Agreement Y01-CN-05013-29 (to K.D.R. and D.G.C.), and National Institutes of Health grant P41 GM103493 (to R.D.S.). The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-ACO5-76RL0 1830. NR 32 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1574-7891 EI 1878-0261 J9 MOL ONCOL JI Mol. Oncol. PD OCT PY 2014 VL 8 IS 7 BP 1169 EP 1180 DI 10.1016/j.molonc.2014.02.004 PG 12 WC Oncology SC Oncology GA AS7KK UT WOS:000344434900003 PM 25266362 ER PT J AU Fan, SF Hatta, M Kim, JH Halfmann, P Imai, M Macken, CA Le, MQ Nguyen, T Neumann, G Kawaoka, Y AF Fan, Shufang Hatta, Masato Kim, Jin Hyun Halfmann, Peter Imai, Masaki Macken, Catherine A. Le, Mai Quynh Tung Nguyen Neumann, Gabriele Kawaoka, Yoshihiro TI Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE-AMINO-ACID; A VIRUSES; WILD BIRDS; GENE CONTRIBUTES; MOLECULAR-BASIS; CAP-BINDING; HONG-KONG; H5N1; PATHOGENICITY; REPLICATION AB Highly pathogenic avian H5N1 influenza viruses have sporadically transmitted to humans causing high mortality. The mechanistic basis for adaptation is still poorly understood, although several residues in viral protein PB2 are known to be important for this event. Here, we demonstrate that three residues, 147T, 339T and 588T, in PB2 play critical roles in the virulence of avian H5N1 influenza viruses in a mammalian host in vitro and in vivo and, together, result in a phenotype comparable to that conferred by the previously known PB2-627K mutation with respect to virus polymerase activity. A virus with the three residues and 627K in PB2, as has been isolated from a lethal human case, is more pathogenic than viruses with only the three residues or 627K in PB2. Importantly, H5N1 viruses bearing the former three PB2 residues have circulated widely in recent years in avian species in nature. C1 [Fan, Shufang; Hatta, Masato; Kim, Jin Hyun; Halfmann, Peter; Imai, Masaki; Neumann, Gabriele; Kawaoka, Yoshihiro] Univ Wisconsin, Sch Vet Med, Influenza Res Inst, Madison, WI 53711 USA. [Macken, Catherine A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Le, Mai Quynh] Natl Inst Hyg & Epidemiol, Dept Virol, Hanoi 10000, Vietnam. [Tung Nguyen] Natl Ctr Vet Diagnost, Dept Anim Hlth, Hanoi 10000, Vietnam. [Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol, Tokyo 1088639, Japan. [Kawaoka, Yoshihiro] Univ Tokyo, Int Res Ctr Infect Dis, Inst Med Sci, Tokyo 1088639, Japan. [Kawaoka, Yoshihiro] Exploratory Res Adv Technol, Infect Induced Host Responses Project, Saitama 3320012, Japan. RP Hatta, M (reprint author), Univ Wisconsin, Sch Vet Med, Influenza Res Inst, Madison, WI 53711 USA. EM mhatta@facstaff.wisc.edu; kawaokay@svm.vetmed.wisc.edu FU NIAID [HHSN266200700010C]; Japan Initiative for Global Research Network on Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; ERATO, Japan; National Institute of Allergy and Infectious Diseases Public Health Service research grant FX We thank Susan Watson for scientific editing. We thank Kelly Moore, Lisa Burley and Sasha Karasin for technical assistance. We thank the Centers for Disease Control and Prevention for providing us with A/Muscovy/duck/Vietnam/NCVD18/2003 virus. We also thank Drs Peter Staeheli and Otto Haller (University of Freiburg, Freiburg, Germany) for providing Mx1+/+ fertilized mouse embryos. This work was supported by the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN266200700010C), by the Japan Initiative for Global Research Network on Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, by ERATO, Japan and by a National Institute of Allergy and Infectious Diseases Public Health Service research grant. NR 48 TC 19 Z9 19 U1 2 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2014 VL 5 DI 10.1038/ncomms6021 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AR9ZB UT WOS:000343935100001 PM 25289523 ER PT J AU Guo, H Khan, MI Cheng, C Fan, W Dames, C Wu, J Minor, AM AF Guo, H. Khan, M. I. Cheng, C. Fan, W. Dames, C. Wu, J. Minor, A. M. TI Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating SO NATURE COMMUNICATIONS LA English DT Article ID INSULATOR TRANSITION; THERMAL MICROSCOPY; VO2 AB Temperature measurement is critical for many technological applications and scientific experiments, and different types of thermometers have been developed to detect temperature at macroscopic length scales. However, quantitative measurement of the temperature of nanostructures remains a challenge. Here, we show a new type of microthermometer based on a vanadium dioxide nanowire. Its mechanism is derived from the metal-insulator transition of vanadium dioxide at 68 degrees C. As our results demonstrate, this microthermometer can serve as a thermal flow meter to investigate sample heating from the incident electron beam using a transmission electron microscope. Owing to its small size the vanadium dioxide nanowire-based microthermometer has a large measurement range and high sensitivity, making it a good candidate to explore the temperature environment of small spaces or to monitor the temperature of tiny, nanoscale objects. C1 [Guo, H.; Cheng, C.; Fan, W.; Wu, J.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Guo, H.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Elect Microscopy Mol Foundry, Berkeley, CA 94720 USA. [Khan, M. I.; Dames, C.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Wu, Junqiao/G-7840-2011; Foundry, Molecular/G-9968-2014 OI Wu, Junqiao/0000-0002-1498-0148; FU US Department of Energy Early Career Award [DE-FG02-11ER46796]; UC Berkeley Graduate Division Block Grant Award; Saitama University/NEDO [SU-034142]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy [DE-AC02-05CH11231] FX The in situ experiments were performed at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Materials synthesis and data analysis were supported by the US Department of Energy Early Career Award DE-FG02-11ER46796. M.I.K. and C.D. acknowledge partial support from a UC Berkeley Graduate Division Block Grant Award and Saitama University/NEDO (SU-034142). NR 19 TC 3 Z9 3 U1 9 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2014 VL 5 AR 4986 DI 10.1038/ncomms5986 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AR9YU UT WOS:000343934500001 PM 25307160 ER PT J AU Piao, SL Nan, HJ Huntingford, C Ciais, P Friedlingstein, P Sitch, S Peng, SS Ahlstrom, A Canadell, JG Cong, N Levis, S Levy, PE Liu, LL Lomas, MR Mao, JF Myneni, RB Peylin, P Poulter, B Shi, XY Yin, GD Viovy, N Wang, T Wang, XH Zaehle, S Zeng, N Zeng, ZZ Chen, AP AF Piao, Shilong Nan, Huijuan Huntingford, Chris Ciais, Philippe Friedlingstein, Pierre Sitch, Stephen Peng, Shushi Ahlstrom, Anders Canadell, Josep G. Cong, Nan Levis, Sam Levy, Peter E. Liu, Lingli Lomas, Mark R. Mao, Jiafu Myneni, Ranga B. Peylin, Philippe Poulter, Ben Shi, Xiaoying Yin, Guodong Viovy, Nicolas Wang, Tao Wang, Xuhui Zaehle, Soenke Zeng, Ning Zeng, Zhenzhong Chen, Anping TI Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity SO NATURE COMMUNICATIONS LA English DT Article ID NET PRIMARY PRODUCTION; CARBON-DIOXIDE; CLIMATE; CO2; ACCLIMATION; ADAPTATION; ECOSYSTEMS; DROUGHT; TRENDS; GROWTH AB Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30 degrees N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDV-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming. C1 [Piao, Shilong; Cong, Nan; Wang, Tao] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. [Piao, Shilong; Nan, Huijuan; Peng, Shushi; Yin, Guodong; Wang, Xuhui; Zeng, Zhenzhong] Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China. [Piao, Shilong] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100085, Peoples R China. [Huntingford, Chris] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. [Ciais, Philippe; Peng, Shushi; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Wang, Tao] UVSQ, CNRS, CEA, Lab Sci Climat & Environn, F-91191 Gif Sur Yvette, France. [Friedlingstein, Pierre] Univ Exeter, Coll Engn Comp & Math, Exeter EX4 4QF, Devon, England. [Sitch, Stephen] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England. [Ahlstrom, Anders] Lund Univ, Dept Earth & Ecosyst Sci, SE-22362 Lund, Sweden. [Canadell, Josep G.] CSIRO, Ocean & Atmospher Flagship, Global Carbon Project, Canberra, ACT 2601, Australia. [Levis, Sam] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. [Levy, Peter E.] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Liu, Lingli] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China. [Lomas, Mark R.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Mao, Jiafu; Shi, Xiaoying] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Mao, Jiafu; Shi, Xiaoying] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Zaehle, Soenke] Max Planck Inst Biogeochem, D-07701 Jena, Germany. [Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA. [Chen, Anping] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. RP Piao, SL (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. EM slpiao@pku.edu.cn RI Huntingford, Chris/A-4307-2008; Chen, Anping/H-9960-2014; Myneni, Ranga/F-5129-2012; Mao, Jiafu/B-9689-2012; Sitch, Stephen/F-8034-2015; Zaehle, Sonke/C-9528-2017; Canadell, Josep/E-9419-2010; wang, tao/H-2830-2013; Peng, Shushi/J-4779-2014; Liu, Lingli/A-7771-2008; Zeng, Ning/A-3130-2008; Vuichard, Nicolas/A-6629-2011; Friedlingstein, Pierre/H-2700-2014; Ahlstrom, Anders/F-3215-2017; OI Mao, Jiafu/0000-0002-2050-7373; Sitch, Stephen/0000-0003-1821-8561; Zaehle, Sonke/0000-0001-5602-7956; Canadell, Josep/0000-0002-8788-3218; wang, tao/0000-0003-4792-5898; Peng, Shushi/0000-0001-5098-726X; Liu, Lingli/0000-0002-5696-3151; Zeng, Ning/0000-0002-7489-7629; Ahlstrom, Anders/0000-0003-1642-0037; Huntingford, Chris/0000-0002-5941-7770; Poulter, Benjamin/0000-0002-9493-8600 FU Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB03030404]; National Basic Research Program of China [2013CB956303]; Chinese Ministry of Environmental Protection [201209031]; National Natural Science Foundation of China [41125004, 31321061]; 111 Project [B14001]; US Department of Energy (DOE), Office of Science, Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX This study was supported by a Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03030404), the National Basic Research Program of China (grant number 2013CB956303), Chinese Ministry of Environmental Protection Grant (201209031), National Natural Science Foundation of China (41125004 and 31321061) and the 111 Project (B14001). J.M. and X.S. are supported by the US Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725. NR 41 TC 31 Z9 35 U1 16 U2 151 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2014 VL 5 AR 5018 DI 10.1038/ncomms6018 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AR9ZA UT WOS:000343935000001 PM 25318638 ER PT J AU Stoica, GM Stoica, AD Miller, MK Ma, D AF Stoica, G. M. Stoica, A. D. Miller, M. K. Ma, D. TI Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy SO NATURE COMMUNICATIONS LA English DT Article ID INTERGRANULAR STRAINS; STRENGTHENING MECHANISMS; POLYCRYSTALS; CONSTANTS; STRESSES; STEEL; DIFFRACTION; NANOCLUSTERS; ZIRCALOY-2; GENERATION AB Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation. C1 [Stoica, G. M.; Stoica, A. D.; Ma, D.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ma, D (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM dongma@ornl.gov RI Ma, Dong/G-5198-2011; Stoica, Alexandru/K-3614-2013 OI Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134 FU US Department of Energy, Division of Materials Sciences and Engineering; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725]; UT-Battelle FX This research was supported by the US Department of Energy, Division of Materials Sciences and Engineering. The neutron scattering work at the SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy, at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle. The authors (G. M. S. and D. M.) thank Dr E.A. Payzant for useful discussions. A. D. S. and D. M. acknowledge the conceptual contribution of Professor X.-L. Wang (City University Hong Kong) to the early stage of this study. We also thank Harley Skorpenske for technical support at VULCAN. NR 42 TC 13 Z9 13 U1 6 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2014 VL 5 AR 5178 DI 10.1038/ncomms6178 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AS0QF UT WOS:000343981800002 PM 25300893 ER PT J AU Sun, ZJ Wells, D Segebade, C Chemerisov, S Quigley, K AF Sun Zai-Jing Wells, D. Segebade, C. Chemerisov, S. Quigley, K. TI A study of quasi-absolute method in photon activation analysis SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Article DE Photon activation analysis (PAA); Monte Carlo Simulation; LINAC ID GIANT DIPOLE RESONANCE; MONTE-CARLO-SIMULATION; OR-EQUAL-TO; CROSS-SECTIONS; MASS REGION; THICK TARGETS; NEUTRON; NUCLEI; BREMSSTRAHLUNG; SAMPLES AB Relative methods, which are performed with the assistance of reference materials, are widely used in photon activation analysis (PAA). On the contrary, absolute methods, which are conducted without any reference material, are rarely applied due to the difficulty in obtaining photon flux. To realize absolute measurement in PAA, we retrieve photon flux in the sample via Monte Carlo simulation and raise a novel procedure-quasi-absolute method. With simulated photon flux and cross section data from existing databases, it is possible to calculate the concentration of target elements in the sample straightforwardly. A controlled experiment indicates that results from the quasi-absolute method for certain elements are nearly comparable to relative methods in practice. This technique of absolute measurement has room for improvement in the future and can serve as a validation technique for experimental data on cross sections as well. C1 [Sun Zai-Jing; Chemerisov, S.; Quigley, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wells, D.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Segebade, C.] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83209 USA. RP Sun, ZJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sunz@anl.gov FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX Supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science (No. DE-AC02-06CH11357) NR 41 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD OCT PY 2014 VL 25 IS 5 AR 050201 PG 6 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA AS7PJ UT WOS:000344447300003 ER PT J AU Pan, LH Li, J Tai, YY Graf, MJ Zhu, JX Ting, CS AF Pan, Lihua Li, Jian Tai, Yuan-Yen Graf, Matthias J. Zhu, Jian-Xin Ting, C. S. TI Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides SO PHYSICAL REVIEW B LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTORS; ENERGY GAPS; BA0.6K0.4FE2AS2; SPECTROSCOPY; SURFACE; WAVE; SYMMETRY; MODEL AB Based on a minimal two-orbital model [Tai et al., Europhys. Lett. 103, 67001 (2013)], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe2As2, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model [T. Kariyado et al., J. Phys. Soc. Jpn. 79, 083704 (2010)]. Some of the results are consistent with recent angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy experiments. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the in-gap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of in-gap states and the evolution of the LDOS near a strong scattering single impurity can be validated by further experiments probing the local quasiparticle spectrum. C1 [Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Pan, Lihua] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Peoples R China. [Tai, Yuan-Yen; Graf, Matthias J.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Pan, LH (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. FU Texas Center for Superconductivity at the University of Houston; Robert A. Welch Foundation [E-1146]; US AFOSR [FA9550-09-1-0656]; US DOE [DE-AC52-06NA25396]; LDRD program; Center for Integrated Nanotechnologies, an Office of Basic Energy Sciences user facility FX We thank Hong-Yi Chen and Bo Li for helpful discussions. This work was supported in part by the Texas Center for Superconductivity at the University of Houston and by the Robert A. Welch Foundation under the Grant No. E-1146, and also by the US AFOSR Grant No. FA9550-09-1-0656 (L.P., J.L., Y.-Y.T., and C.S.T.). Work at the Los Alamos National Laboratory was performed under the auspices of the US DOE Contract No. DE-AC52-06NA25396 and supported through the LDRD program (Y.-Y.T. and M.J.G.), and the Center for Integrated Nanotechnologies, an Office of Basic Energy Sciences user facility (J.-X.Z.). NR 66 TC 3 Z9 3 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 1 PY 2014 VL 90 IS 13 AR 134501 DI 10.1103/PhysRevB.90.134501 PG 12 WC Physics, Condensed Matter SC Physics GA AS1DB UT WOS:000344016900001 ER PT J AU Zhang, CL Song, Y Regnault, LP Su, YX Enderle, M Kulda, J Tan, GT Sims, ZC Egami, T Si, QM Dai, PC AF Zhang, Chenglin Song, Yu Regnault, L. -P. Su, Yixi Enderle, M. Kulda, J. Tan, Guotai Sims, Zachary C. Egami, Takeshi Si, Qimiao Dai, Pengcheng TI Anisotropic neutron spin resonance in underdoped superconducting NaFe1-xCoxAs SO PHYSICAL REVIEW B LA English DT Article AB We use polarized inelastic neutron scattering (INS) to study spin excitations in superconducting NaFe0.985Co0.015As (C15) with static antiferromagnetic (AF) order along the a axis of the orthorhombic structure and NaFe0.935Co0.045As (C45) without AF order. In previous unpolarized INS work, spin excitations in C15 were found to have a dispersive sharp resonance near E-r1 = 3.25 meV and a broad dispersionless mode at E-r2 = 6 meV. Our neutron polarization analysis reveals that the dispersive resonance in C15 is highly anisotropic and polarized along the a and c axes, while the dispersionless mode is isotropic similar to that of C45. Since the a-axis polarized spin excitations of the anisotropic resonance appear below T-c, our data suggests that the itinerant electrons contributing to the magnetism are also coupled to the superconductivity. C1 [Zhang, Chenglin; Song, Yu; Si, Qimiao; Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhang, Chenglin; Tan, Guotai; Sims, Zachary C.; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Regnault, L. -P.] UJF Grenoble 1, INAC, UMR E CEA, SPSMS MDN, F-38054 Grenoble, France. [Su, Yixi] Forschungszentrum Julich, Julich Ctr Neutron Sci, Outstn MLZ, D-85747 Garching, Germany. [Enderle, M.; Kulda, J.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhang, CL (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM pdai@rice.edu RI Dai, Pengcheng /C-9171-2012; Su, Yixi/K-9119-2013; Kulda, Jiri/G-8667-2016; OI Dai, Pengcheng /0000-0002-6088-3170; Su, Yixi/0000-0001-8434-1758; Kulda, Jiri/0000-0002-0570-0570; Song, Yu/0000-0002-3460-393X FU BES [DE-SC0012311]; NSF [DMR-1309531]; Robert A. Welch Foundation [C-1839, C-1411]; US DOE BES through EPSCoR [DE-FG02-08ER46528]; US DOE FX We thank Weicheng Lv, Ilya Eremin, Rong Yu, and E. Nica for useful discussions. The crystal growth and neutron scattering work at Rice was supported by the US DOE, BES, Contract No. DE-SC0012311 (P.D.). Work at Rice University was supported by NSF Grant No. DMR-1309531 (Q.S.) and Robert A. Welch Foundation Grants No. C-1839 (P.D.) and No. C-1411 (Q. S.). C.L.Z. and T.E. are partially supported by the US DOE BES through EPSCoR Grant No. DE-FG02-08ER46528. NR 36 TC 7 Z9 7 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 1 PY 2014 VL 90 IS 14 AR 140502 DI 10.1103/PhysRevB.90.140502 PG 5 WC Physics, Condensed Matter SC Physics GA AS1DF UT WOS:000344017500002 ER PT J AU An, FP Balantekin, AB Band, HR Beriguete, W Bishai, M Blyth, S Butorov, I Cao, GF Cao, J Chan, YL Chang, JF Chang, LC Chang, Y Chasman, C Chen, H Chen, QY Chen, SM Chen, X Chen, X Chen, YX Chen, Y Cheng, YP Cherwinka, JJ Chu, MC Cummings, JP de Arcos, J Deng, ZY Ding, YY Diwan, MV Draeger, E Du, XF Dwyer, DA Edwards, WR Ely, SR Fu, JY Ge, LQ Gill, R Gonchar, M Gong, GH Gong, H Grassi, M Gu, WQ Guan, MY Guo, XH Hackenburg, RW Han, GH Hans, S He, M Heeger, KM Heng, YK Hinrichs, P Hor, YK Hsiung, YB Hu, BZ Hu, LM Hu, LJ Hu, T Hu, W Huang, EC Huang, H Huang, XT Huber, P Hussain, G Isvan, Z Jaffe, DE Jaffke, P Jen, KL Jetter, S Ji, XP Ji, XL Jiang, HJ Jiao, JB Johnson, RA Kang, L Kettell, SH Kramer, M Kwan, KK Kwok, MW Kwok, T Lai, WC Lau, K Lebanowski, L Lee, J Lei, RT Leitner, R Leung, A Leung, JKC Lewis, CA Li, DJ Li, F Li, GS Li, QJ Li, WD Li, XN Li, XQ Li, YF Li, ZB Liang, H Lin, CJ Lin, GL Lin, PY Lin, SK Lin, YC Ling, JJ Link, JM Littenberg, L Littlejohn, BR Liu, DW Liu, H Liu, JL Liu, JC Liu, SS Liu, YB Lu, C Lu, HQ Luk, KB Ma, QM Ma, XY Ma, XB Ma, YQ McDonald, KT McFarlane, MC McKeown, RD Meng, Y Mitchell, I Kebwaro, JM Nakajima, Y Napolitano, J Naumov, D Naumova, E Nemchenok, I Ngai, HY Ning, Z Ochoa-Ricoux, JP Olshevski, A Patton, S Pec, V Peng, JC Piilonen, LE Pinsky, L Pun, CSJ Qi, FZ Qi, M Qian, X Raper, N Ren, B Ren, J Rosero, R Roskovec, B Ruan, XC Shao, BB Steiner, H Sun, GX Sun, JL Tam, YH Tang, X Themann, H Tsang, KV Tsang, RHM Tull, CE Tung, YC Viren, B Vorobel, V Wang, CH Wang, LS Wang, LY Wang, M Wang, NY Wang, RG Wang, W Wang, WW Wang, X Wang, YF Wang, Z Wang, Z Wang, ZM Webber, DM Wei, HY Wei, YD Wen, LJ Whisnant, K White, CG Whitehead, L Wise, T Wong, HLH Wong, SCF Worcester, E Wu, Q Xia, DM Xia, JK Xia, X Xing, ZZ Xu, JY Xu, JL Xu, J Xu, Y Xue, T Yan, J Yang, CC Yang, L Yang, MS Yang, MT Ye, M Yeh, M Yeh, YS Young, BL Yu, GY Yu, JY Yu, ZY Zang, SL Zeng, B Zhan, L Zhang, C Zhang, FH Zhang, JW Zhang, QM Zhang, Q Zhang, SH Zhang, YC Zhang, YM Zhang, YH Zhang, YX Zhang, ZJ Zhang, ZY Zhang, ZP Zhao, J Zhao, QW Zhao, Y Zhao, YB Zheng, L Zhong, WL Zhou, L Zhou, ZY Zhuang, HL Zou, JH AF An, F. P. Balantekin, A. B. Band, H. R. Beriguete, W. Bishai, M. Blyth, S. Butorov, I. Cao, G. F. Cao, J. Chan, Y. L. Chang, J. F. Chang, L. C. Chang, Y. Chasman, C. Chen, H. Chen, Q. Y. Chen, S. M. Chen, X. Chen, X. Chen, Y. X. Chen, Y. Cheng, Y. P. Cherwinka, J. J. Chu, M. C. Cummings, J. P. de Arcos, J. Deng, Z. Y. Ding, Y. Y. Diwan, M. V. Draeger, E. Du, X. F. Dwyer, D. A. Edwards, W. R. Ely, S. R. Fu, J. Y. Ge, L. Q. Gill, R. Gonchar, M. Gong, G. H. Gong, H. Grassi, M. Gu, W. Q. Guan, M. Y. Guo, X. H. Hackenburg, R. W. Han, G. H. Hans, S. He, M. Heeger, K. M. Heng, Y. K. Hinrichs, P. Hor, Y. K. Hsiung, Y. B. Hu, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Huang, E. C. Huang, H. Huang, X. T. Huber, P. Hussain, G. Isvan, Z. Jaffe, D. E. Jaffke, P. Jen, K. L. Jetter, S. Ji, X. P. Ji, X. L. Jiang, H. J. Jiao, J. B. Johnson, R. A. Kang, L. Kettell, S. H. Kramer, M. Kwan, K. K. Kwok, M. W. Kwok, T. Lai, W. C. Lau, K. Lebanowski, L. Lee, J. Lei, R. T. Leitner, R. Leung, A. Leung, J. K. C. Lewis, C. A. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Liang, H. Lin, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, Y. C. Ling, J. J. Link, J. M. Littenberg, L. Littlejohn, B. R. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, Y. B. Lu, C. Lu, H. Q. Luk, K. B. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. McDonald, K. T. McFarlane, M. C. McKeown, R. D. Meng, Y. Mitchell, I. Kebwaro, J. Monari Nakajima, Y. Napolitano, J. Naumov, D. Naumova, E. Nemchenok, I. Ngai, H. Y. Ning, Z. Ochoa-Ricoux, J. P. Olshevski, A. Patton, S. Pec, V. Peng, J. C. Piilonen, L. E. Pinsky, L. Pun, C. S. J. Qi, F. Z. Qi, M. Qian, X. Raper, N. Ren, B. Ren, J. Rosero, R. Roskovec, B. Ruan, X. C. Shao, B. B. Steiner, H. Sun, G. X. Sun, J. L. Tam, Y. H. Tang, X. Themann, H. Tsang, K. V. Tsang, R. H. M. Tull, C. E. Tung, Y. C. Viren, B. Vorobel, V. Wang, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Webber, D. M. Wei, H. Y. Wei, Y. D. Wen, L. J. Whisnant, K. White, C. G. Whitehead, L. Wise, T. Wong, H. L. H. Wong, S. C. F. Worcester, E. Wu, Q. Xia, D. M. Xia, J. K. Xia, X. Xing, Z. Z. Xu, J. Y. Xu, J. L. Xu, J. Xu, Y. Xue, T. Yan, J. Yang, C. C. Yang, L. Yang, M. S. Yang, M. T. Ye, M. Yeh, M. Yeh, Y. S. Young, B. L. Yu, G. Y. Yu, J. Y. Yu, Z. Y. Zang, S. L. Zeng, B. Zhan, L. Zhang, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, Q. Zhang, S. H. Zhang, Y. C. Zhang, Y. M. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhao, J. Zhao, Q. W. Zhao, Y. Zhao, Y. B. Zheng, L. Zhong, W. L. Zhou, L. Zhou, Z. Y. Zhuang, H. L. Zou, J. H. CA Daya Bay Collaboration TI Search for a Light Sterile Neutrino at Daya Bay SO PHYSICAL REVIEW LETTERS LA English DT Article ID OSCILLATIONS; NU(MU) AB A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2) < vertical bar Delta m(41)(2)vertical bar < 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2 theta(14) cover the 10(-3) eV(2) less than or similar to vertical bar Delta m(41)(2)vertical bar less than or similar to 0.1 eV(2) region, which was largely unexplored. C1 [An, F. P.] E China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China. [Balantekin, A. B.; Band, H. R.; Cherwinka, J. J.; Heeger, K. M.; Hinrichs, P.; Lewis, C. A.; McFarlane, M. C.; Webber, D. M.; Wise, T.] Univ Wisconsin, Madison, WI USA. [Beriguete, W.; Bishai, M.; Chasman, C.; Diwan, M. V.; Gill, R.; Hackenburg, R. W.; Hans, S.; Hu, L. M.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Ling, J. J.; Littenberg, L.; Qian, X.; Rosero, R.; Themann, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blyth, S.; Hsiung, Y. B.; Tung, Y. C.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Butorov, I.; Gonchar, M.; Naumov, D.; Nemchenok, I.; Olshevski, A.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Cao, G. F.; Cao, J.; Chang, J. F.; Chen, H.; Chen, X.; Cheng, Y. P.; Deng, Z. Y.; Ding, Y. Y.; Du, X. F.; Fu, J. Y.; Grassi, M.; Guan, M. Y.; He, M.; Heng, Y. K.; Hu, T.; Hu, W.; Jetter, S.; Ji, X. L.; Li, F.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, Y. F.; Liu, J. C.; Liu, Y. B.; Lu, H. Q.; Ma, Q. M.; Ma, X. Y.; Ma, Y. Q.; Ning, Z.; Qi, F. Z.; Sun, G. X.; Tang, X.; Wang, L. S.; Wang, L. Y.; Wang, R. G.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Wen, L. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Yang, C. C.; Yang, M. S.; Ye, M.; Yu, Z. Y.; Zhan, L.; Zhang, F. H.; Zhang, J. W.; Zhang, S. H.; Zhang, Y. H.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhuang, H. L.; Zou, J. H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Chan, Y. L.; Chen, X.; Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Tam, Y. H.; Wong, S. C. F.; Xu, J. Y.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Chang, L. C.; Hu, B. Z.; Jen, K. L.; Lin, G. L.; Lin, P. Y.; Yeh, Y. S.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. [Chang, Y.; Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Chen, Q. Y.; Huang, X. T.; Jiao, J. B.; Wang, M.; Wu, Q.; Xia, X.; Yang, M. T.] Shandong Univ, Jinan 250100, Peoples R China. [Chen, S. M.; Gong, G. H.; Gong, H.; Hussain, G.; Lebanowski, L.; Shao, B. B.; Wang, Z.; Wei, H. Y.; Xue, T.; Yu, J. Y.; Zhang, Y. M.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chen, Y. X.; Ma, X. B.; Zhao, Y.] North China Elect Power Univ, Beijing, Peoples R China. [Chen, Y.] Shenzhen Univ, Shenzhen, Peoples R China. [Cummings, J. P.] Siena Coll, Loudonville, NY USA. [de Arcos, J.; Draeger, E.; White, C. G.] IIT, Dept Phys, Chicago, IL 60616 USA. [Dwyer, D. A.; Edwards, W. R.; Kramer, M.; Lee, J.; Lin, C. J.; Luk, K. B.; Nakajima, Y.; Ochoa-Ricoux, J. P.; Patton, S.; Steiner, H.; Tsang, K. V.; Tull, C. E.; Wong, H. L. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ely, S. R.; Huang, E. C.; Ling, J. J.; Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL USA. [Ge, L. Q.; Jiang, H. J.; Lai, W. C.; Li, F.; Lin, Y. C.; Zeng, B.; Zhang, Q.] Chengdu Univ Technol, Chengdu, Peoples R China. [Gu, W. Q.; Li, G. S.; Liu, J. L.] Shanghai Jiao Tong Univ, Shanghai, Peoples R China. [Guo, X. H.; Hu, L. J.; Wang, N. Y.; Xu, J.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Han, G. H.; McKeown, R. D.; Wang, W.; Zhao, Y.] Coll William & Mary, Williamsburg, VA USA. [Heeger, K. M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hor, Y. K.; Huber, P.; Jaffke, P.; Link, J. M.; Meng, Y.; Piilonen, L. E.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA USA. [Huang, H.; Ren, J.; Ruan, X. C.; Zhou, L.] China Inst Atom Energy, Beijing, Peoples R China. [Ji, X. P.; Li, X. Q.; Xu, Y.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Johnson, R. A.; Littenberg, L.] Univ Cincinnati, Dept Phys, Cincinnati, OH USA. [Kang, L.; Lei, R. T.; Ren, B.; Wei, Y. D.; Yang, L.; Zhang, Z. J.] Dongguan Univ Technol, Dongguan, Peoples R China. [Kramer, M.; Luk, K. B.; Steiner, H.; Wong, H. L. H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kwok, T.; Leung, A.; Leung, J. K. C.; Liu, S. S.; Ngai, H. Y.; Pun, C. S. J.] Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Peoples R China. [Lau, K.; Lin, S. K.; Liu, D. W.; Liu, H.; Mitchell, I.; Pinsky, L.; Whitehead, L.] Univ Houston, Dept Phys, Houston, TX USA. [Leitner, R.; Pec, V.; Roskovec, B.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Li, D. J.; Liang, H.; Zhang, Y. C.; Zhang, Z. P.; Zheng, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, Z. B.; Wang, W.] Sun Yat Sen Zhongshan Univ, Guangzhou, Guangdong, Peoples R China. [Lu, C.; McDonald, K. T.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [McKeown, R. D.; Tsang, R. H. M.] CALTECH, Pasadena, CA 91125 USA. [Kebwaro, J. Monari; Yan, J.; Zhang, Q. M.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Napolitano, J.] Temple Univ, Dept Phys, Coll Sci & Technol, Philadelphia, PA 19122 USA. [Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile. [Qi, M.; Wang, W. W.; Yu, G. Y.; Zang, S. L.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. [Raper, N.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY USA. [Sun, J. L.; Zhang, Y. X.] China Gen Nucl Power Grp, Shenzhen, Peoples R China. [Wang, X.] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China. [Whisnant, K.; Young, B. L.] Iowa State Univ, Ames, IA USA. RP An, FP (reprint author), E China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China. RI Link, Jonathan/L-2560-2013; Cao, Jun/G-8701-2012; Balantekin, Akif Baha/E-4776-2010; Wen, Liangjian/C-5113-2015; Zhang, Shengbai/D-4885-2013; Nemchenok, Igor/F-9715-2014; Olshevskiy, Alexander/I-1580-2016; Ling, Jiajie/I-9173-2014; Liu, Jianglai/P-2587-2015; OI Zhong, Weili/0000-0002-4566-5490; Ngai, Ho Yin/0000-0003-0336-2165; HSIUNG, YEE/0000-0003-4801-1238; Qian, Xin/0000-0002-7903-7935; Zhang, Chao/0000-0003-2298-6272; Grassi, Marco/0000-0003-2422-6736; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Link, Jonathan/0000-0002-1514-0650; Cao, Jun/0000-0002-3586-2319; Balantekin, Akif Baha/0000-0002-2999-0111; Wen, Liangjian/0000-0003-4541-9422; Zhang, Shengbai/0000-0003-0833-5860; Olshevskiy, Alexander/0000-0002-8902-1793; Ling, Jiajie/0000-0003-2982-0670; Liu, Jianglai/0000-0002-4563-3157; Wang, Zhimin/0000-0002-8651-8999 FU Ministry of Science and Technology of China; U.S. Department of Energy; Chinese Academy of Sciences; National Natural Science Foundation of China; Guangdong provincial government; Shenzhen municipal government; China General Nuclear Power Group; Key Laboratory of Particle and Radiation Imaging (Tsinghua University); Ministry of Education, Key Laboratory of Particle Physics and Particle Irradiation (Shandong University); Ministry of Education, Shanghai Laboratory for Particle Physics and Cosmology; Research Grants Council of the Hong Kong Special Administrative Region of China; University Development Fund of The University of Hong Kong; MOE program for Research of Excellence at National Taiwan University, National Chiao-Tung University; Taiwan, the U.S. National Science Foundation; Alfred P. Sloan Foundation; Ministry of Education, Youth, and Sports of the Czech Republic; Joint Institute of Nuclear Research in Dubna, Russia; CNFC-RFBR joint research program; National Commission of Scientific and Technological Research of Chile; Tsinghua University Initiative Scientific Research Program FX Daya Bay is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory of Particle Physics and Particle Irradiation (Shandong University), the Ministry of Education, Shanghai Laboratory for Particle Physics and Cosmology, the Research Grants Council of the Hong Kong Special Administrative Region of China, the University Development Fund of The University of Hong Kong, the MOE program for Research of Excellence at National Taiwan University, National Chiao-Tung University, and NSC fund support from Taiwan, the U.S. National Science Foundation, the Alfred P. Sloan Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the CNFC-RFBR joint research program, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program. We acknowledge Yellow River Engineering Consulting Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. We are grateful for the ongoing cooperation from the China General Nuclear Power Group and China Light and Power Company. NR 57 TC 40 Z9 40 U1 3 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 1 PY 2014 VL 113 IS 14 AR 141802 DI 10.1103/PhysRevLett.113.141802 PG 7 WC Physics, Multidisciplinary SC Physics GA AS1PD UT WOS:000344051700002 PM 25325631 ER PT J AU Mitamura, H Watanuki, R Kaneko, K Onozaki, N Amou, Y Kittaka, S Kobayashi, R Shimura, Y Yamamoto, I Suzuki, K Chi, S Sakakibara, T AF Mitamura, H. Watanuki, R. Kaneko, K. Onozaki, N. Amou, Y. Kittaka, S. Kobayashi, R. Shimura, Y. Yamamoto, I. Suzuki, K. Chi, S. Sakakibara, T. TI Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIZATION PROCESS; PHASE-TRANSITION; RBFE(MOO4)(2); CSFE(SO4)(2) AB Magnetic field (B) variation of the electrical polarization P-c (parallel to c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)(2) is examined up to the saturation point of the magnetization for B perpendicular to c.P-c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P-c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a new mechanism for magnetoferroelectricity. The obtained field-temperature phase diagram of ferroelectricity agree well with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet. C1 [Mitamura, H.; Kittaka, S.; Kobayashi, R.; Shimura, Y.; Sakakibara, T.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Watanuki, R.; Onozaki, N.; Amou, Y.; Yamamoto, I.; Suzuki, K.] Yokohama Natl Univ, Fac Engn, Yokohama, Kanagawa 2408501, Japan. [Kaneko, K.] Japan Atom Energy Agcy, Quantum Beam Sci Ctr, Naka, Ibaraki 3191195, Japan. [Kobayashi, R.; Chi, S.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Mitamura, H (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. EM mitamura@issp.u-tokyo.ac.jp RI Chi, Songxue/A-6713-2013; OI Chi, Songxue/0000-0002-3851-9153; Suzuki, Kazuya/0000-0002-2231-4225; Yamamoto, Isao/0000-0001-5031-3994 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; [26400329] FX We thank T. Inami and T. Waki for critical discussions and useful technical advice. The work at ORNL was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. WAND is operated jointly by ORNL and Japan Atomic Energy Agency under US-Japan Cooperative Program on Neutron Scattering. The present study was supported by a Grant-in-Aid for Scientific Research C (No. 26400329). NR 29 TC 5 Z9 5 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 1 PY 2014 VL 113 IS 14 AR 147202 DI 10.1103/PhysRevLett.113.147202 PG 5 WC Physics, Multidisciplinary SC Physics GA AS1PD UT WOS:000344051700006 PM 25325654 ER PT J AU Molvig, K Vold, EL Dodd, ES Wilks, SC AF Molvig, Kim Vold, Erik L. Dodd, Evan S. Wilks, Scott C. TI Nonlinear Structure of the Diffusing Gas-Metal Interface in a Thermonuclear Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article AB This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given. C1 [Molvig, Kim; Vold, Erik L.; Dodd, Evan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Molvig, Kim] MIT, Cambridge, MA 02139 USA. [Wilks, Scott C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Molvig, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Thermonuclear Burn Initiative at Los Alamos National Laboratory, LLC for the U.S. Department of Energy [DE-AC52-06NA25396]; Thermonuclear Burn Initiative at Lawrence Livermore National Laboratory, LLC under Office of Science [DE-AC52-07NA27344] FX This work was performed under the auspices of the Thermonuclear Burn Initiative at Los Alamos National Laboratory, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory, LLC under Office of Science Contract No. DE-AC52-07NA27344. NR 25 TC 9 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 1 PY 2014 VL 113 IS 14 AR 145001 DI 10.1103/PhysRevLett.113.145001 PG 5 WC Physics, Multidisciplinary SC Physics GA AS1PD UT WOS:000344051700005 PM 25325648 ER PT J AU Althaus, CL Joos, B Perelson, AS Gunthard, HF AF Althaus, Christian L. Joos, Beda Perelson, Alan S. Guenthard, Huldrych F. TI Quantifying the Turnover of Transcriptional Subclasses of HIV-1-Infected Cells SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID POTENT ANTIRETROVIRAL THERAPY; BLOOD MONONUCLEAR-CELLS; VIRUS TYPE-1 INFECTION; VIRAL GENERATION TIME; CD8(+) T-LYMPHOCYTES; DYNAMICS IN-VIVO; HIV-1 INFECTION; PERIPHERAL-BLOOD; LATENT RESERVOIR; MATHEMATICAL-ANALYSIS AB HIV-1-infected cells in peripheral blood can be grouped into different transcriptional subclasses. Quantifying the turnover of these cellular subclasses can provide important insights into the viral life cycle and the generation and maintenance of latently infected cells. We used previously published data from five patients chronically infected with HIV-1 that initiated combination antiretroviral therapy (cART). Patient-matched PCR for unspliced and multiply spliced viral RNAs combined with limiting dilution analysis provided measurements of transcriptional profiles at the single cell level. Furthermore, measurement of intracellular transcripts and extracellular virion-enclosed HIV-1 RNA allowed us to distinguish productive from non-productive cells. We developed a mathematical model describing the dynamics of plasma virus and the transcriptional subclasses of HIV-1-infected cells. Fitting the model to the data allowed us to better understand the phenotype of different transcriptional subclasses and their contribution to the overall turnover of HIV-1 before and during cART. The average number of virus-producing cells in peripheral blood is small during chronic infection. We find that a substantial fraction of cells can become defectively infected. Assuming that the infection is homogenous throughout the body, we estimate an average in vivo viral burst size on the order of 10(4) virions per cell. Our study provides novel quantitative insights into the turnover and development of different subclasses of HIV-1-infected cells, and indicates that cells containing solely unspliced viral RNA are a good marker for viral latency. The model illustrates how the pool of latently infected cells becomes rapidly established during the first months of acute infection and continues to increase slowly during the first years of chronic infection. Having a detailed understanding of this process will be useful for the evaluation of viral eradication strategies that aim to deplete the latent reservoir of HIV-1. C1 [Althaus, Christian L.] Univ Bern, ISPM, Bern, Switzerland. [Joos, Beda; Guenthard, Huldrych F.] Univ Zurich, Div Infect Dis & Hosp Epidemiol, Univ Hosp Zurich, Zurich, Switzerland. [Perelson, Alan S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Althaus, CL (reprint author), Univ Bern, ISPM, Bern, Switzerland. EM christian.althaus@alumni.ethz.ch RI Infektiologie, USZ/A-6921-2011; Althaus, Christian/F-6008-2015; Joos, Beda/D-5547-2009; gunthard, huldrych/F-1724-2011 OI Althaus, Christian/0000-0002-5230-6760; Joos, Beda/0000-0002-3082-8875; gunthard, huldrych/0000-0002-1142-6723 FU Swiss National Science Foundation (SNSF) [136737]; Novartis Foundation [02A03]; Hartmann Muller Stiftung [898]; Hermann Klaus Stiftung; Abbott Inc. [SWIT-02-002]; Roche Research Foundation [281-2005]; SNSF [112670]; University of Zurich's Clinical Research Priority Program (CRPP) "Viral infectious diseases: Zurich Primary HIV Infection Study"; National Institutes of Health (NIH) [AI028433, OD011095, AI067854, AI100645] FX CLA is funded by an Ambizione grant from the Swiss National Science Foundation (SNSF, http://www.snf.ch, grant 136737). Furthermore, the clinical and laboratory based work was supported by the Novartis Foundation (grant 02A03), Hartmann Muller Stiftung (http://www.hms.uzh.ch, grant 898), the Hermann Klaus Stiftung, an unrestricted educational grant by Abbott Inc. (grant SWIT-02-002), the Roche Research Foundation (grant 281-2005), the SNSF (grant 112670) and the University of Zurich's Clinical Research Priority Program (CRPP) "Viral infectious diseases: Zurich Primary HIV Infection Study" (to HFG). ASP was supported by the National Institutes of Health (http://www.nih.gov, NIH, grant AI028433, OD011095, AI067854 (Center for HIV Vaccine Immunology, http://chavi.org) and AI100645 (Center for HIV Vaccine Immunology - Immunogen Discovery, http://chavi-id.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 71 TC 7 Z9 7 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2014 VL 10 IS 10 AR e1003871 DI 10.1371/journal.pcbi.1003871 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AS9FG UT WOS:000344547900025 PM 25340797 ER PT J AU Axen, SD Erbilgin, O Kerfeld, CA AF Axen, Seth D. Erbilgin, Onur Kerfeld, Cheryl A. TI A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID B-12-DEPENDENT 1,2-PROPANEDIOL DEGRADATION; MULTIPLE SEQUENCE ALIGNMENT; SEROVAR TYPHIMURIUM LT2; PENTAMERIC VERTEX PROTEINS; SALMONELLA-TYPHIMURIUM; CARBOXYSOME SHELL; ETHANOLAMINE UTILIZATION; CARBONIC-ANHYDRASE; ESCHERICHIA-COLI; CLOSTRIDIUM-KLUYVERI AB Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications. C1 [Axen, Seth D.] DOE Joint Genome Inst, Walnut Creek, CA 94595 USA. [Erbilgin, Onur; Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Kerfeld, Cheryl A.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kerfeld, Cheryl A.] Berkeley Synthet Biol Inst, Berkeley, CA USA. RP Axen, SD (reprint author), DOE Joint Genome Inst, Walnut Creek, CA 94595 USA. EM ckerfeld@lbl.gov OI erbilgin, onur/0000-0002-6122-6156 FU National Science Foundation [EF1105892, MCB1160614]; US Department of Energy [DE-AC02 05CH11231] FX This work was supported by the National Science Foundation (EF1105892 and MCB1160614 to CAK) and the US Department of Energy contract no. DE-AC02 05CH11231 (to CAK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 121 TC 29 Z9 29 U1 1 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2014 VL 10 IS 10 AR e1003898 DI 10.1371/journal.pcbi.1003898 PG 20 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AS9FG UT WOS:000344547900042 PM 25340524 ER PT J AU Benedict, MN Mundy, MB Henry, CS Chia, N Price, ND AF Benedict, Matthew N. Mundy, Michael B. Henry, Christopher S. Chia, Nicholas Price, Nathan D. TI Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID TRANSPOSON MUTANT LIBRARY; NON-MEVALONATE PATHWAY; FLUX BALANCE ANALYSIS; ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; ADAPTIVE EVOLUTION; RECONSTRUCTION; IDENTIFICATION; NETWORKS; MUTAGENESIS AB Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface. C1 [Benedict, Matthew N.; Price, Nathan D.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Mundy, Michael B.; Chia, Nicholas] Mayo Clin, Ctr Individualized Med, Rochester, MN USA. [Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA. [Chia, Nicholas] Mayo Clin, Dept Surg, Rochester, MN USA. [Chia, Nicholas] Mayo Clin, Dept Physiol & Bioengn, Rochester, MN USA. [Price, Nathan D.] Inst Syst Biol, Seattle, WA USA. RP Benedict, MN (reprint author), Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. EM chia.nicholas@mayo.edu; nprice@systemsbiology.org FU Department of Energy Genomic Sciences program [DE-FG02-10ER64999, ER65103]; Camille Dreyfus Teacher-Scholar Award; Center for Individualized Medicine at the Mayo Clinic, the Minnesota Biotechnology Partnership; NIH [R01 CA179243]; Mayo Clinic Research National Institutes of Health (NIH) Relief Grant Program; Office of Science, Office of Biological and Environmental Research of the US Department of Energy as part of the DOE Systems Biology Knowledgebase [DE-ACO2-06CH11357] FX MNB and NDP gratefully acknowledge support from the Department of Energy Genomic Sciences program awards #DE-FG02-10ER64999 and ER65103 (http://genomicscience.energy.gov/) and the Camille Dreyfus Teacher-Scholar Award (http://www.dreyfus.org/awards/camille_dreyfus_teacher_award.shtml). MBM and NC gratefully acknowledge support from the Center for Individualized Medicine at the Mayo Clinic (http://mayoresearch.mayo.edu/center-for-individualized-medicine/), the Minnesota Biotechnology Partnership (http://minnesotapartnership.info/), from the NIH (grant number R01 CA179243), and from the Mayo Clinic Research National Institutes of Health (NIH) Relief Grant Program. CSH acknowledges support from the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract number DE-ACO2-06CH11357, as part of the DOE Systems Biology Knowledgebase (http://kbase.us/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 63 TC 18 Z9 18 U1 2 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2014 VL 10 IS 10 AR e1003882 DI 10.1371/journal.pcbi.1003882 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AS9FG UT WOS:000344547900035 PM 25329157 ER PT J AU Chavez, D Klapotke, TM Parrish, D Piercey, DG Stierstorfer, J AF Chavez, David Klapoetke, Thomas M. Parrish, Damon Piercey, Davin G. Stierstorfer, Joerg TI The Synthesis and Energetic Properties of 3,4-Bis(2,2,2-trinitroethylamino)furazan (BTNEDAF) SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Explosives; Furazans; Trinitroethyl; HEDM ID SET MODEL CHEMISTRY; SALTS AB Energetic furazan 3,4-bis(trinitroethylamino)furazan (BTNEDAF) was synthesized in 70% yield. BTNEDAF was characterized as an energetic material in terms of performance, mechanical sensitivity, and thermal stability. BTNEDAF was crystallized from various solvents resulting in multiple polymorphs with varying densities. Some of these polymorphs were characterized with respect to their sensitivity properties. Additionally, the performance of these different polymorphs were calculated using the EXPLO5 code. BTNEDAF was also characterized by vibrational spectroscopy, multinuclear NMR spectroscopy, elemental analysis, scanning electron microscopy (SEM), and calorimetric experiments. C1 [Chavez, David; Piercey, Davin G.] Los Alamos Natl Lab, Weap Expt Div, Los Alamos, NM 87545 USA. [Klapoetke, Thomas M.; Piercey, Davin G.; Stierstorfer, Joerg] Univ Munich, Dept Chem, D-81377 Munich, Germany. [Klapoetke, Thomas M.] Univ Maryland, Dept Mech Engn, UMD, CECD, College Pk, MD 20742 USA. [Parrish, Damon] US Navy, Res Lab, Struct Matter Lab, Washington, DC 20375 USA. RP Chavez, D (reprint author), Los Alamos Natl Lab, Weap Expt Div, POB 1663, Los Alamos, NM 87545 USA. EM dechavez@lanl.gov RI Stierstorfer, Joerg/B-5261-2015; Klapoetke, Thomas/B-6055-2014 OI Stierstorfer, Joerg/0000-0002-2105-1275; Klapoetke, Thomas/0000-0003-3276-1157 FU Ludwig-Maximilian University of Munich (LMU); Fonds der Chemischen Industrie (FCI); European Research Office (ERO) of the U.S. Army Research Laboratory (ARL); Armament Research, Development and Engineering Center (ARDEC) [W911NF-09-2-0018, W911NF-09-1-0120, W011NF-09-1-0056]; Joint Munitions Technology Development Program; Office of Naval Research [N00014-11-AF-0-0002] FX Financial support of this work by the Ludwig-Maximilian University of Munich (LMU), the Fonds der Chemischen Industrie (FCI), the European Research Office (ERO) of the U.S. Army Research Laboratory (ARL) and the Armament Research, Development and Engineering Center (ARDEC) under contract nos. W911NF-09-2-0018, W911NF-09-1-0120 and W011NF-09-1-0056 is gratefully acknowledged. The authors acknowledge collaborations with Dr. Mila Krupka (OZM Research, Czech Republic) in the development of new testing and evaluation methods for energetic materials and with Dr. Muhamed Sucesca (Brodarski Institute, Croatia) in the development of new computational codes to predict the detonation and propulsion parameters of novel explosives. We are indebted to and thank Drs. Betsy M. Rice and Brad Forch (ARL, Aberdeen, Proving Ground, MD). Stefan Huber is thanked for assistance with sensitivity measurements. The authors (D. E. C.) would also like to thank the Joint Munitions Technology Development Program for funding. D. E. C. would also like to thank Anna Giambra, Daniel Prestion, Mary Sandstrom, Jose Archuleta, Bettina Reardon, and Greg Long for performing the sensitivity characterization and testing. We (D. E. C. and D. A. P.) would also like to thank the Office of Naval Research (Award No. N00014-11-AF-0-0002). NR 42 TC 8 Z9 8 U1 2 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2014 VL 39 IS 5 BP 641 EP 648 DI 10.1002/prep.201300135 PG 8 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA AS0MD UT WOS:000343970200003 ER PT J AU He, L Wang, MX Chen, W Conzelmann, G AF He, Lin Wang, Mingxian Chen, Wei Conzelmann, Guenter TI Incorporating social impact on new product adoption in choice modeling: A case study in green vehicles SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE Discrete choice analysis; Social impact; Social network simulations; Product adoption; Hybrid vehicles ID DISCRETE-CHOICE; NETWORK; DESIGN; PREFERENCES; DYNAMICS AB While discrete choice analysis is prevalent in capturing consumer preferences and describing their choice behaviors in product design, the traditional choice modeling approach assumes that each individual makes independent decisions, without considering the social impact. However, empirical studies show that choice is social - influenced by many factors beyond engineering performance of a product and consumer attributes. To alleviate this limitation, we propose a new choice modeling framework to capture the dynamic influence from social networks on consumer adoption of new products. By introducing social influence attributes into a choice utility function, social network simulation is integrated with the traditional discrete choice analysis in a three-stage process. Our study shows the need for considering social impact in forecasting new product adoption. Using hybrid electric vehicles as an example, our work illustrates the procedure of social network construction, social influence evaluation, and choice model estimation based on data from the National Household Travel Survey. Our study also demonstrates several interesting findings on the dynamic nature of new technology adoption and how social networks may influence hybrid electric vehicle adoption. (C) 2014 Elsevier Ltd. All rights reserved. C1 [He, Lin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Wang, Mingxian; Chen, Wei] Northwestern Univ, Evanston, IL 60208 USA. [Conzelmann, Guenter] Argonne Natl Lab, Ctr Energy Environm & Econ Syst Anal, Argonne, IL 60439 USA. RP Chen, W (reprint author), Northwestern Univ, 2145 Sheridan Rd,Tech 8224, Evanston, IL 60208 USA. EM weichen@northwestern.edu RI Chen, Wei/B-7574-2009 FU National Science Foundation [CMMI-0700585, DUE-0920047]; ISEN (Initiative for Sustainability and Energy at Northwestern) FX Grant supports from National Science Foundation (CMMI-0700585 and DUE-0920047) and ISEN (Initiative for Sustainability and Energy at Northwestern) are greatly appreciated. NR 50 TC 8 Z9 8 U1 7 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD OCT PY 2014 VL 32 BP 421 EP 434 DI 10.1016/j.trd.2014.08.007 PG 14 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA AS3ZD UT WOS:000344212600036 ER PT J AU Boyle, K Zoback, M AF Boyle, Katie Zoback, Mark TI The Stress State of the Northwest Geysers, California Geothermal Field, and Implications for Fault-Controlled Fluid Flow SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID NORTHERN CALIFORNIA; AREA; EARTHQUAKES; RESERVOIR AB A dataset comprised of well-constrained focal mechanisms for 6147 earthquakes recorded in the northwest Geysers geothermal field during the period of 2005-2012 was utilized to conduct a detailed stress study within and below the geothermal reservoir. The high-quality focal mechanisms were organized into grid blocks of varying size using a 3D octree gridding algorithm in which discretization was governed by data density. This method allows for separate inversions of contiguous blocks of seismicity at a relatively fine scale. We obtained the three principal stress orientations for every grid block containing at least 25 events by inverting for the best-fit stress tensor within each grid block. The principal stress orientations were used to determine which of the two nodal planes for each focal mechanism had the highest ratio of resolved shear-to-normal stresses and was thus more likely to be the fault plane. We found a normal/strike-slip faulting regime (S-H max approximate to S-v > S-h min) both within and below the reservoir, consistent with the extensional and strike-slip tectonics in the region surrounding The Geysers. In addition, an average S-H max orientation of N26 degrees E was obtained for the studied crustal volume. These observations suggest that injection and production activities over the past 50+ years do not appear to have significantly affected the local stress field. The presumed fault planes are steeply dipping with northeast-southwest to east-west strike directions suggesting that these are the principal flow directions both within the low matrix permeability graywacke reservoir and in the wholly concealed granitic pluton (locally referred to as the felsite) basement below. C1 [Boyle, Katie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zoback, Mark] Stanford Univ, Stanford, CA 94305 USA. RP Boyle, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mail Stop 74R316C, Berkeley, CA 94720 USA. FU Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program of the U.S. Department of Energy [DE-AC02-05CH11231]; United States Government FX We would like to thank Ernest Majer and Steve Jarpe for their suggestions and Mark Walters, Melinda Wright, and Craig Hartline of Calpine Corporation for input and access to data. We thank Hiroke Sone for use of the stress inversion program that he developed. This work is funded by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231.; This document was prepared as an account of work sponsored by the United States Government. Although this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. NR 32 TC 9 Z9 9 U1 0 U2 10 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD OCT PY 2014 VL 104 IS 5 BP 2303 EP 2312 DI 10.1785/0120130284 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AR5TG UT WOS:000343645700012 ER PT J AU Schiayon, S Webster, T Dickerhoff, D Bauman, F AF Schiayon, Stefano Webster, Tom Dickerhoff, Darryl Bauman, Fred TI Stratification prediction model for perimeter zone UFAD diffusers based on laboratory testing with solar simulator SO ENERGY AND BUILDINGS LA English DT Article DE Underfloor air distribution (UFAD); Air temperature stratification; Diffuser; Ventilation; Thermal comfort ID AIR-DISTRIBUTION SYSTEM; COOLING LOAD; FLOOR AB Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised floor to provide conditioned air through floor diffusers that creates a vertical thermal stratification under cooling operation. Thermal stratification affects energy, indoor air quality and thermal comfort performance. The purpose of this study was to characterize the influence of linear bar grilles and VAV directional diffusers on thermal stratification in perimeter zones by developing theoretically and empirically based prediction models. Forty-seven laboratory experiments were carried out in a climatic chamber equipped with a solar simulator. Linear bar grilles tend to produce less stratification than VAV directional diffusers and, in some cases with high airflow rates, may generate reverse stratification. Lowering internal blinds causes an increase in thermal stratification. Models to predict temperature stratification for the two tested diffusers have been developed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Schiayon, Stefano; Webster, Tom; Dickerhoff, Darryl; Bauman, Fred] Univ Calif Berkeley, Ctr Built Environm, Berkeley, CA 94720 USA. [Dickerhoff, Darryl] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Schiayon, S (reprint author), Univ Calif Berkeley, Ctr Built Environm, 390 Wurster Hall, Berkeley, CA 94720 USA. EM stefanoschiavon@gmail.com OI Schiavon, Stefano/0000-0003-1285-5682 FU California Energy Commission Public Interest Energy Research (PIER) Buildings Program under Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies project [500-06-049] FX This work was supported by the California Energy Commission Public Interest Energy Research (PIER) Buildings Program under Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies project (contract number 500-06-049). We would like to express our sincere appreciation to Chris Scruton of the Energy Commission PIER Buildings Team, who expertly managed this project. Additional support for this project was also provided by the Center for the Built Environment (CBE) at the University of California, Berkeley (www.cbe.berkeley.edu). Furthermore, we would like to acknowledge the support of George Anwar for the design and implementation of the laboratory control system; express our deep gratitude to Bill Scott and Mike McQueeny of Walnut manufacturing for making their full-scale laboratory test facility available to us; and Pedro Bermudez and other staff members for their support during our testing work. NR 27 TC 3 Z9 4 U1 4 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD OCT PY 2014 VL 82 BP 786 EP 794 DI 10.1016/j.enbuild.2014.07.056 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AR7SZ UT WOS:000343781400075 ER PT J AU Justice, NB Li, Z Wang, YF Spaudling, SE Mosier, AC Hettich, RL Pan, CL Banfield, JF AF Justice, Nicholas B. Li, Zhou Wang, Yingfeng Spaudling, Susan E. Mosier, Annika C. Hettich, Robert L. Pan, Chongle Banfield, Jillian F. TI N-15- and H-2 proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DRAINAGE BIOFILM COMMUNITIES; PROTEIN-SIP; MASS-SPECTROMETRY; YEAST PROTEOME; BACTERIA; IRON; DEUTERIUM; CARBON; SULFOBACILLUS; METABOLISM AB Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (NH4+)-N-15 or deuterium oxide ((H2O)-H-2) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized N-15-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized N-15-enriched protein in all conditions. There were relatively few N-15-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly N-14 biomass derived from recycled biomolecules. In parallel experiments using (H2O)-H-2, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (H2O)-H-2. The nearly exclusive ability of Archaea to synthesize proteins using (H2O)-H-2 may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of H-2 by accessing H-1 generated by respiration of organic compounds. C1 [Justice, Nicholas B.; Spaudling, Susan E.; Mosier, Annika C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Li, Zhou; Wang, Yingfeng; Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Li, Zhou] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Knoxville, TN USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Li, Zhou/L-7976-2015; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU Office of Science of the U. S. Department of Energy [DE-AC05-00OR22725]; U. S. Department of Energy Office of Science, Biological and Environmental Research [DE-SC0004665, DE-AC02-05CH11231] FX We thank T. W. Arman, president, Iron Mountain Mines, and R. Sugarek for access to the Richmond Mine, and R. Carver and M. Jones for on-site assistance. Thanks to Robert Bulter for assistance with iron-reduction assays, Andrea Singh and Brian Thomas for bioinformatic support. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. This work was supported by the U. S. Department of Energy Office of Science, Biological and Environmental Research, Carbon Cycling (DE-SC0004665) and Knowledgebase (DE-AC02-05CH11231) programmes. NR 47 TC 8 Z9 8 U1 5 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD OCT PY 2014 VL 16 IS 10 SI SI BP 3224 EP 3237 DI 10.1111/1462-2920.12488 PG 14 WC Microbiology SC Microbiology GA AR9CC UT WOS:000343867700017 PM 24750948 ER PT J AU Giusti, F Rieger, J Catoire, LJ Qian, S Calabrese, AN Watkinson, TG Casiraghi, M Radford, SE Ashcroft, AE Popot, JL AF Giusti, Fabrice Rieger, Jutta Catoire, Laurent J. Qian, Shuo Calabrese, Antonio N. Watkinson, Thomas G. Casiraghi, Marina Radford, Sheena E. Ashcroft, Alison E. Popot, Jean-Luc TI Synthesis, Characterization and Applications of a Perdeuterated Amphipol SO JOURNAL OF MEMBRANE BIOLOGY LA English DT Article DE Amphipol; A8-35; Deuteration; Mass spectrometry; NMR ID INTEGRAL MEMBRANE-PROTEINS; RESONANCE ENERGY-TRANSFER; MASS-SPECTROMETRY; SOLUTION NMR; NONIONIC SURFACTANTS; AQUEOUS-SOLUTIONS; CROSS-RELAXATION; ACRYLIC-ACID; BIO-SANS; NANODISCS AB Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, similar to 4 and similar to 5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be similar to 120 % D2O. In H-1-H-1 nuclear overhauser effect NMR spectra, its contribution is reduced to similar to 6 % of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation. C1 [Giusti, Fabrice; Catoire, Laurent J.; Casiraghi, Marina; Popot, Jean-Luc] CNRS, Lab Physicochim Mol Membranes Biol, Inst Biol Physicochim, UMR 7099,FRC 550, F-75005 Paris, France. [Giusti, Fabrice; Catoire, Laurent J.; Casiraghi, Marina; Popot, Jean-Luc] Univ Paris 07, F-75005 Paris, France. [Rieger, Jutta] Univ Paris 06, Sorbonne Univ, IPCM, UMR 8232,Equipe Chim Polymeres, F-75005 Paris, France. [Rieger, Jutta] CNRS, IPCM, Equipe Chim Polymeres, UMR 8232, F-75005 Paris, France. [Qian, Shuo] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Qian, Shuo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Calabrese, Antonio N.; Watkinson, Thomas G.; Radford, Sheena E.; Ashcroft, Alison E.] Univ Leeds, Sch Mol & Cellular Biol, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England. RP Popot, JL (reprint author), CNRS, Lab Physicochim Mol Membranes Biol, Inst Biol Physicochim, UMR 7099,FRC 550, 13 Rue Pierre & Marie Curie, F-75005 Paris, France. EM jean-luc.popot@ibpc.fr OI Calabrese, Antonio/0000-0003-2437-7761; Qian, Shuo/0000-0002-4842-828X; Radford, Sheena/0000-0002-3079-8039 FU Biotechnology and Biological Sciences Research Council of the UK [BB/E012558/1, BB/K000659/1, BB/K501827/1]; French Centre National de la Recherche Scientifique (CNRS); Universite Paris-7 Denis Diderot; grant "DYNAMO," from the French "Initiative d'Excellence'' program [ANR-11-LABX-0011-01]; Office of Biological and Environmental Research, US Department of Energy (Bio-SANS); Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (ORNL's High Flux Isotope Reactor) FX Particular thanks are due to Alain Fradet (UPMC - CNRS, IPCM) for his support and his comments on the manuscript, to Gaelle Pembouong and Marion Chenal (same laboratory) for assistance with SEC analyses, to Christophe Tribet (Ecole Normale Superieure, Paris) for his kind help at interpreting the results of the SEC experiments and to the Biotechnology and Biological Sciences Research Council of the UK for funding for the Synapt HDMS mass spectrometer (BB/E012558/1), ANC (BB/K000659/1) and TGW (BB/K501827/1). This work was supported by the French Centre National de la Recherche Scientifique (CNRS), by Universite Paris-7 Denis Diderot, by grant "DYNAMO," ANR-11-LABX-0011-01 from the French "Initiative d'Excellence'' program, by the Office of Biological and Environmental Research, US Department of Energy (Bio-SANS, operated by ORNL's Center for Structural Molecular Biology) and the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (ORNL's High Flux Isotope Reactor). NR 73 TC 14 Z9 14 U1 3 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2631 EI 1432-1424 J9 J MEMBRANE BIOL JI J. Membr. Biol. PD OCT PY 2014 VL 247 IS 9-10 SI SI BP 909 EP 924 DI 10.1007/s00232-014-9656-x PG 16 WC Biochemistry & Molecular Biology; Cell Biology; Physiology SC Biochemistry & Molecular Biology; Cell Biology; Physiology GA AR8OU UT WOS:000343835500011 PM 24652511 ER PT J AU Sverzhinsky, A Qian, S Yang, L Allaire, M Moraes, I Ma, DW Chung, JW Zoonens, M Popot, JL Coulton, JW AF Sverzhinsky, Aleksandr Qian, Shuo Yang, Lin Allaire, Marc Moraes, Isabel Ma, Dewang Chung, Jacqueline W. Zoonens, Manuela Popot, Jean-Luc Coulton, James W. TI Amphipol-Trapped ExbB-ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study SO JOURNAL OF MEMBRANE BIOLOGY LA English DT Article DE Membrane protein complex; Amphipol; Detergent; EM; SAXS/SANS ID FIELD-FLOW FRACTIONATION; BLUE NATIVE ELECTROPHORESIS; RESONANCE ENERGY-TRANSFER; OUTER-MEMBRANE; IN-VITRO; ANALYTICAL ULTRACENTRIFUGE; CYTOPLASMIC MEMBRANE; PERIPLASMIC DOMAINS; ELECTRON-MICROSCOPY; ANGLE SCATTERING AB Nutrient import across Gram-negative bacteria's outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB-ExbD-TonB. Having purified the ExbB(4)-ExbD(2) complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB(4)-ExbD(2) complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB(4)-ExbD(2) was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB(4)-ExbD(2) complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB(6)-ExbD(4), and propose a structural arrangement of its transmembrane alpha-helical domains. C1 [Sverzhinsky, Aleksandr; Chung, Jacqueline W.; Coulton, James W.] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3A 2B4, Canada. [Qian, Shuo] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Qian, Shuo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Yang, Lin; Allaire, Marc] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Moraes, Isabel] Membrane Prot Lab, Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Moraes, Isabel] Harwell Appleton Lab, Didcot OX11 0DE, Oxon, England. [Moraes, Isabel] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, London SW7 2AZ, England. [Ma, Dewang] Univ Montreal, Fac Pharm, Montreal, PQ H3C 3J7, Canada. [Ma, Dewang] Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada. [Zoonens, Manuela; Popot, Jean-Luc] Lab Biol Physicochim Prot Membranaires, UMR 7099, Paris, France. [Zoonens, Manuela; Popot, Jean-Luc] Univ Paris 07, CNRS, Inst Biol Physicochim, FRC 550, Paris, France. [Coulton, James W.] Microbiome & Dis Tolerance Ctr, Montreal, PQ H3A 2B4, Canada. RP Coulton, JW (reprint author), Microbiome & Dis Tolerance Ctr, 3775 Univ St, Montreal, PQ H3A 2B4, Canada. EM james.coulton@mcgill.ca OI Moraes, Isabel/0000-0002-7427-5467; Qian, Shuo/0000-0002-4842-828X FU Canadian Institutes of Health Research (CIHR) [200709MOP-178048-BMA-CFAA-11449]; Fonds de la recherche en sante du Quebec (FRSQ); CREATE program, Cellular Dynamics of Macromolecular Complexes, Natural Sciences and Engineering Research Council (NSERC) of Canada; GEPROM; F.C. Harrison and the Rozanis Funds, Department of Microbiology and Immunology, McGill University; French Centre National de la Recherche Scientifique (CNRS); Universite Paris-7 Denis Diderot; grant "DYNAMO", from the French "Initiative d'Excellence" program [ANR-11-LABX-0011-01]; U.S. Department of Energy's Office of Biological and Environmental Research; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Particular thanks are due to F. Giusti (UMR 7099, Paris) for synthesizing the deuterated and the fluorescent amphipols used in this project. This work was supported by an operating grant to J.W.C. from the Canadian Institutes of Health Research (CIHR reference number 200709MOP-178048-BMA-CFAA-11449). The Groupe d'etude des proteines membranaires (GE PROM), supported by the Fonds de la recherche en sante du Quebec (FRSQ), awarded a Projet Novateur to J.W.C. A.S. was awarded fellowships from the CREATE program, Cellular Dynamics of Macromolecular Complexes, Natural Sciences and Engineering Research Council (NSERC) of Canada; from GEPROM; and from the F.C. Harrison and the Rozanis Funds, Department of Microbiology and Immunology, McGill University. Work in UMR 7099 was supported by the French Centre National de la Recherche Scientifique (CNRS), by Universite Paris-7 Denis Diderot, and by grant "DYNAMO", ANR-11-LABX-0011-01, from the French "Initiative d'Excellence" program. Canada Foundation for Innovation provided infrastructure for the Facility for Electron Microscope Research, McGill University; www.medicine.mcgill.ca/femr/home.html. We appreciate support from Isabelle Rouiller for EM studies. Tara Sprules, manager of the Quebec/Eastern Canada High Field NMR Facility, www.nmrlab.mcgill.ca, guided NMR experiments to quantitate detergent. Research at the Bio-SANS (Center for Structural Molecular Biology) was supported by the U.S. Department of Energy's Office of Biological and Environmental Research. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We appreciate the access to AF4 equipment in the laboratory of Francoise Winnik at the Universite de Montreal. This work was facilitated by computing resources from CLUMEQ, under Compute/Calcul Canada. We appreciate laboratory support from Nathalie Croteau and suggestions on the manuscript by J.A. Kashul. NR 63 TC 3 Z9 3 U1 6 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2631 EI 1432-1424 J9 J MEMBRANE BIOL JI J. Membr. Biol. PD OCT PY 2014 VL 247 IS 9-10 SI SI BP 1005 EP 1018 DI 10.1007/s00232-014-9678-4 PG 14 WC Biochemistry & Molecular Biology; Cell Biology; Physiology SC Biochemistry & Molecular Biology; Cell Biology; Physiology GA AR8OU UT WOS:000343835500020 PM 24862870 ER PT J AU DeJarnette, D Jang, GG Blake, P Roper, DK AF DeJarnette, D. Jang, G. G. Blake, P. Roper, D. K. TI Polarization angle affects energy of plasmonic features in Fano resonant regular lattices SO JOURNAL OF OPTICS LA English DT Article DE plasmonics; Fano resonance; polarization ID GOLD NANOPARTICLE ARRAYS; OPTICAL-PROPERTIES; SURFACE-PLASMONS; SIZE; ENHANCEMENT; WAVELENGTH; EXTINCTION; SHAPE AB Plasmonic nanoparticles in ordered lattices exhibit spectral features supported by Fano resonant coupling between dipole and/or quadrupole oscillations and constructively interfering diffracted modes. This work showed that the angle at which incident resonant irradiation was polarized relative to the axes of a rectangular 655 x 649 nm(2) lattice of 264 nm diameter gold nanospheres predictably modulated the energy of plasmonic spectral features. Measured peak wavelengths varied sinusoidally as polarization angle was rotated 360 degrees. Quadrupole and dipole lattice resonance oscillations were phase shifted by 90 degrees, consistent with theory. Experimental wavelengths were within 12 nanometers (1.8%) of wavelengths simulated for the lattice using a coupled dipole/quadrupole approximation. C1 [DeJarnette, D.; Roper, D. K.] Univ Arkansas, Fayetteville, AR 72701 USA. [Jang, G. G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Blake, P.; Roper, D. K.] Univ Arkansas, Ralph E Martin Dept Chem Engn, Fayetteville, AR 72701 USA. RP DeJarnette, D (reprint author), Univ Arkansas, 3202 Bell Engn Ctr, Fayetteville, AR 72701 USA. EM dkroper@uark.edu OI Blake, Phillip/0000-0003-1417-1532 FU NSF [CMMI-0909749, CBET 1134222, ECCS-1006927]; Walton Family Charitable Support Foundation; Arkansas Bioscience Institute; University of Arkansas Foundation FX This work was supported in part by NSF CMMI-0909749, NSF CBET 1134222, NSF ECCS-1006927, the Walton Family Charitable Support Foundation, Arkansas Bioscience Institute, and the University of Arkansas Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. D DeJarnette conducted simulations and prepared data and text for the manuscript. G Jang performed metallization and spectral characterization of samples and prepared preliminary text. P Blake performed EBL and aided in text revision. D K Roper directed the work and organized the final text. NR 39 TC 5 Z9 5 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD OCT PY 2014 VL 16 IS 10 AR 105006 DI 10.1088/2040-8978/16/10/105006 PG 7 WC Optics SC Optics GA AR6AM UT WOS:000343665200010 ER PT J AU Sancho, R Novell, A Svec, F Minguillon, C AF Sancho, Raquel Novell, Arnau Svec, Frantisek Minguillon, Cristina TI Monolithic silica columns functionalized with substituted polyproline-derived chiral selectors as chiral stationary phases for high-performance liquid chromatography SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE Chiral selectors; Chiral stationary phases; Enantioseparation; Poly-L-proline oligomers; Silica monoliths ID ENANTIOMER SEPARATIONS; MOLECULAR-DYNAMICS; ENANTIOSEPARATION; IMPROVEMENT; CELLULOSE AB In this study, two polyproline-derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead-based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography. C1 [Sancho, Raquel; Novell, Arnau; Minguillon, Cristina] Univ Barcelona, E-08921 Barcelona, Spain. [Sancho, Raquel; Novell, Arnau; Minguillon, Cristina] Univ Barcelona, Fac Pharm, Lab Quim Farmaceut, E-08921 Barcelona, Spain. [Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Minguillon, C (reprint author), Univ Barcelona, Food & Nutr Torribera Campus,Verdaguer Bldg,Off 1, E-08921 Barcelona, Spain. EM cminguillon@ub.edu RI Foundry, Molecular/G-9968-2014; Minguillon, Cristina/F-3936-2016 OI Minguillon, Cristina/0000-0003-3857-0976 FU Ministerio de Educacion y Ciencia; European Regional Development Fund (ERDF) [CTQ 2006-03378/PPQ]; Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat de Catalunya; Generalitat de Catalunya [2006 BE-2-00230]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy [DE-AC02-05CH11231] FX Funding from Ministerio de Educacion y Ciencia and European Regional Development Fund (ERDF) (project number CTQ 2006-03378/PPQ) is gratefully acknowledged. R. Sancho and A. Novell acknowledge the Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat de Catalunya for predoctoral fellowships. R. S. also thanks the Generalitat de Catalunya for a grant for stays abroad (2006 BE-2-00230). Part of the experimental work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy, under Contract no. DE-AC02-05CH11231. NR 25 TC 6 Z9 6 U1 4 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-9306 EI 1615-9314 J9 J SEP SCI JI J. Sep. Sci. PD OCT PY 2014 VL 37 IS 20 BP 2805 EP 2813 DI 10.1002/jssc.201400640 PG 9 WC Chemistry, Analytical SC Chemistry GA AR8IR UT WOS:000343819300001 PM 25099215 ER PT J AU Sreedhar, B Suzuki, T Hobbs, DT Kawajiri, Y AF Sreedhar, Balamurali Suzuki, Tatsuya Hobbs, David T. Kawajiri, Yoshiaki TI Evaluation of tertiary pyridine resin for the separation of lanthanides by simulated moving-bed chromatography SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE Actinides; Lanthanides; Nuclear fuel; Simulated moving-bed; Tertiary pyridine ID SPENT NUCLEAR-FUELS; MINOR ACTINIDES; ACID SOLUTIONS; RARE-EARTHS; OPTIMIZATION; EXTRACTION; FRAMEWORK; SYSTEMS; DESIGN; COLUMN AB Lanthanide separation by simulated moving-bed chromatography was studied as a model system for separating lanthanide fission products and minor actinides from used nuclear fuels. The simulated moving-bed system was modeled for a tertiary pyridine anion-exchange resin supported on silica particles as the stationary phase and a mixture of methanol and 1M nitric acid as the mobile phase. Pulse injection tests using a single packed column were used to obtain chromatographic parameters for mathematical modeling of the simulated moving-bed system. Higher concentrations of methanol improved the separation, but the chromatograms showed evidence of nonlinearity of the isotherms. The mathematical model of the simulated moving-bed process predicted a production rate of purified samarium and neodymium at 118 g solute/L resin/day and a purity of 99.5%. The optimal methanol ratio for the production rate for various product purities was determined from the model. The excellent separation of Nd and Sm suggests that the simulated moving-bed system could be applied to the separation of minor actinides such as americium and curium. C1 [Sreedhar, Balamurali; Kawajiri, Yoshiaki] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Suzuki, Tatsuya] Nagaoka Univ Technol, Nagaoka, Niigata 94021, Japan. [Hobbs, David T.] Savannah River Natl Lab, Aiken, SC USA. RP Kawajiri, Y (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. EM ykawajiri@chbe.gatech.edu FU Strategic Energy Institute at Georgia Institute of Technology FX Funding from the Strategic Energy Institute at Georgia Institute of Technology is gratefully acknowledged. NR 44 TC 1 Z9 1 U1 4 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1615-9306 EI 1615-9314 J9 J SEP SCI JI J. Sep. Sci. PD OCT PY 2014 VL 37 IS 20 BP 2892 EP 2899 DI 10.1002/jssc.201400516 PG 8 WC Chemistry, Analytical SC Chemistry GA AR8IR UT WOS:000343819300011 PM 25088396 ER PT J AU Chen, CF Kelly, J Asphjell, O Papin, PA Forsyth, RT Guidry, DR Safarik, DJ Llobet, A AF Chen, Ching-Fong Kelly, Julian Asphjell, Oystein Papin, Pallas A. Forsyth, Robert T. Guidry, Dennis R. Safarik, Doug J. Llobet, Anna TI Processing of ThO2/CeO2 Ceramic Fuel SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THORIUM-BASED FUELS; WATER-REACTORS; PLUTONIUM; PELLETS AB The paper describes an effective procedure for mixing and conditioning ThO2 and CeO2 powders so they are suited for pressing and sintering into high-density (Th-0.9,Ce-0.1)O-2 ceramic pellets - this material being a pilot for (Th,Pu)O-2 fuels. Wet ball milling with an organic dispersant aided the powder dispersing process by reducing the agglomeration of very small oxide particles. Homogeneous elemental distributions were seen within the calcined powder mixture. Heat treatments were applied to the calcined, mixed ThO2/CeO2 mix to study phase and surface area transformations. Solid solution formation commences at around 1300 degrees C and goes to completion at a temperature of 1500 degrees C. We also report the effect of a granulation strategy that can be applied to the production of high quality, mixed ThO2 nuclear fuel ceramics. Sized granules of blended ThO2/CeO2 powder were produced from precompacted disks of this material that were subsequently heat treated. This had a positive effect on die filling and compaction into green pellets, as well as on final sintered (Th,Ce)O-2 pellet density. The microstructure of the sintered (Th,Ce)O-2 ceramic was characterized using SEM-based electron back-scatter diffraction from which a uniform density and grain size were readily apparent. XRD results showed that a single phase Th0.9Ce0.1O2, fuel ceramic had been produced. Its density was similar to 94% TD. C1 [Chen, Ching-Fong; Papin, Pallas A.; Forsyth, Robert T.; Guidry, Dennis R.; Safarik, Doug J.] Los Alamos Natl Lab, Mat Sci Technol Div, Los Alamos, NM 87545 USA. [Kelly, Julian; Asphjell, Oystein] THOR ENERGY, NO-0255 Oslo, Norway. [Llobet, Anna] Los Alamos Natl Lab, LANSCE, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Mat Sci Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM cchen@lanl.gov RI Llobet, Anna/B-1672-2010; OI Safarik, Douglas/0000-0001-8648-9377 FU THOR ENERGY of Norway [FIA-10-006]; DOE [DE-AC52-06NA25396] FX This program was supported by THOR ENERGY of Norway under the agreement FIA-10-006. The authors would like to thank Dr. Pat McClure of LANL for managing the program. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396 NR 27 TC 1 Z9 1 U1 2 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2014 VL 97 IS 10 BP 3062 EP 3070 DI 10.1111/jace.13114 PG 9 WC Materials Science, Ceramics SC Materials Science GA AR8MT UT WOS:000343829900008 ER PT J AU Vienna, JD Kim, DS Muller, IS Piepel, GF Kruger, AA AF Vienna, John D. Kim, Dong-Sang Muller, Isabelle S. Piepel, Greg F. Kruger, Albert A. TI Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SILICATE-GLASSES; SULFATE INCORPORATION; BOROSILICATE MELT; REDOX EQUILIBRIA; IMMOBILIZATION; NUCLEAR; ENVIRONMENTS; DEPENDENCE; SPECIATION; CHEMISTRY AB The concentration of sulfur in Hanford low-activity waste (LAW) glass melter feed will be maintained below the point where the salt accumulates on the melt surface. The allowable concentrations may range from near zero to over 2.05wt% (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have traditionally been placed on sulfur loading in melter feed, which in turn significantly increases the amount of LAW glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15years. These data were compiled and analyzed. An empirical model was developed to predict the solubility of SO3 in glass based on 253 simulated Hanford LAW glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the maximum amount of sulfur in melter feed that did not form a salt layer in 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options (e.g., scale of supplemental LAW treatment facility, and pretreatment facility performance requirements). The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that increase sulfur solubility most are Li2O>V2O5>CaO approximate to P2O5>Na2O approximate to B2O3>K2O. The components that decrease sulfur solubility most are Cl>Cr2O3>Al2O3>ZrO2 approximate to SnO2>Others (i.e., the sum of minor components) approximate to SiO2. The order of component effects is similar to previous literature data, in most cases. C1 [Vienna, John D.; Kim, Dong-Sang; Piepel, Greg F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Muller, Isabelle S.] Catholic Univ Amer, Vitreous State Lab, Washington, DC 20064 USA. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99354 USA. RP Vienna, JD (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.vienna@pnnl.gov FU DOE Office of River Protection; DOE [DE-AC05-76RL01830] FX The authors would like to thank the DOE Office of River Protection for their support of this work. The testing results analyzed in this article were generated by the Catholic University of America in support of DOE and were generously shared with the authors for the work in this article. We thank those that participated in the generation of the data, in particular KS Matlack, IL Pegg, and H Gan. DK Peeler and CM Jantzen made valuable contributions to the article through their comments to the initial manuscript. The Pacific Northwest National Laboratory is operated by Battelle for the DOE under contract DE-AC05-76RL01830. NR 59 TC 7 Z9 8 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2014 VL 97 IS 10 BP 3135 EP 3142 DI 10.1111/jace.13125 PG 8 WC Materials Science, Ceramics SC Materials Science GA AR8MT UT WOS:000343829900018 ER PT J AU Chu, HJ Wang, SP Yue, HW Lin, QY Hu, YG Li, XZ Zhou, JZ Yang, YF AF Chu, Houjuan Wang, Shiping Yue, Haowei Lin, Qiaoyan Hu, Yigang Li, Xiangzhen Zhou, Jizhong Yang, Yunfeng TI Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow SO MICROBIOLOGYOPEN LA English DT Article DE Alpine grassland; GeoChip; soil microbial community; Tibetan plateau ID AGRICULTURAL MANAGEMENT; ENVIRONMENTAL-SAMPLES; ORGANIC-CARBON; PLATEAU; GRASSLAND; NITROGEN; VEGETATION; ECOSYSTEM; CLIMATE; DENITRIFICATION AB The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrant carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. We also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow. C1 [Chu, Houjuan; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Wang, Shiping] Chinese Acad Sci, Inst Tibetan Plateau Res, Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. [Lin, Qiaoyan; Hu, Yigang] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adapt & Evolut Plateau Biota, Xining 810008, Peoples R China. [Hu, Yigang] Chinese Acad Sci, Cold & Arid Reg & Environm & Engn Res Inst, Shapotou Desert Expt & Res Stn, Lanzhou 730000, Peoples R China. [Li, Xiangzhen] Chengdu Inst Biol, Chinese Acad Sci, Chengdu 610041, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn FU National High Technology Research and Development Program of China [2012AA061401]; National Key Basic Research Program of China [2013CB956601]; National Science Foundation of China [41171201]; Collaborative Innovation Center for Regional Environmental Quality; National Key Basic Research Program [2010CB833502]; US Department of Energy [DE-SC0004601]; US National Science Foundation [EF-1065844]; Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) through the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by grants to Yunfeng Yang from the National High Technology Research and Development Program of China (2012AA061401), National Key Basic Research Program of China (2013CB956601), National Science Foundation of China (41171201) and Collaborative Innovation Center for Regional Environmental Quality, to Shiping Wang from the National Key Basic Research Program (2010CB833502), to Jizhong Zhou from the US Department of Energy (DE-SC0004601) and the US National Science Foundation (EF-1065844). The development of GeoChip and associated computational pipelines used in this study was supported by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) through the US Department of Energy (DE-AC02-05CH11231). NR 52 TC 3 Z9 4 U1 15 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-8827 J9 MICROBIOLOGYOPEN JI MicrobiologyOpen PD OCT PY 2014 VL 3 IS 5 BP 585 EP 594 DI 10.1002/mbo3.190 PG 10 WC Microbiology SC Microbiology GA AR7LQ UT WOS:000343761600001 PM 25044404 ER PT J AU Koshelev, A Calafiore, G Peroz, C Dhuey, S Cabrini, S Sasorov, P Goltsov, A Yankov, V AF Koshelev, A. Calafiore, G. Peroz, C. Dhuey, S. Cabrini, S. Sasorov, P. Goltsov, A. Yankov, V. TI Combination of a spectrometer-on-chip and an array of Young's interferometers for laser spectrum monitoring SO OPTICS LETTERS LA English DT Article ID WAVE-GUIDES; SILICON; GRATINGS; FILTERS AB This Letter presents the design and experimental results for an on-chip photonic device for laser spectrum monitoring that combines a nanospectrometer and an array of Young's interferometers. The array of Young's interferometers and the spectrometer measure the width and wavelength of a spectrum in visible light, respectively. The accuracy of spectral width measurements is around 10% for FWHM higher than 2.5 pm. The spectrometeron-chip is based on a digital planar hologram, and provides a resolution around 145 pm within the spectral range of 719-861 nm (142 nm bandwidth). The performance of the device is demonstrated for distinguishing between the single- and two-longitudinal mode operation of a fiber Bragg grating laser diode with 23 pm mode separation. (C) 2014 Optical Society of America C1 [Koshelev, A.; Goltsov, A.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia. [Calafiore, G.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA. [Dhuey, S.; Cabrini, S.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94702 USA. [Sasorov, P.; Goltsov, A.; Yankov, V.] Nanoopt Devices, Santa Clara, CA 95054 USA. RP Koshelev, A (reprint author), State Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi, Moscow Region, Russia. EM koshelev@nanoopticdevices.com RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific Research (AFOSR), Air Force Material Command, United States Air Force [FA9550-12-C-0077] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DEAC02-05CH11231. This Letter is partially supported by the Air Force Office of Scientific Research (AFOSR), Air Force Material Command, United States Air Force, under grant/contract FA9550-12-C-0077. NR 17 TC 0 Z9 0 U1 2 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2014 VL 39 IS 19 BP 5645 EP 5648 DI 10.1364/OL.39.005645 PG 4 WC Optics SC Optics GA AR9PH UT WOS:000343906400045 PM 25360949 ER PT J AU Skigin, DC Fowlkes, JD Roberts, NA Scaffardi, LB Schinca, DC Lester, M AF Skigin, D. C. Fowlkes, J. D. Roberts, N. A. Scaffardi, L. B. Schinca, D. C. Lester, M. TI Control of the diffracted response of a metallic wire array with double period: experimental demonstration SO OPTICS LETTERS LA English DT Article ID GRATINGS; TRANSMISSION AB In recent papers, it has been theoretically shown that by using dual-period wire gratings, it is possible to control the relative efficiencies of the diffracted orders, regardless of the wires' material, incident polarization and wavelength. In this Letter, we experimentally demonstrate, for the first time, that by appropriately choosing the geometrical parameters of a nanometric periodic structure, it is possible to control the optical response in the visible range. We show examples of nanostructures designed to cancel out or to intensify a particular diffraction order. Such nanostructures allow a broad control over the directionality and the intensity of the diffracted light, which makes them useful for applications such as highly directional optical nanoantennas and photonic multiplexers. (C) 2014 Optical Society of America C1 [Skigin, D. C.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado,IFIBA CONICET, RA-1428 Buenos Aires, DF, Argentina. [Fowlkes, J. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. [Roberts, N. A.] Utah State Univ, Logan, UT 84322 USA. [Scaffardi, L. B.; Schinca, D. C.] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, La Plata, Buenos Aires, Argentina. [Scaffardi, L. B.; Schinca, D. C.] CONICET La Plata CIC, Ctr Invest Opt CIOp, La Plata, Argentina. [Lester, M.] CIFICEN CONICET, IFAS, Grp Opt Solidos Elfo, Tandil, Argentina. [Lester, M.] Univ Nacl Ctr Prov Buenos Aires, Tandil, Argentina. RP Skigin, DC (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado,IFIBA CONICET, RA-1428 Buenos Aires, DF, Argentina. EM dcs@df.uba.ar RI Roberts, Nicholas/H-3275-2014 OI Roberts, Nicholas/0000-0002-6490-9454 FU CONICET [PIP 0145, PIP 112-200801-01880, PIP 0394]; UNI-CEN; UBACyT [20020100100533]; Facultad de Ingeniera, UNLP [11/I151]; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX ML thanks Dr. Eduardo Caselli and Dr. Javier Diez for their collaboration and comments. ML gratefully acknowledges support from CONICET (PIP 0145) and UNI-CEN; DS acknowledges support from CONICET (PIP 112-200801-01880) and UBACyT (20020100100533); LBS and DCS acknowledge support fron CONICET (PIP 0394) and grant 11/I151 from Facultad de Ingeniera, UNLP. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 16 TC 1 Z9 1 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2014 VL 39 IS 19 BP 5693 EP 5696 DI 10.1364/OL.39.005693 PG 4 WC Optics SC Optics GA AR9PH UT WOS:000343906400057 PM 25360961 ER PT J AU Lookman, T Xue, DZ Vasseur, R Zong, HX Ding, XD AF Lookman, Turab Xue, Dezhen Vasseur, Romain Zong, Hongxiang Ding, Xiangdong TI On glassy behavior in ferroics SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE cooperative behavior; ferroic glass; martensites; perovskites ID SPIN-GLASS; MARTENSITIC TRANSFORMATIONS; RELAXOR FERROELECTRICS; PHASE; TWEED AB Ferroics include a range of materials classes with functionalities such as magnetism, polarization, and strain. We review coexistence and glassy behavior, as studied over the last decade, in systems such as perovskite manganites, ferroelectrics, and martensites to distil a common theme that includes the interplay of long-range interactions, disorder, and cooperative behavior. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Lookman, Turab; Xue, Dezhen; Zong, Hongxiang] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Vasseur, Romain] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Zong, Hongxiang; Ding, Xiangdong] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA. EM txl@lanl.gov RI XUE, Dezhen/A-6062-2010; Ding, Xiangdong/K-4971-2013 OI XUE, Dezhen/0000-0001-6132-1236; Ding, Xiangdong/0000-0002-1220-3097 NR 40 TC 1 Z9 1 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD OCT PY 2014 VL 251 IS 10 SI SI BP 2003 EP 2009 DI 10.1002/pssb.201350400 PG 7 WC Physics, Condensed Matter SC Physics GA AS6FN UT WOS:000344360000005 ER PT J AU Lloveras, P Touchagues, G Castan, T Lookman, T Porta, M Saxena, A Planes, A AF Lloveras, Pol Touchagues, Gilles Castan, Teresa Lookman, Turab Porta, Marcel Saxena, Avadh Planes, Antoni TI Modelling magnetostructural textures in magnetic shape-memory alloys: Strain and magnetic glass behaviour SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE magnetic glass; magnetic shape memory; martensitic transition; strain glass ID MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION; ELECTRON-MICROSCOPY; FIELD AB In this paper, we propose a model that combines a Landau free energy part and a micromagnetic free energy part aimed at describing a magnetostructural multiferroic. We show that in the limit of high-elastic anisotropy and strong magnetostructural interplay, the model is able to reproduce characteristic strain and magnetization configurations typical of magnetic shapememory materials. For low-elastic anisotropy, in the presence of disorder arising from compositional fluctuations giving rise to a distribution of local transition temperatures, the model is able to reproduce strain glass behaviour. In this case, the temperature dependence of the magnetization measured after zero magnetic field cooling deviates from the magnetization measured after magnetic field cooling protocol, which proves that the strain glass behaviour induces non-ergodicity in the magnetic degrees of freedom as well. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Lloveras, Pol] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08028 Barcelona, Catalonia, Spain. [Touchagues, Gilles; Castan, Teresa; Planes, Antoni] Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Touchagues, Gilles] Ecole Normale Super Lyon, F-69364 Lyon, France. [Lookman, Turab; Porta, Marcel; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Planes, A (reprint author), Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. EM toni@ecm.ub.edu RI Planes, Antoni/O-1904-2015; OI Planes, Antoni/0000-0001-5213-5714; Porta Tena, Marcel/0000-0001-7582-9671; Lloveras, Pol/0000-0003-4133-2223 FU CICyT (Spain) [MAT2013-40590-P, FIS2011-24439]; U.S. Department of Energy FX This work was supported by CICyT (Spain) through projects MAT2013-40590-P and FIS2011-24439, and in part by the U.S. Department of Energy. P. Ll. acknowledges the hospitality of the Theoretical Division of Los Alamos National Laboratory during his visit where this work was initiated. NR 31 TC 2 Z9 2 U1 2 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD OCT PY 2014 VL 251 IS 10 SI SI BP 2080 EP 2087 DI 10.1002/pssb.201350394 PG 8 WC Physics, Condensed Matter SC Physics GA AS6FN UT WOS:000344360000015 ER PT J AU Khovaylo, VV Rodionova, VV Shevyrtalov, SN Novosad, V AF Khovaylo, Vladimir V. Rodionova, Valeria V. Shevyrtalov, Sergey N. Novosad, Val TI Magnetocaloric effect in "reduced" dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE magnetocaloric effect; melt spinning; microwires; thin films ID NI-MN-GA; MELT-SPUN RIBBONS; MAGNETIC-ENTROPY CHANGE; EXCHANGE BIAS BEHAVIOR; MARTENSITIC-TRANSFORMATION; PHASE-TRANSITIONS; AMORPHOUS-ALLOYS; ROOM-TEMPERATURE; REFRIGERATION; MICROSTRUCTURE AB Room temperature magnetic refrigeration is an energy saving and environmentally-friendly technology, which has developed rapidly from a basic idea to prototype devices. The performance of magnetic refrigerators crucially depends on the magnetocaloric properties and the geometry of the employed refrigerants. Here we review the magnetocaloric properties of Heusler alloys and related compounds with a high surface to volume ratio such as films, ribbons, and microwires, and compare them with their bulk counterparts. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Khovaylo, Vladimir V.; Rodionova, Valeria V.] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia. [Khovaylo, Vladimir V.] ITMO Univ, St Petersburg 197101, Russia. [Rodionova, Valeria V.; Shevyrtalov, Sergey N.] Immanuel Kant Balt Fed Univ, Kaliningrad 236041, Russia. [Rodionova, Valeria V.; Shevyrtalov, Sergey N.] Immanuel Kant Balt Fed Univ, Inst Phys & Technol, Kaliningrad 236041, Russia. [Novosad, Val] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Khovaylo, VV (reprint author), Natl Univ Sci & Technol MISiS, Moscow 119049, Russia. EM khovaylo@misis.ru RI Khovaylo, Vladimir/A-9706-2010; Novosad, V /J-4843-2015 OI Khovaylo, Vladimir/0000-0001-7815-100X; FU Ministry of Education and Science of the Russian Federation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [K3-2014-037] FX This work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST "MISiS" and grant No. K3-2014-037. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 152 TC 10 Z9 10 U1 11 U2 67 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD OCT PY 2014 VL 251 IS 10 SI SI BP 2104 EP 2113 DI 10.1002/pssb.201451217 PG 10 WC Physics, Condensed Matter SC Physics GA AS6FN UT WOS:000344360000018 ER PT J AU D'Angelo, S Kumar, S Naranjo, L Ferrara, F Kiss, C Bradbury, ARM AF D'Angelo, Sara Kumar, Sandeep Naranjo, Leslie Ferrara, Fortunato Kiss, Csaba Bradbury, Andrew R. M. TI From deep sequencing to actual clones SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE antibody; inverse PCR; deep sequencing; phage display; yeast display ID VITRO DISPLAY TECHNOLOGIES; PHAGE DISPLAY; ANTIBODY DISCOVERY; GENE REPERTOIRE; DIVERSITY; LIBRARY; REGION AB The application of deep sequencing to in vitro display technologies has been invaluable for the straightforward analysis of enriched clones. After sequencing in vitro selected populations, clones are binned into identical or similar groups and ordered by abundance, allowing identification of those that are most enriched. However, the greatest strength of deep sequencing is also its greatest weakness: clones are easily identified by their DNA sequences, but are not physically available for testing without a laborious multistep process involving several rounds of polymerization chain reaction (PCR), assembly and cloning. Here, using the isolation of antibody genes from a phage and yeast display selection as an example, we show the power of a rapid and simple inverse PCR-based method to easily isolate clones identified by deep sequencing. Once primers have been received, clone isolation can be carried out in a single day, rather than two days. Furthermore the reduced number of PCRs required will reduce PCR mutations correspondingly. We have observed a 100% success rate in amplifying clones with an abundance as low as 0.5% in a polyclonal population. This approach allows us to obtain full-length clones even when an incomplete sequence is available, and greatly simplifies the subcloning process. Moreover, rarer, but functional clones missed by traditional screening can be easily isolated using this method, and the approach can be extended to any selected library (scFv, cDNA, libraries based on scaffold proteins) where a unique sequence signature for the desired clones of interest is available. C1 [D'Angelo, Sara; Ferrara, Fortunato] New Mexico Consortium, Los Alamos, NM 87544 USA. [Kumar, Sandeep; Naranjo, Leslie; Kiss, Csaba; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP D'Angelo, S (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA. EM sdangelo@lanl.gov; amb@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 FU National Institutes of Health [1-U54-DK093500-01]; Los Alamos National Laboratory LDRD program; NIH [1R01HG004852-01A1] FX This work was supported by the National Institutes of Health (1-U54-DK093500-01 to A. R. M. B.); and the Los Alamos National Laboratory LDRD program and NIH grant (1R01HG004852-01A1 to A. R. M. B.). Funding for open access charge: National Institutes of Health. NR 26 TC 12 Z9 12 U1 0 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 EI 1741-0134 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD OCT PY 2014 VL 27 IS 10 SI SI BP 301 EP 307 DI 10.1093/protein/gzu032 PG 7 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA AR9KU UT WOS:000343893400002 PM 25183780 ER PT J AU Manard, BT Gonzalez, JJ Sarkar, A Mao, X Zhang, LX Konegger-Kappel, S Marcus, RK Russo, RE AF Manard, Benjamin T. Gonzalez, Jhanis J. Sarkar, Arnab Mao, Xianglei Zhang, Lynn X. Konegger-Kappel, Stefanie Marcus, R. Kenneth Russo, Richard E. TI Investigation of spectrochemical matrix effects in the liquid sampling-atmospheric pressure glow discharge source SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Liquid sampling-atmospheric pressure glow discharge; LS-APGD; Matrix effects; Excitation conditions; Plasma robustness ID INDUCTIVELY-COUPLED PLASMA; ATOMIC EMISSION-SPECTROMETRY; EASILY IONIZABLE ELEMENTS; MICROWAVE-INDUCED PLASMAS; OPTICAL-EMISSION; LASER-ABLATION; EXCITATION TEMPERATURES; IONIZATION SOURCE; SPECTROSCOPY; ARGON AB The liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma was evaluated with regard to its spectrochemical robustness in its application as a miniaturized optical emission spectroscopy (OES) source for liquid samples. The susceptibility to perturbations in excitation/ionization conditions was probed across a wide range test species, including transition metals, easily ionized elements (group I), and elements with low second ionization potentials (group II). Spectrochemical metrics included the plasma excitation temperature (T-exc), ionization temperatures (T-ion), and magnesium (Mg) ionic: atomic (Mg II:Mg I) ratios. The introduction of the 11 different matrix elements into the LS-APGD at concentrations of 500 mu g mL(-1) yielded no significant changes in the optically-determined plasma characteristics, indicating a relative immunity to spectrochemical matrix effects. T-exe values for the plasma, using He I as the spectrometric species averaged 2769 +/- 79 K across the test matrix, with Mg-based ionization temperature values centered at 6665 +/- 151 K. Typical Mg II:Mg I ratios (the so-called robustness parameter) were 0.95 +/- 03. The lack of appreciable perturbation in excitation/ionization conditions observed here is also manifested in virtually no changes in the probe Mg II and I species' intensities, even at matrix loadings of up to 1000 mu g mL(-1) of Ba. These observations indicate that the IS-APGD could serve as an OES source for the analysis of diverse aqueous samples without appreciable spectroscopic matrix effects, though potential physical matrix effects induding vaporization effects must be evaluated. (C) 2014 Elsevier B.V. All rights reserved. C1 [Manard, Benjamin T.; Zhang, Lynn X.; Konegger-Kappel, Stefanie; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Mao, Xianglei; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India. RP Marcus, RK (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM marcusr@clemson.edu OI Sarkar, Arnab/0000-0003-3783-8299 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; Deputy Administrator for Defense Nuclear Nonproliferation; Assistant Deputy Administrator for Nonproliferation Research and Development of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Deputy Administrator for Defense Nuclear Nonproliferation, and the Assistant Deputy Administrator for Nonproliferation Research and Development of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 48 TC 3 Z9 3 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD OCT 1 PY 2014 VL 100 BP 44 EP 51 DI 10.1016/j.sab.2014.08.006 PG 8 WC Spectroscopy SC Spectroscopy GA AR8WZ UT WOS:000343853400011 ER PT J AU Dong, MR Chan, GCY Mao, XL Gonzalez, JJ Lu, JD Russo, RE AF Dong, Meirong Chan, George C. -Y. Mao, Xianglei Gonzalez, Jhanis J. Lu, Jidong Russo, Richard E. TI Elucidation of C-2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser induced breakdown spectroscopy; Laser ablation molecular isotopic spectrometry; Laser ablation organic material; C-2-radical formation mechanism; CN-radical formation mechanism ID INDUCED BREAKDOWN SPECTROSCOPY; TRANSFORM EMISSION-SPECTROSCOPY; 1.064 MU-M; ORGANIC-COMPOUNDS; AMBIENT AIR; SWAN SYSTEM; NITROGEN ENVIRONMENT; OPTICAL-EMISSION; ABLATION; GRAPHITE AB Laser ablation molecular isotopic spectrometry (LAMIS) was recently reported for rapid isotopic analysis by measuring molecular emission from laser-induced plasmas at atmospheric pressure. With C-13-labeled benzoic acid as a model sample, this research utilized the LAMIS approach to clarify the formation mechanisms of C-2 and CN molecules during laser ablation of organic materials. Because the isotopic ratios in the molecular bands could deviate from statistical distribution depending on their formation pathways, the dominant mechanism can be identified through a comparison of the experimental observed isotopic patterns in the molecular emission with the theoretical statistical pattern. For C-2 formation, the experimental (CC)-C-12-C-12/(CC)-C-13-C-12 ratios not only support a recombination mechanism through atomic carbon at early delay time but also indicate the presence of other operating mechanisms as the plasma evolves; it is proposed that some of the C-2 molecules are released directly from the aromatic ring of the sample as molecular fragments. In contrast, the temporal profiles in the C-12/C-13 ratios derived from CN emission exhibited opposite behavior with those derived from C-2 emission, which unambiguously refutes mechanisms that require C-2 as a precursor for CN formation; CN formation likely involves atomic carbon or species with a single carbon atom. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dong, Meirong; Lu, Jidong] S China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China. [Dong, Meirong; Chan, George C. -Y.; Mao, Xianglei; Gonzalez, Jhanis J.; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), S China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China. EM RERusso@lbl.gov FU Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy [DE-ACO2-05CH11231]; Lawrence Berkeley National Laboratory; National Natural Science Foundation of China [51071069, 51206055]; Foundation of State Key Laboratory of Silicate Materials for Architectures [SYSJJ2014-01] FX The research was supported by the Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy under contract number DE-ACO2-05CH11231 at the Lawrence Berkeley National Laboratory. Meirong Dong and Jidong Lu acknowledge support from the National Natural Science Foundation of China (No. 51071069 and 51206055) and the Foundation of State Key Laboratory of Silicate Materials for Architectures (No. SYSJJ2014-01); we also thank Prof. Hongbin Ding from Dalian University of Technology for the helpful discussion. NR 53 TC 13 Z9 14 U1 6 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD OCT 1 PY 2014 VL 100 BP 62 EP 69 DI 10.1016/j.sab.2014.08.009 PG 8 WC Spectroscopy SC Spectroscopy GA AR8WZ UT WOS:000343853400013 ER PT J AU Kulasinski, K Keten, S Churakov, SV Guyer, R Carmeliet, J Derome, D AF Kulasinski, Karol Keten, Sinan Churakov, Sergey V. Guyer, Robert Carmeliet, Jan Derome, Dominique TI Molecular Mechanism of Moisture-Induced Transition in Amorphous Cellulose SO ACS MACRO LETTERS LA English DT Article ID EFFECTIVE WATER CONDUCTIVITY; MAGNETIC-RESONANCE; BOUND WATER; WOOD; SOLVATION; BEHAVIOR; SAPWOOD; SPRUCE; VAPOR AB We investigate the influence of adsorbed water on amorphous cellulose structure and properties, within the full range of moisture content from the dry state to saturation, by molecular dynamics simulation. Increasing water content results in overall swelling, a substantial decrease in stiffness, and higher diffusivity of the water molecules. The obtained sorption curve as well as the range of swelling and weakening are confirmed by experiments. The measured properties undergo a noticeable change at about 10% of moisture content, which suggests that a transition occurs in the porous system, indicating that the sorption process is stepwise. Our analysis of water network formation reveals that the onset of percolation coincides with the moisture content at which a transition in the material properties is observed. An in-depth analysis of the molecular mechanism of hydrogen bonding, van der Waals interactions, and water network in the two regimes enhances the understanding of the adsorption process. C1 [Kulasinski, Karol; Carmeliet, Jan] Swiss Fed Inst Technol Zurich, CH-8093 Zurich, Switzerland. [Keten, Sinan] Northwestern Univ, Dept Mech Engn, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Churakov, Sergey V.] Paul Scherrer Inst, Lab Waste Management, CH-5232 Villigen, Switzerland. [Guyer, Robert] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA. [Guyer, Robert] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Carmeliet, Jan; Derome, Dominique] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Bldg Sci & Technol, CH-8600 Dubendorf, Switzerland. RP Kulasinski, K (reprint author), Swiss Fed Inst Technol Zurich, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland. EM kulasinski@arch.ethz.ch RI Keten, Sinan/F-4080-2010; Kulasinski, Karol/R-6709-2016 OI Kulasinski, Karol/0000-0002-7704-7048 NR 21 TC 12 Z9 12 U1 5 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD OCT PY 2014 VL 3 IS 10 BP 1037 EP 1040 DI 10.1021/mz500528m PG 4 WC Polymer Science SC Polymer Science GA AR6DJ UT WOS:000343673200016 ER PT J AU Black, KA Priftis, D Perry, SL Yip, J Byun, WY Tirrell, M AF Black, Katie A. Priftis, Dimitrios Perry, Sarah L. Yip, Jeremy Byun, William Y. Tirrell, Matthew TI Protein Encapsulation via Polypeptide Complex Coacervation SO ACS MACRO LETTERS LA English DT Article ID BIOMEDICAL APPLICATIONS; THERAPEUTIC PROTEINS; DELIVERY; NANOPARTICLES; MICROENCAPSULATION; MICROSPHERES; SYSTEMS AB Proteins have gained increasing success as therapeutic agents; however, challenges exist in effective and efficient delivery. In this work, we present a simple and versatile method for encapsulating proteins via complex coacervation with oppositely charged polypeptides, poly(L-lysine) (PLys) and poly(D/L-glutamic acid) (PGlu). A model protein system, bovine serum albumin (BSA), was incorporated efficiently into coacervate droplets via electrostatic interaction up to a maximum loading of one BSA per PLys/PGlu pair and could be released under conditions of decreasing pH. Additionally, encapsulation within complex coacervates did not alter the secondary structure of the protein. Lastly the complex coacervate system was shown to be biocompatible and interact well with cells in vitro. A simple, modular system for encapsulation such as the one presented here may be useful in a range of drug delivery applications. C1 [Black, Katie A.; Yip, Jeremy; Byun, William Y.; Tirrell, Matthew] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Black, Katie A.] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. [Priftis, Dimitrios; Perry, Sarah L.; Tirrell, Matthew] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Tirrell, Matthew] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tirrell, M (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM mtirrell@uchicago.edu OI Perry, Sarah/0000-0003-2301-6710 FU National Science Foundation [CBET - 1015026] FX This work was supported by the National Science Foundation award number CBET - 1015026. NR 29 TC 30 Z9 30 U1 6 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD OCT PY 2014 VL 3 IS 10 BP 1088 EP 1091 DI 10.1021/mz500529v PG 4 WC Polymer Science SC Polymer Science GA AR6DJ UT WOS:000343673200027 ER PT J AU Eichhorn, CD Kang, MJ Feigon, J AF Eichhorn, Catherine D. Kang, Mijeong Feigon, Juli TI Structure and function of preQ(1) riboswitches SO BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS LA English DT Review DE Queuosine; tRNA modification; NMR; X-ray crystallography; Queuine; PreQ(0) ID RNA-GUANINE TRANSGLYCOSYLASE; TRANSFER-RIBONUCLEIC-ACIDS; ESCHERICHIA-COLI; CELL-PROLIFERATION; SHIGELLA-FLEXNERI; LIGAND-BINDING; HYPERMODIFIED NUCLEOSIDES; DEPENDENT RIBOSWITCH; SENSING RIBOSWITCH; CRYSTAL-STRUCTURES AB PreQ(1) riboswitches help regulate the biosynthesis and transport of preQ(1) (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ(1) riboswitches have been identified (preQ(1)-I and preQ(1)-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQi binding, each of which has distinct unusual features and modes of preQ(1) recognition. These features include an unusually long loop 2 in preQ(1)-I pseudoknots and an embedded hairpin in loop 3 in preQ(1)-II pseudoknots. PreQ(1)-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQi riboswitches. This article is part of a Special Issue entitled: Riboswitches. (c) 2014 Elsevier B.V. All rights reserved. C1 [Eichhorn, Catherine D.; Kang, Mijeong; Feigon, Juli] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Kang, Mijeong; Feigon, Juli] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Feigon, J (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. FU U.S. Department of Energy [DE-FC03-02ER63421]; National Institutes of Health [GM48123]; UCLA Tumor Biology USHHS Ruth L. Kirschstein NRSA T32 award [CA009056] FX This work was supported by grants from the U.S. Department of Energy (DE-FC03-02ER63421) and the National Institutes of Health (GM48123) to J.F. and a UCLA Tumor Biology USHHS Ruth L. Kirschstein NRSA T32 award (CA009056) to C.D.E. NR 87 TC 6 Z9 6 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-9399 EI 0006-3002 J9 BBA-GENE REGUL MECH JI Biochim. Biophys. Acta-Gene Regul. Mech. PD OCT PY 2014 VL 1839 IS 10 SI SI BP 939 EP 950 DI 10.1016/j.bbagrm.2014.04.019 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AR5JH UT WOS:000343620700006 PM 24798077 ER PT J AU Sanbonmatsu, KY AF Sanbonmatsu, Karissa Y. TI Dynamics of riboswitches: Molecular simulations SO BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS LA English DT Review DE Riboswitch; Molecular dynamics simulation; RNA ID SAM-I RIBOSWITCH; ADENINE-SENSING RIBOSWITCH; S-ADENOSYLMETHIONINE RIBOSWITCH; MESSENGER-RNA ELEMENT; COARSE-GRAINED MODEL; APTAMER DOMAIN; LIGAND-BINDING; GENE-EXPRESSION; TRANSCRIPTION TERMINATION; CONFORMATIONAL ENSEMBLE AB Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 104 TC 3 Z9 3 U1 6 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-9399 EI 0006-3002 J9 BBA-GENE REGUL MECH JI Biochim. Biophys. Acta-Gene Regul. Mech. PD OCT PY 2014 VL 1839 IS 10 SI SI BP 1046 EP 1050 DI 10.1016/j.bbagrm.2014.06.010 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AR5JH UT WOS:000343620700017 PM 24953187 ER PT J AU Tomasi, D Wang, RL Wang, GJ Volkow, ND AF Tomasi, Dardo Wang, Ruiliang Wang, Gene-Jack Volkow, Nora D. TI Functional Connectivity and Brain Activation: A Synergistic Approach SO CEREBRAL CORTEX LA English DT Article DE attention; FCD; fMRI; hub; performance ID LOW-FREQUENCY FLUCTUATION; DEFAULT MODE NETWORK; RESTING-STATE FMRI; VISUAL-ATTENTION; WORKING-MEMORY; AREA V2; 4 TESLA; TASK; MOTION; MRI AB Traditional functional magnetic resonance imaging (fMRI) studies exploit endogenous brain activity for mapping brain activation during "periodic" cognitive/emotional challenges or brain functional connectivity during the "resting state". Previous studies demonstrated that these approaches provide a limited view of brain function which can be complemented by each other. We hypothesized that graph theory functional connectivity density (FCD) mapping would demonstrate regional FCD decreases between resting-state scan and a continuous "task-state" scan. Forty-five healthy volunteers underwent functional connectivity MRI during resting-state as well as a continuous visual attention task, and standard fMRI with a blocked version of the visual attention task. High-resolution data-driven FCD mapping was used to measure task-related connectivity changes without a priori hypotheses. Results demonstrate that task performance was associated with FCD decreases in brain regions weakly activated/deactivated by the task. Furthermore, a pronounced negative correlation between blood oxygen level-dependent-fMRI activation and task-related FCD decreases emerged across brain regions that also suggest the disconnection of task-irrelevant networks during task performance. The correlation between improved accuracy and stronger FCD decreases further suggests the disconnection of task-irrelevant networks during task performance. Functional connectivity can potentiate traditional fMRI studies and offer a more complete picture of brain function. C1 [Tomasi, Dardo; Volkow, Nora D.] NIAAA, Bethesda, MD USA. [Wang, Ruiliang; Wang, Gene-Jack] Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Biosci, Upton, NY 11973 USA. [Wang, Gene-Jack] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA. [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Biosci, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU National Institutes of Alcohol Abuse and Alcoholism [2RO1AA09481] FX This work was accomplished with support from the National Institutes of Alcohol Abuse and Alcoholism (2RO1AA09481). NR 62 TC 18 Z9 18 U1 0 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1047-3211 EI 1460-2199 J9 CEREB CORTEX JI Cereb. Cortex PD OCT PY 2014 VL 24 IS 10 BP 2619 EP 2629 DI 10.1093/cercor/bht119 PG 11 WC Neurosciences SC Neurosciences & Neurology GA AR2IT UT WOS:000343408200009 PM 23645721 ER PT J AU Rahman, M Yu, E Forman, E Roberson-Mailloux, C Tung, J Tringe, J Stroeve, P AF Rahman, Masoud Yu, Erick Forman, Evan Roberson-Mailloux, Cameron Tung, Jonathan Tringe, Joseph Stroeve, Pieter TI Modified release from lipid bilayer coated mesoporous silica nanoparticles using PEO-PPO-PEO triblock copolymers SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article DE Drug delivery; Controlled release; Diffusion; Critical micelle concentration; Pluronic ID PLURONIC BLOCK-COPOLYMERS; DRUG-DELIVERY; TRIGGERED RELEASE; CANCER-CELLS; RANGE AB Triblock copolymers comprised of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, or trade name Pluronic) interact with lipid bilayers to increase their permeability. Here we demonstrate a novel application of Pluronic L61 and L64 as modification agents in tailoring the release rate of a molecular indicator species from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer-coated superparamagnetic Fe3O4/mesoporous silica core-shell nanoparticles. We show there is a direct relationship between the Pluronics' concentration and the indicator molecule release, suggesting Pluronics may be useful for the controlled release of drugs from lipid bilayer-coated carriers. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rahman, Masoud; Yu, Erick; Forman, Evan; Roberson-Mailloux, Cameron; Tung, Jonathan; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Tringe, Joseph] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Stroeve, P (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM pstroeve@ucdavis.edu FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California Lab Fee Program through the Office of the President in Oakland, California FX This work was supported by the University of California Lab Fee Program through the Office of the President in Oakland, California. Parts of this work were performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 20 TC 7 Z9 7 U1 4 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7765 EI 1873-4367 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD OCT 1 PY 2014 VL 122 BP 818 EP 822 DI 10.1016/j.colsurfb.2014.08.013 PG 5 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA AR5GK UT WOS:000343612900102 PM 25200097 ER PT J AU Kayzar, TM Nelson, BK Bachmann, O Bauer, AM Izbekov, PE AF Kayzar, Theresa M. Nelson, Bruce K. Bachmann, Olivier Bauer, Ann M. Izbekov, Pavel E. TI Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY LA English DT Article DE Assimilation; Kamchatka; Magma mixing; Pb isotopes; Trace element; Major element ID HIGH-ALUMINA BASALTS; TRACE-ELEMENT; CONTINENTAL-CRUST; SUBDUCTION ZONE; ARC MAGMAS; SEISMIC TOMOGRAPHY; STORAGE-CONDITIONS; ALEUTIAN JUNCTION; PARENTAL MAGMAS; MELT INCLUSIONS AB The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956-present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts-basaltic andesites are more radiogenic than Bezymianny andesites (Pb-208/Pb-204 = 37.850-37.903, Pb-207/Pb-204 = 15.468-15.480, and Pb-206/Pb-204 = 18.249-18.278 at Bezymianny; Pb-208/Pb-204 = 37.907-37.949, Pb-207/Pb-204 = 15.478-15.487, and Pb-206/Pb-204 = 18.289-18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 +/- 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky-Eastern Volcanic Zone; Shiveluch-Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs. C1 [Kayzar, Theresa M.; Nelson, Bruce K.; Bachmann, Olivier; Bauer, Ann M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Kayzar, Theresa M.] Lawrence Livermore Natl Lab, US DOE, Livermore, CA 94550 USA. [Bachmann, Olivier] ETH, Inst Geochem & Petrol, Dept Earth Sci, CH-8092 Zurich, Switzerland. [Bauer, Ann M.] MIT, Cambridge, MA 02139 USA. [Izbekov, Pavel E.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. RP Kayzar, TM (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM kayzar1@llnl.gov FU National Science Foundation (PIRE-Kamchatka grant) [OISE-0530278]; National Science Foundation (Graduate Research Fellowship); University of Washington Department of Earth and Space Sciences FX This project was supported by the National Science Foundation (PIRE-Kamchatka grant OISE-0530278 to Izbekov and a Graduate Research Fellowship to T.M. Kayzar), as well as awards given by the University of Washington Department of Earth and Space Sciences. We owe many thanks to our Russian collaborators at The Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky, Russia, for their field guidance and support: specifically Evgeny Gordeev, Sergey Ushakov, Marina Belousova, Alexander Belousov, Sergey Serovetnikov and Slava Pilipenko. Discussions with Maxim Portnyagin as well as members of the UAF PIRE-Kamchatka research team (Taryn Lopez, Ronni Grapenthin, Steven J. Turner, Vasily Shcherbakov, Jill Shipman, Weston Thelen and others) significantly improved this manuscript. T.M.K. thanks Taryn Lopez for her field support from 2007 to 2009. NR 108 TC 1 Z9 1 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-7999 EI 1432-0967 J9 CONTRIB MINERAL PETR JI Contrib. Mineral. Petrol. PD OCT PY 2014 VL 168 IS 4 AR 1067 DI 10.1007/s00410-014-1067-6 PG 28 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA AR7II UT WOS:000343752400007 ER PT J AU Schofield, PF Smith, AD Scholl, A Doran, A Covey-Crump, SJ Young, AT Ohldag, H AF Schofield, Paul F. Smith, Andrew D. Scholl, Andreas Doran, Andrew Covey-Crump, Stephen J. Young, Antony T. Ohldag, Hendrik TI Chemical and oxidation-state imaging of mineralogical intergrowths: The application of X-ray photo-emission electron microscopy (XPEEM) SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE XPEEM; Oxidation state; L-edge XANES; Mineralogy; Geochemistry; Non-destructive ID MAGNETIC CIRCULAR-DICHROISM; ABSORPTION-SPECTROSCOPY; L-EDGE; SYNCHROTRON-RADIATION; FERRIC IRON; K-EDGE; XANES SPECTROSCOPY; CRYSTAL-STRUCTURE; LINEAR DICHROISM; VALENCE STATES AB We describe the application of X-ray photo-emission electron microscopy (XPEEM) to studies of minerals and mineral intergrowths in which the spatial integrity of the sample must be maintained in order to retain the chronological context of the study. Chemical imaging, oxidation state imaging and area selective spectroscopy of minerals are described for a range of samples that includes oxides, sulphides and silicates. Oxidation state images with spatial resolutions between similar to 200 nm and similar to 500 nm are presented for Fe3+ in igneous pyroxenes, for Mn2+/Mn4+ in deep sea Mn nodules, and for Fe2+/Fe3+ in a skeletal intergrowth of magnetite in magnesiowustite. Spatially resolved, quantitative L-edge XANES analysis from XPEEM image stacks is reported for a chromite grain from a Martian basalt and for a chemically-zoned metamorphic garnet crystal. In the Martian chromite grain the Fe3+/Sigma Fe and Cr3+/Sigma Cr ratios were found to be constant at 0.18 +/- 0.02 and 1.0 respectively. The Fe3+/Sigma Fe ratio across a metamorphic garnet was found to increase from 0.07 +/- 0.02 at the centre of the crystal to 0.13 +/- 0.02 at the rim while the Mn2+/Sigma Mn ratio remained at 1.0 throughout. It is shown that for complex mineral intergrowths XPEEM can be used for mineral identification at a length-scale of a few 10 s of nm. While the spatial resolution from which high quality L-edge XANES spectra have been extracted from mineralogical samples to date is about 100 nm, XPEEM offers an achievable resolution approaching 30 nm in the soft X-ray region (2000 eV and below). The non-destructive nature of XPEEM is of particular importance for natural and synthetic samples of high scientific value that may be required for further analysis by other microscopy, chemical analysis or isotope techniques. XPEEM can be used as a stand-alone spectromicroscopy method for the study of mineralogical samples or can be combined with other well established synchrotron methods such as hard X-ray, microfocus XANES spectroscopy and soft X-ray, scanning transmission X-ray microscopy. (C) 2014 Elsevier B.V. All rights reserved. C1 [Schofield, Paul F.] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England. [Smith, Andrew D.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Scholl, Andreas; Doran, Andrew; Young, Antony T.; Ohldag, Hendrik] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Covey-Crump, Stephen J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Ohldag, Hendrik] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Schofield, PF (reprint author), Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England. EM p.schofield@nhm.ac.uk RI Scholl, Andreas/K-4876-2012; Ohldag, Hendrik/F-1009-2014; OI Covey-Crump, Stephen/0000-0002-9806-6870; Doran, Andrew/0000-0001-5158-4569 FU Advanced Light Source; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NERC; STFC Daresbury Laboratory FX Some of the work presented in this manuscript was carried out with the support of the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge Professor C.M.B. Henderson, the STFC Daresbury Laboratory and the NERC for funding under the Envirosynch programme. The authors are grateful for the help of J.C. Bridges, G. Cressey, P.M. Doyle, R.A.D. Pattrick, I.C. Stretton and A.H.G. Wighton. NR 85 TC 2 Z9 2 U1 4 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 EI 1873-3840 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD OCT 1 PY 2014 VL 277 SI SI BP 31 EP 43 DI 10.1016/j.ccr.2014.02.006 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AR1OI UT WOS:000343354100004 ER PT J AU Shelby, ML Mara, MW Chen, LX AF Shelby, Megan L. Mara, Michael W. Chen, Lin X. TI New insight into metalloporphyrin excited state structures and axial ligand binding from X-ray transient absorption spectroscopic studies SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE Metalloporphyrins; Photodissociation of the ligand; Hemeproteins; Excited state molecular structures; X-ray transient absorption; Catalysis ID PHOTOLYZED CARBONMONOXY-MYOGLOBIN; NONPLANAR NICKEL(II) PORPHYRINS; BRIDGE-ACCEPTOR SYSTEMS; HEME-PROTEINS; MOLECULAR-STRUCTURES; RAMAN-SPECTROSCOPY; ELECTRON-TRANSFER; CONFORMATIONAL DYNAMICS; DEPENDENT ELECTRON; NI(II) PORPHYRINS AB Metalloporphyrin axial ligation is an important process in catalysis and the enzymatic chemistry of proteins and is metal center dependent. Direct structural dynamics measurements on different metalloporphyrins using X-ray transient absorption spectroscopy (XTA) have brought new insight into this extensively studied process. This review uses two representative open shell metalloporphyrins, nickel tetramesitylporphyrin (NiTMP) and iron protoporphyrin (FePP), to demonstrate the capability of XTA in resolving both electronic and nuclear structures of these porphyrins in axial ligation processes. A surprisingly broad 3d orbital energy level distribution has been related to differences in the conformational distribution of NiTMP in the ground and excited state, which suggests a unified mechanism for axial ligation in open shell metalloporphyrins driven by transient vacancies in the 3d(z)(2) orbital, which is aligned with the axial ligation coordinate. XTA studies also show that dynamic and structural differences in the CO dissociation process are influenced by the metal site environments, demonstrated by the comparison of FePP in solution and heme in myoglobin. These results imply a porphyrin conformational control of ligation and therefore insight into metalloporphyrin catalyst design involving control the axial ligation/deligation processes as well as deduction of enzymatic regulation of ligand binding. (C) 2014 Published by Elsevier B.V. C1 [Shelby, Megan L.; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mara, Michael W.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Chen, LX (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM lchen@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank Drs. Klaus Attenkofer (now at NSLS-II, Brookhaven National Laboratory), Xiaoyi Zhang, Guy Jennings and Mr. Charles Kurtz of the Advanced Photon Source for their contributions in the XTA facility at Beamline 11 ID-D, APS. LXC would like to thank her collaborators from both Argonne National Laboratory and Northwestern University, Drs. G.B. Shaw, E.C. Wasinger, J.V. Lockard, M.R. Harpham, A.B. Stickrath, J. Huang, for their efforts in experiments mentioned here. Also, many discussions and exchanges with our collaborators, Drs. G. Smolentsev, Kristoffer M. Haldrup, and Profs. Jonathan S. Lindsey, are appreciated. NR 103 TC 6 Z9 6 U1 6 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 EI 1873-3840 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD OCT 1 PY 2014 VL 277 SI SI BP 291 EP 299 DI 10.1016/j.ccr.2014.05.025 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AR1OI UT WOS:000343354100014 ER PT J AU Kim, J Reed, JL AF Kim, Joonhoon Reed, Jennifer L. TI Refining metabolic models and accounting for regulatory effects SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID GENOME-SCALE MODELS; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; SACCHAROMYCES-CEREVISIAE; HIGH-THROUGHPUT; NETWORK MODEL; OMIC DATA; RECONSTRUCTION; EXPRESSION; GENE AB Advances in genome-scale metabolic modeling allow us to investigate and engineer metabolism at a systems level. Metabolic network reconstructions have been made for many organisms and computational approaches have been developed to convert these reconstructions into predictive models. However, due to incomplete knowledge these reconstructions often have missing or extraneous components and interactions, which can be identified by reconciling model predictions with experimental data. Recent studies have provided methods to further improve metabolic model predictions by incorporating transcriptional regulatory interactions and high-throughput omics data to yield context-specific metabolic models. Here we discuss recent approaches for resolving model-data discrepancies and building context-specific metabolic models. Once developed highly accurate metabolic models can be used in a variety of biotechnology applications. C1 [Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Reed, JL (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM reed@engr.wisc.edu RI Reed, Jennifer/E-5137-2011; Kim, Joonhoon/E-6253-2012 OI Kim, Joonhoon/0000-0002-7425-1828 FU U.S. Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Office of Science (BER), U.S. Department of Energy [DE-SC008103] FX This work was funded by the U.S. Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the Office of Science (BER), U.S. Department of Energy (DE-SC008103). NR 50 TC 7 Z9 7 U1 1 U2 24 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD OCT PY 2014 VL 29 BP 34 EP 38 DI 10.1016/j.copbio.2014.02.009 PG 5 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA AR1XO UT WOS:000343378100006 PM 24632483 ER PT J AU Stoupin, S AF Stoupin, Stanislav TI Novel diamond X-ray crystal optics for synchrotrons and X-ray free-electron lasers SO DIAMOND AND RELATED MATERIALS LA English DT Article DE HPHT; Diamond crystal; Defects; X-ray optics; XFEL ID REFRACTIVE LENSES; PHASE RETARDER; MONOCHROMATOR; BEAMLINE; REFLECTIVITY; WAVELENGTH AB The most common applications of diamond crystals in X-ray optics are high-heat-load monochromators for synchrotron beamlines and phase retarders for polarization control. Here, less common applications of diamond at the frontier of X-ray crystal optics are reviewed and summarized. These include a sub-meV-bandwidth X-ray monochromator with high spectral efficiency [1] and all-diamond optical assemblies for a beam-multiplexing double-crystal monochromator at the Linac Coherent Light Source [2]. Also, novel applications for the realization of fully coherent hard X-ray sources are discussed, such as, diamond crystal optics for self-seeding of hard X-rays in the Linac Coherent Light Source [3,4] and Bragg mirrors for the highly anticipated X-tay free-electron laser oscillator [5,6]. These examples present diamond as a material for the next generation of X-ray optics, optics which can provide unique characteristics and capabilities to modem X-ray sources. In addition, details of practical importance on fabrication and characterization methods of diamond crystals with the suitable quality are presented. (C) 2014 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave,Bldg 401,Rm B3181, Argonne, IL 60439 USA. EM sstoupin@aps.anl.gov RI BM, MRCAT/G-7576-2011 FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX Yu. V. Shvyd'ko, D. Shu, S.A. Terentyev and V.D. Blank are acknowledged for years of fruitful collaboration on diamond X-ray optics projects. The members of the XPP instrument team at the LCLS are acknowledged for their input on performance of diamond optics at the LCLS. The members of the Optics group at the Advanced Photon Source are acknowledged for the helpful discussions and for the technical support. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 51 TC 4 Z9 4 U1 4 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD OCT PY 2014 VL 49 BP 39 EP 47 DI 10.1016/j.diamond.2014.08.002 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA AR6KA UT WOS:000343691300007 ER PT J AU Curran, SJ Wagner, RM Graves, RL Keller, M Green, JB AF Curran, Scott J. Wagner, Robert M. Graves, Ronald L. Keller, Martin Green, Johney B., Jr. TI Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles SO ENERGY LA English DT Article DE WTW (well-to-wheels); Compressed natural gas; Natural gas; Natural gas vehicles; Electric vehicles ID ENERGY AB The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B., Jr.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Curran, SJ (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM curransj@ornl.gov RI Green, Johney/B-3391-2017; OI Green, Johney/0000-0003-2383-7260; Curran, Scott/0000-0002-4665-0231 FU Oak Ridge National Laboratory (ORNL) Energy Science and Transportation Division; ORNL Sustainable Transportation Program FX This work was supported by the Oak Ridge National Laboratory (ORNL) Energy Science and Transportation Division and the ORNL Sustainable Transportation Program. The authors gratefully acknowledge the guidance of Jake Ward, Kevin Stork, and Steve Przesmitzki at the DOE Vehicle Technologies Office. Special thanks also goes out to Brian West, VJ Ewing, Charlie Horak, Karson Stone and Michelle Edwards at ORNL for editorial comments. NR 35 TC 16 Z9 16 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD OCT 1 PY 2014 VL 75 SI SI BP 194 EP 203 DI 10.1016/j.energy.2014.07.035 PG 10 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AR1IW UT WOS:000343339900021 ER PT J AU Cano, EL Groissbock, M Moguerza, JM Stadler, M AF Cano, Emilio L. Groissboeck, Markus Moguerza, Javier M. Stadler, Michael TI A strategic optimization model for energy systems planning SO ENERGY AND BUILDINGS LA English DT Article DE Energy efficiency in buildings; Energy systems planning; Building strategic planning; Decision support systems; Energy systems optimization; Energy balance ID ELECTRICITY MARKET; INTEGRATION; POWER AB Strategic decisions regarding energy systems deployment at the building level are becoming a great challenge in the global market. On the one hand, competition policies are allowing the arriving of new actors to the market, resulting in sophisticated pricing options. On the other hand, efficiency and sustainability policies and regulations aim at encouraging building managers and operators to adopt an active role in the energy market. In this paper, an optimization model which deals with such strategic decisions is presented. The model integrates features such as scaled operational performance in the short term, different technologies and market options, and different energy types, as well as technologies' aging and renovation. This integration results on a holistic model, which constitutes the main contribution of the paper, suitable to be implemented in decision support systems (DSS). (C) 2014 Elsevier B.V. All rights reserved. C1 [Cano, Emilio L.; Moguerza, Javier M.] Rey Juan Carlos Univ, Dept Stat & Operat Res, Madrid 28933, Spain. [Groissboeck, Markus; Stadler, Michael] Ctr Energy & Innovat Technol CET, Yspertal, Austria. [Groissboeck, Markus; Stadler, Michael] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Cano, EL (reprint author), Rey Juan Carlos Univ, Dept Stat & Operat Res, Calle Tulipan S-N, Madrid 28933, Spain. EM emilio.lopez@urjc.es; mgroissboeck@cet.or.at; javier.moguerza@urjc.es; mstadler@cet.or.at OI Cano, Emilio L./0000-0002-6101-9755 FU EC's Seventh Framework Programme via the "Energy Efficiency and Risk Management in Public Buildings" (EnRiMa) project [260041]; national project OPTIMOS 3 [MTM2012-36163-C06-06]; national project RIESGOS-CM [S2009/ESP-1685]; national project HAUS [IPT-2011-1049-430000]; national project EDUCALAB [IPT-2011-1071-430000]; national project DEMOCRACY4ALL [IPT-2011-0869-430000]; national project CORPORATE COMMUNITY [IPT-2011-0871-430000]; Austrian Federal Ministry for Transport, Innovation and Technology [GZ. BMVIT-607.337/0001-111/I3/2011]; Theodor Kery Foundation of the province of Burgenland FX This work is partially supported by the EC's Seventh Framework Programme via the "Energy Efficiency and Risk Management in Public Buildings" (EnRiMa) project (number 260041). URIC also acknowledge national projects OPTIMOS 3 (MTM2012-36163-C06-06), RIESGOS-CM (code S2009/ESP-1685), HAUS (IPT-2011-1049-430000), EDUCALAB (IPT-2011-1071-430000), DEMOCRACY4ALL (IPT-2011-0869-430000) and CORPORATE COMMUNITY (IPT-2011-0871-430000). The Center for Energy and innovative Technologies (CET) was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (GZ. BMVIT-607.337/0001-lll/I3/2011) through the Building of Tomorrow program as well as by the Theodor Kery Foundation of the province of Burgenland in course of EnRiMa. We also want to thank the University of Applied Science at Pinkafeld and University of Applied Science at Vienna (ENERGYbase) for their great support of the EnRiMa project. NR 25 TC 5 Z9 5 U1 0 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD OCT PY 2014 VL 81 BP 416 EP 423 DI 10.1016/j.enbuild.2014.06.030 PG 8 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AR1SA UT WOS:000343363700039 ER PT J AU Bahadur, J Melnichenko, YB Mastalerz, M Furmann, A Clarkson, CR AF Bahadur, J. Melnichenko, Y. B. Mastalerz, Maria Furmann, Agnieszka Clarkson, Chris R. TI Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study SO ENERGY & FUELS LA English DT Article ID MISSISSIPPIAN BARNETT SHALE; NORTH-CENTRAL TEXAS; FORT-WORTH BASIN; GAS-ADSORPTION; SIZE DISTRIBUTION; ORGANIC-MATTER; SURFACE-AREA; POROSITY; MUDSTONES; ROCKS AB Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. The samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. Although there is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens. C1 [Bahadur, J.; Melnichenko, Y. B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Mastalerz, Maria] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA. [Furmann, Agnieszka] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Clarkson, Chris R.] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM melnichenkoy@ornl.gov FU National Science Foundation [DMR-0454672]; National Institute of Standards and Technology; United States Department of Commerce; Tight Oil Consortium (TOC) at the University of Calgary; Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy; ORNL Postdoctoral Research Associates Program FX The authors acknowledge D. F. R. Mildner for his help during USANS experiments. Partial funding for this research was provided by the Tight Oil Consortium (TOC) at the University of Calgary. The research at the High Flux Isotope Reactor of Oak Ridge National Laboratory (ORNL) was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. This work used facilities supported in part by the National Science Foundation under Agreement DMR-0454672. The authors acknowledge the support of the National Institute of Standards and Technology, United States Department of Commerce, in providing the neutron research facilities used in this work. NR 31 TC 7 Z9 7 U1 5 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD OCT PY 2014 VL 28 IS 10 BP 6336 EP 6344 DI 10.1021/ef501832k PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AR1HJ UT WOS:000343336000018 ER PT J AU Reese, D Oakley, J Navarro-Nunez, A Rothamer, D Weber, C Bonazza, R AF Reese, Daniel Oakley, Jason Navarro-Nunez, Alonso Rothamer, David Weber, Chris Bonazza, Riccardo TI Simultaneous concentration and velocity field measurements in a shock-accelerated mixing layer SO EXPERIMENTS IN FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; IMAGE VELOCIMETRY; TURBULENT FLOWS; TRANSITION; PERTURBATIONS; PIV AB A novel technique to obtain simultaneous velocity and concentration measurements is applied to the Richtmyer-Meshkov instability. After acceleration by a Mach 2.2 shock wave, the interface between the two gases develops into a turbulent mixing layer. A time-separated pair of acetone planar laser-induced fluorescence images are processed to yield concentration and, through application of the Advection-Corrected Correlation Image Velocimetry technique, velocity fields. This is the first application of this technique to shock-accelerated flows. We show that when applied to numerical simulations, this technique reproduces the velocity field to a similar quality as particle image velocimetry. When applied to the turbulent mixing layer of the experiments, information about the Reynolds number and anisotropy of the flow is obtained. C1 [Reese, Daniel; Oakley, Jason; Navarro-Nunez, Alonso; Bonazza, Riccardo] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Rothamer, David] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Weber, Chris] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Reese, D (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM dtreese@wisc.edu FU US Department of Energy Grant [DE-FG52-06NA26196] FX The authors would like to thank Dr. Xylar Asay-Davis for his valuable correspondence and assistance with the ACCIV software. This research was partially supported by US Department of Energy Grant DE-FG52-06NA26196. NR 23 TC 0 Z9 0 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD OCT PY 2014 VL 55 IS 10 AR 1823 DI 10.1007/s00348-014-1823-4 PG 8 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA AR6UQ UT WOS:000343719000006 ER PT J AU Marin, O Runborg, O Tornberg, AK AF Marin, Oana Runborg, Olof Tornberg, Anna-Karin TI Corrected trapezoidal rules for a class of singular functions SO IMA JOURNAL OF NUMERICAL ANALYSIS LA English DT Article DE singular functions; quadrature methods; high order ID HIGH-ORDER QUADRATURES; SCATTERING PROBLEMS; DIMENSIONS; INTEGRANDS; SURFACES; POINT AB A set of accurate quadrature rules applicable to a class of integrable functions with isolated singularities is designed and analysed theoretically in one and two dimensions. These quadrature rules are based on the trapezoidal rule with corrected quadrature weights for points in the vicinity of the singularity. To compute the correction weights, small-size ill-conditioned systems have to be solved. The convergence of the correction weights is accelerated by the use of compactly supported functions that annihilate boundary errors. Convergence proofs with error estimates for the resulting quadrature rules are given in both one and two dimensions. The tabulated weights are specific for the singularities under consideration, but the methodology extends to a large class of functions with integrable isolated singularities. Furthermore, in one dimension we have obtained a closed form expression based on which the modified weights can be computed directly. C1 [Marin, Oana; Runborg, Olof; Tornberg, Anna-Karin] KTH, Dept Math, S-10044 Stockholm, Sweden. [Runborg, Olof; Tornberg, Anna-Karin] KTH, SeRC, S-10044 Stockholm, Sweden. RP Marin, O (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM oanam@mcs.anl.gov; olofr@kth.se; akto@kth.se RI Runborg, Olof/D-1510-2016 NR 19 TC 4 Z9 4 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0272-4979 EI 1464-3642 J9 IMA J NUMER ANAL JI IMA J. Numer. Anal. PD OCT PY 2014 VL 34 IS 4 BP 1509 EP 1540 DI 10.1093/imanum/drt046 PG 32 WC Mathematics, Applied SC Mathematics GA AR1DD UT WOS:000343320900008 ER PT J AU Jilek, RE Tomson, NC Scott, BL Boncella, JM AF Jilek, Robert E. Tomson, Neil C. Scott, Brian L. Boncella, James M. TI [2+2] cycloaddition reactions at terminal imido uranium(IV) complexes to yield isolable cycloadducts SO INORGANICA CHIMICA ACTA LA English DT Article DE Uranium imido; Actinide imido; Uranium cycloaddition; Ureato complexes ID VALENT ORGANOURANIUM COMPLEXES; NITROGEN MULTIPLE BOND; BIS(IMIDO) COMPLEXES; ELECTRONIC-STRUCTURE; FUNCTIONAL-GROUPS; URANYL-ION; REACTIVITY; LIGAND; ARYL; ORGANOIMIDO AB The terminal imido complexes U(NDipp)Cl-2(tppo)(3) (tppo = triphenylphosphine oxide) and U(NDipp)Cl-2 (R(2)bpy)(2) (Dipp = 2,6-Pr-i(2)-C6H3; R(2)bpy = 4,4'-R-2-2,2'-bipyridyl; R = Me, tBu) contain reactive U=N bonds, which undergo [2 + 2] cycloaddition reactions with the N-C multiple bonds of isocyanates and benzonitrile. These low valent imido complexes display a preference for forming cycloaddition products, in contrast to high valent bis(imido)complexes, which undergo imido group exchange when treated with isocyanates. This disparity suggests that the U(IV)=NR linkage, already known to be more ionic than U(VI)=NR bonds, is also weaker than its U(VI) congener. The cycloaddition products that were used in this qualitative bond strength analysis have been characterized by X-ray crystallography and NMR spectroscopy. Most importantly, U(NDipp)Cl-2(tppo)(3) and U(NDipp)Cl-2(R(2)bpy) appear to be excellent synthetic precursors to new and intriguing organometallic uranium complexes. (C) 2014 Elsevier B. V. All rights reserved. C1 [Jilek, Robert E.; Tomson, Neil C.; Scott, Brian L.; Boncella, James M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Boncella, JM (reprint author), POB 1663 MS J514, Los Alamos, NM 87545 USA. EM boncella@lanl.gov RI Tomson, Neil/R-6686-2016; Scott, Brian/D-8995-2017; OI Tomson, Neil/0000-0001-9131-1039; Scott, Brian/0000-0003-0468-5396; Boncella, James/0000-0001-8393-392X FU Seaborg Institute at Los Alamos National Laboratory FX R.E.J. and N.C.T. thank the Seaborg Institute at Los Alamos National Laboratory for fellowships that provided partial support of their work. We also wish to thank the BES heavy element program for funding the studies on the nitrile and isocyanate addition chemistry. NR 50 TC 3 Z9 3 U1 0 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD OCT 1 PY 2014 VL 422 BP 78 EP 85 DI 10.1016/j.ica.2014.07.032 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AR4WB UT WOS:000343585800013 ER PT J AU Trevisan, L Cihan, A Fagerlund, F Agartan, E Mori, H Birkholzer, JT Zhou, QL Illangasekare, TH AF Trevisan, Luca Cihan, Abdullah Fagerlund, Fritjof Agartan, Elif Mori, Hiroko Birkholzer, Jens T. Zhou, Quanlin Illangasekare, Tissa H. TI Investigation of mechanisms of supercritical CO2 trapping in deep saline reservoirs using surrogate fluids at ambient laboratory conditions SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Multidimensional experimental analysis; Capillary trapping; Dimensional analysis; Trapping models ID STORAGE CAPACITY ESTIMATION; CARBON-DIOXIDE; POROUS-MEDIA; RELATIVE PERMEABILITY; GEOLOGICAL STORAGE; MULTIPHASE-FLOW; PORE-SCALE; INJECTION; AQUIFERS; GRAVITY AB Geological storage of carbon dioxide relies on the effectiveness of immobilizing CO2 in the pore space of deep geological formations through a number of trapping mechanisms that include capillary, dissolution, and mineral trapping. Improved fundamental understanding of these processes is expected to contribute toward better conceptual models, improved numerical models, more accurate assessment of storage capacities, and optimized placement strategies. However, studying these processes at a fundamental level is not feasible in field settings because fully characterizing the geologic variability at all relevant scales and making observations on the spatial and temporal distribution of the migration and trapping of supercritical CO2 (scCO(2)) is not practical. The specific goal of this study is to develop and implement an experimental method in intermediate scale test tanks under ambient laboratory conditions to make observations and generate data to improve the understanding of capillary trapping affected by fluid and formation properties. Since it is challenging to visualize multiphase flow processes occurring at high pressure conditions at the meter scale, a testing method was developed based on the use of surrogate test fluids to replace the scCO(2) and formation saline water. To set a foundation for extrapolating experimental results to the field, we chose a set of dimensionless groups that define the relative contributions of buoyancy, viscous, and capillary forces to the displacement behavior of immiscible fluids. The experiments were designed with the goal of understanding and accurately quantifying the immobilization of the scCO(2) analog in a homogeneous formation confined by a slightly dipping structural barrier. A set of three displacement experiments through unconsolidated sands with variable permeability was conducted in a quasi-two-dimensional flow cell to gain insight into the influence of buoyancy forces on the propagation of the displacing phase. This work takes advantage of laboratory experiments at the intermediate scale to investigate gravitational and hysteresis effects on entrapment of scCO(2) currents in brine-saturated reservoirs. Understanding these phenomena at a fundamental level represents a critical step to improve injection strategies and to enhance capillary trapping mechanisms. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Illangasekare, Tissa H.] Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA. [Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Fagerlund, Fritjof] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. RP Trevisan, L (reprint author), Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA. EM luca.trevisan@gmail.com RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011; Cihan, Abdullah/D-3704-2015; OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912; Trevisan, Luca/0000-0002-7172-5020 FU U.S. Department of Energy through the National Energy Technology Laboratory's CO2 sequestration RD Program [DE-FE0004630]; National Science Foundation [EAR-1045282] FX Funding for this research is provided by the U.S. Department of Energy through the National Energy Technology Laboratory's CO2 sequestration R&D Program under grant DE-FE0004630 and National Science Foundation Award no.: EAR-1045282 through the Hydrologic Sciences Program. We are grateful to Dr. Matthew Liberatore's group at CSM for providing rheometer and tensiometer. NR 63 TC 10 Z9 10 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2014 VL 29 BP 35 EP 49 DI 10.1016/j.ijggc.2014.07.012 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AR5QK UT WOS:000343638500004 ER PT J AU Carroll, SA Keating, E Mansoor, K Dai, ZX Sun, YW Trainor-Guitton, W Brown, C Bacon, D AF Carroll, Susan A. Keating, Elizabeth Mansoor, Kayyum Dai, Zhenxue Sun, Yunwei Trainor-Guitton, Whitney Brown, Chris Bacon, Diana TI Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon storage; CO2 and brine leakage; Groundwater impacts; Reactive-transport simulations; Reduced-order models ID NATURAL ANALOG SITE; CO2 SEQUESTRATION; HETEROGENEOUS AQUIFERS; RISK-ASSESSMENT; SHALLOW; STORAGE; SYSTEM; MODEL; SCALE; WATER AB In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which "no impact" to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and reduced-order models were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely conduits for brine and CO2 leaks. Leakage uncertainty was based on hypothetical injection of CO2 for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability and, one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. This scenario corresponds to a storage site with historical oil/gas production and some poorly completed legacy wells that went undetected through site evaluation, operations, and post-closure. For the aquifer systems and leakage scenarios studied here, CO2 and brine leakage are likely to drive pH below and increase total dissolved solids (TDS) above the "no-impact thresholds"; and the subsequent plumes, although small, are likely to persist for long periods of time in the absence of remediation. In these scenarios, however, risk to human health may not be significant for two reasons. First, our simulated plume volumes are much smaller than the average inter-well spacing (1-2.6 wells/km(2)) for these representative aquifers, so the impacted groundwater would be unlikely to be pumped for drinking water. Second, even within the impacted plume volumes little water exceeds the primary maximum contamination levels. These observations point to. The potential utility of uncertainty quantification methods to evaluate the risk of leakage and inform monitoring and corrective action plans of a potential site for long-term CO2 storage by capturing storage reservoir, leakage pathway, and aquifer heterogeneity. The importance of establishing baseline groundwater chemistry that captures the pre-injection variability of underground sources of drinking water (USDW) above the reservoir because the EPA has adopted a "no net degradation" policy toward the protection of groundwater resources. The need to test and develop spatially diverse monitoring techniques capable of detecting leakage early to employ effective mitigation strategies, and more importantly to add confidence to assessments used to evaluate the length of the post-injection site care. In our study, the probability of detecting plumes using existing wells to sample the groundwater chemistry was very low, because the plumes were relatively small in both aquifers. The need to develop methodologies that prevent and/or directly detect leakage prior to reaching USDWs, because our simulations predict that even small amounts of CO2 and brine, when left unmitigated, can change USDW pH and TDS concentrations for long periods of time. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Carroll, Susan A.; Mansoor, Kayyum; Sun, Yunwei; Trainor-Guitton, Whitney] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Keating, Elizabeth; Dai, Zhenxue] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brown, Chris; Bacon, Diana] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Carroll, SA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM carro116@llnl.gov; ekeating@lanl.gov; mansoor1@llnl.gov; daiz@lanl.gov; sun4@llnl.gov; trainorguitton@lln.gov; Christopher.Brown@pnnl.gov; Diana.Bacon@pnnl.gov RI Sun, Yunwei/C-9751-2010; OI Bacon, Diana/0000-0001-9122-5333; Dai, Zhenxue/0000-0002-0805-7621 FU DOE Office of Fossil Energy's Crosscutting Research program FX This work was completed as part of National Risk Assessment Partnership (NRAP) project. Support for this project came from the DOE Office of Fossil Energy's Crosscutting Research program. The authors wish to acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. NR 62 TC 28 Z9 28 U1 6 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2014 VL 29 BP 153 EP 168 DI 10.1016/j.ijggc.2014.07.007 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AR5QK UT WOS:000343638500014 ER PT J AU Newell, DL Larson, TE Perkins, G Pugh, JD Stewart, BW Capo, RC Trautz, RC AF Newell, D. L. Larson, T. E. Perkins, G. Pugh, J. D. Stewart, B. W. Capo, R. C. Trautz, R. C. TI Tracing CO2 leakage into groundwater using carbon and strontium isotopes during a controlled CO2 release field test SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 sequestration; Carbon isotopes; Strontium isotopes; Groundwater monitoring ID SHALLOW; INTRUSION; RESERVOIR; TRACERS; WATERS; SYSTEM AB During a carbon sequestration field study to simulate the impact of CO2 migration on shallow groundwater chemistry, the isotope composition of dissolved inorganic carbon (delta C-13(DIC)) and dissolved strontium (Sr-87/Sr-86) were evaluated as tracers. Dissolved CO2 in groundwater was introduced using a closed-loop dipole-style well field situated in a shallow sand-dominated aquifer. Baseline delta C-13(DIC) values, oxygen and hydrogen isotope ratios, and Sr-87/Sr-86 values of groundwater were established in four monitoring wells (MW-1 to 4) and one up-gradient background well (BG-1) prior to the introduction of dissolved CO2. Baseline groundwater delta C-13(DIC-PDB), oxygen (delta O-18(SMOW)) and hydrogen (delta D-SMOW) stable isotope values averaged -17, -4.1 and -19.5 parts per thousand, respectively. Groundwater Sr-87/Sr-86 baseline values averaged 0.70840 at MW-3 and 0.70818 at MW-2. Arrival of the dissolved CO2 plume at the monitoring wells is modeled using a 1-D analytical equation, which yields breakthrough curves with flow velocities that are consistent with prior numerical modeling estimates. The delta C-13(DIC-PDB) rose to an average steady-state value of 0.16 +/- 0.3 parts per thousand during the test; delta O-18 and delta D of water did not change from their baseline values. Sr-87/Sr-86 dropped sharply by 0.00022 at MW-3 and 0.00005 at MW-2 in the first two weeks after plume arrival at the wells, and then slowly increased toward baseline values, correlating with the behavior of dissolved Na, K, Ca, Sr and Si. Carbonate dissolution and desorption from organic matter and Fe-bearing phases at the low-pH plume front is the likely mechanism producing this behavior. The delta C-13(DIC) and the Sr-87/Sr-86 of dissolved strontium served as excellent tracers of plume movement during this experiment. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Newell, D. L.] Utah State Univ, Dept Geol, Logan, UT 84322 USA. [Larson, T. E.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Perkins, G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Pugh, J. D.] Southern Co Serv Inc, Birmingham, AL 35242 USA. [Stewart, B. W.; Capo, R. C.] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Trautz, R. C.] Elect Power Res Inst, Palo Alto, CA 94303 USA. RP Newell, DL (reprint author), Utah State Univ, Dept Geol, Logan, UT 84322 USA. EM dennis.newell@usu.edu FU Electric Power Research, Institute; U.S. Environmental Protection Agency, Office of Water under U.S. Department of Energy (DOE) at LBNL [DE-AC02-05CH11231]; National Energy Technology Laboratory (NETL), National Risk Assessment Program (NRAP), of the US Department of Energy [DEAC02-05CH11231] FX This work was supported in part by the Electric Power Research, Institute; the U.S. Environmental Protection Agency, Office of Water, under an Interagency Agreement with the U.S. Department of Energy (DOE) at LBNL, under contract number DE-AC02-05CH11231; and the Assistant Secretary for Fossil Energy, National Energy Technology Laboratory (NETL), National Risk Assessment Program (NRAP), of the US Department of Energy under Contract No. DEAC02-05CH11231. We thank E. Burt and A. Wall for assistance with the Sr isotope processing and analysis. Two anonymous reviews greatly improved this manuscript. NR 28 TC 3 Z9 3 U1 4 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2014 VL 29 BP 200 EP 208 DI 10.1016/j.ijggc.2014.08.015 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AR5QK UT WOS:000343638500018 ER PT J AU Henderson, MA AF Henderson, M. A. TI Roles of Fe2+, Fe3+, and Cr3+ surface sites in the oxidation of NO on the (Fe,Cr)(3)O-4(111) surface termination of an alpha-(Fe,Cr)(2)O-3(0001) mixed oxide SO JOURNAL OF CATALYSIS LA English DT Article DE Nitric oxide; Mixed oxide surface; Temperature-programmed desorption; Oxidation; Photocatalysis ID SELECTIVE CATALYTIC-REDUCTION; SCANNING-TUNNELING-MICROSCOPY; LASER INDUCED DESORPTION; NITRIC-OXIDE; PHOTOCATALYTIC REDUCTION; WATER PHOTOOXIDATION; FE-ZSM-5 CATALYST; SOLID-SOLUTIONS; NITROGEN-OXIDE; FORM ZEOLITES AB The oxidation of NO was explored on a mixed Fe + Cr oxide surface using temperature-programmed desorption (TPD). NO desorbs from (Fe,Cr)(3)O-4(111) in two main peaks at 220 and 370 K, with a third minor peak at similar to 315 K. O-2 TPD shows similar behavior. The strongly and weakly bound molecules are due to adsorption at Fe2+ and Fe3+ sites, respectively, and the minor states are assigned to Cr3+ sites. No thermal decomposition was detected for adsorbed NO, whereas similar to 10% of the adsorbed O-2 dissociated at Fe2+ sites. NO reacts with preadsorbed O-2 to produce surface nitrate, as confirmed by isotopic labeling, which decomposes in TPD at 425 K. Atomically adsorbed O does not react with NO. Fe3+ and Cr3+ sites do not appear to participate in NO oxidation. Irradiation of adsorbed NO or NO + O-2 with 460 nm light results predominantly in photodesorption, which limits the extent of possible surface photoreactions. (C) 2014 Elsevier Inc. All rights reserved. C1 Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnnl.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX The author thank Drs. Sara Chamberlin and Scott Chambers for supplying the film used in this work. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 57 TC 7 Z9 7 U1 2 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD OCT PY 2014 VL 318 BP 53 EP 60 DI 10.1016/j.jcat.2014.07.015 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AR1QX UT WOS:000343360800006 ER PT J AU Childers, DJ Schweitzer, NM Shahari, SMK Rioux, RM Miller, JT Meyer, RJ AF Childers, David J. Schweitzer, Neil M. Shahari, Seyed Mehdi Kamali Rioux, Robert M. Miller, Jeffrey T. Meyer, Randall J. TI Modifying structure-sensitive reactions by addition of Zn to Pd SO JOURNAL OF CATALYSIS LA English DT Article DE Structure-sensitive reaction; Intermetallic PdZn; Propane dehydrogenation; CleanCat; DRIFTS; CO calorimetry; EXAFS; Neopentane conversion ID RAY-ABSORPTION SPECTROSCOPY; WATER-GAS SHIFT; PALLADIUM CATALYSTS; PROPANE DEHYDROGENATION; PARTICLE-SIZE; ALLOY FORMATION; METHANOL; HYDROGENOLYSIS; CO; PLATINUM AB Silica-supported Pd and PdZn nanoparticles of a similar size were evaluated for neopentane hydrogenolysis/isomerization and propane hydrogenolysis/dehydrogenation. Monometallic Pd showed high neopentane hydrogenolysis selectivity. Addition of small amounts of Zn to Pd lead Pd-Zn scatters in the EXAFS spectrum and an increase in the linear bonded CO by IR. In addition, the neopentane turnover rate decreased by nearly 10 times with little change in the selectivity. Increasing amounts of Zn lead to greater Pd-Zn interactions, higher linear-to-bridging CO ratios by IR and complete loss of neopentane conversion. Pd NPs also had high selectivity for propane hydrogenolysis and thus were poorly selective for propylene. The PdZn bimetallic catalysts, however, were able to preferentially catalyze dehydrogenation, were not active for propane hydrogenolysis, and thus were highly selective for propylene formation. The decrease in hydrogenolysis selectivity was attributed to the isolation of active Pd atoms by inactive metallic Zn, demonstrating that hydrogenolysis requires a particular reactive ensemble whereas propane dehydrogenation does not. (C) 2014 Elsevier Inc. All rights reserved. C1 [Childers, David J.; Meyer, Randall J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60680 USA. [Schweitzer, Neil M.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Shahari, Seyed Mehdi Kamali; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. RP Miller, JT (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. EM millerjt@anl.gov; rjm@uic.edu FU Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center - United States Department of Energy, Office of Science, Office of Basic Energy Sciences; National Science Foundation (CBET) [0747646]; Chemical Sciences and Engineering Division at Argonne National Laboratory; Office of the Vice Chancellor for Research at the University of Illinois at Chicago; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Sciences Program [DE-FG02-12ER16364]; 3M Non-Tenured Faculty Grant (NTFG); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy [DE-AC02-06CH11357, DE-FG02-03ER15457]; MRCAT member institutions FX JTM and NS were supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences. R.J.M. and D.C. gratefully acknowledge funding for this work from the National Science Foundation (CBET Grant No. 0747646). Partial funding for DC was provided by the Chemical Sciences and Engineering Division at Argonne National Laboratory and the Office of the Vice Chancellor for Research at the University of Illinois at Chicago. S.M.K.S. and R.M.R. acknowledges funding from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Sciences Program under Grant No. DE-FG02-12ER16364. R.M.R. acknowledges financial support provided through a 3M Non-Tenured Faculty Grant (NTFG). The STEM work was performed at the UIC Research Resource Center. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The CleanCat Core facility acknowledges funding from the Department of Energy (DE-FG02-03ER15457 and DE-AC02-06CH11357) used for the purchase of the DRIFTS system and the AMI-200, respectively. NR 59 TC 8 Z9 8 U1 12 U2 75 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD OCT PY 2014 VL 318 BP 75 EP 84 DI 10.1016/j.jcat.2014.07.016 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA AR1QX UT WOS:000343360800009 ER PT J AU Bishop, LM Tillman, AS Geiger, FM Haynes, CL Klaper, RD Murphy, CJ Orr, G Pedersen, JA DeStefano, L Hamers, RJ AF Bishop, Lee M. Tillman, Ayesha S. Geiger, Franz M. Haynes, Christy L. Klaper, Rebecca D. Murphy, Catherine J. Orr, Galya Pedersen, Joel A. DeStefano, Lizanne Hamers, Robert J. TI Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Graduate Education/Research; Curriculum; Public Understanding/Outreach; Communication/Writing; Internet/Web-Based Learning; Professional Development; Nanotechnology ID CHEMISTRY COURSE; PUBLIC OUTREACH; SKILLS; EDUCATION; SCIENTISTS AB We have developed and assessed a multiauthor science blog on the topic of nanotechnology and sustainability as a tool to improve the written communication and public engagement skills of graduate students. Focus group studies revealed that after participation in the blog, student authors felt more confident and capable of communicating technical topics to general audiences. Students' research mentors viewed this as an important component of their students' education, as indicated by survey data. Important design aspects of this effort include participation of an editor as well as having flexible content and target-audience guidelines. We have explicitly outlined aspects of the effort we see as critical in order to enable others to replicate this model in related settings. C1 [Bishop, Lee M.; Pedersen, Joel A.; Hamers, Robert J.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Tillman, Ayesha S.; DeStefano, Lizanne] Univ Illinois, Coll Educ, Champaign, IL 61820 USA. [Geiger, Franz M.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Haynes, Christy L.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Klaper, Rebecca D.] Univ Wisconsin, Sch Freshwater Sci, Milwaukee, WI 53204 USA. [Murphy, Catherine J.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Pedersen, Joel A.] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA. RP Hamers, RJ (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM rjhamers@wisc.edu RI Hamers, Robert/C-6466-2008; OI Hamers, Robert/0000-0003-3821-9625; Murphy, Catherine/0000-0001-7066-5575; Haynes, Christy/0000-0002-5420-5867 FU National Science Foundation Chemistry Division under the Center for Sustainable Nanotechnology [CHE-1240151] FX This material is based upon work supported by the National Science Foundation Chemistry Division under the Center for Sustainable Nanotechnology, CHE-1240151. The authors would like to thank the following blog writers and peer editors, without whom this project would not have been possible: Devrah Arndt, Jared S. Bozich, Merve Dogangun, Gustavo A. Dominguez, Eseohi Ehimiaghe, Ian L. Gunsolus, Mimi N. Hang, Kurt H. Jacobson, Thomas R. Kuech, Changsoo Lee, Samuel E. Lohse, Nelliza Medero, Eric S. Melby, Arielle C. Mensch, Ben M. Meyer, Elvin A. Morales, Adam Nikolaus, Laura Olenick, Becca Putans, Tian A. Qiu, Stephanie Sanders, Marco D. Torelli, Julianne M. Troiano, Ariane Vartanian, Stephanie R. Walter. NR 38 TC 4 Z9 4 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD OCT PY 2014 VL 91 IS 10 BP 1600 EP 1605 DI 10.1021/ed500050d PG 6 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA AR6GT UT WOS:000343682000013 ER PT J AU Alstone, P Lai, P Mills, E Jacobson, A AF Alstone, Peter Lai, Patricia Mills, Evan Jacobson, Arne TI High Life Cycle Efficacy Explains Fast Energy Payback for Improved Off-Grid Lighting Systems SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE industrial ecology; kerosene; LED lighting; life cycle assessment (LCA); solar energy; technology adoption ID KEROSENE; EMISSIONS; RETURN; LAMPS AB The energy intensity of fuel-based lighting is substantial given the paltry levels of lighting service, poor economic outcomes, and exposure to public health risks for users throughout the developing world. There is a great opportunity to reduce fossil energy consumption (and mitigate greenhouse gas emissions) while improving public health and economic outcomes for the poor by encouraging upgrading from fuel-based to rechargeable light-emitting diode (LED) lighting. However, switching to efficient lighting requires up-front investments of energy for manufacturing. This study explores life cycle energy performance in the market for modern off-grid lighting (OGL) products in Sub-Saharan Africa and introduces a new metric, life cycle efficacy, which facilitates comparisons and analysis of life cycle energy performance (light output per unit of embodied plus use-phase energy consumption) for lighting technology systems. Combining field insights on technology adoption dynamics with embodied energy estimates for a range of products available in 2012 shows that OGL energy "debts" are "paid back" in 20 to 50 days (substantially faster than kilowatt-scale grid-connected solar electricity systems) with energy return on investment ratios from 10 to 40. This stems from greatly improved life cycle efficacy for off-grid LED lighting (similar to 20 lumens/watt [lm/W]), compared to fuel-based lighting (similar to 0.04 lumens/W). Life cycle benefits-not only energy, but also economic and health benefits-depend strongly on product service lifetime (related to quality) and fuel displacement fraction (related to performance). OGL life cycle efficacy increases from longer lifetime and/or improved LED source efficacy lead to better quality and less-expensive lighting available in the developing world with lower energy use than the fuel-based incumbent technology. C1 [Alstone, Peter] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Lai, Patricia; Jacobson, Arne] Humboldt State Univ, Schatz Energy Res Ctr, Arcata, CA 95521 USA. [Mills, Evan] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Alstone, P (reprint author), Univ Calif Berkeley, Energy & Resources Grp, 310 Barrows Hall, Berkeley, CA 94720 USA. EM peter.alstone@gmail.com OI Alstone, Peter/0000-0002-8841-347X FU Blum Center for Developing Economies at University of California, Berkele through the USDOE [DE-AC02-05CH11231]; Lighting Africa Program, a joint IFC-World Bank initiative; U.S. Environmental Protection Agency STAR Fellowship for Graduate Environmental Study; National Science Foundation Science Masters Program FX This work was funded by The Rosenfeld Fund of the Blum Center for Developing Economies at University of California, Berkeley, through the USDOE (under contract no. DE-AC02-05CH11231), and by the Lighting Africa Program, a joint IFC-World Bank initiative. Support for P. A. was provided by a U.S. Environmental Protection Agency STAR Fellowship for Graduate Environmental Study, and support for P. L. was provided by the National Science Foundation Science Masters Program. Art Rosenfeld has been a key supporter of this work. NR 46 TC 4 Z9 4 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD OCT PY 2014 VL 18 IS 5 BP 722 EP 733 DI 10.1111/jiec.12117 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AR8NN UT WOS:000343831800012 ER PT J AU Liu, J AF Liu, Jun TI Charging graphene for energy SO NATURE NANOTECHNOLOGY LA English DT Editorial Material ID LITHIUM ION BATTERIES; POROUS GRAPHENE; SUPERCAPACITORS; STORAGE; OXIDE C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jun.Liu@pnnl.gov NR 16 TC 38 Z9 38 U1 8 U2 133 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD OCT PY 2014 VL 9 IS 10 BP 739 EP 741 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AR5IA UT WOS:000343617200007 PM 25286262 ER PT J AU Gasenzer, T McLerran, L Pawlowski, JM Sexty, D AF Gasenzer, Thomas McLerran, Larry Pawlowski, Jan M. Sexty, Denes TI Gauge turbulence, topological defect dynamics, and condensation in Higgs models SO NUCLEAR PHYSICS A LA English DT Article DE Condensate formation; Confinement; Far-from-equilibrium dynamics; Non-thermal fixed points; Quark-gluon plasma ID FUNCTIONAL RENORMALIZATION-GROUP; GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; FINITE TEMPERATURE; LARGE NUCLEI; QUARK; EQUILIBRIUM; COLLISIONS; INFLATION; GLASMA AB The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2 + 1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates. (C) 2014 Elsevier B.V. All rights reserved. C1 [Gasenzer, Thomas; Pawlowski, Jan M.; Sexty, Denes] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Gasenzer, Thomas; Pawlowski, Jan M.; Sexty, Denes] GSI Darmstadt, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Gasenzer, T (reprint author), Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. FU DOE [DE-AC02-98CH10886]; Deutsche Forschungsgemeinschaft [GA677/7, GA677/8]; Helmholtz Alliance [HA216/EMMI]; BMBF; MWFK Baden-Wurttemberg; [ERC-AdG-290623] FX We thank J. Berges, M. Karl and S. Schlichting for discussions. The research of L. McLerran is supported under DOE Contract No. DE-AC02-98CH10886. Larry McLerran gratefully acknowledges support as a Hans Jensen Professor at the Institute for Theoretical Physics, University of Heidelberg, and the hospitality of this Institute where this work was initiated. This work is supported by Deutsche Forschungsgemeinschaft (GA677/7,8), the Helmholtz Alliance HA216/EMMI and by ERC-AdG-290623. Parts of the numerical calculations were done on the bwGRiD (http://www.b.w-grid.de), member of the German D-Grid initiative, funded by BMBF and MWFK Baden-Wurttemberg. NR 55 TC 8 Z9 8 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT PY 2014 VL 930 BP 163 EP 186 DI 10.1016/j.nuclphysa.2014.07.030 PG 24 WC Physics, Nuclear SC Physics GA AR1IY UT WOS:000343340100011 ER PT J AU Hentschinski, M Martinez, JDM Murdaca, B Vera, AS AF Hentschinski, M. Martinez, J. D. Madrigal Murdaca, B. Sabio Vera, A. TI The quark induced Mueller-Tang jet impact factor at next-to-leading order SO NUCLEAR PHYSICS B LA English DT Article ID ENERGY EFFECTIVE ACTION; CROSS-SECTIONS; RAPIDITY GAP; DIPOLE FORM; BFKL KERNEL; QCD; NLO; PART; REGGEIZATION; SCATTERING AB We present the NLO corrections for the quark induced forward production of a jet with an associated rapidity gap. We make use of Lipatov's QCD high energy effective action to calculate the real emission contributions to the so-called Mueller-Tang impact factor. We combine them with the previously calculated virtual corrections and verify ultraviolet and collinear finiteness of the final result. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Hentschinski, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Martinez, J. D. Madrigal] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Murdaca, B.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy. [Murdaca, B.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, I-87036 Cosenza, Italy. [Sabio Vera, A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Sabio Vera, A.] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, E-28049 Madrid, Spain. [Sabio Vera, A.] CERN, Geneva, Switzerland. RP Martinez, JDM (reprint author), CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. RI Hentschinski, Martin/A-9708-2015; OI Hentschinski, Martin/0000-0003-2922-7308; Murdaca, Beatrice/0000-0002-1681-5998; Madrigal, Jose Daniel/0000-0002-2453-0706 FU Research Executive Agency (REA) of the European Union(LHCPhenoNet) [PITN-GA-2010-264564]; Comunidad de Madrid through Proyecto HEPHACOS [ESP-1473]; MICINN [FPA2010-17747]; Spanish Government; EU ERDF(CPAN) [FPA2007-60323, FPA2011-23778, CSD2007-00042]; GV [PROMETEUII/2013/007]; U.S. Department of Energy [DE-AC02-98CH10886]; BNL Laboratory Directed Research and Development [LDRD 12-034]; European Research Council under the Advanced Investigator [ERC-AD-267258] FX We thank J. Bartels, V. Fadin and L. Lipatov for constant support for many years. We are further grateful to D. Ivanov for a comment at the meeting "Scattering Amplitudes & the Multi-Regge Limit 2014" concerning contributions of the proton remanent to the diffractive system. We acknowledge partial support by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet), the Comunidad de Madrid through Proyecto HEPHACOS ESP-1473, by MICINN (FPA2010-17747), by the Spanish Government and EU ERDF funds (grants FPA2007-60323, FPA2011-23778 and CSD2007-00042 Consolider Project CPAN) and by GV (PROMETEUII/2013/007). M.H. acknowledges support from the U.S. Department of Energy under contract number DE-AC02-98CH10886 and a BNL Laboratory Directed Research and Development grant (LDRD 12-034). The research of J.D.M. is supported by the European Research Council under the Advanced Investigator Grant ERC-AD-267258. NR 54 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD OCT PY 2014 VL 887 BP 309 EP 337 DI 10.1016/j.nuclphysb.2014.08.010 PG 29 WC Physics, Particles & Fields SC Physics GA AR1IU UT WOS:000343339700013 ER PT J AU Jensen, B Dandoloff, R Saxena, A AF Jensen, Bjorn Dandoloff, Rossen Saxena, Avadh TI Quantum particle constrained to a surface in quantum hydrodynamics SO PHYSICA SCRIPTA LA English DT Article DE quantum hydrodynamics; geometry; constrained quantum dynamics ID MECHANICS; CREATION AB We show that when the confining potential approach for constructing quantum mechanics on a surface is set within the framework of quantum hydrodynamics no geometric quantum potential is induced in general for appropriately prepared quantum states and when a confining potential is assumed. We also show that the usual formulation of this approach implies loss of general covariance of the theory such that the resulting surface theory in effect describes the dynamics of a scalar density in the surface; this renders the interpretation of the surface theory problematic. C1 [Jensen, Bjorn] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. [Dandoloff, Rossen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM bjorn.jensen@hbv.no; rossen.dandoloff@u-cergy.fr; avadh@lanl.gov FU Universite de Cergy-Pontoise, France; US Department of Energy FX BJ acknowledges support from the Universite de Cergy-Pontoise, France. AS was supported by the US Department of Energy. The authors also thank the referees for comments and for providing references. NR 16 TC 0 Z9 0 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD OCT PY 2014 VL 89 IS 10 AR 105202 DI 10.1088/0031-8949/89/10/105202 PG 5 WC Physics, Multidisciplinary SC Physics GA AR5SJ UT WOS:000343643400006 ER PT J AU Frauenfelder, H AF Frauenfelder, Hans TI Ask not what physics can do for biology-ask what biology can do for physics SO PHYSICAL BIOLOGY LA English DT Article DE biophysics; physics-biology interface; interdisciplinary; protein structure ID ENERGY LANDSCAPE; STRUCTURAL DYNAMICS; LIGAND-BINDING; HEME-PROTEINS; MYOGLOBIN; MODEL; MIGRATION AB Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: 'Ask not what Physics can do for biology, ask what biology can do for physics'. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrodinger's book (Schrodinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM hfrauenfelder@me.com NR 30 TC 4 Z9 4 U1 5 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1478-3967 EI 1478-3975 J9 PHYS BIOL JI Phys. Biol. PD OCT PY 2014 VL 11 IS 5 AR 053004 DI 10.1088/1478-3975/11/5/053004 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AR6CM UT WOS:000343670600006 PM 25292354 ER PT J AU Novikov, VV Avdashchenko, DV Mitroshenkov, NV Matovnikov, AV Bud'ko, SL AF Novikov, V. V. Avdashchenko, D. V. Mitroshenkov, N. V. Matovnikov, A. V. Bud'ko, S. L. TI Thermal expansion and lattice dynamics of RB66 compounds at low temperatures SO PHYSICS OF THE SOLID STATE LA English DT Article ID ALKALI-HALIDE CRYSTALS; MAGNETIC-PROPERTIES; ALLOYS AB Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2-300 K. The contribution to the expansion of borides containing paramagnetic R (3+) ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Gruneisen parameters have been calculated. C1 [Novikov, V. V.; Avdashchenko, D. V.; Mitroshenkov, N. V.; Matovnikov, A. V.] Petrovsky Bryansk State Univ, Bryansk Phys Lab, Bryansk 241036, Russia. [Bud'ko, S. L.] US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. RP Novikov, VV (reprint author), Petrovsky Bryansk State Univ, Bryansk Phys Lab, Ul Bezhitskaya 14, Bryansk 241036, Russia. EM vvnovikov@mail.ru RI Novikov, Vladimir/D-3413-2011; Mitroshenkov, Nikolay/E-1912-2017 OI Novikov, Vladimir/0000-0003-2081-6691; Mitroshenkov, Nikolay/0000-0002-4418-9613 FU Russian Foundation for Basic Research [13-02-97503]; Ministry of Education and Science of the Russian Federation [2014/426]; U.S. Department of Energy [N DE-AC02-07CH11358] FX This study was supported by the Russian Foundation for Basic Research (project no. 13-02-97503), the Ministry of Education and Science of the Russian Federation (state assignment, project no. 2014/426), and, in part, by the U.S. Department of Energy (contract N DE-AC02-07CH11358) (the work at the U.S. Department of Energy Ames Laboratory). NR 18 TC 1 Z9 1 U1 1 U2 8 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7834 EI 1090-6460 J9 PHYS SOLID STATE+ JI Phys. Solid State PD OCT PY 2014 VL 56 IS 10 BP 2069 EP 2076 DI 10.1134/S1063783414100230 PG 8 WC Physics, Condensed Matter SC Physics GA AR6TI UT WOS:000343715600022 ER PT J AU Zhong, XC Liu, ZW Zeng, DC Gschneidner, KA Pecharsky, VK AF Zhong, Xi-Chun Liu, Zhong-Wu Zeng, De-Chang Gschneidner, Karl A., Jr. Pecharsky, Vitalij K. TI Magnetocaloric effect of Pr2Fe17-x Mn (x) alloys SO RARE METALS LA English DT Article DE Pr2Fe17-xMnx alloys; Magnetocaloric effect; Magnetic entropy change ID MAGNETIC REFRIGERATION ALLOYS; ENTROPY CHANGES; TEMPERATURE RANGE; TRANSITION AB Polycrystalline Pr2Fe17-x Mn (x) (x = 0, 1, and 2) alloys were studied by X-ray diffraction (XRD), heat capacity, ac susceptibility, and isothermal magnetization measurements. All the alloys adopt the rhombohedral Th2Zn17-type structure. The Curie temperature increases from 283 K at x = 0 to 294 K at x = 1, and then decreases to 285 K at x = 2. The magnetic phase transition at the Curie temperature is a typical second-order paramagnetic-ferromagnetic transition. For an applied field change from 0 to 5 T, the maximum -Delta S (M) for Pr2Fe17-x Mn (x) alloys with x = 0, 1, and 2 are 5.66, 5.07, and 4.31 J center dot kg(-1)center dot K-1, respectively. The refrigerant capacity (RC) values range from 458 to 364 J center dot kg (-1), which is about 70 %-89 % that of Gd. The large, near room temperature Delta S (M) and RC values, chemical stability, and a high performance-to-cost ratio make Pr2Fe17-x Mn (x) alloys be selectable materials for room temperature magnetic refrigeration applications. C1 [Zhong, Xi-Chun; Liu, Zhong-Wu; Zeng, De-Chang] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China. [Zhong, Xi-Chun; Gschneidner, Karl A., Jr.; Pecharsky, Vitalij K.] US DOE, Ames Lab, Ames, IA 50011 USA. [Zhong, Xi-Chun; Gschneidner, Karl A., Jr.; Pecharsky, Vitalij K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhong, XC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM xczhong@scut.edu.cn RI Liu, Zhongwu/D-8015-2012 OI Liu, Zhongwu/0000-0002-2560-6282 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Guangdong Provincial Science & Technology Program [2010B050300008]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [x2clB7120290]; Guangzhou Municipal Science and Technology Program [12F582080022]; Fundamental Research Funds for the Central Universities [2012ZZ0013, 2011ZM0014] FX This work was financially supported by the U.S. Department of Energy by Iowa State University (No. DE-AC02-07CH11358), the Guangdong Provincial Science & Technology Program (No. 2010B050300008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. x2clB7120290), the Guangzhou Municipal Science and Technology Program (No. 12F582080022), and the Fundamental Research Funds for the Central Universities (Nos. 2012ZZ0013 and 2011ZM0014). NR 20 TC 0 Z9 0 U1 1 U2 16 PU NONFERROUS METALS SOC CHINA PI BEIJING PA 12B FUXIN RD, BEIJING 100814, PEOPLES R CHINA SN 1001-0521 EI 1867-7185 J9 RARE METALS JI Rare Metals PD OCT PY 2014 VL 33 IS 5 BP 552 EP 555 DI 10.1007/s12598-013-0134-x PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AR6XS UT WOS:000343725100009 ER PT J AU Ho, CK Pacheco, JE AF Ho, Clifford K. Pacheco, James E. TI Levelized Cost of Coating (LCOC) for selective absorber materials SO SOLAR ENERGY LA English DT Article DE Selective coatings; Pyromark; Concentrating solar; Receiver AB A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the Levelized Cost of Coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be $0.055/MW h(t), and marginal costs were determined in a probabilistic analysis to range from -$0.09/MW h(t) to $1.01/MW h(t), accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ho, Clifford K.; Pacheco, James E.] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Ho, CK (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov NR 7 TC 2 Z9 2 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD OCT PY 2014 VL 108 BP 315 EP 321 DI 10.1016/j.solener.2014.05.017 PG 7 WC Energy & Fuels SC Energy & Fuels GA AR2CL UT WOS:000343391100029 ER PT J AU Blaby, IK Blaby-Haas, CE Tourasse, N Hom, EFY Lopez, D Aksoy, M Grossman, A Umen, J Dutcher, S Porter, M King, S Witman, GB Stanke, M Harris, EH Goodstein, D Grimwood, J Schmutz, J Vallon, O Merchant, SS Prochnik, S AF Blaby, Ian K. Blaby-Haas, Crysten E. Tourasse, Nicolas Hom, Erik F. Y. Lopez, David Aksoy, Munevver Grossman, Arthur Umen, James Dutcher, Susan Porter, Mary King, Stephen Witman, George B. Stanke, Mario Harris, Elizabeth H. Goodstein, David Grimwood, Jane Schmutz, Jeremy Vallon, Olivier Merchant, Sabeeha S. Prochnik, Simon TI The Chlamydomonas genome project: a decade on SO TRENDS IN PLANT SCIENCE LA English DT Review DE Chlamydomonas; algae; nomenclature; gene symbols; Phytozome; annotation ID EXPRESSED SEQUENCE TAGS; UNIFORM NOMENCLATURE; BACTERIAL GENETICS; PROTEOMIC ANALYSIS; REINHARDTII; ANNOTATION; DATABASE; TOOL; RESOURCE; COMPLEMENTATION AB The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. C1 [Blaby, Ian K.; Blaby-Haas, Crysten E.; Merchant, Sabeeha S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Tourasse, Nicolas; Vallon, Olivier] CNRS, Unite Mixte Rech 7141, Inst Biol Phys Chim, Paris, France. [Hom, Erik F. Y.] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA. [Hom, Erik F. Y.] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA. [Lopez, David] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA. [Aksoy, Munevver; Grossman, Arthur] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. [Umen, James] Donald Danforth Plant Sci Ctr, St Louis, MO USA. [Dutcher, Susan] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA. [Porter, Mary] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN USA. [King, Stephen] Univ Connecticut, Ctr Hlth, Dept Mol Biol & Biophys, Farmington, CT USA. [Witman, George B.] Univ Massachusetts, Sch Med, Dept Cell & Dev Biol, Worcester, MA 01655 USA. [Stanke, Mario] Univ Gottingen, Inst Mikrobiol & Genet, D-37073 Gottingen, Germany. [Harris, Elizabeth H.] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Goodstein, David; Prochnik, Simon] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Vallon, Olivier] Univ Paris 06, Paris, France. [Merchant, Sabeeha S.] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Prochnik, S (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM seprochnik@lbl.gov RI Umen, James/K-9120-2013; Hom, Erik/B-3889-2008; OI Umen, James/0000-0003-4094-9045; Hom, Erik/0000-0003-0964-0031; Blaby, Crysten/0000-0002-1583-1291 FU National Institutes of Health (NIH) [R24 GM092473, R37 GM030626]; NIH [T32ES015457, GM100753]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health (NIH) R24 GM092473 to S.M. and R37 GM030626 to G.W. I.K.B. and C.B-H. are supported by training grants from the NIH (T32ES015457 and GM100753, respectively). The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231. We thank Stefan Schmollinger, Alizee Malnoe, Patrice Salome, and Ursula Goodenough for critical reading of the manuscript. NR 50 TC 34 Z9 34 U1 3 U2 41 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1360-1385 J9 TRENDS PLANT SCI JI Trends Plant Sci. PD OCT PY 2014 VL 19 IS 10 BP 672 EP 680 DI 10.1016/j.tplants.2014.05.008 PG 9 WC Plant Sciences SC Plant Sciences GA AR1QO UT WOS:000343359900011 PM 24950814 ER PT J AU Lim, KSS Hong, SY Yoon, JH Han, J AF Lim, Kyo-Sun Sunny Hong, Song-You Yoon, Jin-Ho Han, Jongil TI Simulation of the Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions SO WEATHER AND FORECASTING LA English DT Article ID MESOSCALE CONVECTIVE SYSTEMS; GLOBAL FORECAST SYSTEM; REGIONAL CLIMATE; WRF MODEL; HEAVY RAINFALL; SENSITIVITY; PRECIPITATION; SCHEMES; TEMPERATURE; PREDICTION AB The most recent version of the simplified Arakawa-Schubert (SAS) cumulus scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) is implemented in the Weather Research and Forecasting (WRF) Model with a modification of the triggering condition and the convective mass flux in order to make it dependent on the model's horizontal grid spacing. The East Asian summer monsoon season of 2006 is selected in order to evaluate the performance of the modified GFS SAS scheme. In comparison to the original GFS SAS scheme, the modified GFS SAS scheme shows overall better agreement with the observations in terms of the simulated monsoon rainfall. The simulated precipitation from the original GFS SAS scheme is insensitive to the model's horizontal grid spacing, which is counterintuitive because the portion of the resolved clouds in a grid box should increase as the model grid spacing decreases. This behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. In addition, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on the simulated monsoon rainfall. Although the forecast skill of the surface rainfall does not always improve as the spatial resolution increases, the improvement of the probability density function of the rain rate with the smaller grid spacing is robust regardless of the cumulus parameterization scheme. C1 [Lim, Kyo-Sun Sunny; Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hong, Song-You] Yonsei Univ, Coll Sci, Dept Atmospher Sci, Seoul 120749, South Korea. [Han, Jongil] Syst Res Grp Inc, Camp Springs, MD USA. [Han, Jongil] Environm Modeling Ctr, Natl Ctr Environm Predict, Camp Springs, MD USA. RP Hong, SY (reprint author), Korea Inst Atmospher Predict Syst, 4F,35 Boramae Ro Gil, Seoul 156849, South Korea. EM songyou.hong@kiaps.org RI Lim, Kyo-Sun/I-3811-2012; YOON, JIN-HO/A-1672-2009; Hong, Song-You/I-3824-2012 OI YOON, JIN-HO/0000-0002-4939-8078; FU KISTI Super Computing Center through the Strategic Support Program for Supercomputing Application Research [KSC-2012-G3-07]; Office of Science of the U.S. Department of Energy as part of Science Biological and Environmental Research under a bilateral agreement with the China Ministry of Sciences and Technology on regional climate research; Earth System Modeling program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; R&D project on the development of global numerical weather prediction systems of the Korea Institute of Atmospheric Prediction Systems (KIAPS) - Korea Meteorological Administration (KMA) FX The authors would like to express their gratitude to Dr. Samson Hagos for his valuable comments and to acknowledge support of computing resources from the KISTI Super Computing Center through the Strategic Support Program for Supercomputing Application Research (Grant KSC-2012-G3-07). A portion of the computation is performed using the Pacific Northwest National Laboratory (PNNL) Institutional Computing (PIC) at PNNL. This study is supported by the Office of Science of the U.S. Department of Energy as part of Science Biological and Environmental Research under a bilateral agreement with the China Ministry of Sciences and Technology on regional climate research and the Earth System Modeling program. The PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. The second author is supported by the R&D project on the development of global numerical weather prediction systems of the Korea Institute of Atmospheric Prediction Systems (KIAPS), funded by the Korea Meteorological Administration (KMA). Insightful comments offered by the three anonymous reviewers are highly appreciated. NR 57 TC 6 Z9 6 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 EI 1520-0434 J9 WEATHER FORECAST JI Weather Forecast. PD OCT PY 2014 VL 29 IS 5 SI 1093 BP 1143 EP 1154 DI 10.1175/WAF-D-13-00143.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AR1QJ UT WOS:000343359400005 ER PT J AU Benz, A Campione, S Moseley, MW Wierer, JJ Allerman, AA Wendt, JR Brener, I AF Benz, Alexander Campione, Salvatore Moseley, Michael W. Wierer, Jonathan J., Jr. Allerman, Andrew A. Wendt, Joel R. Brener, Igal TI Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures SO ACS PHOTONICS LA English DT Article DE metamaterials; nanocavities; strong light-matter interaction; intersubband trasitions; near-infrared ID SEMICONDUCTOR QUANTUM-WELLS; ELECTRIC-FIELD; ELECTROMAGNETIC ENERGY; DENSITY AB We present the design, realization, and characterization of optical strong light-matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light-matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of similar to 0.8 eV (lambda similar to 1.55 mu m) and a planar dogbone metamaterial structure. As the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. This strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes. C1 [Benz, Alexander; Campione, Salvatore; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J., Jr.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brener, I (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, POB 5800, Albuquerque, NM 87185 USA. EM ibrener@sandia.gov RI Campione, Salvatore/A-2349-2015; Wierer, Jonathan/G-1594-2013 OI Campione, Salvatore/0000-0003-4655-5485; Wierer, Jonathan/0000-0001-6971-4835 FU Laboratory Directed Research and Development Program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. Portions of this work were supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 32 TC 9 Z9 9 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD OCT PY 2014 VL 1 IS 10 BP 906 EP 911 DI 10.1021/ph500192v PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AR0QQ UT WOS:000343276800001 ER PT J AU Hannah, DC Yang, JH Kramer, NJ Schatz, GC Kortshagen, UR Schaller, RD AF Hannah, Daniel C. Yang, Jihua Kramer, Nicolaas J. Schatz, George C. Kortshagen, Uwe R. Schaller, Richard D. TI Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer SO ACS PHOTONICS LA English DT Article DE quantum dot; nanocrystal; photoluminescence; silicon; amorphous silicon; spectroscopy ID SI NANOCRYSTALS; POROUS SILICON; DOTS; LUMINESCENCE; EFFICIENCY; ORIGIN; RED; TEMPERATURE; RELAXATION; PRESSURE AB Here, we examine ultrafast photoluminescence produced from plasma-grown, colloidal silicon nanocrystals as a function of both particle size and lattice crystallinity. In particular, we quantify the decay time and spectral profiles of nominally few-picosecond direct-gap emission previously attributed to phononless electron-hole recombination. We find that the high-energy (400-600 nm, 2-3 eV) photoluminescence component consists of two decay processes with distinct time scales. The fastest photoluminescence exhibits an similar to 30 ps decay constant largely independent of emission energy and particle size. Importantly, nearly identical temporal components and blue spectral features appear for amorphous particles. We thus associate high-energy, rapid emission with an amorphous component in all measured samples, as supported by Raman analysis and molecular dynamics simulation. Based on these observations, we advise that the observed dynamics proceed too slowly to originate from intraband carrier thermalization and instead suggest a nonradiative origin associated with the amorphous component. C1 [Hannah, Daniel C.; Schatz, George C.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Yang, Jihua; Kramer, Nicolaas J.; Kortshagen, Uwe R.] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM schaller@northwestern.edu RI Kortshagen, Uwe/B-8744-2016 OI Kortshagen, Uwe/0000-0001-5944-3656 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Energy Frontier Research Center - Department of Energy, Office of Basic Energy Sciences; NSF Graduate Fellowship [DGE-0824162]; Office of Basic Energy Sciences [DE-SC0004752]; Center for Advanced Solar Photophysics FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.Y., N.J.K. and U.R.K. were supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the Department of Energy, Office of Basic Energy Sciences. D.C.H. acknowledges support from NSF Graduate Fellowship DGE-0824162. G.C.S. was supported by Grant DE-SC0004752 of the Office of Basic Energy Sciences. NR 40 TC 15 Z9 16 U1 3 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD OCT PY 2014 VL 1 IS 10 BP 960 EP 967 DI 10.1021/ph500l45p PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AR0QQ UT WOS:000343276800008 ER PT J AU Terwilliger, TC AF Terwilliger, Thomas C. TI Archiving raw crystallographic data SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Editorial Material ID PROTEIN DATA-BANK C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87507 USA. RP Terwilliger, TC (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop M888, Los Alamos, NM 87507 USA. EM terwilliger@lanl.gov RI Terwilliger, Thomas/K-4109-2012 OI Terwilliger, Thomas/0000-0001-6384-0320 NR 7 TC 6 Z9 6 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2500 EP 2501 DI 10.1107/S139900471402118X PN 10 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900001 PM 25286835 ER PT J AU Terwilliger, TC Bricogne, G AF Terwilliger, Thomas C. Bricogne, Gerard TI Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID PROTEIN DATA-BANK; 2 CRYSTAL-STRUCTURES; DENSITY-MODIFICATION; ELECTRON-DENSITY; STRUCTURE REFINEMENT; ALTERNATIVE MODELS; RE-REFINEMENT; PHASING POWER; BULK-SOLVENT; VALIDATION AB Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering. C1 [Terwilliger, Thomas C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87507 USA. [Bricogne, Gerard] Global Phasing Ltd, Cambridge CB3 0AX, England. RP Terwilliger, TC (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop M888, Los Alamos, NM 87507 USA. EM terwilliger@lanl.gov; gb10@globalphasing.com RI Terwilliger, Thomas/K-4109-2012 OI Terwilliger, Thomas/0000-0001-6384-0320 FU NIGMS NIH HHS [P01 GM063210] NR 66 TC 13 Z9 13 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2533 EP 2543 DI 10.1107/S1399004714017040 PN 10 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900005 PM 25286839 ER PT J AU Liu, Q Guo, YZ Chang, YQ Cai, Z Assur, Z Mancia, F Greene, MI Hendrickson, WA AF Liu, Qun Guo, Youzhong Chang, Yanqi Cai, Zheng Assur, Zahra Mancia, Filippo Greene, Mark I. Hendrickson, Wayne A. TI Multi-crystal native SAD analysis at 6 keV SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID PROTEIN-STRUCTURE DETERMINATION; GROWTH-FACTOR RECEPTOR; SOFT X-RAYS; MACROMOLECULAR CRYSTALLOGRAPHY; ANOMALOUS DIFFRACTION; SYNCHROTRON-RADIATION; BIOLOGICAL MACROMOLECULES; DENSITY MODIFICATION; FUTURE-DEVELOPMENTS; CRYSTAL-STRUCTURES AB Anomalous diffraction signals from typical native macromolecules are very weak, frustrating their use in de novo structure determination. Here, native SAD procedures are described to enhance signal to noise in anomalous diffraction by using multiple crystals in combination with synchrotron X-rays at 6 keV. Increased anomalous signals were obtained at 6 keV compared with 7 keV X-ray energy, which was used for previous native SAD analyses. A feasibility test of multicrystal-based native SAD phasing was performed at 3.2 angstrom resolution for a known tyrosine protein kinase domain, and real-life applications were made to two novel membrane proteins at about 3.0 angstrom resolution. The three applications collectively serve to validate the robust feasibility of native SAD phasing at lower energy. C1 [Liu, Qun; Guo, Youzhong; Chang, Yanqi; Hendrickson, Wayne A.] New York Struct Biol Ctr, NYCOMPS, New York, NY 10032 USA. [Liu, Qun; Hendrickson, Wayne A.] Brookhaven Natl Lab, New York Struct Biol Ctr, Upton, NY 11973 USA. [Guo, Youzhong; Hendrickson, Wayne A.] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Cai, Zheng; Greene, Mark I.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. [Assur, Zahra; Mancia, Filippo; Hendrickson, Wayne A.] Columbia Univ, Dept Physiol & Cellular Biophys, New York, NY 10032 USA. RP Liu, Q (reprint author), New York Struct Biol Ctr, NYCOMPS, New York, NY 10032 USA. EM qunliu@bnl.gov; wayne@xtl.cumc.columbia.edu RI Liu, Qun/A-8757-2011; OI Liu, Qun/0000-0002-1179-290X; Mancia, Filippo/0000-0003-3293-2200 FU NIH [GM095315, GM098617, GM107462]; New York Structural Biology Center FX We thank John Schwanof and Randy Abramowitz for help with synchrotron data collection and Zhiqiang Zhu for useful discussion. This work was supported in part by NIH grants GM095315, GM098617 and GM107462. Beamline X4A of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, a DOE facility, is supported by the New York Structural Biology Center. NR 43 TC 14 Z9 14 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2544 EP 2557 DI 10.1107/S1399004714013376 PN 10 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900006 PM 25286840 ER PT J AU Close, DW D'Angelo, S Bradbury, ARM AF Close, Devin W. D'Angelo, Sara Bradbury, Andrew R. M. TI A new family of beta-helix proteins with similarities to the polysaccharide lyases SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CARBOHYDRATE-BINDING MODULES; PECTATE LYASE; MACROMOLECULAR CRYSTALLOGRAPHY; CLOSTRIDIUM-THERMOCELLUM; ERWINIA-CHRYSANTHEMI; CRYSTAL-STRUCTURE; ELIMINATION MECHANISM; ACTIVE ENZYMES; SUBSTRATE; CLASSIFICATION AB Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel beta-helix protein. Despite very low sequence identity to known beta-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding beta-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products. C1 [Close, Devin W.; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [D'Angelo, Sara] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Close, DW (reprint author), Los Alamos Natl Lab, Biosci Div, MS888, Los Alamos, NM 87545 USA. EM devinclose@gmail.com; amb@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 FU DOE GTL FX We would like to acknowledge Andrey Kovalevsky and the Los Alamos National Laboratory Protein Crystallography Station (PCS) for crystallization materials and data-collection facilities. We would like to thank Tom Terwilliger for helpful discussion and comments on the manuscript. We would also like to thank the anonymous reviewers for insightful comments and suggestions. Funding was provided by a DOE GTL grant awarded to ARMB. NR 57 TC 1 Z9 2 U1 2 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2583 EP 2592 DI 10.1107/S1399004714015934 PN 10 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900009 PM 25286843 ER PT J AU Urzhumtsev, A Afonine, PV Lunin, VY Terwilliger, TC Adams, PD AF Urzhumtsev, Alexandre Afonine, Pavel V. Lunin, Vladimir Y. Terwilliger, Thomas C. Adams, Paul D. TI Metrics for comparison of crystallographic maps SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID PROTEIN DATA-BANK; ELECTRON-DENSITY HISTOGRAMS; MAXIMUM-LIKELIHOOD; MACROMOLECULAR STRUCTURES; CRYSTAL-STRUCTURES; LOW-RESOLUTION; BULK-SOLVENT; REFINEMENT; PHASES; ERRORS AB Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects, such as regions of high density, are of interest. C1 [Urzhumtsev, Alexandre] Univ Strasbourg, Ctr Integrat Biol, Dept Integrated Struct Biol, IGMBC,CNRS,UMR 7104,INSERM,U964, F-67404 Illkirch Graffenstaden, France. [Urzhumtsev, Alexandre] Univ Lorraine, Fac Sci & Technol, F-54506 Vandoeuvre Les Nancy, France. [Afonine, Pavel V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lunin, Vladimir Y.] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142290, Russia. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Urzhumtsev, A (reprint author), Univ Strasbourg, Ctr Integrat Biol, Dept Integrated Struct Biol, IGMBC,CNRS,UMR 7104,INSERM,U964, 1 Rue Laurent Fries,BP 10142, F-67404 Illkirch Graffenstaden, France. EM sacha@igbmc.fr RI Terwilliger, Thomas/K-4109-2012; Lunin, Vladimir/O-2506-2013; Adams, Paul/A-1977-2013 OI Terwilliger, Thomas/0000-0001-6384-0320; Lunin, Vladimir/0000-0003-1235-1206; Adams, Paul/0000-0001-9333-8219 FU NIH [GM063210]; PHENIX Industrial Consortium; US Department of Energy [DE-AC02-05CH11231]; Russian Foundation for Basic Research [13-04-00118-a]; French Infrastructure for Integrated Structural Biology (FRISBI) [ANR-10-INSB-05-01]; Instruct as part of the European Strategy Forum on Research Infrastructures (ESFRI) FX The contour maps used in this work and shown in Figs. 1, 2 and 5 and in the Supporting Information were produced using PyMOL (DeLano, 2002). PVA, TCT and PDA thank the NIH (grant GM063210) and the PHENIX Industrial Consortium for support of the PHENIX project. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231 (PVA, TCT and PDA) and by Russian Foundation for Basic Research grant 13-04-00118-a (VYL). AU thanks the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and Instruct as part of the European Strategy Forum on Research Infrastructures (ESFRI). We thank the referees for their very fruitful and constructive comments. NR 53 TC 6 Z9 6 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2593 EP 2606 DI 10.1107/S1399004714016289 PN 10 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900010 PM 25286844 ER PT J AU Gildea, RJ Waterman, DG Parkhurst, JM Axford, D Sutton, G Stuart, DI Sauter, NK Evans, G Winter, G AF Gildea, Richard J. Waterman, David G. Parkhurst, James M. Axford, Danny Sutton, Geoff Stuart, David I. Sauter, Nicholas K. Evans, Gwyndaf Winter, Graeme TI New methods for indexing multi-lattice diffraction data SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID X-RAY-DIFFRACTION; MACROMOLECULAR CRYSTALLOGRAPHY; DATA-COLLECTION; DATA QUALITY; OSCILLATION IMAGES; CRYSTAL-STRUCTURE; ATOMIC-STRUCTURE; POLYHEDRA; ALGORITHM; PATTERNS AB A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of similar to 1 mu m in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1 degrees wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling. C1 [Gildea, Richard J.; Parkhurst, James M.; Axford, Danny; Stuart, David I.; Evans, Gwyndaf; Winter, Graeme] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Waterman, David G.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Waterman, David G.] Rutherford Appleton Lab, CCP4, Didcot OX11 0FA, Oxon, England. [Sutton, Geoff; Stuart, David I.] Univ Oxford, Wellcome Trust Ctr Human Genet, Div Struct Biol, Oxford OX3 7BN, England. [Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Winter, G (reprint author), Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. EM graeme.winter@diamond.ac.uk RI Sauter, Nicholas/K-3430-2012; OI Evans, Gwyndaf/0000-0002-6079-2201 FU US National Institutes of Health [GM095887]; MRC [G1000099] FX The authors would like to thank David Hall for beam time on Diamond beamline I04 for collecting the test data used in this project and Carina Lobley for the preparation of trypsin samples. This development effort is supported by Diamond Light Source, CCP4 and Biostruct-X project No. 283570 of the EU FP7. NKS acknowledges support from US National Institutes of Health grant GM095887. DIS and GS are supported by the MRC (grant No. G1000099). NR 69 TC 11 Z9 11 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2652 EP 2666 DI 10.1107/S1399004714017039 PN 10 PG 15 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900015 PM 25286849 ER PT J AU Akey, DL Brown, WC Konwerski, JR Ogata, CM Smith, JL AF Akey, David L. Brown, W. Clay Konwerski, Jamie R. Ogata, Craig M. Smith, Janet L. TI Use of massively multiple merged data for low-resolution S-SAD phasing and refinement of flavivirus NS1 SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID NATIVE BIOLOGICAL MACROMOLECULES; ANOMALOUS DIFFRACTION; DATA QUALITY; SULFUR SAD; CRYSTALLOGRAPHY; CRYSTALS; MODEL; SCATTERING; SELECTION; PROTEINS AB An emergent challenge in macromolecular crystallography is the identification of the substructure from native anomalous scatterers in crystals that diffract to low to moderate resolution. Increasing the multiplicity of data sets has been shown to make previously intractable phasing problems solvable and to increase the useful resolution in model refinement. For the West Nile virus nonstructural protein 1 (NS1), a protein of novel fold, the utility of exceptionally high multiplicity data is demonstrated both in solving the crystal structure from the anomalous scattering of the native S atoms and in extending the useful limits of resolution during refinement. A high-multiplicity data set from 18 crystals had sufficient anomalous signal to identify sulfur sites using data to 5.2 angstrom resolution. Phases calculated to 4.5 angstrom resolution and extended to 3.0 angstrom resolution were of sufficient quality for automated building of three-quarters of the final structure. Crystallographic refinement to 2.9 angstrom resolution proceeded smoothly, justifying the increase in resolution that was made possible by combining multiple data sets. The identification and exclusion of data from outlier crystals is shown to result in more robust substructure determination. C1 [Akey, David L.; Brown, W. Clay; Konwerski, Jamie R.; Smith, Janet L.] Univ Michigan, Life Sci Inst, Ann Arbor, MI 48109 USA. [Ogata, Craig M.] Argonne Natl Lab, Adv Photon Source, GM CA APS, Argonne, IL 60439 USA. RP Smith, JL (reprint author), Univ Michigan, Life Sci Inst, 210 Washtenaw Ave, Ann Arbor, MI 48109 USA. EM janetsmith@umich.edu FU National Institutes of Health [P01AI055672]; Martha L. Ludwig Professorship of Protein Structure and Function; National Institute of General Medical Sciences [Y1-GM-1104]; National Cancer Institute [Y1-CO-1020] FX This work was supported by a grant from the National Institutes of Health (P01AI055672) to JLS and the Martha L. Ludwig Professorship of Protein Structure and Function to JLS. The beamlines of GM/CA@APS were supported by the National Institute of General Medical Sciences ('GM', Y1-GM-1104) and the National Cancer Institute ('CA', Y1-CO-1020). NR 31 TC 11 Z9 11 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2719 EP 2729 DI 10.1107/S1399004714017556 PN 10 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900021 PM 25286855 ER PT J AU Qiu, W Lam, R Voytyuk, O Romanov, V Gordon, R Gebremeskel, S Vodsedalek, J Thompson, C Beletskaya, I Battaile, KP Pai, EF Rottapel, R Chirgadze, NY AF Qiu, Wei Lam, Robert Voytyuk, Oleksandr Romanov, Vladimir Gordon, Roni Gebremeskel, Simon Vodsedalek, Jakub Thompson, Christine Beletskaya, Irina Battaile, Kevin P. Pai, Emil F. Rottapel, Robert Chirgadze, Nickolay Y. TI Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2 SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID SISTER TELOMERE ASSOCIATION; NEGATIVE BREAST-CANCER; POLY(ADP-RIBOSE) POLYMERASE; STRUCTURAL BASIS; DNA-DAMAGE; IDENTIFICATION; PROTEINS; INIPARIB; POTENT; MICE AB The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated beta-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors. C1 [Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; Romanov, Vladimir; Gordon, Roni; Gebremeskel, Simon; Vodsedalek, Jakub; Thompson, Christine; Beletskaya, Irina; Pai, Emil F.; Rottapel, Robert; Chirgadze, Nickolay Y.] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. [Pai, Emil F.] Univ Toronto, Dept Biochem, Toronto, ON, Canada. [Pai, Emil F.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Pai, Emil F.; Rottapel, Robert] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada. [Rottapel, Robert] Univ Toronto, St Michaels Hosp, Div Rheumatol, Dept Med, Toronto, ON, Canada. [Rottapel, Robert] Univ Toronto, St Michaels Hosp, Div Rheumatol, Dept Immunol, Toronto, ON, Canada. [Rottapel, Robert] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada. RP Rottapel, R (reprint author), Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada. EM rottapel@gmail.com; nchirgadze@gmail.com OI Battaile, Kevin/0000-0003-0833-3259; Pai, Emil/0000-0002-1162-7242 FU Ontario Research and Development Challenge Fund [99-SEP-0512]; Canada Research Chair Program; CIHR; Selective Therapy Program funded jointly by the Terry Fox Research Institute; Ontario Institute for Cancer Research; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Ontario Ministry of Health and Long Term Care (OMOHLTC) FX These studies were supported by the Ontario Research and Development Challenge Fund (99-SEP-0512) and the Canada Research Chair Program (EFP). This work was supported in part from grants from CIHR and the Selective Therapy Program funded jointly by the Terry Fox Research Institute and the Ontario Institute for Cancer Research (RR). The use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. We also appreciate the help of Aiping Dong in providing technical support and the Structural Genomics Consortium, University of Toronto for the use of their X-ray facilities. We would like to thank Dr A. Scotter for his help in preparing this manuscript. This research was funded in part by the Ontario Ministry of Health and Long Term Care (OMOHLTC). The views expressed do not necessarily reflect those of the OMOHLTC. NR 56 TC 4 Z9 4 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2014 VL 70 BP 2740 EP 2753 DI 10.1107/S1399004714017660 PN 10 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FY UT WOS:000343060900023 PM 25286857 ER PT J AU Packianathan, C Pillai, JK Riaz, A Kandavelu, P Sankaran, B Rosen, BP AF Packianathan, Charles Pillai, Jitesh K. Riaz, Ahmed Kandavelu, Palani Sankaran, Banumathi Rosen, Barry P. TI Crystallization and preliminary X-ray crystallographic studies of CrArsM, an arsenic(III) S-adenosylmethionine methyltransferase from Chlamydomonas reinhardtii SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article ID METHYLATION; BIOTRANSFORMATION AB Arsenic is one the most toxic environmental substances. Arsenic is ubiquitous in water, soil and food, and ranks first on the Environmental Protection Agency's Superfund Priority List of Hazardous Substances. Arsenic(III) S-adenosylmethionine methyltransferases (AS3MT in animals and ArsM in microbes) are key enzymes of arsenic biotransformation, catalyzing the methylation of inorganic arsenite to give methyl, dimethyl and trimethyl products. Arsenic methyltransferases are found in members of every kingdom from bacteria to humans (EC 2.1.1.137). In the human liver, hAS3MT converts inorganic arsenic into more toxic and carcinogenic forms. CrArsM, an ortholog of hAS3MT from the eukaryotic green alga Chlamydomonas reinhardtii, was purified by chemically synthesizing the gene and expressing it in Escherichia coli. Synthetic purified CrArsM was crystallized in an unliganded form. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to space group R3:H, with unit-cell parameters a = b = 157.8, c = 95.4 angstrom, gamma = 120 degrees and two molecules in the asymmetric unit. Complete data sets were collected and processed to a resolution of 2.40 angstrom. C1 [Packianathan, Charles; Pillai, Jitesh K.; Riaz, Ahmed; Rosen, Barry P.] Florida Int Univ, Herbert Wertheim Coll Med, Dept Cellular Biol & Pharmacol, Miami, FL 33199 USA. [Kandavelu, Palani] Univ Georgia, SER CAT, Athens, GA 30602 USA. [Kandavelu, Palani] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Rosen, BP (reprint author), Florida Int Univ, Herbert Wertheim Coll Med, Dept Cellular Biol & Pharmacol, Miami, FL 33199 USA. EM brosen@fiu.edu FU NIH [R37 GM55425]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NIH grant R37 GM55425. This project utilized the Southeast Regional Collaborative Access Team (SERCAT) 22-BM beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. W-31-109-Eng-38. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 15 TC 1 Z9 1 U1 0 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD OCT PY 2014 VL 70 BP 1385 EP 1388 DI 10.1107/S2053230X14018469 PN 10 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AQ8FR UT WOS:000343060200016 PM 25286945 ER PT J AU O'Bannon, E Beavers, CM Williams, Q AF O'Bannon, Earl, III Beavers, Christine M. Williams, Quentin TI Trona at extreme conditions: A pollutant-sequestering material at high pressures and low temperatures SO AMERICAN MINERALOGIST LA English DT Article DE Trona; high pressure; low temperature; single-crystal diffraction; vibrational spectroscopy ID POTASSIUM HYDROGEN CARBONATE; POST-ARAGONITE PHASE; X-RAY-DIFFRACTION; SODIUM SESQUICARBONATE; VIBRATIONAL-SPECTRA; CRYSTAL-STRUCTURE; INFRARED SPECTRA; NEUTRON-DIFFRACTION; THERMAL-EXPANSION; PROTON-TRANSFER AB Single-crystal X-ray diffraction of trona, Na3CO3HCO3 center dot 2H(2)O, was measured between 100 and 340 K at ambient pressures, and the infrared and Raman spectra of this material characterized to similar to 25 GPa. The thermal expansion of trona is greatest in the b direction, which is due to a particularly large expansion of the long Na-2-O-1, and the short Na-2-O-4 bonds within the sodium septahedron in the trona structure. This crystallographic direction is associated with the distance between neighboring carbonate groups and neighboring water molecules within the structure. The dimensions of the carbonate group undergo no systematic changes over this temperature range, and the disordered hydrogen atom within the structure does not order at temperatures down to 100 K. Thus, detailed changes in the geometry of the sodium polyhedra primarily modulate the response of trona to decreases in temperature. The infrared and Raman spectra undergo discontinuous and reversible changes at similar to 7 and similar to 14.5 GPa: the former of these phase transitions is likely associated with a shift primarily in the sodium-oxygen polyhedra, while the latter also involves shifts in bonding of the carbonate groups. New assignments are suggested for portions of the vibrational spectrum based on the high-pressure results. Resonance effects between different vibrational modes are observed, including the observation of a transmission maximum associated with a resonant interaction between the carbonate symmetric stretching vibration and a broad mode at similar frequencies. The behavior of trona under extreme conditions is useful for understanding CO2-vapor-saturated alkali-rich systems, and late-stage peralkaline magmatic processes and, in its usage as both a sorbent and scrubber of SO2 and CO2 in flue gasses and lignite coals. C1 [O'Bannon, Earl, III; Beavers, Christine M.; Williams, Quentin] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP O'Bannon, E (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, 1156 High St, Santa Cruz, CA 95064 USA. EM eobannon@ucsc.edu RI Beavers, Christine/C-3539-2009 OI Beavers, Christine/0000-0001-8653-5513 FU NSF [EAR-1215745]; COMPRES under NSF [EAR 11-57758]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the organizers of the American Crystallographic Association summer course in chemical crystallography: Amy Sarjeant, Charlotte Stern, and Allen Oliver. The authors also thank Simon Teat at the ALS for assistance, Paul Mattern at UCSC for assistance, and three anonymous reviewers for constructive comments. Work partially supported by NSF through EAR-1215745, and COMPRES under NSF Cooperative Agreement EAR 11-57758. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 62 TC 1 Z9 1 U1 2 U2 17 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD OCT PY 2014 VL 99 IS 10 BP 1973 EP 1984 DI 10.2138/am-2014-4919 PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA AQ6XH UT WOS:000342956700015 ER PT J AU Kearney, SP AF Kearney, Sean P. TI Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing SO APPLIED OPTICS LA English DT Article ID GAS-PHASE THERMOMETRY; SINGLE-LASER-SHOT; INTERFERENCE-FREE; RESOLUTION SPECTROSCOPY; CARS; TEMPERATURE; PROBE; FLAME; PULSES; SUPPRESSION AB A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparation bandwidth. Shifts of 100 cm(-1) or more are attainable and allow for enhanced detection of high-energy (150-300 cm(-1)) rotational Raman transitions at near-transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained in our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H-2/air flat flame. (C) 2014 Optical Society of America C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Kearney, SP (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mail Stop 0826, Albuquerque, NM 87185 USA. EM spkearn@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author thanks John Torczynski for help with symbolic math software needed to analyze the spectral focusing effect. Useful conversations with Chris Kliewer are also gratefully acknowledged. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 35 TC 5 Z9 5 U1 2 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 1 PY 2014 VL 53 IS 28 BP 6579 EP 6585 DI 10.1364/AO.53.006579 PG 7 WC Optics SC Optics GA AQ9HC UT WOS:000343159300033 PM 25322247 ER PT J AU Capehart, SL ElSohly, AM Obermeyer, AC Francis, MB AF Capehart, Stacy L. ElSohly, Adel M. Obermeyer, Allie C. Francis, Matthew B. TI Bioconjugation of Gold Nanoparticles through the Oxidative Coupling of ortho-Aminophenols and Anilines SO BIOCONJUGATE CHEMISTRY LA English DT Article ID ENZYMATIC-ACTIVITY; SURFACE; CHEMISTRY AB While there are a number of methods for attaching gold nanoparticles (AuNPs) to biomolecules, the existing strategies suffer from nonspecific AuNP adsorption, reagents that are unstable in aqueous solutions, and/or long reaction times. To improve upon existing AuNP bioconjugation strategies, we have adapted a recently reported potassium ferricyanide-mediated oxidative coupling reaction for the attachment of aniline-functionalized AuNPs to o-aminophenol-containing oligonucleotides, peptides, and proteins. The aniline-AuNPs are stable in aqueous solutions, show little-to-no nonspecific adsorption with biomolecules, and react rapidly (30 min) with o-aminophenols under mild conditions (pH 6.5, 1 mM oxidant). C1 [Capehart, Stacy L.; ElSohly, Adel M.; Obermeyer, Allie C.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Capehart, Stacy L.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU Office of Science, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DEAC02-05CH11231]; NSF; W.M. Keck Foundation FX These studies were generously supported by the Director, Office of Science, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. S.L.C. and A.C.O. were supported by NSF graduate research fellowships. A.M.E. was supported by the W.M. Keck Foundation. Transmission Electron Microscopy Images were obtained at the UC Berkeley Electron Microscope Lab. NR 33 TC 5 Z9 5 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD OCT PY 2014 VL 25 IS 10 BP 1888 EP 1892 DI 10.1021/bc5003746 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA AR0QM UT WOS:000343276400018 PM 25275488 ER PT J AU Utturkar, SM Klingeman, DM Land, ML Schadt, CW Doktycz, MJ Pelletier, DA Brown, SD AF Utturkar, Sagar M. Klingeman, Dawn M. Land, Miriam L. Schadt, Christopher W. Doktycz, Mitchel J. Pelletier, Dale A. Brown, Steven D. TI Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences SO BIOINFORMATICS LA English DT Article ID MICROBIAL GENOMES; POPULUS-DELTOIDES; BACTERIAL GENOMES; READS; ALGORITHMS; EFFICIENT; ENSEMBLE; ALLPATHS; TOOL AB Motivation: To assess the potential of different types of sequence data combined with de novo and hybrid assembly approaches to improve existing draft genome sequences. Results: Illumina, 454 and PacBio sequencing technologies were used to generate de novo and hybrid genome assemblies for four different bacteria, which were assessed for quality using summary statistics (e.g. number of contigs, N50) and in silico evaluation tools. Differences in predictions of multiple copies of rDNA operons for each respective bacterium were evaluated by PCR and Sanger sequencing, and then the validated results were applied as an additional criterion to rank assemblies. In general, assemblies using longer PacBio reads were better able to resolve repetitive regions. In this study, the combination of Illumina and PacBio sequence data assembled through the ALLPATHS-LG algorithm gave the best summary statistics and most accurate rDNA operon number predictions. This study will aid others looking to improve existing draft genome assemblies. C1 [Utturkar, Sagar M.; Schadt, Christopher W.; Doktycz, Mitchel J.; Pelletier, Dale A.; Brown, Steven D.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37919 USA. [Klingeman, Dawn M.; Land, Miriam L.; Schadt, Christopher W.; Doktycz, Mitchel J.; Pelletier, Dale A.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Brown, SD (reprint author), Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37919 USA. EM brownsd@ornl.gov RI Klingeman, Dawn/B-9415-2012; Land, Miriam/A-6200-2011; Brown, Steven/A-6792-2011; Schadt, Christopher/B-7143-2008; Doktycz, Mitchel/A-7499-2011; OI Klingeman, Dawn/0000-0002-4307-2560; Land, Miriam/0000-0001-7102-0031; Brown, Steven/0000-0002-9281-3898; Schadt, Christopher/0000-0001-8759-2448; Doktycz, Mitchel/0000-0003-4856-8343; Utturkar, Sagar/0000-0002-3453-1948 FU Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, Plant Microbe Interfaces Scientific Focus Area FX Funding: This research was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). NR 46 TC 19 Z9 20 U1 1 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD OCT 1 PY 2014 VL 30 IS 19 BP 2709 EP 2716 DI 10.1093/bioinformatics/btu391 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AQ8NM UT WOS:000343082900003 PM 24930142 ER PT J AU Haider, B Ahn, TH Bushnell, B Chai, JJ Copeland, A Pan, CL AF Haider, Bahlul Ahn, Tae-Hyuk Bushnell, Brian Chai, Juanjuan Copeland, Alex Pan, Chongle TI Omega: an Overlap-graph de novo Assembler for Metagenomics SO BIOINFORMATICS LA English DT Article ID READ ALIGNMENT; VELVET; IDBA AB Motivation: Metagenomic sequencing allows reconstruction of microbial genomes directly from environmental samples. Omega (overlapgraph metagenome assembler) was developed for assembling and scaffolding Illumina sequencing data of microbial communities. Results: Omega found overlaps between reads using a prefix/suffix hash table. The overlap graph of reads was simplified by removing transitive edges and trimming short branches. Unitigs were generated based on minimum cost flow analysis of the overlap graph and then merged to contigs and scaffolds using mate-pair information. In comparison with three de Bruijn graph assemblers (SOAPdenovo, IDBA-UD and MetaVelvet), Omega provided comparable overall performance on a HiSeq 100-bp dataset and superior performance on a MiSeq 300-bp dataset. In comparison with Celera on the MiSeq dataset, Omega provided more continuous assemblies overall using a fraction of the computing time of existing overlap-layout-consensus assemblers. This indicates Omega can more efficiently assemble longer Illumina reads, and at deeper coverage, for metagenomic datasets. C1 [Haider, Bahlul; Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Bushnell, Brian; Copeland, Alex] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pan, CL (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM panc@ornl.gov FU Oak Ridge National Laboratory; DOE Joint Genome Institute; Office of Advanced Scientific Computing Research; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by Laboratory Directed Research and Development (LDRD) funding from Oak Ridge National Laboratory and the Emerging Technologies Opportunity Program (ETOP) from DOE Joint Genome Institute. The contribution of J.C. was sponsored by the Office of Advanced Scientific Computing Research. Oak Ridge National Laboratory and DOE Joint Genome Institute are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 and DE-AC02-05CH11231, respectively. NR 19 TC 16 Z9 17 U1 2 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD OCT 1 PY 2014 VL 30 IS 19 BP 2717 EP 2722 DI 10.1093/bioinformatics/btu395 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AQ8NM UT WOS:000343082900004 PM 24947750 ER PT J AU Ryu, SY Qian, WJ Camp, DG Smith, RD Tompkins, RG Davis, RW Xiao, WZ AF Ryu, So Young Qian, Wei-Jun Camp, David G. Smith, Richard D. Tompkins, Ronald G. Davis, Ronald W. Xiao, Wenzhong TI Detecting differential protein expression in large-scale population proteomics SO BIOINFORMATICS LA English DT Article ID MASS-SPECTROMETRY DATA; V-PROTEIN; BINDING-PROTEIN; QUANTIFICATION; SIMIAN-VIRUS-5; DDB1; COMPLEX; INJURY; RATES; STAT1 AB Motivation: Mass spectrometry (MS)-based high-throughput quantitative proteomics shows great potential in large-scale clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, there are unique challenges in analyzing the quantitative proteomics data. One issue is that the quantification of a given peptide is often missing in a subset of the experiments, especially for less abundant peptides. Another issue is that different MS experiments of the same study have significantly varying numbers of peptides quantified, which can result in more missing peptide abundances in an experiment that has a smaller total number of quantified peptides. To detect as many biomarker proteins as possible, it is necessary to develop bioinformatics methods that appropriately handle these challenges. Results: We propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients' sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data. C1 [Ryu, So Young; Davis, Ronald W.; Xiao, Wenzhong] Stanford Univ, Stanford Genome Technol Ctr, Stanford, CA 94305 USA. [Qian, Wei-Jun; Camp, David G.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Qian, Wei-Jun; Camp, David G.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Ryu, So Young; Tompkins, Ronald G.; Xiao, Wenzhong] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Boston, MA 02114 USA. RP Xiao, WZ (reprint author), Stanford Univ, Stanford Genome Technol Ctr, Stanford, CA 94305 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Institutes of Health [T32-GM007035, R01-GM101401, P41-GM103493]; Shriners Research Grant [85500-BOS]; DOE [DE-AC05-76RL01830] FX Funding: This research was supported by National Institutes of Health grants (T32-GM007035 to R.G.T., R01-GM101401 to R.G.T. and W.X., P41-GM103493 to R.D.S.) and Shriners Research Grant (85500-BOS to W.X.). The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory (EMSL), a US Department of Energy (DOE) national scientific user facility located at PNNL in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 25 TC 6 Z9 6 U1 0 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD OCT 1 PY 2014 VL 30 IS 19 BP 2741 EP 2746 DI 10.1093/bioinformatics/btu341 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AQ8NM UT WOS:000343082900007 PM 24928210 ER PT J AU Bouxsein, NF Bachand, GD AF Bouxsein, Nathan F. Bachand, George D. TI Single Filament Behavior of Microtubules in the Presence of Added Divalent Counterions SO BIOMACROMOLECULES LA English DT Article ID INDIVIDUAL MICROTUBULES; THERMAL FLUCTUATIONS; PERSISTENCE LENGTH; TUBULIN DIMER; POLYELECTROLYTE SOLUTIONS; DYNAMIC INSTABILITY; FLEXURAL RIGIDITY; ACTIVE-TRANSPORT; BUNDLE FORMATION; MOTILITY ASSAYS AB Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically relevant amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts. C1 [Bouxsein, Nathan F.; Bachand, George D.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Bachand, GD (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM gdbacha@sandia.gov OI Bachand, George/0000-0002-3169-9980 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KCO203010]; Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We sincerely thank Drs. Susan Rempe, Cecilia Leal, and Mark Stevens for their critical review and comments on this manuscript and Dr. Virginia VanDelinder for preparing the graphical image of divalent effects on the configuration of tubulin's C-terminal tails. This work was supported from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Project KCO203010. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 86 TC 3 Z9 3 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD OCT PY 2014 VL 15 IS 10 BP 3696 EP 3705 DI 10.1021/bm500988r PG 10 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA AQ7VF UT WOS:000343026600025 PM 25162727 ER PT J AU Yang, G Fu, Y Malakhova, M Kurinov, I Zhu, F Yao, K Li, HT Chen, HY Li, W Lim, DY Sheng, YQ Bode, AM Dong, ZM Dong, ZG AF Yang, Ge Fu, Yang Malakhova, Margarita Kurinov, Igor Zhu, Feng Yao, Ke Li, Haitao Chen, Hanyong Li, Wei Lim, Do Young Sheng, Yuqiao Bode, Ann M. Dong, Ziming Dong, Zigang TI Caffeic Acid Directly Targets ERK1/2 to Attenuate Solar UV-Induced Skin Carcinogenesis SO CANCER PREVENTION RESEARCH LA English DT Article ID COFFEE CONSUMPTION; HUMAN KERATINOCYTES; CELL-GROWTH; IN-VIVO; CANCER; ACTIVATION; PATHWAY; EXPRESSION; RADIATION; KINASES AB Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in coffee and reportedly has anticancer activities. However, the underlying molecular mechanisms and targeted proteins involved in the suppression of carcinogenesis by caffeic acid are not fully understood. In this study, we report that caffeic acid significantly inhibits colony formation of human skin cancer cells and EGF-induced neoplastic transformation of HaCaT cells dose-dependently. Caffeic acid topically applied to dorsal mouse skin significantly suppressed tumor incidence and volume in a solar UV (SUV)-induced skin carcinogenesis mouse model. A substantial reduction of phosphorylation in mitogen-activated protein kinase signaling was observed in mice treated with caffeic acid either before or after SUV exposure. Caffeic acid directly interacted with ERK1/2 and inhibited ERK1/2 activities in vitro. Importantly, we resolved the cocrystal structure of ERK2 complexed with caffeic acid. Caffeic acid interacted directly with ERK2 at amino acid residues Q105, D106, and M108. Moreover, A431 cells expressing knockdown of ERK2 lost sensitivity to caffeic acid in a skin cancer xenograft mouse model. Taken together, our results suggest that caffeic acid exerts chemopreventive activity against SUV-induced skin carcinogenesis by targeting ERK1 and 2. (C) 2014 AACR. C1 [Yang, Ge; Fu, Yang; Malakhova, Margarita; Zhu, Feng; Yao, Ke; Li, Haitao; Chen, Hanyong; Li, Wei; Lim, Do Young; Sheng, Yuqiao; Bode, Ann M.; Dong, Zigang] Univ Minnesota, Hormel Inst, Austin, MN 55912 USA. [Yang, Ge; Sheng, Yuqiao; Dong, Ziming] Zhengzhou Univ, Basic Med Coll, Zhengzhou 450052, Peoples R China. [Yang, Ge; Fu, Yang; Sheng, Yuqiao] Zhengzhou Univ, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China. [Kurinov, Igor] Cornell Univ, NE CAT, APS, Argonne, IL USA. RP Dong, ZG (reprint author), Univ Minnesota, Hormel Inst, 801 16th Ave NE, Austin, MN 55912 USA. EM Dongzm@zzu.edu.cn; zgdong@hi.umn.edu OI Li, Haitao/0000-0001-6741-293X FU National Institute of General Medical Sciences from the NIH [P41 GM103403]; U.S. DOE [DE-AC02-06CH11357]; Hormel Foundation; National Institutes of Health [R37 CA081064, CA166011, CA172457, ES016548] FX The crystallography work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which is supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the NIH. The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by the Argonne National Laboratory, was supported by the U.S. DOE under contract no. DE-AC02-06CH11357. The remainder of the work presented was supported by The Hormel Foundation and National Institutes of Health grants (to Z. Dong) R37 CA081064, CA166011, CA172457, and ES016548. NR 40 TC 8 Z9 8 U1 0 U2 6 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1940-6207 EI 1940-6215 J9 CANCER PREV RES JI Cancer Prev. Res. PD OCT PY 2014 VL 7 IS 10 BP 1056 EP 1066 DI 10.1158/1940-6207.CAPR-14-0141 PG 11 WC Oncology SC Oncology GA AR0ZU UT WOS:000343308800009 PM 25104643 ER PT J AU Dowding, JM Song, W Bossy, K Karakoti, A Kumar, A Kim, A Bossy, B Seal, S Ellisman, MH Perkins, G Self, WT Bossy-Wetzel, E AF Dowding, J. M. Song, W. Bossy, K. Karakoti, A. Kumar, A. Kim, A. Bossy, B. Seal, S. Ellisman, M. H. Perkins, G. Self, W. T. Bossy-Wetzel, E. TI Cerium oxide nanoparticles protect against A beta-induced mitochondrial fragmentation and neuronal cell death SO CELL DEATH AND DIFFERENTIATION LA English DT Article ID ALZHEIMERS-DISEASE; NITRIC-OXIDE; OXIDATIVE STRESS; AMYLOID-BETA; S-NITROSYLATION; MOUSE MODEL; DRP1; SUPEROXIDE; FISSION; DAMAGE AB Evidence indicates that nitrosative stress and mitochondrial dysfunction participate in the pathogenesis of Alzheimer's disease (AD). Amyloid beta (A beta) and peroxynitrite induce mitochondrial fragmentation and neuronal cell death by abnormal activation of dynamin-related protein 1 (DRP1), a large GTPase that regulates mitochondrial fission. The exact mechanisms of mitochondrial fragmentation and DRP1 overactivation in AD remain unknown; however, DRP1 serine 616 (S616) phosphorylation is likely involved. Although it is clear that nitrosative stress caused by peroxynitrite has a role in AD, effective antioxidant therapies are lacking. Cerium oxide nanoparticles, or nanoceria, switch between their Ce3+ and Ce4+ states and are able to scavenge superoxide anions, hydrogen peroxide and peroxynitrite. Therefore, nanoceria might protect against neurodegeneration. Here we report that nanoceria are internalized by neurons and accumulate at the mitochondrial outer membrane and plasma membrane. Furthermore, nanoceria reduce levels of reactive nitrogen species and protein tyrosine nitration in neurons exposed to peroxynitrite. Importantly, nanoceria reduce endogenous peroxynitrite and A beta-induced mitochondrial fragmentation, DRP1 S616 hyperphosphorylation and neuronal cell death. C1 [Dowding, J. M.; Song, W.; Bossy, K.; Bossy, B.; Self, W. T.; Bossy-Wetzel, E.] Univ Cent Florida, Burnett Sch Biomed Sci, Coll Med, Orlando, FL 32816 USA. [Karakoti, A.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. [Kumar, A.; Seal, S.] Univ Cent Florida, Nanosci & Technol Ctr NSTC, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Kim, A.; Ellisman, M. H.; Perkins, G.] Univ Calif San Diego, Sch Med, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA. RP Bossy-Wetzel, E (reprint author), Univ Cent Florida, Burnett Sch Biomed Sci, Coll Med, Orlando, FL 32816 USA. EM Ella.Bossy-Wetzel@ucf.edu RI Self, William/A-6704-2008 FU NIH [R01NS047456, R01EY016164, R01NS055193, 5P41RR004050, P41GM103412-24, P42ES010337, P01DK54441, R01AG031529-01]; NSF [CBET 0708172] FX We thank Jin Chen, Sarah Lubitz, Viviana DeAssis, Cory Eldon and Brad Kincaid for their technical assistance; Mason Mackey, NCMIR, UCSD for assistance with EELS; and Andrew Knott for manuscript editing and development. This work is supported by NIH grants R01NS047456, R01EY016164 and R01NS055193 (to EB-W); NIH grants 5P41RR004050, P41GM103412-24, P42ES010337 and P01DK54441 (to ME); NIH grant R01AG031529-01 (to WTS and SS); and NSF grant CBET 0708172 (to SS and WTS). NR 63 TC 20 Z9 22 U1 6 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1350-9047 EI 1476-5403 J9 CELL DEATH DIFFER JI Cell Death Differ. PD OCT PY 2014 VL 21 IS 10 BP 1622 EP 1632 DI 10.1038/cdd.2014.72 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AR0XC UT WOS:000343296400012 PM 24902900 ER PT J AU Rios, O Martha, SK McGuire, MA Tenhaeff, W More, K Daniel, C Nanda, J AF Rios, Orlando Martha, Surendra K. McGuire, Michael A. Tenhaeff, Wyatt More, Karren Daniel, Claus Nanda, Jagjit TI Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries SO ENERGY TECHNOLOGY LA English DT Article ID HIGH-CAPACITY; SI NANOPARTICLES; ANODES; STORAGE; NANOSTRUCTURES; MICROSCOPY; LITHIATION AB We report direct manufacturing of high-capacity carbon/silicon composite fiber electrodes for lithium-ion batteries produced via a flexible low-cost melt processing route, yielding low-cost stable silicon particles coated in situ by a 10 nanometer thick protective silica layer. The core-shell silicon/SiO2 islands are embedded in electrochemically active and electronically conductive carbon fiber derived from lignin precursor material. The silicon-silica-carbon composites exhibit capacities exceeding 700 mAhg(-1) with Coulombic efficiencies in excess of 99.5%. The high efficiency, stability, and rate capability are linked to the nanocrystalline structure and abundant, uniform nanometer-thick SiO2 interfaces that are produced during the spinning and subsequent pyrolysis of the precursor blend. C1 [Rios, Orlando; McGuire, Michael A.; Tenhaeff, Wyatt; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Martha, Surendra K.] Indian Inst Technol Hyderabad, Dept Chem, Yedduaram 502205, AP, India. [More, Karren] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Rios, O (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM rioso@ornl.gov RI McGuire, Michael/B-5453-2009; More, Karren/A-8097-2016; Daniel, Claus/A-2060-2008; Rios, Orlando/E-6856-2017 OI McGuire, Michael/0000-0003-1762-9406; More, Karren/0000-0001-5223-9097; Daniel, Claus/0000-0002-0571-6054; Rios, Orlando/0000-0002-1814-7815 FU Laboratory Directed Research Development of the Oak Ridge National Laboratory (ORNL); Office of Vehicle Technologies; DoE, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX This work is funded by Laboratory Directed Research Development of the Oak Ridge National Laboratory (ORNL). Support for Raman microscopy was provided by the Office of Vehicle Technologies. Diffraction studies were supported by the DoE, Basic Energy Sciences, Materials Sciences and Engineering Division. Microscopy was supported as part of a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Invaluable discussions with Steve Nagler and Nancy Dudney are greatly appreciated. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 27 TC 8 Z9 8 U1 8 U2 82 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2194-4288 EI 2194-4296 J9 ENERGY TECHNOL-GER JI Energy Technol. PD OCT PY 2014 VL 2 IS 9-10 BP 773 EP 777 DI 10.1002/ente.201402049 PG 5 WC Energy & Fuels SC Energy & Fuels GA AR0CN UT WOS:000343233300005 ER PT J AU Malikopoulos, AA AF Malikopoulos, Andreas A. TI Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Hybrid electric vehicles (HEVs); plug-in HEVs (PHEVs); supervisory power management control algorithms ID DRIVING PATTERN-RECOGNITION; OPTIMAL ENERGY MANAGEMENT; MODEL-PREDICTIVE CONTROL; CONTROL STRATEGIES; PARALLEL POWERTRAIN; STOCHASTIC-CONTROL; FUEL CONSUMPTION; CONTROL-SYSTEMS; PART II; OPTIMIZATION AB The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed. C1 Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Malikopoulos, AA (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM andreas@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX The author would like to thank Z. Henderson for the assistance in classifying the papers cited in this review. This paper has been authored by UT-Battelle, LLC, under contract DE-AC05- 00OR22725 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, and worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for U.S. government purposes. NR 163 TC 22 Z9 23 U1 2 U2 31 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 EI 1558-0016 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD OCT PY 2014 VL 15 IS 5 BP 1869 EP 1885 DI 10.1109/TITS.2014.2309674 PG 17 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA AQ7MR UT WOS:000343002400002 ER PT J AU Zhang, JZ Han, JT Zhu, JL Lin, ZJ Braga, MH Daemen, LL Wang, LP Zhao, YS AF Zhang, Jianzhong Han, Jiantao Zhu, Jinlong Lin, Zhijun Braga, Maria H. Daemen, Luke L. Wang, Liping Zhao, Yusheng TI High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3-xCax/2OCl anti-perovskite halides SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium-rich anti-perovskite; Lithium hydrate halides; High-pressure/high-temperature synthesis ID SUPERIONIC CONDUCTIVITY; BATTERIES; WUSTITE; NAMGF3 AB In this work, we investigated the systems of (Li, Ca)-O-(Cl, Br) under high pressure and temperature for the synthesis of lithium-rich anti-perovskite (LiRAP) halides. We successfully synthesized Li3-xCax/2OCl anti-perovsldte with x = 0.0, 0.1, 02 near 0.5 GPa and temperatures of 400-425 K and Li3OBr anti-perovskite at 3.0 GPa and 450 K. Different from the synthetic route previously reported at ambient pressure, LiA + 2LiOH --> Li(3)OA + H2O, the LiRAP halides under high P-T conditions are formed by dehydration of end-member and Ca-doped halide hydrates with a general formula of Li(2x + 1)A(OH)(2y), where A can be Cl or Br and x must be equal to y. This proposed formula predicts several new halide hydrates including Li3Cl(OH)(2), Li5Cl(OH)(4), Li3Br(OH)(2), and Li5Br(OH)(4), indicating that halide hydrates are structurally flexible to accommodate a range of lithium and hydroxide occupancies in the puckered layers of [Li2x + (1)(OH)(2y)(+)]. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhang, Jianzhong; Han, Jiantao; Zhu, Jinlong; Lin, Zhijun; Braga, Maria H.; Daemen, Luke L.; Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Wang, Liping; Zhao, Yusheng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Wang, Liping; Zhao, Yusheng] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Zhang, JZ (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. EM jzhang@lanl.gov; Yusheng.Zhao@UNLV.edu RI han, jiantao/F-8021-2010; Lin, Zhijun/A-5543-2010; OI han, jiantao/0000-0002-9509-3785; Zhang, Jianzhong/0000-0001-5508-1782 FU Laboratory-Directed Research and Development program of Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE [DE-NA0001982] FX This research is supported by the Laboratory-Directed Research and Development program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The use of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. The use of the X17B2 beamline at NSLS was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 01-35554. This research was also sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. NR 17 TC 6 Z9 6 U1 14 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 EI 1879-0259 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD OCT PY 2014 VL 48 BP 140 EP 143 DI 10.1016/j.inoche.2014.08.036 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AR1RO UT WOS:000343362500033 ER PT J AU Liliental-Weber, Z AF Liliental-Weber, Zuzanna TI Structural defects in GaN revealed by transmission electron microscopy SO JAPANESE JOURNAL OF APPLIED PHYSICS LA English DT Article ID VAPOR-PHASE EPITAXY; MG-DOPED GAN; MOLECULAR-BEAM EPITAXY; DISLOCATION DENSITY REDUCTION; MULTIQUANTUM-WELL STRUCTURES; INVERSION DOMAIN BOUNDARY; FIELD-EFFECT TRANSISTORS; BULK GAN; GALLIUM-NITRIDE; EXTENDED DEFECTS AB This paper reviews the various types of structural defects observed by transmission electron microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by high nitrogen pressure solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed. (C) 2014 The Japan Society of Applied Physics C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liliental-Weber, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM z_liliental-weber@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The author is very indebted to Dr. K. M. Yu for careful reading and correcting of this manuscript and Dr. R. dos Reis for his help for the final preparation of the numerous figures to meet the requirement of the editor. NR 89 TC 6 Z9 6 U1 10 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0021-4922 EI 1347-4065 J9 JPN J APPL PHYS JI Jpn. J. Appl. Phys. PD OCT PY 2014 VL 53 IS 10 AR 100205 DI 10.7567/JJAP.53.100205 PG 14 WC Physics, Applied SC Physics GA AQ9XK UT WOS:000343212100007 ER PT J AU Anisimov, VM Bauer, GH Chadalavada, K Olson, RM Glenski, JW Krarner, WTC Apra, E Kowalski, K AF Anisimov, Victor M. Bauer, Gregory H. Chadalavada, Kalyana Olson, Ryan M. Glenski, Joseph W. Krarner, William T. C. Apra, Edoardo Kowalski, Karol TI Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MANY-BODY PERTURBATION; MOLECULAR-DYNAMICS; QUANTUM-CHEMISTRY; NUCLEIC-ACIDS; FORCE-FIELD; DINUCLEOSIDE MONOPHOSPHATES; CORRELATION-ENERGY; WAVE-FUNCTIONS; DOUBLE HELIX; BASIS-SET AB The coupled cluster singles and doubles (CCSD) algorithm in the NWChem software package has been optimized to alleviate the communication bottleneck. This optimization provided a 2-fold to 5-fold speedup in the CCSD iteration time depending on the problem size and available memory, and improved the CCSD scaling to 20 000 nodes of the NCSA Blue Waters supercomputer. On 20 000 XE6 nodes of Blue Waters, a complete conventional CCSD(T) calculation of a system encountering 1042 basis functions and 103 occupied correlated orbitals obtained a performance of 0.32 petaflop/s and took 5 h and 24 min to complete. The reported time and performance included all stages of the calculation from initialization to termination for iterative single and double excitations as well as perturbative triples correction. In perturbative triples alone, the computation sustained a rate of 1.18 petaflop/s. The CCSD and (T) phases took approximately 3/4 and 1/4 of the total time to solution, respectively, showing that CCSD is the most time-consuming part at the large scale. The MP2, CCSD, and CCSD(T) computations in 6-311++G** basis set performed on guanine-cytosine deoxydinudeotide monophosphate probed the conformational energy difference between the A- and B-conformations of single stranded DNA. Good agreement between MP2 and coupled cluster methods has been obtained, suggesting the utility of MP2 for conformational analysis in these systems. The study revealed a significant discrepancy between the quantum mechanical and classical force field predictions, suggesting a need to improve the dihedral parameters. C1 [Anisimov, Victor M.; Bauer, Gregory H.; Chadalavada, Kalyana; Krarner, William T. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Olson, Ryan M.; Glenski, Joseph W.] Cray Res Inc, St Paul, MN 55101 USA. [Apra, Edoardo; Kowalski, Karol] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Anisimov, VM (reprint author), Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St,MC-257, Urbana, IL 61801 USA. EM anisimov@illinois.edu RI Apra, Edoardo/F-2135-2010 OI Apra, Edoardo/0000-0001-5955-0734 FU National Science Foundation [OCI 07-25070, ACI-1238993]; state of Illinois; Department of Energy's Office of Biological and Environmental Research; US Department of Energy by the Battelle Memorial Institute [DE-AC06.76RLO-1830] FX This research is part of the Blue Waters sustained petascale computing project, which is supported by the National Science Foundation (award No. OCI 07-25070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. Part of the test calculations has been performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the US Department of Energy by the Battelle Memorial Institute under Contract DE-AC06.76RLO-1830. NR 72 TC 2 Z9 2 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2014 VL 10 IS 10 BP 4307 EP 4316 DI 10.1021/ct500404c PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AQ9SO UT WOS:000343196300014 PM 26588127 ER PT J AU Gajdos, F Valner, S Hoffmann, F Spencer, J Breuer, M Kubas, A Dupuis, M Blumberger, J AF Gajdos, Fruzsina Valner, Siim Hoffmann, Felix Spencer, Jacob Breuer, Marian Kubas, Adam Dupuis, Michel Blumberger, Jochen TI Ultrafast Estimation of Electronic Couplings for Electron Transfer between pi-Conjugated Organic Molecules SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; STATE PERTURBATION-THEORY; CHARGE-TRANSFER; PHOTOEMISSION-SPECTROSCOPY; DYNAMICS SIMULATION; SYSTEMS APPLICATION; TRANSFER INTEGRALS; HOPPING MODELS; TRANSPORT; DNA AB Simulation of charge transport in organic semiconducting materials requires the development of strategies for very fast yet accurate estimation of electronic coupling matrix elements for electron transfer between organic molecules (transfer integrals, H-ab). A well-known relation that is often exploited for this purpose is the approximately linear dependence of electronic coupling with respect to the overlap of the corresponding diabatic state wave functions for a given donor acceptor pair. Here we show that a single such relation can be established for a large number of different pi-conjugated organic molecules. In our computational scheme the overlap of the diabatic state wave function is simply estimated by the overlap of the highest singly occupied molecular orbital of donor and acceptor, projected on a minimum valence shell Slater-type orbital (STO) basis with optimized Slater decay coefficients. After calibration of the linear relation, the average error in H-ab as obtained from the STO orbital overlap is a factor of 1.9 with respect to wave function-theory validated DFT calculations for a diverse set of pi-conjugated organic dimers including small arenes, arenes with S, N, and O heteroatoms, acenes, porphins, and buckyballs. The crucial advantage of the scheme is that the STO orbital overlap calculation is analytic. This leads to speedups of 6 orders of magnitude with respect to reference DFT calculations, with little loss of accuracy in the regime relevant to charge transport in organics. C1 [Gajdos, Fruzsina; Valner, Siim; Hoffmann, Felix; Spencer, Jacob; Breuer, Marian; Kubas, Adam; Blumberger, Jochen] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Hoffmann, Felix] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44801 Bochum, Germany. [Dupuis, Michel] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Blumberger, J (reprint author), UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. EM j.blumberger@ud.ac.uk RI Kubas, Adam/B-4005-2012 FU IMPACT; Pacific Northwest National Laboratory (PNNL); University College London; Department of Physics and Astronomy; EPSRC [EP/J015571/1, EP/F067496, EP/L000202]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences; Royal Society FX We would like to thank Alexander Heck, Karlsruhe Institute of Technology, for providing the timing of FODFTB calculations. F.G. was supported by an IMPACT Ph.D. studentship cosponsored by Pacific Northwest National Laboratory (PNNL) and University College London, J.S. was supported by an IMPACT PhD studentship cosponsored by University College London and the Department of Physics and Astronomy, A.K. was supported by EPSRC grant EP/J015571/1 and M.D. by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle. J. B. acknowledges The Royal Society for a University Research Fellowship. Electronic structure calculations were carried out on HECToR (Edinburgh), access to which was granted through the Materials Chemistry Consortium (EPSRC grants EP/F067496 and EP/L000202). The authors also acknowledge the use of the UCL High Performance Computing Facility "Legion", and associated support services, for completion of this work. NR 63 TC 13 Z9 13 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2014 VL 10 IS 10 BP 4653 EP 4660 DI 10.1021/ct500527v PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AQ9SO UT WOS:000343196300048 PM 26588156 ER PT J AU Olsson, RH Nguyen, J Pluym, T Hietala, VM AF Olsson, Roy H., III Nguyen, Janet Pluym, Tammy Hietala, Vincent M. TI A Method for Attenuating the Spurious Responses of Aluminum Nitride Micromechanical Filters SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Acoustic filters; acoustic resonator filters; acoustic resonators; microresonators; piezoelectric resonators; piezoelectric resonator filters ID CONTOUR-MODE RESONATORS; ACOUSTIC-WAVE DEVICES AB We present a method for attenuating the spurious responses in aluminum nitride micromechanical filters and demonstrate the technique in a 4-pole self-coupled filter operating at 494 MHz. In the standard implementation of a 4-pole self-coupled filter, each filter pole is realized using physically identical resonators. The spur mitigation approach reported here realizes the four poles of the filter using two different physical implementations of the resonator. Both resonators are designed to have identical responses at the desired resonant frequency of 494 MHz, while many of the spurious responses of the two resonators appear at nonidentical frequencies and do not add constructively at the filter output. Using the reported method, the measured attenuation of the largest filter spur is increased by 47.5 dB when compared with a 4-pole filter realized using identical resonators (standard approach) to form each filter pole. The filter realized using the reported spur attenuation approach has >59.6 dBc of stopband and spurious response rejection over nearly a 2-GHz frequency span. [2013-0342] C1 [Olsson, Roy H., III; Nguyen, Janet; Pluym, Tammy; Hietala, Vincent M.] Sandia Natl Labs, MEMS Technol, Albuquerque, NM 87185 USA. RP Olsson, RH (reprint author), Sandia Natl Labs, MEMS Technol, POB 5800, Albuquerque, NM 87185 USA. EM rholsso@sandia.gov; jhnguye@sandia.gov; tpluym@sandia.gov; vmhieta@sandia.gov FU Defense Advanced Research Projects Agency (DARPA) Chip Scale Spectrum Analyzers Program (CSSA); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received November 4, 2013; revised December 29, 2013; accepted February 11, 2014. Date of publication March 18, 2014; date of current version September 29, 2014. This work was supported in part by funding from Dr. W. Chappel under the Defense Advanced Research Projects Agency (DARPA) Chip Scale Spectrum Analyzers Program (CSSA). Sandia National Laboratories is a Multiprogram Laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation through the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Subject Editor G. Piazza. NR 19 TC 12 Z9 12 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 EI 1941-0158 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD OCT PY 2014 VL 23 IS 5 BP 1198 EP 1207 DI 10.1109/JMEMS.2014.2308544 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA AR1CL UT WOS:000343318500021 ER PT J AU Tan, L Yang, Y Nanstad, RK Busby, JT AF Tan, L. Yang, Y. Nanstad, R. K. Busby, J. T. TI Effect of Thermal Aging on Coarsening Kinetics of gamma ' in Alloy 617 SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article DE based on Ni3Al; electron microscopy; nickel aluminides; phase stability; precipitates; prediction; scanning; thermal stability; transmission ID NI-BASED SUPERALLOY; EVOLUTION AB The effect of thermal aging on coarsening kinetics of alloy 617, a candidate material for heat exchanger of the very high temperature reactor, was experimentally studied at 750 and 950 A degrees C for up to 5300 h. Formation of various precipitates such as mu-phase, M23C6 and gamma' phases and significant coarsening of the gamma' phase have been observed in the microstructure of the aged samples. Experimental observation was compared to alloy thermodynamic calculation and gamma'-phase precipitation kinetics simulation. Thermal aging effect on the microstructural evolution and mechanical behavior of alloy 617 was then discussed based on experimental and microstructural modeling results. C1 [Tan, L.; Yang, Y.; Nanstad, R. K.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd MS-6115,POB 2008, Oak Ridge, TN 37831 USA. EM yangying@ornl.gov RI Tan, Lizhen/A-7886-2009; Yang, Ying/E-5542-2017 OI Tan, Lizhen/0000-0002-3418-2450; Yang, Ying/0000-0001-6480-2254 FU U.S. Department of Energy (DOE), Office of Nuclear Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE FX Research supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS) that is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The authors appreciate Dr. W. Cao for discussions on the simulations. NR 17 TC 2 Z9 2 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD OCT PY 2014 VL 35 IS 5 BP 524 EP 529 DI 10.1007/s11669-014-0312-z PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AQ9FU UT WOS:000343154700003 ER PT J AU Dubinko, VI Grigorev, P Bakaev, A Terentyev, D van Oost, G Gao, F Van Neck, D Zhurkin, EE AF Dubinko, V. I. Grigorev, P. Bakaev, A. Terentyev, D. van Oost, G. Gao, F. Van Neck, D. Zhurkin, E. E. TI Dislocation mechanism of deuterium retention in tungsten under plasma implantation SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE tungsten; retention; plasma ID HYDROGEN; IRRADIATION; DIFFUSION; METALS AB We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented. C1 [Dubinko, V. I.] Kharkov Inst Phys & Technol, Natl Sci Ctr, UA-61108 Kharkov, Ukraine. [Grigorev, P.; Bakaev, A.; Terentyev, D.] CEN SCK, B-2400 Mol, Belgium. [Grigorev, P.] Univ Ghent, Appl Phys FUS DC EA17, B-9000 Ghent, Belgium. [van Oost, G.] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium. [Bakaev, A.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Van Neck, D.] Univ Ghent, Dept Phys & Astron, Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium. [Zhurkin, E. E.] St Petersburg State Polytech Univ, Inst Phys Nanotechnol & Telecommun, Dept Expt Nucl Phys, St Petersburg 195251, Russia. RP Dubinko, VI (reprint author), Kharkov Inst Phys & Technol, Natl Sci Ctr, UA-61108 Kharkov, Ukraine. EM dterenty@sckcen.be FU Erasmus Mundus [FUSION-EP_0]; EUROfusion programme; Erasmus Mundus International Doctoral College in Fusion Science and Engineering (FUSION-DC) FX V Dubinko acknowledges financial support from Erasmus Mundus (FUSION-EP_0). The work is partially supported by the EUROfusion programme. P Grigorev acknowledges the support from the Erasmus Mundus International Doctoral College in Fusion Science and Engineering (FUSION-DC). NR 20 TC 9 Z9 10 U1 4 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 1 PY 2014 VL 26 IS 39 AR 395001 DI 10.1088/0953-8984/26/39/395001 PG 10 WC Physics, Condensed Matter SC Physics GA AR1BD UT WOS:000343313400013 PM 25138240 ER PT J AU Lyapin, SG Utyuzh, AN Petrova, AE Novikov, AP Lograsso, TA Stishov, SM AF Lyapin, S. G. Utyuzh, A. N. Petrova, A. E. Novikov, A. P. Lograsso, T. A. Stishov, S. M. TI Raman studies of nearly half-metallic ferromagnetic CoS2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE Raman scattering; half metal; CoS2 ID HIGH-PRESSURE; TEMPERATURE-DEPENDENCE; PHONON INTERACTION; LIGHT-SCATTERING; PHASE-TRANSITION; PYRITE STRUCTURE; OPTICAL PHONONS; FES2; CRO2; SPECTROSCOPY AB We measured the Raman spectra of ferromagnetic, nearly half-metallic, CoS2 over a broad temperature range. All five Raman active modes A(g), E-g, T-g(1), T-g(2) and T-g(3) were observed. The magnetic ordering is indicated by a change of the temperature dependences of the frequency and the line width of A(g) and T-g(2) modes at the Curie point. The temperature dependence of the frequencies and line widths of the A(g), E-g, T-g(1), T-g(2) modes in the paramagnetic phase can be described in the framework of the Klemens approach. Hardening of the T-g(2), T-g(1) and Ag modes on cooling can be unambiguously seen in the ferromagnetic phase. The line widths of T-g(2) and A(g) modes behave in a natural way at low exciting laser powers (they decrease with decreasing temperature) in the ferromagnetic phase. At high exciting laser powers the corresponding line widths increase as temperature decreases below the Curie temperature. Then, as will be shown, the line width of the A(g) mode reaches a maximum at about 80 K. Tentative explanations of some of the observed effects are given, taking into account the nearly half-metallic nature of CoS2. C1 [Lyapin, S. G.; Utyuzh, A. N.; Petrova, A. E.; Novikov, A. P.; Stishov, S. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Russia. [Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Lyapin, SG (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142092, Russia. EM sergei@hppi.troitsk.ru RI Lyapin, Sergey/A-2890-2009 OI Lyapin, Sergey/0000-0002-6257-2317 FU Russian Foundation for Basic Research in the Program of the Physics Department of RAS on Strongly Correlated Electron Systems and in the Program of the Presidium of RAS on Strongly Compressed Matter [12-02-00376] FX This work was supported by the Russian Foundation for Basic Research (grant 12-02-00376) in the Program of the Physics Department of RAS on Strongly Correlated Electron Systems and in the Program of the Presidium of RAS on Strongly Compressed Matter. NR 30 TC 9 Z9 9 U1 8 U2 50 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 1 PY 2014 VL 26 IS 39 AR 396001 DI 10.1088/0953-8984/26/39/396001 PG 7 WC Physics, Condensed Matter SC Physics GA AR1BD UT WOS:000343313400031 PM 25192039 ER PT J AU Yang, H Peng, XY Liu, WL Wei, XL Hao, GL He, CY Li, J Stocks, GM Zhong, JX AF Yang, Hong Peng, Xiangyang Liu, Wenliang Wei, Xiaolin Hao, Guolin He, Chaoyu Li, Jin Stocks, G. Malcolm Zhong, Jianxin TI Electric tuning of the surface and quantum well states in Bi2Se3 films: a first-principles study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE topological insulators; rashba effect; first-principles ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TOPOLOGICAL-INSULATOR; TRANSPORT AB Based on first-principles calculations in the framework of van der Waals density functional theory, we find that giant, Rashba-like spin splittings can be induced in both the surface states and quantum well states of thin Bi2Se3 films by application of an external electric field. The charge is redistributed so that the Dirac cones of the upper and lower surfaces become nondegenerate and completely gapless. Interestingly, a momentum-dependent spin texture is developed on the two surfaces of the films. Some of the quantum well states, which reside in the middle of the Bi2Se3 film under zero field, are driven to the surface by the electric field. The Rashba splitting energy has a highly non-linear dependence on the momentum and the electric field due to the large contribution of the high-order Rashba terms, which suggests complex spin dynamics in the thin films of Bi2Se3 under an electric field. C1 [Yang, Hong; Peng, Xiangyang; Liu, Wenliang; Wei, Xiaolin; Hao, Guolin; He, Chaoyu; Li, Jin; Zhong, Jianxin] Xiangtan Univ, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China. [Yang, Hong; Peng, Xiangyang; Liu, Wenliang; Wei, Xiaolin; Hao, Guolin; He, Chaoyu; Li, Jin; Zhong, Jianxin] Xiangtan Univ, Lab Quantum Engn & Micronano Energy Technol, Xiangtan 411105, Hunan, Peoples R China. [Yang, Hong; Peng, Xiangyang; Liu, Wenliang; Wei, Xiaolin; Hao, Guolin; He, Chaoyu; Li, Jin; Zhong, Jianxin] Xiangtan Univ, Fac Mat & Optoelect Phys, Xiangtan 411105, Hunan, Peoples R China. [Yang, Hong] Jishou Univ, Dept Phys, Jishou 416000, Hunan, Peoples R China. [Stocks, G. Malcolm] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, H (reprint author), Xiangtan Univ, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China. EM xiangyang_peng@xtu.edu.cn; jxzhong@xtu.edu.cn RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X FU National Natural Science Foundation of China [11074211, 11274265, 11464013, 11204262, 11274262]; National Basic Research Program of China [2012CB921303]; Furong Scholar Program of Hunan Provincial Government; Research Foundation of Education Bureau of Hunan Province, China [10A118]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20124301120006]; US Department of Energy (DOE); Materials Sciences and Engineering Division, Office of Basic Energy Sciences; Oak Ridge Institute for Science and Education (ORISE) HERE Program FX The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 11074211, No. 11274265, No. 11464013, No. 11204262 and No. 11274262), National Basic Research Program of China (Grant No. 2012CB921303), Furong Scholar Program of Hunan Provincial Government, the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 10A118), the Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124301120006), the US Department of Energy (DOE), Materials Sciences and Engineering Division, Office of Basic Energy Sciences (G M S), and the Oak Ridge Institute for Science and Education (ORISE) HERE Program (J Z). NR 35 TC 2 Z9 2 U1 2 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 1 PY 2014 VL 26 IS 39 AR 395005 DI 10.1088/0953-8984/26/39/395005 PG 6 WC Physics, Condensed Matter SC Physics GA AR1BD UT WOS:000343313400017 PM 25164599 ER PT J AU Deal, MW Xu, JY John, R Zenone, T Chen, JQ Chu, H Jasrotia, P Kahmark, K Bossenbroek, J Mayer, C AF Deal, Michael W. Xu, Jianye John, Ranjeet Zenone, Terenzio Chen, Jiquan Chu, Housen Jasrotia, Poonam Kahmark, Kevin Bossenbroek, Jonathan Mayer, Christine TI Net primary production in three bioenergy crop systems following land conversion SO JOURNAL OF PLANT ECOLOGY LA English DT Article DE bioenergy crops; land use change; net primary production; aboveground net primary production; belowground net primary production ID DIVERSITY GRASSLAND BIOMASS; CARBON-NEGATIVE BIOFUELS; ENERGY; ROOT; CORN; SOIL; SEQUESTRATION; SWITCHGRASS; FORESTS; DEBT AB Aims Identifying the amount of production and the partitioning to above- and belowground biomass is generally the first step toward selecting bioenergy systems. There are very few existing studies on the dynamics of production following land conversion. The objectives of this study were to (i) determine the differences in aboveground net primary production (ANPP), belowground net primary production (BNPP), shoot-to-root ratio (S:R) and leaf area index in three bioenergy crop systems and (ii) evaluate the production of these three systems in two different land use conversions. Methods This investigation included biometric analysis of NPP on three agricultural sites converted from conservation reserve program (CRP) management to bioenergy crop production (corn, switchgrass and prairie mix) and three sites converted from traditional agriculture production to bioenergy crop production. Important findings The site converted from conventional agriculture produced smaller ANPP in corn (19.03 +/- 1.90 standard error [SE] Mg ha(-1) year(-1)) than the site converted from CRP to corn (24.54 +/- 1.43 SE Mg ha(-1) year(-1)). The two land conversions were similar in terms of ANPP for switchgrass (4.88 +/- 0.43 SE for CRP and 2.04 +/- 0.23 SE Mg ha(-1) year(-1) for agriculture) and ANPP for prairie mix (4.70 +/- 0.50 SE for CRP and 3.38 +/- 0.33 SE Mg ha(-1) year(-1) for agriculture). The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different (P = 0.75, N = 8). C1 [Deal, Michael W.; Xu, Jianye; John, Ranjeet; Zenone, Terenzio; Chen, Jiquan; Chu, Housen; Bossenbroek, Jonathan; Mayer, Christine] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. [Deal, Michael W.; Xu, Jianye; Zenone, Terenzio; Chen, Jiquan; Jasrotia, Poonam; Kahmark, Kevin] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kahmark, Kevin] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. RP Deal, MW (reprint author), Univ Toledo, Dept Environm Sci, 2801 West Bancroft,Mail Stop 604, Toledo, OH 43606 USA. EM dealohio@gmail.com RI John, Ranjeet/J-2082-2015; Chu, Housen/Q-6517-2016; Chen, Jiquan/D-1955-2009 OI John, Ranjeet/0000-0002-0150-8450; Chu, Housen/0000-0002-8131-4938; FU United States Department of Energy's Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-0764494] FX United States Department of Energy's Great Lakes Bioenergy Research Center (DOE Office of Science, BER DE-FC02-0764494). NR 27 TC 2 Z9 2 U1 1 U2 38 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1752-9921 EI 1752-993X J9 J PLANT ECOL JI J. Plant Ecol. PD OCT PY 2014 VL 7 IS 5 BP 451 EP 460 DI 10.1093/jpe/rtt057 PG 10 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA AR1ES UT WOS:000343327200004 ER PT J AU Bosco-Lauth, A Harmon, JR Lash, RR Weiss, S Langevin, S Savage, HM Godsey, MS Burkhalter, K Root, JJ Gidlewski, T Nicholson, WL Brault, AC Komar, N AF Bosco-Lauth, Angela Harmon, Jessica R. Lash, R. Ryan Weiss, Sonja Langevin, Stanley Savage, Harry M. Godsey, Marvin S., Jr. Burkhalter, Kristen Root, J. Jeffrey Gidlewski, Thomas Nicholson, William L. Brault, Aaron C. Komar, Nicholas TI West Nile Virus Isolated from a Virginia Opossum (Didelphis virginiana) in Northwestern Missouri, USA, 2012 SO JOURNAL OF WILDLIFE DISEASES LA English DT Article ID SQUIRRELS SCIURUS-NIGER; EXPERIMENTAL-INFECTION; VIREMIAS SUFFICIENT; SEROLOGIC EVIDENCE; MAMMALS AB We describe the isolation of West Nile virus (WNV; Flaviviridae, Flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Sequencing determined that the virus was related to lineage la WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology. C1 [Bosco-Lauth, Angela; Savage, Harry M.; Godsey, Marvin S., Jr.; Burkhalter, Kristen; Brault, Aaron C.; Komar, Nicholas] Ctr Dis Control & Prevent, Div Vector Borne Dis, Arboviral Dis Branch, Ft Collins, CO 80521 USA. [Harmon, Jessica R.; Lash, R. Ryan; Weiss, Sonja; Nicholson, William L.] Ctr Dis Control & Prevent, Div Vector Borne Dis, Rickettsial Zoonoses Branch, Atlanta, GA 30333 USA. [Langevin, Stanley] Sandia Natl Labs, Livermore, CA 94550 USA. [Root, J. Jeffrey; Gidlewski, Thomas] USDA, Natl Wildlife Res Ctr, Ft Collins, CO 80521 USA. RP Bosco-Lauth, A (reprint author), Ctr Dis Control & Prevent, Div Vector Borne Dis, Arboviral Dis Branch, 3156 Rampart Rd,Foothills Campus, Ft Collins, CO 80521 USA. EM mopargal@rams.colostate.edu FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 0 Z9 0 U1 1 U2 14 PU WILDLIFE DISEASE ASSOC, INC PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0090-3558 EI 1943-3700 J9 J WILDLIFE DIS JI J. Wildl. Dis. PD OCT PY 2014 VL 50 IS 4 BP 976 EP 978 DI 10.7589/2013-11-295 PG 3 WC Veterinary Sciences SC Veterinary Sciences GA AQ8LB UT WOS:000343075900037 PM 25098303 ER PT J AU Flueck, WT Smith-Flueck, JAM Mincher, BJ Winkel, LHE AF Flueck, Werner T. Smith-Flueck, Jo Anne M. Mincher, Bruce J. Winkel, Lenny H. E. TI An Alternative Interpretation of Plasma Selenium Data from Endangered Patagonian Huemul Deer (Hippocamelus bisulcus) SO JOURNAL OF WILDLIFE DISEASES LA English DT Editorial Material ID SOUTH C1 [Flueck, Werner T.] Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Flueck, Werner T.] Univ Basel, Swiss Trop & Publ Hlth Inst, CH-4051 Basel, Switzerland. [Smith-Flueck, Jo Anne M.] Univ Atlantida Argentina, Inst Nat Resources Anal, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Mincher, Bruce J.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. [Winkel, Lenny H. E.] Eawag, Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland. [Winkel, Lenny H. E.] ETH, Inst Biogeochem & Pollutant Dynam, CH-8092 Zurich, Switzerland. RP Flueck, WT (reprint author), Consejo Nacl Invest Cient & Tecn, CC 592, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM wtf@deerlab.org RI Mincher, Bruce/C-7758-2017 NR 7 TC 3 Z9 3 U1 2 U2 4 PU WILDLIFE DISEASE ASSOC, INC PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0090-3558 EI 1943-3700 J9 J WILDLIFE DIS JI J. Wildl. Dis. PD OCT PY 2014 VL 50 IS 4 BP 1003 EP 1004 DI 10.7589/2014-03-077 PG 2 WC Veterinary Sciences SC Veterinary Sciences GA AQ8LB UT WOS:000343075900045 PM 25121403 ER PT J AU Whelcher, RL Gerhardt, RA Littrell, KC AF Whelcher, Ricky L. Gerhardt, Rosario A. Littrell, Kenneth C. TI In-situ Small Angle Neutron Scattering and Ex-situ Electrical Resistivity to Nondestructively Monitor Aging of a Nickel-based Superalloy SO MATERIALS EVALUATION LA English DT Article DE nickel-based superalloy; small angle neutron scattering; precipitation hardening; nonde-structive testing ID KINETICS; ALLOYS; PHASE AB In-situ small angle neutron scattering (SANS) and ex-situ electrical resistivity measurements were used to nondestructively monitor the precipitation of gamma' precipitates in a polycrystalline nickel-based superalloy used as disk rotor material for gas turbine engines. Disk rotors manufactured from this superalloy are precipitation hardened to maintain high strength and fatigue resistance at temperatures greater than 60% of the alloy melting temperature. SANS and electrical resistivity are both useful nondestructive techniques that are sensitive to the evolving precipitate phase, gamma', in the superalloy. SANS measurements were taken for both ex-situ and in-situ heat treatment of the superalloy at 998 K (725 degrees C). Electrical resistivity measurements were taken for samples given ex-situ heat treatment, and the data were compared to quantitative microstructural information obtained from in-situ SANS. The electrical resistivity was found to be especially sensitive to the precipitate volume fraction, showing inverse power-law dependence. Both SANS and electrical resistivity may be used in the future to monitor the progression in the strengthening precipitate phases in superalloys due to heat treatment or thermal exposure during service. C1 [Whelcher, Ricky L.; Gerhardt, Rosario A.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Littrell, Kenneth C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Whelcher, RL (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM rosario.gerhardt@mse.gatech.edu RI Gerhardt, Rosario/D-6573-2012; Littrell, Kenneth/D-2106-2013 OI Gerhardt, Rosario/0000-0001-8774-0842; Littrell, Kenneth/0000-0003-2308-8618 FU American Society for Nondestructive Testing under a ASNT Fellowship Award; U.S. Department of Energy [DE-FG02-03-ER46035]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors wish to thank the funding for this work provided by the American Society for Nondestructive Testing under a 2011 ASNT Fellowship Award. Additional funding was also provided by the U.S. Department of Energy under grant number DE-FG02-03-ER46035. SANS data were obtained at Oak Ridge National Laboratory's High Flux Isotope Reactor, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The nickel-based superalloy used in these experiments was obtained from Fry Steel, and the composition of the different phases present given in Table 1 were obtained using Thermocalc software. NR 16 TC 0 Z9 0 U1 0 U2 13 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD OCT PY 2014 VL 72 IS 10 BP 1297 EP 1304 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA AR1HI UT WOS:000343335900004 ER PT J AU Pint, BA AF Pint, B. A. TI Critical Assessment 4: Challenges in developing high temperature materials SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE High temperature oxidation; Materials development; Oxidation resistance; Reviews; Critical assessment ID MATERIALS TECHNOLOGY; WATER-VAPOR; BARRIER; ALLOYS; 3RD-GENERATION; SUPERALLOY; EFFICIENCY; OXIDATION; LIFETIME; FUTURE AB Materials are a key enabling feature for high efficiency engines for power generation or transportation. While significant research continues, progress in this century has certainly slowed compared to the previous century where modern materials science spawned a rapid advance in high temperature materials. One area that hampers new high temperature materials is a lack of inherent (i.e. uncoated) oxidation or environmental resistance, especially for the highest temperature applications such as Ni-base superalloys for turbomachinery. Thus, there appears to be more opportunity to develop materials for 600-1000 degrees C applications than for higher temperatures. New materials requirements ranging from mechanical and environmental resistance to manufacturing and joining need to be clearly defined and experimental work focused on validating these properties for successful alloy development to proceed. For most applications the materials requirements have become so broad and complex that progress by single researchers is difficult. A teaming approach, especially among research institutions and industry, is needed to both define the critical needs and assemble experts in a range of disciplines to address these issues during the materials development process. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 33 TC 3 Z9 3 U1 0 U2 27 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD OCT PY 2014 VL 30 IS 12 BP 1387 EP 1391 DI 10.1179/1743284714Y.0000000580 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AQ9WX UT WOS:000343209900001 ER PT J AU Nam, S Choi, I Fu, CC Kim, K Hong, S Choi, Y Zettl, A Lee, LP AF Nam, SungWoo Choi, Inhee Fu, Chi-cheng Kim, Kwanpyo Hong, SoonGweon Choi, Yeonho Zettl, Alex Lee, Luke P. TI Graphene Nanopore with a Self-Integrated Optical Antenna SO NANO LETTERS LA English DT Article DE Self-organized formation; graphene; nanopore; optical antennae; DNA translocation; fluorescence enhancements ID SINGLE-MOLECULE FLUORESCENCE; SOLID-STATE NANOPORES; DNA; SENSORS; FILMS; FIELD; NANOPARTICLES; TWEEZERS; PROTEIN AB We report graphene nanopores with integrated optical antennae. We demonstrate that a nanometer-sized heated spot created by photon-to-heat conversion of a gold nanorod resting on a graphene membrane forms a nanoscale pore with a self-integrated optical antenna in a single step. The distinct plasmonic traits of metal nanoparticles, which have a unique capability to concentrate light into nanoscale regions, yield the significant advantage of parallel nanopore fabrication compared to the conventional sequential process using an electron beam. Tunability of both the nanopore dimensions and the optical characteristics of plasmonic nanoantennae are further achieved. Finally, the key optical function of our self-integrated optical antenna on the vicinity of graphene nanopore is manifested by multifold fluorescent signal enhancement during DNA translocation. C1 [Nam, SungWoo; Choi, Inhee; Fu, Chi-cheng; Hong, SoonGweon; Lee, Luke P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Nam, SungWoo; Choi, Inhee; Fu, Chi-cheng; Hong, SoonGweon; Lee, Luke P.] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Zettl, Alex] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Lee, Luke P.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Lee, Luke P.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Choi, Yeonho] Korea Univ, Dept Biomed Engn, Seoul 136701, South Korea. [Nam, SungWoo] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Choi, Inhee] Univ Seoul, Dept Life Sci, Seoul 130743, South Korea. RP Lee, LP (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM lplee@berkeley.edu RI Kim, Kwanpyo/D-9121-2011; Nam, SungWoo/C-1745-2015; Zettl, Alex/O-4925-2016 OI Kim, Kwanpyo/0000-0001-8497-2330; Nam, SungWoo/0000-0002-9719-7203; Zettl, Alex/0000-0001-6330-136X FU Samsung Electronics, Inc.; Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation within the Center of Integrated Nanomechanical Systems [DMR-1206512] FX L.P.L. acknowledges support from Samsung Electronics, Inc., and thanks the Advanced Characterization Center of Yonsei Institute of Convergence Technology for providing their support in the AFM characterization. A.Z. and K.K. acknowledge support from the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 which provided for TEM characterization, and the National Science Foundation within the Center of Integrated Nanomechanical Systems which provided for graduate student support and under grant no. DMR-1206512 which provided support for graphene synthesis and transfer. NR 41 TC 25 Z9 25 U1 7 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5584 EP 5589 DI 10.1021/nl503159d PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400016 PM 25203166 ER PT J AU Xiao, XY Fischer, AJ Wang, GT Lu, P Koleske, DD Coltrin, ME Wright, JB Liu, S Brener, I Subramania, GS Tsao, JY AF Xiao, Xiaoyin Fischer, Arthur J. Wang, George T. Lu, Ping Koleske, Daniel D. Coltrin, Michael E. Wright, Jeremy B. Liu, Sheng Brener, Igal Subramania, Ganapathi S. Tsao, Jeffrey Y. TI Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots SO NANO LETTERS LA English DT Article DE Quantum dots; InGaN; photoelectrochemical etching; quantum-size effects ID LIGHT-EMITTING-DIODES; GALLIUM-NITRIDE; GAN; STATE AB We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm). C1 [Xiao, Xiaoyin; Fischer, Arthur J.; Wang, George T.; Lu, Ping; Koleske, Daniel D.; Coltrin, Michael E.; Wright, Jeremy B.; Liu, Sheng; Brener, Igal; Subramania, Ganapathi S.; Tsao, Jeffrey Y.] Sandia Natl Labs, Solid State Lighting Sci Energy Frontier Res Ctr, Albuquerque, NM 87185 USA. [Wright, Jeremy B.; Liu, Sheng] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, Solid State Lighting Sci Energy Frontier Res Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov RI Liu, Sheng/P-6029-2014 OI Liu, Sheng/0000-0003-0967-4514 FU Sandia's Solid-State Lighting Science Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was primarily supported by Sandia's Solid-State Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. The portion of the work which led to single QD emission was funded by Sandia's Laboratory Directed Research and Development program. Portions of this work were also performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank S.A. Casalnuovo, W. Pan, R Polsky, G. Montano, F. Leonard, J.E. Martin, J.J. Wierer and R.P. Schneider (Sandia Labs) for helpful discussions. We thank C. Weisbuch (UC Santa Barbara) for encouragement, and especially thank Professor T. Torimoto (Nagoya University) for helpful insights. NR 29 TC 10 Z9 10 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5616 EP 5620 DI 10.1021/nl502151k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400021 PM 25171507 ER PT J AU Liu, MZ Tao, J Nam, CY Kisslinger, K Zhang, LH Su, D AF Liu, Mingzhao Tao, Jing Nam, Chang-Yong Kisslinger, Kim Zhang, Lihua Su, Dong TI Surface-Energy Induced Formation of Single Crystalline Bismuth Nanowires over Vanadium Thin Film at Room Temperature SO NANO LETTERS LA English DT Article DE Bismuth nanowire; single crystallinity; vanadium; thermal evaporation; surface energy ID BI NANOWIRES; GROWTH; MECHANISM; METALS AB We report high-yield room-temperature growth of vertical single-crystalline bismuth nanowire array by vacuum thermal evaporation of bismuth over a choice of arbitrary substrate coated with a thin interlayer of nanoporous vanadium. The nanowire growth is the result of spontaneous and continuous expulsion of nanometer-sized bismuth domains from the vanadium pores, driven by their excessive surface energy that suppresses the melting point of bismuth close to room temperature. The simplicity of the technique opens a new avenue for the growth of nanowire arrays of a variety of materials. C1 [Liu, Mingzhao; Nam, Chang-Yong; Kisslinger, Kim; Zhang, Lihua; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Tao, Jing] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Liu, MZ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mzliu@bnl.gov RI Liu, Mingzhao/A-9764-2011; Zhang, Lihua/F-4502-2014; Kisslinger, Kim/F-4485-2014; Su, Dong/A-8233-2013; Nam, Chang-Yong/D-4193-2009 OI Liu, Mingzhao/0000-0002-0999-5214; Su, Dong/0000-0002-1921-6683; Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research is carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank Drs. Kevin Yager and Dmytro Nykypanchuk for helpful discussion on X-ray reflectivity measurements. NR 29 TC 2 Z9 2 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5630 EP 5635 DI 10.1021/nl502208u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400024 PM 25244508 ER PT J AU Wang, D Liu, F Yagihashi, N Nakaya, M Ferdous, S Liang, XB Muramatsu, A Nakajima, K Russell, TP AF Wang, Dong Liu, Feng Yagihashi, Noritoshi Nakaya, Masafumi Ferdous, Sunzida Liang, Xiaobin Muramatsu, Atsushi Nakajima, Ken Russell, Thomas P. TI New Insights into Morphology of High Performance BHJ Photovoltaics Revealed by High Resolution AFM SO NANO LETTERS LA English DT Article DE Organic Photovoltaic; Morphology; Atomic Force Spectroscopy; X-ray Scattering; Mechanical Properties ID POLYMER SOLAR-CELLS; POWER-CONVERSION EFFICIENCY; SEMICONDUCTING POLYMERS; CONJUGATED POLYMERS; DESIGN AB Direct imaging of the bulk heterojunction (BHJ) thin film morphology in polymer-based solar cells is essential to understand device function and optimize efficiency. The morphology of the BHJ active layer consists of bicontinuous domains of the donor and acceptor materials, having characteristic length scales of several tens of nanometers, that reduces charge recombination, enhances charge separation, and enables electron and hole transport to their respective electrodes. Direct imaging of the morphology from the molecular to macroscopic level, though, is lacking. Though transmission electron tomography provides a 3D, real-space image of the morphology, quantifying the structure is not possible. Here we used high-resolution atomic force microscopy (AFM) in the tapping and nanomechanical modes to investigate the BHJ active layer morphology that, when combined with Ar+ etching, provided unique insights with unparalleled spatial resolution. PCBM was seen to form a network that interpenetrated into the fibrillar network of the hole-conducting polymer, both being imbedded in a mixture of the two components. The free surface was found to be enriched with polymer crystals having a face-on orientation and the morphology at the anode interface was markedly different. C1 [Wang, Dong; Liang, Xiaobin; Nakajima, Ken; Russell, Thomas P.] Tohoku Univ, WPI AIMR, Aoba Ku, Sendai, Miyagi 9808577, Japan. [Liu, Feng; Ferdous, Sunzida; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Liu, Feng; Russell, Thomas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yagihashi, Noritoshi; Nakaya, Masafumi; Muramatsu, Atsushi] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. RP Liu, F (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM iamfengliu@gmail.com; knakaji@wpi-aimr.tohoku.ac.jp; russell@mail.pse.mass.edu RI Wang, Dong/A-7863-2010; Liang, Xiaobin/P-5390-2014; Nakajima, Ken/A-7875-2010; Liu, Feng/J-4361-2014 OI Liang, Xiaobin/0000-0003-2781-9967; Nakajima, Ken/0000-0001-7495-0445; Liu, Feng/0000-0002-5572-8512 FU World Premier International Research Center Initiative (WPI), MEXT, Japan; Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001087]; DOE, Office of Science, and Office of Basic Energy Sciences FX This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. F.L., S.F., and T.P.R. were supported by Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001087. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 29 TC 20 Z9 20 U1 8 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5727 EP 5732 DI 10.1021/nl5025326 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400039 PM 25184797 ER PT J AU Das, S Zhang, W Demarteau, M Hoffmann, A Dubey, M Roelofs, A AF Das, Saptarshi Zhang, Wei Demarteau, Marcel Hoffmann, Axel Dubey, Madan Roelofs, Andreas TI Tunable Transport Gap in Phosphorene SO NANO LETTERS LA English DT Article DE Phosphorene; transport gap; field effect transistor; mobility ID FIELD-EFFECT TRANSISTORS; MOS2 TRANSISTORS; MULTILAYER MOS2; GRAPHENE; CONTACTS AB In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from similar to 0.3 to similar to 1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. Finally, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration. C1 [Das, Saptarshi; Roelofs, Andreas] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zhang, Wei; Hoffmann, Axel] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Demarteau, Marcel] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Dubey, Madan] US Army Res Lab, Adelphi, MD 20783 USA. RP Das, S (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM das.sapt@gmail.com RI Zhang, Wei/G-1523-2012; Hoffmann, Axel/A-8152-2009; Roelofs, Andreas/H-1742-2011 OI Zhang, Wei/0000-0002-5878-3090; Hoffmann, Axel/0000-0002-1808-2767; Roelofs, Andreas/0000-0003-4141-3082 FU U.S. Department of Energy, Office of Science, Materials Science and Engineering Division; DOE Office of High Energy Physics under DoE [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CHI1357] FX The work by W.Z. and A.H. was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. The work of Saptarshi Das is supported by the DOE Office of High Energy Physics under DoE contract number DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CHI1357. NR 23 TC 181 Z9 182 U1 25 U2 229 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5733 EP 5739 DI 10.1021/nl5025535 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400040 PM 25111042 ER PT J AU Gao, WW Khan, A Marti, X Nelson, C Serrao, C Ravichandran, J Ramesh, R Salahuddin, S AF Gao, Weiwei Khan, Asif Marti, Xavi Nelson, Chris Serrao, Claudy Ravichandran, Jayakanth Ramesh, Ramamoorthy Salahuddin, Sayeef TI Room-Temperature Negative Capacitance in a Ferroelectric Dielectric Super lattice Heterostructure SO NANO LETTERS LA English DT Article DE Room-temperature negative capacitance; ferroelectric; superlattice; epitaxial strain ID BA0.8SR0.2TIO3 THIN-FILMS; FIELD-EFFECT TRANSISTOR; 2-DIMENSIONAL ELECTRON; SILICON; DEVICES; BATIO3 AB We demonstrate room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructre. In epitaxially grown superlattice of ferroelectric BSTO (Ba0.8Sr0.2TiO3) and dielectric LAO (LaAlO3), capacitance was found to be larger compared to the constituent LAO (dielectric) capacitance. This enhancement of capacitance in a serires combination of two capacitors indicates that the ferroelectric was stablized in a state of negative capacitance. Negative capacitance was observed for superlattices grown on three different substrates (SrTiO3 (001), DyScO3 (110), and GdScO3 (110)) covering a large range of substrate strain. This demonstrates the robustness of the effect as well as potential for controlling the negative capacitance effect using epitaxial strain. Room-temperature demonstration of negative capacitance is an important step toward lowering the subthreshold swing in a transistor below the intrinsic thermodynamic limit of 60 mV/decade and therby improving energy efficiency. C1 [Gao, Weiwei; Khan, Asif; Serrao, Claudy; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Marti, Xavi] Univ Autonoma Barcelona, Inst Catala Nanociencia & Nanotecnol ICN2, Bellaterra 08193, Spain. [Marti, Xavi] Inst Phys ASCR, VVI, Prague 16253 6, Czech Republic. [Nelson, Chris; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ravichandran, Jayakanth] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy; Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Salahuddin, S (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM sayeef@berkeley.edu RI Ravichandran, Jayakanth/H-6329-2011; Serrao, Claudy/E-8175-2013; Marti, Xavier/E-1103-2014; OI Ravichandran, Jayakanth/0000-0001-5030-9143; Serrao, Claudy/0000-0003-1471-0348; Marti, Xavier/0000-0003-1653-5619; , claudy/0000-0003-4737-0693 FU Office of Naval Research; NSF E3S Center at Berkeley; STARNET LEAST Center FX This work was supported in part by the Office of Naval Research, NSF E3S Center at Berkeley and STARNET LEAST Center. NR 27 TC 30 Z9 30 U1 5 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5814 EP 5819 DI 10.1021/nl502691u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400053 PM 25244689 ER PT J AU Baker, LR Jiang, CM Kelly, ST Lucas, JM Vura-Weis, J Gilles, MK Alivisatos, AP Leone, SR AF Baker, L. Robert Jiang, Chang-Ming Kelly, Stephen T. Lucas, J. Matthew Vura-Weis, Josh Gilles, Mary K. Alivisatos, A. Paul Leone, Stephen R. TI Charge Carrier Dynamics of Photoexcited Co3O4 in Methanol: Extending High Harmonic Transient Absorption Spectroscopy to Liquid Environments SO NANO LETTERS LA English DT Article DE High harmonic generation; transient absorption spectroscopy; surface states; interfacial charge transfer; photocatalysis; ligand-to-metal charge transfer ID PHOTOCATALYTIC WATER OXIDATION; SENSITIZED SOLAR-CELLS; X-RAY-ABSORPTION; METAL-OXIDES; ULTRAFAST ELECTRON; COBALT OXIDE; NANOCRYSTALLINE TIO2; OXYGEN EVOLUTION; REDOX REACTIONS; ENERGY-TRANSFER AB Charge carrier dynamics in Co3O4 thin films are observed using high harmonic generation transient absorption spectroscopy at the Co M-2,M-3 edge. Results reveal that photoexcited Co3O4 decays to the ground state in 600 +/- 40 ps in liquid methanol compared to 1.9 +/- 0.3 ns in vacuum. Kinetic analysis suggests that surface-mediated relaxation of photoexcited Co3O4 may be the result of hole transfer from Co3O4 followed by carrier recombination at the Co(3)O(4)methanol interface. C1 [Baker, L. Robert; Jiang, Chang-Ming; Vura-Weis, Josh; Alivisatos, A. Paul; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lucas, J. Matthew] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kelly, Stephen T.; Gilles, Mary K.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Materials Science Division of Lawrence Berkeley National Laboratory by the U.S. Department of Energy at Lawrence Berkeley National Lab [DE-AC02-05CH11231]; NSF Engineering Research Center for Extreme Ultraviolet Science and Technology [EEC-0310717]; Office of Assistant Secretary of Defense for Research and Engineering, National Security Science and Engineering Faculty Fellowship; Lawrence Berkeley National Lab Laboratory Directed Research and Development; Condensed Phase and Interfacial Molecular Sciences Program of the U.S. Department of Energy [DE-AC02-05CH11231]; Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center - the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001293] FX This work is supported by the Materials Science Division of Lawrence Berkeley National Laboratory by the U.S. Department of Energy at Lawrence Berkeley National Lab under Contract No. DE-AC02-05CH11231, "Physical Chemistry of Nanomaterials." Initial work by C.-M.J. and instrument construction were supported by the NSF Engineering Research Center for Extreme Ultraviolet Science and Technology (EEC-0310717). L.R.B. is supported by the Office of Assistant Secretary of Defense for Research and Engineering, National Security Science and Engineering Faculty Fellowship granted to S.R.L. S.T.K. and M.K.G. acknowledge support from a Lawrence Berkeley National Lab Laboratory Directed Research and Development grant for development of the liquid flow cell and from the Condensed Phase and Interfacial Molecular Sciences Program of the U.S. Department of Energy also under Contract DE-AC02-05CH11231. J.M.L. is supported as part of the Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0001293. Brandon J. Beberwyck and Daniel J. Hellebusch are thanked for help with measurement and analysis of electron diffraction data. NR 64 TC 6 Z9 6 U1 7 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5883 EP 5890 DI 10.1021/nl502817a PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400063 PM 25222441 ER PT J AU Chen, RJ Zhao, T Wu, WP Wu, F Li, L Qian, J Xu, R Wu, HM Albishri, HM Al-Bogami, AS Abd El-Hady, D Lu, J Amine, K AF Chen, Renjie Zhao, Teng Wu, Weiping Wu, Feng Li, Li Qian, Ji Xu, Rui Wu, Huiming Albishri, Hassan M. Al-Bogami, A. S. Abd El-Hady, Deia Lu, Jun Amine, Khalil TI Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries SO NANO LETTERS LA English DT Article DE Lithium-ion batteries; anode material; graphene; tungsten disulfide nanotube; sandwich type structure; electrochemical performance ID WS2 NANOTUBES; GRAPHENE; PERFORMANCE; STORAGE; NANOPARTICLES; CAPACITY; HYBRID AB Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene-based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2NTs/GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives, or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high-performance lithium-ion batteries. C1 [Chen, Renjie; Zhao, Teng; Wu, Feng; Li, Li; Qian, Ji] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. [Wu, Weiping] Cambridge Ink Technol Ltd, Cambridge CB1 2BB, England. [Xu, Rui; Wu, Huiming; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60440 USA. [Albishri, Hassan M.; Al-Bogami, A. S.; Abd El-Hady, Deia; Amine, Khalil] King Abdulaziz Univ, Fac Sci, Jeddah 80203, Saudi Arabia. RP Chen, RJ (reprint author), Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. EM chenrj@bit.edu.cn; wufeng863@vip.sina.com; junlu@anl.gov; amine@anl.gov RI Al-Bogami, Abdullah/H-7774-2012; Wu, Weiping/F-9016-2011; Qian, Ji/C-3134-2017; Faculty of, Sciences, KAU/E-7305-2017; OI Wu, Weiping/0000-0003-1462-6402; Qian, Ji/0000-0001-5788-1302; Zhao, Teng/0000-0002-2398-2495 FU National Science Foundation of China (NSFC) [21373028]; National 863 Program [2011AA11A256]; New Century Educational Talents Plan of Chinese Education Ministry [NCET-12-0050]; Beijing Nova Program [Z121103002512029]; U.S. Department of Energy from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC0206CH11357]; Division of Materials Science, Basic Energy Sciences, Department of Energy, Office of Science. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Deanship of Scientific research (DSR), King Abdulaziz University, Jeddah under the HiCi Project [11-130-1434HiCi]; DSR FX This work was supported by the National Science Foundation of China (NSFC, 21373028), the National 863 Program (2011AA11A256), New Century Educational Talents Plan of Chinese Education Ministry (NCET-12-0050), and Beijing Nova Program (Z121103002512029). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) and Division of Materials Science, Basic Energy Sciences, Department of Energy, Office of Science. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This project was also funded by the Deanship of Scientific research (DSR), King Abdulaziz University, Jeddah under the HiCi Project (Grant 11-130-1434HiCi). The authors (H.M.A., D.A.E., A.S.A, and K.A.) thank the DSR for their technical and financial support. The authors also acknowledge the U.S.-China Electric Vehicle and Battery Technology Collaboration between Argonne National Laboratory and Beijing Institute of Technology. NR 31 TC 75 Z9 76 U1 25 U2 294 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5899 EP 5904 DI 10.1021/nl502848z PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400065 PM 25163033 ER PT J AU Perl, EE McMahon, WE Farrell, RM DenBaars, SP Speck, JS Bowers, JE AF Perl, Emmett E. McMahon, William E. Farrell, Robert M. DenBaars, Steven P. Speck, James S. Bowers, John E. TI Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties SO NANO LETTERS LA English DT Article DE Subwavelength structures; biomimetics; diffractive optics; thin films; antireflective nanostructures ID MULTIJUNCTION SOLAR-CELLS; REFRACTIVE-INDEX; NANOSTRUCTURES; REFLECTION; DESIGN; LIGHT; GAP AB Optical thin-film coatings are typically limited to designs where the refractive index varies in only a single dimension. However, additional control over the propagation of incoming light is possible by structuring the other two dimensions. In this work, we demonstrate a three-dimensional surface structured optical coating that combines the principles of thin-film optical design with bio-inspired nanostructures to yield near-perfect antireflection. Using this hybrid approach, we attain average reflection losses of 0.2% on sapphire and 0.6% on gallium nitride for 3001800 nm light. This performance is maintained to very wide incidence angles, achieving less than 1% reflection at all measured wavelengths out to 45 degrees for sapphire. This hybrid design has the potential to significantly enhance the broadband and wide-angle properties for a number of optical systems that require high transparency. C1 [Perl, Emmett E.; DenBaars, Steven P.; Bowers, John E.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Farrell, Robert M.; DenBaars, Steven P.; Speck, James S.; Bowers, John E.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [McMahon, William E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Perl, EE (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM emmettperl@ece.ucsb.edu FU Center for Energy Efficient Materials, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001009]; National Science Foundation Graduate Research Fellowship [DGE-1144085] FX This material is based upon work supported by the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001009. A portion of this work was done in the UCSB nanofabrication facility, part of the NSF NNIN network (ECS-0335765). The sapphire substrates used for this study were provided by Namiki Precision Jewel. Emmett E. Perl is supported by the National Science Foundation Graduate Research Fellowship under Grant DGE-1144085. NR 32 TC 14 Z9 14 U1 6 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5960 EP 5964 DI 10.1021/nl502977f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400073 PM 25238041 ER PT J AU Na, K Choi, KM Yaghi, OM Somorjai, GA AF Na, Kyungsu Choi, Kyung Min Yaghi, Omar M. Somorjai, Gabor A. TI Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts SO NANO LETTERS LA English DT Article DE Metal-organic Framework; metal nanocrystal; heterogeneous catalyst; methylcyclopentane; isomerization ID ORGANIC FRAMEWORKS; AT-MOF; SHELL; NANOSTRUCTURES; NANOPARTICLES AB The growth of nanocrystalline metal-organic frameworks (nMOFs) around metal nanocrystals (NCs)is useful in controlling the chemistry and metric of metal NCs. In this Letter, we show rare examples of nMOFs grown in monocrystalline from around metal NCs. Specifically, Pt NCs were subjected to around metal NCs. Specifically, Pt NCs [Zr6O4(OH)(4)(fumarate)(6), MOF 801; Zr6O4(OH)(4)(BDC)(6)(BDC = 1,4-benzenedicarboxylate), UiO-66; Zr6O4(OH)(4)(BPDC)6(BPDC = 4,4'biphenyldicarboxylate), UiO-67] as a single crystal within which the Pt NCs are embedded. These constructs (Pt subset of nMOF)(nanocrystal) are found to be active in gas phase hydrogenative conversion of methylcyclopentane (MCR) and give unusual product selectivity. The Pt subset of nUiO-66 shows selectivity to C-6-cyclic hydrocarbons such as cyclohexane and benzene that takes palce with 100 degrees C lower temperature than the standard reaction (Pt-on-SiO2). We observe a pore size effect in the nMOF series where the small pore of Pt subset of mMOF-801 does not produce the same products, while the larger pore Pt subset of nUiO-67 catalyst provides the smae products but with different selectivity. The (Pt subset of nMOF)(nanocrystal) spent catalyst is found to maintain the original crystallinity, and be recyclable without any byproduct residues. C1 [Na, Kyungsu; Choi, Kyung Min; Yaghi, Omar M.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Na, Kyungsu; Choi, Kyung Min; Yaghi, Omar M.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Na, Kyungsu; Choi, Kyung Min; Yaghi, Omar M.; Somorjai, Gabor A.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yaghi, Omar M.] King Fahd Univ Petr & Minerals, Dept Chem, Dhahran 34464, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu; somorjai@berkeley.edu OI Yaghi, Omar/0000-0002-5611-3325 FU Chevron Energy Technology Company; Office of Science; Office of Basic Energy Sciences; Division of Chemical Sciences; Geological, and Biosciences of the U.S.; DOE [DE-ACO2-05CH11231]; U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-10053] FX G.A.S. acknowledges support by The Chevron Energy Technology Company and from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological, and Biosciences of the U.S. DOE under contract DE-ACO2-05CH11231 for catalytic studies. The material synthesis and characterization were supported by BASF SE (Ludwigshafen, Germany) and U.S. Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-10053), respectively. We thank Professor Peidong Yang for use of the TEM instrument. NR 23 TC 70 Z9 71 U1 60 U2 351 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 5979 EP 5983 DI 10.1021/nl503007h PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400076 PM 25198135 ER PT J AU Zhang, JB Gao, JB Church, CP Miller, EM Luther, JM Klimov, VI Beard, MC AF Zhang, Jianbing Gao, Jianbo Church, Carena P. Miller, Elisa M. Luther, Joseph M. Klimov, Victor I. Beard, Matthew C. TI PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere SO NANO LETTERS LA English DT Article DE Quantum Dots; Solar Energy Conversion; Cation exchange; Stability; PbSe ID SEMICONDUCTOR NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; CARRIER MULTIPLICATION; SURFACE PASSIVATION; CATION-EXCHANGE; METAL-OXIDE; SOLIDS; NANOSTRUCTURES; NANOMATERIALS; GENERATION AB Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. Here we develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Using these QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells. C1 [Zhang, Jianbing] Natl Renewable Energy Lab, Ctr Adv Solar Photophys, Golden, CO 80401 USA. [Gao, Jianbo; Church, Carena P.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. [Church, Carena P.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Zhang, Jianbing; Miller, Elisa M.; Luther, Joseph M.; Beard, Matthew C.] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China. RP Beard, MC (reprint author), Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China. EM matt.beard@nrel.gov RI Beard, MATTHEW/E-4270-2015; OI Beard, MATTHEW/0000-0002-2711-1355; Klimov, Victor/0000-0003-1158-3179 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program within the Center for Advanced Solar Photophysics; DOE [DE-AC36-08G028308]; NREL FX This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program within the Center for Advanced Solar Photophysics. DOE funding was provided to NREL through contract DE-AC36-08G028308. XPS work was conducted with support from an NREL Director's Postdoctoral Fellowship. NR 38 TC 62 Z9 63 U1 16 U2 153 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2014 VL 14 IS 10 BP 6010 EP 6015 DI 10.1021/nl503085v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AQ7RH UT WOS:000343016400081 PM 25203870 ER PT J AU Shapiro, DA Yu, YS Tyliszczak, T Cabana, J Celestre, R Chao, WL Kaznatcheev, K Kilcoyne, ALD Maia, F Marchesini, S Meng, YS Warwick, T Yang, LL Padmore, HA AF Shapiro, David A. Yu, Young-Sang Tyliszczak, Tolek Cabana, Jordi Celestre, Rich Chao, Weilun Kaznatcheev, Konstantin Kilcoyne, A. L. David Maia, Filipe Marchesini, Stefano Meng, Y. Shirley Warwick, Tony Yang, Lee Lisheng Padmore, Howard A. TI Chemical composition mapping with nanometre resolution by soft X-ray microscopy SO NATURE PHOTONICS LA English DT Article ID ADVANCED LIGHT-SOURCE; LIFEPO4 AB X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic and bond orientation contrast(1-5). The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the X-ray optics(6-10). Here, using soft X-ray ptychography, we demonstrate the highest-resolution X-ray microscopy ever achieved by imaging 5 nm structures. We quantify the performance of our microscope and apply the method to the study of delithiation in a nanoplate of LiFePO4, a material of broad interest in electrochemical energy storage(11,12). We calculate chemical component distributions using the full complex refractive index and demonstrate enhanced contrast, which elucidates a strong correlation between structural defects and chemical phase propagation. The ability to visualize the coupling of the kinetics of a phase transformation with the mechanical consequences is critical to designing materials with ultimate durability. C1 [Shapiro, David A.; Tyliszczak, Tolek; Celestre, Rich; Kilcoyne, A. L. David; Marchesini, Stefano; Warwick, Tony; Yang, Lee Lisheng; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yu, Young-Sang; Cabana, Jordi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yu, Young-Sang; Meng, Y. Shirley] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92093 USA. [Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Chao, Weilun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Kaznatcheev, Konstantin] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. [Maia, Filipe] Uppsala Univ, Lab Mol Biophys, SE-75124 Uppsala, Sweden. RP Shapiro, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM dashapiro@lbl.gov RI Cabana, Jordi/G-6548-2012; Kilcoyne, David/I-1465-2013; OI Cabana, Jordi/0000-0002-2353-5986; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Center for Applied Mathematics for Energy Research Applications (CAMERA); Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001294] FX All measurements were carried out at either beamline 11.0.2 or beamline 5.3.2.1 at the Advanced Light Source (ALS). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors acknowledge the support of ALS technical and safety staff and discussions with J. Kirz and J. Spence. This work is partially supported by the Center for Applied Mathematics for Energy Research Applications (CAMERA), which is a partnership between Basic Energy Sciences (BES) and Advanced Scientific Computing Research (ASRC) at the US Department of Energy. The chemical imaging work on LiFePO4 carried out by Y.S.Y., J.C. and Y.S.M. was supported as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001294). The authors thank G. Chen (LBNL) for supplying the delithiated LiFePO4 sample. J.C. thanks T. Richardson and R. Kostecki (LBNL) for technical discussions. NR 29 TC 76 Z9 77 U1 13 U2 119 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2014 VL 8 IS 10 BP 765 EP 769 DI 10.1038/NPHOTON.2014.207 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA AQ9DU UT WOS:000343145200008 ER PT J AU Liu, KH Jin, CH Hong, XP Kim, J Zettl, A Wang, EG Wang, F AF Liu, Kaihui Jin, Chenhao Hong, Xiaoping Kim, Jihoon Zettl, Alex Wang, Enge Wang, Feng TI Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes SO NATURE PHYSICS LA English DT Article ID DIRAC FERMIONS; GRAPHENE; RAMAN; SUPERLATTICES; SPECTROSCOPY; LAYERS AB Non-commensurate two-dimensional materials such as a twisted graphene bilayer or graphene on boron nitride, consisting of components that have no finite common unit cell, exhibit emerging moire physics such as novel Van Hove singularities(1-3), Fermi velocity renormalization(4,5), mini Dirac points(6) and Hofstadter butterflies(7-11). Here we use double-walled carbon nanotubes as a model system for probing moire physics in incommensurate one-dimensional systems, by combining structural and optical characterizations. We show that electron wavefunctions between incommensurate inner-and outer-wall nanotubes can hybridize strongly, contrary to the conventional wisdom of negligible electron hybridization due to destructive interference(12,13). The chirality-dependent inter-tube electronic coupling is described by one-dimensional zone folding of the electronic structure of twisted-and-stretched graphene bilayers. Our results demonstrate that incommensurate van der Waals interactions can be important for engineering the electronic structure and optical properties of one-dimensional materials. C1 [Liu, Kaihui; Jin, Chenhao; Hong, Xiaoping; Kim, Jihoon; Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Enge] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Wang, Enge] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Hong, Xiaoping/G-8673-2013; Liu, Kaihui/A-9938-2014; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Hong, Xiaoping/0000-0002-5864-4533; Zettl, Alex/0000-0001-6330-136X; FU NSF [DMR-0846648, DMR-1404865]; NSF Center for Integrated Nanomechanical Systems [EEC-0832819]; Office of Energy Research, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02- 05CH11231] FX This study was supported mainly by NSF grants (No. DMR-0846648 and DMR-1404865) and the NSF Center for Integrated Nanomechanical Systems (No. EEC-0832819). Support for the TEM characterization and sample preparation was provided by the Director, Office of Energy Research, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02- 05CH11231. NR 32 TC 19 Z9 19 U1 7 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2014 VL 10 IS 10 BP 737 EP 742 DI 10.1038/NPHYS3042 PG 6 WC Physics, Multidisciplinary SC Physics GA AR0AR UT WOS:000343225200016 ER PT J AU Shi, ZW Jin, CH Yang, W Ju, L Horng, J Lu, XB Bechtel, HA Martin, MC Fu, DY Wu, JQ Watanabe, K Taniguchi, T Zhang, YB Bai, XD Wang, EG Zhang, GY Wang, F AF Shi, Zhiwen Jin, Chenhao Yang, Wei Ju, Long Horng, Jason Lu, Xiaobo Bechtel, Hans A. Martin, Michael C. Fu, Deyi Wu, Junqiao Watanabe, Kenji Taniguchi, Takashi Zhang, Yuanbo Bai, Xuedong Wang, Enge Zhang, Guangyu Wang, Feng TI Gate-dependent pseudospin mixing in graphene/boron nitride moire superlattices SO NATURE PHYSICS LA English DT Article ID HEXAGONAL BORON-NITRIDE; DIRAC FERMIONS; BILAYER GRAPHENE; ELECTRONICS AB Electrons in graphene are described by relativistic Dirac-Weyl spinors with a two-component pseudospin(1-12). The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the massless Dirac cone(2), anomalous quantum Hall effect(2,3), and Klein tunnelling(4,5) in graphene. The capability to manipulate electron pseudospin is highly desirable for novel graphene electronics, and it requires precise control to differentiate the two graphene sublattices at the atomic level. Graphene/boron nitride moire superlattices, where a fast sublattice oscillation due to boron and nitrogen atoms is superimposed on the slow moire period, provides an attractive approach to engineer the electron pseudospin in graphene(13-18). This unusual moire superlattice leads to a spinor potential with unusual hybridization of electron pseudospins, which can be probed directly through infrared spectroscopy because optical transitions are very sensitive to excited state wavefunctions. Here, we perform micro-infrared spectroscopy on a graphene/boron nitride heterostructure and demonstrate that the moire superlattice potential is dominated by a pseudospin-mixing component analogous to a spatially varying pseudomagnetic field. In addition, we show that the spinor potential depends sensitively on the gate-induced carrier concentration in graphene, indicating a strong renormalization of the spinor potential from electron-electron interactions. C1 [Shi, Zhiwen; Jin, Chenhao; Ju, Long; Horng, Jason; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yang, Wei; Lu, Xiaobo; Bai, Xuedong; Zhang, Guangyu] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yang, Wei; Lu, Xiaobo; Bai, Xuedong; Zhang, Guangyu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Fu, Deyi; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wu, Junqiao; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan. [Zhang, Yuanbo] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Zhang, Yuanbo] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Wang, Enge] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM gyzhang@aphy.iphy.ac.cn; fengwang76@berkeley.edu RI Wu, Junqiao/G-7840-2011; Shi, Zhiwen/C-4945-2013; Yang, Wei/F-4676-2016; Zhang, Guangyu/G-7892-2011; TANIGUCHI, Takashi/H-2718-2011; WATANABE, Kenji/H-2825-2011; wang, Feng/I-5727-2015; Fu, Deyi/C-6624-2011 OI Wu, Junqiao/0000-0002-1498-0148; Shi, Zhiwen/0000-0002-3928-2960; WATANABE, Kenji/0000-0003-3701-8119; Fu, Deyi/0000-0003-1365-8963 FU Office of Naval Research [N00014-13-1-0464]; Office of Basic Energy Science, Department of Energy [DE SC0003949, DE AC02 05CH11231]; David and Lucile Packard fellowship; National Basic Research Program of China [2013CB934500, 2012CB921302]; National Natural Science Foundation of China [61325021, 91223204]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Z. Li and J. Song for helpful discussions. Device fabrication and optical measurements in this work were mainly supported by the Office of Naval Research (award N00014-13-1-0464). Electrical characterizations and theoretical analysis were supported by Office of Basic Energy Science, Department of Energy under contract Nos DE SC0003949 and DE AC02 05CH11231 (Materials Science Division). F.W. acknowledges support from a David and Lucile Packard fellowship. G.Z. acknowledges support from the National Basic Research Program of China (Grant No. 2013CB934500, 2012CB921302) and the National Natural Science Foundation of China (Grant No. 61325021, 91223204). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 22 Z9 22 U1 4 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2014 VL 10 IS 10 BP 743 EP 747 DI 10.1038/NPHYS3075 PG 5 WC Physics, Multidisciplinary SC Physics GA AR0AR UT WOS:000343225200017 ER PT J AU Aimone, JB Li, Y Lee, SW Clemenson, GD Deng, W Gage, FH AF Aimone, James B. Li, Yan Lee, Star W. Clemenson, Gregory D. Deng, Wei Gage, Fred H. TI REGULATION AND FUNCTION OF ADULT NEUROGENESIS: FROM GENES TO COGNITION SO PHYSIOLOGICAL REVIEWS LA English DT Review ID NEURAL STEM-CELLS; DENTATE GRANULE CELLS; DIPHTHERIA-TOXIN RECEPTOR; ENHANCED SYNAPTIC PLASTICITY; CILIARY NEUROTROPHIC FACTOR; SPATIAL-PATTERN SEPARATION; PROTEIN-COUPLED RECEPTORS; ENDOTHELIAL GROWTH-FACTOR; BORN HIPPOCAMPAL-NEURONS; NEWLY GENERATED NEURONS AB Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. C1 Sandia Natl Labs, Cognit Modeling Grp, Albuquerque, NM 87185 USA. [Gage, Fred H.] Salk Inst Biol Studies, Genet Lab, La Jolla, CA 92037 USA. RP Gage, FH (reprint author), Salk Inst Biol Studies, Genet Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM gage@salk.edu RI Aimone, James/H-4694-2016 OI Aimone, James/0000-0002-7361-253X FU James S. McDonnell Foundation; JPB Foundation; Mather's Foundation; Glenn Center of Aging; National Institutes of Health [R01-MH090258-04]; Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the James S. McDonnell Foundation, JPB Foundation, Mather's Foundation, Glenn Center of Aging, and National Institutes of Health Grant R01-MH090258-04. J. B. Aimone is supported by Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 367 TC 109 Z9 111 U1 10 U2 98 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0031-9333 EI 1522-1210 J9 PHYSIOL REV JI Physiol. Rev. PD OCT PY 2014 VL 94 IS 4 BP 991 EP 1026 DI 10.1152/physrev.00004.2014 PG 36 WC Physiology SC Physiology GA AQ9YP UT WOS:000343216300001 PM 25287858 ER PT J AU Endo, A Petoussi-Henss, N Zankl, M Bolch, WE Eckerman, KF Hertel, NE Hunt, JG Pelliccioni, M Schlattl, H Menzel, HG AF Endo, Akira Petoussi-Henss, Nina Zankl, Maria Bolch, Wesley E. Eckerman, Keith F. Hertel, Nolan E. Hunt, John G. Pelliccioni, Maurizio Schlattl, Helmut Menzel, Hans-Georg TI OVERVIEW OF THE ICRP/ICRU ADULT REFERENCE COMPUTATIONAL PHANTOMS AND DOSE CONVERSION COEFFICIENTS FOR EXTERNAL IDEALISED EXPOSURES SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors. C1 [Endo, Akira] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Petoussi-Henss, Nina; Zankl, Maria; Schlattl, Helmut] Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany. [Bolch, Wesley E.] Univ Florida, Gainesville, FL 32611 USA. [Eckerman, Keith F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hertel, Nolan E.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Hunt, John G.] Inst Radioprotecao & Dosimetria, Rio De Janeiro, Brazil. [Pelliccioni, Maurizio] Ist Nazl Fis Nucl, I-00044 Frascati, Italy. [Menzel, Hans-Georg] CERN, CH-1211 Geneva 23, Switzerland. RP Endo, A (reprint author), Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. EM endo.akira3@jaea.go.jp RI Zankl, Maria/M-7348-2014 OI Zankl, Maria/0000-0003-4743-970X NR 14 TC 2 Z9 2 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD OCT PY 2014 VL 161 IS 1-4 BP 11 EP 16 DI 10.1093/rpd/nct304 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AQ8EV UT WOS:000343057600003 PM 24285286 ER PT J AU Caresana, M Helmecke, M Kubancak, J Manessi, GP Ott, K Scherpelz, R Silari, M AF Caresana, Marco Helmecke, Manuela Kubancak, Jan Manessi, Giacomo Paolo Ott, Klaus Scherpelz, Robert Silari, Marco TI INSTRUMENT INTERCOMPARISON IN THE HIGH-ENERGY MIXED FIELD AT THE CERN-EU REFERENCE FIELD (CERF) FACILITY SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID NEUTRON REM COUNTER; DETECTORS; RANGE; DOSIMETRY; METERS; WENDI; LINUS AB This paper discusses an intercomparison campaign performed in the mixed radiation field at the CERN-EU (CERF) reference field facility. Various instruments were employed: conventional and extended-range rem counters including a novel instrument called LUPIN, a bubble detector using an active counting system (ABC 1260) and two tissue-equivalent proportional counters (TEPCs). The results show that the extended range instruments agree well within their uncertainties and within 1 sigma with the H*(10) FLUKA value. The conventional rem counters are in good agreement within their uncertainties and underestimate H*(10) as measured by the extended range instruments and as predicted by FLUKA. The TEPCs slightly overestimate the FLUKA value but they are anyhow consistent with it when taking the comparatively large total uncertainties into account, and indicate that the non-neutron part of the stray field accounts for similar to 30 % of the total H*(10). C1 [Caresana, Marco] Politecn Milan, Dept Energy, I-20133 Milan, Italy. [Helmecke, Manuela; Ott, Klaus] BESYY II, Helmholtz Zentrum Berlin, D-12849 Berlin, Germany. [Kubancak, Jan] ACSR, Dept Radiat Dosimetry, Inst Nucl Phys, Prague 18000, Czech Republic. [Kubancak, Jan] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Manessi, Giacomo Paolo; Silari, Marco] CERN, CH-1211 Geneva 23, Switzerland. [Manessi, Giacomo Paolo] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Scherpelz, Robert] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Caresana, M (reprint author), Politecn Milan, Dept Energy, Via Ponzio 34-3, I-20133 Milan, Italy. EM marco.silari@cern.ch OI Manessi, Giacomo Paolo/0000-0001-9328-0600 NR 21 TC 1 Z9 1 U1 1 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD OCT PY 2014 VL 161 IS 1-4 BP 67 EP 72 DI 10.1093/rpd/nct312 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AQ8EV UT WOS:000343057600013 PM 24292486 ER PT J AU Felmy, AR Moore, DA Buck, E Conradson, SD Kukkadapu, R Sweet, L Abrecht, D Ilton, ES AF Felmy, Andrew R. Moore, Dean A. Buck, Edgar Conradson, Steven D. Kukkadapu, Ravi Sweet, Lucas Abrecht, David Ilton, Eugene S. TI The solubility of (PuO2)-Pu-242 in the presence of aqueous Fe(II): the impact of precipitate preparation SO RADIOCHIMICA ACTA LA English DT Article DE Plutonium; Iron; Aqueous; Solubility; Precipitate ID PU(IV) HYDROUS OXIDE; HETEROGENEOUS REDUCTION; IRON-OXIDES; MAGNETITE; SORPTION; URANIUM(VI); PLUTONIUM; SURFACE; PERTECHNETATE; NEPTUNIUM(V) AB The solubility of different forms of precipitated (PuO2)-Pu-242 (am) were examined in solutions containing aqueous Fe(II) over a range of pH values. The first series of (PuO2)-Pu-242 (am) suspensions were prepared from a Pu-242(IV) stock that had been treated with thenoyl-trifluoroacetone (TTA) to remove the Am-241 originating from the decay of Pu-241. These (PuO2)-Pu-242 (am) suspensions showed much higher solubilities at the same pH value and Fe(II) concentration than previous studies using (PuO2)-Pu-239 (am). X-ray absorption fine structure (XAFS) spectroscopy of the precipitates showed a substantially reduced Pu-Pu backscatter over that previously observed in (PuO2)-Pu-239 (am) precipitates, indicating that the (PuO2)-Pu-242 (am) precipitates purified using TTA lacked the long range order previously found in (PuO2)-Pu-239 (am) precipitates. The Pu(IV) stock solution was subsequently repurified using an ion exchange resin and an additional series of (PuO2)-Pu-242 (am) precipitates prepared. These suspensions showed higher redox potentials and total aqueous Pu concentrations than the TTA purified stock solution. The higher redox potential and aqueous Pu concentrations were in general agreement with previous studies on (PuO2)-Pu-242 (am) precipitates, presumably due to the removal of possible organic compounds originally present in the TTA purified stock. (PuO2)-Pu-242 (am) suspensions prepared with both stock solutions showed almost identical solubilities in Fe(II) containing solutions even though the initial aqueous Pu concentrations before the addition of Fe(II) were orders of magnitude different. By examining the solubility of (PuO2)-Pu-242 (am) prepared from both stocks in this way we have essentially approached equilibrium from both the undersaturated and oversaturated conditions. The final aqueous Pu concentrations are predictable using a chemical equilibrium model which includes the formation of a nanometer sized Fe(III) reaction product, identified in the (PuO2)-Pu-242 (am) suspension both by use of Fe-57 Mossbauer spectroscopy and transmission electron microscopy (TEM) analysis. C1 [Felmy, Andrew R.; Moore, Dean A.; Buck, Edgar; Kukkadapu, Ravi; Sweet, Lucas; Abrecht, David; Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Conradson, Steven D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Felmy, AR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ar.felmy@pnnl.gov RI Buck, Edgar/N-7820-2013 OI Buck, Edgar/0000-0001-5101-9084 FU U.S. Department of Energy's Office of Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Science Focus Area (SFA) at the Pacific Northwest National Laboratory; Ultrasensitive Nuclear Measurements Initiative, a component of PNNL's Nuclear Measurement Laboratory Directed Research and Development Program; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy's Office of Biological and Environmental Research, as part of the Subsurface Biogeochemical Research (SBR) Science Focus Area (SFA) at the Pacific Northwest National Laboratory. RKK, LS, and DA would like to also acknowledge the Ultrasensitive Nuclear Measurements Initiative, a component of PNNL's Nuclear Measurement Laboratory Directed Research and Development Program for financial support for the development of radioactive Mossbauer capabilities. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The XAFS measurements were made at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 45 TC 0 Z9 0 U1 5 U2 29 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD OCT PY 2014 VL 102 IS 10 BP 861 EP 874 DI 10.1515/ract-2013-2187 PG 14 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AQ8PU UT WOS:000343091300001 ER PT J AU Buenau, KE Hiller, TL Tyre, AJ AF Buenau, K. E. Hiller, T. L. Tyre, A. J. TI MODELLING THE EFFECTS OF RIVER FLOW ON POPULATION DYNAMICS OF PIPING PLOVERS (CHARADRIUS MELODUS) AND LEAST TERNS (STERNULA ANTILLARUM) NESTING ON THE MISSOURI RIVER SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE piping plover; least tern; flow; population model; habitat restoration; emergent sandbar; adaptive management ID GREAT-PLAINS; REPRODUCTIVE SUCCESS; HABITAT; ECOSYSTEMS; MANAGEMENT; SURVIVAL; PRODUCTIVITY; VIABILITY; SELECTION; DAKOTA AB Reservoir management on the Missouri River has changed the flow regime that once created dynamic emergent sandbar habitat (ESH) for the interior least tern (Sternula antillarum) and piping plover (Charadrius melodus). High flows that create large amounts of ESH are now rare, but the remaining interannual variability in river stage has strong effects on the amount of ESH available for nesting shorebirds. The scarcity of habitat has led the United States Army Corps of Engineers to develop an adaptive management plan for the restoration of ESH to support nesting terns and plovers. We describe the stochastic simulation models of ESH, plover populations and tern populations used in the adaptive management process, and examine the effects of river flow on projected outcomes of habitat restoration. The population models are most sensitive to uncertainty in adult survival rates. Model validation against historical amounts of ESH and population sizes suggests the model is a reasonable predictor of future dynamics. Flow variability contributes as much uncertainty as parameter estimation error to plover model projections but negligible uncertainty to the tern model. Autocorrelation in flow between years has stronger effects on population outcomes than the intensity of habitat restoration effort does. We compared population outcomes after a habitat-creating flow with population outcomes following habitat restoration and found that large pulses of habitat creation produced similar or better outcomes in the short term than low but consistent habitat restoration. However, bird populations fared better in the long term with low levels of restoration when habitat-forming flows were rare. Copyright (C) 2013 John Wiley & Sons, Ltd. C1 [Buenau, K. E.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Hiller, T. L.; Tyre, A. J.] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA. [Hiller, T. L.] Oregon Dept Fish & Wildlife, Wildlife Div, Salem, OR USA. RP Buenau, KE (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM kate.buenau@pnnl.gov OI Buenau, Kate/0000-0003-2156-7260 FU U.S. Army Corps of Engineers, Omaha District, Missouri River Recovery Program FX This research was partially funded by the U.S. Army Corps of Engineers, Omaha District, Missouri River Recovery Program. We thank Craig Fleming, Tim Fleeger, Coral Huber, Greg Pavelka, and Doug Latka (USACE), and Michael Anderson and Ronald Thom (PNNL) for providing data, input, and review during the model development process. Cortland Johnson (PNNL) created the map in Figure 1. NR 43 TC 6 Z9 6 U1 2 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1535-1459 EI 1535-1467 J9 RIVER RES APPL JI River Res. Appl. PD OCT PY 2014 VL 30 IS 8 BP 964 EP 975 DI 10.1002/rra.2694 PG 12 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA AQ7YY UT WOS:000343038000003 ER PT J AU Endres, NF Barros, T Cantor, AJ Kuriyan, J AF Endres, Nicholas F. Barros, Tiago Cantor, Aaron J. Kuriyan, John TI Emerging concepts in the regulation of the EGF receptor and other receptor tyrosine kinases SO TRENDS IN BIOCHEMICAL SCIENCES LA English DT Review DE receptor tyrosine kinases; epidermal growth factor receptor; signal transduction; allostery ID EPIDERMAL-GROWTH-FACTOR; INSULIN-RECEPTOR; TRANSMEMBRANE DOMAIN; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; PLASMA-MEMBRANE; LIGAND-BINDING; PROTEIN-KINASES; NEGATIVE COOPERATIVITY; JUXTAMEMBRANE DOMAIN AB The activation of receptor tyrosine kinases in response to extracellular signals is a principal component of metazoan signaling. Structural analysis of the extracellular and intracellular domains of these receptors has shed substantial light on the mechanisms underlying their activation. A remaining challenge is to understand how these domains operate together in the context of the full-length receptors. With a focus on the epidermal growth factor (EGF) receptor, this review highlights recent advances towards this goal. Although receptor tyrosine kinases are divergent in terms of the details of how they operate, these studies reveal common mechanisms that ensure activation in the proper context. Understanding these mechanisms provides insights into the vulnerabilities of these receptors to disease-causing mutations. C1 [Endres, Nicholas F.; Barros, Tiago; Cantor, Aaron J.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Endres, Nicholas F.; Barros, Tiago; Cantor, Aaron J.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Endres, Nicholas F.; Barros, Tiago; Cantor, Aaron J.; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Barros, Tiago/0000-0002-9807-7625 NR 92 TC 23 Z9 25 U1 13 U2 51 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0968-0004 J9 TRENDS BIOCHEM SCI JI Trends Biochem.Sci. PD OCT PY 2014 VL 39 IS 10 BP 437 EP 446 DI 10.1016/j.tibs.2014.08.001 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ8IN UT WOS:000343069300003 PM 25242369 ER PT J AU Hafiane, A Bielicki, JK Johansson, JO Genest, J AF Hafiane, Anouar Bielicki, John K. Johansson, Jan O. Genest, Jacques TI Apolipoprotein E derived HDL mimetic peptide ATI-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS LA English DT Article DE HDL; Cholesterol efflux; ABCA1; ABCG1; SR-BI; Reverse cholesterol transport ID HIGH-DENSITY-LIPOPROTEINS; FRACTIONAL ESTERIFICATION RATE; SCAVENGER RECEPTOR BI; A-I; APOA-I; CELLULAR CHOLESTEROL; MEMBRANE MICRODOMAINS; PLASMA-LIPOPROTEINS; BIDIRECTIONAL FLUX; AMPHIPATHIC HELIX AB Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hafiane, Anouar; Genest, Jacques] McGill Univ, Cardiovasc Genet Lab, Div Cardiol, Hlth Ctr,Royal Victoria Hosp, Montreal, PQ H3A 1A1, Canada. [Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Johansson, Jan O.] Artery Therapeut, San Ramon, CA USA. RP Genest, J (reprint author), McGill Univ, Novartis Chair Med, 687 Pine Ave West M4-76, Montreal, PQ H3A 1A1, Canada. EM jacques.genest@mcgill.ca FU Canadian Institutes of health Research [MOP 15042]; Department of Biochemistry at McGill University FX Supported by grant MOP 15042 from the Canadian Institutes of health Research. JG holds the McGill/Novartis Chair at McGill University. Anouar Hafiane is supported by a bursary from the Department of Biochemistry at McGill University. NR 64 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1388-1981 EI 0006-3002 J9 BBA-MOL CELL BIOL L JI Biochim. Biophys. Acta Mol. Cell Biol. Lipids PD OCT PY 2014 VL 1841 IS 10 BP 1498 EP 1512 DI 10.1016/j.bbalip.2014.07.018 PG 15 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AQ5QY UT WOS:000342864900018 ER PT J AU Boone, MD Bishop, CA Boswell, LA Brodman, RD Burger, J Davidson, C Gochfeld, M Hoverman, JT Neuman-Lee, LA Relyea, RA Rohr, JR Salice, C Semlitsch, RD Sparling, D Weir, S AF Boone, Michelle D. Bishop, Christine A. Boswell, Leigh A. Brodman, Robert D. Burger, Joanna Davidson, Carlos Gochfeld, Michael Hoverman, Jason T. Neuman-Lee, Lorin A. Relyea, Rick A. Rohr, Jason R. Salice, Christopher Semlitsch, Raymond D. Sparling, Donald Weir, Scott TI Pesticide Regulation amid the Influence of Industry SO BIOSCIENCE LA English DT Article DE amphibian; atrazine; conflicts of interest; Environmental Protection Agency; risk assessment ID ATRAZINE; FROGS AB Pesticide use results in the widespread distribution of chemical contaminants, which necessites regulatory agencies to assess the risks to environmental and human health. However, risk assessment is compromised when relatively few studies are used to determine impacts, particularly if most of the data used in an assessment are produced by a pesticide's manufacturer, which constitutes a conflict of interest. Here, we present the shortcomings of the US Environmental Protection Agency's pesticide risk assessment process, using the recent reassessment of atrazine's impacts on amphibians as an example. We then offer solutions to improve the risk assessment process, which would reduce the potential for and perception of bias in a process that is crucial for environmental and human health. C1 [Boone, Michelle D.] Miami Univ, Oxford, OH 45056 USA. [Bishop, Christine A.] Environm Canada, Delta, BC, Canada. [Boswell, Leigh A.] Univ Hawaii, Manoa, HI USA. [Brodman, Robert D.] St Josephs Coll, Rensselaer, IN USA. [Burger, Joanna] Rutgers State Univ, Dept Cell Biol & Neurosci, Piscataway, NJ USA. [Davidson, Carlos] San Francisco State Univ, Dept Environm Studies, San Francisco, CA 94132 USA. [Gochfeld, Michael] Rutgers State Univ, Robert Wood Johnson Med Sch, New Brunswick, NJ 08903 USA. [Hoverman, Jason T.] Purdue Univ, W Lafayette, IN 47907 USA. [Neuman-Lee, Lorin A.] Utah State Univ, Logan, UT 84322 USA. [Relyea, Rick A.] Univ Pittsburgh, Pymatuning Lab Ecol, Pittsburgh, PA 15260 USA. [Rohr, Jason R.] Univ South Floridas, Dept Integrat Biol, Tampa, FL USA. [Salice, Christopher] Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. [Semlitsch, Raymond D.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Sparling, Donald] So Illinois Univ, Dept Zool, Carbondale, IL 62901 USA. [Weir, Scott] Univ Georgias, Savannah River Ecol Lab, Aiken, SC USA. RP Boone, MD (reprint author), Miami Univ, Oxford, OH 45056 USA. EM boonemd@miamioh.edu RI Hoverman, Jason/D-1756-2013 OI Hoverman, Jason/0000-0002-4002-2728 NR 27 TC 7 Z9 7 U1 3 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD OCT PY 2014 VL 64 IS 10 BP 917 EP 922 DI 10.1093/biosci/biu138 PG 6 WC Biology SC Life Sciences & Biomedicine - Other Topics GA AQ6AF UT WOS:000342889000010 ER PT J AU Pereira, JH Petchprayoon, C Hoepker, AC Moriarty, NW Fink, SJ Cecere, G Paterson, I Adams, PD Marriott, G AF Pereira, Jose H. Petchprayoon, Chutima Hoepker, Alexander C. Moriarty, Nigel W. Fink, Sarah J. Cecere, Giuseppe Paterson, Ian Adams, Paul D. Marriott, Gerard TI Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues SO CHEMMEDCHEM LA English DT Article DE actin; chemical synthesis; drug design; macrolide analogues; structural biology ID PLASMA GELSOLIN LEVELS; SPONGE REIDISPONGIA-COERULEA; APLYRONINE-A; KABIRAMIDE-C; BINDING; PROTEINS; POLYMERIZATION; CYTOSKELETON; DYNAMICS; PROFILIN AB The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285 +/- 33) and (132 +/- 13) nm, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region to the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. Structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis. C1 [Pereira, Jose H.; Moriarty, Nigel W.; Adams, Paul D.; Marriott, Gerard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Petchprayoon, Chutima; Hoepker, Alexander C.; Adams, Paul D.; Marriott, Gerard] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fink, Sarah J.; Cecere, Giuseppe; Paterson, Ian] Univ Chem Lab, Cambridge CB2 1EW, England. RP Pereira, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM marriott1@berkeley.edu RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU National Institutes of Health [5R01EB005217]; Engineering and Physical Sciences Research Council [GR/S19929/01]; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants awarded to G.M. from the National Institutes of Health (5R01EB005217) and to I.P. from the Engineering and Physical Sciences Research Council (GR/S19929/01). We are grateful to the staff of the Berkeley Center for Structural Biology at the Advanced Light Source of Lawrence Berkeley National Laboratory. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health and National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. J.H.P and G. M. wrote the manuscript with significant contributions from all other authors. G. M. and C. P. performed the purification of the actin complexes and the actin binding studies on the AplC tail-region analogues. A. C. H. performed analyses of binding data. S.J.F., G. C., and I. P performed the synthesis of AplC and RedA tail regions. J.H.P., N.W.M., and P. D. A performed the Xray crystallography experiments. G. M. led the project. All the authors made contributions to the final manuscript. NR 47 TC 4 Z9 4 U1 3 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1860-7179 EI 1860-7187 J9 CHEMMEDCHEM JI ChemMedChem PD OCT PY 2014 VL 9 IS 10 BP 2286 EP 2293 DI 10.1002/cmdc.201402150 PG 8 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA AQ4OQ UT WOS:000342778400009 PM 25047814 ER PT J AU Zheng, ZY Wang, ZH Song, XY Xun, SD Battaglia, V Liu, G AF Zheng, Ziyan Wang, Zhihui Song, Xiangyun Xun, Shidi Battaglia, Vincent Liu, Gao TI Biomimetic Nanostructuring of Copper Thin Films Enhances Adhesion to the Negative Electrode Laminate in Lithium-Ion Batteries SO CHEMSUSCHEM LA English DT Article DE adhesion; copper; electrodes; lithium-ion batteries; nanostructures ID CURRENT COLLECTOR; BINDER; PERFORMANCE; ANODES AB Thin films of copper are widely used as current collectors for the negative electrodes in lithium-ion batteries. However, a major cause of battery failure is delamination between the current collector and the graphite anode. When silicon or tin is used as active material, delamination becomes a key issue owing to the large volume changes of these materials during lithation and delithation processes. Learning from Nature, we developed a new biomimetic approach based on the adhesion properties of the feet of geckos. The biomimetic approach improves adhesion between the laminate and the copper surface by introducing an array of Cu(OH)(2) nanorods, which increases the surface area of the current collector. When graphite anode laminate is casted onto regular and a modified copper surfaces, the modified current collector displays superior adhesion to graphite and the PVDF binder-based electrode. The electrochemical performance of the batteries using these electrodes is not compromised by the additional chemistry of the Cu(OH)(2) on the copper surface. The technique can lead to enhanced battery lifetimes over long-term cycling. C1 [Zheng, Ziyan; Wang, Zhihui; Song, Xiangyun; Xun, Shidi; Battaglia, Vincent; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Zheng, Ziyan] Univ Calif Berkeley, Dept Chem & Bioengn, Berkeley, CA 94720 USA. RP Zheng, ZY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gliu@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy under Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231] FX This research was funded by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy under Batteries for Advanced Transportation Technologies (BATT) Program under the contract DE-AC02-05CH11231. TEM and SEM experiments were performed at the National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory. NR 17 TC 2 Z9 3 U1 2 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2014 VL 7 IS 10 BP 2853 EP 2858 DI 10.1002/cssc.201402543 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AT UT WOS:000342815400014 PM 25139044 ER PT J AU Khvostichenko, DS Schieferstein, JM Pawate, AS Laible, PD Kenis, PJA AF Khvostichenko, Daria S. Schieferstein, Jeremy M. Pawate, Ashtamurthy S. Laible, Philip D. Kenis, Paul J. A. TI X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; ROOM-TEMPERATURE; LIPIDIC MESOPHASES; MICROCHANNELS; DIFFRACTION; RESOLUTION; CRYSTALS; TARGETS; SYSTEM AB Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting of individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 angstrom using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions C1 [Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Laible, Philip D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Kenis, PJA (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA. EM kenis@illinois.edu RI Pawate, Ashtamurthy/B-6843-2008; Kenis, Paul/S-7229-2016 OI Pawate, Ashtamurthy/0000-0002-0700-9871; Kenis, Paul/0000-0001-7348-0381 FU NIH [R01 GM086727]; US Department of Energy Office of Science by ANL; DOE [DE-AC02-06CH11357]; Michigan Economic Development Corporation; Michigan Technology Tr-Corridor [085P1000817]; UIUC FX This work was funded by NIH (R01 GM086727). APS, a user facility operated for the US Department of Energy Office of Science by ANL, is supported by DOE (DE-AC02-06CH11357). LS-CAT Sector 21 is supported by the Michigan Economic Development Corporation, the Michigan Technology Tr-Corridor (085P1000817), and UIUC. We thank Dr. Amit Desai and Joseph Whittenberg for stimulating discussions, and Dr. Keith Brister, Dr. Joseph Brunzelle, and Dr. Elena Kondrashlcina from LS-CAT for help in data collection. Coordinates and the structure factors have been deposited in PDB under the accession code 4TQQ, NR 45 TC 11 Z9 11 U1 4 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2014 VL 14 IS 10 BP 4886 EP 4890 DI 10.1021/cg5011488 PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AQ2IP UT WOS:000342609300004 PM 25285049 ER PT J AU Kinnibrugh, TL Bakhmutov, VI Clearfield, A AF Kinnibrugh, Tiffany L. Bakhmutov, Vladimir I. Clearfield, Abraham TI Reversible Dehydration Behavior Reveals Coordinatively Unsaturated Metal Sites in Microporous Aluminum Phosphonates SO CRYSTAL GROWTH & DESIGN LA English DT Article ID RAY-POWDER DIFFRACTION; UNIDIMENSIONAL CHANNELS; ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURE; METHYLPHOSPHONATE; ZIRCONIUM; DIPHOSPHONATES; COMPOUND; SYSTEM; CHAINS AB Incorporation of the same ligand into three different aluminum phenylenediphosphonates (Al(H2O)(O3PC6H4PO3H) (1), Al-4(H2O)(2)(O3PC6H4PO3)(3) (2), and Al-4(H2O)(4)(O3PC6H4PO3)(2.84)(OH)(0.64) (3)) was accomplished by varying the synthetic conditions. The compounds have different sorption properties; however, all exhibit reversible dehydration behavior. The structures of the hydrated and dehydrated phases were determined from powder X-ray diffraction data. Compounds 2 and 3 were found to be microporous, while compound 1 was found to be nonporous. The stability of the dehydrated phase and the resulting porosity was found to be influenced by the change in the structure upon loss of water. C1 [Kinnibrugh, Tiffany L.; Bakhmutov, Vladimir I.; Clearfield, Abraham] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. RP Kinnibrugh, TL (reprint author), Argonne Natl Lab, 9700 South Cass Ave,Bldg 433-A095, Argonne, IL 60439 USA. EM tkinnibr@aps.anl.gov; dearfield@chem.tamu.edu RI Clearfield, Abraham/D-4184-2015 OI Clearfield, Abraham/0000-0001-8318-8122 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-6CH11357]; Robert A. Welch Foundation [A0673]; DOE [DE-FG62-03ER15420] FX The authors are thankful for the support of Dr. Halder, Dr. Suchomel, and Lynn Ribaud at beamlines 1-BM-C and 11-BM, APS. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DEAC02-6CH11357. The authors are also thankful to Dr. Zhou and Dr. Scullian for hydrogen sorption measurements from Texas A&M University. This work was supported by the Robert A. Welch Foundation under Grant A0673 and by DOE under Grant DE-FG62-03ER15420 for which grateful acknowledgment is made. NR 39 TC 3 Z9 3 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2014 VL 14 IS 10 BP 4976 EP 4984 DI 10.1021/cg5005215 PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA AQ2IP UT WOS:000342609300016 ER PT J AU Serbin, SP Singh, A McNeil, BE Kingdon, CC Townsend, PA AF Serbin, Shawn P. Singh, Aditya McNeil, Brenden E. Kingdon, Clayton C. Townsend, Philip A. TI Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species SO ECOLOGICAL APPLICATIONS LA English DT Article DE foliar chemistry; forests; partial least-squares regression, PLSR; plant functional traits; reflectance spectroscopy; remote sensing ID NEAR-INFRARED REFLECTANCE; NET PRIMARY PRODUCTION; GREAT-LAKES REGION; MULTIPLE LINEAR-REGRESSION; HUMID TROPICAL FORESTS; CANOPY NITROGEN; IMAGING SPECTROSCOPY; OPTICAL-PROPERTIES; SQUARES REGRESSION; FOLIAR CHEMISTRY AB The morphological and biochemical properties of plant canopies are strong predictors of photosynthetic capacity and nutrient cycling. Remote sensing research at the leaf and canopy scales has demonstrated the ability to characterize the biochemical status of vegetation canopies using reflectance spectroscopy, including at the leaf level and canopy level from air- and spaceborne imaging spectrometers. We developed a set of accurate and precise spectroscopic calibrations for the determination of leaf chemistry (contents of nitrogen, area, carbon, and fiber constituents), morphology (leaf mass per area, M-area), and isotopic composition (delta N-15) of temperate and boreal tree species using spectra of dried and ground leaf material. The data set consisted of leaves from both broadleaf and needle-leaf conifer species and displayed a wide range in values, determined with standard analytical approaches: 0.7-4.4% for nitrogen(N-mass), 42-54% for carbon (C-mass), 17-58% for fiber (acid-digestible fiber, ADF), 7-44% for lignin (acid-digestible lignin, ADL), 3-31% for cellulose, 17-265 g/m(2) for M-area, and 9.4 parts per thousand to 0.8 parts per thousand for delta N-15. The calibrations were developed using a partial least-squares regression (PLSR) modeling approach combined with a novel uncertainty analysis. Our PLSR models yielded model calibration (independent validation shown in parentheses) R-2 and the root mean square error (RMSE) values, respectively, of 0.98 (0.97) and 0.10% (0.13%) for N-mass, R-2 = 0.77 (0.73) and RMSE = 0.88% (0.95%) for C-mass, R-2 = 0.89 (0.84) and RMSE=2.8% (3.4%) for ADF, R-2 = 0.77 (0.69) and RMSE = 2.4% (3.9%) for ADL, R-2=0.77 (0.72) and RMSE=1.4% (1.9%) for leaf cellulose, R-2=0.62 (0.60) and RMSE=0.91 parts per thousand (1.5 parts per thousand) for delta N-15, and R-2 = 0.88 (0.87) with RMSE = 17.2 g/m(2) (22.8 g/m(2)) for M-area. This study demonstrates the potential for rapid and accurate estimation of key foliar traits of forest canopies that are important for ecological research and modeling activities, with a single calibration equation valid over a wide range of northern temperate and boreal species and leaf physiognomies. The results provide the basis to characterize important variability between and within species, and across ecological gradients using a rapid, cost-effective, easily replicated method. C1 [Serbin, Shawn P.; Singh, Aditya; Kingdon, Clayton C.; Townsend, Philip A.] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA. [McNeil, Brenden E.] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. RP Serbin, SP (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. EM serbin@wisc.edu RI Singh, Aditya/I-3628-2013; Serbin, Shawn/B-6392-2009; Townsend, Philip/B-5741-2008 OI Singh, Aditya/0000-0001-5559-9151; Serbin, Shawn/0000-0003-4136-8971; Townsend, Philip/0000-0001-7003-8774 FU NASA Terrestrial Ecology grant [NNX08AN31G]; NASA Earth and Space Science Fellowship grant [NNX08AV07H] FX Funding for this research was provided by NASA Terrestrial Ecology grant NNX08AN31G to P. A. Townsend and B. E. McNeil and a NASA Earth and Space Science Fellowship grant NNX08AV07H to S. P. Serbin. Thank you to J. Limbach, B. Isaacson, A. Edgerton, L. Deel, B. Breslow, C. Parana, and C. Leibfried for field and laboratory assistance, and to E. Kruger, S. T. Gower and C. Kucharik for helpful comments on earlier versions of this paper. Finally, we would like to thank two anonymous reviewers for the helpful comments that greatly improved an earlier version of the manuscript. NR 108 TC 35 Z9 35 U1 12 U2 92 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD OCT PY 2014 VL 24 IS 7 BP 1651 EP 1669 PG 19 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AQ5OZ UT WOS:000342859800008 ER PT J AU Millar, CI Heckman, K Swanston, C Schmidt, K Westfall, RD Delany, DL AF Millar, Constance I. Heckman, Katherine Swanston, Christopher Schmidt, Karena Westfall, Robert D. Delany, Diane L. TI Radiocarbon dating of American pika fecal pellets provides insights into population extirpations and climate refugia SO ECOLOGICAL APPLICATIONS LA English DT Article DE American pika; climate refugia; habitat occupancy; historical ecology; isotopes; Ochotona princeps; radiocarbon dating; Sierra Nevada ID BOMB C-14 DATA; SIERRA-NEVADA; OCHOTONA-PRINCEPS; GREAT-BASIN; PERIGLACIAL LANDFORMS; ROCK GLACIERS; UNITED-STATES; USA; CALIFORNIA; RECORD AB The American pika (Ochotona princeps) has become a species of concern for its sensitivity to warm temperatures and potential vulnerability to global warming. We explored the value of radiocarbon dating of fecal pellets to address questions of population persistence and timing of site extirpation. Carbon was extracted from pellets collected at 43 locations in the western Great Basin, USA, including three known occupied sites and 40 sites of uncertain status at range margins or where previous studies indicated the species is vulnerable. We resolved calibrated dates with high precision (within several years), most of which fell in the period of the mid-late 20th century bomb curve. The two-sided nature of the bomb curve renders far- and near-side dates of equal probability, which are separated by one to four decades. We document methods for narrowing resolution to one age range, including stratigraphic analysis of vegetation collected from pika haypiles. No evidence was found for biases in atmospheric C-14 levels due to fossil-derived or industrial CO2 contamination. Radiocarbon dating indicated that pellets can persist for >59 years; known occupied sites resolved contemporary dates. Using combined evidence from field observations and radiocarbon dating, and the Bodie Mountains as an example, we propose a historical biogeographic scenario for pikas in minor Great Basin mountain ranges adjacent to major cordillera, wherein historical climate variability led to cycles of extirpation and recolonization during alternating cool and warm centuries. Using this model to inform future dynamics for small ranges in biogeographic settings similar to the Bodie Mountains in California, extirpation of pikas appears highly likely under directional warming trends projected for the next century, even while populations in extensive cordillera (e.g., Sierra Nevada, Rocky Mountains, Cascade Range) are likely to remain viable due to extensive, diverse habitat and high connectivity. C1 [Millar, Constance I.; Westfall, Robert D.; Delany, Diane L.] US Forest Serv, USDA, Pacific Southwest Res Stn, Albany, CA 94710 USA. [Heckman, Katherine] Lawrence Livermore Natl Lab, US Forest Serv, USDA, No Res Stn, Livermore, CA 94550 USA. [Swanston, Christopher] US Forest Serv, USDA, No Res Stn, Northern Inst Appl Climate Sci, Houghton, MI 49931 USA. [Schmidt, Karena] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. RP Millar, CI (reprint author), US Forest Serv, USDA, Pacific Southwest Res Stn, Albany, CA 94710 USA. EM cmillar@fs.fed.us FU USDA Forest Service, Lawrence Livermore National Laboratory; Michigan Technological University FX Radiocarbon analysis was graciously supported by the Radiocarbon Collaborative, which is jointly sponsored by the USDA Forest Service, Lawrence Livermore National Laboratory, and Michigan Technological University. We thank Dr. Andrew Smith (Arizona State University) and Dr. Donald Grayson (University of Washington) for critical comments on the draft manuscripts and three anonymous reviewers for comprehensive edits and thoughtful comments on the submitted manuscript. NR 76 TC 3 Z9 3 U1 5 U2 36 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD OCT PY 2014 VL 24 IS 7 BP 1748 EP 1768 PG 21 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AQ5OZ UT WOS:000342859800014 ER PT J AU Kronawitter, CX Zegkinoglou, I Shen, SH Liao, P Cho, IS Zandi, O Liu, YS Lashgari, K Westin, G Guo, JH Himpsel, FJ Carter, EA Zheng, XL Hamann, TW Koel, BE Mao, SS Vayssieres, L AF Kronawitter, C. X. Zegkinoglou, I. Shen, S. -H. Liao, P. Cho, I. S. Zandi, O. Liu, Y. -S. Lashgari, K. Westin, G. Guo, J. -H. Himpsel, F. J. Carter, E. A. Zheng, X. L. Hamann, T. W. Koel, B. E. Mao, S. S. Vayssieres, L. TI Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID TI-DOPED ALPHA-FE2O3; RAY-ABSORPTION-SPECTROSCOPY; TRANSITION-METAL OXIDES; WATER OXIDATION; THIN-FILMS; NANOSTRUCTURED ALPHA-FE2O3; HYDROGEN-PRODUCTION; NANOROD ARRAYS; ARTIFICIAL PHOTOSYNTHESIS; HYDROTHERMAL METHOD AB A theoretical and experimental perspective on the role of titanium impurities in hematite (alpha-Fe2O3) nanostructured photoelectrodes for solar fuel synthesis devices is provided. Titanium incorporation is a known correlate to efficiency enhancement in alpha-Fe2O3 cc photoanodes for solar water oxidation; here the relevant literature and the latest advances are presented and various proposed mechanisms for enhancement are contrasted. Available experimental evidence suggests that Ti incorporation increases net electron carrier concentrations in electrodes, most likely to the extent that (synthesis-dependent) charge compensating cation vacancies are not present. However, electron conductivity increases alone cannot quantitatively account for the large associated photoelectrochemical performance enhancements. The magnitudes of the effects of Ti incorporation on electronic and magnetic properties appear to be highly synthesis-dependent, which has made difficult the development of consistent and general mechanisms explaining experimental and theoretical observations. In this context, we consider how the electronic structure correlates with Ti impurity incorporation in alpha-Fe2O3 a from the perspective of synchrotron-based soft X-ray absorption spectroscopy measurements. Measurements are performed on sets of electrodes fabricated by five relevant and unrelated chemical and physical techniques. The effects of titanium impurities are reflected in the electronic structure through several universally observed spectral characteristics, irrespective of the synthesis techniques. Absorption spectra at the oxygen K-edge show that Ti incorporation is associated with new oxygen 2p-hybridized states, overlapping with and distorting the known unoccupied Fe 3d-O 2xp band of alpha-Fe2O3. This is an indication of mixing of Ti s and d states in the conduction band of alpha-Fe2O3. cc A comparison of spectra obtained with electron and photon detection shows that the effects of Ti incorporation on the conduction band are more pronounced in the near-surface region. Titanium L-2,L-3-edge absorption spectra show that titanium is incorporated into alpha-Fe2O3 as Ti4+ by all fabrication methods, with no long-range titania order detected. Iron L-2,L-3-edge absorption spectra indicate that Ti incorporation is not associated with the formation, of any significant concentrations of Fe2+, an observation common to many prior studies on this material system. C1 [Kronawitter, C. X.; Koel, B. E.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Zegkinoglou, I.; Shen, S. -H.; Westin, G.; Vayssieres, L.] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Peoples R China. [Zegkinoglou, I.; Liu, Y. -S.; Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Liao, P.; Carter, E. A.] Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Liao, P.; Carter, E. A.] Princeton Univ, Dept Mech & Aerosp Engn, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA. [Liao, P.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Cho, I. S.; Zheng, X. L.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Zandi, O.; Hamann, T. W.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Lashgari, K.; Westin, G.] Uppsala Univ, Dept Chem Angstrom, S-75121 Uppsala, Sweden. [Himpsel, F. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Mao, S. S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Westin, G.; Mao, S. S.] Int Inst New Energy, Shenzhen 518031, Peoples R China. RP Kronawitter, CX (reprint author), Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. EM ssmao@me.berkeley.edu; lionelv@xjtu.edu.cn RI Shen, Shaohua/E-9507-2011; Zegkinoglou, Ioannis/H-2343-2013; Carter, Emily/P-4075-2014; Liao, Peilin/O-2984-2013 OI Liao, Peilin/0000-0002-3516-9514 FU Grand Challenges Program at Princeton University; U.S. Department of Energy, Office of Basic Energy Sciences; NSF/CMMI [1036076]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Office of Basic Energy Sciences [DE-SC0006931, DE-AC02-05CH11231 (ALS), DE-FG02-01ER45917]; National Science Foundation [CHE-1150378]; Swedish Science Council; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xian Jiaotong University; Thousand Talents plan; National Natural Science Foundation of China [51121092, 51102194] FX C.X.K. and B.E.K. acknowledge support from the Grand Challenges Program at Princeton University. E.A.C. acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences. NSF/CMMI under grant #1036076; by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; and by the Office of Basic Energy Sciences under the Contracts DE-SC0006931, DE-AC02-05CH11231 (ALS), DE-FG02-01ER45917 (end station). T.W.H. thanks the National Science Foundation (CHE-1150378) for support. G.W. thanks the Swedish Science Council (VR) for their support. S. S. and L.V. thank the International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xian Jiaotong University, the Thousand Talents plan and the National Natural Science Foundation of China (no. 51121092 and 51102194). NR 112 TC 35 Z9 35 U1 9 U2 152 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2014 VL 7 IS 10 BP 3100 EP 3121 DI 10.1039/c4ee01066c PG 22 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AQ5YK UT WOS:000342884300001 ER PT J AU Liu, XG Coxon, PR Peters, M Hoex, B Cole, JM Fray, DJ AF Liu, Xiaogang Coxon, Paul R. Peters, Marius Hoex, Bram Cole, Jacqueline M. Fray, Derek J. TI Black silicon: fabrication methods, properties and solar energy applications SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID FEMTOSECOND-LASER IRRADIATION; LAYER-DEPOSITED AL2O3; DIRECT ELECTROLYTIC REDUCTION; INTERNAL QUANTUM EFFICIENCY; BROAD-BAND ANTIREFLECTION; MOLTEN CALCIUM-CHLORIDE; POROUS-SILICON; CRYSTALLINE SILICON; SURFACE PASSIVATION; MULTICRYSTALLINE SILICON AB Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and tight-emitting devices to antibacterial coatings and gas-sensors. In this paper, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, based upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al2O3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications. C1 [Liu, Xiaogang; Cole, Jacqueline M.] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Liu, Xiaogang; Peters, Marius; Hoex, Bram] Natl Univ Singapore, Solar Energy Res Inst Singapore, Singapore 117574, Singapore. [Coxon, Paul R.; Fray, Derek J.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0F3, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Liu, XG (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008; Liu, Xiaogang/H-2189-2011; Coxon, Paul/K-6036-2016; OI Liu, Xiaogang/0000-0002-2553-2068; Coxon, Paul/0000-0001-9258-8259 FU National University of Singapore (NUS); National Research Foundation of Singapore through the Singapore Economic Development Board (SEDB); SEDB; Fulbright Commission for a UK-US Fulbright Scholar Award; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The Solar Energy Research Institute of Singapore is sponsored by the National University of Singapore (NUS) and the National Research Foundation of Singapore through the Singapore Economic Development Board (SEDB). X.L. is grateful to SEDB for a Clean Energy Scholarship. J.M.C. thanks the Fulbright Commission for a UK-US Fulbright Scholar Award, hosted by Argonne National Laboratory where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. P.R.C. is indebted to I. Wender (Terrativa Minerais S.A.) for sponsoring this research. NR 313 TC 74 Z9 75 U1 37 U2 296 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2014 VL 7 IS 10 BP 3223 EP 3263 DI 10.1039/c4ee01152j PG 41 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AQ5YK UT WOS:000342884300005 ER PT J AU Sathre, R Scown, CD Morrow, WR Stevens, JC Sharp, ID Ager, JW Walczak, K Houle, FA Greenblatt, JB AF Sathre, Roger Scown, Corinne D. Morrow, William R., III Stevens, John C. Sharp, Ian D. Ager, Joel W., III Walczak, Karl Houle, Frances A. Greenblatt, Jeffery B. TI Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SOLAR PHOTOVOLTAIC SYSTEMS; GREENHOUSE-GAS; NATURAL CONVECTION; HEAT-TRANSFER; CURRENT STATE; EFFICIENCY; DEVICE; FUEL; CO2; REQUIREMENTS AB Here we report a prospective life-cycle net energy assessment of a hypothetical large-scale photoelectrochemical (PEC) hydrogen production facility with energy output equivalent to 1 GW continuous annual average (1 GW HHV = 610 metric tons of H-2 per day). We determine essential mass and energy flows based on fundamental principles, and use heuristic methods to conduct a preliminary engineering design of the facility. We then develop and apply a parametric model describing system-wide energy flows associated with the production, utilization, and decommissioning of the facility. Based on these flows, we calculate and interpret life-cycle net energy metrics for the facility. We find that under base-case conditions the energy payback time is 8.1 years, the energy return on energy invested (EROEI) is 1.7, and the life-cycle primary energy balance over the 40 years projected service life of the facility is +500 PJ. The most important model parameters affecting the net energy metrics are the solar-to-hydrogen (STH) conversion efficiency and the life span of the PEC cells; parameters associated with the balance of systems (BOS), including construction and operation of the liquid and gas handling infrastructure, play a much smaller role. C1 [Sathre, Roger; Scown, Corinne D.; Morrow, William R., III; Stevens, John C.; Sharp, Ian D.; Ager, Joel W., III; Walczak, Karl; Houle, Frances A.; Greenblatt, Jeffery B.] Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. [Sathre, Roger; Scown, Corinne D.; Morrow, William R., III; Greenblatt, Jeffery B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Stevens, John C.; Ager, Joel W., III; Walczak, Karl] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Houle, Frances A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sathre, R (reprint author), Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. EM rsathre@lbl.gov; jbgreenblatt@lbl.gov RI Sharp, Ian/I-6163-2015; Scown, Corinne/D-1253-2013; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU Office of Science of the US Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. NR 76 TC 41 Z9 41 U1 14 U2 91 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2014 VL 7 IS 10 BP 3264 EP 3278 DI 10.1039/c4ee01019a PG 15 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AQ5YK UT WOS:000342884300006 ER PT J AU Jin, J Walczak, K Singh, MR Karp, C Lewis, NS Xiang, CX AF Jin, Jian Walczak, Karl Singh, Meenesh R. Karp, Chris Lewis, Nathan S. Xiang, Chengxiang TI An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HYDROGEN-PRODUCTION; TEMPERATURE; IRRADIATION; CELLS AB The efficiency limits, gas-crossover behavior, formation of local pH gradients near the electrode surfaces, and safety characteristics have been evaluated experimentally as well as by use of multi-physics modeling and simulation methods for an integrated solar-driven water-splitting system that operates with bulk electrolyte solutions buffered at near-neutral pH. The integrated membrane-free system utilized a triple-junction amorphous hydrogenated Si (a-Si:H) cell as the light absorber, Pt and cobalt phosphate (Co-Pi) as electrocatalysts for the hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER), respectively, and a bulk aqueous solution buffered at pH = 9.2 by 1.0 M of boric acid/borate as an electrolyte. Although the solar-to-electrical efficiency of the stand-alone triple-junction a-Si:H photovoltaic cell was 7.7%, the solar-to-hydrogen (STH) conversion efficiency for the integrated membrane-free water-splitting system was limited under steady-state operation to 3.2%, and the formation of pH gradients near the electrode surfaces accounted for the largest voltage loss. The membrane-free system exhibited negligible product-recombination loss while operating at current densities near 3.0 mA cm(-2), but exhibited significant crossover of products (up to 40% H-2 in the O-2 chamber), indicating that the system was not intrinsically safe. A system that contained a membrane to minimize the gas crossover, but which was otherwise identical to the membrane-free system, yielded very low energy-conversion efficiencies at steady state, due to low transference numbers for protons across the membranes resulting in electrodialysis of the solution and the consequent formation of large concentration gradients of both protons and buffer counterions near the electrode surfaces. The modeling and simulation results showed that despite the addition of 1.0 M of buffering agent to the bulk of the solution, during operation significant pH gradients developed near the surfaces of the electrodes. Hence, although the bulk electrolyte was buffered to near-neutral pH, the electrode surfaces and electrocatalysts experienced local environments under steady-state operation that were either highly acidic or highly alkaline in nature, changing the chemical form of the electrocatalysts and exposing the electrodes to potentially corrosive local pH conditions. In addition to significant pH gradients, the STH conversion efficiency of both types of systems was limited by the mass transport of ionic species to the electrode surfaces. Even at operating current densities of <3 mA cm(-2), the voltage drops due to these pH gradients exceeded the combined electrocatalyst overpotentials for the hydrogen- and oxygen-evolution reactions at current densities of 10 mA cm(-2). Hence, such near-neutral pH solar-driven water-splitting systems were both fundamentally limited in efficiency and/or co-evolved explosive mixtures of H-2(g) and O-2(g) in the presence of active catalysts for the recombination of H-2(g) and O-2(g). Broader context Development of an integrated solar-driven water-splitting system has received increasing attention for large-scale solar-energy-conversion and storage applications. To develop an efficient, scalable and safe technology, a cation-exchange membrane ran anion-exchange membrane is typically employed to separate the gaseous products and minimize the recombination losses in the system, as well as for other system design reasons. As a result, acidic or strong alkaline electrolytes are required to reduce the solution transport losses in the cell and to obtain high transference numbers for protons through the membrane. Alternatively, several studies have reported solar-drived water-splitting devices that operate in bulk electrolytes buffered to near-neutral pH in the absence of a membrane. However, the potential losses due to the pH gradient at the surface of the electrodes, and losses due to product crossover and recombination were not fully understood for those devices. To develop a stable, scalable and safe technology, these loss mechanisms and safety characteristics need to be critically addressed. C1 [Jin, Jian; Karp, Chris; Lewis, Nathan S.; Xiang, Chengxiang] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Jin, Jian; Walczak, Karl; Singh, Meenesh R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Singh, Meenesh R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RP Jin, J (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM jjin@lbl.gov; nslewis@caltech.edu; cxx@caltech.edu OI Singh, Meenesh/0000-0002-3638-8866 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. NR 24 TC 61 Z9 61 U1 17 U2 98 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2014 VL 7 IS 10 BP 3371 EP 3380 DI 10.1039/c4ee01824a PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AQ5YK UT WOS:000342884300021 ER PT J AU Kim, W Yang, KS Han, J Chang, JJ Lee, CH AF Kim, Woonyun Yang, Ki Seok Han, Jeonghu Chang, Jae Joon Lee, Chang Ho TI An EDGE/GSM Quad-Band CMOS Power Amplifier SO IEEE JOURNAL OF SOLID-STATE CIRCUITS LA English DT Article; Proceedings Paper CT 35th IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) - Integrated Circuits in GaAs, InP, SiGe, GaN and other Compound Semiconductors CY OCT 13-16, 2013 CL Monterey, CA SP IEEE, IEEE Electron Devices Soc, IEEE Solid State Circuits Soc, IEEE Microwave Theory & Tech Soc DE CMOS; power amplifier; parallel combining; power combining; transformer; wireless communication ID LINEARITY AB A linear power amplifier (PA) is proposed for EDGE application in cellular and PCS bands, using a standard 0.18 mu m CMOS technology. The linear PA is adaptively biased according to its power level to efficiently enhance AM-AM characteristics. Nonlinear gate-drain capacitance (C-gd) of power transistors, which is one of the major sources of AM-PM nonlinearity, is effectively linearized by adding an additional capacitor in series. The prototype CMOS PA achieves power added efficiencies of 22% and 23% at output powers of 28.5 dBm and 27.5 dBm, at 870 MHz and 1.8 GHz, respectively. The proposed PA meets the class E2 power requirement satisfying error vector magnitude (EVM) and adjacent channel power ratio (ACPR) specifications with EDGE modulated signals. C1 [Kim, Woonyun; Han, Jeonghu; Lee, Chang Ho] Qualcomm Technol, San Diego, CA 92130 USA. [Chang, Jae Joon] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Yang, Ki Seok] SK Telecomm, Songnam 463784, Gyeonggi, South Korea. RP Kim, W (reprint author), Qualcomm Technol, San Diego, CA 92130 USA. EM woonyun@gmail.com NR 21 TC 2 Z9 2 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9200 EI 1558-173X J9 IEEE J SOLID-ST CIRC JI IEEE J. Solid-State Circuit PD OCT PY 2014 VL 49 IS 10 BP 2141 EP 2149 DI 10.1109/JSSC.2014.2338873 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA AQ7PB UT WOS:000343010000006 ER PT J AU Cook, K Grinstein, G Whiting, M AF Cook, Kristin Grinstein, Georges Whiting, Mark TI The VAST Challenge: history, scope, and outcomes: An introduction to the Special Issue SO INFORMATION VISUALIZATION LA English DT Editorial Material DE Visual analytics; evaluation; contest; sensemaking; critical thinking ID CONTEST AB The annual Visual Analytics Science and Technology (VAST) challenge provides Visual Analytics researchers, developers, and designers an opportunity to apply their best tools and techniques against invented problems that include a realistic scenario, data, tasks, and questions to be answered. Submissions are processed much like conference papers, contestants are provided reviewer feedback, and excellence is recognized with awards. A day-long VAST Challenge workshop takes place each year at the IEEE VAST conference to share results and recognize outstanding submissions. Short papers are published each year in the annual VAST proceedings. Over the history of the challenge, participants have investigated a wide variety of scenarios, such as bioterrorism, epidemics, arms smuggling, social unrest, and computer network attacks, among many others. Contestants have been provided with large numbers of realistic but synthetic Coast Guard interdiction records, intelligence reports, hospitalization records, microblog records, personal RFID tag locations, huge amounts of cyber security log data, and several hours of video. This paper describes the process for developing the synthetic VAST Challenge datasets and conducting the annual challenges. This paper also provides an introduction to this special issue of Information Visualization, focusing on the impacts of the VAST Challenge. C1 [Cook, Kristin; Whiting, Mark] Pacific NW Natl Lab, Richland, WA 99352 USA. [Grinstein, Georges] Univ Massachusetts Lowell, Lowell, MA USA. RP Whiting, M (reprint author), Pacific NW Natl Lab, 3350 Innovat Ave,MS K7-28, Richland, WA 99352 USA. EM mark.a.whiting@pnnl.gov NR 27 TC 2 Z9 2 U1 1 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 EI 1473-8724 J9 INFORM VISUAL JI Inf. Vis. PD OCT PY 2014 VL 13 IS 4 SI SI BP 301 EP 312 DI 10.1177/1473871613490678 PG 12 WC Computer Science, Software Engineering SC Computer Science GA AQ7XS UT WOS:000343034300001 ER PT J AU Scholtz, J Plaisant, C Whiting, M Grinstein, G AF Scholtz, Jean Plaisant, Catherine Whiting, Mark Grinstein, Georges TI Evaluation of visual analytics environments: The road to the Visual Analytics Science and Technology challenge evaluation methodology SO INFORMATION VISUALIZATION LA English DT Article DE Community evaluations; visual analytics environments; utility evaluations AB Evaluation of software can take many forms ranging from algorithm correctness and performance to evaluations that focus on the value to the end user. This article presents a discussion of the development of an evaluation methodology for visual analytics environments. The Visual Analytics Science and Technology Challenge was created as a community evaluation resource. This resource is available to researchers and developers of visual analytics environments and allows them to test out their designs and visualization and compare the results with the solution and the entries prepared by others. Sharing results allows the community to learn from each other and to hopefully advance more quickly. In this article, we discuss the original challenge and its evolution during the 7 years since its inception. While the Visual Analytics Science and Technology Challenge is the focus of this article, there are lessons for many involved in setting up a community evaluation program, including the need to understand the purpose of the evaluation, decide upon the right metrics to use, and the appropriate implementation of those metrics including datasets and evaluators. For ongoing evaluations, it is also necessary to track the evolution and to ensure that the evaluation methodologies are keeping pace with the science being evaluated. The discussions on the Visual Analytics Science and Technology Challenge on these topics should be pertinent to many interested in community evaluations. C1 [Scholtz, Jean; Whiting, Mark] Pacific NW Natl Lab, Richland, WA 99352 USA. [Plaisant, Catherine] Univ Maryland, College Pk, MD 20742 USA. [Grinstein, Georges] Univ Massachusetts Lowell, Lowell, MA USA. RP Scholtz, J (reprint author), Pacific NW Natl Lab, POB 70, Rockaway Beach, OR 97136 USA. EM jean.scholtz@pnl.gov FU National Visualization and Analytics Center(TM) (NVAC(TM)) located at the Pacific Northwest National Laboratory in Richland, WA; US Department of Energy [DE-AC05-76RL01830]; National Science Foundation [0947343, 0947358] FX Early VAST Challenge work was supported in part by the National Visualization and Analytics Center (TM) (NVAC (TM)) located at the Pacific Northwest National Laboratory in Richland, WA. The Pacific Northwest National Laboratory is managed for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Members of the committee were also supported in part by the National Science Foundation (0947343 and 0947358). NR 23 TC 1 Z9 1 U1 2 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 EI 1473-8724 J9 INFORM VISUAL JI Inf. Vis. PD OCT PY 2014 VL 13 IS 4 SI SI BP 326 EP 335 DI 10.1177/1473871613490290 PG 10 WC Computer Science, Software Engineering SC Computer Science GA AQ7XS UT WOS:000343034300003 ER PT J AU Sondhi, A Okobiah, O Chattopadhyay, S Shibata, T Scharf, TW Reidy, RF AF Sondhi, A. Okobiah, O. Chattopadhyay, S. Shibata, T. Scharf, T. W. Reidy, R. F. TI X-ray absorption spectroscopy studies on the carbothermal reduction reaction products of 3 mol% yttria-stabilized zirconia SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID CRYSTAL STRUCTURE; HIGH-TEMPERATURE; CUBIC ZIRCONIA; EXAFS; ZRO2; POLYMORPHS; CARBIDES; DOPANTS; CARBON; BADDELEYITE AB Extended X-ray absorption spectroscopy (EXAFS) at the Zr K edge has been used to determine changes in various bond lengths in 3 mol% yttria-stabilized zirconia (YSZ) during zirconium carbide (ZrC) formation. The principal objective of this study was to determine if ZrC formation at the YSZ/carbon interface alters the zirconia structure. A mixed-phase sample (YSZ and graphite) was carbothermally reduced to form ZrC. X-ray diffraction phase quantification by Rietveld analysis confirmed the formation of similar to 50% ZrC in the analyzed sample volume. EXAFS data of ZrC and YSZ powders and a sintered YSZ pellet (similar to 96.7% density) were used as standards to compare with the carbothermally reduced sample. Ab inito calculations using these spectra quantified various Zr-O, Zr-C and Zr-Zr bond distances in the system. Best fit results revealed Zr-O-I (tetragonal), Zr-O (monoclinic), Zr-Zr (tetragonal) and Zr-Zr (monoclinic) bond length values of 2.10, 2.25, 3.65 and 3.52 angstrom , respectively, in the YSZ powder, Zr-O-I (tetragonal) and Zr-Zr (tetragonal) bond length values of 2.12 and 3.62 angstrom , respectively, in the sintered pellet, and Zr-C and Zr-Zr bond lengths of 2.32 and 3.33 angstrom, respectively, in the ZrC powder. Similar fitting procedures were carried out on the carbothermally reduced pellet, with measured Zr-O, Zr-Zr (of YSZ), Zr-C and Zr-Zr (of ZrC) bond lengths of 2.13, 3.62, 2.36 and 3.33 angstrom , respectively. These bond lengths indicate that the formation of ZrC in the YSZ matrix does not influence the local structure when compared to pure standards. Therefore, carbothermal reduction does not induce any apparent strain or thermally induced effects on the first and second coordination shells of Zr as measured by the X-ray absorption spectra of the carbothermally reduced sample. Interestingly, the results indicated that sintering of the YSZ powder into pellets did not result in any significant change in the Zr-O and Zr-Zr distances for tetragonal YSZ. (C) 2014 International Union of Crystallography C1 [Sondhi, A.; Okobiah, O.; Scharf, T. W.; Reidy, R. F.] Univ N Texas, Denton, TX 76203 USA. [Sondhi, A.; Okobiah, O.; Scharf, T. W.; Reidy, R. F.] Univ N Texas, Inst Sci & Engn Simulat ISES, Denton, TX 76203 USA. [Chattopadhyay, S.; Shibata, T.] Argonne Natl Lab, CSRRI IIT, MRCAT, Adv Photon Source, Argonne, IL 60439 USA. [Chattopadhyay, S.; Shibata, T.] IIT, Phys Dept, Adv Mat Grp, Chicago, IL 60616 USA. RP Scharf, TW (reprint author), Univ N Texas, 1155 Union Circle 305310, Denton, TX 76203 USA. EM scharf@unt.edu RI ID, MRCAT/G-7586-2011 FU US Air Force Research Laboratory (AFRL, ISES) [FA8650-08-C-5226]; US DOE [DE-AC02-06CH11357] FX The authors would like to acknowledge the US Air Force Research Laboratory (AFRL, ISES contract No. FA8650-08-C-5226) for financial support and the UNT Center for Advanced Research and Technology (CART) for XRD facilities. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 50 TC 0 Z9 0 U1 2 U2 12 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1512 EP 1519 DI 10.1107/S1600576714014642 PN 5 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900004 ER PT J AU McNutt, NW Rios, O Feygenson, M Proffen, TE Keffer, DJ AF McNutt, Nicholas W. Rios, Orlando Feygenson, Mikhail Proffen, Thomas E. Keffer, David J. TI Structural analysis of lignin-derived carbon composite anodes SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID PAIR DISTRIBUTION FUNCTION; MOLECULAR-DYNAMICS; ALGORITHMS; BATTERIES AB The development of novel lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains motivates the understanding of the relationship of the structural properties characterizing these materials, such as crystallite size, intracrystallite d spacing, crystalline volume fraction and composite density, with their pair distribution functions (PDFs), obtained from both molecular dynamics simulation and neutron scattering. A model for these composite materials is developed as a function of experimentally measurable parameters and realized in 15 composite systems, three of which directly match all parameters of their experimental counterparts. The accurate reproduction of the experimental PDFs using the model systems validates the model. The decomposition of the simulated PDFs provides an understanding of each feature in the PDF and allows for the development of a mapping between the defining characteristics of the PDF and the material properties of interest. (C) 2014 International Union of Crystallography C1 [McNutt, Nicholas W.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Rios, Orlando] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Feygenson, Mikhail] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Proffen, Thomas E.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. [Keffer, David J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Feygenson, Mikhail /H-9972-2014; Proffen, Thomas/B-3585-2009; Rios, Orlando/E-6856-2017 OI Feygenson, Mikhail /0000-0002-0316-3265; Proffen, Thomas/0000-0002-1408-6031; Rios, Orlando/0000-0002-1814-7815 FU Oak Ridge Associated Universities High Performance Computing Program; Sustainable Energy Education and Research Center of the University of Tennessee; National Science Foundation [DGE-0801470]; NSF [OCI 07-11134.5]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; US Department of Energy Office of Basic Energy Sciences FX NM was supported by a grant from the Oak Ridge Associated Universities High Performance Computing Program, by a grant from the Sustainable Energy Education and Research Center of the University of Tennessee and by a grant from the National Science Foundation (DGE-0801470). This research project used resources of the National Institute for Computational Sciences (NICS) supported by the NSF under agreement number OCI 07-11134.5. This research was also sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the US Department of Energy Office of Basic Energy Sciences. NR 29 TC 3 Z9 3 U1 1 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1577 EP 1584 DI 10.1107/S1600576714014666 PN 5 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900010 ER PT J AU Borbely, A Renversade, L Kenesei, P AF Borbely, Andras Renversade, Loic Kenesei, Peter TI On the calibration of high-energy X-ray diffraction setups. II. Assessing the rotation axis and residual strains SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID INDIVIDUAL BULK GRAINS; LATTICE ROTATIONS; FAST METHODOLOGY; SINGLE-GRAIN; POLYCRYSTALS; DEFORMATION; ORIENTATION; TENSOR; FIELD; PARAMETERS AB The calibration of high-energy X-ray diffraction setups using an area detector and a rotation axis is discussed. The characterization of the tilt and spatial distortions of an area detector was discussed in part one of this series [Borbely, Renversade, Kenesei & Wright (2014). J. Appl. Cryst. 47, 1042-1053]. Part II links the detector frame to the laboratory frame comprising an additional rotation axis and introduces a general diffractometer equation accounting for all sources of misalignment. Additionally, an independent high-accuracy method for the evaluation of the crystallographic orientation and cell parameters of the undeformed reference crystal is presented. Setup misalignments are mainly described in terms of a residual strain tensor, considered as a quality label of the diffractometer. The method is exemplified using data sets acquired at beamlines ID11 (European Synchrotron Radiation Facility) and 1-ID (Advanced Photon Source) on Al and W single crystals, respectively. The results show that the residual strain tensor is mainly determined by the detector spatial distortion, and values as small as 1-2 x 10(-4) can be practically achieved. (C) 2014 International Union of Crystallography C1 [Borbely, Andras; Renversade, Loic] Ecole Natl Super Mines, CNRS, SMS EMSE, LGF,UMR 5307, F-42023 St Etienne 2, France. [Kenesei, Peter] Argonne Natl Lab, XSD Adv Photon Source, Argonne, IL 60439 USA. RP Borbely, A (reprint author), Ecole Natl Super Mines, CNRS, SMS EMSE, LGF,UMR 5307, F-42023 St Etienne 2, France. EM borbely@emse.fr FU US DOE [DE-AC02-06CH11357]; French ANR AMOS; APS [GUP-23795]; ESRF [MA711] FX AB acknowledges the support of the APS and ESRF for beamtime allocation under the proposals GUP-23795 and MA711, respectively. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. AB also acknowledges the financial support of the French ANR AMOS project. The authors acknowledge Jonathan Wright, staff of ID11, for help with the Al measurements and for fruitful discussions. NR 44 TC 1 Z9 1 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1585 EP 1595 DI 10.1107/S1600576714014290 PN 5 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900011 ER PT J AU Honnicke, MG Conley, R Cusatis, C Kakuno, EM Zhou, J Bouet, N Marques, JB Vicentin, FC AF Hoennicke, Marcelo Goncalves Conley, Raymond Cusatis, Cesar Kakuno, Edson Massayuki Zhou, Juan Bouet, Nathalie Marques, Joao Basso Vicentin, Flavio Cesar TI Exotic X-ray back-diffraction: a path toward a soft inelastic X-ray scattering spectrometer SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID BRAGG ANGLES; ENERGY-RESOLUTION; SINGLE-CRYSTAL; BACKSCATTERING; PROFILES; QUARTZ; PI/2; MONOCHROMATOR; 90-DEGREES; ANALYZERS AB In this work, soft X-ray back-diffraction (XBD; X-ray diffraction at angles near and exactly equal to 90 degrees) is explored. The experiment was conducted at the SXS beamline at Laboratorio Nacional de Luz Sincrotron, Brazil, at similar to 3.2 keV. A high-resolution Si(220) multi-bounce back-diffraction monochromator was designed and constructed for this experiment. An ultra-thin Si(220) crystal (5 mu m thick) was used as the sample. This ultra-thin crystal was characterized by profilometry, rocking-curve measurements and X-ray topography prior to the XBD measurements. It is shown that the measured forward-diffracted beam (o-beam) profiles, taken at different temperatures, are in close agreement with profiles predicted by the extended dynamical theory of X-ray diffraction, with the absence of multiple-beam diffraction (MBD). This is an important result for future studies on the basic properties of back-diffracted X-ray beams at energies slightly above the exact XBD condition (extreme condition where XBD is almost extinguished). Also, the results presented here indicate that stressed crystals behave like ideal strain-free crystals when used for low-energy XBD. This is mainly due to the large widths of XBD profiles, which lead to a low strain sensitivity in the detection of defects. This result opens up new possibilities for mounting spherical analyzers without degrading the energy resolution, at least for low energies. This is a path that may be used to construct a soft inelastic X-ray scattering spectrometer where different applications such as element-specific magnetic imaging tools could be explored. (C) 2014 International Union of Crystallography C1 [Hoennicke, Marcelo Goncalves] Univ Fed Integracao Latino Amer, Inst Ciencias Vida & Nat, BR-85867970 Foz Do Iguacu, Parana, Brazil. [Conley, Raymond] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Conley, Raymond; Zhou, Juan; Bouet, Nathalie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Cusatis, Cesar] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil. [Kakuno, Edson Massayuki] Univ Fed Pampa, BR-96413170 Bage, RS, Brazil. [Marques, Joao Basso; Vicentin, Flavio Cesar] Ctr Nacl Pesquisa Energia & Mat, Lab Nacl Luz Sincrotron, BR-13083970 Sao Paulo, Brazil. RP Honnicke, MG (reprint author), Univ Fed Integracao Latino Amer, Inst Ciencias Vida & Nat, Caixa Postal 2044, BR-85867970 Foz Do Iguacu, Parana, Brazil. EM marcelo.honnicke@unila.edu.br RI Cusatis, Cesar/N-7559-2014; Vicentin, Flavio/H-4581-2016; Honnicke, Marcelo/I-8624-2012; OI Cusatis, Cesar/0000-0002-1621-3727; Vicentin, Flavio/0000-0002-3763-4467; Bouet, Nathalie/0000-0002-5816-9429 FU CNPq/PQ [309109/2013-2]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357, DE-AC-02-98CH10886] FX The authors acknowledge LNLS/CNPEM/MCT for beamtime. MGH acknowledges CNPq/PQ 309109/2013-2 for providing a research fellowship. This work was also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract numbers DE-AC-02-06CH11357 and DE-AC-02-98CH10886. NR 41 TC 0 Z9 0 U1 0 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1658 EP 1665 DI 10.1107/S1600576714018147 PN 5 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900019 ER PT J AU Huang, XR Jia, QJ Wieczorek, M Assoufid, L AF Huang, Xian-Rong Jia, Quanjie Wieczorek, Michael Assoufid, Lahsen TI Continuous X-ray multiple-beam diffraction with primary Bragg angle from 0 to 90 degrees SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID PHASE PROBLEM; REFLECTIONS AB The interesting phenomenon of continuous multiple-beam diffraction (MBD) occurring within special crystallographic planes of cubic structures is illustrated for any Bragg angles of the primary reflection. On the one hand, this effect must be avoided in crystal-based X-ray optics or general crystal diffraction experiments that are designed to utilize two-beam diffraction mechanisms, since the MBD process can significantly reduce the diffraction efficiency and the monochromatization quality. On the other hand, the continuous MBD mechanism may have unique practical applications, with the advantage that it can be activated at arbitrary X-ray wavelengths by simply adjusting the azimuthal angle of the primary reflection. A simple mathematical procedure for determining the continuous MBD planes of any primary reflections is developed for optimization of X-ray monochromator designs and for general X-ray characterization of (pseudo) cubic structure crystals using MBD. (C) 2014 International Union of Crystallography C1 [Huang, Xian-Rong; Wieczorek, Michael; Assoufid, Lahsen] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jia, Quanjie] Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China. RP Huang, XR (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiahuang@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC-02-06CH11357. QJ thanks LA, XRH, E. Alp, J. Zhao and A. Macrander for their support and help during his visit to the Advanced Photon Source. NR 19 TC 1 Z9 1 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1716 EP 1721 DI 10.1107/S160057671401930X PN 5 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900025 ER PT J AU Von Dreele, RB AF Von Dreele, Robert B. TI Small-angle scattering data analysis in GSAS-II SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Software Review ID X-RAY-SCATTERING; NEUTRON-SCATTERING; HARD SPHERES; CALIBRATION; DIFFRACTION; INSTRUMENT; SOFTWARE; EQUATION; KINETICS; DETECTOR AB The General Structure Analysis System II (GSAS-II) now contains modules for the analysis of small-angle X-ray scattering data. This includes processing of two-dimensional images to create corrected one-dimensional patterns, analysis via maximum entropy or total nonnegative least-squares methods of the size distribution, assuming polydispersity, in the dilute limit, and modeling of the one-dimensional data with combinations of Guinier/Porod, Porod, both dilute and condensed populations of scattering objects, and Bragg scattering components; slit smearing corrections can be applied where needed. GSAS-II can apply these modeling tools over a sequence of data collected while some experimental condition is varied. This sequential refinement result can then be subjected to a post refinement analysis to determine global parameters encompassing the entire experiment. C1 Argonne Natl Lab, APS, Lemont, IL 60439 USA. RP Von Dreele, RB (reprint author), Argonne Natl Lab, APS, 9700 S Cass Ave, Lemont, IL 60439 USA. EM vondreele@anl.gov FU US DOE [DE-AC02-06CH11357] FX The author thanks Jan Ilavsky and Pete Jemian for their assistance and encouragement in the development of the small-angle component of GSAS-II. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 38 TC 1 Z9 1 U1 3 U2 17 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2014 VL 47 BP 1784 EP 1789 DI 10.1107/S1600576714018366 PN 5 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA AQ5KB UT WOS:000342845900037 ER PT J AU Barton, NP Klein, SA Boyle, JS AF Barton, Neil P. Klein, Stephen A. Boyle, James S. TI On the Contribution of Longwave Radiation to Global Climate Model Biases in Arctic Lower Tropospheric Stability SO JOURNAL OF CLIMATE LA English DT Article DE Arctic; Boundary layer; Climate models; Clouds; Diagnostics ID MIXED-PHASE CLOUDS; STABLE BOUNDARY-LAYER; SEA-ICE; INVERSION STRENGTH; TEMPERATURE INVERSIONS; SURFACE; SIMULATIONS; OCEAN; SENSITIVITY; CMIP5 AB Previous research has found that global climate models (GCMs) usually simulate greater lower tropospheric stabilities compared to reanalysis data. To understand the origins of this bias, the authors examine hindcast simulations initialized with reanalysis data of six GCMs and find that four of the six models simulate within five days a positive bias in Arctic lower tropospheric stability during the Arctic polar night over sea ice regions. These biases in lower tropospheric stability are mainly due to cold biases in surface temperature, as very small potential temperature biases exist aloft.Similar to previous research, polar night surface temperature biases in the hindcast runs relate to all-sky downwelling longwave radiation in the models, which very much relates to the cloud liquid water. Also found herein are clear-sky longwave radiation biases and a fairly large clear-sky longwave radiation bias in the day one hindcast. This clear-sky longwave bias is analyzed by running the same radiation transfer model for each model's temperature and moisture profile, and the model spread in clear-sky downwelling longwave radiation with the same radiative transfer model is found to be much less, suggesting that model differences other than temperature and moisture are aiding in the spread in downwelling longwave radiation.The six models were also analyzed in Atmospheric Model Intercomparison Project (AMIP) mode to determine if hindcast simulations are analogous to free-running simulations. Similar winter lower tropospheric stability biases occur in four of the six models with surface temperature biases relating to the winter lower tropospheric stability values. C1 [Barton, Neil P.; Klein, Stephen A.; Boyle, James S.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Barton, Neil P.] DeVine Consulting Inc, Fremont, CA USA. RP Barton, NP (reprint author), Naval Res Lab, 7 Grace Hopper Ave, Monterey, CA 93943 USA. EM neil.barton.ctr@nrlmry.navy.mil RI Barton, Neil/F-9827-2011; Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science at the U.S. Department of Energy FX The contribution of N. P. Barton, S. A. Klein, and J. S. Boyle to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Support for N. P. Barton, S. A. Klein, and J. S. Boyle was provided by the Regional and Global Climate and Earth System Modeling Programs of the Office of Science at the U.S. Department of Energy. We acknowledge the Working Group on Numerical Experimentation (WGNE) and the Working Group on Coupled Modeling (WGCM), who are responsible for Transpose-AMIP II, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For Transpose-AMIP II the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison (PCMDI) provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 63 TC 12 Z9 12 U1 0 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2014 VL 27 IS 19 BP 7250 EP 7269 DI 10.1175/JCLI-D-14-00126.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ5ID UT WOS:000342840400005 ER PT J AU Romps, DM AF Romps, David M. TI An Analytical Model for Tropical Relative Humidity SO JOURNAL OF CLIMATE LA English DT Article DE Convective-scale processes; Humidity ID RADIATIVE-CONVECTIVE EQUILIBRIUM; ICE-PHASE MICROPHYSICS; CLOUD-RESOLVING MODEL; WATER-VAPOR; CUMULUS CONVECTION; UPPER TROPOSPHERE; ENTROPY BUDGET; PARAMETERIZATION; SIMULATION; SHALLOW AB An analytical model is derived for tropical relative humidity using only the Clausius-Clapeyron relation, hydrostatic balance, and a bulk-plume water budget. This theory is constructed for radiative-convective equilibrium and compared against a cloud-resolving model. With some reinterpretation of variables, it can be applied more generally to the entire tropics.Given four variablespressure, temperature, and the fractional entrainment and detrainment ratesthe equations predict the relative humidity (RH) and the temperature lapse rate analytically. The RH is a simple ratio involving the fractional detrainment rate and the water-vapor lapse rate. When integrated upward in height, the equations give profiles of RH and temperature for a convecting atmosphere.The theory explains the magnitude of RH and the C shape of the tropospheric RH profile. It also predicts that RH is an invariant function of temperature as the atmosphere warms, and this behavior matches what has been seen in global climate models and what is demonstrated here with cloud-resolving simulations. Extending the theory to include the evaporation of hydrometeors, a lower bound is derived for the precipitation efficiency (PE) at each height: PE > 1 - RH. In a cloud-resolving simulation, this constraint is obeyed with the PE profile taking the shape of an inverted C shape. C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 377 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu RI Romps, David/F-8285-2011 FU Scientific Discovery through the Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; Scientific Discovery through the Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Science Foundation [OCI-1053575] FX This work was supported by the Scientific Discovery through the Advanced Computing (SciDAC) program funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under Contract DE-AC02-05CH11231. The numerical simulations were made possible by the computational resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant OCI-1053575. Thank you to two anonymous reviewers for their feedback. NR 43 TC 5 Z9 5 U1 3 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2014 VL 27 IS 19 BP 7432 EP 7449 DI 10.1175/JCLI-D-14-00255.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ5ID UT WOS:000342840400016 ER PT J AU Moreno, G Jeffers, JR Narumanchi, S AF Moreno, Gilberto Jeffers, Jana R. Narumanchi, Sreekant TI Effects of Pressure and a Microporous Coating on HFC-245fa Pool Boiling Heat Transfer SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE boiling heat transfer; critical heat flux; HFC-245fa; microporous coating ID R134A; REFRIGERANTS; ENHANCEMENT; SURFACES; FC-72; TUBES AB A study was conducted to experimentally characterize the pool boiling performance of hydrofluorocarbon HFC-245fa at pressures ranging from 0.15 MPa to 1.1 MPa (reduced pressure range: 0.04-0.31). Pool boiling experiments were conducted using horizontally oriented 1-cm(2) heated surfaces to quantify the effects of pressure and a microporousenhanced coating on heat transfer coefficients and critical heat flux (CHF) values. Results showed that the coating enhanced heat transfer coefficients and CHF by 430% and 50%, respectively. The boiling heat transfer performance of HFC-245fa was then compared with the boiling performance of HFC-134a and hydrofluoroolefin HFO-1234yf. C1 [Moreno, Gilberto; Jeffers, Jana R.; Narumanchi, Sreekant] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moreno, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM gilbert.moreno@nrel.gov NR 31 TC 1 Z9 1 U1 1 U2 9 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 101502 DI 10.1115/1.4027966 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AQ7JA UT WOS:000342987700006 ER PT J AU Wu, CC Shi, TJ Brown, JN He, JT Gao, YQ Fillmore, TL Shukla, AK Moore, RJ Camp, DG Rodland, KD Qian, WJ Liu, T Smith, RD AF Wu, Chaochao Shi, Tujin Brown, Joseph N. He, Jintang Gao, Yuqian Fillmore, Thomas L. Shukla, Anil K. Moore, Ronald J. Camp, David G., II Rodland, Karin D. Qian, Wei-Jun Liu, Tao Smith, Richard D. TI Expediting SRM Assay Development for Large-Scale Targeted Proteomics Experiments SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE SRM; MRM; HCD; QQQ; transition selection; optimization; CE prediction; targeted quantification ID MASS-SPECTROMETRY; QUANTITATIVE PROTEOMICS; PROTEIN IDENTIFICATION; PEPTIDEATLAS PROJECT; ION-TRAP; SPECTRA; DISSOCIATION; LIBRARIES; PLASMA AB Because of its high sensitivity and specificity, selected reaction monitoring (SRM)-based targeted proteomics has become increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to that of CID in triple quadrupole (QQQ) instrumentation and that by selection of the top 6 y fragment ions from HCD spectra, >86% of the top transitions optimized from direct infusion with QQQ instrumentation are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for 3+ precursors and that a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrated the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transition selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality. C1 [Wu, Chaochao; Shi, Tujin; Brown, Joseph N.; He, Jintang; Gao, Yuqian; Shukla, Anil K.; Moore, Ronald J.; Camp, David G., II; Rodland, Karin D.; Qian, Wei-Jun; Liu, Tao; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Fillmore, Thomas L.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Liu, T (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM tao.liu@pnnl.gov; dick.smith@pnnl.gov RI Shi, Tujin/O-1789-2014; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH from the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC) [U24-CA-160019]; NIH from NIGMS Biomedical Technology Research Resource [P41GM103493, DP2OD006668]; United States Department of Energy (DOE) Office of Science Biological and Environmental Research; DOE [DE-AC05-76RL0 1830] FX Portions of this work were supported by NIH grant U24-CA-160019 from the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC), NIGMS Biomedical Technology Research Resource P41GM103493, and DP2OD006668. The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by United States Department of Energy (DOE) Office of Science Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL0 1830. NR 30 TC 7 Z9 7 U1 3 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD OCT PY 2014 VL 13 IS 10 BP 4479 EP 4487 DI 10.1021/pr500500d PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AQ3UO UT WOS:000342719200023 PM 25145539 ER PT J AU McIlwain, S Tamura, K Kertesz-Farkas, A Grant, CE Diament, B Frewen, B Howbert, JJ Hoopmann, MR Kall, L Eng, JK MacCoss, MJ Noble, WS AF McIlwain, Sean Tamura, Kaipo Kertesz-Farkas, Attila Grant, Charles E. Diament, Benjamin Frewen, Barbara Howbert, J. Jeffry Hoopmann, Michael R. Kaell, Lukas Eng, Jimmy K. MacCoss, Michael J. Noble, William Stafford TI Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article ID PEPTIDE IDENTIFICATION; PROTEOMICS DATA; DATABASE; PLATFORM; PIPELINE; SPECTRA; SYSTEM AB Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. C1 [McIlwain, Sean] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E.; Diament, Benjamin; Frewen, Barbara; Howbert, J. Jeffry; Eng, Jimmy K.; MacCoss, Michael J.; Noble, William Stafford] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Hoopmann, Michael R.] Inst Syst Biol, Seattle, WA 98109 USA. [Kaell, Lukas] KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17165 Solna, Sweden. [Kaell, Lukas] KTH Royal Inst Technol, Swedish E Sci Res Ctr, S-17121 Solna, Sweden. [Noble, William Stafford] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA. RP Noble, WS (reprint author), Univ Washington, Dept Genome Sci, 1705 NE Pacific St, Seattle, WA 98195 USA. EM william-noble@uw.edu OI Kall, Lukas/0000-0001-5689-9797 FU NIGMS NIH HHS [P41 GM103533] NR 22 TC 12 Z9 12 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD OCT PY 2014 VL 13 IS 10 BP 4488 EP 4491 DI 10.1021/pr500741y PG 4 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AQ3UO UT WOS:000342719200024 PM 25182276 ER PT J AU Hu, L Chen, J Fan, LL Ren, Y Rong, YC Pan, Z Deng, JX Yu, RB Xing, XR AF Hu, Lei Chen, Jun Fan, Longlong Ren, Yang Rong, Yangchun Pan, Zhao Deng, Jinxia Yu, Ranbo Xing, Xianran TI Zero Thermal Expansion and Ferromagnetism in Cubic Sc1-xMxF3 (M = Ga, Fe) over a Wide Temperature Range SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-DIFFRACTION; MATERIALS SCIENCE; PHASE-TRANSITION; CHARGE-TRANSFER AB The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F-3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), alpha(1) = 2.34 X 10(-7) K-1, 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F-3 adheres to the cubic system (Pm (3) over barm) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F-3 can be functionalized to exhibit high-T-c ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work. C1 [Hu, Lei; Chen, Jun; Fan, Longlong; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Chen, J (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM junchen@ustb.edu.cn; xing@ustb.edu.cn RI Chen, Jun/M-1669-2015 FU National Natural Science Foundation of China [21322102, 21031005, 21231001]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1207]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by National Natural Science Foundation of China (Grant Nos. 21322102, 21031005, 21231001), Program for Changjiang Scholars and Innovative Research Team in University (IRT1207). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 23 TC 36 Z9 38 U1 16 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 1 PY 2014 VL 136 IS 39 BP 13566 EP 13569 DI 10.1021/ja5077487 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AQ2IK UT WOS:000342608800025 PM 25233253 ER PT J AU Davis, MJ Janke, R Phillips, CA AF Davis, Michael J. Janke, Robert Phillips, Cynthia A. TI Robustness of Designs for Drinking Water Contamination Warning Systems under Uncertain Conditions SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article DE Water distribution systems; Optimization; Simulation; Water quality; Drinking water; Public health ID SENSOR PLACEMENT; NETWORKS; OPTIMIZATION; STATIONS; SECURITY; LAYOUT; MODEL AB Contamination warning systems (CWSs) for drinking water distribution systems (WDSs) are used to reduce the potential adverse effects of intentional or accidental WDS contamination. They are designed on the basis of possible contamination events but often address only a narrow range in event conditions. The influence on their performance of conditions different from those assumed in the design generally is not considered. Using results from simulations done with network models for 11 actual WDSs, it is shown here that CWS performance for high-consequence events can degrade substantially (by an order of magnitude) when conditions such as contaminant toxicity and injection time differ from those used in the design. Generally, increasing the number of sensors does not reduce this sensitivity to changed conditions. The significance of uncertain conditions varies substantially among WDSs. As a consequence of performance changes that occur when conditions change, mean-case designs generally outperform worst-case designs when the objective is to minimize worst-case adverse effects over a range of conditions. The results of this work can be used to implement more robust designs for CWSs, while reducing computational requirements. (C) 2014 American Society of Civil Engineers. C1 [Davis, Michael J.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Janke, Robert] US EPA, Natl Homeland Secur Res Ctr, Cincinnati, OH 45268 USA. [Phillips, Cynthia A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Davis, MJ (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mike_davis@anl.gov; janke.robert@epa.gov; caphill@sandia.gov FU U.S. Environmental Protection Agency's (EPA) Office of Research and Development; EPA under U.S. Department of Energy [DE-AC02-06CH11357] FX The U.S. Environmental Protection Agency's (EPA) Office of Research and Development funded, managed, and participated in the research described here under an interagency agreement. The views expressed in this paper are those of the authors and do no necessarily reflect the views or policies of EPA. Work at Argonne National Laboratory was sponsored by the EPA under interagency agreement through U.S. Department of Energy Contract DE-AC02-06CH11357. Because the information is confidential, the authors cannot disclose the identity of the WDSs studied in this paper or any information that could be used to identify them. NR 27 TC 2 Z9 2 U1 0 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD OCT PY 2014 VL 140 IS 10 AR 04014028 DI 10.1061/(ASCE)WR.1943-5452.0000408 PG 11 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA AQ5HP UT WOS:000342838900005 ER PT J AU Clark, IC Melnyk, RA Iavarone, AT Novichkov, PS Coates, JD AF Clark, Iain C. Melnyk, Ryan A. Iavarone, Anthony T. Novichkov, Pavel S. Coates, John D. TI Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress SO MOLECULAR MICROBIOLOGY LA English DT Article ID HUMAN NEUTROPHILS EMPLOY; PEROXIDE-CHLORIDE SYSTEM; C NITRITE REDUCTASE; ALPHA-AMINO-ACIDS; ESCHERICHIA-COLI; ONEIDENSIS MR-1; PERCHLORATE REDUCTION; (PER)CHLORATE-REDUCING BACTERIA; IDEONELLA-DECHLORATANS; REACTIVE ALDEHYDES AB Previous work on respiratory chlorate reduction has biochemically identified the terminal reductase ClrABC and the chlorite detoxifying enzyme Cld. In Shewanella algae ACDC, genes encoding these enzymes reside on composite transposons whose core we refer to as the chlorate reduction composite transposon interior (CRI). To better understand this metabolism in ACDC, we used RNA-seq and proteomics to predict carbon and electron flow during chlorate reduction and posit that formate is an important electron carrier with lactate as the electron donor, but that NADH predominates on acetate. Chlorate-specific transcription of electron transport chain components or the CRI was not observed, but clr and cld transcription was attenuated by oxygen. The major chlorate-specific response related to oxidative stress and was indicative of reactive chlorine species production. A genetic system based on rpsL-streptomycin counter selection was developed to further dissect the metabolism, but ACDC readily lost the CRI via homologous recombination of the composite transposon's flanking insertion sequences. An engineered strain containing a single chromosomal CRI did not grow on chlorate, but overexpression of cld and its neighbouring cytochrome c restored growth. We postulate that the recently acquired CRI underwent copy-number expansion to circumvent insufficient expression of key genes in the pathway. C1 [Clark, Iain C.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Melnyk, Ryan A.; Coates, John D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA. [Novichkov, Pavel S.] Lawrence Berkeley Natl Lab, Albany, CA 94710 USA. RP Coates, JD (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM jdcoates@berkeley.edu FU Energy Biosciences Institute, University of California, Berkeley FX We thank members of the Coates Lab for valuable discussions regarding this manuscript. Funding for research on perchlorate and chlorate reduction has been provided to J.D.C. through the Energy Biosciences Institute, University of California, Berkeley. NR 70 TC 11 Z9 11 U1 4 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD OCT PY 2014 VL 94 IS 1 BP 107 EP 125 DI 10.1111/mmi.12746 PG 19 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA AQ4NJ UT WOS:000342774700009 PM 25099177 ER PT J AU Zentner, AR Hearin, AP van den Bosch, FC AF Zentner, Andrew R. Hearin, Andrew P. van den Bosch, Frank C. TI Galaxy assembly bias: a significant source of systematic error in the galaxy-halo relationship SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: haloes; cosmology: theory; dark matter; large-scale structure of Universe ID DARK-MATTER HALOES; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; STAR-FORMATION RATES; DIGITAL SKY SURVEY; TO-NUMBER RATIO; OCCUPATION DISTRIBUTION; COSMOLOGICAL CONSTRAINTS; SATELLITE GALAXIES; REDSHIFT SURVEY AB Methods that exploit galaxy clustering to constrain the galaxy-halo relationship, such as the halo occupation distribution (HOD) and conditional luminosity function (CLF), assume halo mass alone suffices to determine a halo's galaxy content. Yet, halo clustering strength depends upon properties other than mass, such as formation time, an effect known as assembly bias. If galaxy characteristics are correlated with these auxiliary halo properties, the basic assumption of standard HOD/CLF methods is violated. We estimate the potential for assembly bias to induce systematic errors in inferred halo occupation statistics. We construct realistic mock galaxy catalogues that exhibit assembly bias as well as companion mock catalogues with identical HODs, but with assembly bias removed. We fit HODs to the galaxy clustering in each catalogue. In the absence of assembly bias, the inferred HODs describe the true HODs well, validating the methodology. However, in all cases with assembly bias, the inferred HODs exhibit significant systematic errors. We conclude that the galaxy-halo relationship inferred from galaxy clustering is subject to significant systematic errors induced by assembly bias. Efforts to model and/or constrain assembly bias should be priorities as assembly bias is a threatening source of systematic error in galaxy evolution and precision cosmology studies. C1 [Zentner, Andrew R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Zentner, Andrew R.] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. [Hearin, Andrew P.] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [van den Bosch, Frank C.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. RP Zentner, AR (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. EM zentner@pitt.edu FU US National Science Foundation [AST 1108802]; University of Pittsburgh; National Science Foundation [PHYS-1066293]; US Department of Energy [DE-AC02-07CH11359] FX We thank Andreas Berlind, Shaun Cole, Hiram Coombs, Carlos Frenk, Jeff Newman, Risa Wechsler, Idit Zehavi, Zheng Zheng, Ramin Skibba, and particularly Doug Watson for useful discussions throughout various stages of this work. We also thank David Weinberg and Simon White for insightful email exchanges regarding an earlier draft of this manuscript. We thank Kristin Riebe for helping us navigate the Multi Dark data base. We are particularly grateful to Jeremy Tinker and Rachel Reddick for comparing the results of their halo model code to our own and for helping us with numerous technical questions related to implementations of the halo model and the HOD. We thank John Fahey for America. The work of ARZ is supported by the US National Science Foundation through grant AST 1108802 and by the University of Pittsburgh. Significant portions of this work were completed during visits to The Institute for the Physics and Mathematics of the Universe (IPMU) at the University of Tokyo and we are thankful to IPMU and particularly Alexie Leathaud, Surhud More, and Rie Ujita for their hospitality. The work of ARZ was also supported by the National Science Foundation under grant PHYS-1066293 and the hospitality of the Aspen Center for Physics. APH is supported by the US Department of Energy under contract no. DE-AC02-07CH11359. NR 99 TC 35 Z9 35 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2014 VL 443 IS 4 BP 3044 EP 3067 DI 10.1093/mnras/stu1383 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ6KX UT WOS:000342922100017 ER PT J AU Miller, JR AF Miller, John R. TI ELECTRON TRANSFER Lower tunnel barriers SO NATURE CHEMISTRY LA English DT News Item ID WIRES C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Miller, JR (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555,POB 5000, Upton, NY 11973 USA. EM jrmiller@bnl.gov NR 5 TC 1 Z9 1 U1 1 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD OCT PY 2014 VL 6 IS 10 BP 854 EP 855 DI 10.1038/nchem.2059 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA AQ4FL UT WOS:000342748600007 PM 25242477 ER PT J AU Chen, L Reiss, PS Chong, SY Holden, D Jelfs, KE Hasell, T Little, MA Kewley, A Briggs, ME Stephenson, A Thomas, KM Armstrong, JA Bell, J Busto, J Noel, R Liu, J Strachan, DM Thallapally, PK Cooper, AI AF Chen, Linjiang Reiss, Paul S. Chong, Samantha Y. Holden, Daniel Jelfs, Kim E. Hasell, Tom Little, Marc A. Kewley, Adam Briggs, Michael E. Stephenson, Andrew Thomas, K. Mark Armstrong, Jayne A. Bell, Jon Busto, Jose Noel, Raymond Liu, Jian Strachan, Denis M. Thallapally, Praveen K. Cooper, Andrew I. TI Separation of rare gases and chiral molecules by selective binding in porous organic cages SO NATURE MATERIALS LA English DT Article ID ENANTIOSELECTIVE SEPARATION; ADSORPTION; FRAMEWORK; XENON; CATALYSIS; SITES; STABILITY; NITROGEN; CHARCOAL; SORPTION AB The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation. C1 [Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Cooper, Andrew I.] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England. [Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Cooper, Andrew I.] Univ Liverpool, Ctr Mat Discovery, Liverpool L69 7ZD, Merseyside, England. [Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon] Newcastle Univ, Wolfson Northern Carbon Reduct Labs, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Busto, Jose; Noel, Raymond] Aix Marseille Univ, CNRS, CPPM, IN2P3, F-13009 Marseille, France. [Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cooper, AI (reprint author), Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England. EM aicooper@liv.ac.uk RI Hasell, Tom/G-3588-2011; Stephenson, Andrew/C-8932-2014; Thomas, Keith/E-7832-2011; Jelfs, Kim/E-1802-2011; Liu, Jian/C-4707-2011; Liu, Jian/D-3393-2009; Bell, Jon/M-1817-2016; Little, Marc/B-9102-2013; Briggs, Michael/P-2224-2014 OI Chong, Samantha/0000-0002-3095-875X; Hasell, Tom/0000-0003-4736-0604; Thomas, Keith/0000-0002-8661-3099; Jelfs, Kim/0000-0001-7683-7630; Liu, Jian/0000-0001-5329-7408; Liu, Jian/0000-0001-5329-7408; Bell, Jon/0000-0002-7903-4582; Thallapally, Praveen Kumar/0000-0001-7814-4467; Little, Marc/0000-0002-1994-0591; Briggs, Michael/0000-0003-1474-1267 FU EPSRC [EP/H000925/1, EP/K018396/1]; European Research Council under FP7 [321156]; Region PACA (Provence-Alpes-Cote-d'Azur); US Department of Energy (DOE), Office of Nuclear Energy; Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank EPSRC (EP/H000925/1; EP/K018396/1), the European Research Council under FP7 (ERC grant agreement no. 321156) and Region PACA (Provence-Alpes-Cote-d'Azur) for funding. A.I.C. is a Royal SocietyWolfson Merit Award holder. K.E.J. is a Royal Society University Research Fellow. We thank Diamond Light Source for access to beamlines I11 (EE7040) and I19 (MT8728) that contributed to the results presented here. We also thank the beamline staff for their assistance during the I11 experiments. We thank D. Dubbeldam for providing the RASPA simulation package. We thank the US Department of Energy (DOE), Office of Nuclear Energy, and in particular, J. Bresee, for their support. T. Todd (Idaho National Laboratory) and B. Jubin (Oak Ridge National Laboratory) provided programmatic support and guidance. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 49 TC 104 Z9 104 U1 32 U2 231 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD OCT PY 2014 VL 13 IS 10 BP 954 EP 960 DI 10.1038/NMAT4035 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AQ4DR UT WOS:000342743100016 PM 25038731 ER PT J AU Philippe, AM Banfield, JE Clarno, KT Ott, LJ Philip, B Berrill, MA Sampath, RS Allu, S Hamilton, SP AF Philippe, Aaron M. Banfield, James E. Clarno, Kevin T. Ott, Larry J. Philip, Bobby Berrill, Mark A. Sampath, Rahul S. Allu, Srikanth Hamilton, Steven P. TI A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID CODE; UO2 AB The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light water reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps (similar to 6 GWd/tonne initial heavy metal) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to impact the predicted centerline temperatures significantly. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code. This analysis was done for a heavy-water boiling water reactor, but the conclusions are not limited by the reactor type beyond the spectrum and particular materials. C1 [Philippe, Aaron M.; Banfield, James E.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Clarno, Kevin T.; Ott, Larry J.; Philip, Bobby; Berrill, Mark A.; Sampath, Rahul S.; Allu, Srikanth; Hamilton, Steven P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Philippe, AM (reprint author), Univ Tennessee, Dept Nucl Engn, 315 Pasqua Engn Bldg, Knoxville, TN 37996 USA. EM clarnokt@oml.gov OI Clarno, Kevin/0000-0002-5999-2978; Philip, Bobby/0000-0001-6716-3515; allu, srikanth/0000-0003-2841-4398 FU U.S. Department of Energy [DE-AC05-00OR22725]; Eugene P. Wigner Fellowship at Oak Ridge National Laboratory FX This paper has been authored by the Oak Ridge National Laboratory, managed by UT-Battelle, under contract DE-AC05-00OR22725 with the U.S. Department of Energy.; Author M. A. B. acknowledges support from the Eugene P. Wigner Fellowship at Oak Ridge National Laboratory. NR 22 TC 2 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2014 VL 178 IS 2 BP 172 EP 185 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ5RQ UT WOS:000342866700003 ER PT J AU Passerini, S Kazimi, MS Shwageraus, E AF Passerini, Stefano Kazimi, Mujid S. Shwageraus, Eugene TI A Systematic Approach to Nuclear Fuel Cycle Analysis and Optimization SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Experience with modeling fuel cycle options reveals that the large amount of generated data makes it difficult to understand trade-offs among fuel cycle policies. This paper shows that numerical optimization can be used to better identify impacts of fuel cycle policies and condense the generated data against a few significant criteria. The once-through cycle is considered the baseline case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include, among others, recycling the fissile materials from spent light water reactor fuel in fast reactors (FRs) as well as deployment of innovative recycling reactor technologies, such as the U-235 initiated FRs. Additionally, a first-of-a-kind optimization scheme for the nuclear fuel cycle analysis is described. Optimization metrics of interest to different stakeholders in the fuel cycle (economics, fuel resource utilization, high-level waste, transuranic materials/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then used to demonstrate feasibility of arrival at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify noninferior solutions according to Pareto's dominance approach to optimization. The main trade-off for fuel cycle optimization was found to be between emphasizing economics versus most of the other identified metrics. C1 [Passerini, Stefano; Kazimi, Mujid S.; Shwageraus, Eugene] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02138 USA. RP Passerini, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stefano@anl.gov; kazimi@mit.edu FU Electric Power Research Institute; Nuclear Energy Institute for the MIT Fuel Cycle Project FX We are thankful for the financial support provided by the Electric Power Research Institute and the Nuclear Energy Institute for the MIT Fuel Cycle Project, under which this study was performed. NR 34 TC 1 Z9 1 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2014 VL 178 IS 2 BP 186 EP 201 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ5RQ UT WOS:000342866700004 ER PT J AU Pozzi, SA Wieger, B Enqvist, A Clarke, SD Flaska, M Marcath, M Larsen, E Haight, RC Padovani, E AF Pozzi, Sara A. Wieger, Brian Enqvist, Andreas Clarke, Shaun D. Flaska, Marek Marcath, Matthew Larsen, Edward Haight, Robert C. Padovani, Enrico TI Correlated Neutron Emissions from Cf-252 SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID PULSE-SHAPE DISCRIMINATION; SPONTANEOUS FISSION AB This paper presents new experimental results of correlated, prompt neutron emission from the spontaneous fission of Cf-252. Specifically, we present correlated-neutron emission probabilities and average energies for two detected neutrons as a function of the angle between the two neutrons. Experimental results are compared to several Monte Carlo models that include the number, energy, and angular distributions of prompt neutrons from fission. C1 [Pozzi, Sara A.; Wieger, Brian; Enqvist, Andreas; Clarke, Shaun D.; Flaska, Marek; Marcath, Matthew; Larsen, Edward] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Haight, Robert C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Padovani, Enrico] Politecn Milan, Dept Energy, I-20133 Milan, Italy. RP Pozzi, SA (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM pozzisa@umich.edu FU U.S. Department of Energy (DOE); National Nuclear Security Administration, NA-22 award [DE-NA0001025]; DOE Nuclear Energy University Programs award [DE-AC07-05ID14517-00120867] FX We would like to thank R. Vogt and J. Randrup for sharing the FREYA (fission reaction event yield algorithm) results used in the comparison of experimental to theoretical results and for stimulating discussions. This work was partly funded by the U.S. Department of Energy (DOE), National Nuclear Security Administration, NA-22 award DE-NA0001025 and by the DOE Nuclear Energy University Programs award DE-AC07-05ID14517-00120867. NR 24 TC 5 Z9 5 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2014 VL 178 IS 2 BP 250 EP 260 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ5RQ UT WOS:000342866700008 ER PT J AU Copping, A Battey, H Brown-Saracino, J Massaua, M Smith, C AF Copping, Andrea Battey, Hoyt Brown-Saracino, Jocelyn Massaua, Meghan Smith, Courtney TI An international assessment of the environmental effects of marine energy development SO OCEAN & COASTAL MANAGEMENT LA English DT Article ID RENEWABLE ENERGY; IMPACTS; OCEAN AB Power generated from marine energy devices, including those that harvest power from the waves and tides, has the potential to help meet the low-carbon energy needs of many coastal nations. However, these devices, and their related mooring lines, anchoring and buoyancy systems, and power export cables are still under development, resulting in a lack of understanding of potential environmental effects of these technologies. Locations suitable for marine energy development typically consist of rough waters, strong tidal currents, large waves, and inhospitable conditions for oceanographic measurements. Coupled with novel interactions between marine animals (particularly marine mammals and fish) and marine energy devices, these high-energy environments create a challenge for accurately observing, measuring, and analyzing environmental effects. Under the auspices of the International Ocean Energy Systems (OES), a collaborative project (Annex IV) was devised to identify and facilitate sharing of existing information on potential effects of tidal turbines and wave energy converters, and to inform permitting (consenting) processes that will enable deployment of these devices. In this paper, we explore the application of a variety of scientific fields to the examination of the environmental impacts of marine renewable energy devices, through three focused analyses. These analyses were conducted as part of the Annex IV initiative and are explored in greater length in the final report for the Annex IV effort; they focus on high-priority areas of concern for marine energy development that have appeared across several nations: 1) the interaction of marine animals with turbine blades; 2) effects of underwater sound from marine energy devices on marine animals; and 3) effects on the physical systems due to energy removal and flow changes from the operation of marine energy devices. These analyses synthesize the current state of scientific understanding, informed by field monitoring, laboratory studies, and modeling efforts, and identify key data gaps that limit the information regulators and researchers can apply to future device deployments. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Copping, Andrea] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Battey, Hoyt; Brown-Saracino, Jocelyn; Smith, Courtney] US DOE, Wind & Water Power Technol Off, Washington, DC 20017 USA. [Brown-Saracino, Jocelyn] New West Technol LLC, Washington, DC 20024 USA. RP Copping, A (reprint author), Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. EM andrea.copping@pnnl.gov NR 53 TC 1 Z9 1 U1 8 U2 65 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0964-5691 EI 1873-524X J9 OCEAN COAST MANAGE JI Ocean Coastal Manage. PD OCT PY 2014 VL 99 SI SI BP 3 EP 13 DI 10.1016/j.ocecoaman.2014.04.002 PG 11 WC Oceanography; Water Resources SC Oceanography; Water Resources GA AQ6AE UT WOS:000342888900002 ER PT J AU Yang, ZQ Wang, TP Copping, A Geerlofs, S AF Yang, Zhaoqing Wang, Taiping Copping, Andrea Geerlofs, Simon TI Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA SO OCEAN & COASTAL MANAGEMENT LA English DT Article ID COASTAL OCEAN MODEL; PUGET-SOUND; EXTRACTION; CIRCULATION; ESTUARIES; CURRENTS; BAY AB Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, there are near-field effects on the flow field and bed shear stress in the area of tidal turbine farm. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave North,Ste 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnnl.gov NR 24 TC 3 Z9 3 U1 4 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0964-5691 EI 1873-524X J9 OCEAN COAST MANAGE JI Ocean Coastal Manage. PD OCT PY 2014 VL 99 SI SI BP 52 EP 62 DI 10.1016/j.ocecoaman.2014.02.010 PG 11 WC Oceanography; Water Resources SC Oceanography; Water Resources GA AQ6AE UT WOS:000342888900007 ER PT J AU Broussard, CS Frey, MT Hernandez-Diaz, S Greene, MF Chambers, CD Sahin, L Sharp, BAC Honein, MA AF Broussard, Cheryl S. Frey, Meghan T. Hernandez-Diaz, Sonia Greene, Michael F. Chambers, Christina D. Sahin, Leyla Sharp, Beth A. Collins Honein, Margaret A. TI Developing a Systematic Approach to Safer Medication Use during Pregnancy: Summary of a Centers for Disease Control and Prevention-Convened Meeting SO PHARMACOEPIDEMIOLOGY AND DRUG SAFETY LA English DT Meeting Abstract C1 [Broussard, Cheryl S.; Frey, Meghan T.; Honein, Margaret A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Frey, Meghan T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Hernandez-Diaz, Sonia] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA. [Greene, Michael F.] Harvard Univ, Sch Med, Dept Obstet Gynecol & Reprod Biol, Boston, MA 02115 USA. [Greene, Michael F.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Chambers, Christina D.] Univ Calif San Francisco, Dept Pediat, La Jolla, CA USA. [Chambers, Christina D.] Univ Calif San Francisco, Dept Family & Prevent Med, La Jolla, CA USA. [Sahin, Leyla] US FDA, Ctr Drug Evaluat & Res, Silver Spring, MD USA. [Sharp, Beth A. Collins] Agcy Healthcare Res & Qual, Rockville, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1053-8569 EI 1099-1557 J9 PHARMACOEPIDEM DR S JI Pharmacoepidemiol. Drug Saf. PD OCT PY 2014 VL 23 SU 1 SI SI MA 594 BP 315 EP 315 PG 1 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA AQ4JZ UT WOS:000342763600590 ER PT J AU Hoffman, SR Loyo-Berrios, N Gatski, M Bayona, M Price, V AF Hoffman, Sarah R. Loyo-Berrios, Nilsa Gatski, Megan Bayona, Manuel Price, Veronica TI Creation and Use of a "Lag Time" Variable for Comparative Effectiveness Research Using Claims Data SO PHARMACOEPIDEMIOLOGY AND DRUG SAFETY LA English DT Meeting Abstract C1 [Hoffman, Sarah R.] US FDA, ORISE, Silver Spring, MD USA. [Loyo-Berrios, Nilsa; Gatski, Megan; Bayona, Manuel] US FDA, Div Epidemiol, Ctr Devices & Radiol Hlth, Silver Spring, MD USA. [Price, Veronica] US FDA, Div Reprod Gastrorenal & Urol Devices, Off Device Evaluat, Silver Spring, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1053-8569 EI 1099-1557 J9 PHARMACOEPIDEM DR S JI Pharmacoepidemiol. Drug Saf. PD OCT PY 2014 VL 23 SU 1 SI SI MA 910 BP 489 EP 490 PG 2 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA AQ4JZ UT WOS:000342763600902 ER PT J AU Jensen, JK Johnson, NR Wilkerson, CG AF Jensen, Jacob Krueger Johnson, Nathan Robert Wilkerson, Curtis Gene TI Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases SO PLANT JOURNAL LA English DT Article DE xylosyltransferase; IRX10; xylan synthase; Arabidopsis thaliana; Plantago ovata; psyllium; Physcomitrella patens; Pichia pastoris ID SECONDARY CELL-WALL; GLUCURONOXYLAN BIOSYNTHESIS; GLYCOSYL TRANSFERASES; LAND PLANTS; GENES; GLYCOSYLTRANSFERASE; WHEAT; IDENTIFICATION; REVEALS; ARABIDOPSIS-IRREGULAR-XYLEM8 AB The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by beta-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a beta-1,4 linkage, establishing this protein as a xylan beta-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins. C1 [Jensen, Jacob Krueger; Johnson, Nathan Robert; Wilkerson, Curtis Gene] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Jensen, Jacob Krueger; Johnson, Nathan Robert; Wilkerson, Curtis Gene] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Wilkerson, Curtis Gene] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Wilkerson, CG (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM wilker13@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 52 TC 23 Z9 25 U1 0 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD OCT PY 2014 VL 80 IS 2 BP 207 EP 215 DI 10.1111/tpj.12641 PG 9 WC Plant Sciences SC Plant Sciences GA AQ5LF UT WOS:000342849800002 PM 25139408 ER PT J AU Beverly, BEJ Lambright, CS Furr, JR Sampson, H Wilson, VS McIntyre, BS Foster, PMD Travlos, G Gray, LE AF Beverly, Brandiese E. J. Lambright, Christy S. Furr, Johnathan R. Sampson, Hunter Wilson, Vickie S. McIntyre, Barry S. Foster, Paul M. D. Travlos, Gregory Gray, L. Earl, Jr. TI Simvastatin and Dipentyl Phthalate Lower Ex Vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat SO TOXICOLOGICAL SCIENCES LA English DT Article DE simvastatin; phthalates; steroidogenesis; cholesterol; sexual differentiation ID N-BUTYL PHTHALATE; COA REDUCTASE INHIBITOR; COENZYME-A REDUCTASE; IN-UTERO EXPOSURE; SEXUAL-DIFFERENTIATION; REPRODUCTIVE DEVELOPMENT; DI(N-BUTYL) PHTHALATE; LEYDIG-CELLS; DEVELOPMENTAL TOXICITY; STEROIDOGENIC ENZYMES AB Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and consequently, lowering fetal androgen and Insl3 hormone levels. Simvastatin (SMV) is a cholesterol-lowering drug that directly inhibits HMG-CoA reductase. SMV may also disrupt steroid biosynthesis, but through a different mode of action (MOA) than the PEs. As cholesterol is a precursor of steroid hormone biosynthesis, we hypothesized that in utero exposure to SMV during the critical period of sex differentiation would lower fetal testicular testosterone (T) production without affecting genes involved in cholesterol and androgen synthesis and transport. Secondly, we hypothesized that a mixture of SMV and a PE, which may have different MOAs, would reduce testosterone levels in an additive manner. Pregnant Sprague Dawley rats were dosed orally with SMV, dipentyl phthalate (DPeP), or SMV plus DPeP from gestational days 14-18, and fetuses were evaluated on GD18. On GD18, SMV lowered fetal T production and serum triglycerides, low density lipoprotein, high density lipoprotein, and total cholesterol levels, and downregulated two genes in the fetal testis that were different from those altered by PEs. When SMV and DPeP were administered as a mixture, fetal T production was significantly reduced in an additive manner, thus demonstrating that a mixture of chemicals can induce additive effects on fetal T production even though they display different MOAs. C1 [Beverly, Brandiese E. J.; Lambright, Christy S.; Furr, Johnathan R.; Sampson, Hunter; Wilson, Vickie S.; Gray, L. Earl, Jr.] US EPA, Reprod Toxicol Branch, Toxic Assessment Div, Natl Hlth & Environm Effects Res Lab,Off Res & De, Res Triangle Pk, NC 27711 USA. [Beverly, Brandiese E. J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [McIntyre, Barry S.; Foster, Paul M. D.; Travlos, Gregory] NIEHS, Natl Toxicol Program, NIH, Res Triangle Pk, NC 27709 USA. RP Gray, LE (reprint author), MD 72,TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM emgray@mindspring.com OI Wilson, Vickie/0000-0003-1661-8481 FU US Environmental Protection Agency; National Institute of Environmental Health Sciences at the National Institutes of Health [IA] [RW-75-92285501]; Oak Ridge Institute for Science and Education fellowship FX This work was supported in part by an interagency agreement with the US Environmental Protection Agency and the National Institute of Environmental Health Sciences at the National Institutes of Health [IA no. RW-75-92285501]. B.E.J.B. was funded through an Oak Ridge Institute for Science and Education fellowship. NR 44 TC 3 Z9 3 U1 3 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD OCT PY 2014 VL 141 IS 2 BP 524 EP 537 DI 10.1093/toxsci/kfu149 PG 14 WC Toxicology SC Toxicology GA AQ8BD UT WOS:000343045100022 PM 25055962 ER PT J AU Jordan, AB Stauffer, PH Zyvoloski, GA Person, MA MacCarthy, JK Anderson, DN AF Jordan, Amy B. Stauffer, Philip H. Zyvoloski, George A. Person, Mark A. MacCarthy, Jonathan K. Anderson, Dale N. TI Uncertainty in Prediction of Radionuclide Gas Migration from Underground Nuclear Explosions SO VADOSE ZONE JOURNAL LA English DT Article ID DIFFUSION-COEFFICIENT; CONTAMINANT TRANSPORT; UNSATURATED ZONE; POROUS-MEDIA; VADOSE ZONE; MULTIPHASE; EMISSIONS; NEVADA; TESTS; MODEL AB Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The objective of this research was to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed, with barometric pumping providing the primary driving force for gas migration, for the case of a 1 kt UNE at 400-m depth of burial. Gas arrival time was most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo realizations were performed with all four parameters varying simultaneously to determine their interrelated effects. The Monte Carlo method was also used to predict the window of opportunity for Xe-133 detection from a 1 kt UNE at Rainier Mesa, with and without matching the model to SF6 and He-3 data from the 1993 Non-Proliferation Experiment. Results from the data-blind Monte Carlo simulations were similar but were biased toward earlier arrival time and less likely to show detectable Xe-133. The estimated timing of gas arrival may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. C1 [Jordan, Amy B.; Stauffer, Philip H.; Zyvoloski, George A.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [MacCarthy, Jonathan K.; Anderson, Dale N.] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA. [Person, Mark A.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. RP Jordan, AB (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM ajordan@lanl.gov OI Stauffer, Philip/0000-0002-6976-221X FU Defense Threat Reduction Agency (DTRA) [DTRA1-11-4539I/BRCALL08-Per5-I-2-0008] FX This research was funded by the Defense Threat Reduction Agency (DTRA) under Award no. DTRA1-11-4539I/BRCALL08-Per5-I-2-0008. We would like to thank three anonymous reviewers, whose comments greatly improved this paper. We would also like to thank Ed Kwicklis, Dan Levitt, and Terry Miller of Los Alamos National Laboratory (LANL) for information about Rainier Mesa and its geology; Charles Carrigan and Yunwei Sun of Lawrence Livermore National Laboratory for NPE information and data; and Chris Bradley of LANL for conversations and references related to fracturing caused by UNEs. NR 45 TC 4 Z9 4 U1 2 U2 9 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD OCT PY 2014 VL 13 IS 10 DI 10.2136/vzj2014.06.0070 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA AQ9HZ UT WOS:000343163000001 ER PT J AU Clifton, A Daniels, MH Lehning, M AF Clifton, A. Daniels, M. H. Lehning, M. TI Effect of winds in a mountain pass on turbine performance SO WIND ENERGY LA English DT Article DE wind turbine; complex terrain; standards; turbulence; wind profile ID THERMALLY DRIVEN FLOWS; PART I; COMPLEX TERRAIN; VALLEY; LAYER AB Mountain passes are potentially advantageous sites for the deployment of wind turbines because of road links and electrical transmission infrastructure. However, relatively little is known about wind characteristics and turbine response in these environments. Using hub height wind data from a mountain pass in Switzerland, this paper discusses the causes of the observed pass winds and how a generic wind turbine might perform in those conditions. During 3months of winter measurements, the winds in the pass showed signatures of forcing by regional pressure gradients rather than local cooling or heating. Turbulence intensity was often less than 10%, and the magnitude of the wind shear power law exponent was less than 0.1. To understand the impact of pass winds on a wind turbine, we simulated a Wind Partnership for Advanced Component Technologies 1.5MW wind turbine using the Fatigue, Aerodynamics, Structures, and Turbulence(FAST) aeroelastic simulator , forced by artificial wind fields of varying turbulence intensity and shear generated by the turbulence simulator TurbSim. We used the turbine simulation data to train a regression model that is used to predict the turbine response to the pass wind time series. Results showed that depending on long-term wind characteristics, wind turbines in the pass may perform differently than predicted using a power curve derived from test measurements at another location. This method of generating site-specific energy capture predictions could be combined with long-term wind resource data and specific turbine models to better predict the energy production and turbine loads at this, or any other site. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Clifton, A.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. [Clifton, A.; Lehning, M.] SLF, WSL Inst Snow & Avalanche Res, CH-7260 Davos, Switzerland. [Daniels, M. H.] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Environm Fluid Dynam Lab, CH-1015 Lausanne, Switzerland. [Lehning, M.] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lab Cryospher Sci, CH-1015 Lausanne, Switzerland. RP Clifton, A (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM andrew.clifton@nrel.gov OI Clifton, Andrew/0000-0001-9698-5083 FU US Department of Energy's Wind and Water Power Program; Competence Center for Environment and Sustainability (SwissEx Science); Swiss National Science Foundation FX This work was partly performed at the National Renewable Energy Laboratory (NREL) in support of the US Department of Energy's Wind and Water Power Program. Other funding came from the Competence Center for Environment and Sustainability (SwissEx Science) and the Swiss National Science Foundation. Space for equipment on the Fluela pass wind monitoring mast was provided by Hans Jorg Meier of EWD Elektrizitatswerk Davos A. G. The mast was planned by the New Energy Scout A. G. and erected by the Tufer A.G. Sonic anemometers, and a logger were provided by Prof. Marc Parlange (EPFL). The SLF workshop provided power supplies and electronics. Chad Higgins and Hendrik Huwald (EPFL) provided valuable input in discussions about data analysis. Bonnie Jonkman and Marshall Buhl (NREL) supported the wind field and turbine aeroelastic simulations. The relief map of the Fluela pass terrain (Figure 2(a)) was prepared by Andi Stoffel, SLF. The authors wish to thank the three anonymous reviewers for their constructive feedback on early versions of this submission. NR 56 TC 0 Z9 0 U1 2 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD OCT PY 2014 VL 17 IS 10 BP 1543 EP 1562 DI 10.1002/we.1650 PG 20 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA AQ3HO UT WOS:000342682600006 ER PT J AU Pantelides, CP Garfield, TT Richins, WD Larson, TK Blakeley, JE AF Pantelides, C. P. Garfield, T. T. Richins, W. D. Larson, T. K. Blakeley, J. E. TI Reinforced concrete and fiber reinforced concrete panels subjected to blast detonations and post-blast static tests SO ENGINEERING STRUCTURES LA English DT Article DE Blast; Blast retrofit; Concrete; Fiber composite bars; Fiber reinforced concrete; Fiber reinforced polymers; Static post-blast load resistance; Reinforcement ID RC SLABS; COMPOSITE; RESISTANCE; PLATES AB Results of an experimental study of reinforced concrete panels under blast detonations are presented. The primary purpose of the tests was to collect data for validating simulation methods for blast loads. The scaled distance ranged from 0.41 m/(kg)(1/3) to 0.57 m/(kg)(1/3) and hence the tests are close-in detonations. Four types of 1.2 m square panels were subjected to blast to investigate the performance of new walls: reinforced concrete (RC) panels; fiber reinforced concrete (FRC) panels without additional reinforcement; FRC panels reinforced with steel bars; and RC panels reinforced with glass fiber reinforced polymer (GFRP) bars. Another RC panel type was built which was retrofitted with external GFRP laminates on both faces. The performance of the panels is classified into three categories as medium protection, very low protection, and protection below antiterrorism standards. FRC panels reinforced with steel bars had the best performance for new construction. Panels that survived the blast detonation without sustaining a breach were tested under monotonic static loads to determine their static post-blast load resistance. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Pantelides, C. P.; Garfield, T. T.] Univ Utah, Dept Civil Engn, Salt Lake City, UT 84112 USA. [Richins, W. D.; Larson, T. K.; Blakeley, J. E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pantelides, CP (reprint author), Univ Utah, Dept Civil Engn, 110 Cent Campus Dr, Salt Lake City, UT 84112 USA. EM c.pantelides@utah.edu; timo877@gmail.com; william.richins@inl.gov; thomas.larson@inl.gov; james.blakeley@inl.gov FU U.S. Department of Energy [DE-AC07-05ID14517]; University of Utah FX The authors would like to acknowledge the support of the auxiliary staff at Idaho National Laboratory and the University of Utah. The authors would like to thank the following companies: Hanson Structural Precast of Salt Lake City, Utah for construction and transportation of the specimens, Sika USA Inc. for the GFRP laminates, Propex for the macro-synthetic fibers, and Hughes Brothers for the GFRP bars. This work was sponsored by the U.S. Department of Energy under contract DE-AC07-05ID14517. NR 23 TC 8 Z9 8 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-0296 EI 1873-7323 J9 ENG STRUCT JI Eng. Struct. PD OCT 1 PY 2014 VL 76 BP 24 EP 33 DI 10.1016/j.engstruct.2014.06.040 PG 10 WC Engineering, Civil SC Engineering GA AQ1HO UT WOS:000342532700003 ER PT J AU Zhang, LW Theregowda, RB Small, MJ AF Zhang, Liwei Theregowda, Ranjani B. Small, Mitchell J. TI Statistical Model for Scaling and Corrosion Potentials of Cooling-System Source Waters SO ENVIRONMENTAL ENGINEERING SCIENCE LA English DT Article DE scaling; corrosion; water reuse; derived probability model ID MUNICIPAL WASTE-WATER; GROUNDWATER QUALITY AB Determination of make-up cooling water scaling and corrosion potentials for power plants is essential to prevent cooling system fouling challenges linked to source water quality. In this study, a statistical model is proposed to evaluate the probability that scaling or corrosion could occur. These probabilities were determined from derived distributions for the Langelier saturation index (LSI) and the aggressive index (AI), computed from a fitted joint normal distribution for pH, log[Ca2+], log([Ca2+]+[Mg2+]), and log[Alk]. In most cases only one outcome (scaling or corrosion) exhibited a probability of concern, though highly variable source waters could exhibit significant probability for both. To illustrate application of the method, freshwater and treated municipal wastewater samples collected from the western Pennsylvanian region were analyzed for alkalinity, pH, [Mg2+] and [Ca2+] concentrations. The LSI and AI were calculated using the measured characteristics of the water samples, and their observed distributions were compared to the derived normal distributions for each. This study used the uncertainty associated with water quality inputs to evaluate the uncertainty of scaling and corrosion potentials, and provides a practical approach for power plant operators to evaluate the uncertainty associated with scaling and corrosion indices of cooling waters without use of expensive software or complicated coding. C1 [Zhang, Liwei] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Theregowda, Ranjani B.] Transtech Engn Consultants Inc, Columbia, MD USA. [Small, Mitchell J.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Small, Mitchell J.] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA. RP Zhang, LW (reprint author), Natl Energy Technol Lab, ORISE, 626 Cochrans Mill Rd,B84,Off 210, Pittsburgh, PA 15236 USA. EM zlwe88@gmail.com NR 35 TC 1 Z9 1 U1 3 U2 9 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1092-8758 EI 1557-9018 J9 ENVIRON ENG SCI JI Environ. Eng. Sci. PD OCT 1 PY 2014 VL 31 IS 10 BP 570 EP 581 DI 10.1089/ees.2014.0196 PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AQ3VJ UT WOS:000342721300005 ER PT J AU Rispoli, FJ Green, T Fasano, TA Shah, V AF Rispoli, Fred J. Green, Timothy Fasano, Thomas A. Shah, Vishal TI The effect of environmental remediation on the cesium-137 levels in white-tailed deer SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Cesium-137; Environmental contamination; White-tailed deer; Non-parametric statistics ID ROE DEER; RADIOCESIUM CONTAMINATION; CARIBOU; SOIL AB Due to activities involving nuclear energy research during the latter half of the 1900s, environmental contamination in the form of elevated cesium-137 levels was observed within the Brookhaven National Laboratory, a US Department of Energy facility. Between the years 2000 and 2005, the laboratory carried out a major soil cleanup effort to remove cesium-137 from contaminated sites. In this study, we examine the effectiveness of the cleanup effort by comparing the levels of cesium-137 in the meat of white-tailed deer found within and around the laboratory. Results suggest that the cleanup was effective, with mean concentration of cesium-137 in the meat from within the laboratory decreasing from 2.04 Bq/g prior to 1.22 Bq/g after cleanup. At the current level, the consumption of deer would not pose any human health hazard. Nevertheless, statistically higher levels of cesium-137 were detected in the deer within the laboratory as opposed to levels found in deer 1 mi beyond the laboratory site. C1 [Rispoli, Fred J.] Dowling Coll, Dept Math, Oakdale, NY 11769 USA. [Green, Timothy] Brookhaven Natl Lab, Environm Protect Div, Upton, NY 11793 USA. [Fasano, Thomas A.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11790 USA. [Shah, Vishal] Dowling Coll, Dept Biol, Oakdale, NY 11769 USA. RP Rispoli, FJ (reprint author), Dowling Coll, Dept Math, Oakdale, NY 11769 USA. EM RispoliF@dowling.edu FU US Department of Energy Visiting Faculty Program; Science Undergraduate Laboratory Internships Program FX This project was supported in part by the US Department of Energy Visiting Faculty Program to FR and VS and Science Undergraduate Laboratory Internships Program to TF. NR 19 TC 1 Z9 1 U1 1 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD OCT PY 2014 VL 21 IS 19 BP 11598 EP 11602 DI 10.1007/s11356-014-3143-x PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA AP9RD UT WOS:000342416400048 PM 25028321 ER PT J AU Mathews, TJ Fortner, AM Jett, RT Morris, J Gable, J Peterson, MJ Carriker, N AF Mathews, Teresa J. Fortner, Allison M. Jett, R. Trent Morris, Jesse Gable, Jennifer Peterson, Mark J. Carriker, Neil TI SELENIUM BIOACCUMULATION IN FISH EXPOSED TO COAL ASH AT THE TENNESSEE VALLEY AUTHORITY KINGSTON SPILL SITE SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Selenium; Coal ash; Fish; Bioaccumulation ID FOOD-CHAIN TRANSFER; FRESH-WATER FISH; AQUATIC ECOSYSTEMS; LARGEMOUTH BASS; MERCURY; SPECIATION; CONTAMINATION; SYSTEM AB In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4g/g and 9g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8g/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies. Environ Toxicol Chem 2014;33:2273-2279. (c) 2014 SETAC C1 [Mathews, Teresa J.; Jett, R. Trent; Peterson, Mark J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fortner, Allison M.] ARCADIS US, Knoxville, TN USA. [Morris, Jesse] Restorat Serv, Oak Ridge, TN USA. [Gable, Jennifer] Environm Stand, Valley Forge, PA USA. [Carriker, Neil] Tennessee Valley Author, TVA Kingston Ash Recovery Project, Harriman, TN USA. RP Mathews, TJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mathewstj@ornl.gov FU Tennessee Valley Authority (TVA); US Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Tennessee Valley Authority (TVA) and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, for the US Department of Energy under contract DE-AC05-00OR22725. Special thanks to M. Adams, M. Bevelhimer, C. Brandt, B. Pracheil, M. Greeley, J. Smith, K. McCracken, C. Dunn, R. Vitale, K. Abbot, E. Rodgers, B. Rogers, M. Cagley, and T. Baker. NR 42 TC 6 Z9 6 U1 8 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD OCT PY 2014 VL 33 IS 10 BP 2273 EP 2279 DI 10.1002/etc.2673 PG 7 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA AQ2LZ UT WOS:000342619100013 PM 24943719 ER PT J AU Zhao, MX Xue, K Wang, F Liu, SS Bai, SJ Sun, B Zhou, JZ Yang, YF AF Zhao, Mengxin Xue, Kai Wang, Feng Liu, Shanshan Bai, Shijie Sun, Bo Zhou, Jizhong Yang, Yunfeng TI Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping SO ISME JOURNAL LA English DT Article DE climate change; soil transplant; microbial community; biogeochemical cycle; GeoChip ID 16S RIBOSOMAL-RNA; FUNCTIONAL-SIGNIFICANCE; COMMUNITY COMPOSITION; BACTERIAL COMMUNITIES; GENE DIVERSITY; WATER CONTENT; SP. NOV.; TEMPERATURE; GRADIENT; FOREST AB Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling. C1 [Zhao, Mengxin; Liu, Shanshan; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Xue, Kai; Bai, Shijie; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Gen, Norman, OK 73019 USA. [Wang, Feng; Sun, Bo] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing, Jiangsu, Peoples R China. [Wang, Feng] Univ Chinese Acad Sci, Beijing, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, 1 Tsinghua Garden Rd, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn FU National Science Foundation of China [41171201, 41271258]; National Key Basic Research Program of China [2013CB956601]; National Basic Research Program of China [2011CB100506]; US National Science Foundation [EF-1065844] FX We thank Hailun, Fengqiu and Yingtan Research Station staff for sampling assistance, Christopher R Penton for manuscript editing and four anonymous reviewers and the editor for constructive comments and suggestions to improve this manuscript. This research was supported by grants to Yunfeng Yang from National Science Foundation of China (41171201) and National Key Basic Research Program of China (2013CB956601), to Bo Sun from National Basic Research Program of China (2011CB100506) and National Science Foundation of China (41271258), and to Jizhong Zhou from US National Science Foundation (EF-1065844). NR 61 TC 22 Z9 23 U1 18 U2 147 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD OCT PY 2014 VL 8 IS 10 BP 2045 EP 2055 DI 10.1038/ismej.2014.46 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AQ4KI UT WOS:000342764600008 PM 24694714 ER PT J AU Steffen, MM Dearth, SP Dill, BD Li, Z Larsen, KM Campagna, SR Wilhelm, SW AF Steffen, Morgan M. Dearth, Stephen P. Dill, Brian D. Li, Zhou Larsen, Kristen M. Campagna, Shawn R. Wilhelm, Steven W. TI Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis SO ISME JOURNAL LA English DT Article DE cyanobacteria; metabolomics; nitrogen; transcriptomics; transposase; urea ID ALGA AUREOCOCCUS-ANOPHAGEFFERENS; BLOOM-FORMING CYANOBACTERIUM; TRANSPOSABLE ELEMENTS; ALKALINE-PHOSPHATASE; PHOSPHORUS LIMITATION; NONTOXIC STRAINS; LAKE-ERIE; NITROGEN; AERUGINOSA; EUTROPHICATION AB The cyanobacterium Microcystis aeruginosa is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of M. aeruginosa sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of M. aeruginosa. Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive Microcystis blooms and evolution. C1 [Steffen, Morgan M.; Larsen, Kristen M.; Wilhelm, Steven W.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Dearth, Stephen P.; Campagna, Shawn R.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Dill, Brian D.; Li, Zhou] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Li, Zhou] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. RP Wilhelm, SW (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM wilhelm@utk.edu RI Wilhelm, Steven/B-8963-2008; Li, Zhou/L-7976-2015; OI Wilhelm, Steven/0000-0001-6283-8077; Dill, Brian/0000-0002-4532-3044; Dearth, Stephen/0000-0002-9026-8611 FU National Science Foundation [IOS 0841918, DEB 1240870, OCE 1233964, OCE 1208784]; UT/ORNL Science Alliance JDRD award; University of Tennessee FX We thank Dr GL Boyer, Dr LJ Hauser, Dr NC VerBerkmoes, Dr RL Hettich, Dr GS Bullerjahn and Dr RML McKay for support and meaningful ideas and discussion. We also thank Shafer Belisle, Chad Effler and Justine Schmidt for their assistance. This project was supported by grants from the National Science Foundation (IOS 0841918 and DEB 1240870 to SWW; and OCE 1233964 and OCE 1208784 to SRC) and a UT/ORNL Science Alliance JDRD award to SWW. MMS was supported by a Wallace-Dean fellowship from the University of Tennessee. NR 61 TC 19 Z9 19 U1 11 U2 81 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD OCT PY 2014 VL 8 IS 10 BP 2080 EP 2092 DI 10.1038/ismej.2014.78 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AQ4KI UT WOS:000342764600011 PM 24858783 ER PT J AU Ruiz, DE Gunderson, LM Hay, MJ Merino, E Valeo, EJ Zweben, SJ Fisch, NJ AF Ruiz, D. E. Gunderson, L. M. Hay, M. J. Merino, E. Valeo, E. J. Zweben, S. J. Fisch, N. J. TI Aerodynamic focusing of high-density aerosols SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Aerodynamic lens; High-density aerosol beam; Inertial focusing; Particle focusing ID GENERATING PARTICLE BEAMS; CONTROLLED DIMENSIONS; NOZZLE EXPANSIONS; LENSES; DIVERGENCE; MOTION AB High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 mu m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ruiz, D. E.; Gunderson, L. M.; Hay, M. J.; Fisch, N. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Merino, E.; Valeo, E. J.; Zweben, S. J.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ruiz, DE (reprint author), Princeton Plasma Phys Lab, 100 Stellarator Rd, Plainsboro Township, NJ 08540 USA. EM druiz@pppl.gov FU Department of Energy [DE-AC02-09CH1-1466, 67350-9960, DOE DE-NA0001836] FX The authors are in particular debt to Stephanie Wissel and jean Carlos Gayoso for their early work on methods to produce high-density aerosols. The authors thank Andrew Zwicker and Ronald Bell of PPPL for assistance in setting up the laboratory. This work was supported by the Department of Energy through Contract nos. DE-AC02-09CH1-1466 and 67350-9960 (Prime number DOE DE-NA0001836). NR 14 TC 2 Z9 2 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD OCT PY 2014 VL 76 BP 115 EP 125 DI 10.1016/j.jaerosci.2014.05.010 PG 11 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AQ1KU UT WOS:000342541100010 ER PT J AU Zhang, DM Wang, ZE Heymsfield, A Fan, JW Luo, T AF Zhang, Damao Wang, Zhien Heymsfield, Andrew Fan, Jiwen Luo, Tao TI Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ARCTIC CLOUD; HABIT-PREDICTION; REMOTE SENSORS; CRYSTAL-GROWTH; CLIMATE; VAPOR; MICROPHYSICS; NUCLEATION; CIRRUS; PARAMETERIZATION AB Measurements of ice number concentration in clouds are important but still pose problems. The pattern of ice development in stratiform mixed-phase clouds (SMCs) offers an opportunity to use cloud radar reflectivity (Z(e)) measurements and other cloud properties to retrieve ice number concentrations. To quantify the strong temperature dependencies of ice crystal habits and growth rates, a one-dimensional (1D) ice growth model has been developed to calculate ice diffusional growth and riming growth along ice particle fallout trajectories in SMCs. The radar reflectivity and fallout velocity profiles of ice crystals calculated from the 1D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high-vertical-resolution radar measurements. A method has been developed to retrieve ice number concentrations in SMCs at a specific cloud-top temperature (CTT) and liquid water path (LWP) by combining Z(e) measurements and 1D ice growth model simulations. The retrieved ice number concentrations in SMCs are evaluated using integrated airborne in situ and remote sensing measurements and three-dimensional cloud-resolving model simulations with a bin microphysical scheme. The statistical evaluations show that the retrieved ice number concentrations in the SMCs are within an uncertainty of a factor of 2. C1 [Zhang, Damao; Wang, Zhien; Luo, Tao] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Heymsfield, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fan, Jiwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, DM (reprint author), Univ Wyoming, Dept Atmospher Sci, 1000 E Univ Ave, Laramie, WY 82071 USA. EM dzhang4@uwyo.edu RI Fan, Jiwen/E-9138-2011; Wang, Zhien/F-4857-2011; zhang, damao/A-2900-2016 OI zhang, damao/0000-0002-3518-292X FU DOE Grant as part of the ASR program [DE-SC0006974]; NASA [NNX10AN18G, NNX13AQ41G]; DOE ASR program FX This research was funded by the DOE Grant DE-SC0006974 as part of the ASR program and by the NASA Grants NNX10AN18G and NNX13AQ41G. J. Fan is supported by the DOE ASR program. The ground-based measurement data were obtained from the DOE ARM data archives. The authors thank Jen-Ping Chen, Kara Sulia, and Tempei Hashino for providing the IGR values used in the ice growth model; Robert Jackson and Greg McFarquhar for providing the 2D-C data from ISDAC; and Jeff French and Alfred Rodi for their discussions on techniques in in situ aircraft measurements. Many thanks are also extended to the three anonymous reviewers for their constructive comments. NR 56 TC 5 Z9 5 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD OCT PY 2014 VL 71 IS 10 BP 3613 EP 3635 DI 10.1175/JAS-D-13-0354.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AP9IR UT WOS:000342394000003 ER PT J AU Grasso, L Lindsey, DT Lim, KSS Clark, A Bikos, D Dembek, SR AF Grasso, Lewis Lindsey, Daniel T. Lim, Kyo-Sun Sunny Clark, Adam Bikos, Dan Dembek, Scott R. TI Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF-ARW Using Synthetic and Observed GOES-13 Imagery SO MONTHLY WEATHER REVIEW LA English DT Article ID SATELLITE-OBSERVATIONS; PARAMETERIZATION; PRECIPITATION; WEATHER; SYSTEM; MODEL; SIMULATION; MESOSCALE; FORECASTS; CLOUDS AB Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) single-moment 6-class (WSM6) microphysics scheme in the Advanced Research WRF (WRF-ARW) produces less upper-level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite-13 (GOES-13) imagery at 10.7 mu m of simulated cloud fields from the 4-km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper-level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the 4-km NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere. C1 [Grasso, Lewis; Lindsey, Daniel T.; Bikos, Dan] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Lindsey, Daniel T.] Colorado State Univ, NOAA, Ctr Satellite Applicat & Res, Ft Collins, CO 80523 USA. [Lim, Kyo-Sun Sunny] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Clark, Adam] Natl Severe Storms Lab, Norman, OK 73069 USA. [Dembek, Scott R.] Cooperat Inst Mesoscale Meteorol Studies, Norman, OK USA. RP Grasso, L (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. EM lewis.grasso@colostate.edu RI Lim, Kyo-Sun/I-3811-2012; Lindsey, Dan/F-5607-2010 OI Lindsey, Dan/0000-0002-0967-5683 FU NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) GOES-R Program Office; Office of Science of the U.S. Department of Energy as part of Science Biological and Environmental Research; China Ministry of Sciences and Technology on regional climate research and Earth System Modeling program; DOE [DE-AC05-76L01830] FX This research is primarily funded by NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) GOES-R Program Office. We would also like to extend our thanks to Dr. Song-You Hong for his assistance. Further, K.-S. S. Lim was supported by the Office of Science of the U.S. Department of Energy as part of Science Biological and Environmental Research under a bilateral agreement with the China Ministry of Sciences and Technology on regional climate research and Earth System Modeling program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76L01830. The views, opinions, and findings in this report are those of the authors, and should not be construed as an official NOAA and or U.S. government position, policy, or decision. NR 27 TC 5 Z9 5 U1 1 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD OCT PY 2014 VL 142 IS 10 BP 3635 EP 3650 DI 10.1175/MWR-D-14-00005.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ0OK UT WOS:000342482400007 ER PT J AU Huang, Y Maier, BR Allen, TR AF Huang, Y. Maier, B. R. Allen, T. R. TI Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID COATED FUEL-PARTICLES; ZRC; CERAMICS AB Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for high-temperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 degrees C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 degrees C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Huang, Y.; Maier, B. R.; Allen, T. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Allen, T. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Huang, Y (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM na.huang@materials.ox.ac.uk OI Allen, Todd/0000-0002-2372-7259 FU Department of Energy through Nuclear Energy Research Initiative program [10-679] FX The authors would like to express their gratitude to Arthur Motta at Penn State University, Dane Morgan and Izabela Szlufarska at University of Wisconsin for their assistance on this research. This work is funded by Department of Energy through Nuclear Energy Research Initiative program (Project 10-679). NR 24 TC 3 Z9 3 U1 4 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT 1 PY 2014 VL 277 BP 55 EP 63 DI 10.1016/j.nucengdes.2014.06.001 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ3UC UT WOS:000342718000006 ER PT J AU Alikulova, SA Baytelesov, SA Boltaboev, AF Kungurov, FR Menlove, HO O'Connor, W Osmanov, BS Salikhbaev, US AF Alikulova, Sh. A. Baytelesov, S. A. Boltaboev, A. F. Kungurov, F. R. Menlove, H. O. O'Connor, W. Osmanov, B. S. Salikhbaev, U. S. TI Experimental studies of spent fuel burn-up in WWR-SM reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SPECTROMETRY AB The article reports the results of U-235 burn-up measurements using Cs-137 activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%. (C) 2014 Elsevier B.V. All rights reserved. C1 [Alikulova, Sh. A.; Baytelesov, S. A.; Boltaboev, A. F.; Kungurov, F. R.; Salikhbaev, U. S.] Inst Nucl Phys, Tashkent 100174, Uzbekistan. [Menlove, H. O.; O'Connor, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Osmanov, B. S.] Appl Phys Res Inst, Tashkent 100174, Uzbekistan. RP Osmanov, BS (reprint author), Appl Phys Res Inst, Tashkent 100174, Uzbekistan. EM bari_osmanov@yahoo.com FU State Science and Technology Program of Uzbekistan [F2-FA-F112]; Department of Energy National Nuclear Security Administration's (NNSA's) Office of Nonproliferation and International Security (NIS), Office of Nuclear Verification FX This work was funded by the State Science and Technology Program of Uzbekistan under the contract number F2-FA-F112 "Experimental studies of properties and states of nuclear matter at high and low energies". Authors would also like to acknowledge the Department of Energy National Nuclear Security Administration's (NNSA's) Office of Nonproliferation and International Security (NIS), Office of Nuclear Verification for their support. NR 15 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT 1 PY 2014 VL 277 BP 163 EP 165 DI 10.1016/j.nucengdes.2014.06.020 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ3UC UT WOS:000342718000016 ER PT J AU Lee, SY Smith, FG AF Lee, Si Y. Smith, Frank G. TI Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lee, Si Y.; Smith, Frank G.] Savannah River Nucl Solut LLC, Savannah River Lab, Aiken, SC 29808 USA. RP Lee, SY (reprint author), Savannah River Nucl Solut LLC, Savannah River Lab, Aiken, SC 29808 USA. EM si.lee@srnl.doe.gov; frank02.smith@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470] FX This work was funded by U.S. Department of Energy (grant no. DE-AC09-08SR22470) and performed at the Savannah River National Laboratory, which is operated by Savannah River Nuclear Solutions, LLC. NR 7 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT 1 PY 2014 VL 277 BP 188 EP 197 DI 10.1016/j.nucengdes.2014.06.021 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ3UC UT WOS:000342718000019 ER PT J AU Hunke, EC AF Hunke, Elizabeth C. TI Sea ice volume and age: Sensitivity to physical parameterizations and thickness resolution in the CICE sea ice model SO OCEAN MODELLING LA English DT Article DE Sea ice; Rheology; Resolution; Volume; Age; Arctic ID MASS-BALANCE; DYNAMICS; CLIMATE; SIMULATIONS; SALINITY; RHEOLOGY; IMPACT; CCSM3 AB New dynamics parameterizations in Version 5 of the Los Alamos Sea Ice Model, CICE, feature an anisotropic rheology and variable drag coefficients. This study investigates their effect on Arctic sea ice volume and age simulations, along with the effects of several pre-existing model options: a parameter that represents the mean cumulative area of ice participating in ridging, the resolution of the ice thickness distribution, and the resolution of the vertical temperature and salinity profiles. By increasing shear stress between floes, the anisotropic rheology slows the ice motion, producing a thicker, older ice pack. The inclusion of variable drag coefficients, which depend on modeled roughness elements such as deformed ice and melt pond edges, leads to thinner ice and a more realistic simulation of sea ice age. Several feedback processes act to enhance differences among the runs. Notably, if less open water is produced mechanically through ice deformational processes, the simulated ice thins relative to runs with more mechanically produced open water. Thermodynamic processes can have opposing effects on ice age and volume; for instance, growth of new ice increases the volume while decreasing the age of the pack. Therefore, age data provides additional information useful for differentiating among process parameterization effects and sensitivities to other model parameters. Resolution of thicker ice types is crucial for proper modeling of sea ice volume, because the volume of ice in the thicker ice categories determines the total ice volume. Model thickness categories tend to focus resolution for thinner ice; this paper demonstrates that 5 ice thickness categories are not enough to accurately resolve the ice thickness distribution for simulations of ice volume. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hunke, Elizabeth C.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T3, Los Alamos, NM 87545 USA. RP Hunke, EC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM eclare@lanl.gov FU Regional and Global Climate Modeling Program of the U.S. Department of Energy, Office of Science, Biological and Environmental Research Division; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX Sincere thanks to Matthew Hecht for providing comments on the manuscript. This work was performed within the Climate, Ocean and Sea Ice Modeling (COSIM) program at Los Alamos National Laboratory, as a contribution to the Sea Ice Prediction Network with funding from the Regional and Global Climate Modeling Program of the U.S. Department of Energy, Office of Science, Biological and Environmental Research Division. Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 53 TC 5 Z9 5 U1 4 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD OCT PY 2014 VL 82 BP 45 EP 59 DI 10.1016/j.ocemod.2014.08.001 PG 15 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA AQ3HW UT WOS:000342683500004 ER PT J AU Wang, YY Freund, DM Magdaong, NM Urban, VS Frank, HA Hegeman, AD Tang, JKH AF Wang, Yaya Freund, Dana M. Magdaong, Nikki M. Urban, Volker S. Frank, Harry A. Hegeman, Adrian D. Tang, Joseph Kuo-Hsiang TI Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Bacteriochlorophylls; Chlorosomes; Energy transfer; Long-chain alcohols; Self-assembly ID ANGLE NEUTRON-SCATTERING; GREEN SULFUR BACTERIA; CHLOROBACULUM-TEPIDUM; CHLOROBIUM-TEPIDUM; STRAIN OK-70-FL; TEMPERATURE; LIGHT; ORGANIZATION; CHLOROPHYLLS; PIGMENTS AB A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 A degrees C (an optimal growth temperature) and 44 A degrees C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 A degrees C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 A degrees C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed. C1 [Wang, Yaya; Tang, Joseph Kuo-Hsiang] Clark Univ, Dept Chem & Biochem, Worcester, MA 01610 USA. [Freund, Dana M.; Hegeman, Adrian D.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55455 USA. [Freund, Dana M.; Hegeman, Adrian D.] Univ Minnesota, Dept Hort Sci, St Paul, MN 55455 USA. [Freund, Dana M.; Hegeman, Adrian D.] Univ Minnesota, Microbial & Plant Genom Inst, St Paul, MN 55455 USA. [Magdaong, Nikki M.; Frank, Harry A.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Tang, JKH (reprint author), Clark Univ, Dept Chem & Biochem, Worcester, MA 01610 USA. EM jtang@clarku.edu RI Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; Hegeman, Adrian/0000-0003-1008-6066; Freund, Dana/0000-0001-8371-9894 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [ERKP291]; NSF Plant Genome Research Program [IOS-1238812]; National Science Foundation [MCB-1243565]; University of Connecticut Research Foundation FX JKT thanks PARC Scientific Exchange Program for supporting SANS measurements and Dr. Sai Venkatesh Pingali at Bio-SANS CG-3 for assisting SANS measurement and discussing SANS data. Bio-SANS CG-3 is a resource of the Center for Structural Molecular Biology at ORNL supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Project ERKP291. ADH and DMF acknowledge support from NSF Plant Genome Research Program grant IOS-1238812. Work in the laboratory of HAF was supported by grants from the National Science Foundation (MCB-1243565) and the University of Connecticut Research Foundation. JKT is supported by start-up funds. NR 48 TC 3 Z9 3 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD OCT PY 2014 VL 122 IS 1 BP 69 EP 86 DI 10.1007/s11120-014-0017-5 PG 18 WC Plant Sciences SC Plant Sciences GA AQ0SM UT WOS:000342493000006 PM 24880610 ER PT J AU Scholz, M Lo, CC Chain, PSG AF Scholz, Matthew Lo, Chien-Chi Chain, Patrick S. G. TI Improved Assemblies Using a Source-Agnostic Pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of Contigs SO SCIENTIFIC REPORTS LA English DT Article ID DE-BRUIJN GRAPHS; SINGLE-CELL; GENE AB Assembly of metagenomic samples is a very complex process, with algorithms designed to address sequencing platform-specific issues, (read length, data volume, and/or community complexity), while also faced with genomes that differ greatly in nucleotide compositional biases and in abundance. To address these issues, we have developed a post-assembly process: MetaGenomic Assembly by Merging (MeGAMerge). We compare this process to the performance of several assemblers, using both real, and in-silico generated samples of different community composition and complexity. MeGAMerge consistently outperforms individual assembly methods, producing larger contigs with an increased number of predicted genes, without replication of data. MeGAMerge contigs are supported by read mapping and contig alignment data, when using synthetically-derived and real metagenomic data, as well as by gene prediction analyses and similarity searches. MeGAMerge is a flexible method that generates improved metagenome assemblies, with the ability to accommodate upcoming sequencing platforms, as well as present and future assembly algorithms. C1 [Scholz, Matthew; Lo, Chien-Chi; Chain, Patrick S. G.] Los Alamos Natl Lab, Genome Sci Grp, Los Alamos, NM 87545 USA. [Scholz, Matthew; Lo, Chien-Chi; Chain, Patrick S. G.] Joint Genome Inst, Microbial & Metagenome Program, Walnut Creek, CA 94598 USA. RP Chain, PSG (reprint author), Los Alamos Natl Lab, Genome Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM pchain@lanl.gov OI Chain, Patrick/0000-0003-3949-3634 FU U.S. Department of Energy Joint Genome Institute through the Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Homeland Security [HSHQDC08X00790]; U.S. Defense Threat Reduction Agency's Joint Science and Technology Office (DTRA J9-CB/JSTO) [B104153I, B084531I] FX Thank you to Paul Li for his work contributing to this paper, specifically for help in using Prodigal for validation of contigs. This study was supported in part by the U.S. Department of Energy Joint Genome Institute through the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and grants from the U.S. Department of Homeland Security under contract number HSHQDC08X00790 and the U.S. Defense Threat Reduction Agency's Joint Science and Technology Office (DTRA J9-CB/JSTO) under contract numbers B104153I and B084531I. NR 22 TC 7 Z9 7 U1 0 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 1 PY 2014 VL 4 AR 6480 DI 10.1038/srep06480 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ3WK UT WOS:000342724000002 PM 25270300 ER PT J AU Boslough, M AF Boslough, Mark TI Impact decision support diagrams SO ACTA ASTRONAUTICA LA English DT Article DE Impact; NEO; Risk assessment; Decision support; Uncertainty quantification AB One way to frame the job of planetary defense is to "find the optimal approach for finding the optimal approach" to NEO mitigation. This requires a framework for defining in advance what should be done under various circumstances. The two-dimensional action matrix from the recent NRC report "Defending Planet Earth" can be generalized to a notional "Impact Decision Support Diagram" by extending it into a third dimension. The NRC action matrix incorporated two important axes: size and time-to-impact, but probability of impact is also critical (it is part of the definitions of both the Torino and Palermo scales). Uncertainty has been neglected, but is also crucial. It can be incorporated by subsuming it into the NEO size axis by redefining size to be three standard deviations greater than the best estimate, thereby providing a built-in conservative margin. The independent variable is time-to-impact, which is known with high precision. The other two axes are both quantitative assessments of uncertainty and are both time dependent. Thus, the diagram is entirely an expression of uncertainty. The true impact probability is either one or zero, and the true size does not change. The domain contains information about the current uncertainty, which changes with time (as opposed to reality, which does not change). (C) 2013 IAA. Published by Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boslough, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mbboslo@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 2 TC 0 Z9 0 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2014 VL 103 BP 358 EP 361 DI 10.1016/j.actaastro.2013.08.013 PG 4 WC Engineering, Aerospace SC Engineering GA AP7NX UT WOS:000342265100031 ER PT J AU Boslough, M AF Boslough, Mark TI Airburst warning and response SO ACTA ASTRONAUTICA LA English DT Article DE Asteroid; Airburst; NEO; Impact; Risk AB It is virtually certain (probability > 99%) that the next destructive NEO event will be an airburst. Planetary defense is usually assumed to have the primary goal of maximizing the number of lives saved, but it can be argued that more emphasis should be placed on maximizing the probability of saving lives. For the latter goal, it is far more effective to create an early warning and civil defense plan than a mitigation plan that involves deflecting a large NEO. Because early warning and civil defense will almost certainly be needed long before the first deflection is ever required, the credibility of the planetary defense community and its recommendations will be put to its first serious test by an airburst Successful response to an airburst event will make it much more likely that recommendations for mitigation by deflection will be accepted by decision makers and the public. Focusing more attention on the second goal will, as a side effect, benefit the primary goal. (C) 2013 IAA. Published by Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boslough, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mbboslo@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 3 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2014 VL 103 BP 370 EP 375 DI 10.1016/j.actaastro.2013.09.007 PG 6 WC Engineering, Aerospace SC Engineering GA AP7NX UT WOS:000342265100033 ER PT J AU Howley, K Managan, R Wasem, J AF Howley, Kirsten Managan, Robert Wasem, Joseph TI Blow-off momentum from melt and vapor in nuclear deflection scenarios SO ACTA ASTRONAUTICA LA English DT Article DE Deflection; Asteroid; Nuclear; Hydrodynamic; Momentum AB For Earth-impacting objects that are large in size or have short warning times nuclear explosives are an effective threat mitigation response. Nuclear-based deflection works by means of conservation of momentum: as material is heated by incoming photons and neutrons it is ejected from the body which imparts momentum to the remaining mass of the asteroid. Predicting the complete response of a particular object is difficult, since the ejecta size and velocity distributions rely heavily on the unknown, complicated internal structure of the body. However, lower bounds on the blow-off momentum can be estimated using the melted and vaporized surface material. In this paper, we model the response of a one-dimensional SiO2 surface to monoenergetic soft X-ray, hard X-ray and neutron sources using Arbitrary Lagrangian Eulerian radiation/hydrodynamic simulations. Errors in the blow-off momentum due to our hydrodynamic mesh resolution are quantified and inform zone sizing that balances numerical discretization error with computational efficiency. We explore deposited energy densities ranging from 1.1 to 200 times the melt energy density for SiO2, and develop an approximate relation that gives the mesh resolution needed for a desired percent error in the blow-off momentum as a function of deposited energy density and melt depth. Using these mesh constraints, the response of our one-dimensional SiO2 surface to the energy sources is simulated, and lower bounds are placed on the melt/vapor blow-off momentum as a function of deposited energy density and source energy type. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Howley, Kirsten; Managan, Robert; Wasem, Joseph] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Howley, K (reprint author), Lawrence Livermore Natl Lab, L-031,7000 East Ave, Livermore, CA 94550 USA. EM howley1@llnl.gov; managan@llnl.gov; wasem2@llnl.gov RI Managan, Robert/C-5976-2014 OI Managan, Robert/0000-0001-9444-1162 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [12-ERD-005] FX LLNL-JRNL-655388. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and partially funded by the Laboratory Directed Research and Development Program at LLNL under tracking code 12-ERD-005. NR 10 TC 4 Z9 4 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD OCT-NOV PY 2014 VL 103 BP 376 EP 381 DI 10.1016/j.actaastro.2014.06.022 PG 6 WC Engineering, Aerospace SC Engineering GA AP7NX UT WOS:000342265100034 ER PT J AU Moon, JW Ivanov, IN Joshi, PC Armstrong, BL Wang, W Jung, H Rondinone, AJ Jellison, GE Meyer, HM Jang, GG Meisner, RA Duty, CE Phelps, TJ AF Moon, Ji-Won Ivanov, Ilia N. Joshi, Pooran C. Armstrong, Beth L. Wang, Wei Jung, Hyunsung Rondinone, Adam J. Jellison, Gerald E., Jr. Meyer, Harry M., III Jang, Gyoung Gug Meisner, Roberta A. Duty, Chad E. Phelps, Tommy J. TI Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films SO ACTA BIOMATERIALIA LA English DT Article DE Microbial synthesis; ZnS nanoparticles; Thin films; Metal-reducing bacteria X513 ID DEEP SUBSURFACE ENVIRONMENTS; PHOTOLUMINESCENT PROPERTIES; ZNS NANOPARTICLES; CDS NANOCRYSTALS; HEXAGONAL STACKING; OPTICAL-PROPERTIES; GROWTH; TEMPERATURE; SPHALERITE; PARTICLES AB A series of semiconducting zinc sulfide (ZnS) nanoparticles were scalably, reproducibly, controllably and economically synthesized with anaerobic metal-reducing Thermoanaerobacter species. These bacteria reduced partially oxidized sulfur sources to sulfides that extracellularly and thermodynamically incorporated with zinc ions to produce sparingly soluble ZnS nanoparticles with similar to 5 nm crystallites at yields of similar to 5 g I-1 month(-1). A predominant sphalerite formation was facilitated by rapid precipitation kinetics, a low cation/anion ratio and a higher zinc concentration compared to background to produce a naturally occurring hexagonal form at the low temperature, and/or water adsorption in aqueous conditions. The sphalerite ZnS nanoparticles exhibited narrow size distribution, high emission intensity and few native defects. Scale-up and emission tunability using copper doping were confirmed spectroscopically. Surface characterization was determined using Fourier transform infrared and X-ray photoelectron spectroscopies, which confirmed amino acid as proteins and bacterial fermentation end products not only maintaining a nano-dimensional average crystallite size, but also increasing aggregation. The application of ZnS nanoparticle ink to a functional thin film was successfully tested for potential future applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Moon, Ji-Won; Jung, Hyunsung; Jang, Gyoung Gug; Phelps, Tommy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Ivanov, Ilia N.; Rondinone, Adam J.] ORNL, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. [Joshi, Pooran C.; Armstrong, Beth L.; Jellison, Gerald E., Jr.; Meyer, Harry M., III; Meisner, Roberta A.; Duty, Chad E.] ORNL, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, Wei] ORNL, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Moon, JW (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM moonj@ornl.gov RI Moon, Ji-Won/A-9186-2011; Wang, Wei/B-5924-2012; ivanov, ilia/D-3402-2015; Rondinone, Adam/F-6489-2013; Armstrong, Beth/E-6752-2017 OI Moon, Ji-Won/0000-0001-7776-6889; ivanov, ilia/0000-0002-6726-2502; Rondinone, Adam/0000-0003-0020-4612; Armstrong, Beth/0000-0001-7149-3576 FU US Department of Energy (DOE), Advanced Manufacturing Office, Low Temperature Material Synthesis Program [CPS 24762]; Oak Ridge National Laboratory (ORNL), Laboratory Directed Research and Development Program Launch Initiative; ORNL Scientific User Facilities Division; DOE Office of Basic Research Sciences; DOE [DE-AC05-00OR22725] FX The authors gratefully acknowledge the support of the US Department of Energy (DOE), Advanced Manufacturing Office, Low Temperature Material Synthesis Program (CPS 24762) and of the Oak Ridge National Laboratory (ORNL), Laboratory Directed Research and Development Program Launch Initiative. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the ORNL Scientific User Facilities Division and DOE Office of Basic Research Sciences. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The authors also wish to thank Xiangping Ying for ICP-MS analysis, Sue Carroll for cell counting and various reviewers for constructive comments. NR 42 TC 8 Z9 8 U1 5 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD OCT PY 2014 VL 10 IS 10 BP 4474 EP 4483 DI 10.1016/j.actbio.2014.06.005 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA AQ1ED UT WOS:000342523800042 PM 24932768 ER PT J AU Frank, JH Shavorskiy, A Bluhm, H Coriton, B Huang, E Osborn, DL AF Frank, Jonathan H. Shavorskiy, Andrey Bluhm, Hendrik Coriton, Bruno Huang, Erxiong Osborn, David L. TI In situ soft X-ray absorption spectroscopy of flames SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID K-SHELL EXCITATION; SPECTRA AB The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure (P (total) = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner. C1 [Frank, Jonathan H.; Coriton, Bruno; Huang, Erxiong; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Shavorskiy, Andrey] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shavorskiy, Andrey; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Frank, JH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM jhfrank@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; US Department of Energy [DE-AC04-94-AL85000]; Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was funded by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94-AL85000. The Advanced Light Source and beamline 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 12 TC 4 Z9 4 U1 2 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD OCT PY 2014 VL 117 IS 1 BP 493 EP 499 DI 10.1007/s00340-014-5860-8 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA AP6YT UT WOS:000342225300058 ER PT J AU Lorenzo-Martin, C Ajayi, OO AF Lorenzo-Martin, C. Ajayi, O. O. TI Effect of SiC particle impact nano-texturing on tribological performance of 304L stainless steel SO APPLIED SURFACE SCIENCE LA English DT Article DE Surface texture; Friction; Wear ID LUBRICATED SLIDING CONTACT; SURFACE; MARTENSITE; FRICTION; DEFORMATION; BEHAVIOR; WEAR AB Topographical features on sliding contact surfaces are known to have a significant impact on friction and wear. Indeed, various forms of surface texturing are being used to improve and/or control the tribological performance of sliding surfaces. In this paper, the effect of random surface texturing produced by a mechanical impact process is studied for friction and wear behavior of 304L stainless steel (SS) under dry and marginal oil lubrication. The surface processing was applied to 304L SS flat specimens and tested under reciprocating ball-on-flat sliding contact, with a 440C stainless steel ball. Under dry contact, the impact textured surface exhibited two order of magnitude lower wear than the isotropically ground surface of the same material. After 1500 s of sliding and wearing through of the processed surface layer following occurring of scuffing, the impact textured surface underwent a transition in wear and friction behavior. Under marginal oil lubrication, however, no such transition occurred, and the wear for the impact textured surface was consistently two orders of magnitude lower than that for the ground material. Mechanisms for the tribological performance enhancement are proposed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lorenzo-Martin, C.; Ajayi, O. O.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Lorenzo-Martin, C (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Lorenzo-martin@anl.gov OI Lorenzo Martin, Maria Cinta/0000-0002-3028-0512 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-06CH11357] FX This work was supported by U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under contract DE-AC02-06CH11357. NR 16 TC 3 Z9 3 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 1 PY 2014 VL 315 BP 287 EP 291 DI 10.1016/j.apsusc.2014.06.173 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AP8WO UT WOS:000342360300042 ER PT J AU Anderson, DC Loughner, CP Diskin, G Weinheimer, A Canty, TP Salawitch, RJ Worden, HM Fried, A Mikoviny, T Wisthaler, A Dickerson, RR AF Anderson, Daniel C. Loughner, Christopher P. Diskin, Glenn Weinheimer, Andrew Canty, Timothy P. Salawitch, Ross J. Worden, Helen M. Fried, Alan Mikoviny, Tomas Wisthaler, Armin Dickerson, Russell R. TI Measured and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air quality; National Emissions Inventory; CO; NOx; On-road emissions; CMAQ ID REMOTE-SENSING MEASUREMENTS; VEHICLE EMISSIONS; LOS-ANGELES; OZONE; CALIFORNIA; TRENDS; BAY AB Data collected during the 2011 DISCOVER-AQ field campaign in the Baltimore Washington region were used to evaluate CO and NOx emissions in the National Emissions Inventory (NEI). The average emissions ratio for the region was seen to be 11.2 +/- 1.2 mol CO/mol NOx, 21% higher than that predicted by the NEI. Comparisons between in situ and remote observations and CMAQ model output show agreement in CO emissions of 15 +/- 11% while NOx emissions are overestimated by 51-70% in Maryland. Satellite observations of CO by MOPITT show agreement with the Community Multiscale Air Quality (CMAQ) model within 3% over most of the eastern United States. CMAQ NOy mixing ratios were a factor of two higher than observations and result from a combination of errors in emissions and PAN and alkyl nitrate chemistry, as shown by comparison of three CMAQ model runs. Point source NOx emissions are monitored and agree with modeled emissions within 1% on a monthly basis. Because of this accuracy and the NEI assertion that approximately 3/4 of emissions in the Baltimore Washington region are from mobile sources, the MOVES model's treatment of emissions from aging vehicles should be investigated; the NEI overestimate of NOx emissions could indicate that engines produce less NOx and catalytic converters degrade more slowly than assumed by MOVES2010. The recently released 2011 NEI has an even lower CO/NOx emissions ratio than the projection used in this study; it overestimates NOx emissions by an even larger margin. The implications of these findings for US air quality policy are that NOx concentrations near areas of heavy traffic are overestimated and ozone production rates in these locations are slower than models indicate. Results also indicate that ambient ozone concentrations will respond more efficiently to NOx emissions controls but additional sources may need to be targeted for reductions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Anderson, Daniel C.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Loughner, Christopher P.; Salawitch, Ross J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Loughner, Christopher P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Weinheimer, Andrew; Worden, Helen M.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Fried, Alan] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80303 USA. [Mikoviny, Tomas] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Wisthaler, Armin] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. RP Anderson, DC (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM danderson@atmos.umd.edu RI Salawitch, Ross/B-4605-2009; Anderson, Daniel/I-4398-2014; Dickerson, Russell/F-2857-2010; Canty, Timothy/F-2631-2010; OI Salawitch, Ross/0000-0001-8597-5832; Anderson, Daniel/0000-0002-9826-9811; Dickerson, Russell/0000-0003-0206-3083; Canty, Timothy/0000-0003-0618-056X; Loughner, Christopher/0000-0002-3833-2014 FU NASA; AQAST FX We thank Andreas Beyersdorf and Bruce Anderson (NASA Langley) for aerosol data, Ron Cohen (UC Berkeley) for TDLIF measurements, and David Krask (MDE) for surface isoprene observations. This work was supported by grants from NASA and AQAST. NR 37 TC 18 Z9 18 U1 7 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2014 VL 96 BP 78 EP 87 DI 10.1016/j.atmosenv.2014.07.004 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AP7HF UT WOS:000342247700009 ER PT J AU McGuire, JM Congdon, JD Scribner, KT Nagle, RD AF McGuire, Jeanette M. Congdon, J. D. Scribner, K. T. Nagle, R. D. TI Female reproductive qualities affect male painted turtle (Chrysemys picta marginata) reproductive success SO BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY LA English DT Article DE Reproductive success; Painted turtles; Repeat paternity; Offspring ID MALE MATE CHOICE; POSTCOPULATORY SEXUAL SELECTION; RED-WINGED BLACKBIRDS; SPERM STORAGE; EMYDOIDEA-BLANDINGII; MULTIPLE PATERNITY; MICROSATELLITE LOCI; EXPERIMENTAL NESTS; COMPUTER-PROGRAM; MOTTLED SCULPIN AB Male reproductive success (RS) in polygamous species with minimal social systems is often determined by the number of mates. However, because male RS is translated through females, the number of offspring sired can also be influenced by female qualities. Empirically sufficient data to document how tradeoffs between mate number and quality influence male RS are seldom available for long-lived, iteroparous species. We combined long-term life history data (1983-2006) on the E. S. George Reserve (ESGR, MI, USA) with parentage data from 155 clutches of 59 female painted turtles (Chrysemys picta marginata) of varying reproductive frequencies (2003-2006) to determine the relative contribution of female numbers and qualities on male RS. One previously documented trait of female painted turtles that can have substantial influences on male RS is repeat paternity through the use of stored sperm to fertilize over 95 % of within-year clutches. In addition, our study found that second-clutch producing female painted turtles on the ESGR have higher among-year reproductive frequencies than do first-clutch only females. Multiple paternity was detected in 14.1 % of clutches (min-max = 6.1-30.0 % annually), and the number of mates of both sexes was low annually (males 1.0; females 1.2) and over 4 years (males 1.1; females 1.7). Among successful males, RS varied substantially (1-32 offspring) and was strongly influenced by the combination of female reproductive frequency and repeat paternity (> 38 % among years), but not mate number. Low mate number for both sexes was unexpected in a species without complex mating behaviors or parental care. C1 [McGuire, Jeanette M.; Scribner, K. T.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. [Congdon, J. D.; Nagle, R. D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Scribner, K. T.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Nagle, R. D.] Juniata Coll, Huntingdon, PA 16652 USA. RP McGuire, JM (reprint author), Michigan State Univ, Dept Zool, Room 203,288 Farm Lane, E Lansing, MI 48824 USA. EM mcguir35@msu.edu FU National Science Foundation [DEB-74-070631, DEB-79-06301, BSR-84-00861, BSR-90-19771]; Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, U.S. Department of Energy [DE-FC09-96SR18546] FX We recognize the contributions of the long-term field crew H. Avery, O. Kinney, T. Quinter, and R. van Loben Sels and the large number of shorter term field assistants. Thanks to Ruth Estes and Margaret Burkman for long hours of line editing the mark-recapture, X-radiograph, and nesting ecology data sets, and special thanks to Cece Fabbro for her company, conversations, and emergency help processing hatchlings used in the genetics study. Assistance with the laboratory portion of the study was provided by S. Libants, K. Bennett, and J. Weatherhead, and B. Jones helped with obtaining and facilitating the use of the NEST program. Improvements of earlier drafts of the manuscript are the results of comments from N. Dickson, K. Holekamp, R. van Loben Sels, D. Schemske, A. McAdam, members of the Scribner lab, and V. Buonaccorsi and from reviews and comments from F. Janzen. The first third of the life history research study was supported by the National Science Foundation (DEB-74-070631, DEB-79-06301, BSR-84-00861, and BSR-90-19771) to JDC, and manuscript preparation was aided by the Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, U.S. Department of Energy through the Financial Assistant Award no. DE-FC09-96SR18546 to the University of Georgia Research Foundation. Additional support for the life history and genetics study was provided by N. Dickson, J. Congdon, the Fabbro family, and M. Tinkle. Research and manuscript preparation were aided by the University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department (JMM), the Partnership for Ecosystem Research and Management (PERM) program between the Michigan Department of Natural Resources and Michigan State University Department of Fisheries and Wildlife (KTS), and the Michigan Agricultural Experimental Station (KTS). NR 89 TC 4 Z9 4 U1 8 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0340-5443 EI 1432-0762 J9 BEHAV ECOL SOCIOBIOL JI Behav. Ecol. Sociobiol. PD OCT PY 2014 VL 68 IS 10 BP 1589 EP 1602 DI 10.1007/s00265-014-1768-x PG 14 WC Behavioral Sciences; Ecology; Zoology SC Behavioral Sciences; Environmental Sciences & Ecology; Zoology GA AP6ZC UT WOS:000342226200005 ER PT J AU Ramos, AG Nunziata, SO Lance, SL Rodriguez, C Faircloth, BC Gowaty, PA Drummond, H AF Ramos, Alejandra G. Nunziata, Schyler O. Lance, Stacey L. Rodriguez, Cristina Faircloth, Brant C. Gowaty, Patricia Adair Drummond, Hugh TI Interactive effects of male and female age on extra-pair paternity in a socially monogamous seabird SO BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY LA English DT Article DE Age; Female choice; Extra-pair paternity; Extra-pair sire; Infertility; Good genes ID BLUE-FOOTED BOOBY; SULA-NEBOUXII; SEXUAL SELECTION; GOOD GENES; EASTERN BLUEBIRDS; SIALIA-SIALIS; OLDER MALES; TRADE-OFFS; SENESCENCE; BIRDS AB Females sometimes obtain older sires for their offspring through extra-pair interactions, but how female age influences paternity is largely unexplored and interactive effects across the age span of both sexes have not been analyzed. To test whether female choice of sire age varies with female age in the blue-footed booby (Sula nebouxii), we examined associations between ages of both partners and the probability of extra-pair paternity (EPP) in 350 broods of parents up to 22 years old in a single breeding season. Extra-pair paternity enables a female to select an alternative sire for her offspring and could function to avoid or achieve particular combinations of parental ages. A male age x female age interaction revealed that in young females (a parts per thousand currency sign4 years), EPP decreased with increasing age of the social partner, whereas in old females (a parts per thousand yen8 years), it increased. Moreover, sires of extra-pair (EP) chicks of young females paired to young males were on average 6.33 years older than the females' social partners. Since female boobies control copulatory access, this pattern could imply that young females choose old sires for their proven genetic quality and that old females avoid very old males because matings with them may risk infertility or genetic defects in offspring. Taking female age into account and observing across the whole age span may be necessary for understanding female age-based mate choice. C1 [Ramos, Alejandra G.; Rodriguez, Cristina; Drummond, Hugh] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Evolut, Mexico City 04510, DF, Mexico. [Nunziata, Schyler O.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Nunziata, Schyler O.] Univ Kentucky, Dept Biol, Lexington, KY USA. [Faircloth, Brant C.; Gowaty, Patricia Adair] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA. [Gowaty, Patricia Adair] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA USA. [Gowaty, Patricia Adair] Smithsonian Trop Res Inst, Washington, DC USA. RP Ramos, AG (reprint author), Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Evolut, AP 70-275, Mexico City 04510, DF, Mexico. EM ramos.alejndra@gmail.com RI Lance, Stacey/K-9203-2013; OI Lance, Stacey/0000-0003-2686-1733; Faircloth, Brant/0000-0002-1943-0217 FU Universidad Nacional Autonoma de Mexico (PAPIIT) [IN206610]; Consejo Nacional de Ciencia y Tecnologia [104313]; Universidad Nacional Autonoma de Mexico; US Department of Energy [DEF C090 7SR22506] FX Simon C. Griffith, Lynna M. Kiere, Marcela Osorio-Beristain, Diana Perez-Staples, Oscar Sanchez-Macouzet, and two anonymous reviewers provided helpful comments on the manuscript. We thank numerous volunteers and colleagues who helped in the field and lab, especially Santiago Bautista-Lopez, Jonathan P. Drury, Gabriela Lopez-Carapia, and Janeth Rosas-Morales. The Armada de Mexico, local fishermen, and staff of the Parque Nacional Isla Isabel supplied vital and much appreciated logistical support. This study was financed by the Universidad Nacional Autonoma de Mexico (PAPIIT, IN206610) and the Consejo Nacional de Ciencia y Tecnologia (104313). This manuscript constitutes a partial fulfillment of the Graduate Program in Biomedical Sciences of the Universidad Nacional Autonoma de Mexico. AGR wishes to acknowledge the scholarship and financial support provided by the Consejo Nacional de Ciencia y Tecnologia and the Universidad Nacional Autonoma de Mexico. This research was partially supported by US Department of Energy under award number DEF C090 7SR22506 to the University of Georgia Research Foundation. NR 53 TC 4 Z9 4 U1 10 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0340-5443 EI 1432-0762 J9 BEHAV ECOL SOCIOBIOL JI Behav. Ecol. Sociobiol. PD OCT PY 2014 VL 68 IS 10 BP 1603 EP 1609 DI 10.1007/s00265-014-1769-9 PG 7 WC Behavioral Sciences; Ecology; Zoology SC Behavioral Sciences; Environmental Sciences & Ecology; Zoology GA AP6ZC UT WOS:000342226200006 ER PT J AU Anderson, CM Ralph, JL Wright, ML Linggi, B Ohm, JE AF Anderson, Cindy M. Ralph, Jody L. Wright, Michelle L. Linggi, Bryan Ohm, Joyce E. TI DNA Methylation as a Biomarker for Preeclampsia SO BIOLOGICAL RESEARCH FOR NURSING LA English DT Article DE epigenetics; biomarker; developmental origins of disease; pregnancy ID EARLY-ONSET PREECLAMPSIA; PLURIPOTENT STEM-CELLS; SPRAGUE-DAWLEY RAT; CARDIOVASCULAR-DISEASE; EARLY-PREGNANCY; HYPERTENSIVE DISORDERS; DIFFERENTIAL METHYLATION; RETROSPECTIVE COHORT; MATERNAL MORTALITY; GENE-EXPRESSION AB Background: Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. Purpose: The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. Method: A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Results: Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. Conclusion: This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae. C1 [Anderson, Cindy M.] Ohio State Univ, Coll Nursing, Columbus, OH 43210 USA. [Ralph, Jody L.; Wright, Michelle L.] Univ N Dakota, Dept Nursing, Coll Nursing & Profess Disciplines, Grand Forks, ND 58201 USA. [Linggi, Bryan] US DOE, Pacific NW Natl Lab, Richland, WA USA. [Ohm, Joyce E.] Univ N Dakota, Dept Biochem & Microbiol, Sch Med & Hlth Sci, Grand Forks, ND 58201 USA. RP Anderson, CM (reprint author), Ohio State Univ, Coll Nursing, 1585 Neil Ave, Columbus, OH 43210 USA. EM anderson.2765@osu.edu OI Wright, Michelle/0000-0002-9348-8740 FU Robert Wood Johnson Foundation Nurse Faculty Scholar Award [64202] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The support provided by the Robert Wood Johnson Foundation Nurse Faculty Scholar Award (CMA, #64202). NR 74 TC 9 Z9 9 U1 1 U2 13 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1099-8004 EI 1552-4175 J9 BIOL RES NURS JI Biol. Res. Nurs. PD OCT PY 2014 VL 16 IS 4 BP 409 EP 420 DI 10.1177/1099800413508645 PG 12 WC Nursing SC Nursing GA AP9HQ UT WOS:000342390000006 PM 24165327 ER PT J AU Morrow, WR Gopal, A Fitts, G Lewis, S Dale, L Masanet, E AF Morrow, William R., III Gopal, Anand Fitts, Gary Lewis, Sarah Dale, Larry Masanet, Eric TI Feedstock loss from drought is a major economic risk for biofuel producers SO BIOMASS & BIOENERGY LA English DT Article DE Switchgrass; Droughts; Biorefinery; Techno-economics; Supply chain; Climate change ID UNITED-STATES; BIOMASS FEEDSTOCK; CLIMATE-CHANGE; SWITCHGRASS; EMISSIONS; INDEX; EVAPOTRANSPIRATION; TEMPERATURE; WEATHER; HARVEST AB High cost of technology is seen as the primary barrier to full commercialization of cellulosic biofuels. There is broad expectation that once conversion technology breakthroughs occur, policy support is only needed to accelerate cost reductions through "learning by doing" effects. In this study, we show that droughts pose a significant economic risk to biofuel producers and consumers regardless of the rate at which technology costs fall. We model a future switchgrass derived cellulosic biorefinery industry in Kansas based on spatially resolute historic (1996-2005) weather data, representing a rainfall regime that could reflect drought events predicted to occur throughout the U.S. Midwest by climatologists (Karl et al. (2009) U.S. Global Change Research Program USA). We find that droughts reduced modeled biorefinery capacity factors, on average, by 47%, raising biofuel production costs by 35% between a modeled dry and wet year. Interestingly, we find that two logical strategies to plan for drought; (1) building large biorefineries to source feedstock from a larger area and, (2) Storing switchgrass in good production years for use in drought years; are not very effective in reducing drought risks. Our findings should be of particular concern to low carbon fuel policies like California's Low Carbon Fuel Standard and the U.S. Second Renewable Fuel Standards (RFS2) whose costs of compliance may be much higher than expected. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Morrow, William R., III; Gopal, Anand; Fitts, Gary; Dale, Larry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lewis, Sarah] EnvisionGeo, Oakville, CA 94562 USA. [Masanet, Eric] Northwestern Univ, Evanston, IL 60208 USA. RP Morrow, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. EM WRMorrow@lbl.gov RI Masanet, Eric /I-5649-2012 FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 4 Z9 4 U1 1 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD OCT PY 2014 VL 69 BP 135 EP 143 DI 10.1016/j.biombioe.2014.05.006 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AP7IH UT WOS:000342250500014 ER PT J AU Guttler, I Brankovic, C O'Brien, TA Coppola, E Grisogono, B Giorgi, F AF Guettler, Ivan Brankovic, Cedo O'Brien, Travis A. Coppola, Erika Grisogono, Branko Giorgi, Filippo TI Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterisation SO CLIMATE DYNAMICS LA English DT Article DE Eddy heat diffusivity; Structural uncertainty; RegCM; Systematic errors ID ERA-INTERIM REANALYSIS; LARGE-SCALE MODELS; CLOSURE-MODEL; WRF MODEL; VERSION 3; SIMULATIONS; PBL; UNCERTAINTY; ENSEMBLE; SCHEMES AB This study investigates the performance of two planetary boundary layer (PBL) parameterisations in the regional climate model RegCM4.2 with specific focus on the recently implemented prognostic turbulent kinetic energy parameterisation scheme: the University of Washington (UW) scheme. When compared with the default Holtslag scheme, the UW scheme, in the 10-year experiments over the European domain, shows a substantial cooling. It reduces winter warm bias over the north-eastern Europe by 2 A degrees C and reduces summer warm bias over central Europe by 3 A degrees C. A part of the detected cooling is ascribed to a general reduction in lower tropospheric eddy heat diffusivity with the UW scheme. While differences in temperature tendency due to PBL schemes are mostly localized to the lower troposphere, the schemes show a much higher diversity in how vertical turbulent mixing of the water vapour mixing ratio is governed. Differences in the water vapour mixing ratio tendency due to the PBL scheme are present almost throughout the troposphere. However, they alone cannot explain the overall water vapour mixing ratio profiles, suggesting strong interaction between the PBL and other model parameterisations. An additional 18-member ensemble with the UW scheme is made, where two formulations of the master turbulent length scale in unstable conditions are tested and unconstrained parameters associated with (a) the evaporative enhancement of the cloud-top entrainment and (b) the formulation of the master turbulent length scale in stable conditions are systematically perturbed. These experiments suggest that the master turbulent length scale in the UW scheme could be further refined in the current implementation in the RegCM model. It was also found that the UW scheme is less sensitive to the variations of the other two selected unconstrained parameters, supporting the choice of these parameters in the default formulation of the UW scheme. C1 [Guettler, Ivan; Brankovic, Cedo] Croatian Meteorol & Hydrol Serv DHMZ, Zagreb 10000, Croatia. [O'Brien, Travis A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Coppola, Erika; Giorgi, Filippo] Abdus Salaam Int Ctr Theoret Phys, Earth Syst Phys Sect, Trieste, Italy. [Grisogono, Branko] Univ Zagreb, Fac Sci, Dept Geophys, Zagreb 41000, Croatia. RP Guttler, I (reprint author), Croatian Meteorol & Hydrol Serv DHMZ, Gric 3, Zagreb 10000, Croatia. EM ivan.guettler@cirus.dhz.hr RI Giorgi, Filippo/C-3169-2013; O'Brien, Travis/M-5250-2013 OI O'Brien, Travis/0000-0002-6643-1175 FU Croatian Ministry of Science, Education and Sports (MZOS); Croatian Science Foundation [BORA-MZOS 119-1193086-1311, CATURBO-HRZZ 09/151]; MZOS project [004-1193086-3035]; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server. University of East Anglia CRU data used in this study have been obtained from http://badc.nerc.ac.uk. Surface flux measurements from the EUMETNET organized C-SRNWP Project have been obtained from the COSMO consortium database (http://www.como-model.org/srnwp/content) and provided by the FMI, KNMI, DWD and Meteo-France. Computations and visualizations in this study have been performed using cdo (https://code.zmaw.de/projects/cdo), GrADS (http://www.iges.org/grads) and R (http://www.R-project.org/) software. Branko Grisogono is supported by the Croatian Ministry of Science, Education and Sports (MZOS) and Croatian Science Foundation through projects BORA-MZOS 119-1193086-1311 and CATURBO-HRZZ 09/151. Ivan Guttler and Cedo Brankovic are supported by the MZOS project 004-1193086-3035. The contribution by T.A. O'Brien was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Regional and Global Climate Modeling Program (RGCM). We thank to two anonymous reviewers for their constructive criticism, comments and suggestions that greatly improved the original manuscript. NR 70 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD OCT PY 2014 VL 43 IS 7-8 BP 1753 EP 1772 DI 10.1007/s00382-013-2003-6 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ0SS UT WOS:000342493600002 ER PT J AU Fyke, J Eby, M Mackintosh, A Weaver, A AF Fyke, Jeremy Eby, Michael Mackintosh, Andrew Weaver, Andrew TI Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss SO CLIMATE DYNAMICS LA English DT Article DE Climate sensitivity; Polar amplification; Greenland Ice Sheet ID LAST GLACIAL MAXIMUM; MASS-BALANCE; MODEL; SIMULATIONS; ANTARCTICA AB The future rate of Greenland Ice Sheet (GrIS) deglaciation and the future contribution of GrIS deglaciation to sea level rise will depend critically on the magnitude of northern hemispheric polar amplification and global equilibrium climate sensitivity. Here, these relationships are analyzed using an ensemble of multi-century coupled ice-sheet/climate model simulations seeded with observationally-constrained initial conditions and then integrated forward under tripled preindustrial CO2. Polar amplifications and climate sensitivities were varied between ensemble members in order to bracket current uncertainty in polar amplification and climate sensitivity. A large inter-ensemble spread in mean GrIS air temperature, albedo and surface mass balance trends stemming from this uncertainty resulted in GrIS ice volume loss ranging from 5 to 40 % of the original ice volume after 500 years. The large dependence of GrIS deglaciation on polar amplification and climate sensitivity that we find indicates that the representation of these processes in climate models will exert a strong control on any simulated predictions of multi-century GrIS evolution. Efforts to reduce polar amplification and equilibrium climate sensitivity uncertainty will therefore play a critical role in constraining projections of GrIS deglaciation and sea level rise in a future high-CO2 world. C1 [Fyke, Jeremy; Eby, Michael; Weaver, Andrew] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mackintosh, Andrew] Victoria Univ Wellington, Antarctic Res Ctr, Wellington, New Zealand. RP Fyke, J (reprint author), Los Alamos Natl Lab, MS B216, Los Alamos, NM 87545 USA. EM fyke@lanl.gov RI Weaver, Andrew/E-7590-2011; Eby, Michael/H-5278-2013 FU Victoria University of Wellington; New Zealand government ANZICE program; U.S. Department of Energy Office of Science FX This research was supported by a Victoria University of Wellington Doctoral Scholarship to J. Fyke and the New Zealand government ANZICE program. He is currently supported by the U.S. Department of Energy Office of Science. The research was further enabled through use of computing resources provided by WestGrid and Compute/Calcul Canada. We wish to thank two anonymous reviewers and Lionel Carter and Ed Wiebe for greatly improving the quality of this manuscript. NR 38 TC 6 Z9 6 U1 2 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD OCT PY 2014 VL 43 IS 7-8 BP 2249 EP 2260 DI 10.1007/s00382-014-2050-7 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ0SS UT WOS:000342493600034 ER PT J AU Zhang, F Allen, AJ Leuine, LE Vaudin, MD Skrtic, D Antonucci, JM Hoffman, KM Giuseppetti, AA Ilausky, J AF Zhang, Fan Allen, Andrew J. Leuine, Lyle E. Vaudin, Mark D. Skrtic, Drago Antonucci, Joseph M. Hoffman, Kathleen M. Giuseppetti, Anthony A. Ilausky, Jan TI Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites SO DENTAL MATERIALS LA English DT Article DE Amorphous calcium phosphate; ACP-based composites; Dental composites; Dental material; Acid-medicated conversion; Structure; Amorphous conversion ID PHOTON-CORRELATION SPECTROSCOPY; X-RAY-SCATTERING; BIOACTIVE POLYMERIC COMPOSITES; PHOSPHATE/METHACRYLATE COMPOSITES; PRECURSOR PHASE; IN-VITRO; HYDROXYAPATITE; BONE; TRANSFORMATION; CRYSTALLIZATION AB Objective. To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Methods. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. Results. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Signcance. For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Fan; Allen, Andrew J.; Leuine, Lyle E.; Vaudin, Mark D.; Antonucci, Joseph M.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Skrtic, Drago; Hoffman, Kathleen M.; Giuseppetti, Anthony A.] Amer Dent Assoc Fdn, Volpe Res Ctr, Gaithersburg, MD 20899 USA. [Ilausky, Jan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Zhang, F (reprint author), Mat Measurement Sci Div, 100 Bur Dr,MS 8520, Gaithersburg, MD 20899 USA. EM fan.zhang@nist.gov RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 FU U.S. DOE [DE-AC02-06CH11357]; National Science Foundation/Department of Energy [NSF/CHE-1346572]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Institute of Dental and Craniofacial Research (NIDCR grant) [DE 13169]; American Dental Association Foundation FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-1346572. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This reported work was also supported by the National Institute of Dental and Craniofacial Research (NIDCR grant DE 13169) and the American Dental Association Foundation. Donation of monomers by Esstech, Essington, PA, is gratefully acknowledged. NR 59 TC 4 Z9 4 U1 3 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0109-5641 EI 1879-0097 J9 DENT MATER JI Dent. Mater. PD OCT PY 2014 VL 30 IS 10 BP 1113 EP 1125 DI 10.1016/j.dental.2014.07.003 PG 13 WC Dentistry, Oral Surgery & Medicine; Materials Science, Biomaterials SC Dentistry, Oral Surgery & Medicine; Materials Science GA AP9GT UT WOS:000342387700006 PM 25082155 ER PT J AU Skevas, T Swinton, SM Meehan, TD Kim, TN Gratton, C Egbendewe-Mondzozo, A AF Skevas, T. Swinton, S. M. Meehan, T. D. Kim, T. N. Gratton, C. Egbendewe-Mondzozo, A. TI Integrating agricultural pest biocontrol into forecasts of energy biomass production SO ECOLOGICAL ECONOMICS LA English DT Article DE Biological control; Bioenergy; Bioeconomic model; Wisconsin ID CROP FEEDSTOCK; UNITED-STATES; LAND-USE; ETHANOL; COST; LANDSCAPE; SERVICES; BIOFUELS; MODEL; APHID AB Biological control of pests is an important ecosystem service in agricultural landscapes as it protects crops and reduces the need for insecticide use. Establishing a sustainable bioenergy industry requires considering the role of biological control in farm decision making. An important question is how biomass supply changes when farmers take into account agricultural pest biocontrol services. A spatially-explicit bioeconomic model of potential biomass supply that incorporates the effect of biological control on crop choice is employed using data from four Wisconsin counties. The results of the study show that integrating agricultural biocontrol into farmers' production technology generally results in biomass from crop residues being supplied more readily (at a lower relative price). (C)2014 Published by Elsevier B.V. C1 [Skevas, T.; Swinton, S. M.; Meehan, T. D.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Meehan, T. D.; Kim, T. N.; Gratton, C.] Univ Wisconsin, Dept Entomol, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Egbendewe-Mondzozo, A.] Univ Lome, Dept Econ & Management Sci FASEG, Lome, Togo. [Egbendewe-Mondzozo, A.] Ctr Agr & Energy Policy Modeling Africa CAEMA, Lome, Togo. RP Skevas, T (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, 164 Food Safety & Toxicol Bldg, E Lansing, MI 48824 USA. EM skevast@anr.msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 33 TC 6 Z9 6 U1 3 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8009 EI 1873-6106 J9 ECOL ECON JI Ecol. Econ. PD OCT PY 2014 VL 106 BP 195 EP 203 DI 10.1016/j.ecolecon.2014.07.027 PG 9 WC Ecology; Economics; Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology; Business & Economics GA AP7RO UT WOS:000342274600018 ER PT J AU Valdes-Ramirez, G Li, YC Kim, J Jia, WZ Bandodkar, AJ Nunez-Flores, R Miller, PR Wu, SY Narayan, R Windmiller, JR Polsky, R Wang, J AF Valdes-Ramirez, Gabriela Li, Ya-Chieh Kim, Jayoung Jia, Wenzhao Bandodkar, Amay J. Nunez-Flores, Rogelio Miller, Philip R. Wu, Shu-Yii Narayan, Roger Windmiller, Joshua R. Polsky, Ronen Wang, Joseph TI Microneedle-based self-powered glucose sensor SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Microneedle array; Glucose; Self-powered sensor; Biofuel cell ID TRANSDERMAL DRUG-DELIVERY; BIOFUEL CELLS; FUEL-CELL; BIOSENSORS; DEVICES; FLUID; ARRAY AB A microneedle-based self-powered biofuel-cell glucose sensor is described. The biofuel cell sensor makes use of the integration of modified carbon pastes into hollow microneedle devices. The system displays defined dependence of the power density vs glucose concentration in artificial interstitialfluid. An excellent selectivity against common electroactive interferences and long-term stability are obtained. The attractive performance of the device indicates considerable promise for subdermal glucose monitoring. (C) 2014 Elsevier B.V. All rights reserved. C1 [Valdes-Ramirez, Gabriela; Li, Ya-Chieh; Kim, Jayoung; Jia, Wenzhao; Bandodkar, Amay J.; Nunez-Flores, Rogelio; Wang, Joseph] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Li, Ya-Chieh; Wu, Shu-Yii] Feng Chia Univ, Dept Chem Engn, Taichung 40724, Taiwan. [Miller, Philip R.; Polsky, Ronen] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Miller, Philip R.; Narayan, Roger] NCSU Univ North Carolina, Raleigh, NC 27695 USA. [Miller, Philip R.; Narayan, Roger] N Carolina State Univ, Raleigh, NC 27695 USA. [Windmiller, Joshua R.] Elect LLC, La Jolla, CA 92037 USA. RP Wang, J (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. EM josephwang@ucsd.edu RI Wang, Joseph/C-6175-2011; Jia, Wenzhao/F-6168-2013 OI Jia, Wenzhao/0000-0003-1387-5407 FU National Science Foundation [CHE-1057562]; National Institute of Diabetes and Digestive and Kidney Diseases [RF-DK11-018(SBIR) (R43/R44)]; National Institutes of Health [R43DK097989]; Taiwan Ministry of Science and Technology [102-2917-I-035-006] FX The authors would like to acknowledge support from the National Science Foundation (Award CHE-1057562) and the National Institute of Diabetes and Digestive and Kidney Diseases [funding opportunity RF-DK11-018(SBIR) (R43/R44)]. J. R. W. is grateful to the National Institutes of Health for a SHIFT Award (grant no. R43DK097989) and for an incubation space provided by EvoNexus, a CommNexus Incubator (La Jolla, CA). Ya-Chieh Li acknowledges the Taiwan Ministry of Science and Technology for the fellowship 102-2917-I-035-006. NR 27 TC 18 Z9 18 U1 8 U2 72 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD OCT PY 2014 VL 47 BP 58 EP 62 DI 10.1016/j.elecom.2014.07.014 PG 5 WC Electrochemistry SC Electrochemistry GA AP7RS UT WOS:000342275000015 ER PT J AU Ray, N Delaney, T Einstein, D Jiao, XM AF Ray, Navamita Delaney, Tristan Einstein, Daniel R. Jiao, Xiangmin TI Surface remeshing with robust high-order reconstruction SO ENGINEERING WITH COMPUTERS LA English DT Article DE Mesh generation; Mesh adaptation; Curves and surfaces; Accuracy and stability; High-order methods ID FINITE-DIFFERENCE METHOD; CURVES AB Remeshing is an important problem in variety of applications, such as finite element methods and geometry processing. Surface remeshing poses some unique challenges, as it must deliver not only good mesh quality but also good geometric accuracy. For applications such as finite elements with high-order elements (quadratic or cubic elements), the geometry must be preserved to high-order (third-order or higher) accuracy, since low-order accuracy may undermine the convergence of numerical computations. The problem is particularly challenging if the CAD model is not available for the underlying geometry, and is even more so if the surface meshes contain some inverted elements. We describe remeshing strategies that can simultaneously produce high-quality triangular meshes, untangling mildly folded triangles and preserve the geometry to high-order of accuracy. Our approach extends our earlier works on high-order surface reconstruction and mesh optimization by enhancing its robustness with a geometric limiter for under-resolved geometries. We also integrate high-order surface reconstruction with surface mesh adaptation techniques, which alter the number of triangles and nodes. We demonstrate the utilization of our method to meshes for high-order finite elements, biomedical image-based surface meshes, and complex interface meshes in fluid simulations. C1 [Ray, Navamita; Delaney, Tristan; Jiao, Xiangmin] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Jiao, XM (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM xiangmin.jiao@stonybrook.edu RI Ray, Navamita/I-7873-2015; OI Ray, Navamita/0000-0002-8235-1706; Jiao, Xiangmin/0000-0002-7111-9813 FU DOE NEUP [DE-AC07-05ID14517]; National Heart, Lung, and Blood Institute [R01HL073598]; DoD-ARO [W911NF0910306] FX We thank Professor James Glimm and his group for providing the surface meshes of a turbulent fluid-mixing simulation. The first and fourth author were supported by the DOE NEUP program under contract #DE-AC07-05ID14517. Daniel Einstein's contribution was supported by Award Number R01HL073598 from the National Heart, Lung, and Blood Institute. The fourth author was also supported by DoD-ARO under contract #W911NF0910306. NR 18 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD OCT PY 2014 VL 30 IS 4 SI SI BP 487 EP 502 DI 10.1007/s00366-014-0359-9 PG 16 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA AP7UT UT WOS:000342283400006 ER PT J AU Weinbub, J Rupp, K Selberherr, S AF Weinbub, Josef Rupp, Karl Selberherr, Siegfried TI ViennaX: a parallel plugin execution framework for scientific computing SO ENGINEERING WITH COMPUTERS LA English DT Article DE Task graph; Parallel execution; Plugin system software reuse; Framework ID ARCHITECTURE AB We present the free open source plugin execution framework ViennaX for modularizing and parallelizing scientific simulations. In general, functionality is abstracted by the notion of a task, which is implemented as a plugin. The plugin system facilitates the utilization of both, already available functionality as well as new implementations. Each task can define arbitrary data dependencies which are used by ViennaX to build a task graph. The framework supports the execution of this dependence graph based on the message passing interface in either a serial or a parallel fashion. The applied modular approach allows for defining highly flexible simulations, as plugins can be easily exchanged. The framework's general design as well as implementation details are discussed. Applications based on the Mandelbrot set and the solution of a partial differential equation are investigated, and performance results are shown. C1 [Weinbub, Josef; Selberherr, Siegfried] Vienna Univ Technol, Inst Microelect, A-1060 Vienna, Austria. [Rupp, Karl] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Weinbub, J (reprint author), Vienna Univ Technol, Inst Microelect, A-1060 Vienna, Austria. EM weinbub@iue.tuwien.ac.at RI Weinbub, Josef/G-6967-2015; OI Weinbub, Josef/0000-0001-5969-1932; Rupp, Karl/0000-0002-0198-3999 FU European Research Council (ERC) [247056 MOSILSPIN]; HPC-EUROPA2 project [228398]; European Commission-Capacities Area-Research Infrastructures; Office of Science and Technology through EPSRC's High End Computing Programme FX This work has been supported by the European Research Council (ERC) through the grant #247056 MOSILSPIN. Additionally, this work has been partially supported by the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission-Capacities Area-Research Infrastructures. This work made use of the facilities of HECToR, the UK's national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC's High End Computing Programme. NR 37 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD OCT PY 2014 VL 30 IS 4 SI SI BP 651 EP 668 DI 10.1007/s00366-013-0314-1 PG 18 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA AP7UT UT WOS:000342283400018 ER PT J AU Miles, R Chang, A Fornasiero, F Havstad, M Kucheyev, S Leblanc, M Rosso, P Schebler, G AF Miles, Robin Chang, Allan Fornasiero, Francesco Havstad, Mark Kucheyev, Sergei Leblanc, Mary Rosso, Paul Schebler, Greg TI THERMAL AND STRUCTURAL ISSUES OF TARGET INJECTION INTO A LASER-DRIVEN INERTIAL FUSION ENERGY CHAMBER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE target injection; inertial fusion energy; target survival ID SURVIVAL; BEHAVIOR; WALL; GAS AB Inertial fusion energy (IFE) targets injected into fusion chambers must withstand the demanding acceleration forces and the intense thermal environment of the fusion chamber. For indirect targets, the ultrathin capsule support membrane is the target component that is most sensitive to acceleration forces. Maintaining the deuterium-tritium (DT) temperature, to prevent a significant increase in DT vapor pressure, is the most critical thermal requirement. Secondarily, material selection of the high-temperature laser entrance hole window is required. This paper briefly describes how these requirements are satisfied for a laser-driven IFE plant design. C1 [Miles, Robin; Chang, Allan; Fornasiero, Francesco; Havstad, Mark; Kucheyev, Sergei; Leblanc, Mary; Rosso, Paul; Schebler, Greg] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Miles, R (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM miles7@llnl.gov RI Fornasiero, Francesco/I-3802-2012 FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 20 TC 2 Z9 2 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2014 VL 66 IS 2 BP 343 EP 348 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ0LD UT WOS:000342473900006 ER PT J AU Sacks, R Moses, G Tang, V Kramer, K Scott, H Demuth, J AF Sacks, Ryan Moses, Gregory Tang, Vincent Kramer, Kevin Scott, Howard Demuth, James TI PARAMETER STUDY OF AN INERTIAL FUSION ENERGY CHAMBER RESPONSE USING THE 1-D BUCKY RADIATION HYDRODYNAMICS CODE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE inertial confinement fusion; inertial fusion energy; radiation hydrodynamics ID CONCEPTUAL DESIGN; LIFE ENGINE; EQUATION; STATE AB A parameter study of a proposed inertial fusion energy chamber is performed. A baseline case of a 6-mradius chamber filled with 6 mu g/cm(3) of xenon is studied in detail. The maximum first-wall temperature is shown to be 1136 K with an overpressure of 5.83 x 10(-3) MPa. A parameter sweep is conducted for the chamber by adjusting the first-wall radius from 4 to 14 m, changing the gas density and changing the fill gas from xenon to argon. The results set limits on the first-wall radius fordifferent gases and densities. Analytic fits to simulation results allow their use in overall engine design trade-off studies. C1 [Sacks, Ryan; Moses, Gregory] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA. [Tang, Vincent; Kramer, Kevin; Scott, Howard; Demuth, James] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sacks, R (reprint author), Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA. EM rsacks@wisc.edu FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; UW FX This work was performed under the auspices of Lawrence Livermore National Security, LLC, under contract DE-AC52-07NA27344 under subcontract with UW. NR 22 TC 1 Z9 1 U1 1 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD OCT PY 2014 VL 66 IS 2 BP 349 EP 357 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AQ0LD UT WOS:000342473900007 ER PT J AU Massey, MS Lezama-Pacheco, JS Jones, ME Ilton, ES Cerrato, JM Bargar, JR Fendorf, S AF Massey, Michael S. Lezama-Pacheco, Juan S. Jones, Morris E. Ilton, Eugene S. Cerrato, Jose M. Bargar, John R. Fendorf, Scott TI Competing retention pathways of uranium upon reaction with Fe(II) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID IRON-COATED SANDS; U(VI) REDUCTION; FE(II)-CATALYZED TRANSFORMATION; MINERALIZATION PATHWAYS; CONTAMINATED AQUIFER; MULTIPLE-SCATTERING; PENTAVALENT-URANIUM; URANYL REDUCTION; HANFORD SITE; VADOSE ZONE AB Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr) oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)(3)center dot nH(2)O) to goethite (alpha-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr) oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH similar to 7, [U(VI)] from 1 to 170 mu M, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations <= 50 mu M when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio) geochemical conditions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Fendorf, Scott] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cerrato, Jose M.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Bargar, John R.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Massey, MS (reprint author), Calif State Univ East Bay, Dept Earth & Environm Sci, 25800 Carlos Bee Blvd, Hayward, CA 94542 USA. EM mike.massey@csueastbay.edu FU Robert and Marvel Kirby Stanford Graduate Fellowship; U.S. Department of Energy Office of Biological and Environmental Research, through the Subsurface Biogeochemical Research program [DE-SC0006772]; U.S. Department of Energy Office of Biological and Environmental Research, Climate and Environmental Sciences Division, as part of the SLAC Science Focus Area Research Program (FWP) [10094]; Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX Support for M. M. was provided partially by the Robert and Marvel Kirby Stanford Graduate Fellowship. Additionally, this research was supported by the U.S. Department of Energy Office of Biological and Environmental Research, through the Subsurface Biogeochemical Research program (Grant number DE-SC0006772). Funding for J.L.P. was provided by the U.S. Department of Energy Office of Biological and Environmental Research, Climate and Environmental Sciences Division, as part of the SLAC Science Focus Area Research Program (FWP #10094). E. S. I. was supported by the Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR or NIH. The authors would like to thank Moses Gonzalez and Guangchao Li for their tireless assistance. Further, the authors are indebted to Ann Marshall and Chuck Hitzman at the Stanford Nano Center for their technical expertise and patience. Additional thanks go to Peter S. Nico, and Daniel E. Giammar for their input. Three volunteer peer reviewers for GCA also provided valuable and thought-provoking feedback that substantially improved the manuscript. The authors also appreciate the technical and safety support provided by L. Amoroso, D. Day, A. Gooch, D. Menke, C. Morris, D. Murray, C. Patty, R. Russ, and the rest of the team at SSRL. NR 80 TC 10 Z9 10 U1 15 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 1 PY 2014 VL 142 BP 166 EP 185 DI 10.1016/j.gca.2014.07.016 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ2NB UT WOS:000342622400012 ER PT J AU Simmons, CW Reddy, AP Simmons, BA Singer, SW VanderGheynst, JS AF Simmons, C. W. Reddy, A. P. Simmons, B. A. Singer, S. W. VanderGheynst, J. S. TI Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions SO JOURNAL OF APPLIED MICROBIOLOGY LA English DT Article DE 16S ribosomal RNA gene sequencing; compost; high solids; lignocellulose; thermophilic enrichment ID CELLULOSE-DEGRADING BACTERIUM; GEN. NOV.; BIOFUEL PRODUCTION; GROWTH ESTIMATION; CULTURE; SOIL; DECOMPOSITION; ACTINOMYCETE; SWITCHGRASS; CLOSTRIDIUM AB Aims: Culturing compost-derived microbial communities on biofuel feedstocks under industrial conditions is a technique to enrich for organisms and lignocellulolytic enzymes for bioenergy feedstock deconstruction. In this study, microbial communities from green waste compost (GWC) and grape pomace compost (GPC) were cultured on switchgrass and eucalyptus to observe the impact of inoculation on feedstock decomposition and microbial community structure. Methods and Results: Respiration was monitored as a measure of microbial activity, and 16S ribosomal RNA gene sequencing was used to characterize microbial community structure. The enriched community structure and respiration were influenced by the choice of feedstock, compost type, and application of thermophilic, high-solids conditions. However, the effect of compost source was significantly less than the effects of the other culture variables. Conclusions: Although there are subtle differences in potentially lignocellulolytic taxa between GPC- and GWC-derived communities, these differences do not affect the decomposition rates for these communities on switchgrass or eucalyptus. Significance and Impact of the Study: These results are useful for designing future experiments to discover lignocellulolytic micro-organisms from compost. They suggest that such work may be better served by deemphasizing screening of compost sources and instead focusing on how compost-derived communities adapt to the feedstocks and process conditions relevant to biofuel production. C1 [Simmons, C. W.; Reddy, A. P.; Simmons, B. A.; Singer, S. W.; VanderGheynst, J. S.] Joint BioEnergy Inst, Emeryville, CA USA. [Simmons, C. W.; Reddy, A. P.; VanderGheynst, J. S.] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Simmons, B. A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA. [Singer, S. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP VanderGheynst, JS (reprint author), Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. EM jsvander@ucdavis.edu FU United States Department of Energy, Office of Science [DE-AC02-05CH11231]; UC Laboratory Fees Research Program [12-LR-237496]; US Department of Energy, Office of Science, Office of Biological and Environmental Research; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy [DE-AC02-05CH11231] FX The authors thank Lauren Jabusch for assistance with DNA extraction, Charles Karagosian for assistance with compost processing after collection, and Tijana Glavina del Rio, Susannah Tringe and Stephanie Malfatti of the Joint Genome Institute for their assistance in community 16S rRNA gene sequencing. The Joint Genome Institute is supported by the United States Department of Energy, Office of Science under contract number DE-AC02-05CH11231. This work was supported by the UC Laboratory Fees Research Program # 12-LR-237496 and performed as part of the Joint BioEnergy Institute, supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. NR 44 TC 2 Z9 2 U1 4 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1364-5072 EI 1365-2672 J9 J APPL MICROBIOL JI J. Appl. Microbiol. PD OCT PY 2014 VL 117 IS 4 BP 1025 EP 1034 DI 10.1111/jam.12609 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA AP6VK UT WOS:000342216000010 PM 25066414 ER PT J AU Deutschbauer, A Price, MN Wetmore, KM Tarjan, DR Xu, ZC Shao, WJ Leon, D Arkin, AP Skerker, JM AF Deutschbauer, Adam Price, Morgan N. Wetmore, Kelly M. Tarjan, Daniel R. Xu, Zhuchen Shao, Wenjun Leon, Dacia Arkin, Adam P. Skerker, Jeffrey M. TI Towards an Informative Mutant Phenotype for Every Bacterial Gene SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ESCHERICHIA-COLI; ZYMOMONAS-MOBILIS; GENOME; CONSERVATION; ANNOTATION; OPERONS; REPAIR; YEAST AB Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness. C1 [Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Arkin, Adam P.; Skerker, Jeffrey M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tarjan, Daniel R.; Leon, Dacia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Tarjan, Daniel R.; Leon, Dacia; Arkin, Adam P.; Skerker, Jeffrey M.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Xu, Zhuchen; Arkin, Adam P.; Skerker, Jeffrey M.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM APArkin@lbl.gov; skerker@berkeley.edu RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Price, Morgan/0000-0002-4251-0362 FU Energy Biosciences Institute [OO7G02]; ENIGMA; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was initially funded by the Energy Biosciences Institute grant OO7G02 and completed with funding from ENIGMA. The work conducted by ENIGMA was supported by the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 47 TC 13 Z9 13 U1 1 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD OCT PY 2014 VL 196 IS 20 BP 3643 EP 3655 DI 10.1128/JB.01836-14 PG 13 WC Microbiology SC Microbiology GA AP8ZJ UT WOS:000342367700013 PM 25112473 ER PT J AU Poper, KH Collins, ES Pantoya, ML Daniels, MA AF Poper, Kade H. Collins, Eric S. Pantoya, Michelle L. Daniels, Michael A. TI Controlling the electrostatic discharge ignition sensitivity of composite energetic materials using carbon nanotube additives SO JOURNAL OF ELECTROSTATICS LA English DT Article DE Electrostatic discharge; Ignition; Aluminum; Thermites; Energetic materials ID ALUMINUM; THERMITES; PROPAGATION; SIZE AB Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter. (C) 2014 Elsevier B.V. All rights reserved. C1 [Poper, Kade H.; Collins, Eric S.; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Daniels, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu FU Army Research Office [W911NF-11-1-0439]; Idaho National Laboratory via LDRD program FX The authors M. Pantoya, E. Collins and K. Poper are grateful for support from the Army Research Office contract number W911NF-11-1-0439 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program. NR 18 TC 5 Z9 5 U1 4 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3886 EI 1873-5738 J9 J ELECTROSTAT JI J. Electrost. PD OCT PY 2014 VL 72 IS 5 BP 428 EP 432 DI 10.1016/j.elstat.2014.07.004 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA AP7FV UT WOS:000342244100012 ER PT J AU Monaghan, P Shneor, R Subedi, R Anderson, BD Aniol, K Annand, J Arrington, J Benaoum, HB Benmokhtar, F Bertin, P Bertozzi, W Boeglin, W Chen, JP Choi, S Chudakov, E degli Atti, CC Cisbani, E Cosyn, W Craver, B Craver, B Feuerbach, RJ Folts, E Frullani, S Garibaldi, F Gayou, O Gilad, S Gilman, R Glamazdin, O Gomez, J Hansen, O Higinbotham, DW Holmstrom, T Ibrahim, H Igarashi, R Jans, E Jiang, X Kaufman, L Kelleher, A Kolarkar, A Kuchina, E Kumbartzki, G LeRose, JJ Lindgren, R Liyanage, N Margaziotis, DJ Markowitz, P Marrone, S Mazouz, M Meekins, D Michaels, R Moffit, B Morita, H Nanda, S Perdrisat, CF Piasetzky, E Potokar, M Punjabi, V Qiang, Y Reinhold, J Reitz, B Ron, G Rosner, G Ryckebusch, J Saha, A Sawatzky, B Segal, J Shahinyan, A Sirca, S Slifer, K Solvignon, P Sulkosky, V Thompson, N Ulmer, PE Urciuoli, GM Voutier, E Wang, K Watson, JW Weinstein, LB Wojtsekhowski, B Wood, S Yao, H Zheng, X Zhu, L AF Monaghan, P. Shneor, R. Subedi, R. Anderson, B. D. Aniol, K. Annand, J. Arrington, J. Benaoum, H. B. Benmokhtar, F. Bertin, P. Bertozzi, W. Boeglin, W. Chen, J. P. Choi, Seonho Chudakov, E. degli Atti, C. Ciofi Cisbani, E. Cosyn, W. Craver, B. Jager, C. W. de Feuerbach, R. J. Folts, E. Frullani, S. Garibaldi, F. Gayou, O. Gilad, S. Gilman, R. Glamazdin, O. Gomez, J. Hansen, O. Higinbotham, D. W. Holmstrom, T. Ibrahim, H. Igarashi, R. Jans, E. Jiang, X. Kaufman, L. Kelleher, A. Kolarkar, A. Kuchina, E. Kumbartzki, G. LeRose, J. J. Lindgren, R. Liyanage, N. Margaziotis, D. J. Markowitz, P. Marrone, S. Mazouz, M. Meekins, D. Michaels, R. Moffit, B. Morita, H. Nanda, S. Perdrisat, C. F. Piasetzky, E. Potokar, M. Punjabi, V. Qiang, Y. Reinhold, J. Reitz, B. Ron, G. Rosner, G. Ryckebusch, J. Saha, A. Sawatzky, B. Segal, J. Shahinyan, A. Sirca, S. Slifer, K. Solvignon, P. Sulkosky, V. Thompson, N. Ulmer, P. E. Urciuoli, G. M. Voutier, E. Wang, K. Watson, J. W. Weinstein, L. B. Wojtsekhowski, B. Wood, S. Yao, H. Zheng, X. Zhu, L. TI Measurement of the C-12(e,e ' p)B-11 two-body breakup reaction at high missing momentum SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE cross section; high missing momentum; carbon AB The five-fold differential cross section for the C-12(e,e'p)B-11 reaction was determined over a missing momentum range of 200-400 MeV c(-1), in a kinematics regime with x(B) > 1 and Q(2) = 2.0 (GeV c(-1))(2). A comparison of the results with previous lower missing momentum data and with theoretical models are presented. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV c(-1). The theoretical calculations are from two very different approaches, one mean field and the other short range correlated; yet for this system the two approaches show striking agreement with the data and each other up to a missing momentum value of 325 MeV c(-1). For larger momenta, the calculations diverge which is likely due to the factorization approximation used in the short range approach. C1 [Monaghan, P.; Bertozzi, W.; Gayou, O.; Gilad, S.; Qiang, Y.; Sulkosky, V.; Zheng, X.] MIT, Cambridge, MA 02139 USA. [Monaghan, P.] Hampton Univ, Hampton, VA 23668 USA. [Shneor, R.; Piasetzky, E.; Ron, G.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Subedi, R.; Anderson, B. D.; Watson, J. W.] Kent State Univ, Kent, OH 44242 USA. [Aniol, K.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Annand, J.; Rosner, G.; Thompson, N.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Arrington, J.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Benaoum, H. B.] Univ Sharjah, Dept Appl Phys, Sharjah, U Arab Emirates. [Benmokhtar, F.; Gilman, R.; Jiang, X.; Kuchina, E.; Kumbartzki, G.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Benmokhtar, F.] Univ Maryland, College Pk, MD 20742 USA. [Bertin, P.] Lab Phys Corpusculaire, F-63177 Clermont Ferrand, France. [Boeglin, W.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Chen, J. P.; Chudakov, E.; Jager, C. W. de; Feuerbach, R. J.; Folts, E.; Gilman, R.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; LeRose, J. J.; Meekins, D.; Michaels, R.; Moffit, B.; Nanda, S.; Reitz, B.; Saha, A.; Sawatzky, B.; Segal, J.; Solvignon, P.; Wojtsekhowski, B.; Wood, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Choi, Seonho] Seoul Natl Univ, Seoul 151747, South Korea. [degli Atti, C. Ciofi] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Marrone, S.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Marrone, S.; Urciuoli, G. M.] Ist Super Sanita, Lab Fis, I-00161 Rome, Italy. [Cosyn, W.; Ryckebusch, J.] Univ Ghent, B-9000 Ghent, Belgium. [Craver, B.; Lindgren, R.; Liyanage, N.; Sawatzky, B.; Slifer, K.; Wang, K.] Univ Virginia, Charlottesville, VA 22904 USA. [Glamazdin, O.] Kharkov Inst Phys & Technol, UA-310108 Kharkov, Ukraine. [Holmstrom, T.; Kelleher, A.; Moffit, B.; Perdrisat, C. F.; Sulkosky, V.] Coll William & Mary, Williamsburg, VA 23187 USA. [Ibrahim, H.; Ulmer, P. E.; Weinstein, L. B.] Old Domin Univ, Norfolk, VA 23508 USA. [Igarashi, R.] Univ Saskatchewan, Saskatoon, SK S7N 5E2, Canada. [Jans, E.] Natl Inst Nucl Phys & High Energy Phys, Amsterdam, Netherlands. [Kaufman, L.] Univ Massachusetts, Amherst, MA 01003 USA. [Kolarkar, A.] Univ Kentucky, Lexington, KY 40506 USA. [Mazouz, M.; Voutier, E.] Lab Phys Subatom & Cosmol, F-38026 St Martin Dheres, France. [Morita, H.] Sapporo Gakuin Univ, Ebetsu, Hokkaido 069, Japan. [Potokar, M.; Sirca, S.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Sirca, S.] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Sawatzky, B.; Slifer, K.; Solvignon, P.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Zhu, L.] Univ Illinois, Urbana, IL 61801 USA. [Ibrahim, H.] Cairo Univ, Giza 12613, Egypt. RP Monaghan, P (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Arrington, John/D-1116-2012; Cisbani, Evaristo/C-9249-2011; OI Arrington, John/0000-0002-0702-1328; Cisbani, Evaristo/0000-0002-6774-8473; Benaoum, Hachemi/0000-0003-4749-6675; Ryckebusch, Jan/0000-0001-7750-1522 FU Israel Science Foundation; US-Israeli Bi-national Scientific Foundation; UK Engineering and Physical Sciences Research Council; US National Science Foundation; US Department of Energy [DE-FG02-94ER40844, DE-AC02-06CH11357, DE-FG02-94ER40818]; US DOE under the Southeastern Universities Research Association, Inc. [DE-AC05-84150, M175] FX We would like to acknowledge the contribution of the Hall A collaboration, the Hall A technical staff and the accelerator operations staff. This work was supported by the Israel Science Foundation, the US-Israeli Bi-national Scientific Foundation, the UK Engineering and Physical Sciences Research Council, the US National Science Foundation, the US Department of Energy grants DE-FG02-94ER40844, DE-AC02-06CH11357, DE-FG02-94ER40818, and US DOE Contract No. DE-AC05-84150, Modification No. M175, under which the Southeastern Universities Research Association, Inc. operates the Thomas Jefferson National Accelerator Facility. NR 14 TC 3 Z9 3 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD OCT PY 2014 VL 41 IS 10 AR 105109 DI 10.1088/0954-3899/41/10/105109 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP8VD UT WOS:000342356500017 ER PT J AU Sharp, N McDonough, WF Ticknor, BW Ash, RD Piccoli, PM Borg, DT AF Sharp, Nicholas McDonough, William F. Ticknor, Brian W. Ash, Richard D. Piccoli, Philip M. Borg, Dana T. TI Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Trinitite; Nuclear forensics; Laser-ablation and solution inductively coupled mass spectrometry; Nd and Gd isotopic ratios ID ISOTOPIC COMPOSITION; RADIONUCLIDES; DEBRIS AB Analysis of post-nuclear detonation materials provides information on the type of device and its origin. Compositional analysis of trinitite glass, fused silicate material produced from the above ground plasma during the detonation of the Trinity nuclear bomb, reveals gross scale chemical and isotopic heterogeneities indicative of limited convective re-homogenization during accumulation into a melt pool at ground zero. Regions rich in weapons grade Pu have also been identified on the surface of the trinitite sample. The absolute and relative abundances of the lanthanoids in the glass are comparable to that of average upper crust composition, whereas the isotopic abundances of key lanthanoids are distinctly non-normal. The trinitite glass has a non-normal Nd isotope composition, with deviations of -1.75 +/- A 0.60 epsilon (differences in parts in 10(4)) in Nd-142/Nd-144, +2.24 +/- A 0.75 epsilon in Nd-145/Nd-144, and +1.01 +/- A 0.38 epsilon in Nd-148/Nd-144 (all errors cited at 2 sigma) relative to reference materials: BHVO-2 and Nd-Ames metal. Greater isotopic deviations are found in Gd, with enrichments of +4 +/- A 1 epsilon in Gd-155/Gd-160, +4.19 +/- A 0.75 epsilon in Gd-156/Gd-160, and +3.48 +/- A 0.52 epsilon in Gd-158/Gd-160 compared to BHVO-2. The isotopic deviations are consistent with a Pu-239 based fission device with additional U-235 fission contribution and a thermal neutron fluence between 1.4 and 0.97 x 10(15) neutrons/cm(2). C1 [Sharp, Nicholas; McDonough, William F.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [McDonough, William F.; Ash, Richard D.; Piccoli, Philip M.; Borg, Dana T.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Ticknor, Brian W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Sharp, N (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. EM nsharp@umd.edu; mcdonoug@umd.edu RI Ticknor, Brian/M-2329-2016; OI Ticknor, Brian/0000-0002-2867-9073; McDonough, William/0000-0001-9154-3673 FU Plasma Lab at the University of Maryland; Department of Geology; University of Maryland FX We would like to thank the Smithsonian National Museum of Natural History for the trinitite sample, A. Fahey for discussion over trinitite properties and sample analysis techniques, and Savannah River National Laboratory for the use of their mass spectrometer. NS adds a special thanks to Dr. Mignerey for her assistance in understanding neutron and fission interactions. Funding was provided by the Plasma Lab at the University of Maryland, the Department of Geology, and the University of Maryland. NR 19 TC 10 Z9 10 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2014 VL 302 IS 1 BP 57 EP 67 DI 10.1007/s10967-014-3285-9 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AP5QX UT WOS:000342134800008 ER PT J AU Jackman, KR Engle, JW Nortier, FM John, KD Birnbaum, ER Norman, DE AF Jackman, K. R. Engle, J. W. Nortier, F. M. John, K. D. Birnbaum, E. R. Norman, D. E. TI Synthetic spectra for radioactive strontium production QA/QC SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Strontium; Synthetic spectra; Annihilation peak; Peak fitting; Quality assurance; Quality control; Sr-82; Doppler broadening; 511 keV ID ANNIHILATION RADIATION AB Radioactive Sr-82/Rb-82 produced at Los Alamos National Laboratory is routinely used in generators for hospitals and medical laboratories to support cardiac imaging. The proper quantification of strontium radioisotopes in a sample is important to ensure quality and regulatory compliance. However, the quantification of the impurity Sr-85 is difficult, because its primary gamma-ray at 514 keV interferes with the annihilation peak at 511 keV from Rb-82. Synthetic spectra were created as a quality test of several gamma-ray spectral analysis tools' ability to resolve peaks in the 511/514 keV multiplet. The peak fitting results from the spectroscopy tools (RAYGUN, SPECANAL, GammaVision, UNISAMPO, and GAMANAL) are presented. These spectra can also be useful for other programs to test their annihilation peak analysis procedures. C1 [Jackman, K. R.; Engle, J. W.; Nortier, F. M.; John, K. D.; Birnbaum, E. R.; Norman, D. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jackman, KR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jackman@lanl.gov OI John, Kevin/0000-0002-6181-9330; Nortier, Francois/0000-0002-7549-8101 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; United States Department of Energy, Office of Science through The Isotope Development and Production for Research and Applications sub-program in the Office of Nuclear Physics FX This study was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253996 and by the United States Department of Energy, Office of Science through The Isotope Development and Production for Research and Applications sub-program in the Office of Nuclear Physics. NR 13 TC 1 Z9 1 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2014 VL 302 IS 1 BP 347 EP 352 DI 10.1007/s10967-014-3138-6 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AP5QX UT WOS:000342134800040 ER PT J AU Guillen, DP Greenwood, LR Parry, JR AF Guillen, Donna Post Greenwood, Larry R. Parry, James R. TI High conduction neutron absorber to simulate fast reactor environment in an existing test reactor SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Neutron fluence; Fast-to-thermal ratio; Neutron absorber; Flux monitor; Fast reactor materials ID CROSS SECTION; TA-182 AB A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins-thermal, epithermal, and fast-to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of similar to 11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of similar to 8 x 10(25) n/m(2). Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments. C1 [Guillen, Donna Post; Parry, James R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Greenwood, Larry R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Guillen, DP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Donna.Guillen@inl.gov; Larry.Greenwood@pnnl.gov; James.Parry@inl.gov RI Greenwood, Lawrence/H-9539-2016; Guillen, Donna/B-9681-2017 OI Greenwood, Lawrence/0000-0001-6563-0650; Guillen, Donna/0000-0002-7718-4608 FU ATR National Scientific User Facility by the DOE Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported under the auspices of the ATR National Scientific User Facility by the DOE Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 19 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2014 VL 302 IS 1 BP 413 EP 424 DI 10.1007/s10967-014-3251-6 PG 12 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AP5QX UT WOS:000342134800047 ER PT J AU Eppich, GR Knight, KB Jacomb-Hood, TW Spriggs, GD Hutcheon, ID AF Eppich, Gary R. Knight, Kim B. Jacomb-Hood, Timothy W. Spriggs, Gregory D. Hutcheon, Ian D. TI Constraints on fallout melt glass formation from a near-surface nuclear test SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Fallout; Uranium; Isotope ratio; Composition; Silicate melt; Nuclear ID MASS-SPECTROMETRY; TRINITITE; DISEQUILIBRIUM; DEBRIS AB We present major element and actinide composition data from a population of fallout glass samples produced from a single near-surface nuclear detonation. Glass major element compositions indicate that composition of local geology is a primary control on bulk fallout chemical composition. Uranium isotope compositions indicate that vaporized, residual fuel was incorporated into the melts prior to solidification, likely within seconds, and are consistent with two-component mixing between naturally-occurring uranium and residual uranium fuel. Model ages of the residual fuel in fallout are systematically inaccurate, biased towards older ages, and are consistent with two-component mixing between naturally-occurring daughter nuclides in local sediment and decay-derived daughter nuclides from residual nuclear fuel. Multiple processes such as mixing, agglomeration of melted sediment-derived droplets, and incorporation of condensates must all occur within the timescale between sediment melting and melt solidification. C1 [Eppich, Gary R.; Knight, Kim B.; Spriggs, Gregory D.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Jacomb-Hood, Timothy W.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Eppich, GR (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA. EM eppich1@llnl.gov OI Eppich, Gary/0000-0003-2176-6673 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory [13-ERD-062]; Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration [LLNL-JRNL-650394] FX The authors acknowledge Ross Williams for his invaluable guidance on actinide chemical separations and isotopic analyses. Rachel Lindvall and Zurong Dai are thanked for their instruction on and assistance with quadrupole ICPMS and SEM analyses, respectively. William Cassata, Stanley Prussin, Brett Isselhardt, and two anonymous reviewers provided useful comments that led to the improvement of the manuscript. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory under project tracking code 13-ERD-062, as well as with support by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration. LLNL-JRNL-650394. NR 24 TC 6 Z9 6 U1 4 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2014 VL 302 IS 1 BP 593 EP 609 DI 10.1007/s10967-014-3293-9 PG 17 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AP5QX UT WOS:000342134800069 ER PT J AU Seiner, BN Morley, SM Beacham, TA Haney, MM Gregory, S Metz, L AF Seiner, Brienne N. Morley, Shannon M. Beacham, Tere A. Haney, Morgan M. Gregory, Stephanie Metz, Lori TI Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Digestion; Po-210; Alpha spectroscopy ID DRINKING-WATER; PB-210; POLONIUM-210; SAMPLES; RADIOACTIVITY; CIGARETTES AB The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash (87 +/- A 5 %) were similar to that from a microwave digestion (100 +/- A 7 %), but both were greater than the dry-ash procedure (38 +/- A 5 %). The polonium was separated from an SRM soil using an AG1X8 ion exchange column and deposited on a Ag disk with a recovery of 83 +/- A 7 % of polonium-209 (Po-209). Deposition yields without chemical separation averaged 90 +/- A 5 % of Po-209. The polonium-210 content was successfully measured in the three matrix types and quantitated using alpha spectroscopy. C1 [Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.; Haney, Morgan M.; Gregory, Stephanie; Metz, Lori] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Seiner, BN (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Brienne.seiner@pnnl.gov OI Gregory, Stephanie/0000-0001-9952-0388 FU Office of Defense Nuclear Nonproliferation (DNN); U.S. Department of Energy; Pacific Northwest National Laboratory, U.S. Department of Energy [DE-AC05-76RLO1830] FX The work was supported by the Office of Defense Nuclear Nonproliferation (DNN), U.S. Department of Energy, and Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830. The team at PNNL gratefully acknowledges the assistance of Dr. Matthew O'Hara at PNNL for his support with the microwave digestion process. NR 30 TC 5 Z9 5 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2014 VL 302 IS 1 BP 673 EP 678 DI 10.1007/s10967-014-3255-2 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AP5QX UT WOS:000342134800076 ER PT J AU Dirnberger, D Kraling, U Mullejans, H Salis, E Emery, K Hishikawa, Y Kiefer, K AF Dirnberger, D. Kraeling, U. Muellejans, H. Salis, E. Emery, K. Hishikawa, Y. Kiefer, K. TI Progress in photovoltaic module calibration: results of a worldwide intercomparison between four reference laboratories SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE photovoltaic; calibration; intercomparison; traceability; measurement uncertainty; thin film; stability ID REFERENCE CELLS; SCALE AB Measurement results from a worldwide intercomparison of photovoltaic module calibrations are presented. Four photovoltaic reference laboratories in the USA, Japan and Europe with different traceability chains, measurement equipment and procedures, and uncertainty estimation concepts, participated. Seven photovoltaic modules of different technologies were measured (standard and high-efficiency crystalline silicon, cadmium telluride, single and double-junction amorphous and micromorph silicon). The measurement results from all laboratories and for all devices agreed well. Maximum power for the crystalline silicon samples was within +/- 1.3% for all thin-film modules roughly within +/- 3%, which is an improvement compared to past intercomparisons. The agreement between the results was evaluated using a weighted mean as a reference value, which considers results-specific uncertainty, instead of the widely used unweighted arithmetic mean. A further statistical analysis of all deviations between results and the corresponding reference mean showed that the uncertainties estimated by the participating laboratories were realistic, with a slight tendency towards being too conservative. The observed deviations of results from the reference mean concerned mainly short-circuit current and fill factor. Module stability was monitored through repeated measurements at Fraunhofer ISE before and after measurements at each of the other participating laboratories. Based on these re-measurements, stability problems that occurred for some thin-film modules and influenced the results were analyzed and explained in detail. C1 [Dirnberger, D.; Kraeling, U.; Kiefer, K.] Fraunhofer Inst Solar Energy Syst ISE, CalLab PV Modules, D-79110 Freiburg, Germany. [Muellejans, H.; Salis, E.] ESTI, European Commiss, Joint Res Ctr, Inst Energy & Transport,Renewable Energy Unit, I-21027 Ispra, VA, Italy. [Emery, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Y.] Natl Inst Adv Ind Sci & Technol, RCPVT, Tsukuba, Ibaraki 3058568, Japan. RP Dirnberger, D (reprint author), Fraunhofer Inst Solar Energy Syst ISE, CalLab PV Modules, Heidenhofstr 2, D-79110 Freiburg, Germany. EM daniela.dirnberger@ise.fraunhofer.de FU New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade and Industry (METI); US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX For the measurements at ESTI, the help of Mike Field and Komlan Anika is acknowledged; Tony Sample and Ewan Dunlop contributed to the discussion of measurement results. Measurements at AIST were partly supported by the New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade and Industry (METI). The NREL portion of this work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. For the measurements at NREL, the work of Steve Rummel and Alan Anderberg is acknowledged. The whole CalLab PV Modules staff is acknowledged for organizing the logistics and performing the measurements. NR 51 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD OCT PY 2014 VL 25 IS 10 AR 105005 DI 10.1088/0957-0233/25/10/105005 PG 17 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA AP8VM UT WOS:000342357400005 ER PT J AU Charonko, JJ Antoine, E Vlachos, PP AF Charonko, John J. Antoine, Elizabeth Vlachos, Pavlos P. TI Multispectral processing for color particle image velocimetry SO MICROFLUIDICS AND NANOFLUIDICS LA English DT Article ID HYPERCOMPLEX FOURIER-TRANSFORMS; CONTACTLESS DIELECTROPHORESIS; PHASE CORRELATION; PULSED SYSTEMS; PIV; OPTIMIZATION; MICROSCOPY; SAMPLES AB Since the adoption of digital video cameras and cross-correlation methods for particle image velocimetry (PIV), the use of color images has largely been abandoned. Recently, however, with the re-emergence of color-based stereo and volumetric techniques, and the extensive use of color microscopy, color imaging for PIV has again become relevant. In this work, we explore the potential advantages of color PIV processing by developing and proposing new methods for handling multi-color images. The first method uses cross-correlation of every color channel independently to build a color vector cross-correlation plane. The vector cross-correlation can then be searched for one or more peaks corresponding to either the average displacement of several flow components using a color ensemble operation, or for the individual motion of colored particles, each with a different behavior. In the latter case, linear unmixing is used on the correlation plane to separate each known particle type as captured by the different color channels. The second method introduces the use of quaternions to encode the color data, and the cross-correlation is carried out simultaneously on all colors. The resulting correlation plane can be searched either for a single peak, corresponding to the mean flow or for multiple peaks, with velocity phase separation to determine which velocity corresponds to which particle type. Each of these methods was tested using synthetic images simulating the color recording of noisy particle fields both with and without the use of a Bayer filter and demosaicing operation. It was determined that for single-phase flow, both color methods decreased random errors by approximately a factor of two due to the noise signal being uncorrelated between color channels, while maintaining similar bias errors as compared to traditional monochrome PIV processing. In multi-component flows, the color vector correlation technique was able to successfully resolve displacements of two distinct yet coupled flow components with errors similar to traditional grayscale PIV processing of a single phase. It should be noted that traditional PIV processing is bound to fail entirely under such processing conditions. In contrast, the quaternion methods frequently failed to properly identify the correct velocity and phase and showed significant cross talk in the measurements between particle types. Finally, the color vector method was applied to experimental color images of a microchannel designed for contactless dielectrophoresis particle separation, and good results were obtained for both instantaneous and ensemble PIV processing. However, in both the synthetic color images that were generated using a Bayer filter and the experimental data, a significant peak-locking effect with a period of two pixels was observed. This effect is attributed to the inherent architecture of the Bayer filter. In order to mitigate this detrimental artifact, it is suggested that improved image interpolation or demosaicing algorithms tuned for use in PIV be developed and applied on the color images before processing, or that cameras that do not use a Bayer filter and therefore do not require a demosaicing algorithm be used for color PIV. C1 [Charonko, John J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Antoine, Elizabeth] Virginia Tech, Dept Mech Engn, Blacksburg, VA USA. [Vlachos, Pavlos P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Vlachos, PP (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM pvlachos@purdue.edu RI Charonko, John/D-6701-2013; OI Charonko, John/0000-0002-0396-9672; Antoine, Elizabeth/0000-0001-8116-9585 FU NSF IDBR [1152304]; NIH [5R21CA158454-02] FX The authors would like to thank Jaka Cemazar for his help performing cDEP experiments. This work was partially supported by the NSF IDBR 1152304 and NIH 5R21CA158454-02. NR 31 TC 1 Z9 1 U1 1 U2 21 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1613-4982 EI 1613-4990 J9 MICROFLUID NANOFLUID JI Microfluid. Nanofluid. PD OCT PY 2014 VL 17 IS 4 BP 729 EP 743 DI 10.1007/s10404-014-1355-5 PG 15 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas SC Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA AQ0EA UT WOS:000342454400012 ER PT J AU Divan, R Makarova, OV Skoog, S Narayan, R Sumant, AV Tang, CM Moldovan, N AF Divan, Ralu Makarova, Olga V. Skoog, Shelby Narayan, Roger Sumant, Anirudha V. Tang, Cha-Mei Moldovan, Nicolaie TI High-aspect-ratio nanoporous membranes made by reactive ion etching and e-beam and interference lithography SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS LA English DT Article ID DIAMOND THIN-FILMS; UV-PHOTORESIST; FABRICATION; MICROSIEVES; SU-8 AB Nanoporous membranes engineered to mimic natural filtration systems can be used in "smart" implantable drug delivery systems, hemodialysis membranes, bio-artificial organs, and other novel nano-enabled medical devices. Conventional membranes exhibit several limitations, including broad pore size distributions and low pore densities. To overcome these problems, lithographic approaches were used to develop porous silicon, silicon nitride, ultrananocrystalline diamond (UNCD), and polymer film membranes. Here we report processing of high porosity, high-aspect-ratio membranes by two techniques: UNCD fabricated by reactive ion etching after e-beam lithography and epoxy fabricated by interference lithography. C1 [Divan, Ralu; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Makarova, Olga V.] Creatv MicroTech Inc, Chicago, IL USA. [Skoog, Shelby; Narayan, Roger] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Skoog, Shelby; Narayan, Roger] N Carolina State Univ, Raleigh, NC 27695 USA. [Tang, Cha-Mei] Creatv MicroTech Inc, Potomac, MD 20854 USA. [Moldovan, Nicolaie] Adv Diamond Technol Inc, Romeoville, IL 60446 USA. RP Divan, R (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Av, Argonne, IL 60439 USA. EM divan@anl.gov FU US. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank Liliana Stan for metal depositions and Dr. Ii Woong Jung for FIB cross-sections processing. Use of the Center for Nanoscale Materials, Argonne National Laboratory was supported by the US. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 29 TC 0 Z9 0 U1 5 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-7076 EI 1432-1858 J9 MICROSYST TECHNOL JI Microsyst. Technol. PD OCT PY 2014 VL 20 IS 10-11 SI SI BP 1797 EP 1802 DI 10.1007/s00542-013-1932-7 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA AP6MQ UT WOS:000342192300005 ER PT J AU Wojcik, MJ Mancini, DC Divan, R Ocola, LE AF Wojcik, Michael J. Mancini, Derrick C. Divan, Ralu Ocola, Leonidas E. TI X-ray zone plates with 25 aspect ratio using a 2-mu m-thick ultrananocrystalline diamond mold SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS LA English DT Article ID E-BEAM LITHOGRAPHY; FILMS; NANOFABRICATION; CVD AB Hard X-ray phase zone plates are focusing optics used for X-ray microscopes at synchrotron radiation facilities. The resolution is determined by the outer-most zone width (OZW) and modern lithographic techniques are capable of patterning OZW less than 100 nm. Efficiency of a phase zone plate will peak when the zones have a thickness that provides a pi-phase shift to the X-rays. Thus, a hard X-ray zone plate with ideal efficiency and sub-100-nm resolution requires fabricating high-aspect-ratio, dense-packed structures in materials suitable for exposure to synchrotron radiation. The fabrication method implemented involves an electroforming mold process where a top resist layer is lithographically patterned and used for pattern transfer into a bottom layer which acts as the electroform mold. The resulting mold is filled with Au by electroplating, and afterwards the mold is not removed but remains in place for mechanical support. Ultrananocrystalline diamond (UNCD) was used as the mold layer. UNCD is deposited by hot-filament chemical vapor deposition with well-controlled stress and thickness up to 2 mu m. The top resist layer is hydrogen silsesquioxane, which is a high-contrast electron beam lithography resist and resistant to the oxygen reactive ion etching required for UNCD pattern transfer. Using this fabrication method, we successfully produced zone plates with OZW down to 80 nm and an aspect ratio up to 25 for a thickness of 2 mu m. The efficiency of several fabricated zone plates were measured, demonstrating their functionality. C1 [Wojcik, Michael J.; Mancini, Derrick C.; Divan, Ralu; Ocola, Leonidas E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wojcik, MJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mwojcik@anl.gov; mancini@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge Daniel Rosenmann and Ross Harder for their assistance, Advanced Diamond Technologies for supplying UNCD films. Use of the Center for Nanoscale Materials and the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 19 TC 2 Z9 2 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-7076 EI 1432-1858 J9 MICROSYST TECHNOL JI Microsyst. Technol. PD OCT PY 2014 VL 20 IS 10-11 SI SI BP 2045 EP 2050 DI 10.1007/s00542-013-2058-7 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA AP6MQ UT WOS:000342192300041 ER PT J AU Sae-Ueng, U Li, D Zuo, XB Huffman, JB Homa, FL Rau, D Evilevitch, A AF Sae-Ueng, Udom Li, Dong Zuo, Xiaobing Huffman, Jamie B. Homa, Fred L. Rau, Donald Evilevitch, Alex TI Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection SO NATURE CHEMICAL BIOLOGY LA English DT Article ID HERPES-SIMPLEX-VIRUS; IN-VITRO; EJECTION; PHAGE; BACTERIOPHAGE; PRESSURE; FORCES; DYNAMICS; VIRIONS; GENOME AB DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 degrees C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection. C1 [Sae-Ueng, Udom; Li, Dong; Evilevitch, Alex] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Zuo, Xiaobing] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Huffman, Jamie B.; Homa, Fred L.] Univ Pittsburgh, Sch Med, Dept Microbiol & Mol Genet, Pittsburgh, PA USA. [Rau, Donald] NIH, Lab Phys & Struct Biol, Program Phys Biol, Bethesda, MD USA. [Evilevitch, Alex] Lund Univ, Dept Biochem & Struct Biol, Lund, Sweden. RP Evilevitch, A (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM alexe@cmu.edu RI Evilevitch, Alex/P-3103-2014; Li, Dong/D-9221-2015 OI Evilevitch, Alex/0000-0002-0245-9574; Li, Dong/0000-0002-5282-6918 FU Swedish Research Council, VR grant [622-2008-726]; US National Science Foundation grant [CHE-1152770]; Public Health Service Grant from the US National Institutes of Health (NIH) [AI060836]; McWilliams Fellowship in the Mellon College of Science; Intramural Research Program of the National Institutes of Child Health and Human Development-NIH; US Department of Energy [DE-AC02-06CH11357] FX We acknowledge T. Liu and I. Shefer for their substantial help with the manuscript preparation. We also thank B. Jonsson for discussions that have been inspiring for this work. We are grateful to G. Berry, M. Widom, P. LeDuc, M. Deserno and L. Walker for providing critically important feedback on data analysis. We acknowledge J. Shaw, B. Pittenger and M. Thompson from Bruker Nano Surfaces Division for outstanding support with AFM measurements. We thank A. Templeton for help with proofreading. The SAXS experiments were performed at beamline 12ID-B of the Advanced Photon Source at Argonne National Laboratory. We acknowledge the Advanced Photon Source, which is an Office of Science User Facility operated by Argonne National Laboratory for the US Department of Energy under contract no. DE-AC02-06CH11357. This work was supported by the Swedish Research Council, VR grant 622-2008-726 (A.E.) and US National Science Foundation grant CHE-1152770 (A.E.). Support was also provided by the Public Health Service Grant AI060836 from the US National Institutes of Health (NIH) (F.L.H.) and by the McWilliams Fellowship in the Mellon College of Science (to U.S.). This work was partially supported by the Intramural Research Program of the National Institutes of Child Health and Human Development-NIH (to D.R.). NR 54 TC 6 Z9 6 U1 3 U2 21 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 EI 1552-4469 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD OCT PY 2014 VL 10 IS 10 BP 861 EP + DI 10.1038/NCHEMBIO.1628 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ0GV UT WOS:000342462100013 PM 25195012 ER PT J AU Evans, LM Slavov, GT Rodgers-Melnick, E Martin, J Ranjan, P Muchero, W Brunner, AM Schackwitz, W Gunter, L Chen, JG Tuskan, GA DiFazio, SP AF Evans, Luke M. Slavov, Gancho T. Rodgers-Melnick, Eli Martin, Joel Ranjan, Priya Muchero, Wellington Brunner, Amy M. Schackwitz, Wendy Gunter, Lee Chen, Jin-Gui Tuskan, Gerald A. DiFazio, Stephen P. TI Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations SO NATURE GENETICS LA English DT Article ID FLOWERING-LOCUS-T; WIDE ASSOCIATION; ARABIDOPSIS-THALIANA; WHOLE-GENOME; CLIMATE-CHANGE; LATITUDINAL GRADIENT; BLACK COTTONWOOD; LOCAL ADAPTATION; GROWTH CESSATION; GENE AB Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation. C1 [Evans, Luke M.; Rodgers-Melnick, Eli; DiFazio, Stephen P.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. [Slavov, Gancho T.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth, Dyfed, Wales. [Martin, Joel; Schackwitz, Wendy; Tuskan, Gerald A.] Joint Genome Inst, Walnut Creek, CA USA. [Ranjan, Priya; Muchero, Wellington; Gunter, Lee; Chen, Jin-Gui; Tuskan, Gerald A.] Oak Ridge Natl Lab, Plant Syst Biol Grp, BioSci Div, Oak Ridge, TN USA. [Brunner, Amy M.] Virginia Tech, Dept Forest Resources & Environm Conservat, Blacksburg, VA USA. RP DiFazio, SP (reprint author), W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. EM spdifazio@mail.wvu.edu RI Chen, Jin-Gui/A-4773-2011; Gunter, Lee/L-3480-2016; Tuskan, Gerald/A-6225-2011; OI Chen, Jin-Gui/0000-0002-1752-4201; Gunter, Lee/0000-0003-1211-7532; Tuskan, Gerald/0000-0003-0106-1289; muchero, wellington/0000-0002-0200-9856 FU BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; Virginia Agricultural Experiment Station; McIntire Stennis Program of the National Institute of Food and Agriculture, US Department of Agriculture FX We thank the members of BioEnergy Science Center for their varied contributions to this work, and especially those involved in the collection, propagation and maintenance of the common gardens, including G. Howe, A. Groover, R. Stettler, J. Johnson and the staff at Mt. Jefferson Farms and Greenwood Resources. We thank the West Virginia University High Performance Computing facility, in particular N. Gregg and M. Carlise. P. balsamifera transcriptomes were provided by M. Olson (Texas Tech University). This work was supported by funding from the BioEnergy Science Center, a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. A.M.B. acknowledges support from the Virginia Agricultural Experiment Station and the McIntire Stennis Program of the National Institute of Food and Agriculture, US Department of Agriculture. NR 60 TC 59 Z9 59 U1 12 U2 117 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD OCT PY 2014 VL 46 IS 10 BP 1089 EP 1096 DI 10.1038/ng.3075 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA AQ1PU UT WOS:000342554100011 PM 25151358 ER PT J AU Elman, JA Oh, H Madison, CM Baker, SL Vogel, JW Marks, SM Crowley, S O'Neil, JP Jagust, WJ AF Elman, Jeremy A. Oh, Hwamee Madison, Cindee M. Baker, Suzanne L. Vogel, Jacob W. Marks, Shawn M. Crowley, Sam O'Neil, James P. Jagust, William J. TI Neural compensation in older people with brain amyloid-beta deposition SO NATURE NEUROSCIENCE LA English DT Article ID MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; IN-VIVO; MEMORY; ACTIVATION AB Recruitment of extra neural resources may allow people to maintain normal cognition despite amyloid-beta (A beta) plaques. Previous fMRI studies have reported such hyperactivation, but it is unclear whether increases represent compensation or aberrant overexcitation. We found that older adults with A beta deposition had reduced deactivations in task-negative regions, but increased activation in task-positive regions related to more detailed memory encoding. The association between higher activity and more detailed memories suggests that A beta-related hyperactivation is compensatory. C1 [Elman, Jeremy A.; Baker, Suzanne L.; O'Neil, James P.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Oh, Hwamee; Madison, Cindee M.; Vogel, Jacob W.; Marks, Shawn M.; Crowley, Sam; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. RP Elman, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jelman@berkeley.edu; jagust@berkeley.edu FU US National Institutes of Health [AG034570] FX We thank S. Qin for task stimuli and W Huijbers for discussion. Supported by US National Institutes of Health grant AG034570. NR 20 TC 36 Z9 36 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1097-6256 EI 1546-1726 J9 NAT NEUROSCI JI Nat. Neurosci. PD OCT PY 2014 VL 17 IS 10 BP 1316 EP 1318 DI 10.1038/nn.3806 PG 3 WC Neurosciences SC Neurosciences & Neurology GA AP8KD UT WOS:000342327000010 PM 25217827 ER PT J AU Lyo, SK Pan, W AF Lyo, S. K. Pan, W. TI Miniband transport in a two-dimensional electron gas with a strong periodic unidirectional potential modulation SO SOLID STATE COMMUNICATIONS LA English DT Article DE Semiconductors; Two-dimensional systems; High-field transport ID SEMICONDUCTOR SUPERLATTICES; CARRIERS AB We study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. For a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weak potential modulation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lyo, S. K.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lyo, SK (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 13 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2014 VL 196 BP 51 EP 54 DI 10.1016/j.ssc.2014.07.023 PG 4 WC Physics, Condensed Matter SC Physics GA AQ0NF UT WOS:000342479300010 ER PT J AU Errichello, R Budny, R Eckert, R AF Errichello, Robert Budny, Robert Eckert, Rainer TI Investigations of Bearing Failures Associated with White Etching Areas (WEAs) in Wind Turbine Gearboxes SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article DE Fatigue Crack Propagation; Failure Analysis; Rolling Bearings; Cylindrical Roller Bearings; Tapered Roller Bearings; Carburizing; Through-Hardening; Rolling Contact Fatigue; Residual stress; Retained Austenite ID ROLLING-CONTACT FATIGUE; MICROSTRUCTURAL ALTERATIONS; BALL-BEARINGS; STEELS; STRESS AB A critical problem for wind turbine gearboxes is failure of rolling element bearings where axial cracks form on the inner rings. Metallurgical analyses show that the failure mode is associated with microstructural alterations manifested by white etching areas (WEAs) and white etching cracks (WECs). This article presents field experience from operating wind turbines that compares performance of through-hardened and carburized materials. It shows that through-hardened bearings develop WEA/WECs and fail with axial cracks, whereas carburized bearings do not. In another comparison of two rotor bearings with different carburized metallurgies, one bearing developed WEAL WECs and failed by macropitting, whereas the other bearing did not develop WEAs or WECs and did not fail. The field experience shows that a carburized bearing that has a core with low carbon content, high nickel content, greater compressive residual stresses, and a higher amount of retained austenite provides higher fracture resistance andmakes carburized bearings more durable than through-hardened bearings in the wind turbine environment. C1 [Errichello, Robert] GEARTECH, Townsend, MT 59644 USA. [Budny, Robert] RBB Engn, Santa Barbara, CA USA. [Eckert, Rainer] Pacific NW Natl Lab, Seattle, WA USA. RP Errichello, R (reprint author), GEARTECH, Townsend, MT 59644 USA. NR 25 TC 0 Z9 0 U1 3 U2 10 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD OCT PY 2014 VL 70 IS 10 BP 66 EP + PG 8 WC Engineering, Mechanical SC Engineering GA AP8OF UT WOS:000342337600013 ER PT J AU Sun, WC Chen, QS Ostien, JT AF Sun, WaiChing Chen, Qiushi Ostien, Jakob T. TI Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials SO ACTA GEOTECHNICA LA English DT Article DE Bearing capacity; Cap plasticity; Excess pore pressure; Hydro-mechanical coupling; Poromechanics; Stabilized procedure ID FINITE-ELEMENT METHODS; IMPLICIT NUMERICAL-INTEGRATION; CAP-PLASTICITY-MODEL; POROUS-MEDIA; ELLIPTIC PROBLEMS; LOCALIZATION; DEFORMATION; STRAIN; CONSOLIDATION; 3-INVARIANT AB A stabilized enhanced strain finite element procedure for poromechanics is fully integrated with an elasto-plastic cap model to simulate the hydro-mechanical interactions of fluid-infiltrating porous rocks with associative and non-associative plastic flow. We present a quantitative analysis on how macroscopic plastic volumetric response caused by pore collapse and grain rearrangement affects the seepage of pore fluid, and vice versa. Results of finite element simulations imply that the dissipation of excess pore pressure may significantly affect the stress path and thus alter the volumetric plastic responses. C1 [Sun, WaiChing] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA. [Chen, Qiushi] Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. [Ostien, Jakob T.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Sun, WC (reprint author), Columbia Univ, Dept Civil Engn & Engn Mech, 500 West 120th St, New York, NY 10027 USA. EM wsun@columbia.edu RI Sun, WaiChing/A-2638-2009; Ostien, Jakob/K-7053-2012 OI Sun, WaiChing/0000-0002-3078-5086; FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Thanks are due to Professor Bernhard Schrefler for fruitful discussion. We are very grateful for the comprehensive reviews and insightful suggestions provided by the anonymous reviewers. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 54 TC 16 Z9 16 U1 2 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1861-1125 EI 1861-1133 J9 ACTA GEOTECH JI Acta Geotech. PD OCT PY 2014 VL 9 IS 5 BP 903 EP 934 DI 10.1007/s11440-013-0276-x PG 32 WC Engineering, Geological SC Engineering GA AP6FM UT WOS:000342173000012 ER PT J AU Lupinacci, A Kacher, A Eilenberg, A Shapiro, AA Hosemann, P Minor, AM AF Lupinacci, A. Kacher, A. Eilenberg, A. Shapiro, A. A. Hosemann, P. Minor, A. M. TI Cryogenic in situ microcompression testing of Sn SO ACTA MATERIALIA LA English DT Article DE Tin; Solder; DBTT; Small-scale testing; EBSD ID SOLDER JOINTS; TRANSMISSION EBSD; TIN; BEHAVIOR AB Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at -142 degrees C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at -142 degrees C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 (5) over bar 1) orientation. The deformation mechanisms were found to be the same for both orientations. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lupinacci, A.; Kacher, A.; Eilenberg, A.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kacher, A.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Shapiro, A. A.] Jet Prop Lab, Pasadena, CA USA. [Hosemann, P.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Foundry, Molecular/G-9968-2014; OI Hosemann, Peter/0000-0003-2281-2213 FU NASA GSRP Fellowship; Boeing, Inc.; US Department of Energy [DE-AC02-05CH11231]; National Aeronautics and Space Administration FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.L. was supported by a NASA GSRP Fellowship and also by Boeing, Inc. We would like to thank both Hummingbird Scientific, Inc. and Hysitron, Inc. for help with the design and fabrication of the cryogenic testing apparatus. The TEM analysis was performed at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 8 Z9 8 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 56 EP 64 DI 10.1016/j.actamat.2014.06.026 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400006 ER PT J AU Golovin, IS Palacheva, VV Zadorozhnyy, VY Zhu, J Jiang, H Cifre, J Lograsso, TA AF Golovin, I. S. Palacheva, V. V. Zadorozhnyy, V. Yu. Zhu, J. Jiang, H. Cifre, J. Lograsso, T. A. TI Influence of composition and heat treatment on damping and magneto strictive properties of Fe-18%(Ga + Al) alloys SO ACTA MATERIALIA LA English DT Article DE Fe-Ga-Al alloys; Damping; Magnetostriction; Structure; Ordering ID FE-GA ALLOYS; STRUCTURALLY HETEROGENEOUS MODEL; EXTRINSIC MAGNETOSTRICTION; INTERNAL-FRICTION; AL ALLOYS; ALPHA-FE; ANELASTICITY; RELAXATION; MECHANISMS; STRESS AB The structure, magnetostriction and damping properties of Fe82Ga((18-x))Al-x (x = 0, 5, 8, 12) alloys were analyzed. The anelastic response of Fe-18(Ga Al) alloys was studied as a function of temperature (from 0 to 600 degrees C), frequency (from 0.01 to 200 Hz) and amplitude (from 0.0004% to 0.2%) of forced vibrations. The origin of the relatively high damping capacity of Fe-Ga-Al alloy at room temperature was determined by applying a magnetic field and different heat treatment regimes. The substitution of Ga by Al in Fe-18% Ga alloys was found to decrease magnetostriction and damping. The heat treatment of alloys influences the damping capacity of alloys more than variations of their chemical compositions. Thermally activated frequency and temperature-dependent anelastic effects in Fe-Ga-Al alloys were analyzed and the corresponding activation parameters for relaxation processes were evaluated. Internal friction effects caused by structural transformations were recorded and were found to be consistent with the A2 -> D0(3) -> L1(2) reaction. The physical mechanisms for all anelastic effects are discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Golovin, I. S.; Palacheva, V. V.; Zadorozhnyy, V. Yu.] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia. [Zhu, J.; Jiang, H.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Cifre, J.] Univ Illes Balears, Serv Cientificotecn, E-07122 Palma De Mallorca, Spain. [Lograsso, T. A.] Ames Lab, Div Mat Sci & Engn, Ames, IA USA. [Lograsso, T. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA. RP Golovin, IS (reprint author), Natl Univ Sci & Technol MISIS, Leninsky Ave 4, Moscow 119049, Russia. EM i.golovin@misis.ru RI Golovin, Igor/O-3251-2013; Zadorozhnyy, Vladislav/G-9616-2011; Golovin, Igor/F-4570-2015 OI Golovin, Igor/0000-0001-5557-2979; FU RFBR, Russia [14-03-00165a]; NSFC, China [51371028]; US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division [DE-AC02-07CH11358] FX This study was supported by RFBR, Russia, research Project no. 14-03-00165a (I.S.G., V.V.P. and V.Yu.Z.). J.Z. and H.J. thank NSFC, China, Project No. 51371028, for support and T.A.L. acknowledges support by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under contract DE-AC02-07CH11358. NR 41 TC 14 Z9 14 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 93 EP 102 DI 10.1016/j.actamat.2014.05.044 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400010 ER PT J AU Samolyuk, GD Barashev, AV Golubov, SI Osetsky, YN Stoller, RE AF Samolyuk, G. D. Barashev, A. V. Golubov, S. I. Osetsky, Y. N. Stoller, R. E. TI Analysis of the anisotropy of point defect diffusion in hcp Zr SO ACTA MATERIALIA LA English DT Article DE Zirconium; Diffusion; Density functional theory; Kinetic Monte Carlo; Vacancies and interstitials ID ENERGY DISPLACEMENT CASCADES; ELASTIC BAND METHOD; AB-INITIO; ALPHA-ZIRCONIUM; SELF-INTERSTITIALS; MOLECULAR-DYNAMICS; VACANCY MIGRATION; 1ST PRINCIPLES; SADDLE-POINTS; METALS AB A combination of density functional theory (DFT), kinetic Monte Carlo and mean-field rate theory is applied to analyze point defect migration and its effect on the observed growth of hexagonal close-packed (hcp) Zr under 1 MeV electron irradiation. DFT is used to study stability of various configurations of vacancies and self-interstitial atoms (SIAs) and migration barriers. The data are used in kinetic Monte Carlo modeling of defect diffusion at different temperatures. It is found that both defects exhibit anisotropic diffusion, predominantly parallel to the basal planes. The ratio of diffusion coefficients parallel and perpendicular to the basal planes is found to be higher for vacancies as compared to SIAs at temperatures below similar to 600 K. This raises doubts that the observed radiation growth in Zr irradiated with 1 MeV electrons, namely positive strains in prismatic and negative strains in basal directions, and void alignment along basal planes, can be accounted for by the anisotropy of point defect diffusion, which predicts opposite strain signs. It is speculated that formation of small SIA clusters with higher diffusion anisotropy may be responsible for the experimental observations. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Samolyuk, G. D.; Barashev, A. V.; Golubov, S. I.; Osetsky, Y. N.; Stoller, R. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barashev, A. V.] Univ Tennessee, Dept Mat Sci & Engn, Ctr Mat Proc, Knoxville, TN 37996 USA. RP Samolyuk, GD (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM samolyukgd@ornl.gov OI Osetskiy, Yury/0000-0002-8109-0030 FU Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation for Modeling and Simulation of Nuclear Reactors under Hub US Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub (http://www.energy.gov/hub) for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05-00OR22725, and used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy. NR 37 TC 14 Z9 15 U1 6 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 173 EP 180 DI 10.1016/j.actamat.2014.06.024 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400017 ER PT J AU Lynch, PA Kunz, M Tamura, N Barnett, MR AF Lynch, P. A. Kunz, M. Tamura, N. Barnett, M. R. TI Time and spatial resolution of slip and twinning in a grain embedded within a magnesium polycrystal SO ACTA MATERIALIA LA English DT Article DE Polychromatic diffraction; Tensile twinning; Magnesium ID SITU NEUTRON-DIFFRACTION; X-RAY; HCP METALS; DEFORMATION MECHANISMS; ALLOY CRYSTALS; DISLOCATIONS; MG; NUCLEATION; BOUNDARIES; GROWTH AB Plastic yielding in magnesium alloys frequently involves the initiation of both slip and twinning events. A proper understanding of the phenomenon at the grain level requires knowledge of how these two mechanisms progress and interact over both time and space and what the local resolved stresses are. To date, simultaneous collection of such information has not been achievable. To address this shortfall, we have developed a modified Laue based in situ micro X-ray diffraction technique with an unprecedented combination of time and spatial resolution. A ten-fold reduction in data collection times is realized by the refinement of rapid polychromatic Laue "single-shot" mapping. From single Laue patterns, we extract grain depth information, detect onset of yielding and achieve 2 x 10(-4) lattice strain resolution. The technique is employed to examine yielding and twinning in a magnesium grain embedded similar to 200 mu m below the sample surface. We examine 13 time steps and reveal the following behaviour: initial onset of basal slip, subsequent onset of twinning, development of further accommodation slip and evolution of twin shape and size; along with the corresponding values of local resolved shear stresses. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lynch, P. A.; Barnett, M. R.] Deakin Univ, Inst Frontier Mat, ARC Ctr Excellence Design Light Met, Waurn Ponds, Vic 3216, Australia. [Kunz, M.; Tamura, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lynch, PA (reprint author), Deakin Univ, Inst Frontier Mat, ARC Ctr Excellence Design Light Met, 75 Pigdons Rd, Waurn Ponds, Vic 3216, Australia. EM peter.lynch@deakin.edu.au FU Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; International Synchrotron Access Program (ISAP); Australian Government FX We wish to thank J. Vella for tensile sample preparation and A. Sullivan for electron microscopy analysis and preparation of fiducial markers. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy under contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. P.A.L. would also like to acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron and funded by the Australian Government. NR 40 TC 7 Z9 7 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 203 EP 212 DI 10.1016/j.actamat.2014.06.030 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400020 ER PT J AU Solomon, JM Alexandrov, V Sadigh, B Navrotsky, A Asta, M AF Solomon, J. M. Alexandrov, V. Sadigh, B. Navrotsky, A. Asta, M. TI Computational study of the energetics and defect clustering tendencies for Y- and La-doped UO2 SO ACTA MATERIALIA LA English DT Article DE Oxygen vacancy; Formation enthalpy; Pyrochlore; DFT ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; URANIUM-DIOXIDE; SOLID ELECTROLYTES; MOLECULAR-DYNAMICS; FISSION-PRODUCTS; BASIS-SET; YTTRIA; CERIA; FUEL AB The energetics and defect ordering tendencies in solid solutions of fluorite-structured UO2 with trivalent rare earth cations (M3+ = Y, La) are investigated computationally using a combination of ionic pair potential and density functional theory based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. The implications of these results are discussed in the context of the effect of trivalent impurities on oxygen ion mobilities in UO2, which are relevant to the understanding of experimental observations concerning the effect of trivalent fission products on the oxidative corrosion rates of spent nuclear fuel. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Solomon, J. M.; Asta, M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Alexandrov, V.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Sadigh, B.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Navrotsky, A.] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Navrotsky, A.] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Navrotsky, A.; Asta, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Solomon, JM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM jsolom@berkeley.edu FU Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Materials Science of Actinides Energy Frontier Research Center [DE-SC0001089]; U.S. Department of Energy through the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program; U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center [DE-SC0001089] FX J.M.S. was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center (DE-SC0001089) for initial DFT + U calculations, the U.S. Department of Energy through the Lawrence Livermore National Laboratory (DE-AC52-07NA27344) for the hybrid calculations, and the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program for the remainder of the work. V.A., A.N. and M.A. were supported by the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center (DE-SC0001089). B.S. was supported by the U.S. Department of Energy through the Lawrence Livermore National Laboratory (DE-AC52-07NA27344). This work made use of resources of the National Energy Research Scientific Computing Center, supported by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank B.E. Hanken and L. Zhang for useful discussions. NR 62 TC 7 Z9 7 U1 3 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 282 EP 289 DI 10.1016/j.actamat.2014.06.052 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400027 ER PT J AU Remington, TP Ruestes, CJ Bringa, EM Remington, BA Lu, CH Kad, B Meyers, MA AF Remington, T. P. Ruestes, C. J. Bringa, E. M. Remington, B. A. Lu, C. H. Kad, B. Meyers, M. A. TI Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation SO ACTA MATERIALIA LA English DT Article DE Nanoindentation; Molecular dynamics; Dislocations; Shear loops; Prismatic loops ID MOLECULAR-DYNAMICS SIMULATIONS; DISLOCATION NUCLEATION; INDENTATION; SIZE; CRYSTALS; BEHAVIOR; HARDNESS AB The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below, similar to 7nm,at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This "lasso"-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along (1 1 1) directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (similar to 1.2 x 10(15) m(-2)), by MD (similar to 7 x 10(15) m(-2)) and through an analytical calculation (2.6-19 x 10(15) m(-2)). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Remington, T. P.; Lu, C. H.; Kad, B.; Meyers, M. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Ruestes, C. J.; Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Bringa, E. M.] Consejo Nacl Invest Cient & Tecn, RA-5500 Mendoza, Argentina. [Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meyers, MA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mameyers@ucsd.edu RI Meyers, Marc/A-2970-2016; OI Meyers, Marc/0000-0003-1698-5396; Ruestes, Carlos/0000-0002-2764-1508 FU UC Research Laboratories [09-LR-06-118456-MEYM]; National Laser Users Facility (NLUF) [PE-FG52-09NA-29043]; Oak Ridge National Laboratory, Division of Scientific User Facilities, US Department of Energy; SeCTyP-UN Cuyo; [PICT-PRH-0092] FX This research was supported by the UC Research Laboratories Grant (09-LR-06-118456-MEYM) and a National Laser Users Facility (NLUF) Grant (PE-FG52-09NA-29043). We have a great debt of gratitude to J. Bezares, who helped us with the nanoindentation experiments. Tragically he lost his life shortly before completing his doctorate. This research would not have been possible without him. We thank Prof. A. Hodge for her assistance in the experimental part of the program and for essential advice. The transmission electron microscopy was conducted at the ShaRE User Facility, which is sponsored at the Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. We also thank E. Hahn for help preparing three figures. E.M.B. thanks grants from PICT-PRH-0092 and SeCTyP-UN Cuyo. NR 49 TC 19 Z9 19 U1 11 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT 1 PY 2014 VL 78 BP 378 EP 393 DI 10.1016/j.actamat.2014.06.058 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO7UZ UT WOS:000341559400036 ER PT J AU Nageswara-Rao, M Hanson, M Agarwal, S Stewart, CN Kwit, C AF Nageswara-Rao, Madhugiri Hanson, Micaha Agarwal, Sujata Stewart, C. Neal, Jr. Kwit, Charles TI Genetic diversity analysis of switchgrass (Panicum virgatum L.) populations using microsatellites and chloroplast sequences SO AGROFORESTRY SYSTEMS LA English DT Article DE Agronomic cultivars; Biofuel; Chloroplast nucleotide sequencing; Conservation and restoration; Genetic variability; Natural populations ID NUCLEAR-DNA CONTENT; CHROMOSOME-NUMBER; UNITED-STATES; PERENNIAL RYEGRASS; NONCODING REGIONS; LOLIUM-PERENNE; SSR MARKERS; FLOW; FEEDSTOCK AB The agricultural landscape of the United States could soon be changed by planting of switchgrass (Panicum virgatum L.) cultivars to meet government-mandated targets for lignocellulosic bioenergy production and consumption. This alteration could affect the genetic structure of wild switchgrass populations, which are native to the eastern half of North America through cultivar introgression. In this study, PCR amplification of microsatellite fragments as well as chloroplast gene-specific markers were utilized to quantify the genetic diversity and structure of five native populations and three agronomic fields (hereafter 'populations') planted with switchgrass cultivars. Microsatellite polymorphism across all the switchgrass populations ranged from 91.4 to 100 %. Overall, natural switchgrass populations had significantly higher mean genetic diversity than agronomic switchgrass cultivars (0.262 +/- A 0.102 and 0.201 +/- A 0.082 respectively, t test p < 0.008). Natural switchgrass populations had significantly higher total genetic diversity within (H-S) and among (H-T) as compared to agronomic switchgrass cultivars. A clear separation of natural and agronomic switchgrass populations was noted using principal component analysis and STRUCTURE analysis. A grouping pattern similar to that obtained in the microsatellite study was observed when chloroplast nucleotide sequence variation was assessed. In the realm of bioenergy sustainability, our results highlight the need to consider the genetic structure of cultivars for bioenergy when they are grown in proximity to native switchgrass populations. C1 [Nageswara-Rao, Madhugiri; Hanson, Micaha; Agarwal, Sujata; Stewart, C. Neal, Jr.; Kwit, Charles] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Nageswara-Rao, Madhugiri] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA. [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Kwit, Charles] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. RP Nageswara-Rao, M (reprint author), Univ Tennessee, Dept Plant Sci, 252 Ellington Plant Sci,2431 Joe Johnson Dr, Knoxville, TN 37996 USA. EM mnrbhav@yahoo.com FU Biotechnology Risk Assessment Grant Program competitive Grant from the USDA National Institute of Food and Agriculture (NIFA) [2010-39211-21699]; Building Research Interest and Developing Global Engagement (BRIDGE), an Inter-College Undergraduate Research Funding Opportunity; BioEnergy Science Center, a Bioenergy Research Center - Office of Biological and Environmental Research in the US Department of Energy Office of Science; NIFA FX We thank numerous people who facilitated and assisted with field work, including B. Black, S. Bobzin, T. Crabtree, S. Jackson. We also thank G. Wein, X. Yang, D. Hadziabdic, R. Govindarajulu and P. A. Wadl for their assistance with laboratory and logistical assistance. Permits to collect switchgrass tissue from Tennessee State Natural Areas were obtained through the Tennessee Department of Environment and Conservation. This project was supported by Biotechnology Risk Assessment Grant Program competitive Grant No. 2010-39211-21699 from the USDA National Institute of Food and Agriculture (NIFA) as well as by Building Research Interest and Developing Global Engagement (BRIDGE), an Inter-College Undergraduate Research Funding Opportunity, awarded to M. Hanson. Neal Stewart Jr. also received support from the BioEnergy Science Center, a Bioenergy Research Center, supported by the Office of Biological and Environmental Research in the US Department of Energy Office of Science and funding from NIFA to the University of Tennessee Integrated Biomass Supply Systems (IBSS) Center. NR 68 TC 1 Z9 1 U1 3 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4366 EI 1572-9680 J9 AGROFOREST SYST JI Agrofor. Syst. PD OCT PY 2014 VL 88 IS 5 BP 823 EP 834 DI 10.1007/s10457-014-9728-z PG 12 WC Agronomy; Forestry SC Agriculture; Forestry GA AP1VA UT WOS:000341858600007 ER PT J AU Xue, JF Isern, NG Ewing, RJ Liyu, AV Sears, JA Knapp, H Iversen, J Sisk, DR Ahring, BK Majors, PD AF Xue, Junfeng Isern, Nancy G. Ewing, R. James Liyu, Andrei V. Sears, Jesse A. Knapp, Harlan Iversen, Jens Sisk, Daniel R. Ahring, Birgitte K. Majors, Paul D. TI New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Bioproducts; Bioreactor technology; In situ metabolism; Nuclear magnetic resonance; Moorella thermoacetica ID COMPLETE GENOME SEQUENCE; IN-VIVO NMR; NUCLEAR-MAGNETIC-RESONANCE; ETHANOL-PRODUCTION; BACILLUS-SUBTILIS; CLOSTRIDIUM-THERMOACETICUM; LACTOCOCCUS-LACTIS; ESCHERICHIA-COLI; SYNTHESIS GAS; FERMENTATION AB An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts. C1 [Xue, Junfeng; Iversen, Jens; Ahring, Birgitte K.] Washington State Univ Tricities, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. [Isern, Nancy G.; Ewing, R. James; Liyu, Andrei V.; Sears, Jesse A.; Sisk, Daniel R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Knapp, Harlan] Eppendorf North Amer, Hauppauge, NY 11788 USA. [Majors, Paul D.] Bruker Biospin Corp, Billerica, MA 01821 USA. [Iversen, Jens] Aalborg Univ, Sect Sustainable Biotechnol, DK-2450 Copenhagen, Denmark. RP Ahring, BK (reprint author), Washington State Univ Tricities, Bioprod Sci & Engn Lab, 2710 Crimson Way, Richland, WA 99354 USA. EM nancy.isern@pnnl.gov; bka@wsu.edu FU Washington State STARS researcher program; Environmental Molecular Sciences Laboratory (EMSL) Intramural program; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) FX We acknowledge the financial support from Washington State STARS researcher program given to Prof. Ahring 2008-2010, the Danish Strategic Research Council ENMI which supported the stay of Jens Iversen at Washington State University (WSU), and the Environmental Molecular Sciences Laboratory (EMSL) Intramural program, which funded the development and implementation of NMR instrumentation and methods for this project. The NMR spectroscopy portion of the research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Finally, we thank EMSL Machine Shop for construction of the in situ bioreactor custom components, EMSL's Instrument Development Lab (IDL) for helping to integrate the controller and in situ NMR, and the EMSL Crafts personnel for their assistance in bioreactor assembly, adjustment, and installation. We are very grateful to Weiqun Zhong (WSU) for her technical assistance. NR 33 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD OCT PY 2014 VL 98 IS 19 BP 8367 EP 8375 DI 10.1007/s00253-014-5847-8 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AP4TU UT WOS:000342072500027 PM 24946863 ER PT J AU An, HJ Madsen, KK Reynolds, SP Kaspi, VM Harrison, FA Boggs, SE Christensen, FE Craig, WW Fryer, CL Grefenstette, BW Hailey, CJ Mori, K Stern, D Zhang, WW AF An, Hongjun Madsen, Kristin K. Reynolds, Stephen P. Kaspi, Victoria M. Harrison, Fiona A. Boggs, Steven E. Christensen, Finn E. Craig, William W. Fryer, Chris L. Grefenstette, Brian W. Hailey, Charles J. Mori, Kaya Stern, Daniel Zhang, William W. TI HIGH-ENERGY X-RAY IMAGING OF THE PULSAR WIND NEBULA MSH 15-52: CONSTRAINTS ON PARTICLE ACCELERATION AND TRANSPORT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G320.4-1.2); ISM: jets and outflows; ISM: supernova remnants; pulsars: individual (PSR B1509-58); stars: neutron; X-rays: ISM ID CRAB-NEBULA; PSR B1509-58; INTERSTELLAR BUBBLES; MASSIVE STARS; EMISSION; EVOLUTION; RADIATION; SPECTRUM; PSR-B1509-58; SPECTROSCOPY AB We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (greater than or similar to 8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at similar to 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 '' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N-H map. We discuss possible origins of the shell-like structure and their implications. C1 [An, Hongjun; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Hailey, Charles J.; Mori, Kaya] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP An, HJ (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; NSERC Discovery Grant; Accelerator Supplement; FQRNT Centre de Recherche Astrophysique du Quebec; Canadian Institute for Advanced Research (CIFAR); Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuS-TARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). V.M.K. acknowledges support from an NSERC Discovery Grant and Accelerator Supplement, the FQRNT Centre de Recherche Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR), the Canada Research Chairs Program and the Lorne Trottier Chair in Astrophysics and Cosmology. NR 51 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 90 DI 10.1088/0004-637X/793/2/90 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300021 ER PT J AU Beiersdorfer, P Bode, MP Ishikawa, Y Diaz, F AF Beiersdorfer, P. Bode, M. P. Ishikawa, Y. Diaz, F. TI L-SHELL DIELECTRONIC SATELLITE TRANSITIONS OF Fe XVII SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic processes; line: formation; stars: coronae; stars: individual (Capella); Sun: X-rays, gamma rays; X-rays: general ID LABORATORY MEASUREMENTS; INNER-SHELL; RECOMBINATION; SPECTRA; CAPELLA; EMISSION; RATES; LINES; XXV AB We have used the relativistic multi-reference Moller-Plesset perturbation theory to calculate the positions of the dielectronic satellite transitions involving doubly excited 3l3l' configurations that are associated with the X-ray spectrum of Fe XVII. A comparison of these positions with the wavelengths employed in astrophysical modeling codes shows discrepancies of up to 36 m angstrom. Inspection of the spectrum of Capella recorded with the high energy transmission grating on the Chandra X-Ray Observatory reveals several features enhanced by Fe XVI lines formed by dielectronic recombination, one of which may be of future diagnostic use as it is fairly well isolated and in large part formed by dielectronic recombination. C1 [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Beiersdorfer, P.; Bode, M. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ishikawa, Y.; Diaz, F.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Ishikawa, Y.; Diaz, F.] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. FU Department of Energy [DE-AC52-07NA-27344]; NASA Astronomy and Physics Research and Analysis [NNX12AH84G]; Chandra Research Award [AR1-12006X] FX Work by the Lawrence Livermore National Laboratory was performed under the auspices of the Department of Energy under Contract No. DE-AC52-07NA-27344 and supported by NASA Astronomy and Physics Research and Analysis contract NNX12AH84G and Chandra Research Award AR1-12006X. NR 24 TC 2 Z9 2 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 99 DI 10.1088/0004-637X/793/2/99 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300030 ER PT J AU Cai, Z Fan, XH Noterdaeme, P Wang, R McGreer, I Carithers, B Bian, FY Miralda-Escude, J Finley, H Paris, I Schneider, DP Zakamska, NL Ge, J Petitjean, P Slosar, A AF Cai, Zheng Fan, Xiaohui Noterdaeme, Pasquier Wang, Ran McGreer, Ian Carithers, Bill Bian, Fuyan Miralda-Escude, Jordi Finley, Hayley Paris, Isabelle Schneider, Donald P. Zakamska, Nadia L. Ge, Jian Petitjean, Patrick Slosar, Anze TI A GLIMPSE AT QUASAR HOST GALAXY FAR-UV EMISSION USING DAMPED Ly alpha's AS NATURAL CORONAGRAPHS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: high-redshift; quasars: absorption lines; quasars: general ID LYMAN-BREAK GALAXIES; DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; HUBBLE-SPACE-TELESCOPE; STAR-FORMATION HISTORY; BLACK-HOLE MASS; SPECTRAL ENERGY-DISTRIBUTIONS; REST-FRAME ULTRAVIOLET; HIGH-REDSHIFT QUASARS; RADIO-QUIET QUASARS AB In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Ly alpha (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of similar to 2000 DLA systems (N-H (I) > 10(20.6) cm(-2)) with a median absorption redshift < z > = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift < z > = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin (< L > = 2.5 x 10(13) L-circle dot), the host galaxy has an FUV intensity of 1.5 +/- 0.2 x 10(40) erg s(-1) angstrom(-1); this corresponds to an unobscured UV star formation rate of 9 M-circle dot yr(-1). C1 [Cai, Zheng; Fan, Xiaohui; Wang, Ran; McGreer, Ian] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Cai, Zheng] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Noterdaeme, Pasquier; Finley, Hayley; Petitjean, Patrick] UPMC, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Carithers, Bill] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bian, Fuyan] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, E-08007 Barcelona, Spain. [Paris, Isabelle] Univ Chile, Dept Astron, Santiago, Chile. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Zakamska, Nadia L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cai, Z (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM caiz@email.arizona.edu FU NSF [AST 08-06861, AST 11-07682]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX We thank the anonymous referee for insightful comments which have significantly improved the paper. Z.C. thanks George Becker and J. Xavier Prochaska for useful discussions. Z.C. and X.F. acknowledge support from NSF grants AST 08-06861 and AST 11-07682. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 100 TC 7 Z9 7 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 139 DI 10.1088/0004-637X/793/2/139 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300070 ER PT J AU Gonzalez, RE Kravtsov, AV Gnedin, NY AF Gonzalez, Roberto E. Kravtsov, Andrey V. Gnedin, Nickolay Y. TI ON THE MASS OF THE LOCAL GROUP SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; Galaxy: fundamental parameters; Galaxy: halo; Local Group ID ELLIPTIC GALAXY NGC-720; LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; DARK-MATTER HALOS; MILKY-WAY; HUBBLE FLOW; SPIRAL GALAXIES; VIRGO CLUSTER; CONSTRAINED SIMULATIONS; SATELLITE KINEMATICS AB We use recent proper motion measurements of the tangential velocity of M31, along with its radial velocity and distance, to derive the likelihood of the sum of halo masses of the Milky Way and M31. This is done using a sample of halo pairs in the Bolshoi cosmological simulation of Lambda CDM cosmology selected to match the properties and the environment of the Local Group. The resulting likelihood gives an estimate of the sum of the masses of M-MW,M-200c + M-M31,M-200c = 2.40(-1.05)(+1.95) x 10(12) M-circle dot (90% confidence interval). This estimate is consistent with individual mass estimates for the Milky Way and M31 and is consistent, albeit somewhat on the low side, with the mass estimated using the timing argument. We show that although the timing argument is unbiased on average for all pairs, for pairs constrained to have radial and tangential velocities similar to that of the Local Group the argument overestimates the sum of masses by a factor of 1.6. Using similar technique, we estimate the total dark matter mass enclosed within 1 Mpc from the Local Group barycenter to be M-LG(r < 1 Mpc) = 4.2(-2.0)(+3.4) x 10(12) M-circle dot (90% confidence interval). C1 [Gonzalez, Roberto E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gonzalez, Roberto E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gonzalez, Roberto E.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Gonzalez, RE (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM regonzar@astro.puc.cl FU NSF [OCI-0904482, AST-0807444]; Kavli Institute for Cosmological Physics at the University of Chicago through the NSF [PHY-0551142, PHY-1125897] FX We thank Anatoly Klypin for making the Bolshoi simulation and the BDM halo catalogs publicly available. This work was supported by the NSF via grant OCI-0904482. A.K. was also supported in part by the NSF grant AST-0807444 and by the Kavli Institute for Cosmological Physics at the University of Chicago through the NSF grants PHY-0551142 and PHY-1125897 and an endowment from the Kavli Foundation. We have made extensive use of the NASA Astrophysics Data System and arXiv.org preprint server. NR 71 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 91 DI 10.1088/0004-637X/793/2/91 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300022 ER PT J AU Huang, YM Bhattacharjee, A Boozer, AH AF Huang, Yi-Min Bhattacharjee, A. Boozer, Allen H. TI RAPID CHANGE OF FIELD LINE CONNECTIVITY AND RECONNECTION IN STOCHASTIC MAGNETIC FIELDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffusion; magnetic fields; magnetic reconnection; magnetohydrodynamics (MHD); plasmas; Sun: corona ID 3-COMPONENT BOUNDARY-CONDITIONS; SPONTANEOUS CURRENT SHEETS; PARALLEL ELECTRIC-FIELDS; QUASI-SEPARATRIX LAYERS; CORONAL LOOPS; SOLAR CORONA; PARKER PROBLEM; TOPOLOGICAL CHANGES; DYNAMICS; DISSIPATION AB Magnetic fields without a direction of continuous symmetry have the generic feature that neighboring field lines exponentiate away from each other and become stochastic, and hence the ideal constraint of preserving magnetic field line connectivity becomes exponentially sensitive to small deviations from ideal Ohm's law. The idea of breaking field line connectivity by stochasticity as a mechanism for fast reconnection is tested with numerical simulations based on reduced magnetohydrodynamics equations with a strong guide field line-tied to two perfectly conducting end plates. Starting from an ideally stable force-free equilibrium, the system is allowed to undergo resistive relaxation. Two distinct phases are found in the process of resistive relaxation. During the quasi-static phase, rapid change of field line connectivity and strong induced flow are found in regions of high field line exponentiation. However, although the field line connectivity of individual field lines can change rapidly, the overall pattern of field line mapping appears to deform gradually. From this perspective, field line exponentiation appears to cause enhanced diffusion rather than reconnection. In some cases, resistive quasi-static evolution can cause the ideally stable initial equilibrium to cross a stability threshold, leading to formation of intense current filaments and rapid change of field line mapping into a qualitatively different pattern. It is in this onset phase that the change of field line connectivity is more appropriately designated as magnetic reconnection. Our results show that rapid change of field line connectivity appears to be a necessary, but not a sufficient condition for fast reconnection. C1 [Huang, Yi-Min; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Huang, Yi-Min; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Huang, Yi-Min; Bhattacharjee, A.; Boozer, Allen H.] Max Planck Princeton Ctr Plasma Phys, Munich, Germany. [Huang, Yi-Min; Bhattacharjee, A.] Princeton Ctr Heliospher Phys, Princeton, NJ USA. [Huang, Yi-Min; Bhattacharjee, A.] Ctr Magnet Self Org Lab & Astrophys Plasmas, Madison, WI USA. [Huang, Yi-Min; Bhattacharjee, A.] Ctr Integrated Computat & Anal Reconnect & Turbul, Durham, NH USA. RP Huang, YM (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. EM yiminh@princeton.edu RI Huang, Yi-Min/G-6926-2011 OI Huang, Yi-Min/0000-0002-4237-2211 FU Department of Energy, under the auspice of the Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) [DE-FG02-07ER46372]; National Science Foundation (PFC: Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas) [PHY-0215581]; NASA [NNX09AJ86G, NNX10AC04G]; NSF [ATM-0802727, ATM-090315, AGS-1338944, AGS-0962698] FX Y.M.H. would like to dedicate his work on this paper to Professor Dalton Schnack. Advice on 3D visualization from Dr. Liwei Lin and Burlen Loring are highly appreciated. We also thank the anonymous referee for constructive comments to improve the presentation. This work is facilitated by the Max-Planck/Princeton for Plasma Physics and supported by the Department of Energy, grant No. DE-FG02-07ER46372, under the auspice of the Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART), the National Science Foundation, grant No. PHY-0215581 (PFC: Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas), NASA grant Nos. NNX09AJ86G and NNX10AC04G, and NSF grant Nos. ATM-0802727, ATM-090315, AGS-1338944, and AGS-0962698. Computations were performed on facilities at National Energy Research Scientific Computing Center. NR 72 TC 7 Z9 7 U1 3 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 106 DI 10.1088/0004-637X/793/2/106 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300037 ER PT J AU Mori, K Gotthelf, EV Dufour, F Kaspi, VM Halpern, JP Beloborodov, AM An, H Bachetti, M Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Kouveliotou, C Pivovaroff, MJ Stern, D Zhang, WW AF Mori, Kaya Gotthelf, Eric V. Dufour, Francois Kaspi, Victoria M. Halpern, Jules P. Beloborodov, Andrei M. An, Hongjun Bachetti, Matteo Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Kouveliotou, Chryssa Pivovaroff, Michael J. Stern, Daniel Zhang, William W. TI A BROADBAND X-RAY STUDY OF THE GEMINGA PULSAR WITH NuSTAR AND XMM-NEWTON SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: individual (Geminga) ID HIGH-ENERGY; WIND NEBULA; INTERSTELLAR-MEDIUM; TIMING ACCURACY; NEUTRON-STARS; PSR B0656+14; RADIATION; EMISSION; SPECTROSCOPY; TELESCOPE AB We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above similar to 5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT(1) similar to 42 eV) with a broken power law (Gamma(1) similar to 2.0, Gamma(2) similar to 1.4 and E-break similar to 3.4 keV) and (2) two blackbody components (kT(1) similar to 44 eV and kT(2) similar to 195 eV) with a power-law component (Gamma similar to 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E similar to 0.05-0.5 keV. While strong phase variation of the power-law index is present below similar to 5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Gamma similar to 1.3 emerges above similar to 5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars. C1 [Mori, Kaya; Gotthelf, Eric V.; Halpern, Jules P.; Beloborodov, Andrei M.; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Dufour, Francois; Kaspi, Victoria M.; An, Hongjun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Bachetti, Matteo] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Bachetti, Matteo] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kouveliotou, Chryssa] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Mori, K (reprint author), Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. EM kaya@astro.columbia.edu RI Pivovaroff, Michael/M-7998-2014; Boggs, Steven/E-4170-2015; OI Pivovaroff, Michael/0000-0001-6780-6816; Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337 FU NASA [NNG08FD60C, NNX10AI72G, NNX13AI34G]; NASA/Fermi [NNX12AO89G]; NASA/Chandra [G03-14066X]; NSERC; FQRNT Centre de Recherche Astrophysique du Quebec; Canadian Institute for Advanced Research (CIFAR); Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). E.V.G. acknowledges support from NASA/Fermi grant NNX12AO89G and NASA/Chandra grant G03-14066X. V.M.K. acknowledges support from an NSERC Discovery Grant, the FQRNT Centre de Recherche Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR), the Canada Research Chairs Program, and the Lorne Trottier Chair in Astrophysics and Cosmology. A.M.B. acknowledges the support by NASA grants NNX10AI72G and NNX13AI34G. NR 46 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 88 DI 10.1088/0004-637X/793/2/88 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300019 ER PT J AU Nuevo, M Materese, CK Sandford, SA AF Nuevo, Michel Materese, Christopher K. Sandford, Scott A. TI THE PHOTOCHEMISTRY OF PYRIMIDINE IN REALISTIC ASTROPHYSICAL ICES AND THE PRODUCTION OF NUCLEOBASES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; astrochemistry; ISM: molecules; methods: laboratory: molecular; molecular processes; ultraviolet: ISM ID POLYCYCLIC AROMATIC-HYDROCARBONS; INTERSTELLAR ICE; UV-IRRADIATION; ULTRAVIOLET PHOTOIRRADIATION; NITROGEN-HETEROCYCLES; MURCHISON METEORITE; ORGANIC RESIDUES; AMINO-ACIDS; EXTRATERRESTRIAL NUCLEOBASES; CARBONACEOUS METEORITES AB Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications. C1 [Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Nuevo, Michel] BAER Inst, Petaluma, CA 94952 USA. [Materese, Christopher K.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Nuevo, M (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM michel.nuevo-1@nasa.gov FU NASA's Origins of Solar Systems program FX M.N. and S.A.S. acknowledge NASA's Origins of Solar Systems program for financial support. C.K.M. acknowledges the NASA Postdoctoral Program administered by ORAU. All authors acknowledge R.L. Walker for technical support. Finally, we would like to thank an anonymous reviewer for useful comments and suggestions. NR 55 TC 13 Z9 13 U1 2 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 125 DI 10.1088/0004-637X/793/2/125 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300056 ER PT J AU Panaitescu, A Vestrand, WT AF Panaitescu, A. Vestrand, W. T. TI SYNCHROTRON AND INVERSE-COMPTON EMISSIONS FROM PAIRS FORMED IN GRB AFTERGLOWS (ANALYTICAL TREATMENT) SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: analytical; radiation mechanisms: non-thermal; relativistic processes; shock waves ID GAMMA-RAY BURST; LIGHT CURVES; 130427A; RADIATION; MODEL; SHOCK; WIND AB We calculate the synchrotron and inverse-Compton emissions from pairs formed in gamma-ray burst (GRB) afterglows from high-energy photons (above 100 MeV), assuming a power-law photon spectrum C-nu alpha nu(-2) and considering only the pairs generated from primary high-energy photons. The essential properties of these pairs (number, minimal energy, cooling energy, distribution with energy) and of their emission (peak flux, spectral breaks, spectral slope) are set by the observables GeV fluence Phi(t) = Ft and spectrum, and by the Lorentz factor, Gamma, and magnetic field, B, of the source of high-energy photons, at observer time, t. Optical and X-ray pseudo light curves, F-nu(Gamma), are calculated for the given B; proper synchrotron self-Compton light curves are calculated by setting the dynamics Gamma(t) of the high-energy photon source to be that of a decelerating, relativistic shock. It is found that the emission from pairs can accommodate the flux and decays of the optical flashes measured during the prompt (GRB) phase, but it decays faster than the X-ray plateaus observed during the delayed (afterglow) phase. The brightest pair optical emission is obtained for 100 < Gamma < 500, and depends mostly on the GeV fluence, being independent of the source redshift. Emission from pairs formed during the GRB phase offers an alternate explanation to reverse-shock optical flashes. These two models may be distinguished based on their corresponding flux decay index-spectral slope relations, different correlations with the Large Area Telescope fluence, or through modeling of the afterglow multiwavelength data. C1 [Panaitescu, A.; Vestrand, W. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Panaitescu, A (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87545 USA. FU Los Alamos National Laboratory FX This work was supported by an award from the Laboratory Directed Research and Development program at the Los Alamos National Laboratory. NR 22 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2014 VL 793 IS 2 AR 104 DI 10.1088/0004-637X/793/2/104 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP3HD UT WOS:000341965300035 ER PT J AU Zallot, R Yazdani, M Goyer, A Ziemak, MJ Guan, JC McCarty, DR de Crecy-Lagard, V Gerdes, S Garrett, TJ Benach, J Hunt, JF Shintani, DK Hanson, AD AF Zallot, Remi Yazdani, Mohammad Goyer, Aymeric Ziemak, Michael J. Guan, Jiahn-Chou McCarty, Donald R. de Crecy-Lagard, Valerie Gerdes, Svetlana Garrett, Timothy J. Benach, Jordi Hunt, John F. Shintani, David K. Hanson, Andrew D. TI Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine SO BIOCHEMICAL JOURNAL LA English DT Article DE 4-amino-5-aminomethy1-2-methylpyrimidine; Arabidopsis; comparative genomics; N-formy1-4-amino-5-aminomethy1-2-methylpyrimidine; thiaminase II; Zea mays ID SACCHAROMYCES-CEREVISIAE; BIOSYNTHESIS; ARABIDOPSIS; IDENTIFICATION; DEGRADATION; METABOLISM; PATHWAY; GENOME; MODEL; MAIZE AB The TenA protein family occurs in prokaryotes, plants and fungi; it has two subfamilies, one (TenA_C) having an active-site cysteine, the other (TenA_E) not. TenA_C proteins participate in thiamin salvage by hydrolysing the thiamin breakdown product amino}IMP (4-amino-5-arninomethy1-2-methylpyrimidine) to HMP (4-amino-5-hydroxymethy1-2-methylpyrimidine); the function of TenA_E proteins is unknown. Comparative analysis of prokaryote and plant genomes predicted that (i) TenA_E has a salvage role similar to, but not identical with, that of TenA_C and (ii) that TenA_E and TenA_C also have non-salvage roles since they occur in organisms that cannot make thiamin. Recombinant Arabidopsis and maize TenA_E proteins (At3g16990, GRMZM2G080501) hydrolysed amino-HMP to BIVIP and, far more actively, hydrolysed the N-formyl derivative of amino-HMP to amino-HMP. Ablating the At3g16990 gene in a line with a null mutation in the BMP biosynthesis gene ThiC prevented its rescue by amino-HMP. Ablating At3g16990 in the wild-type increased sensitivity to paraquat-induced oxidative stress; HMP overcame this increased sensitivity. Furthermore, the expression of TenA_E and ThiC genes in Arabidopsis and maize was inversely correlated. These results indicate that TenA_E proteins mediate amidohydrolase and aminohydrolase steps in the salvage of thiamin breakdown products. As such products can be toxic, TenA_E proteins may also pre-empt toxicity. C1 [Zallot, Remi; de Crecy-Lagard, Valerie] Univ Florida, Microbiol & Cell Sci Dept, Gainesville, FL 32611 USA. [Yazdani, Mohammad; Shintani, David K.] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA. [Goyer, Aymeric] Oregon State Univ, Dept Bot & Plant Pathol, Hermiston, OR 97838 USA. [Ziemak, Michael J.; Guan, Jiahn-Chou; McCarty, Donald R.; Hanson, Andrew D.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Gerdes, Svetlana] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Garrett, Timothy J.] Univ Florida, Coll Med, Gainesville, FL 32610 USA. [Benach, Jordi; Hunt, John F.] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. [Benach, Jordi; Hunt, John F.] Columbia Univ, Northeast Struct Genom Consortium, New York, NY 10027 USA. RP Hanson, AD (reprint author), Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. EM adha@ufl.edu RI ZALLOT, Remi/D-3933-2014; Benach, Joan/H-2519-2013 OI ZALLOT, Remi/0000-0002-7317-1578; Benach, Joan/0000-0003-2285-742X FU US National Science Foundation [MCB-1153413, IOS-1025398, MCB-0236210]; C.V. Griffin Sr Foundation; Oregon State University Research Office; Southeast Center for Integrated Metabolomics via National Institutes of Health [U24 DK097209-01A1]; Northeast Structural Genomics Consortium [2U54GM75026] FX This study was supported by the US National Science Foundation [grant numbers MCB-1153413 and IOS-1025398 (to A.D.H.) and MCB-0236210 (to D.K.S.)], an endowment from the C.V. Griffin Sr Foundation and a General Research Fund grant from the Oregon State University Research Office (to A.G.). This study was also supported by the Southeast Center for Integrated Metabolomics via the National Institutes of Health [grant number U24 DK097209-01A1 (to TAG)] and the Northeast Structural Genomics Consortium [grant number 2U54GM75026 (to J.F.H and J.B.)]. NR 52 TC 5 Z9 8 U1 1 U2 9 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0264-6021 EI 1470-8728 J9 BIOCHEM J JI Biochem. J. PD OCT 1 PY 2014 VL 463 BP 145 EP 155 DI 10.1042/BJ20140522 PN 1 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AP4HH UT WOS:000342037300015 PM 25014715 ER PT J AU Warner, CM Barker, N Lee, SW Perkins, EJ AF Warner, Christopher M. Barker, Natalie Lee, Seung-Wuk Perkins, Edward J. TI M13 bacteriophage production for large-scale applications SO BIOPROCESS AND BIOSYSTEMS ENGINEERING LA English DT Article DE Biotechnology; Bacteriophage; Scale down; Fermentation ID FILAMENTOUS BACTERIOPHAGE; FERMENTATION; BIOREACTOR AB Bacteriophage materials have the potential to revolutionize medicine, energy production and storage, agriculture, solar cells, optics and many other fields. To fulfill these needs, this study examined critical process parameters during phage propagation to increase phage production capability. A representative scale-down system was created in tube spin reactors to allow parallel experimentation with single- and multi-variable analysis. Temperature, harvest time, media composition, feed regime, bacteriophage, and bacteria concentration were analyzed in the scale-down system. Temperature, media composition, and feeding regimens were found to affect phage production more than other factors. Temperature affected bacterial growth and phage production inversely. Multi-variate analysis identified an optimal parameter space which provided a significant improvement over the base line method. This method should be useful in scaled production of bacteriophage for biotechnology. C1 [Warner, Christopher M.; Barker, Natalie; Perkins, Edward J.] US Army Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA. [Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Warner, CM (reprint author), US Army Engineer Res & Dev Ctr, Environm Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA. EM christopher.m.warner@usace.army.mil NR 24 TC 3 Z9 3 U1 4 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-7591 EI 1615-7605 J9 BIOPROC BIOSYST ENG JI Bioprocess. Biosyst. Eng. PD OCT PY 2014 VL 37 IS 10 BP 2067 EP 2072 DI 10.1007/s00449-014-1184-7 PG 6 WC Biotechnology & Applied Microbiology; Engineering, Chemical SC Biotechnology & Applied Microbiology; Engineering GA AP6EX UT WOS:000342171500016 PM 24728964 ER PT J AU Klein, S AF Klein, Spencer CA IceCube Collaboration TI Recent Highlights from IceCube SO BRAZILIAN JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 33rd International Cosmic Ray Conference (ICRC) CY 2013 CL Rio de Janeiro, BRAZIL DE IceCube; Neutrino; PeV; astrophysical ID NEUTRINO TELESCOPE; ARRIVAL DIRECTIONS; OSCILLATIONS; PERFORMANCE; ANISOTROPY; SPECTRUM; SYSTEM; ICETOP AB The similar to 1 km (3) IceCube neutrino observatory was completed in December, 2010 and is taking data on cosmic-ray muons and neutrinos, extraterrestrial neutrinos, and setting limits on a variety of exotic phenomena. This proceeding will cover recent IceCube results, with an emphasis on cosmic rays and on searches for extraterrestrial neutrinos, with a stress on results presented at the 2013 International Cosmic Ray Conference. C1 [Klein, Spencer; IceCube Collaboration] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Klein, Spencer] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Klein, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM srklein@lbl.gov NR 31 TC 0 Z9 0 U1 2 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0103-9733 EI 1678-4448 J9 BRAZ J PHYS JI Braz. J. Phys. PD OCT PY 2014 VL 44 IS 5 BP 540 EP 549 DI 10.1007/s13538-014-0224-8 PG 10 WC Physics, Multidisciplinary SC Physics GA AP6CL UT WOS:000342165000013 ER PT J AU Mena, E Lindenberg, ML Turkbey, BI Shih, J Logan, J Adler, S Wong, K Wilson, W Choyke, PL Kurdziel, KA AF Mena, Esther Lindenberg, Maria Liza Turkbey, Baris I. Shih, Joanna Logan, Jean Adler, Stephen Wong, Karen Wilson, Wyndham Choyke, Peter L. Kurdziel, Karen A. TI A Pilot Study of the Value of F-18-Fluoro-Deoxy-Thymidine PET/CT in Predicting Viable Lymphoma in Residual F-18-FDG Avid Masses After Completion of Therapy SO CLINICAL NUCLEAR MEDICINE LA English DT Article DE PET imaging; F-18-FLT; F-18-FDG; lymphoma; residual mass; PET/CT ID POSITRON-EMISSION-TOMOGRAPHY; B-CELL LYMPHOMA; THE-ART THERAPEUTICS; HODGKINS-LYMPHOMA; IMAGING PROLIFERATION; RESPONSE ASSESSMENT; MALIGNANT-LYMPHOMA; THYMIDINE ANALOGS; LUNG-TUMORS; CANCER AB Background: Despite its success in diagnosing and staging lymphoma, F-18-FDG PET/CT can be falsely positive in areas of posttreatment inflammation. 3'-F-18-fluoro-3'-deoxy-l-thymidine (F-18-FLT) is a structural analog of the DNA constituent thymidine; its uptake correlates with cellular proliferation. This pilot study evaluates the ability of F-18-FLT PET/CT to distinguish viable lymphoma from posttreatment inflammatory changes in F-18-FDG avid residual masses. Methods: Twenty-one patients with lymphoma with at least 1 F-18-FDG avid residual mass after therapy underwent F-18-FLT PET/CT imaging. F-18-FDG and F-18-FLT uptake values were compared, including quantitative pharmacokinetic parameters extracted from the F-18-FLT time activity curves generated from dynamic data using graphical and nonlinear compartmental modeling. Results: The true nature of the residual mass was confirmed by biopsy in 12 patients (8 positive and 4 negative for viable lymphoma and by follow-up CT and/or repeat F-18-FDG PET/CT imaging over 1 year); among the remaining 9 patients, 7 lesions resolved or decreased and 2 showed growth indicative of lymphoma. F-18-FLT PET SUVest.max was significantly higher in tumors than in benign lesions (5.5 [2.2] vs 1.7 [0.6]; P < 0.0001), whereas the difference in F-18-FDG SUVs was not significant (malignant, 7.8 [3.8] vs benign, 5.4 [2.4]; P = 0.11). All of the benign lesions had an F-18-FLT SUVest.max of less than 3.0. Conclusions: F-18-FLT shows improved specificity over F-18-FDG in distinguishing residual lymphoma from posttreatment inflammation and may be useful in the evaluation of patients with residual F-18-FDG-positive masses after completing therapy. C1 [Mena, Esther; Lindenberg, Maria Liza; Turkbey, Baris I.; Wong, Karen; Choyke, Peter L.; Kurdziel, Karen A.] NCI, Mol Imaging Program, NIH, Bethesda, MD 20892 USA. [Shih, Joanna] NCI, Biometr Res Branch, Div Canc Treatment & Diag, NIH, Bethesda, MD 20892 USA. [Logan, Jean] Brookhaven Natl Labs, Upton, NY USA. [Adler, Stephen] SAIC Contractor NCI, Ft Detrick Frederick, MD USA. [Wilson, Wyndham] NCI, Lymphoma Therapeut Sect, Ctr Canc Res, Bethesda, MD 20892 USA. RP Kurdziel, KA (reprint author), NCI, Mol Imaging Program, Bldg 10,Room B3B69F, Bethesda, MD 20892 USA. EM kurdziek@mail.nih.gov FU Intramural NIH HHS [Z99 CA999999] NR 34 TC 4 Z9 5 U1 0 U2 10 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0363-9762 EI 1536-0229 J9 CLIN NUCL MED JI Clin. Nucl. Med. PD OCT PY 2014 VL 39 IS 10 BP 874 EP 881 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA AP5AK UT WOS:000342091900013 PM 25144214 ER PT J AU Chan, WL Kolla, H Chen, JH Ihme, M AF Chan, Wai Lee Kolla, Hemanth Chen, Jacqueline H. Ihme, Matthias TI Assessment of model assumptions and budget terms of the unsteady flamelet equations for a turbulent reacting jet-in-cross-flow SO COMBUSTION AND FLAME LA English DT Article DE Flame let modeling; Diffusion flame; Budget-analysis; Jet-in-cross-flow; Direct numerical simulation ID DIRECT NUMERICAL-SIMULATION; NON-PREMIXED COMBUSTION; DIFFERENTIAL DIFFUSION; EXTINCTION; FORMULATION; REIGNITION; CURVATURE AB An a priori analysis of the flamelet model for diffusion flames is conducted to systematically assess model assumptions that are associated with the asymptotic expansion, the omission of higher-order expansion terms, the consideration of preferential diffusion effects, and the one-dimensional flamelet representation. For this, a recent direct numerical simulation database of a reacting hydrogen/air jet-in-cross-flow (JICF) by Grout et al. [15,16] is used. The full flamelet equation for temperature, exact to the order of the Eulerian transport equation and general to different definitions of the mixture fraction, is derived. Analysis of mixture fraction conditioned profiles of temperature and scalar dissipation rate along the jet trajectory identified different ignition and flame stabilization scenarios on the windward and leeward sides of the reacting JICF. A balance analysis of the temperature flamelet equation is conducted to quantify contributions in flame-aligned and flame-orthogonal directions. Consistent with the flamelet assumption, it is shown that terms arising from scalar diffusion, heat-release, and species-diffusion-induced enthalpy flux are the dominant contributions, while the flame-aligned preferential diffusion promotes entrainment of heat into the flamelet structure. For the current JICF-configuration, it is found that contributions along the flame-orthogonal direction are on average negligible. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Chan, Wai Lee] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Kolla, Hemanth; Chen, Jacqueline H.] Sandia Natl Labs, Livermore, CA 94550 USA. [Ihme, Matthias] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Ihme, M (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM mihme@stanford.edu RI Chan, Wai Lee/L-8281-2016 OI Chan, Wai Lee/0000-0002-3692-7604 FU Air Force Office of Scientific Research [FA9550-11-1-0031]; Department of Energy University Turbine Systems Research program [DE-FE0007060]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy; US DOE [DE-AC04-94AL85000]; Office of Science of the US Department of Energy [DEAC05-00OR22725] FX Financial support through the Air Force Office of Scientific Research under Award No. FA9550-11-1-0031 and through the Department of Energy University Turbine Systems Research program under Award No. DE-FE0007060 are gratefully acknowledged. We would like to thank Yee Chee See for discussions on the generalized coordinate transformation and conditional data analysis. We thank an anonymous reviewer for helpful comments on the Lagrangian flamelet formulation.; The work at Sandia National Laboratories (SNL) was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy. SNL is a multiprogramme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under contract DE-AC04-94AL85000. Computational support and resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DEAC05-00OR22725. NR 28 TC 9 Z9 9 U1 2 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2014 VL 161 IS 10 BP 2601 EP 2613 DI 10.1016/j.combustflame.2014.04.007 PG 13 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AP2MB UT WOS:000341905200011 ER PT J AU Siefert, C Tuminaro, R Gerstenberger, A Scovazzi, G Collis, SS AF Siefert, C. Tuminaro, R. Gerstenberger, A. Scovazzi, G. Collis, S. S. TI Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Discontinuous Galerkin method; Legendre basis; Darcy flow; Porous media flows; Algebraic multigrid; Iterative solver ID ELLIPTIC PROBLEMS; SMOOTHED AGGREGATION; DISCRETIZATIONS; EQUATIONS; PRECONDITIONERS AB We present a parallel algebraic multigrid (AMG) algorithm for the implicit solution of the Darcy problem discretized by the discontinuous Galerkin (DG) method that scales optimally for regular and irregular meshes. The main idea centers on recasting the preconditioning problem so that existing AMG solvers for nodal lower order finite elements can be leveraged. This is accomplished by a transformation operator which maps the solution from a Lagrange basis representation to a Legendre basis representation. While this mapping function must be user supplied, we demonstrate how easily it can be constructed for somepopular finite element representations includingquadrilateral/hexahedral and triangular/tetrahedral DG formulations. Furthermore, we show that the mapping does not depend on the Jacobian transformation between reference and physical space and so it can be constructed with very limited mesh information. Parallel performance studies demonstrate the versatility of this approach. C1 [Siefert, C.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. [Tuminaro, R.; Gerstenberger, A.; Collis, S. S.] Sandia Natl Labs, Numer Anal & Applicat Dept, Albuquerque, NM 87185 USA. [Scovazzi, G.] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA. RP Siefert, C (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM csiefer@sandia.gov FU Department of Energy's Office of Science through the SciDAC-e Research Grant "Algebraic Multi-Grid Methods for Modeling and Simulation of Carbon Sequestration Processes on Multi-Core/GPU Architectures" [10-014677] FX The authors would like to acknowledge the support of Department of Energy's Office of Science through the SciDAC-e Research Grant "Algebraic Multi-Grid Methods for Modeling and Simulation of Carbon Sequestration Processes on Multi-Core/GPU Architectures," No. 10-014677. NR 47 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 EI 1573-1499 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD OCT PY 2014 VL 18 IS 5 BP 597 EP 612 DI 10.1007/s10596-014-9419-x PG 16 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA AP4UE UT WOS:000342073500001 ER PT J AU Park, WY Phadke, A Shah, N AF Park, Won Young Phadke, Amol Shah, Nihar TI Efficiency improvement opportunities for televisions in India: implications for market transformation programs SO ENERGY EFFICIENCY LA English DT Article DE India; TV energy efficiency; Cost-effectiveness; Market transformation AB Televisions (TVs) account for a significant portion of residential appliance electricity consumption in India, and TV shipments in India are expected to continue to increase. We assess the market trends in the energy efficiency of TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency will likely improve with saving potential of 6 terawatt-hours (TWh) per year in 2020, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost-effectively beyond these ongoing market trends. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture the cost-effective energy savings potential from TVs which we estimate to be 3.4 TWh per year in 2020. C1 [Park, Won Young; Phadke, Amol; Shah, Nihar] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Park, WY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM WYPark@lbl.gov FU Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State; Super-efficient Equipment and Appliance Deployment (SEAD) Initiative through the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, and administered by the U.S. Department of Energy in support of the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Any errors or omissions are the authors' own. NR 36 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X EI 1570-6478 J9 ENERG EFFIC JI Energy Effic. PD OCT PY 2014 VL 7 IS 5 BP 811 EP 832 DI 10.1007/s12053-014-9255-9 PG 22 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA AP1KH UT WOS:000341827700005 ER PT J AU Gopal, AR Leventis, G Phadke, A du Can, SD AF Gopal, Anand R. Leventis, Gregory Phadke, Amol du Can, Stephane de la Rue TI Self-financed efficiency incentives: case study of Mexico SO ENERGY EFFICIENCY LA English DT Article DE Financial incentives; Energy efficiency; Developing countries; Energy subsidies; Appliance market transformation; Mexico ID ENERGY-EFFICIENCY AB Numerous countries use public funds to subsidize residential electricity for a variety of socioeconomic objectives. These subsidies lower the value of energy efficiency to the consumer while raising it for the government. Further, while it would be especially helpful to have stringent Minimum Energy Performance Standards (MEPS) for end uses in this environment, they are hard to strengthen without imposing a cost on ratepayers. In this second-best world, where the presence of subsidies limits the government's ability to strengthen standards, we find that efficiency-induced savings in subsidy payments can be a significant source of financing for energy efficiency incentive programs. Here, we introduce the Lawrence Berkeley National Laboratory (LBNL) Energy Efficiency Revenue Analysis (LEERA) model to estimate the greatest appliance efficiency improvements that can be achieved in Mexico by the revenue neutral financing of incentive programs from savings in subsidy payments yielded by the same efficiency improvements. We analyze Mexico's tariff structures and the long-run marginal cost of supply to calculate the marginal savings for the government from appliance efficiency. We find that these avoided subsidy payments alone can provide enough revenue to cover the full incremental manufacturing cost of refrigerators that are 29 % more efficient and televisions that are 36 % more efficient than baseline models. For room air conditioners (ACs), the same source of financing can contribute up to one third of the incremental manufacturing cost of a model that is 10 % more efficient than baseline. We analyze the sensitivity of our results to the most important parameters and find our main conclusion that efficiency-induced avoided subsidy payments will contribute significantly to financing efficiency incentive programs in Mexico to be significant and robust. C1 [Gopal, Anand R.; Leventis, Gregory; Phadke, Amol; du Can, Stephane de la Rue] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Gopal, AR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM argopal@lbl.gov FU Bureau of Oceans and International Environmental and Scientific Affairs, US Department of State; Super-efficient Equipment and Appliance Deployment (SEAD) initiative through the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the Bureau of Oceans and International Environmental and Scientific Affairs, US Department of State, and administered by the US Department of Energy in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative through the US Department of Energy under contract no. DE-AC02-05CH11231. We thank the entire US SEAD team. In particular, we thank Nihar Shah, Won Young Park, Michael McNeil, and Virginie Letschert for their assistance in this work. From Mexico, we thank Rodrigo Gallegos for advising the development of the model. NR 34 TC 1 Z9 1 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X EI 1570-6478 J9 ENERG EFFIC JI Energy Effic. PD OCT PY 2014 VL 7 IS 5 BP 865 EP 877 DI 10.1007/s12053-014-9263-9 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA AP1KH UT WOS:000341827700009 ER PT J AU de Bremond, A Preston, BL Rice, J AF de Bremond, Ariane Preston, Benjamin L. Rice, Jennie TI Improving the usability of integrated assessment for adaptation practice: Insights from the U.S. Southeast energy sector SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Climate change; Energy; Adaptation; Integrated assessment; Decision-making ID CLIMATE-CHANGE; EDITORIAL ESSAY; KNOWLEDGE; POLICY; INFORMATION; CHALLENGES; SUPPORT; SCIENCE; NEED; GAP AB Energy systems comprise a key sector of the U.S. economy, and one that is vulnerable to the effects of climate variability and change. However, the climate science community's understanding of adaptation processes in the energy sector is limited. It is unclear, for example, the extent to which energy companies' adaptation processes are well-served by existing knowledge and tools. To help inform a regional IAM project addressing the sector's vulnerability to climate change, we investigated available evidence of adaptation processes, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Greater investment is needed in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts. (C) 2014 Elsevier Ltd. All rights reserved. C1 [de Bremond, Ariane] Univ Maryland, JGCRI, PNNL, Dept Geog Sci, College Pk, MD 20742 USA. [Preston, Benjamin L.] Oak Ridge Natl Lab, Climate Change Sci Inst & Environm Sci Div, Oak Ridge, TN 37831 USA. [Rice, Jennie] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP de Bremond, A (reprint author), Univ Maryland, JGCRI, PNNL, Dept Geog Sci, 5825 Univ Res Court,Suite 3500, College Pk, MD 20742 USA. EM adebrem@umd.edu; prestonbl@ornl.gov; jennie.rice@pnnl.gov RI Preston, Benjamin/B-9001-2012 OI Preston, Benjamin/0000-0002-7966-2386 FU Office of Science of the U.S. Department of Energy; Battelle Memorial Institute [DE-ACO5-76RL01830]; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Office of Science of the U.S. Department of Energy through the Integrated Assessment Research Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-ACO5-76RL01830.; ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We thank Khedidja Merzouk and Jarrod Olson of Pacific Northwest National Laboratory for their assistance with data management for this paper and extend special thanks to the SE/Gulf Coast energy sector representatives who gave generously of their time and knowledge to contribute to this effort. NR 55 TC 2 Z9 2 U1 4 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 EI 1873-6416 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD OCT PY 2014 VL 42 BP 45 EP 55 DI 10.1016/j.envsci.2014.05.004 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA AP2KK UT WOS:000341900900004 ER PT J AU Ma, ZT Masters, G Laske, G Pasyanos, M AF Ma, Zhitu Masters, Guy Laske, Gabi Pasyanos, Michael TI A comprehensive dispersion model of surface wave phase and group velocity for the globe SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Surface waves and free oscillations; Seismic tomography ID UPPER-MANTLE; RAYLEIGH-WAVES; ANISOTROPIC STRUCTURE; SEISMIC ANISOTROPY; POLARIZATION DATA; LEAST-SQUARES; PACIFIC; LOVE; MAPS; SHEAR AB A new method is developed to measure Rayleigh- and Love-wave phase velocities globally using a cluster analysis technique. This method clusters similar waveforms recorded at different stations from a single event and allows users to make measurements on hundreds of waveforms, which are filtered at a series of frequency ranges, at the same time. It also requires minimal amount of user interaction and allows easy assessment of the data quality. This method produces a large amount of phase delay measurements in a manageable time frame. Because there is a strong trade-off between the isotropic part of the Rayleigh-wave phase velocity and azimuthal anisotropy, we include the effect of azimuthal anisotropy in our inversions in order to obtain reliable isotropic phase velocity. We use b-splines to combine these isotropic phase velocity maps with our previous group velocity maps to produce an internally consistent global surface wave dispersion model. C1 [Ma, Zhitu; Masters, Guy; Laske, Gabi] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Pasyanos, Michael] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ma, ZT (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM z1ma@ucsd.edu RI Pasyanos, Michael/C-3125-2013 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; NSF [EAR-1215542] FX This work is prepared under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. This is LLNL contribution number LLNL-JRNL-646913. This work is also funded by NSF grant EAR-1215542. The facilities of the IRIS were used for access to waveform and metadata required in this study. We thank the Editor Michael Ritzwoller, Goran Ekstrom and an anonymous reviewer for their constructive comments. ZM would also like to thank Goran Ekstrom for pointing out his earlier misunderstanding of the method used in Larson & Ekstrom (2001). NR 47 TC 7 Z9 7 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD OCT PY 2014 VL 199 IS 1 BP 113 EP 135 DI 10.1093/gji/ggu246 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP6VH UT WOS:000342215600009 ER PT J AU Zang, AN Majer, E Bruhn, D AF Zang, Arno Majer, Ernest Bruhn, David TI SPECIAL ISSUE: Analysis of Induced Seismicity in Geothermal Operations Preface SO GEOTHERMICS LA English DT Editorial Material ID HYDROCARBON; RESERVOIRS C1 [Zang, Arno] German Res Ctr Geosci GFZ, Sect Seism Hazard & Stress Field 2 6, D-14473 Potsdam, Germany. [Majer, Ernest] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bruhn, David] GFZ, Sect Reservoir Technol 4 1, D-14473 Potsdam, Germany. RP Zang, AN (reprint author), German Res Ctr Geosci GFZ, Sect Seism Hazard & Stress Field 2 6, D-14473 Potsdam, Germany. EM zang@gfz-potsdam.de NR 40 TC 0 Z9 0 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD OCT PY 2014 VL 52 SI SI BP 1 EP 5 DI 10.1016/j.geothermics.2014.07.006 PG 5 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AO9LN UT WOS:000341677300001 ER PT J AU Zang, AN Oye, V Jousset, P Deichmann, N Gritto, R McGarr, A Majer, E Bruhn, D AF Zang, Arno Oye, Volker Jousset, Philippe Deichmann, Nicholas Gritto, Roland McGarr, Art Majer, Ernest Bruhn, David TI Analysis of induced seismicity in geothermal reservoirs - An overview SO GEOTHERMICS LA English DT Article DE Fluid-induced seismicity; Key reservoir parameters; Enhanced geothermal systems; Larger magnitude events; Maximum observed magnitude; Crustal stress ID SOULTZ-SOUS-FORETS; INJECTION-INDUCED SEISMICITY; DEEP DRILLING SITE; NORTH GERMAN BASIN; 9 KM DEPTH; FLUID-INJECTION; INDUCED EARTHQUAKES; STIMULATION EXPERIMENTS; INDUCED MICROSEISMICITY; DENVER EARTHQUAKES AB In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of afield, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the fluid injected) when induced events start to occur far away from the boundary of the seismic cloud. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zang, Arno] German Res Ctr Geosci GFZ, Sect Seism Hazard & Stress Field 2 6, D-14473 Potsdam, Germany. [Oye, Volker] NORSAR, N-2027 Kjeller, Norway. [Jousset, Philippe; Bruhn, David] GFZ, Int Ctr Geothermal Res, D-14473 Potsdam, Germany. [Deichmann, Nicholas] ETH, Swiss Seismol Serv, CH-8092 Zurich, Switzerland. [Gritto, Roland] Array Informat Technol, Berkeley, CA 94709 USA. [McGarr, Art] US Geol Survey, Menlo Pk, CA 94025 USA. [Majer, Ernest] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zang, AN (reprint author), German Res Ctr Geosci GFZ, Sect Seism Hazard & Stress Field 2 6, D-14473 Potsdam, Germany. EM zang@gfz-potsdam.de FU European Union [241321-2] FX This work was supported by the European Union funded project GEISER (Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs, Grant no.: 241321-2). We acknowledge the permission of Stefan Baisch (Q-con Geothermal Reservoir Engineering, Bad Bergzabern, Germany) to use field data from the Basel SERIANEX study. We thank Corinne Bachmann and Julie Albaric for providing one figure from Basel and Paralana site stimulation, respectively. NR 142 TC 20 Z9 21 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD OCT PY 2014 VL 52 SI SI BP 6 EP 21 DI 10.1016/j.geothermics.2014.06.005 PG 16 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AO9LN UT WOS:000341677300002 ER PT J AU Jenkins, J Dinan, J Balaji, P Peterka, T Samatova, NF Thakur, R AF Jenkins, John Dinan, James Balaji, Pavan Peterka, Tom Samatova, Nagiza F. Thakur, Rajeev TI Processing MPI Derived Datatypes on Noncontiguous GPU-Resident Data SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE MPI; graphics processing unit; CUDA; datatype AB Driven by the goals of efficient and generic communication of noncontiguous data layouts in GPU memory, for which solutions do not currently exist, we present a parallel, noncontiguous data-processing methodology through the MPI datatypes specification. Our processing algorithm utilizes a kernel on the GPU to pack arbitrary noncontiguous GPU data by enriching the datatypes encoding to expose a fine-grained, data-point level of parallelism. Additionally, the typically tree-based datatype encoding is preprocessed to enable efficient, cached access across GPU threads. Using CUDA, we show that the computational method outperforms DMA-based alternatives for several common data layouts as well as more complex data layouts for which reasonable DMA-based processing does not exist. Our method incurs low overhead for data layouts that closely match best-case DMA usage or that can be processed by layout-specific implementations. We additionally investigate usage scenarios for data packing that incur resource contention, identifying potential pitfalls for various packing strategies. We also demonstrate the efficacy of kernel-based packing in various communication scenarios, showing multifold improvement in point-to-point communication and evaluating packing within the context of the SHOC stencil benchmark and HACC mesh analysis. C1 [Jenkins, John; Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Dinan, James; Balaji, Pavan; Peterka, Tom; Thakur, Rajeev] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Jenkins, J (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. EM jpjenki2@ncsu.edu; dinan@mcs.anl.gov; balaji@mcs.anl.gov; samatova@csc.ncsu.edu; thakur@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation [0958311]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported in part by the U.S. Department of Energy under contract DE-AC02-06CH11357, and additionally by the National Science Foundation under Grant No. 0958311. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 17 TC 3 Z9 3 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD OCT PY 2014 VL 25 IS 10 BP 2627 EP 2637 DI 10.1109/TPDS.2013.234 PG 11 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AP6HZ UT WOS:000342179600014 ER PT J AU Ibrahim, KZ Hofmeyr, S Iancu, C AF Ibrahim, Khaled Z. Hofmeyr, Steven Iancu, Costin TI The Case for Partitioning Virtual Machines on Multicore Architectures SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Virtual machines; NUMA systems; parallel systems; parallel IO; HPC applications AB In this paper we argue that partitioning is required for attaining the best performance of scientific applications when running on virtual machines. Current memory management and I/O handling techniques introduce high overhead when running scientific applications. Using KVM, we quantify this impact on applications written in multiple paradigms: message passing, shared memory and partitioned global address spaces. Our analysis shows that on NUMA systems, current memory translation schemes cannot preserve the locality of access and introduce up to 82 percent slowdown. We discuss the interaction between contemporary OS and VM architectures and argue that partitioning is the best solution to enforce memory locality. Current I/O solutions using one assistant task cannot provide the level of I/O parallelism required by scientific applications and we observe an average 7.2x application slowdown on a cluster with 16 cores per node. More specialized solutions that implement shared memory by-pass within the communication stack also do not scale well with cores and we observe an average 2.4x application slowdown. Overall, our results indicate that using partitioning and direct inter-VM shared memory support is enough to provide close to native performance in multicore clusters. C1 [Ibrahim, Khaled Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, High Performance Computat Res Div, Berkeley, CA 94720 USA. [Hofmeyr, Steven] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Future Technol Grp, Berkeley, CA 94720 USA. [Iancu, Costin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Ibrahim, KZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, High Performance Computat Res Div, Berkeley, CA 94720 USA. EM kzibrahim@lbl.gov; shofmeyr@lbl.gov; cciancu@lbl.gov FU DOE Office of Advanced Scientific Computing Research [DE-AC02-05CH-11231] FX All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH-11231. NR 25 TC 1 Z9 1 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD OCT PY 2014 VL 25 IS 10 BP 2683 EP 2696 DI 10.1109/TPDS.2013.242 PG 14 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AP6HZ UT WOS:000342179600019 ER PT J AU Shallcross, DE Taatjes, CA Percival, CJ AF Shallcross, D. E. Taatjes, C. A. Percival, C. J. TI Criegee intermediates in the indoor environment: new insights SO INDOOR AIR LA English DT Article DE NO; (3); Alkenes; SO; (2); Criegee intermediates; Steady-state approximation; Carbonyls ID VOLATILE ORGANIC-COMPOUNDS; GAS-PHASE REACTIONS; OH RADICAL FORMATION; RATE CONSTANTS; 298 K; NIGHTTIME TROPOSPHERE; CLEANING PRODUCTS; NITROGEN-DIOXIDE; PEROXY-RADICALS; AIR FRESHENERS AB Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO2, SO2, and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO3 formation and SO2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently one does not exist. C1 [Shallcross, D. E.; Taatjes, C. A.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. [Taatjes, C. A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. [Percival, C. J.] Univ Manchester, Ctr Atmospher Sci, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England. RP Shallcross, DE (reprint author), Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England. EM d.e.shallcross@bris.ac.uk OI percival, carl/0000-0003-2525-160X FU Division of Chemical Sciences, Geo-sciences, and Biosciences, the Office of Basic Energy Sciences, U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000]; Institute for Advanced Studies of the University of Bristol FX DES and CJP thank NERC under whose auspices various elements of this work were carried out. CAT is supported by the Division of Chemical Sciences, Geo-sciences, and Biosciences, the Office of Basic Energy Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000.; CAT also thanks the Institute for Advanced Studies of the University of Bristol for the award of a Benjamin Meaker Visiting Professorship during this work. We also thank three anonymous reviewers for their insightful comments that have improved this manuscript significantly. NR 61 TC 2 Z9 2 U1 8 U2 42 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 EI 1600-0668 J9 INDOOR AIR JI Indoor Air PD OCT PY 2014 VL 24 IS 5 BP 495 EP 502 DI 10.1111/ina.12102 PG 8 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA AP6BC UT WOS:000342161500006 PM 24512513 ER PT J AU O'Connor, J Musculus, M AF O'Connor, Jacqueline Musculus, Mark TI Effect of Load on Close-Coupled Post-Injection Efficacy for Soot Reduction in an Optical Heavy-Duty Diesel Research Engine SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID COMBUSTION; TEMPERATURE; EMISSIONS; IGNITION AB The use of close-coupled post injections is an in-cylinder soot-reduction technique that has much promise for high efficiency heavy-duty diesel engines. Close-coupled post injections, short injections of fuel that occur soon after the end of the main fuel injection, have been known to reduce engine-out soot at a wide range of engine operating conditions, including variations in injection timing, exhaust gas recirculation (EGR) level, load, boost, and speed. While many studies have investigated the performance of post injections, the details of the mechanism by which soot is reduced remains unclear. In this study, we have measured the efficacy of post injections over a range of load conditions, at constant speed, boost, and rail pressure, in a heavy-duty optically-accessible research diesel engine. Here, the base load is varied by changing the main-injection duration. Measurements of engine-out soot indicate that not only does the efficacy of a post injection decrease at higher engine loads, but that the range of post-injection durations over which soot reduction is achievable is limited at higher loads. Optical measurements, including the natural luminescence of soot and planar laser-induced incandescence of soot, provide information about the spatiotemporal development of in-cylinder soot through the cycle in cases with and without post-injections. The optical results indicate that the post injection behaves similarly at different loads, but that its relative efficacy decreases due to the increase in soot resulting from longer main-injection durations. C1 [O'Connor, Jacqueline] Penn State Univ, Mech & Nucl Engn Dept, Ctr Combust Power & Prop, University Pk, PA 16802 USA. [Musculus, Mark] Sandia Natl Labs, Combust Res Facil, Engine Combust Dept, Livermore, CA 94551 USA. RP O'Connor, J (reprint author), Penn State Univ, Mech & Nucl Engn Dept, Ctr Combust Power & Prop, 111 Res East Bldg, University Pk, PA 16802 USA. EM jxo22@engr.psu.edu; mpmuscu@sandia.gov FU U.S. Department of Energy, Office of Vehicle Technologies; Sandia Corporation [DE-AC04-94AL85000] FX The optical engine experiments were performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Support for this research was provided by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge the contributions of Keith Penney and Dave Cicone for their assistance in maintaining the lasers and research engine used in this study. NR 63 TC 3 Z9 3 U1 0 U2 12 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 101509 DI 10.1115/1.4027276 PG 16 WC Engineering, Mechanical SC Engineering GA AP4OS UT WOS:000342057900009 ER PT J AU Yan, XJ Qi, MJ Deng, Y Chen, X Sun, RJ Lin, LS Nie, JX AF Yan, Xiaojun Qi, Mingjing Deng, Ying Chen, Xia Sun, Ruijie Lin, Lianshan Nie, Jingxu TI Investigation on Material's Fatigue Property Variation Among Different Regions of Directional Solidification Turbine Blades-Part II: Fatigue Tests on Bladelike Specimens SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE turbine blade; directional solidification; bladelike specimen; low-cycle fatigue test ID SUPERALLOY; SIMULATION; CYCLE; RECRYSTALLIZATION; GRAIN; LIFE AB Part I of this investigation is mainly focused on fatigue tests of full scale turbine blades, based on the observation of the phenomena that some directional solidification (DS) blades do not fracture at their maximum stress region, and it has been revealed that there exists material's fatigue property variation among different regions of DS blades. For more in-depth and quantitative study on the fatigue property variation, Part II of this investigation designs and fabricates four types of DS bladelike specimens (including platform-, shroud-, body-, and rootlike specimens), which imitate the geometry, microstructure, and stress features of a full scale turbine blade on its four typical regions, to conduct the low cycle fatigue (LCF) tests. Test results show that the bodylike specimen has the best fatigue performance, and under the same stress state, the fatigue life of root-, shroud-, and platformlike specimens are 29.1%, 28.5%, and 13.7% of the bodylike specimen, respectively. The large material's fatigue property variation among different regions of DS blades should be considered in future blade life design. C1 [Yan, Xiaojun; Qi, Mingjing; Deng, Ying; Chen, Xia; Sun, Ruijie; Nie, Jingxu] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China. [Yan, Xiaojun] Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China. [Lin, Lianshan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Qi, MJ (reprint author), Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China. EM yanxiaojun@buaa.edu.cn; qmj@sjp.buaa.edu.cn; yingdeng@sjp.buaa.edu.cn; zuoweicat@126.com; srj_0515@163.com; lianshanlin@hotmail.com; buaa405@163.com RI Lin, Lianshan/F-1722-2014 FU National Natural Science Foundation of China [11272025]; Defense Industrial Technology Development Program [B2120132006] FX This work was supported by National Natural Science Foundation of China (Grant No. 11272025) and Defense Industrial Technology Development Program (Grant No. B2120132006). NR 14 TC 0 Z9 0 U1 1 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 102503 DI 10.1115/1.4027929 PG 7 WC Engineering, Mechanical SC Engineering GA AP4OS UT WOS:000342057900021 ER PT J AU Yan, XJ Chen, X Sun, RJ Deng, Y Lin, LS Nie, JX AF Yan, Xiaojun Chen, Xia Sun, Ruijie Deng, Ying Lin, Lianshan Nie, Jingxu TI Investigation on Material's Fatigue Property Variation Among Different Regions of Directional Solidification Turbine Blades-Part I: Fatigue Tests on Full Scale Blades SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE full scale turbine blade; directional solidification; combined low and high cycle fatigue test ID CYCLE FATIGUE; PREDICTION AB At present, directional solidification (DS) made blades are commonly used in high performance turbine for their better high temperature mechanical, especially in creep properties compared with the equiaxed grain (EG) blades made by conventional casting method. To predict DS blades' fatigue life accurately, one of the practical ways is to conduct tests on full-scale blades in a laboratory/bench environment. In this investigation, two types of full scale turbine blades, which are made from DZ22B by DS method and K403 by conventional casting method, respectively, were selected to conduct high temperature combined low and high cycle fatigue (CCF) tests on a special design test rig, to evaluate the increase of fatigue life benefitted from material change. Experimental results show that different from EG blades, DS blades' fracture section is not located on the position where the maximum stress point lies. By comparing fatigue test results of the two types of blade, it can be found that the fatigue properties among different regions of the DS blade are different, and its fatigue damage is not only related to the stress field, but also affected by different parts material's fatigue properties. C1 [Yan, Xiaojun; Chen, Xia; Sun, Ruijie; Deng, Ying; Nie, Jingxu] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China. [Yan, Xiaojun] Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China. [Lin, Lianshan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, X (reprint author), Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China. EM yanxiaojun@buaa.edu.cn; zuoweicat@126.com; srj_0515@163.com; yingdeng@sjp.buaa.edu.cn; lianshanlin@hotmail.com; buaa405@163.com RI Lin, Lianshan/F-1722-2014 FU National Natural Science Foundation of China [11272025]; Defense Industrial Technology Development Program [B2120132006] FX This work was supported by National Natural Science Foundation of China (Grant No. 11272025) and Defense Industrial Technology Development Program (Grant No. B2120132006). NR 21 TC 1 Z9 1 U1 2 U2 17 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 102502 DI 10.1115/1.4027928 PG 8 WC Engineering, Mechanical SC Engineering GA AP4OS UT WOS:000342057900020 ER PT J AU Tucker, D Abreu-Sepulveda, M Harun, NF AF Tucker, David Abreu-Sepulveda, Maria Harun, Nor Farida TI SOFC Lifetime Assessment in Gas Turbine Hybrid Power Systems SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article ID OXIDE FUEL-CELL; DEGRADATION AB The adoption of solid oxide fuel cell (SOFC) technology in power generation has been limited, in no small part, by material degradation issues affecting the stack lifetime, and hence, the economic viability. A numeric study was conducted to determine if the life of an SOFC could be extended when integrated with a recuperated gas turbine system. Dynamic modeling tools developed at the National Energy Technology Laboratory (NETL) for real-time applications were applied to evaluate life to failure for both a standalone SOFC and a hybrid SOFC gas turbine. These models were modified using empirical relations to experimental degradation data to incorporate degradation as a function of current density and fuel utilization. For the control strategy of shifting power to the turbine as fuel cell voltage degrades, the SOFC life could be extended dramatically, significantly impacting the economic potential of the technology. C1 [Tucker, David; Abreu-Sepulveda, Maria] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Harun, Nor Farida] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada. RP Tucker, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM David.Tucker@NETL.DOE.GOV; maria0024@gmail.com; adfarimie@yahoo.com FU U.S. Department of Energy Crosscutting Research program FX This work was funded by the U.S. Department of Energy Crosscutting Research program, administered through the National Energy Technology Laboratory. NR 14 TC 0 Z9 0 U1 0 U2 9 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X EI 1551-6989 J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD OCT PY 2014 VL 11 IS 5 AR 051008 DI 10.1115/1.4028158 PG 7 GA AP6ZT UT WOS:000342227900008 ER PT J AU Perez-Martin, E Diaz-San Segundo, F Weiss, M Sturza, DF Dias, CC Ramirez-Medina, E Grubman, MJ de los Santos, T AF Perez-Martin, Eva Diaz-San Segundo, Fayna Weiss, Marcelo Sturza, Diego F. Dias, Camila C. Ramirez-Medina, Elizabeth Grubman, Marvin J. de los Santos, Teresa TI Type III Interferon Protects Swine Against Foot-and-Mouth Disease SO JOURNAL OF INTERFERON AND CYTOKINE RESEARCH LA English DT Article ID IFN-LAMBDA-S; I INTERFERON; ALPHA/BETA INTERFERON; ANTIVIRAL ACTIVITY; LEADER PROTEINASE; VIRUS; REPLICATION; RECEPTOR; PATHOGENESIS; INDUCTION AB In recent years, we have developed novel strategies to control foot-and-mouth disease (FMD), including the use of biotherapeutics such as interferons (IFN) delivered by a replication-defective human adenovirus type 5 (Ad5). Swine can be sterilely protected after vaccination with an Ad5 that encodes porcine type I IFN (poIFN-alpha), and cattle can be similarly protected or develop significantly reduced disease when treated with an Ad5 delivering bovine type III IFN (boIFN-lambda 3). Here, we have evaluated the efficacy of porcine IFN-lambda 3 (poIFN-lambda 3) against FMD virus in vivo. Swine inoculated with different doses of Ad5-poIFN-lambda 3 were protected against disease in a dose-dependent manner. Despite the absence of systemic antiviral activity, 7 out of 10 Ad5-poIFN-lambda 3 inoculated animals did not develop disease or viremia, and the other 3 inoculated animals displayed delayed and milder disease by 7 days postchallenge as compared with control animals inoculated with an Ad5 control vector. While analysis of gene expression showed significant induction of IFN and IFN-stimulated genes in Ad5-poIFN-lambda 3-treated cultured porcine epithelial kidney cells, there was limited gene induction in peripheral blood monocytes isolated from treated swine. These results suggest that treatment with Ad5-poIFN-lambda 3 is an effective biotherapeutic strategy against FMD in swine. C1 [Perez-Martin, Eva; Diaz-San Segundo, Fayna; Weiss, Marcelo; Sturza, Diego F.; Dias, Camila C.; Ramirez-Medina, Elizabeth; Grubman, Marvin J.; de los Santos, Teresa] ARS, Plum Isl Anim Dis Ctr, North Atlantic Area, USDA, Greenport, NY 11944 USA. [Perez-Martin, Eva; Weiss, Marcelo; Sturza, Diego F.; Dias, Camila C.; Ramirez-Medina, Elizabeth] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA. RP de los Santos, T (reprint author), ARS, Plum Isl Anim Dis Ctr, North Atlantic Area, USDA, POB 848, Greenport, NY 11944 USA. EM teresa.delossantos@ars.usda.gov RI Weiss, Marcelo/I-1274-2012 OI Weiss, Marcelo/0000-0001-7902-3210 FU Plum Island Animal Disease Research Participation Program; U.S. Department of Energy; U.S. Department of Agriculture by CRIS [1940-32000-053-00D ARS]; USDA; Department of Homeland Security [60-1940-9-028, 60-1940-7-047] FX This research was supported by the Plum Island Animal Disease Research Participation Program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Department of Agriculture by CRIS project 1940-32000-053-00D ARS, USDA and by reimbursable agreements with the Department of Homeland Security 60-1940-9-028 and 60-1940-7-047. The authors thank Bryan Charleston from the Institute for Animal Health, Pirbright, United Kingdom, for kindly providing MDBK-t2 cells, Marla Koster and Traci Turecek for technical support, and the Plum Island ARB for their superb assistance with the animal experiments. NR 51 TC 5 Z9 6 U1 1 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1079-9907 EI 1557-7465 J9 J INTERF CYTOK RES JI J. Interferon Cytokine Res. PD OCT 1 PY 2014 VL 34 IS 10 BP 810 EP 821 DI 10.1089/jir.2013.0112 PG 12 WC Biochemistry & Molecular Biology; Cell Biology; Immunology SC Biochemistry & Molecular Biology; Cell Biology; Immunology GA AQ1SR UT WOS:000342561800009 PM 24786495 ER PT J AU Loo, RRO Lakshmanan, R Loo, JA AF Loo, Rachel R. Ogorzalek Lakshmanan, Rajeswari Loo, Joseph A. TI What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Electrospray ionization; Protein conformation; Charge state distributions; Supercharging ID PROTON-TRANSFER REACTIONS; NATIVE MASS-SPECTROMETRY; ION-MOLECULE REACTIONS; STATE DISTRIBUTIONS; GAS-PHASE; POSITIVE-ION; ESI-MS; CONFORMATIONAL-CHANGES; INLET IONIZATION; AQUEOUS-SOLUTION AB Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Bronsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Bronsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Bronsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte). C1 [Loo, Rachel R. Ogorzalek; Loo, Joseph A.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. [Lakshmanan, Rajeswari; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Loo, Rachel R. Ogorzalek; Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Loo, Rachel R. Ogorzalek; Loo, Joseph A.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Loo, RRO (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. EM RLoo@mednet.ucla.edu; jloo@chem.ucla.edu FU US National Institutes of Health [R01GM103479]; US Department of Energy (UCLA Institute for Genomics and Proteomics) [DE-FC03-02ER63421] FX The authors thank Ivory Peng, Sabrina Benchaar, Carly Ferguson, and Shirley Lomeli for many useful measurements that they performed, enabling us to develop the ideas presented here. Support from the US National Institutes of Health (R01GM103479) and the US Department of Energy (UCLA Institute for Genomics and Proteomics; DE-FC03-02ER63421) are acknowledged. NR 113 TC 28 Z9 28 U1 14 U2 83 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD OCT PY 2014 VL 25 IS 10 BP 1675 EP 1693 DI 10.1007/s13361-014-0965-1 PG 19 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA AP6VM UT WOS:000342216200001 ER PT J AU Riordan, JD Nadeau, JH AF Riordan, Jesse D. Nadeau, Joseph H. TI Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse SO MAMMALIAN GENOME LA English DT Article ID ACYL-COA OXIDASE; HUMAN HEPATOCELLULAR-CARCINOMA; ENDOPLASMIC-RETICULUM STRESS; GLYCINE-N-METHYLTRANSFERASE; ACTIVATED RECEPTOR-ALPHA; METHIONINE ADENOSYLTRANSFERASE 1A; FOLATE-DEFICIENT DIET; HEPATIC STEATOSIS; PEROXISOME PROLIFERATOR; METABOLIC SYNDROME AB Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided. C1 [Riordan, Jesse D.; Nadeau, Joseph H.] Pacific Northwest Res Inst, Seattle, WA 98122 USA. RP Riordan, JD (reprint author), Pacific Northwest Res Inst, Seattle, WA 98122 USA. EM jriordan@pnri.org NR 163 TC 9 Z9 9 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-8990 EI 1432-1777 J9 MAMM GENOME JI Mamm. Genome PD OCT PY 2014 VL 25 IS 9-10 SI SI BP 473 EP 486 DI 10.1007/s00335-014-9521-3 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA AP6FT UT WOS:000342173700011 PM 24802098 ER PT J AU Holcomb, GR AF Holcomb, Gordon R. TI High Pressure Steam Oxidation of Alloys for Advanced Ultra-Supercritical Conditions SO OXIDATION OF METALS LA English DT Article DE Steam; Oxidation; Superalloy; Pressure; Advanced ULTRA-supercritical ID FE-CR ALLOYS; WATER-VAPOR; BEHAVIOR; CORROSION; STEELS AB A steam oxidation test was conducted at 267 +/- A 17 bar and 670 A degrees C for 293 h. A comparison test was run at 1 bar. All of the alloys showed an increase in scale thickness and oxidation rate with pressure, and TP304H and IN625 had very large increases. Fine-grained TP304H at 267 bar behaved like a coarse grained alloy, indicative of high pressure increasing the critical Cr level needed to form and maintain a chromia scale. At 267 bar H230, H263, H282, IN617 and IN740 had k(p) values a factor of one-to-two orders of magnitude higher than at 1 bar. IN625 had a four order of magnitude increase in k(p) at 267 bar compared to 1 bar. Possible causes for increased oxidation rates with increased pressure were examined, including increased solid state diffusion within the oxide scale and increased critical Cr content to establish and maintain a chromia scale. C1 Natl Energy Technol Lab, Albany, OR 97321 USA. RP Holcomb, GR (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Gordon.Holcomb@netl.doe.gov RI Holcomb, Gordon/G-9070-2013 OI Holcomb, Gordon/0000-0003-3542-5319 FU U.S. DOE Cross-cutting Technologies program at the National Energy Technology Laboratory; United States Government FX This work was funded by the U.S. DOE Cross-cutting Technologies program at the National Energy Technology Laboratory. This report was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. NR 32 TC 4 Z9 4 U1 2 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD OCT PY 2014 VL 82 IS 3-4 BP 271 EP 295 DI 10.1007/s11085-014-9491-6 PG 25 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AP2SC UT WOS:000341923900008 ER PT J AU Posner, ES Dera, P Downs, RT Lazarz, JD Irmen, P AF Posner, Esther S. Dera, Przemyslaw Downs, Robert T. Lazarz, John D. Irmen, Peyton TI High-pressure single-crystal X-ray diffraction study of jadeite and kosmochlor SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Jadeite; Kosmochlor; Crystal structure; Single-crystal X-ray diffraction; Clinopyroxene; Bulk modulus ID 6-COORDINATED SILICON; CLINOPYROXENE; TEMPERATURE; PYROXENES; PHASE; COMPRESSIBILITY; CHEMISTRY; DIOPSIDE; ALBITE; SYSTEM AB The crystal structures of natural jadeite, NaAlSi2O6, and synthetic kosmochlor, NaCrSi2O6, were studied at room temperature, under hydrostatic conditions, up to pressures of 30.4 (1) and 40.2 (1) GPa, respectively, using single-crystal synchrotron X-ray diffraction. Pressure-volume data have been fit to a third-order Birch-Murnaghan equation of state yielding V (0) = 402.5 (4) (3), K (0) = 136 (3) GPa, and K (0) (') = 3.3 (2) for jadeite and V (0) = 420.0 (3) (3), K (0) = 123 (2) GPa and K (0) (') = 3.61 (9) for kosmochlor. Both phases exhibit anisotropic compression with unit-strain axial ratios of 1.00:1.95:2.09 for jadeite at 30.4 (1) GPa and 1:00:2.15:2.43 for kosmochlor at 40.2 (1) GPa. Analysis of procrystal electron density distribution shows that the coordination of Na changes from 6 to 8 between 9.28 (Origlieri et al. in Am Mineral 88:1025-1032, 2003) and 18.5 (1) GPa in kosmochlor, which is also marked by a decrease in unit-strain anisotropy. Na in jadeite remains six-coordinated at 21.5 (1) GPa. Structure refinements indicate a change in the compression mechanism of kosmochlor at about 31 GPa in both the kinking of SiO4 tetrahedral chains and rate of tetrahedral compression. Below 31 GPa, the O3-O3-O3 chain extension angle and Si tetrahedral volume in kosmochlor decrease linearly with pressure, whereas above 31 GPa the kinking ceases and the rate of Si tetrahedral compression increases by greater than a factor of two. No evidence of phase transitions was observed over the studied pressure ranges. C1 [Posner, Esther S.; Downs, Robert T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Dera, Przemyslaw] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Dera, Przemyslaw; Irmen, Peyton] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Lazarz, John D.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. RP Posner, ES (reprint author), Univ Bayreuth, Bayer Geoinst, Postfach 101251, Bayreuth, Germany. EM Esther.Posner@uni-bayreuth.de FU National Science Foundation Division of Earth Sciences Geophysics Grant [1344942]; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-Geosciences [DE-FG02-94ER14466]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Downs Research Group FX We thank Dr. Fabrizio Nestola for his helpful review and the editor for handling our manuscript. E. S. P. wishes to acknowledge the Downs Research Group for supporting her participation in this project. P. D. wishes to acknowledge National Science Foundation Division of Earth Sciences Geophysics Grant No. 1344942. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 46 TC 3 Z9 3 U1 4 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD OCT PY 2014 VL 41 IS 9 BP 695 EP 707 DI 10.1007/s00269-014-0684-y PG 13 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA AP2SK UT WOS:000341924800004 ER PT J AU Shi, SW Liu, D Liu, DZ Tae, P Gao, CY Yan, L An, K Chen, X AF Shi, Shouwen Liu, Dan Liu, Dazhi Tae, Patrick Gao, Carrie Y. Yan, Lei An, Ke Chen, Xu TI Mechanical Properties and Microstructure Changes of Proton Exchange Membrane Under Immersed Conditions SO POLYMER ENGINEERING AND SCIENCE LA English DT Article ID POLYMER ELECTROLYTE MEMBRANE; WATER-VAPOR SORPTION; FUEL-CELL MEMBRANES; NAFION MEMBRANES; COPOLYMER MEMBRANES; NEUTRON-SCATTERING; TEMPERATURE; HUMIDITY; IONOMERS; CONDUCTIVITY AB In this study, mechanical tensile stress-strain response and microstructure changes of proton exchange membranes (PEM) in immersed conditions are studied. The effects of water pretreatment and immersion time on stress-strain responses of Nafion (R)-212 membranes are discussed. It is found that in the water immersion it took 24 h for the membrane to reach saturation equilibrium. Compared with dry membrane, immersed Nafion membrane shows a lower stress level at 30 degrees C, but a higher stress level at 70 degrees C. In situ small angle neutron scattering (SANS) experiments show that with the increase of temperature and water uptake, domains of the membrane become ordered and stay stable at around 60 degrees C. Based on the observation, the relationship between the microstructure and mechanical properties is explained. (C) 2013 Society of Plastics Engineers C1 [Shi, Shouwen; Liu, Dan; Yan, Lei; Chen, Xu] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Liu, Dazhi; Tae, Patrick; Gao, Carrie Y.; An, Ke] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Chen, X (reprint author), Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. EM xchen@tju.edu.cn RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Program for Changjiang Scholars and innovative Research Team in University [IRT0641]; Program of Introducing Talents of Discipline to Universities [B06006]; Research at Oak Ridge National Laboratory's Spallation Neutron Source, Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Contract grant sponsor: Program for Changjiang Scholars and innovative Research Team in University; contract grant number: IRT0641, contract grant sponsor: Program of Introducing Talents of Discipline to Universities; contract grant number: B06006; contract grant sponsor: Research at Oak Ridge National Laboratory's Spallation Neutron Source, Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 45 TC 4 Z9 4 U1 1 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0032-3888 EI 1548-2634 J9 POLYM ENG SCI JI Polym. Eng. Sci. PD OCT PY 2014 VL 54 IS 10 BP 2215 EP 2221 DI 10.1002/pen.23770 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA AP6BB UT WOS:000342161400001 ER PT J AU Lu, SL Feng, W Kong, XF Wu, Y AF Lu, Shilei Feng, Wei Kong, Xiangfei Wu, Yong TI Analysis and case studies of residential heat metering and energy-efficiency retrofits in China's northern heating region SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Energy-efficiency retrofit; Retrofit financing; Residential buildings ID BUILDING RETROFIT; POLICY-ANALYSIS; ESCO INDUSTRY; MARKET; SIMULATION; SCENARIOS; DESIGN AB During the past 5 years, the Chinese government has organized and implemented a large-scale energy-efficiency retrofit program for existing residential buildings in China's northern heating region. However, many obstacles, especially lack of successful financing arrangements, have limited the implementation of retrofits under the program. This paper analyzes the key financing challenges that have faced the program, using case studies of the different financing arrangements that have been used. Some of the key issues influencing the program's success to date are differing retrofit and other priorities of various stakeholders, timing and methods of payback on investments, potential investors' lack of access to risk analysis, uncertainty about benefit sharing, and the need for revisions in policies governing retrofits and energy contracts. We make recommendations to address these issues and improve the success of the north China energy-efficiency retrofit program. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lu, Shilei; Kong, Xiangfei] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China. [Feng, Wei] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kong, Xiangfei] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China. [Wu, Yong] Minist Housing & Urban Rural Dev Peoples Republ C, Beijing 100835, Peoples R China. RP Lu, SL (reprint author), Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China. EM Lvshilei@tju.edu.cn NR 38 TC 4 Z9 4 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD OCT PY 2014 VL 38 BP 765 EP 774 DI 10.1016/j.rser.2014.07.015 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AO9LB UT WOS:000341676100060 ER PT J AU Corgnale, C Hardy, B Motyka, T Zidan, R Teprovich, J Peters, B AF Corgnale, Claudio Hardy, Bruce Motyka, Theodore Zidan, Ragaiy Teprovich, Joseph Peters, Brent TI Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Concentrating solar power; Thermal energy storage; Hydrogen storage; Metal hydrides; Techno-economic analysis ID HYDROGEN STORAGE; HEAT-STORAGE; MAGNESIUM HYDRIDE; THERMODYNAMICS AB Concentrating solar power plants represent a competitive option to produce electric power only if equipped with suitable thermal energy storage. Metal hydride material-based thermochemical hydrogen storage is a very attractive solution to store high temperature solar thermal energy. A literature review of some of the past and more recent investigations on using metal hydrides for thermal energy storage has been carried out. Based on findings from this review and new material property data, a preliminary material techno-economic analysis was performed to select the most promising candidate metal hydrides as well as to examine their behavior under different operating conditions. The performance was evaluated adopting simplified system models and the results were compared against the US Department of Energy targets including installed cost, exergetic efficiency, operating temperature and volumetric energy density. Selected sensitivity analyses for the most promising materials have also been carried out in order to evaluate the influence of solar plant and material properties on the overall system installed cost. Results demonstrated that the selected storage systems, based on currently available metal hydride high temperature materials (i.e. NaMgH3, TiH2 and CaH2), are able to achieve and exceed many of the targets such as volumetric energy density (25 kWhth/m(3)) and operating temperature (600 degrees C). Material modifications as well as heat exchange system improvements are also discussed in the paper, with the aim of reducing the overall thermal energy storage specific cost and helping to meet and exceed all of the targets. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Corgnale, Claudio; Hardy, Bruce; Motyka, Theodore; Zidan, Ragaiy; Teprovich, Joseph; Peters, Brent] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Corgnale, C (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM claudio.corgnale@gmail.com NR 44 TC 16 Z9 18 U1 2 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD OCT PY 2014 VL 38 BP 821 EP 833 DI 10.1016/j.rser.2014.07.049 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AO9LB UT WOS:000341676100065 ER PT J AU Crandall, RS Li, JV AF Crandall, R. S. Li, J. V. TI Effect of band mismatch on minority carrier transport in heterojunction solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Band mismatch; Heterojunction; Minority carrier; Capacitance transient ID A-SI-H AB By using transient-capacitance techniques we probe the mechanism of hole transport in amorphous/crystalline silicon heterojunction solar cells. The devices are formed by depositing undoped amorphous silicon followed by p-type amorphous silicon on n-type crystalline silicon wafers. The capacitance transients indicate that hole transport from p-type amorphous silicon to n-type crystalline silicon is hindered by hole accumulation in the depletion region of the crystalline silicon. The results are explained with a model based on electrostatic repulsion owing to hole build-up at the crystalline/amorphous interface. We apply these results to other heterojunction solar cells. (C) 2013 Elsevier B.V. All rights reserved. C1 [Crandall, R. S.; Li, J. V.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Crandall, RS (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM rs.crandall@icloud.com RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08GO28308] FX We gratefully acknowledge support from the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. We are grateful to Matthew R. Page and Eugene Iwaniczko for fabricating the devices used in this study. NR 12 TC 0 Z9 0 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2014 VL 129 SI SI BP 13 EP 16 DI 10.1016/j.solmat.2013.11.012 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AP7OU UT WOS:000342267400004 ER PT J AU Dahal, LR Li, J Stoke, JA Huang, ZQ Shan, A Ferlauto, AS Wronski, CR Collins, RW Podraza, NJ AF Dahal, Lila Raj Li, Jian Stoke, Jason A. Huang, Zhiquan Shan, Ambalanath Ferlauto, Andre S. Wronski, Christopher R. Collins, Robert W. Podraza, Nikolas J. TI Applications of real-time and mapping spectroscopic ellipsometry for process development and optimization in hydrogenated silicon thin-film photovoltaics technology SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Hydrogenated amorphous silicon (a-Si:H); hydrogenated nanoaystalline silicon (nc-Si:H); Real time spectroscopic ellipsometry (RTSE); Mapping spectroscopic ellipsometry; Roll-to-roll deposition; Thin film Si solar cells ID LIGHT-INDUCED DEGRADATION; N SOLAR-CELLS; AMORPHOUS-SILICON; MICROCRYSTALLINE SILICON; OPTICAL FUNCTIONS; DEPTH-PROFILES; PHASE-DIAGRAMS; MIXED-PHASE; GAP STATES; PROTOCRYSTALLINE AB Four applications of real-time spectroscopic ellipsometry (RTSE) and ex-situ mapping spectroscopic ellipsometry (SE) in thin-film hydrogenated silicon (Si:H) photovoltaics (PV) technology are reviewed with the common theme being the development and application of SE-derived growth evolution diagrams. The goals of these applications are to understand and consequently further advance this technology. In the first application, fabrication of engineered thin films consisting of periodic arrays of silicon (Si) nanocrystallites in an amorphous Si:H (a-Si:H) host matrix has been guided by a growth evolution diagram developed by RTSE for radio-frequency plasma-enhanced chemical vapor deposition (PECVD) using SiH4+H-2 mixtures. Such precisely controlled microstructures are of interest as possible intrinsic-layer components of p-i-n and n-i-p thin-film PV devices, and RTSE is shown to be a key technique for guidance in fabrication and for structure verification. In the second application of growth evolution diagrams, very-high-frequency PECVD intrinsic a-Si:H, hydrogenated amorphous silicon-germanium alloys (a-Si(1-x)Gex:H), and hydrogenated nanocrystalline silicon (nc-Si:H) have been investigated for use as the top, middle, and bottom-cell i-layer components, respectively, of triple-junction n-i-p solar cells. The growth evolution diagram for the bottom-cell i-layer, starting from an underlying mixed-phase amorphous + nanocrystalline silicon [(a + nc)-Si:H] n-layer, reveals a bifurcation at a critical H-2-dilution flow ratio R (R=[H-2]/[Si2H6], in this application) between mixed-to-amorphous phase evolution [(a+nc)-> a] at low R and mixed-to-nanocrystalline phase evolution [(a+nc)-> nc] at high R. The highest performance single-step nc-Si:H solar cell is found at minimal R while remaining on the nanocrystalline side of the identified bifurcation where suitable grain boundary passivation can be assured. Because of the importance of the roll-to-roll flexible substrate configuration in such multi-junction Si:H-based PV technology, RTSE has been demonstrated in a third application for monitoring PECVD of a-Si:H n-i-p solar cell structures on back-reflector-coated flexible roll-to-roll polymer substrates. RTSE has been used for probing along the center line of the moving substrate during deposition, and ex-situ mapping SE has been used over the full substrate area after deposition. Detailed studies of the top-most p-layer of the n-i-p solar cell have been performed, with the goal being to develop spatially-dependent (in contrast to R-dependent) growth evolution diagrams in order to evaluate uniformity across the width of the substrate and thus to enable optimization of the resulting a-Si:H PV modules. In this study, efficiency optimization occurs at the p-layer transition region in which a-Si:H nucleates from the i-layer surface, but evolves to predominantly nc-Si:H for improved contact to the top-most In2O3:Sn layer. In the fourth and final application reviewed here, the mapping-SE-deduced properties of the Si:H i and p-layers have been spatially correlated with device performance parameters from an array of n-i-p a-Si:H-based dot cells over a 13 x 13 cm(2) substrate area. Analysis of the SE data acquired over the full area provides property maps of i-layer thickness and band gap, p-layer thickness and band gap, and p-layer surface roughness thickness for the n-i-p structure. The mapped values adjacent to the PV devices have been correlated with the device performance parameters. When sufficient non-uniformity exists, these correlations enable optimization based on specific ranges of values that characterize the fundamental properties of the material and the film structure. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dahal, Lila Raj; Li, Jian; Huang, Zhiquan; Shan, Ambalanath; Ferlauto, Andre S.; Collins, Robert W.; Podraza, Nikolas J.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Dahal, Lila Raj; Li, Jian; Huang, Zhiquan; Shan, Ambalanath; Ferlauto, Andre S.; Collins, Robert W.; Podraza, Nikolas J.] Univ Toledo, Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA. [Dahal, Lila Raj] NSG Pilkington NA, Northwood, OH 43619 USA. [Li, Jian] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Stoke, Jason A.] Rocky Mt Coll, Fac Phys, Billings, MT 59102 USA. [Ferlauto, Andre S.] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil. [Wronski, Christopher R.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. RP Podraza, NJ (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. EM Nikolas.Podraza@utoledo.edu RI FERLAUTO, ANDRE/C-1209-2013 OI FERLAUTO, ANDRE/0000-0003-3056-7289 FU U.S. Army Research Office; U.S. Army Research Laboratory; NASA, Space Photovoltaics Division [NNC06GA04G]; Department of Energy University Processes and Products Development Support Program [DE-FG36-08GO18073]; NIST ATP Program; State of Ohio Wright Centers of Innovation Program; [W911NF-0-2-0026] FX This research was supported by the U.S. Army Research Office and U.S. Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-0-2-0026. Support was also provided by NASA, Space Photovoltaics Division, Grant number NNC06GA04G, the Department of Energy University Processes and Products Development Support Program, Contract number DE-FG36-08GO18073, by the NIST ATP Program, and by the State of Ohio Wright Centers of Innovation Program. The authors acknowledge the assistance of X. Deng of University of Toledo and S. Cao of Xunlight Corp. in the work of Section 3, and M. Fried, G. Juhasz, C. Major, O. Polgar, A. Nemeth, and P. Petrik of the Institute for Technical Physics & Materials Science (MFA), Budapest, Hungary in the development of the expanded beam spectroscopic ellipsometer of Section 5.3. NR 69 TC 5 Z9 5 U1 0 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2014 VL 129 SI SI BP 32 EP 56 DI 10.1016/j.solmat.2014.01.028 PG 25 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AP7OU UT WOS:000342267400006 ER PT J AU Wang, Q AF Wang, Qi TI Fill factor related issues in hydrogenated amorphous Si solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE a-Si:H solar cell; Collection length; Fill factor; Band-tail width; Space charge AB It is a fact that the fill factor (FF) decreases with decreasing mu tau product, increasing illumination intensity, increasing absorber thickness, and long wavelength illumination in well-engineered hydrogenated amorphous silicon (a-Si:H) solar cells. The FF issues in the a-Si:H solar cell are not just a contact issue as in crystalline Si solar cell, but are more interesting and complicated issues that relate to the quality of materials and solar cell operating conditions. In past, a simple parameter of "collection length" or drift length, which is defined as mu tau E, was quite successful to explain the fact. In this article, we extensively study the collection length in terms of the internal electric field, which changes with the quality of material and operating condition. The Analysis of Microelectronic and Photonic Structures (AMPS) simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects when the defects are relatively small. This charge screens the applied field, reducing the internal field and the collection length, which reduce the FE A voltage V-s from the photogenerated space charge was introduced to describe the behavior. This voltage varies with light intensity for large valance band-tail width and low hole mobility a-Si:H absorbers. The simulation also found that the space charge in mid-gap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the photocapacitance measurement was used as a means to probe the space charge. The decrease of FP with the increasing light intensity can be qualitatively explained by the light intensity dependence of photocapacitance, the declining electric field, and the decreasing collection length. (C) 2014 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Wang, Q (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM qwang00_99@yahoo.com FU U.S. Department of Energy [DE-AC36-83CH10093] FX This article was dedicated to Prof. Dave Cohen for his outstanding contributions to the understanding of a-Si:H materials and solar cells with capacitance measurements. The author thanks his helps and also thanks Yueqin Xu for the sample preparation and Richard Crandall for initiating the photocapacitance measurement and helpful discussions about device physics. This work is supported by the U.S. Department of Energy under Contract no. DE-AC36-83CH10093. NR 12 TC 2 Z9 2 U1 0 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2014 VL 129 SI SI BP 64 EP 69 DI 10.1016/j.solmat.2014.02.015 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AP7OU UT WOS:000342267400008 ER PT J AU Pattnaik, S Chakravarty, N Biswas, R Dalal, V Slater, D AF Pattnaik, S. Chakravarty, N. Biswas, R. Dalal, V. Slater, D. TI Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Solar cells; Light trapping; Photonic crystal ID LAMBERTIAN LIMIT; GERMANIUM ALLOYS; BACK-REFLECTORS; SUPER-LATTICES; ABSORPTION; EFFICIENCY; GROWTH AB We design, simulate and fabricate enhanced thin film silicon solar cells using periodically textured photonic crystal substrates. We utilize a thin film absorber layer consisting of a superlattice of alternating hydrogenated amorphous silicon (a-Si:H) and nano-crystalline silicon (nc-Si). Rigorous vectorial simulations optimized the periodically patterned solar cells by solving Maxwell's equations in Fourier space. Simulations found optimized architectures for a triangular lattice of metallic nano-cones as a back-reflector, and a conformal solar cell geometry. The periodically patterned photonic crystal based substrates achieve (1) high diffraction, enhancing the path length of light in thin absorber layers and (2) plasmonic concentration of light intensity. Simulations predict an absorption enhancement of 43% for a 12-period superlattice of 800 nm thickness. The optimized pitch of the photonic lattice is near 700 nm. Experimentally the periodically patterned substrates were fabricated with nano-imprint lithography, and utilized as a substrate for the superlattice cells. We measured a large photo-current enhancement between the textured photonic crystal based superlattice cell and the flat cell of 21%, together with long-wavelength quantum efficiency enhancements beyond 600 nm. This is an approach to achieving thin film solar cells with high currents through advanced light-trapping techniques on novel materials. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pattnaik, S.; Chakravarty, N.; Biswas, R.; Dalal, V.] Iowa State Univ, Microelect Res Ctr, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Biswas, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Biswas, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Slater, D.] Lightwave Power, Cambridge, MA 02138 USA. RP Biswas, R (reprint author), Iowa State Univ, Microelect Res Ctr, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM biswasr@iastate.edu FU Ames Laboratory; Department of Energy [DE-AC02-07CH11385]; National Science Foundation [EECS-1232067]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Ames Laboratory, operated for the Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11385 (computational studies); and by the National Science Foundation under Grant EECS-1232067 (experimental studies). We thank Siva Kin and Shantan Kajjam for fabrication of nano-crystalline silicon samples, and Chun Xu for computational work. This research used resources of the National Energy Research Scientific Computing Center which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 50 TC 10 Z9 11 U1 1 U2 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2014 VL 129 SI SI BP 115 EP 123 DI 10.1016/j.solmat.2014.05.010 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AP7OU UT WOS:000342267400014 ER PT J AU Erslev, PT Young, MR Li, JV Siah, SC Chakraborty, R Du, H Lad, RJ Buonassisi, T Teeter, G AF Erslev, Peter T. Young, Matthew R. Li, Jian V. Siah, Sin Cheng Chakraborty, Rupak Du, Hui Lad, Robert J. Buonassisi, Tonio Teeter, Glenn TI Tetrahedrally coordinated disordered Cu2SnS3-Cu2ZnSnS4-ZnS alloys with tunable optical and electronic properties SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Thin film; Photovoltaics; Alloys; Electro-optical properties ID AMORPHOUS CUINSE2 FILMS; SOLAR-CELL; SEMICONDUCTORS; PHASE; ABSORBERS; CU2ZNSNS4; SYSTEM AB A key requirement for large-scale deployment of photovoltaic technologies is the development of highly functional materials with controllable opto-electronic properties. In this work, we report on the room-temperature synthesis of disordered alloys of the Earth-abundant, tetrahedrally coordinated semiconductors Cu2SnS3, Cu2ZnSnS4 (CZTS), and ZnS as (Cu2SnB3)(1-x)(ZnS)(x). The resulting disordered semiconductors are found to have continuously and independently tunable optical and electronic properties. Quasi-isovalent alloying on the cation sublattice allows the optical band gap to be varied continuously from 1.1 eV to 2.8 eV. Aliovalent alloying leads to independent control of carrier concentration over at least three orders of magnitude. A conceptual framework describing these disordered materials is presented, in which the structural disorder, constrained by local tetrahedral coordination of both anions and cations, leads to the observed high degree of tunability of the opto-electronic properties. These materials are not only independently interesting, but the developed framework also applies to the opto-electronic properties of kesterite CZTS materials as well as provides a basis for the development of new semiconductors. (C) 2014 Elsevier B.V. All rights reserved. C1 [Erslev, Peter T.; Young, Matthew R.; Li, Jian V.; Du, Hui; Teeter, Glenn] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Siah, Sin Cheng; Chakraborty, Rupak; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. [Lad, Robert J.] Univ Maine, Lab Surface Sci & Technol, Orono, ME 04469 USA. [Lad, Robert J.] Univ Maine, Dept Phys, Orono, ME 04469 USA. RP Teeter, G (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM glenn.teeter@nrel.gov RI Li, Jian/B-1627-2016; OI Chakraborty, Rupak/0000-0002-1786-4716 FU United States Department of Energy SunShot Next Generation Photovoltaics II Award [DE-EE00024605]; U.S. DOE [DE-AC02-06CH11357] FX We acknowledge Steven M. Heald (APS, Argonne National Laboratory) for his assistance with EXAFS measurements. This work was performed at the National Renewable Energy Laboratory and MIT under the United States Department of Energy SunShot Next Generation Photovoltaics II Award no. DE-EE00024605. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. NR 42 TC 7 Z9 7 U1 2 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2014 VL 129 SI SI BP 124 EP 131 DI 10.1016/j.solmat.2014.05.024 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AP7OU UT WOS:000342267400015 ER PT J AU Elsentriecy, HH Qu, J Luo, HM Meyer, HM Ma, C Chi, MF AF Elsentriecy, Hassan H. Qu, Jun Luo, Huimin Meyer, Harry M., III Ma, Cheng Chi, Miaofang TI Improving corrosion resistance of AZ31B magnesium alloy via a conversion coating produced by a protic ammonium-phosphate ionic liquid SO THIN SOLID FILMS LA English DT Article DE Magnesium; Corrosion; Conversion coating; Protic ammonium-phosphate ionic liquid ID SOL-GEL COATINGS; POTENTIOSTATIC TECHNIQUE; FILM FORMATION; PROTECTION; TEMPERATURE; PERFORMANCE; MECHANISM; INSIGHTS AB Magnesium alloys are susceptible to corrosion because of their high reactivity and low electrode potential. The present work introduces a conversion coating using a protic ammonium-phosphate ionic liquid (IL). Initial results on the AZ(31)B Mg alloy have demonstrated substantially improved corrosion resistance for the IL treatment at 300 degrees C (IL_300C) compared to the treatment at room temperature. Potentiodynamic polarization analysis of the IL_300C treated Mg surface in a NaCl solution exhibited a strong passivation behavior. No pretreatment is needed and the treated surface morphology is well preserved. Cross-sectional nanostructure examination using transmission electron microscopy and element mapping using energy-dispersive X-ray spectroscopy have revealed the IL_300C conversion coating to be a 70-80 nm thick with a two-layer structure. Further surface chemical analysis using X-ray photoelectron spectroscopy suggested such an IL conversion coating possibly composed of metal oxides, metal phosphates, and carbonaceous compounds. (C) 2014 Elsevier B. V. All rights reserved. C1 [Elsentriecy, Hassan H.; Qu, Jun; Meyer, Harry M., III; Ma, Cheng; Chi, Miaofang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Elsentriecy, Hassan H.] Cent Met Res & Dev Inst, Cairo, Egypt. Oak Ridge Natl Lab, Oak Ridge, TN USA. [Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN USA. RP Qu, J (reprint author), POB 2008,MS-6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Ma, Cheng/C-9120-2014; Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Qu, Jun/0000-0001-9466-3179 FU Laboratory Directed Research and Development Program of ORNL; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank Drs. M. P. Brady and G.-L. Song from Oak Ridge National Laboratory (ORNL) for technical discussions and D. W. Coffey from ORNL for TEM sample preparation. Research sponsored by the Laboratory Directed Research and Development Program of ORNL. H. H. Elsentriecy acknowledges the postdoctoral fellowship administered jointly by ORNL and ORISE.; Note: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 29 TC 8 Z9 9 U1 6 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 1 PY 2014 VL 568 BP 44 EP 51 DI 10.1016/j.tsf.2014.08.010 PG 8 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA AP4ML UT WOS:000342051000008 ER PT J AU Du, GH Chen, Y Lv, MS Kong, XL Feng, SW Guo, F Li, G AF Du, Guohui Chen, Yao Lv, Maoshui Kong, Xiangliang Feng, Shiwei Guo, Fan Li, Gang TI TEMPORAL SPECTRAL SHIFT AND POLARIZATION OF A BAND-SPLITTING SOLAR TYPE II RADIO BURST SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE shock waves; Sun: coronal mass ejections (CMEs); Sun: radio radiation ID EARTHS BOW SHOCK; PLASMA FREQUENCY UPSTREAM; CORONAL MAGNETIC-FIELD; DIAGNOSTICS; RADIATION; WAVES AB In many type II solar radio bursts, the fundamental and/or the harmonic branches of the bursts can split into two almost parallel bands with similar spectral shapes and frequency drifts. However, the mechanisms accounting for this intriguing phenomenon remain elusive. In this study, we report a special band-splitting type II event in which spectral features appear systematically earlier on the upper band (with higher frequencies) than on the lower band (with lower frequencies) by several seconds. Furthermore, the emissions carried by the splitting band are moderately polarized with the left-hand polarized signals stronger than the right-hand ones. The polarization degree varies in a range of -0.3 to -0.6. These novel observational findings provide important constraints on the underlying physical mechanisms of band-splitting of type II radio bursts. C1 [Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei] Shandong Univ, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai 264209, Peoples R China. [Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei] Shandong Univ, Inst Space Sci, Weihai 264209, Peoples R China. [Guo, Fan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Li, Gang] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Li, Gang] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. RP Du, GH (reprint author), Shandong Univ, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai 264209, Peoples R China. EM yaochen@sdu.edu.cn RI Chen, Yao/B-7255-2011; Kong, Xiangliang/D-9855-2012; Guo, Fan/H-1723-2013; OI Guo, Fan/0000-0003-4315-3755 FU NSF grants [ATM-0847719, AGS1135432]; [NSBRSF 2012CB825601]; [NNSFC 41274175]; [41331068]; [U1431103] FX We are grateful to the SOHO, NRH, NDA, GBSRBS, and the Artemis IV teams for making their data available to us. This work was supported by grants NSBRSF 2012CB825601, NNSFC 41274175, 41331068, and U1431103. G.L.'s work at the University of Alabama Huntsville is supported by NSF grants ATM-0847719 and AGS1135432. NR 28 TC 2 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2014 VL 793 IS 2 AR L39 DI 10.1088/2041-8205/793/2/L39 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP2ES UT WOS:000341885900018 ER PT J AU Fryer, CL Rueda, JA Ruffini, R AF Fryer, Chris L. Rueda, Jorge A. Ruffini, Remo TI HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; stars: black holes; stars: neutron; supernovae: general ID GAMMA-RAY BURSTS; PROTO-BLACK HOLE; MASSIVE STARS; NEUTRON-STARS; R-PROCESS; SUPERNOVAE; EVOLUTION; FALLBACK; EXPLOSION; OPACITIES AB The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales similar to 10(2)-10(3) s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium. C1 [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Rueda, Jorge A.; Ruffini, Remo] ICRANet, I-65122 Pescara, Italy. [Rueda, Jorge A.; Ruffini, Remo] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Rueda, Jorge A.; Ruffini, Remo] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy. RP Fryer, CL (reprint author), Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. NR 33 TC 17 Z9 17 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2014 VL 793 IS 2 AR L36 DI 10.1088/2041-8205/793/2/L36 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AP2ES UT WOS:000341885900015 ER PT J AU Long, CC Marsden, AL Bazilevs, Y AF Long, C. C. Marsden, A. L. Bazilevs, Y. TI Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk SO COMPUTATIONAL MECHANICS LA English DT Article DE Pulsatile VAD; Residence time; Fluid-structure interaction; Isogeometric analysis; Optimization; SMF ID FLUID-STRUCTURE INTERACTION; DERIVATIVE-FREE OPTIMIZATION; MODIFIED GEOMETRIC POROSITY; FINITE-ELEMENT COMPUTATION; PATTERN SEARCH ALGORITHMS; SPACE-TIME; ISOGEOMETRIC ANALYSIS; RESIDENCE TIME; FLOW; EXPERIENCE AB In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi:10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device. C1 [Long, C. C.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech T 3, Los Alamos, NM 87545 USA. [Marsden, A. L.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Bazilevs, Y.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Bazilevs, Y (reprint author), Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr,Mail Code 0085, La Jolla, CA 92093 USA. EM yuri@ucsd.edu FU AFOSR [FA9550-12-1-0005]; Burroughs Wellcome Fund FX The support of the AFOSR Award No. FA9550-12-1-0005 and a Burroughs Wellcome Fund Career Award at the Scientific Interface is gratefully acknowledged. We also thank Oak Ridge National Laboratory (ORNL) and the University of Tennessee for providing the HPC resources that have contributed to the research results reported in this paper. NR 67 TC 25 Z9 25 U1 3 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-7675 EI 1432-0924 J9 COMPUT MECH JI Comput. Mech. PD OCT PY 2014 VL 54 IS 4 SI SI BP 921 EP 932 DI 10.1007/s00466-013-0967-z PG 12 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA AP1MT UT WOS:000341835300004 ER PT J AU Sen, S AF Sen, Satyabrata TI Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation SO IEEE SENSORS JOURNAL LA English DT Article DE OFDM radar; waveform design; micro-Doppler frequency; Cramer-Rao bound; maximum likelihood estimate ID CRAMER-RAO BOUNDS; SIGNATURE EXTRACTION; RANGE AB We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. The improvement in estimation accuracy due to the adaptive waveform design is also analyzed numerically. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance C1 Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Engn Sci Adv Res, Oak Ridge, TN 37831 USA. RP Sen, S (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Engn Sci Adv Res, Oak Ridge, TN 37831 USA. EM sens@ornl.gov OI Sen, Satyabrata/0000-0001-9918-4409 FU Laboratory Directed Research and Development Program, Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX Manuscript received May 2, 2014; accepted May 24, 2014. Date of publication July 1, 2014; date of current version August 29, 2014. This work was supported by the Laboratory Directed Research and Development Program, Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, through the U.S. Department of Energy, under Contract DE-AC05-00OR22725. The associate editor coordinating the review of this paper and approving it for publication was Dr. Lorenzo Lo Monte. NR 34 TC 1 Z9 4 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD OCT PY 2014 VL 14 IS 10 BP 3548 EP 3556 DI 10.1109/JSEN.2014.2328325 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA AO9WG UT WOS:000341709800005 ER PT J AU Austin, KG McGraw, SM Lieberman, HR AF Austin, Krista G. McGraw, Susan M. Lieberman, Harris R. TI Multivitamin and Protein Supplement Use Is Associated With Positive Mood States and Health Behaviors in US Military and Coast Guard Personnel SO JOURNAL OF CLINICAL PSYCHOPHARMACOLOGY LA English DT Article DE amino acids; steroids; aggressive; depression; alertness; Army; Air Force; herbal ID ANDROGENIC STEROID USE; DIETARY-SUPPLEMENTS; VITAMIN AB Approximately 60% of Armed Forces personnel regularly consume dietary supplements (DSs). We investigated the association of mood and health behaviors with multiple classes of DSs in military and Coast Guard personnel (N = 5536). Participants completed a survey of DS use and the Quick Mood Scale to assess mood domains of wakeful-drowsiness, relaxed-anxious, cheerful-depressed, friendly-aggression, clearheaded-confused, and well coordinated-clumsy. Supplements were categorized as multivitamin/minerals (MVM), individual vitamin/minerals, protein/amino acid supplements (PS), combination products (C), herbals (H), purported steroid analogs, (S) and other (O). One-way analyses of covariance assessed associations of DSs and perceived health behavior with mood controlling for age. Logistic regression determined associations between DS use and health behavior. Users of MVM and PS reported feeling significantly (P < 0.05) more awake, relaxed, cheerful, clearheaded, and coordinated. Participants using PS and S reported feeling less friendly (more aggressive, P < 0.02). Users of MVM and PS were more likely to report their general health, eating habits, and fitness level as excellent/good (P < 0.05). Participants reporting health behaviors as excellent/good were more (P < 0.01) awake, relaxed, cheerful, friendly, clearheaded, and coordinated. As no known biological mechanisms can explain such diverse effects of MVM and PS use on multiple mood states, health, eating habits, and fitness, we hypothesize these associations are not causal, and DS intake does not alter these parameters per se. Preexisting differences in mood and other health-related behaviors and outcomes between users versus nonusers of DSs could be a confounding factor in studies of DSs. C1 [Austin, Krista G.; McGraw, Susan M.; Lieberman, Harris R.] US Army Res Inst Environm Med, Natick, MA 01760 USA. [Austin, Krista G.] Oak Ridge Inst Sci & Educ, Belcamp, MD USA. RP Lieberman, HR (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. EM harris.r.lieberman.civ@mail.mil FU US Army Research and Material Command; Department of Defense Center Alliance for Dietary Supplement Research FX This work was supported by the US Army Research and Material Command and the Department of Defense Center Alliance for Dietary Supplement Research. NR 32 TC 1 Z9 1 U1 0 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0271-0749 EI 1533-712X J9 J CLIN PSYCHOPHARM JI J. Clin. Psychopharmacol. PD OCT PY 2014 VL 34 IS 5 BP 595 EP 601 DI 10.1097/JCP.0000000000000193 PG 7 WC Pharmacology & Pharmacy; Psychiatry SC Pharmacology & Pharmacy; Psychiatry GA AP1EO UT WOS:000341809700011 PM 25122181 ER PT J AU Zhan, Y Ladeinde, F Kirk, HG McDonald, KT AF Zhan, Yan Ladeinde, Foluso Kirk, Harold G. McDonald, Kirk T. TI The Effects of Pipe Geometry on Fluid Flow in a Muon Collider Particle Production System SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID STREAM-LINE MOTION; CURVED PIPES; AXISYMMETRICAL JETS; TURBULENT-FLOW; INSTABILITIES; DISTURBANCES; CURVATURE AB Liquid mercury has been investigated as a potential high-Z target for the production of muon particles for the Muon Collider project. This paper investigates the dynamics of mercury flow in a design of the target delivery system, with the objective of determining pipe configurations that yield weak turbulence intensities at the exit of the pipe. Eight curved pipe geometries with various half-bend angles and with/without nozzles in the exit region are studied. A theoretical analysis is carried out for steady laminar incompressible flow, whereby the terms representing the curvature effects are examined. Subsequent simulations of the turbulent flow regime in the pipes are based on a realizable k - epsilon Reynolds-Averaged Navier-Stokes (RANS) equations approach. The effects of half-bend angles and the presence of a nozzle on the momentum thickness and turbulence intensity at the exit plane of the curved pipe are discussed, as are the implications for the target delivery pipe designs. C1 [Zhan, Yan; Ladeinde, Foluso] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. [Kirk, Harold G.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McDonald, Kirk T.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Zhan, Y (reprint author), SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. FU United States Department of Energy (DOE) via the Brookhaven National Laboratory, High Energy Physics Department, Upton, New York FX This work was sponsored by the United States Department of Energy (DOE) via the Brookhaven National Laboratory, High Energy Physics Department, Upton, New York. NR 29 TC 0 Z9 0 U1 3 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0098-2202 EI 1528-901X J9 J FLUID ENG-T ASME JI J. Fluids Eng.-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 101203 DI 10.1115/1.4027176 PG 12 WC Engineering, Mechanical SC Engineering GA AP0NU UT WOS:000341759700008 ER PT J AU Cashman, DJ Zhu, T Simmerman, RF Scott, C Bruce, BD Baudry, J AF Cashman, Derek J. Zhu, Tuo Simmerman, Richard F. Scott, Cathy Bruce, Barry D. Baudry, Jerome TI Molecular interactions between photosystem I and ferredoxin: an integrated energy frustration and experimental model SO JOURNAL OF MOLECULAR RECOGNITION LA English DT Article DE cross-linking; electron transfer; energy landscape theory; frustration; protein-protein docking ID CHEMICAL CROSS-LINKING; PSI-E SUBUNIT; ANGSTROM RESOLUTION; ELECTRON-TRANSFER; SYNECHOCOCCUS-ELONGATUS; SOLUBLE FERREDOXIN; BINDS FERREDOXIN; LINKED COMPLEX; PSAC SUBUNIT; AMINO-ACIDS AB The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein-protein interaction regions are based on experimental site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Cashman, Derek J.; Zhu, Tuo; Simmerman, Richard F.; Scott, Cathy; Bruce, Barry D.; Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Cashman, Derek J.; Baudry, Jerome] Univ Tennessee, Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. RP Bruce, BD (reprint author), 226 Hesler Biol,1414 Cumberland Ave, Knoxville, TN 37996 USA. EM bbruce@utk.edu; jbaudry@utk.edu FU TN-SCORE - NSF-EPSCOR [EPS-1004083]; Gibson Family Foundation; UTK Graduate Energy Scholars Program; National Science Foundation IGERT program [DGE-0801470]; Directors Strategic Initiative, "Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion" at the Army Research Laboratory, Adelphi, MD, USA (ARL) [W911NF-11-2-0029] FX B. D. B. acknowledges support from TN-SCORE, a multi-disciplinary research program sponsored by NSF-EPSCOR (EPS-1004083) and support from the Gibson Family Foundation. C. S. and B. D. B. acknowledge support from the UTK Graduate Energy Scholars Program. R. S. was supported as an IGERT fellow from the National Science Foundation IGERT program (DGE-0801470). B. D. B. and T.Z. also acknowledge support from the Directors Strategic Initiative, "Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion" at the Army Research Laboratory, Adelphi, MD, USA (ARL Contract #W911NF-11-2-0029). NR 45 TC 1 Z9 1 U1 2 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0952-3499 EI 1099-1352 J9 J MOL RECOGNIT JI J. Mol. Recognit. PD OCT PY 2014 VL 27 IS 10 BP 597 EP 608 DI 10.1002/jmr.2384 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AO9NI UT WOS:000341682000003 PM 25178855 ER PT J AU Roth, J Wampler, WR Oberkofler, M van Deusen, S Elgeti, S AF Roth, J. Wampler, W. R. Oberkofler, M. van Deusen, S. Elgeti, S. TI Deuterium retention and out-gassing from beryllium oxide on beryllium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HYDROGEN ISOTOPE RETENTION; THERMAL RELEASE; BEO; IMPLANTATION; OXIDATION; LAYERS AB The desorption of D implanted into Be with a superficial oxide layer is studied. The different oxide thicknesses and implantation at different energies resulted in a strong variation of the fraction stopped within the oxide layer. Thermal desorption of D was subsequently performed, intermitted by nuclear reaction analysis for assessment of the D depth distributions and total retained amounts. For the conditions, where part of the D was deposited in the Be substrate, a sharp decrease of the retained amount of D occurs around 200 degrees C. This is attributed to the release from metallic Be. Correspondingly, the D and O depth profiles show that above 200 degrees C the remaining D is only retained in the BeO layer. Apparently, the superficial BeO layer does not act as a diffusion barrier for D that is released from the metallic substrate. The retained amount of D deposited within the BeO layer decreases steadily and is not completely released at 350 degrees C, the foreseen bake-out temperature in ITER. (C) 2014 Elsevier B.V. All rights reserved. C1 [Roth, J.; Oberkofler, M.; Elgeti, S.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Wampler, W. R.; van Deusen, S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Oberkofler, M (reprint author), Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany. EM martin.oberkofler@ipp.mpg.de FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Euratom research and training programme FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This project has received funding from the Euratom research and training programme 2014-2018. Thanks are due to M. Baldwin for help in oxidation of sample C at PISCES. NR 24 TC 2 Z9 2 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 27 EP 30 DI 10.1016/j.jnucmat.2014.06.015 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900005 ER PT J AU Shao, L Wei, CC Gigax, J Aitkaliyeva, A Chen, D Sencer, BH Garner, FA AF Shao, Lin Wei, C. -C. Gigax, J. Aitkaliyeva, A. Chen, D. Sencer, B. H. Garner, F. A. TI Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BOLTZMANN TRANSPORT-EQUATION; INJECTED INTERSTITIALS; CHARGED-PARTICLE; BORON-DIFFUSION; DAMAGE; METALS; ALLOYS; BOMBARDMENT; SUPPRESSION; NICKEL AB Ion irradiation has been widely used to simulate neutron-induced radiation damage. There are a number of features of ion-induced damage that differ from neutron-induced damage, however, and these differences require investigation before ion data can be confidently used to predict behavior arising from neutron bombardment. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. It was observed that the depth dependence of void swelling does not follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then moves to progressively deeper and higher-damage depths during continued irradiation. This indicates a strong initial suppression of void nucleation in the peak damage region that is eventually overcome with continued irradiation. Using the Boltzmann transport equation method, this phenomenon is shown to be due to depth-dependent defect imbalances created under ion irradiation. These findings demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extraction and interpretation of ion-induced swelling data. (C) 2014 Elsevier B.V. All rights reserved. C1 [Shao, Lin; Gigax, J.; Chen, D.; Garner, F. A.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Shao, Lin; Wei, C. -C.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Aitkaliyeva, A.; Sencer, B. H.] Idaho Natl Lab, Fuel Fabricat & Characterizat Dept, Idaho Falls, ID 83415 USA. [Garner, F. A.] Radiat Effects Consulting, Richland, WA 99354 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, 335R Zachry Engn Ctr, College Stn, TX 77843 USA. EM lshao@tamu.edu OI Aitkaliyeva, Assel/0000-0003-1481-6804 FU National Science Foundation (US) [CMMI-0846835]; Department of Energy (US) under DOE-NE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by National Science Foundation (US) under grant no. CMMI-0846835 and by the Department of Energy (US) under DOE-NE Idaho Operations Office Contract no. DE-AC07-05ID14517. NR 54 TC 23 Z9 23 U1 5 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 176 EP 181 DI 10.1016/j.jnucmat.2014.06.002 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900024 ER PT J AU Dhiman, SB Goff, GS Runde, W LaVerne, JA AF Dhiman, Surajdevprakash B. Goff, George S. Runde, Wolfgang LaVerne, Jay A. TI Gamma and heavy ion radiolysis of ionic liquids: A comparative study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INDUCED REDOX REACTIONS; RADIATION-CHEMISTRY; ROOM-TEMPERATURE; PULSE-RADIOLYSIS; DEGRADATION-PRODUCTS; TRIBUTYL-PHOSPHATE; SOLVATED ELECTRON; REACTION-KINETICS; CONSTITUENT IONS; AROMATIC LIQUIDS AB A variety of imidazolium, quaternary ammonium, and phosphonium cation based ionic liquids were irradiated with gamma-rays, 2-15 MeV protons and 5-20 MeV helium ions in order to examine their relative radiation stability and potential hazards for application in advanced nuclear fuel cycles. Molecular hydrogen production can be taken as an overall indicator of radiation stability, and was found to be considerably lower for the gamma-irradiated aromatic imidazolium based compounds when compared to the other aliphatic based media. Increasing the length of the aliphatic side chain increases the H-2 yields for all the compounds examined. Little difference is found in the production of H-2 between the quaternary ammonium and phosphonium based ionic liquids with similar length side chains. Yields of H-2 increase substantially from gamma-rays to 5 MeV He ions for the imidazolium based ionic liquids, but little variation with radiation type is observed for the quaternary ammonium and phosphonium based ionic liquids. The imidazolium based ionic liquids show a darkening with increasing dose and the UV-Visible spectra show an increase in absorption from 240 to 400 nm that is probably due to induced changes in the cation. FTIR spectra show little variation with radiolysis, which is consistent with the low H-2 yields. The formation of a new peak at 1658 cm (1) is attributable to the formation of acyclic disubstituted alkene bonds in the irradiated imidazolium based compounds. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dhiman, Surajdevprakash B.; LaVerne, Jay A.] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. [Goff, George S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Runde, Wolfgang] Los Alamos Natl Lab, Sci Programs Off, Los Alamos, NM 87545 USA. [LaVerne, Jay A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP LaVerne, JA (reprint author), Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. EM laverne.1@nd.edu FU Laboratory Directed Research and Development Program at Los Alamos National Laboratory; U.S. National Science Foundation; Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy [DE-FC02-04ER15533] FX The authors acknowledge the Laboratory Directed Research and Development Program at Los Alamos National Laboratory for financial support during this project. The authors thank Prof. Michael Wiescher for making available the facilities of the Notre Dame Nuclear Structure Laboratory, which is supported by the U.S. National Science Foundation. Ionic liquid samples were supplied by the laboratory of Prof. J.F. Brennecke of the University of Notre Dame. The work was performed using the facilities of the Notre Dame Radiation Laboratory, which is supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through grant number DE-FC02-04ER15533. This contribution is NDRL-5016 from the Notre Dame Radiation Laboratory. NR 60 TC 6 Z9 6 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 182 EP 187 DI 10.1016/j.jnucmat.2014.06.056 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900025 ER PT J AU Contescu, CI Mee, RW Wang, P Romanova, AV Burchell, TD AF Contescu, Cristian I. Mee, Robert W. Wang, Peng Romanova, Anna V. Burchell, Timothy D. TI Oxidation of PCEA nuclear graphite by low water concentrations in helium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GASIFICATION; HYDROGEN; BEHAVIOR; COOLANT; GRADES AB Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction (i.e. slow, continuous, and persistent) of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors' knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam (Velasquez, Hightower, Burnette, 1978). Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades that are being considered for use in gas-cooled reactors. The Langmuir-Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800-1100 degrees C), and partial pressures of water (15-850 Pa) and hydrogen (30-150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity between the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another. (C) 2014 Elsevier B.V. All rights reserved. C1 [Contescu, Cristian I.; Wang, Peng] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mee, Robert W.; Romanova, Anna V.; Burchell, Timothy D.] Univ Tennessee, Dept Business Analyt & Stat, Knoxville, TN 37996 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM ContescuCI@ornl.gov RI Burchell, Tim/E-6566-2017; OI Burchell, Tim/0000-0003-1436-1192; Contescu, Cristian/0000-0002-7450-3722 FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725]; Oak Ridge National Laboratories FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy Science and Technology under contract DE-AC05-00OR22725 with Oak Ridge National Laboratories managed by UT-Battelle, LLC. The authors acknowledge encouragement and support from Dr. Pete Pappano (U.S. Department of Energy) and Dr. William Windes (Idaho National Laboratory). A long-lasting collaboration with Dr. Robert Wichner (Oak Ridge National Laboratory, retired), who contributed significantly with planning the experiments and interpretation of results, is gratefully acknowledged. NR 30 TC 2 Z9 2 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 225 EP 232 DI 10.1016/j.jnucmat.2014.07.009 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900032 ER PT J AU Chen, CH Zhang, Y Fu, E Wang, Y Crespillo, ML Liu, C Shannon, S Weber, WJ AF Chen, C. H. Zhang, Y. Fu, E. Wang, Y. Crespillo, M. L. Liu, C. Shannon, S. Weber, W. J. TI Irradiation-induced microstructural change in helium-implanted single crystal and nano-engineered SiC SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE COMPOSITES; CAVITY FORMATION; ION BEAM; FUSION; DAMAGE; ACCUMULATION; DEFECTS AB Microstructural evolution induced by helium implantation and subsequent heavy ion irradiation has been investigated in single crystal and nano-engineered (NE) 3C SiC. Implantation with 65 keV He+ ions was performed at 277 degrees C, and the helium depth distribution was determined by elastic recoil detection analysis (ERDA). Transmission electron microscopy (TEM) could not resolve the presence of bubbles in any of the helium-implanted single crystal SiC. However, helium platelets and small dislocation loops (similar to 50 nm in diameter) were observed in the single crystal sample with the highest implantation fluence after 1 h annealing at 700 degrees C. Following irradiation with 9 MeV Au3+ ions at 700 degrees C, no bubbles were observed in the helium-implanted single crystal SiC, regardless of helium fluence. For the helium-implanted NE SiC, subsequent irradiation with 9 MeV Au ions to a dose of 10 dpa at 700 degrees C resulted in the formation and growth of bubbles, and a bimodal helium bubble size distribution was observed at the highest helium concentration (8000 appm) in the NE SiC. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chen, C. H.; Zhang, Y.; Crespillo, M. L.; Weber, W. J.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. [Zhang, Y.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Fu, E.; Wang, Y.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Liu, C.] China Univ Petr, Coll Sci, Dept Phys, Qingdao 266580, Peoples R China. [Shannon, S.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Weber, WJ (reprint author), Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. EM wjweber@utk.edu RI Weber, William/A-4177-2008; Shannon, Steven/O-3420-2014 OI Weber, William/0000-0002-9017-7365; Shannon, Steven/0000-0001-8317-6949 FU DOE Office of Nuclear Energy, Nuclear Energy University Programs FX This work was supported by the DOE Office of Nuclear Energy, Nuclear Energy University Programs. NR 31 TC 6 Z9 6 U1 6 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 280 EP 286 DI 10.1016/j.jnucmat.2014.07.020 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900040 ER PT J AU Snow, CS Browning, JF Bond, GM Rodriguez, MA Knapp, JA AF Snow, C. S. Browning, J. F. Bond, G. M. Rodriguez, M. A. Knapp, J. A. TI He-3 bubble evolution in ErT2: A survey of experimental results SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID EQUATION-OF-STATE; HARD-SPHERE FLUID; X-RAY-DIFFRACTION; HELIUM BUBBLES; TRITIUM DECAY; BLISTER FORMATION; METAL TRITIDES; ELASTIC-MODULI; PHASE-DIAGRAM; DEUTERIUM AB For the past several years we have been carrying out a long term experimental study of He-3 in ErT2 (erbium di-tritide). This study has attempted to answer questions regarding the evolution of helium bubbles in ErT2-xHex. ErT2 samples have been studied periodically over four years using Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), and Nano-Indentation (NI). In ErT2-xHex, helium bubbles are plate-like and grow along {111} planes. The bubbles grow in three distinct phases. First, they nucleate and grow as "Griffith-cracks'' until an age of similar to 0.15 He:M. Second, around 0.15 He:M the diameter stops increasing and instead the bubbles grow in thickness by punching dislocation dipoles. Third, the bubbles grow in size until similar to 0.3 He:M at which point the bubbles begin to link. (C) 2014 Elsevier B.V. All rights reserved. C1 [Snow, C. S.; Rodriguez, M. A.; Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bond, G. M.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Browning, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Snow, CS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cssnow@sandia.gov RI Browning, James/C-9841-2016 OI Browning, James/0000-0001-8379-259X FU Sandia National Laboratories; U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000]; United States Department of Energy (DOE), Office of Basic Energy Sciences-Materials Science [DE-AC05-00OR22725]; UT-Battelle LLC FX The authors would like to thank J.C. Banks for Ion Beam Analysis of many of the samples studied during the course of this work. We also thank G. Bryant and B. Ritchey for preparing the excellent TEM samples without which much of this work would not be possible. This work was performed at and supported by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. Oak Ridge National Laboratory is managed for the United States Department of Energy (DOE), Office of Basic Energy Sciences-Materials Science under Contract No. DE-AC05-00OR22725 with UT-Battelle LLC. NR 90 TC 2 Z9 2 U1 6 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 296 EP 306 DI 10.1016/j.jnucmat.2014.07.032 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900042 ER PT J AU Drera, SS Hofman, GL Kee, RJ King, JC AF Drera, Saleem S. Hofman, Gerard L. Kee, Robert J. King, Jeffrey C. TI A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U-Mo/Al dispersion type fuel plates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LAYER GROWTH; IRRADIATION; ALUMINUM AB Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium-molybdenum (U-Mo) particles within an aluminum matrix. Fresh U-Mo particles typically range between 10 and 100 mu m in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction-diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates. (C) 2014 Elsevier B.V. All rights reserved. C1 [Drera, Saleem S.; Kee, Robert J.; King, Jeffrey C.] Colorado Sch Mines, Golden, CO 80401 USA. [Hofman, Gerard L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Drera, SS (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM saleem.drera@gmail.com FU Argonne National Laboratory (ANL); Idaho National Laboratory (INL) FX This effort was partially supported by Argonne National Laboratory (ANL) and the Idaho National Laboratory (INL). The authors gratefully acknowledge insightful discussions with Prof. David Olson, CSM. NR 9 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 313 EP 319 DI 10.1016/j.jnucmat.2014.07.016 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900044 ER PT J AU Toloczko, MB Garner, FA Voyevodin, VN Bryk, VV Borodin, OV Mel'nychenko, VV Kalchenko, AS AF Toloczko, M. B. Garner, F. A. Voyevodin, V. N. Bryk, V. V. Borodin, O. V. Mel'nychenko, V. V. Kalchenko, A. S. TI Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATION CREEP; CHARGED-PARTICLE; MICROSTRUCTURAL EVOLUTION; INJECTED INTERSTITIALS; RADIATION-DAMAGE; HEAVY-IONS; STEEL; DEFORMATION; BOMBARDMENT; BEHAVIOR AB In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 degrees C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries. (C) 2013 Elsevier B.V. All rights reserved. C1 [Toloczko, M. B.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Garner, F. A.] Radiat Effects Consulting, Richland, WA 99354 USA. [Voyevodin, V. N.; Bryk, V. V.; Borodin, O. V.; Mel'nychenko, V. V.; Kalchenko, A. S.] Kharkov Phys Tech Inst, Kharkov, Ukraine. RP Toloczko, MB (reprint author), MS J4-55,Box 999, Richland, WA 99354 USA. EM mychailo.toloczko@pnnl.gov OI Borodin, Oleg/0000-0002-6620-1724 FU Fuel Cycle RD Program; U.S. Department of Energy, Office of Nuclear Energy; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This research was funded by the Fuel Cycle R&D Program Core Materials research area sponsored by the U.S. Department of Energy, Office of Nuclear Energy. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Collaboration with KIPT in the Ukraine was made possible by the CRDF Organization. NR 33 TC 20 Z9 20 U1 2 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2014 VL 453 IS 1-3 BP 323 EP 333 DI 10.1016/j.jnucmat.2014.06.011 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AO9MN UT WOS:000341679900046 ER PT J AU Ghosh, D Baeder, JD AF Ghosh, Debojyoti Baeder, James D. TI Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Direct numerical simulation; Compressible flows; Compact schemes; High resolution schemes; Compact schemes; CRWENO schemes ID ESSENTIALLY NONOSCILLATORY SCHEMES; HYPERBOLIC CONSERVATION-LAWS; SHOCK-CAPTURING SCHEMES; FINITE-DIFFERENCE SCHEMES; HIGH-ORDER; EFFICIENT IMPLEMENTATION; ISOTROPIC TURBULENCE; HIGH-RESOLUTION; WENO SCHEME; DIRECT COMPUTATION AB A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678-A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed in the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems-the decay of isotropic turbulence and the shock-turbulence interaction-are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows. C1 [Ghosh, Debojyoti] Univ Maryland, College Pk, MD 20742 USA. [Baeder, James D.] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA. RP Ghosh, D (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA. EM ghosh@mcs.anl.gov; baeder@umd.edu FU U.S. Army's MAST CTA Center for Microsystem Mechanics FX This research was supported by the U.S. Army's MAST CTA Center for Microsystem Mechanics with Mr. Chris Kroninger (ARL-VTD) as Technical Monitor. NR 42 TC 7 Z9 7 U1 0 U2 15 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD OCT PY 2014 VL 61 IS 1 BP 61 EP 89 DI 10.1007/s10915-014-9818-0 PG 29 WC Mathematics, Applied SC Mathematics GA AO8TG UT WOS:000341627100004 ER PT J AU Lorenzo-Martin, MC Ajayi, OO AF Lorenzo-Martin, M. Cinta Ajayi, Oyelayo O. TI Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID ALUMINUM-ALLOYS; COMPOSITE; MICROSTRUCTURE; FABRICATION AB This paper presents the results of the study on mechanical and tribological performance enhancement of 6061 aluminum alloys by incorporation of B4C particle via friction stir processing (FSP). The incorporation of B4C particles reduced friction by 30% and reduced wear by two orders of magnitude compared to unprocessed base material. FSP alone without particles addition did not have a significant effect on the tribological behavior of the aluminum alloy studied. C1 [Lorenzo-Martin, M. Cinta; Ajayi, Oyelayo O.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Lorenzo-Martin, MC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM lorenzo-martin@anl.gov; ajayi@anl.gov FU U. S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-06CH11357] FX The electron microscopy was accomplished at the EMC at Argonne National Laboratory, a U. S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by University of Chicago Argonne, LLC.; This work was supported by U. S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under Contract No. DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 2 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4787 EI 1528-8897 J9 J TRIBOL-T ASME JI J. Tribol.-Trans. ASME PD OCT PY 2014 VL 136 IS 4 AR 044501 DI 10.1115/1.4027860 PG 6 WC Engineering, Mechanical SC Engineering GA AP0SX UT WOS:000341775600022 ER PT J AU Datta, MK Kuruba, R Jampani, PH Chung, SJ Saha, P Epur, R Kadakia, K Patel, P Gattu, B Manivannan, A Kumta, PN AF Datta, Moni Kanchan Kuruba, Ramalinga Jampani, Prashanth H. Chung, Sung Jae Saha, Partha Epur, Rigved Kadakia, Karan Patel, Prasad Gattu, Bharat Manivannan, Ayyakkannu Kumta, Prashant N. TI Electrochemical properties of a new nanocrystalline NaMn2O4 cathode for rechargeable sodium ion batteries SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Nanostructured NaMn2O4; High energy mechanical milling; Na-ion batteries; Cathode ID ENERGY-STORAGE; NANOCOMPOSITE ANODES; THERMAL-STABILITY; NA0.44MNO2; SILICON; ELECTROLYTE; CHALLENGES; GRAPHITE AB Nanocrystalline NaMn2O4 with a crystallite size of similar to 8-10 nm exhibiting a new close packed hexagonal crystalline form, different from the known stable orthorhombic (Pbam or Pmnm symmetry) or monoclinic structures common to the Na-Mn-O system, has been synthesized by a high energy mechano-chemical milling process (HEMM) using Na2O2 and Mn2O3 as starting materials. The newly synthesized structure of NaMn2O4 has been studied as a cathode for sodium ion rechargeable batteries. The HEMM derived NaMn2O4 shows a 1st cycle discharge capacity similar to 75 mAh/g, similar to 86 mAh/g and similar to 95 mAh/g when cycled at a rate of similar to 40 mA/g in the potential window similar to 2.0-4.0V, similar to 2-4.2V and similar to 2-4.5V, respectively. The nanostructured NaMn2O4 shows a fade in capacity of 03% per cycle and a moderate rate capability when cycled in the potential window 2-4V. However, electrolyte decomposition occurring during charging of the electrode above similar to 3.8V needs to be resolved in order utilize the full capacity of NaMn2O4 as well as improve the stability of the electrode. (C) 2014 Elsevier B.V. All rights reserved. C1 [Datta, Moni Kanchan; Kuruba, Ramalinga; Jampani, Prashanth H.; Chung, Sung Jae; Saha, Partha; Epur, Rigved; Kadakia, Karan; Patel, Prasad; Gattu, Bharat; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Pittsburgh, PA 15261 USA. [Datta, Moni Kanchan; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Ctr Complex Engn Multifunct Mat, Pittsburgh, PA 15261 USA. [Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Kumta, Prashant N.] Univ Pittsburgh, Sch Dent Med, Pittsburgh, PA 15261 USA. RP Datta, MK (reprint author), Univ Pittsburgh, Swanson Sch Engn, Pittsburgh, PA 15261 USA. EM mkd16@pitt.edu; pkumta@pitt.edu RI SAHA, PARTHA/D-5508-2011; Jampani Hanumantha, Prashanth/A-9840-2013 OI SAHA, PARTHA/0000-0002-0309-8387; Jampani Hanumantha, Prashanth/0000-0001-7159-1993 FU US Department of Energy's Office of Vehicle Technologies BATT program [DE-AC02-05CHI1231]; Ford Motor Company University Research Program; National Science Foundation [CBET-0933141]; Edward R. Weidlein Chair Endowed Professorship; Center for Complex Engineered Multifunctional Materials (CCEMM), University of Pittsburgh FX The authors would like to acknowledge the financial support from the US Department of Energy's Office of Vehicle Technologies BATT program (Contract DE-AC02-05CHI1231), the Ford Motor Company University Research Program, the National Science Foundation (CBET-0933141 and the Edward R. Weidlein Chair Endowed Professorship. PNK also acknowledges support from the Center for Complex Engineered Multifunctional Materials (CCEMM), University of Pittsburgh. NR 28 TC 2 Z9 2 U1 14 U2 151 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 EI 1873-4944 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD OCT PY 2014 VL 188 BP 1 EP 7 DI 10.1016/j.mseb.2014.05.007 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA AP0IJ UT WOS:000341744400001 ER PT J AU Lang, M Toulemonde, M Zhang, JM Zhang, FX Tracy, CL Lian, J Wang, ZW Weber, WJ Severin, D Bender, M Trautmann, C Ewing, RC AF Lang, Maik Toulemonde, Marcel Zhang, Jiaming Zhang, Fuxiang Tracy, Cameron L. Lian, Jie Wang, Zhongwu Weber, William J. Severin, Daniel Bender, Markus Trautmann, Christina Ewing, Rodney C. TI Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Swift heavy ions; Pyrochlore; Ceramics; Amorphization; Disordering ID INDUCED AMORPHIZATION; INORGANIC INSULATORS; MAGNETIC INSULATORS; RADIATION TOLERANCE; NUCLEAR-WASTE; CROSS-SECTION; IRRADIATION; OXIDES; PLUTONIUM; IMMOBILIZATION AB The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: Ni-58, Ru-101, (129)xe, Ta-181, Au-197, Pb-208 and U-238 of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core shell morphologies induced by ions of different dE/dx. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lang, Maik] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Toulemonde, Marcel] CEA CNRS ENSI CAEN Univ Caen, Ctr Interdisciplinaire Rech Ions Mat & Photon CIM, F-14070 Caen, France. [Zhang, Jiaming; Ewing, Rodney C.] Stanford Univ, Sch Earth Sci, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Zhang, Fuxiang] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Tracy, Cameron L.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Technol, Knoxville, TN 37996 USA. [Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Severin, Daniel; Bender, Markus; Trautmann, Christina] GSI Helmholtz Ctr Heavy Ion Res, D-64291 Darmstadt, Germany. [Trautmann, Christina] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. RP Lang, M (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM mlang2@utk.edu RI Weber, William/A-4177-2008; Zhang, Fuxiang/P-7365-2015 OI Tracy, Cameron/0000-0002-0679-8522; Weber, William/0000-0002-9017-7365; Zhang, Fuxiang/0000-0003-1298-9795 FU Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089, DE-AC05-00OR22725]; NSF & NIH/NIGMS via NSF [DMR-0225180]; University of Michigan FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089 (UM, UT) and Contract DE-AC05-00OR22725 (ORNL). The use of CHESS beam is supported by the NSF & NIH/NIGMS via NSF award DMR-0225180. One of the authors (M.T.) is grateful to Professor Ewing at the University of Michigan for the financial support for his two-month visit. NR 74 TC 15 Z9 15 U1 8 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT 1 PY 2014 VL 336 BP 102 EP 115 DI 10.1016/j.nimb.2014.06.019 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AO7RL UT WOS:000341550200015 ER PT J AU Radchenko, V Busse, S Roesch, F AF Radchenko, Valery Busse, Stefan Roesch, Frank TI Desferrioxamine as an appropriate chelator for Nb-90: Comparison of its complexation properties for M-Df-Octreotide (M = Nb, Fe, Ga, Zr) SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Positron emitter Nb-90; Desferrioxamine; Chelators; Stability; Df-Octereotide ID MONOCLONAL-ANTIBODIES; IMMUNO-PET; RADIOCHEMISTRY AB The niobium-90 radioisotope (Nb-90) holds considerable promise for use in immuno-PET, due to its decay = 53%, E parameters (t(1/2) = 14.6 h, positron yield = 53%, E-beta+(mean) = 0.35 MeV and E-beta+(max) = 1.5 MeV). In particular, Nb-90 appears well suited to detect in vivo the pharmacokinetics of large targeting vectors (50-150 kDa). In order to be useful for immuno-PET chelators are required to both stabilize the radionuclide in terms of coordination chemistry and to facilitate the covalent attachment to the targeting vector. Different chelators were evaluated for this purpose in terms of radiolabelling efficiency and stability of the radiolabelled Nb(V) complex and in order to determine the most suitable candidate for conjugation to a biologically relevant targeting vector. For the purpose of studying the complexation properties the niobium radioisotope Nb-95 was used as an analogue of Nb-90, by virtue of its longer half-life (35 days) and lower cost (reactor-based production). Acyclic and cyclic chelators were investigated, with desferroxamine [DE (N'-{5-[acetyl(hydroxy)amino]pentyl)-N-[5-({4-[(5-aminopentyl) (hydroxy)amino]-4-oxobutanoyl} amino)pentyl]-N-hydroxysuccinamide)] emerging as the best candidate. Greater than 99% radiolabelling was achieved at room temperature over a wide pH range. The Nb-95-Df complex is sufficiently stable for immuno-PET (<7% degradation over 7 days in vitro). As a proof-of-principle, a Df conjugate featuring a well-established targeting vector, (D)-Phe(1)-octreotide, was evaluated. The fast labelling kinetics of the unconjugated chelator (DO were retained for Df-succinyl-(D)Phe(1)-octreotide (Df-OC), with > 90% labelling after 1 h at room temperature over the pH range 5-7. Stability studies, performed in vitro in serum at physiological temperature (37 degrees C), revealed that 87 +/- 2% of the radiolabelled molecule remained intact after 7 days. Competition studies with relevant metal ions (zirconium((IV)), gallium((III)) and iron((III)) have been performed with Df-OC to gain insight to the relative stability [Nb-Df]-OC complex to transmetallation. At equimolar metal ion concentrations the [Nb-Df]-OC complex showed the greatest overall stability. The favourable radiolabelling characteristics of Df-OC and its stability indicate that Df is a potentially very useful chelator for the development of radiopharmaceuticals for Nb-90-PET. Published by Elsevier Inc. C1 [Radchenko, Valery; Busse, Stefan; Roesch, Frank] Johannes Gutenberg Univ Mainz, Inst Nucl Chem, D-55128 Mainz, Germany. RP Radchenko, V (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM varad@lanl.gov NR 21 TC 3 Z9 3 U1 2 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 EI 1872-9614 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD OCT PY 2014 VL 41 IS 9 BP 721 EP 727 DI 10.1016/j.nucmedbio.2014.06.006 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA AP0GD UT WOS:000341738400002 PM 25087170 ER PT J AU Shahnam, M AF Shahnam, Mehrdad TI SPECIAL ISSUE: Selected Papers from the 2012 NETL Multiphase Flow Workshop SO POWDER TECHNOLOGY LA English DT Editorial Material C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Shahnam, M (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Mehrdad.shahnam@netl.doe.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2014 VL 265 SI SI BP 1 EP 1 DI 10.1016/j.powtec.2014.01.029 PG 1 WC Engineering, Chemical SC Engineering GA AO6QE UT WOS:000341475800001 ER PT J AU Li, TW Gel, A Pannala, S Shahnam, M Syamlal, M AF Li, Tingwen T Gel, Aytekin Pannala, Sreekanth Shahnam, Mehrdad Syamlal, Madhava TI CFD simulations of circulating fluidized bed risers, part I: Grid study (Reprinted from Powder Technology, vol 254, pg 170-180, 2014) SO POWDER TECHNOLOGY LA English DT Reprint DE Computational fluid dynamics; Numerical simulation; Circulating fluidized bed; Gas-solid flow; Riser flow; Pressure drop ID GAS-SOLID FLOWS; SQUARE CROSS-SECTION; 2-PHASE FLOW; DYNAMICS; MODEL; HYDRODYNAMICS; PARAMETERS; PARTICLES; PROFILES; 2D AB In this work, a detailed grid refinement study was carried out for two well-documented circulating fluidized bed (CFB) systems with the focus on grid convergence of 2D numerical simulations. It is demonstrated that the grid convergence of numerical simulations depends on the flow field variable chosen for verification. For axial pressure gradient, this study shows that no general rule for grid size is available to guarantee the grid-independent results. In addition, the inlet and outlet configuration used in the 2D simulations shows a significant impact on the grid convergence. A 3D grid study is also presented with the intent to probe the differences between 2D and 3D numerical simulations with respect to the grid convergence. For the case considered in this study, the 3D simulation demonstrates better grid convergent behavior than the 2D simulation with comparable grid sizes. (C) 2014 Elsevier BM. All rights reserved. C1 [Li, Tingwen T; Gel, Aytekin; Shahnam, Mehrdad; Syamlal, Madhava] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Tingwen T] URS Corp, Morgantown, WV USA. [Gel, Aytekin] ALPEMI Consulting LLC, Phoenix, AZ USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Li, TW (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM litingwen@gmail.com NR 38 TC 4 Z9 4 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2014 VL 265 SI SI BP 2 EP 12 DI 10.1016/j.powtec.2014.04.008 PG 11 WC Engineering, Chemical SC Engineering GA AO6QE UT WOS:000341475800002 ER PT J AU Li, TW Pannala, S Shahnam, M AF Li, Tingwen Pannala, Sreekanth Shahnam, Mehrdad TI CFD simulations of circulating fluidized bed risers, part II, evaluation of differences between 2D and 3D simulations (Reprinted from Powder Technology, vol 254, pg 115-124, 2014) SO POWDER TECHNOLOGY LA English DT Reprint DE Computational fluid dynamics; Numerical simulation; Circulating fluidized bed; Gas-solids flow; Riser flow; Pressure drop ID SQUARE CROSS-SECTION; MFIX-DEM SOFTWARE; GAS-SOLID FLOWS; VOIDAGE PROFILES; HYDRODYNAMICS; MODEL; VALIDATION AB Two-dimensional (2D) numerical simulations have been widely reported in the literature for qualitative, even quantitative, study of the complex gas-solids flow behavior in circulating fluidized bed (CFB) risers. It is generally acknowledged that there exist quantitative differences between 2D and three-dimensional (3D) numerical simulations. However, no detailed study evaluating such differences can be found for simulations of CFB risers. This paper presents 20 and 3D numerical simulations of three different CFB risers. Axial pressure gradients from both 20 and 3D simulations are compared with the experimental data. It has been clearly demonstrated that the 2D Simulation cannot satisfactorily reproduce the 3D simulation results. A further comparison of radial profiles of void fraction and solids velocity for an axi-symmetric riser configuration is reported and the quantitative differences between 2D and 3D simulations are analyzed. In conclusion, 2D simulation is only recommended for qualitative evaluation and 3D modeling is recommended for predictive simulations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Li, Tingwen; Shahnam, Mehrdad] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26507 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Li, TW (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM tingwen.li@contr.netl.doe.gov NR 41 TC 5 Z9 5 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2014 VL 265 SI SI BP 13 EP 22 DI 10.1016/j.powtec.2014.04.007 PG 10 WC Engineering, Chemical SC Engineering GA AO6QE UT WOS:000341475800003 ER PT J AU Sarkar, A Pan, WX Suh, D Huckaby, ED Sun, X AF Sarkar, Avik Pan, Wenxiao Suh, DongMyung Huckaby, E. David Sun, Xin TI Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT National-Energy-Technology-Laboratory (NETL) Multiphase Flow Workshop CT National Energy Technology Laboratory NETL Multiphase Flow Workshop CY MAY 22-24, 2012 CY MAY 22-24, 2012 CL Morgantown, WV CL Morgantown, WV SP Natl Energy Technol Lab DE Carbon capture; Computational fluid dynamics; Fluidization; Moving bed; Multi-phase flow; Regenerator ID GAS-SOLID FLOWS; CO2 CAPTURE; RESIDENCE TIME; PRESSURE-DROP; HYDRODYNAMICS; VALIDATION; SUSPENSIONS; SORBENTS; DIOXIDE; SYSTEMS AB To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator-a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sarkar, Avik; Pan, Wenxiao; Suh, DongMyung; Sun, Xin] Pacific NW Natl Lab, Richland, WA 99352 USA. [Huckaby, E. David] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Sarkar, A (reprint author), POB 999,MSIN K7-90, Richland, WA 99352 USA. EM aviksarkar2@gmail.com FU U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory FX This work was funded by the U.S. Department of Energy, Office of Fossil Energy's Carbon Capture Simulation Initiative through the National Energy Technology Laboratory. NR 48 TC 5 Z9 5 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2014 VL 265 SI SI BP 35 EP 46 DI 10.1016/j.powtec.2014.01.031 PG 12 WC Engineering, Chemical SC Engineering GA AO6QE UT WOS:000341475800005 ER PT J AU Gel, A Chaudhari, K Turton, R Nicoletti, P AF Gel, Aytekin Chaudhari, Kiran Turton, Richard Nicoletti, Philip TI Application of uncertainty quantification methods for coal devolatilization kinetics in gasifier modeling SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT National-Energy-Technology-Laboratory (NETL) Multiphase Flow Workshop CT National Energy Technology Laboratory NETL Multiphase Flow Workshop CY MAY 22-24, 2012 CY MAY 22-24, 2012 CL Morgantown, WV CL Morgantown, WV SP Natl Energy Technol Lab DE Coal gasification kinetics; Kinetics software; Uncertainty quantification; Propagation of input uncertainties; Sensitivity analysis ID HIGH HEATING RATES; HIGH-PRESSURE; PRODUCT DISTRIBUTIONS; ELEVATED PRESSURES; HIGH-TEMPERATURES; SOFTENING COAL; FLUIDIZED-BED; PYROLYSIS; GASIFICATION; SOOT AB The focus of this research is to study sensitivity of input parameters in terms of chemical reaction kinetics of coal devolatilization using non-intrusive uncertainty quantification (UQ) methods. The effects of heating rate, pressure, and temperature on coal devolatilization have been considered. Variations in coal devolatilization kinetics and product yields were captured via Carbonaceous Chemistry for Computational Modeling (C3M) for operating conditions similar to the transport gasifier using PC Coal Lab (PCCL) kinetic package. Temperature, pressure and heating rate were considered as three input parameters, while the quantities of interest or response variables were mass fractions of CO, CO2, H-2, tar, H2O, and CH4 along with total volatile yield. A direct Monte Carlosimulation-based approach was employed to perform the UQ analysis. The correlations among the response variables were investigated by computing a correlation matrix that supports the findings of yield of devolatilization reported by various experiments in the literature. Sensitivity study of the input parameters was analyzed by using the Sobol Total Indices methodology implemented in PSUADE, an open source UQ-toolbox. These findings clearly demonstrate the pronounced effect of temperature on coal devolatilization product yields, and hence will be considered as a key parameter in future studies. The preliminary study presented in this paper paves a path for incorporating uncertainty caused by chemical reaction kinetics in computational fluid dynamics based modeling of coal gasifier systems and scale-up studies. (C) 2014 Elsevier B.V. All rights reserved. C1 [Gel, Aytekin; Chaudhari, Kiran; Turton, Richard; Nicoletti, Philip] NETL, Morgantown, WV 26505 USA. [Gel, Aytekin] ALPEMI Consulting LLC, Phoenix, AZ USA. [Chaudhari, Kiran; Turton, Richard] W Virginia Univ, Morgantown, WV 26506 USA. [Chaudhari, Kiran; Turton, Richard] URS Corp, Morgantown, WV USA. RP Gel, A (reprint author), NETL, Morgantown, WV 26505 USA. EM aike@alpemi.com OI GEL, Aytekin/0000-0002-1661-2859 FU National Energy Technology Laboratory under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. NR 48 TC 3 Z9 3 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2014 VL 265 SI SI BP 66 EP 75 DI 10.1016/j.powtec.2014.01.024 PG 10 WC Engineering, Chemical SC Engineering GA AO6QE UT WOS:000341475800008 ER PT J AU Wang, N Wen, YH Chen, LQ AF Wang, Nan Wen, Youhai Chen, Long-Qing TI Pinning force from multiple second-phase particles in grain growth SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Grain boundary; Particle pinning; Phase-field; Grain growth ID COMPUTER-SIMULATIONS; PHASE PARTICLES; ZENER DRAG; INHIBITION; DISPERSION; SYSTEM AB A factor that can reduce particle pinning force significantly in grain growth is found when the grain-boundary is pinned by multiple particles. The pinning force, in this case, is a function of particle radius over inter-particle distance. A previously proposed phase-field model for particle pinning is used to validate this predicted pinning force reduction in two and three dimensions. When applied to coherent pinning particles, the same effect is observed in simulations. It is shown that, at application relevant high particle volume fraction, the average grain size is affected by this reduction of pinning force. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wang, Nan; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Wen, Youhai] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Wang, N (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM n11wang@yahoo.com FU Strategic Center for Coal, NETL through Innovative Process Technologies Program FX The authors would like to acknowledge the Strategic Center for Coal, NETL, for supporting this activity through the Innovative Process Technologies Program, and in particular Robert Romanosky as Technology Manager, Patricia Rawls as Project Manager and David Alman as ORD Technical Team Coordinator. NR 21 TC 4 Z9 4 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD OCT PY 2014 VL 93 BP 81 EP 85 DI 10.1016/j.commatsci.2014.06.030 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AO6PT UT WOS:000341474700014 ER PT J AU Rest, J Insepov, Z Ye, B Yun, D AF Rest, J. Insepov, Z. Ye, B. Yun, D. TI A multiscale method for the analysis of defect behavior in Mo during electron irradiation SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Multiscale model; Defect behavior; Irradiation; Mo ID SITU ION IRRADIATION; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; DISLOCATION LOOPS; SADDLE-POINTS; MOLYBDENUM; DYNAMICS; METALS; GROWTH; POTENTIALS AB In order to overcome a lack of experimental information on values for key materials properties and kinetic coefficients, a multiscale modeling approach is applied to defect behavior in irradiated Mo where key materials properties, such as point defect (vacancy and interstitial) migration enthalpies as well as kinetic factors such as dimer formation, defect recombination, and self interstitial-interstitial loop interaction coefficients, are obtained by molecular dynamics calculations and implemented into rate-theory simulations of defect behavior. The multiscale methodology is validated against interstitial loop growth data obtained from electron irradiation of pure Mo. It is shown that the observed linear behavior of the loop diameter vs. the square root of irradiation time is a direct consequence of the 1D migration of self-interstitial atoms. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rest, J.; Insepov, Z.; Ye, B.; Yun, D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rest, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jeff.Rest@gmail.com FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under contract DE-AC02-06CH11357. NR 37 TC 1 Z9 1 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD OCT PY 2014 VL 93 BP 169 EP 177 DI 10.1016/j.commatsci.2014.06.044 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA AO6PT UT WOS:000341474700027 ER PT J AU Song, GL Dudney, NJ Li, JC Sacci, RL Thomson, JK AF Song, Guang-Ling Dudney, Nancy J. Li, Juchuan Sacci, Robert L. Thomson, Jeffery K. TI The possibility of forming a sacrificial anode coating for Mg SO CORROSION SCIENCE LA English DT Article DE Magnesium; SEM; Cathodic protection ID CATHODIC PROTECTION; MAGNESIUM ALLOYS; INTERCALATION; CORROSION; FIBER AB Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)(2) solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Song, Guang-Ling; Dudney, Nancy J.; Li, Juchuan; Sacci, Robert L.; Thomson, Jeffery K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Song, GL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd,POB 2008,MS6156, Oak Ridge, TN 37830 USA. EM guangling.song@hotmail.com RI Li, Juchuan/A-2992-2009; Song, Guang-Ling/D-9540-2013; Dudney, Nancy/I-6361-2016 OI Li, Juchuan/0000-0002-6587-5591; Song, Guang-Ling/0000-0002-9802-6836; Dudney, Nancy/0000-0001-7729-6178 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy FX The Research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. The graphite materials were kindly supplied by Pred Materials. The authors would like to thank GM R&D director, Dr. M.W.Verbrugge, for his support and beneficial discussion in this project. Also, T. Lowe's help in SEM experiment is highly appreciated.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 17 TC 9 Z9 9 U1 1 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD OCT PY 2014 VL 87 BP 11 EP 14 DI 10.1016/j.corsci.2014.07.007 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AO4TR UT WOS:000341334800003 ER PT J AU Woo, CK Ho, T Zarnikau, J Olson, A Jones, R Chait, M Horowitz, I Wang, J AF Woo, C. K. Ho, T. Zarnikau, J. Olson, A. Jones, R. Chait, M. Horowitz, I. Wang, J. TI Electricity-market price and nuclear power plant shutdown: Evidence from California SO ENERGY POLICY LA English DT Article DE Electricity market; Prices; Nuclear shutdown; Energy policy ID ENERGY DEVELOPMENT; WIND GENERATION; POST-FUKUSHIMA; IMPACT; JAPAN; TECHNOLOGIES; INCENTIVES; SECURITY; TEXAS AB Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market price data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010-December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Woo, C. K.; Ho, T.] Hong Kong Baptist Univ, Dept Econ, Hong Kong, Hong Kong, Peoples R China. [Zarnikau, J.] Univ Texas Austin, LBJ Sch Publ Affairs, Austin, TX 78713 USA. [Zarnikau, J.] Univ Texas Austin, Div Stat, Austin, TX 78713 USA. [Olson, A.; Jones, R.; Chait, M.] Energy & Environm Econ Inc, San Francisco, CA USA. [Horowitz, I.] Univ Florida, Warrington Coll Business, Gainesville, FL 32611 USA. [Wang, J.] Argonne Natl Lab, Ctr Energy Environm & Econ Syst, Argonne, IL 60439 USA. RP Woo, CK (reprint author), Hong Kong Baptist Univ, Dept Econ, Hong Kong, Hong Kong, Peoples R China. EM chiwoo@hkbu.edu.hk; hstony1@hotmail.com; jayz@mail.utexas.edu; arne@ethree.com; ryan@ethree.com; michele@ethree.com; ira.horowitz@warrington.ufl.edu; jianhui.wang@anl.gov OI Woo, Chi-keung/0000-0001-6366-0960 NR 55 TC 4 Z9 4 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD OCT PY 2014 VL 73 BP 234 EP 244 DI 10.1016/j.enpol.2014.05.027 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA AO6PN UT WOS:000341474100024 ER PT J AU Van Meter, RJ Glinski, DA Hong, T Cyterski, M Henderson, WM Purucker, ST AF Van Meter, Robin J. Glinski, Donna A. Hong, Tao Cyterski, Mike Henderson, W. Matthew Purucker, S. Thomas TI Estimating terrestrial amphibian pesticide body burden through dermal exposure SO ENVIRONMENTAL POLLUTION LA English DT Article DE K-ow; K-oc; Bioaccumulation; Skin permeability; Frog ID ACUTE TOXICITY; WATER-LOSS; FROGS; ADAPTATIONS; MALATHION; DECLINE; DISEASE; MODEL; SKIN AB Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logK(ow)) in frogs. Amphibians were indirectly exposed to one of five pesticide active ingredients through contact with contaminated soil: imidacloprid (logK(ow) = 0.57), atrazine (logK(ow) = 2.5), triadimefon (logK(ow) = 3.0), fipronil (logK(ow) = 4.11) or pendimethalin (logK(ow) = 5.18). All amphibians had measurable body burdens at the end of the exposure in concentrations ranging from 0.019 to 14.562 mu g/g across the pesticides tested. Atrazine produced the greatest body burdens and bioconcentration factors, but fipronil was more permeable to amphibian skin when application rate was considered. Soil partition coefficient and water solubility were much better predictors of pesticide body burden, bioconcentration factor, and skin permeability than logK(ow). Dermal uptake data can be used to improve risk estimates of pesticide exposure among amphibians as non-target organisms. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Van Meter, Robin J.; Glinski, Donna A.; Hong, Tao] Oak Ridge Inst Sci & Educ, Ecosyst Res Div, Athens, GA 30605 USA. [Cyterski, Mike; Henderson, W. Matthew; Purucker, S. Thomas] US EPA, Ecosyst Res Div, Athens, GA USA. RP Van Meter, RJ (reprint author), Oak Ridge Inst Sci & Educ, Ecosyst Res Div, 960 Coll Stn Rd, Athens, GA 30605 USA. EM rvanmeter2@washcoll.edu FU USEPA Ecosystems Research Division, Athens, GA [DW8992298301] FX We gratefully acknowledge the efforts of Wayne Garrison and Jimmy Avants for assistance in developing our amphibian tissue extraction protocol. The EPA Office of Pesticide Programs provided valuable feedback on study design. Thanks to Caroline Stevens for peer review and Fran Rauschenberg for manuscript review and edits. Many hours of field assistance with tadpoles and metamorphs was given by Craig Barber, Yin Gu, Katie Price and Marcia Snyder. This IACUC protocol (A2012 05-018-Y1-A0) received approval from the University of Georgia Institutional Animal Care and Use Committee. This research was supported in part by an appointment to the Postdoctoral Research Program at the USEPA Ecosystems Research Division, Athens, GA, administered by the Oak Ridge Institute for Science and Education through Interagency Agreement No. DW8992298301 between the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. NR 42 TC 7 Z9 8 U1 7 U2 55 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD OCT PY 2014 VL 193 BP 262 EP 268 DI 10.1016/j.envpol.2014.07.003 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA AO6OL UT WOS:000341471300033 PM 25063914 ER PT J AU Garofalo, AM Abdou, MA Canik, JM Chan, VS Hyatt, AW Hill, DN Morley, NB Navratil, GA Sawan, ME Taylor, TS Wong, CPC Wu, W Ying, A AF Garofalo, A. M. Abdou, M. A. Canik, J. M. Chan, V. S. Hyatt, A. W. Hill, D. N. Morley, N. B. Navratil, G. A. Sawan, M. E. Taylor, T. S. Wong, C. P. C. Wu, W. Ying, A. TI A Fusion Nuclear Science Facility for a fast-track path to DEMO SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Fusion Nuclear Science Facility; Fusion materials; Steady-state operation; Disruptions; Power exhaust; Breeding blanket ID ITER-LIKE WALL; DIII-D; HIGH-BETA; DIVERTOR; JET AB An accelerated fusion energy development program, a "fast-track" approach, requires proceeding with a nuclear and materials testing program in parallel with research on burning plasmas, ITER. A Fusion Nuclear Science Facility (FNSF) would address many of the key issues that need to be addressed prior to DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues, and the direct relevance to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robust plasma current initiation, and for an inboard blanket, assuring robust tritium breeding ratio (TBR) >1 for FNSF tritium self-sufficiency and building of inventory needed to start up DEMO. An example design point gives a moderate sized Cu-coil device with R/a = 2.7 m/0.77 m, kappa = 2.3, B-T = 5.4T, I-p = 6.6 MA, beta(N) = 2.75 P-fus = 127 MW. The modest bootstrap fraction of f(BS) = 0.55 provides an opportunity to develop steady state with sufficient current drive for adequate control. Proceeding with a FNSF in parallel with ITER provides a strong basis to begin construction of DEMO upon the achievement of Q similar to 10 in ITER. (c) 2014 Elsevier B.V. All rights reserved. C1 [Garofalo, A. M.; Chan, V. S.; Hyatt, A. W.; Taylor, T. S.; Wong, C. P. C.; Wu, W.] Gen Atom, San Diego, CA 92121 USA. [Abdou, M. A.; Morley, N. B.; Ying, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hill, D. N.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Navratil, G. A.] Columbia Univ, New York, NY USA. [Sawan, M. E.] Univ Wisconsin, Madison, WI USA. RP Garofalo, AM (reprint author), Gen Atom, San Diego, CA 92121 USA. EM garofalo@fusion.gat.com OI Canik, John/0000-0001-6934-6681 NR 20 TC 8 Z9 8 U1 1 U2 38 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 876 EP 881 DI 10.1016/j.fusengdes.2014.03.055 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400002 ER PT J AU Ronden, DMS Dammann, A Elzendoorn, B Giacomin, T Heemskerk, C Loesser, D Maquet, P van Oosterhout, J Pak, S Pitcher, CS Portales, M Proust, M Udintsev, VS Walsh, MJ AF Ronden, D. M. S. Dammann, A. Elzendoorn, B. Giacomin, T. Heemskerk, C. Loesser, D. Maquet, P. van Oosterhout, J. Pak, S. Pitcher, C. S. Portales, M. Proust, M. Udintsev, V. S. Walsh, M. J. TI The remote handling compatibility analysis of the ITER generic upper port plug structure SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE ITER; Remote handling; Diagnostics; Port plug AB The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component - the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements. (c) 2014 Elsevier B.V. All rights reserved. C1 [Ronden, D. M. S.; Elzendoorn, B.; van Oosterhout, J.] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands. [Dammann, A.; Giacomin, T.; Maquet, P.; Pak, S.; Pitcher, C. S.; Portales, M.; Proust, M.; Udintsev, V. S.; Walsh, M. J.] ITER Org, F-13115 St Paul Les Durance, France. [Heemskerk, C.] Heemskerk Innovat Technol, NL-2172 HZ Sassenheim, Netherlands. [Loesser, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ronden, DMS (reprint author), FOM Inst DIFFER, POB 1207, NL-3430 BE Nieuwegein, Netherlands. EM d.m.s.ronden@differ.nl NR 7 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1009 EP 1013 DI 10.1016/j.fusengdes.2014.03.012 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400024 ER PT J AU Buchenauer, D Kolasinski, R Shimada, M Donovan, D Youchison, D Merrill, B AF Buchenauer, Dean Kolasinski, Robert Shimada, Masa Donovan, David Youchison, Dennis Merrill, Brad TI Development of a plasma driven permeation experiment for TPE SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Permeation; Tritium; Plasma AB Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 degrees C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 C, a new TPE membrane holder has been built to hold test specimens (<= 1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 degrees C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (similar to 700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 degrees C are expected at the highest TPE fluxes. (c) 2014 Elsevier B.V. All rights reserved. C1 [Buchenauer, Dean; Kolasinski, Robert; Donovan, David] Sandia Natl Labs, Livermore, CA 94550 USA. [Shimada, Masa; Merrill, Brad] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Youchison, Dennis] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Buchenauer, D (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM dabuche@sandia.gov OI Youchison, Dennis/0000-0002-7366-1710 NR 10 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1014 EP 1018 DI 10.1016/j.fusengdes.2014.03.009 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400025 ER PT J AU Ying, A Kotulski, J Zhang, HJ Ulrickson, M Youssef, M Munipalli, R AF Ying, Alice Kotulski, Joseph Zhang, Hongjie Ulrickson, Michael Youssef, Mahmoud Munipalli, Ramakanth TI Virtual plasma chamber integrated multi-physics simulation: Status and next steps SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Plasma chamber system; First wall blanket design; Multi-physics simulation; Fusion nuclear science and technology; Integrated simulations; Virtual TBM ID ITER; OPTIMIZATION; COMPONENTS; DESIGN; FLOW AB A modest approach to develop the ISPC enabling tool for fusion plasma chamber systems has been achieved. This high performance computing simulation addresses 3D physical phenomena in a complex and heterogeneous virtual fusion plasma chamber system and opens a new way for how one, such as DEMO/FNSF, ought to be designed and modeled. In the current approach, complex FNST scenarios were simulated and modeled through a community-built reflective middleware for simulation integrations involving multiple simulators. Example advancements are presented while issues and ideas are discussed to further expand the development of such a tool. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ying, Alice; Zhang, Hongjie; Youssef, Mahmoud] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Kotulski, Joseph; Ulrickson, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Munipalli, Ramakanth] HyPerComp Inc, Westlake Village, CA 91361 USA. RP Ying, A (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. EM ying@fusion.ucla.edu NR 23 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1144 EP 1150 DI 10.1016/j.fusengdes.2013.12.020 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400049 ER PT J AU Poddubnyi, I Khomiakov, S Kolganov, V Sadakov, S Calcagno, B Chappuis, P Roccella, R Raffray, R Danilov, I Leshukov, A Strebkov, Y Ulrickson, M AF Poddubnyi, I. Khomiakov, S. Kolganov, V. Sadakov, S. Calcagno, B. Chappuis, Ph. Roccella, R. Raffray, R. Danilov, I. Leshukov, A. Strebkov, Y. Ulrickson, M. TI Electrical connectors for blanket modules in ITER SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Electrical strap; Blanket module; Vacuum vessel; Electromagnetic force ID RESEARCH-AND-DEVELOPMENT; IN-VESSEL COMPONENTS; VACUUM VESSEL; DESIGN; PROGRESS AB Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (W). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative Win a scale of +/- 2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was developed in 2012 on the basis of more thoughtful analysis of bidirectional cyclic loading conditions influencing a fatigue lifetime. Detail comparative simulations of current and field patterns and subsequent analysis of the fatigue strength and technological assessment allowed make a final choice for the E-strap design in ITER. (C) 2014 Elsevier B.V. All rights reserved. C1 [Poddubnyi, I.; Khomiakov, S.; Kolganov, V.; Danilov, I.; Leshukov, A.; Strebkov, Y.] Open Joint Stock Co, NA Dollezhal Res & Dev Inst Power Engn, Moscow 107140, Russia. [Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Roccella, R.; Raffray, R.] ITER Org, F-13115 St Paul Les Durance, France. [Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Poddubnyi, I (reprint author), Open Joint Stock Co, NA Dollezhal Res & Dev Inst Power Engn, Malaya Krasnoselskaya St 2-8, Moscow 107140, Russia. EM poddubnyyii@nikiet.ru NR 10 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1336 EP 1340 DI 10.1016/j.fusengdes.2014.02.042 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400085 ER PT J AU Chikada, T Shimada, M Pawelko, RJ Terai, T Muroga, T AF Chikada, Takumi Shimada, Masashi Pawelko, Robert J. Terai, Takayuki Muroga, Takeo TI Tritium permeation experiments using reduced activation ferritic/martensitic steel tube and erbium oxide coating SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Tritium; Permeation; Coating; Erbium oxide; Memory effect AB Low concentration tritium permeation experiments have been performed on uncoated F82H and Er2O3-coated tubular samples in the framework of the Japan-US TITAN collaborative program. Tritium permeability of the uncoated sample with 1.2 ppm tritium showed one order of magnitude lower than that with 100% deuterium. The permeability of the sample with 40 ppm tritium was more than twice higher than that of 1.2 ppm, indicating a surface contribution at the lower tritium concentration. The Er2O3-coated sample showed two orders of magnitude lower permeability than the uncoated sample, and lower permeability than that of the coated plate sample with 100% deuterium. It was also indicated that the memory effect of ion chambers in the primary and secondary circuits was caused by absorption of tritiated water vapor that was generated by isotope exchange reactions between tritium and surface water on the coating. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chikada, Takumi; Terai, Takayuki] Univ Tokyo, Tokyo, Japan. [Shimada, Masashi; Pawelko, Robert J.] Idaho Natl Lab, Idaho Falls, ID USA. [Muroga, Takeo] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. RP Chikada, T (reprint author), Univ Tokyo, Tokyo, Japan. EM chikada@nuclear.jp OI Shimada, Masashi/0000-0002-1592-843X NR 8 TC 3 Z9 4 U1 3 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1402 EP 1405 DI 10.1016/j.fusengdes.2014.01.024 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400097 ER PT J AU Wong, CPC Merrill, B AF Wong, C. P. C. Merrill, B. TI Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Fuel cycle; Tritium processing AB ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1-2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wong, C. P. C.] Gen Atom, San Diego, CA 92121 USA. [Merrill, B.] Idaho Natl Lab, Idaho Falls, ID USA. RP Wong, CPC (reprint author), Gen Atom, San Diego, CA 92121 USA. EM wongc@fusion.gat.com NR 15 TC 2 Z9 2 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1482 EP 1485 DI 10.1016/j.fusengdes.2014.03.001 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400113 ER PT J AU Zinkle, SJ Blanchard, JP Callis, RW Kessel, CE Kurtz, RJ Lee, PJ McCarthy, KA Morley, NB Najmabadi, F Nygren, RE Tynan, GR Whyte, DG Willms, RS Wirth, BD AF Zinkle, S. J. Blanchard, J. P. Callis, R. W. Kessel, C. E. Kurtz, R. J. Lee, P. J. McCarthy, K. A. Morley, N. B. Najmabadi, F. Nygren, R. E. Tynan, G. R. Whyte, D. G. Willms, R. S. Wirth, B. D. TI Fusion materials science and technology research opportunities now and during the ITER era SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Plasma facing components; Reduced activation materials; Breeding blankets; Tritium systems; DEMO ID RECENT PROGRESS; CHALLENGES; REACTOR; HELIUM; DESIGN; STEELS AB Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zinkle, S. J.; Wirth, B. D.] Univ Tennessee, Knoxville, TN USA. [Blanchard, J. P.] Univ Wisconsin, Madison, WI USA. [Callis, R. W.] Gen Atom Co, La Jolla, CA USA. [Kessel, C. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lee, P. J.] Florida State Univ, Tallahassee, FL 32306 USA. [McCarthy, K. A.] Idaho Natl Lab, Idaho Falls, ID USA. [Morley, N. B.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Najmabadi, F.; Tynan, G. R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Nygren, R. E.] Sandia Natl Labs, Albuquerque, NM USA. [Whyte, D. G.] MIT, Cambridge, MA 02139 USA. [Willms, R. S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov RI Wirth, Brian/O-4878-2015; OI Wirth, Brian/0000-0002-0395-0285; Lee, Peter/0000-0002-8849-8995; Zinkle, Steven/0000-0003-2890-6915 NR 25 TC 4 Z9 4 U1 0 U2 41 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1579 EP 1585 DI 10.1016/j.fusengdes.2014.02.048 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400132 ER PT J AU Stork, D Agostini, P Boutard, JL Buckthorpe, D Diegele, E Dudarev, SL English, C Federici, G Gilbert, MR Gonzalez, S Ibarra, A Linsmeier, C Puma, AL Marbach, G Packer, LW Raj, B Rieth, M Tran, MQ Ward, DJ Zinkle, SJ AF Stork, Derek Agostini, Pietro Boutard, Jean-Louis Buckthorpe, Derek Diegele, Eberhard Dudarev, Sergei L. English, Colin Federici, Gianfranco Gilbert, Mark R. Gonzalez, Sehila Ibarra, Angel Linsmeier, Christian Puma, Antonella Li Marbach, Gabriel Packer, Lee W. Raj, Baldev Rieth, Michael Tran, Min Quang Ward, David J. Zinkle, Steven J. TI Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE DEMO; Fusion-materials ID RAFM STEELS; IRRADIATION; POWER; ITER; TOUGHNESS; PROGRESS; OPTIONS; REACTOR; ENERGY; EUROPE AB The findings of the EU Fusion Programme's 'Materials Assessment Group' (MAG), assessing readiness of Structural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These are incorporated into the EU Fusion Power Roadmap [1] , with a decision to construct DEMO in the early 2030s. The methodology uses project-based and systems-engineering approaches, the concept of Technology Readiness Levels, and considers lessons learned from Fission reactor material development. 'Baseline' materials are identified for each DEMO role, and the DEMO mission risks analysed from the known limitations, or unknown properties, associated with each baseline material. R&D programmes to address these risks are developed. The DEMO assessed has a phase I with a 'starter blanket': the blanket must withstand >= 2 MW yr m(-2) fusion neutron flux (equivalent to similar to 20 dpa front-wall steel damage). The baseline materials all have significant associated risks, so development of 'Risk Mitigation Materials' (RMM) is recommended. The R&D programme has parallel development of the baseline and RMM, up to 'down-selection' points to align with decisions on the DEMO blanket and divertor engineering definition. ITER licensing experience is used to refine the issues for materials nuclear testing, and arguments are developed to optimise scope of materials tests with fusion neutron ('14MeV') spectra before DEMO design finalisation. Some 14 MeV testing is still essential, and the Roadmap requires deployment of a >= 30 dpa (steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum 14 MeV testing programme, and the key role which fundamental and mission-oriented modelling can play in orienting the research. (C) 2013 Elsevier B.V. All rights reserved. C1 [Stork, Derek; Federici, Gianfranco; Gonzalez, Sehila] EFDA Power Plant Phys & Technol, D-85748 Garching, Germany. [Agostini, Pietro] ENEA, Brasimone Res Ctr, I-40032 Bologna, Italy. [Boutard, Jean-Louis; Marbach, Gabriel] CEA, Cab HC, F-91191 Gif Sur Yvette, France. [Buckthorpe, Derek] AMEC, Knutsford WA16 8QZ, Cheshire, England. [Diegele, Eberhard; Rieth, Michael] Karlsruhe Inst Technol, IMF I, D-7602 Karlsruhe, Germany. [Dudarev, Sergei L.; Gilbert, Mark R.; Packer, Lee W.; Ward, David J.] Euratom CCFE Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [English, Colin] Natl Nucl Lab, Warrington WA3 6AE, Cheshire, England. [Ibarra, Angel] CIEMAT, E-28040 Madrid, Spain. [Linsmeier, Christian] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany. [Puma, Antonella Li] CEA, DEN, DM2S, SERMA, F-91191 Gif Sur Yvette, France. [Raj, Baldev] Indian Natl Acad Engn, New Delhi 110016, India. [Tran, Min Quang] Ecole Polytech Fed Lausanne, CRPP, Assoc Euratom Switzerland, CH-1015 Lausanne, Switzerland. [Zinkle, Steven J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stork, D (reprint author), EFDA Power Plant Phys & Technol, Boltzmannstr 2, D-85748 Garching, Germany. EM derek.stork@ccfe.ac.uk RI EPFL, Physics/O-6514-2016; Rieth, Michael/E-4245-2017; OI Rieth, Michael/0000-0002-6231-6241; Zinkle, Steven/0000-0003-2890-6915; Linsmeier, Christian/0000-0003-0404-7191; Ibarra, Angel/0000-0002-2420-2497; Gilbert, Mark/0000-0001-8935-1744 NR 49 TC 28 Z9 29 U1 6 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1586 EP 1594 DI 10.1016/j.fusengdes.2013.11.007 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400133 ER PT J AU Hirose, T Nozawa, T Stoller, RE Hamaguchi, D Sakasegawa, H Tanigawa, H Tanigawa, H Enoeda, M Katoh, Y Snead, LL AF Hirose, Takanori Nozawa, Takashi Stoller, R. E. Hamaguchi, Dai Sakasegawa, Hideo Tanigawa, Hiroyasu Tanigawa, Hisashi Enoeda, Mikio Katoh, Yutai Snead, L. L. TI Physical properties of F82H for fusion blanket design SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE Reduced activation ferritic/martensitic steel; Breeding blanket; Physical properties; Numerical analysis ID STEEL; REACTOR AB The material properties, focusing on the properties used for design analysis were re-assessed and newly investigated for various heats of reduced activation ferritic/martensitic steel, F82H. Moreover, irradiation effects on those properties were studied in this work. Most of physical properties of unirradiated F82H are insensitive to the heat-to-heat variation, and more preferable to Grade 91 specified in the ASME code. Therefore numerical analysis using data of Grade 91 can be a conservative evaluation for F82H. The change in these properties of F82H is less than 6%. Therefore the irradiation effects on thermal stress and variation of electromagnetic force in plasma disruption could be quite small in the irradiation conditions studied. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hirose, Takanori; Tanigawa, Hisashi; Enoeda, Mikio] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Nozawa, Takashi; Hamaguchi, Dai; Sakasegawa, Hideo; Tanigawa, Hiroyasu] Japan Atom Energy Agcy, Rokkasho, Aomori, Japan. [Stoller, R. E.; Katoh, Yutai; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Hirose, T (reprint author), 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. EM hirose.takanori@jaea.go.jp NR 16 TC 7 Z9 7 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1595 EP 1599 DI 10.1016/j.fusengdes.2013.12.005 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400134 ER PT J AU Hunt, RM El-Dasher, B Choi, BW Torres, SG AF Hunt, R. M. El-Dasher, B. Choi, B. W. Torres, S. G. TI Joining techniques for a reduced activation 12Cr steel for inertial fusion energy SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE RAFM steel; Diffusion bonding; HIP; Welding ID FERRITIC ALLOYS AB At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 degrees C and 1050 degrees C to find a suitable normalization scheme. The modified HT-9 reduced activation fenitic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 degrees C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 degrees C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hunt, RM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM hunt52@llnl.gov; eldasher2@llnl.gov; choi3@llnl.gov; torres4@llnl.gov NR 8 TC 0 Z9 0 U1 3 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 7-8 BP 1617 EP 1622 DI 10.1016/j.fusengdes.2014.04.046 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO6ME UT WOS:000341465400138 ER PT J AU Ibrahim, AM Wilson, PP Sawan, ME Mosher, SW Peplow, DE Grove, RE AF Ibrahim, Ahmad M. Wilson, Paul P. Sawan, Mohamed E. Mosher, Scott W. Peplow, Douglas E. Grove, Robert E. TI Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Hybrid Monte Carlo/deterministic; Neutronics shielding; ITER prompt dose ID VARIANCE REDUCTION; SCALE; CODE AB Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ibrahim, Ahmad M.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wilson, Paul P.; Sawan, Mohamed E.] Univ Wisconsin, Madison, WI 53706 USA. RP Sawan, ME (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM ibrahimam@ornl.gov; sawan@engr.wisc.edu OI Wilson, Paul/0000-0002-8555-4410 NR 15 TC 2 Z9 2 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 1875 EP 1879 DI 10.1016/j.fusengdes.2014.02.046 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300003 ER PT J AU Ibrahim, AM Peplow, DE Peterson, JL Grove, RE AF Ibrahim, Ahmad M. Peplow, Douglas E. Peterson, Joshua L. Grove, Robert E. TI Novel hybrid Monte Carlo/deterministic technique for shutdown dose rate analyses of fusion energy systems SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Shutdown dose rate; Hybrid Monte Carlo/deterministic; Multi-step shielding analysis ID VARIANCE REDUCTION; CODE; ITER AB The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000. (C) 2014 Published by Elsevier B.V. C1 [Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Grove, RE (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM ibrahimam@ornl.gov; grovere@ornl.gov RI Peterson, Josh/E-3037-2016 OI Peterson, Josh/0000-0002-9181-192X NR 17 TC 2 Z9 2 U1 4 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 1933 EP 1938 DI 10.1016/j.fusengdes.2014.03.014 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300014 ER PT J AU Bohm, TD Sawan, ME Marriott, EP Wilson, PPH Ulrickson, M Bullock, J AF Bohm, T. D. Sawan, M. E. Marriott, E. P. Wilson, P. P. H. Ulrickson, M. Bullock, J. TI Detailed 3-D nuclear analysis of ITER blanket modules SO FUSION ENGINEERING AND DESIGN LA English DT Article DE MCNP; CAD; ITER; Blanket module AB In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bohm, T. D.; Sawan, M. E.; Marriott, E. P.; Wilson, P. P. H.] Univ Wisconsin, Madison, WI 53706 USA. [Ulrickson, M.; Bullock, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bohm, TD (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM tdbohm@wisc.edu OI Wilson, Paul/0000-0002-8555-4410 NR 6 TC 2 Z9 2 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 1954 EP 1958 DI 10.1016/j.fusengdes.2014.01.056 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300018 ER PT J AU Merrill, BJ Wong, CPC Cadwallader, LC Abdou, M Morley, NB AF Merrill, B. J. Wong, C. P. C. Cadwallader, L. C. Abdou, M. Morley, N. B. TI Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Fusion; Safety; DCLL; DEMO; PbLi; Blanket ID LITHIUM; DESIGN; TBM AB A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the Po-210 and Hg-203 produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket. (C) 2014 Elsevier B.V. All rights reserved. C1 [Merrill, B. J.; Cadwallader, L. C.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Abdou, M.; Morley, N. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Merrill, BJ (reprint author), Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. EM Brad.Merrill@inl.gov NR 16 TC 8 Z9 8 U1 2 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 1989 EP 1994 DI 10.1016/j.fusengdes.2014.04.076 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300025 ER PT J AU van Eck, HJN Abrams, T van den Berg, MA Brons, S van Eden, GG Jaworski, MA Kaita, R van der Meiden, HJ Morgan, TW van de Pol, MJ Scholten, J Smeets, PHM De Temmerman, G de Vries, PC van Emmichoven, PAZ AF van Eck, H. J. N. Abrams, T. van den Berg, M. A. Brons, S. van Eden, G. G. Jaworski, M. A. Kaita, R. van der Meiden, H. J. Morgan, T. W. van de Pol, M. J. Scholten, J. Smeets, P. H. M. De Temmerman, G. de Vries, P. C. van Emmichoven, P. A. Zeijlmans TI Operational characteristics of the high flux plasma generator Magnum-PSI SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 11th International Symposium on Fusion Nuclear Technology (ISFNT) CY SEP 15-20, 2013 CL Barcelona, SPAIN SP Spanish Energy, Environm & Technol Res Ctr, Energy Res Inst Catalonia DE ITER; Plasma-surface interactions; ELMs; Linear plasma device; Lithium coatings ID SURFACE INTERACTIONS; FACING COMPONENTS; EROSION; TOKAMAKS AB In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3T. It aims at conditions that enable fundamental studies of plasma-surface interactions in the regime relevant for fusion reactors such as ITER: 10(23)-10(25) m(-2) s(-1). hydrogen plasma flux densities at 1-5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented. (C) 2014 Elsevier B.V. All rights reserved. C1 [van Eck, H. J. N.; van den Berg, M. A.; Brons, S.; van Eden, G. G.; van der Meiden, H. J.; Morgan, T. W.; van de Pol, M. J.; Scholten, J.; Smeets, P. H. M.; De Temmerman, G.; de Vries, P. C.; van Emmichoven, P. A. Zeijlmans] EURATOM, Dutch Inst Fundamental Energy Res, FOM Inst DIFFER, Trilateral Euregio Cluster, NL-3430 BE Nieuwegein, Netherlands. [Abrams, T.; Jaworski, M. A.; Kaita, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP van Eck, HJN (reprint author), EURATOM, Dutch Inst Fundamental Energy Res, FOM Inst DIFFER, Trilateral Euregio Cluster, POB 1207, NL-3430 BE Nieuwegein, Netherlands. EM h.j.n.vaneck@differ.nl RI Morgan, Thomas/B-3789-2017 OI Morgan, Thomas/0000-0002-5066-015X NR 30 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 2150 EP 2154 DI 10.1016/j.fusengdes.2014.04.054 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300055 ER PT J AU Meier, WR Dunne, AM Kramer, KJ Reyes, S Anklam, TM AF Meier, W. R. Dunne, A. M. Kramer, K. J. Reyes, S. Anklam, T. M. CA LIFE Team TI Fusion technology aspects of laser inertial fusion energy (LIFE) SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Inertial fusion energy; Power plant; Chamber; Breeder ID PULSED IRRADIATION; CHAMBER; MICROSTRUCTURE; ENVIRONMENT; DAMAGE; WALL AB This paper provides an overview of one option for LLNL's LIFE power plant design with a focus on the fusion nuclear science and technology aspects. The design is based on 132 MJ yield indirect-drive targets ignited by a diode pumped solid state laser that delivers 2.2 MJ on target at a pulse rate of 8.3 Hz for the first market entry plant (MEP) and 16.7 Hz for subsequent first generation commercial plants (FCP). The chamber first wall is steel which is protected from direct exposure to target X-ray and ion emissions by a Xe fill gas at similar to 6 mu g/cm(3). Reduced activation ferritic martensitic steel is proposed for the MEP while commercial plants will utilize higher strength, more radiation damage tolerate steels such as ODS, which can also operate at higher temperature for improved thermal efficiency and overall plant economics. Liquid Li is the primary coolant and tritium breeding material. An intermediate loop with molten salt as the working fluid transports power to a Rankine steam cycle; the estimated gross electric power conversion efficiency is 45% for the MEP and 47% for the FCP. (C) 2013 Published by Elsevier B.V. C1 [Meier, W. R.; Dunne, A. M.; Kramer, K. J.; Reyes, S.; Anklam, T. M.; LIFE Team] Lawrence Livermore Natl Lab, Livermore, CA 95551 USA. RP Meier, WR (reprint author), LLNL, POB 808,L-592, Livermore, CA 94551 USA. EM meier5@llnl.gov NR 21 TC 2 Z9 2 U1 0 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2014 VL 89 IS 9-10 BP 2489 EP 2492 DI 10.1016/j.fusengdes.2013.12.021 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO4TW UT WOS:000341335300119 ER PT J AU Lorek, MC Chraim, F Pister, KSJ Lanzisera, S AF Lorek, Michael C. Chraim, Fabien Pister, Kristofer S. J. Lanzisera, Steven TI COTS-Based Stick-On Electricity Meters for Building Submetering SO IEEE SENSORS JOURNAL LA English DT Article DE Building submetering; circuit breaker; electricity meter; energy meter; power meter; smart building AB We demonstrate a low-cost, 19 mm x 12 mm prototype peel-and-stick electricity meter (PASEM) PCB to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. The PASEM sensors are installed on the external face of circuit breakers to generate voltage and current signals at a 1920 Hz sample rate. This allows for the computation of real and apparent power as well as capturing harmonics created by nonlinear loads. The prototype sensor is built using commercially available components, resulting in a component cost of under $10 per PASEM in moderate quantities. With no high-voltage install work requiring an electrician, this leads to an installed system cost that is roughly ten times lower than traditional submetering technology. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed PASEM sensor. The PASEM sensor can resolve breaker power levels below 10 W and consumes similar to 16 mA from a 5 V supply. C1 [Lorek, Michael C.; Chraim, Fabien; Pister, Kristofer S. J.] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Lanzisera, Steven] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Lorek, MC (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM mlorek@eecs.berkeley.edu; chraim@eecs.berkeley.edu; pister@eecs.berkeley.edu; smlanzisera@lbl.gov FU U.S. Department of Energy, Baltimore, MD [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, U.S. Department of Energy, Baltimore, MD, under Contract DE-AC02-05CH11231. This paper was presented at the IEEE Sensors Conference. The associate editor coordinating the review of this paper and approving it for publication was Prof. David A. Horsley. NR 11 TC 2 Z9 2 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD OCT PY 2014 VL 14 IS 10 BP 3482 EP 3489 DI 10.1109/JSEN.2014.2346765 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA AO8TY UT WOS:000341629100003 ER PT J AU Schordan, M Prantl, A AF Schordan, Markus Prantl, Adrian TI Combining static analysis and state transition graphs for verification of event-condition-action systems in the RERS 2012 and 2013 challenges SO INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER LA English DT Article DE Program Analysis; Model Checking; Verification; Event-Condition-Action System AB We present a combination of approaches for the verification of event-condition-action (ECA) systems. The analyzed ECA systems range from structurally simple to structurally complex systems. We address the verification of reachability properties and behavioral properties. Reachability properties are represented by assertions in the program and we determine statically whether an assertion holds for all execution paths. Behavioral properties are represented as linear temporal logic formulas specifying the input/output behavior of the program. Our approach assumes a finite state space. We compare a symbolic analysis with an exhaustive state space exploration and discuss the trade-offs between the approaches in terms of the number of computed states and run-time behavior. All variants compute a state transition graph which can also be passed to an LTL verifier. The variants have a different impact on the number of computed states in the state transition graph which in turn impacts the run-time and memory consumption of subsequent phases. We evaluate the different analysis variants with the RERS benchmarks. C1 [Schordan, Markus; Prantl, Adrian] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Schordan, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM schordan1@llnl.gov NR 22 TC 2 Z9 2 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1433-2779 EI 1433-2787 J9 INT J SOFTW TOOLS TE JI Int. J. Softw. Tools Technol. Transf. PD OCT PY 2014 VL 16 IS 5 BP 493 EP 505 DI 10.1007/s10009-014-0338-x PG 13 WC Computer Science, Software Engineering SC Computer Science GA V43HU UT WOS:000209673300004 ER PT J AU Bazant, ZP Salviato, M Chau, VT Viswanathan, H Zubelewicz, A AF Bazant, Zdenek P. Salviato, Marco Chau, Viet T. Viswanathan, Hari Zubelewicz, Aleksander TI Why Fracking Works SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article ID SHEAR STRAIN-RATE; HYDRAULIC FRACTURE; SHRINKAGE CRACKS; KINETIC-ENERGY; BARNETT SHALE; GAS-FLOW; PERMEABILITY; SOLIDS; PROPAGATION; COMMINUTION AB Although spectacular advances in hydraulic fracturing, also known as fracking, have taken place and many aspects are well understood by now, the topology, geometry, and evolution of the crack system remain an enigma and mechanicians wonder: Why fracking works? Fracture mechanics of individual fluid-pressurized cracks has been clarified but the vital problem of stability of interacting hydraulic cracks escaped attention. First, based on the known shale permeability, on the known percentage of gas extraction from shale stratum, and on two key features of the measured gas outflow which are (1) the time to peak flux and (2) the halftime of flux decay, it is shown that the crack spacing must be only about 0.1 m. Attainment of such a small crack spacing requires preventing localization in parallel crack systems. Therefore, attention is subsequently focused on the classical solutions of the critical states of localization instability in a system of cooling or shrinkage cracks. Formulated is a hydrothermal analogy which makes it possible to transfer these solutions to a system of hydraulic cracks. It is concluded that if the hydraulic pressure profile along the cracks can be made almost uniform, with a steep enough pressure drop at the front, the localization instability can be avoided. To achieve this kind of profile, which is essential for obtaining crack systems dense enough to allow gas escape from a significant portion of kerogen-filled nanopores, the pumping rate (corrected for the leak rate) must not be too high and must not be increased too fast. Furthermore, numerical solutions are presented to show that an idealized system of circular equidistant vertical cracks propagating from a horizontal borehole behaves similarly. It is pointed out that one useful role of the proppants, as well as the acids that promote creation of debris in the new cracks, is to partially help to limit crack closings and thus localization. To attain the crack spacing of only 0.1 m, one must imagine formation of hierarchical progressively refined crack systems. Compared to new cracks, the system of pre-existing uncemented natural cracks or joints is shown to be slightly more prone to localization and thus of little help in producing the fine crack spacing required. So, from fracture mechanics viewpoint, what makes fracking work?-the mitigation of fracture localization instabilities. This can also improve efficiency by fracturing more shale. Besides, it is environmentally beneficial, by reducing flowback per m 3 of gas. So is the reduction of seismicity caused by dynamic fracture instabilities (which are more severe in underground CO2 sequestration). C1 [Bazant, Zdenek P.] Northwestern Univ, Evanston, IL 60208 USA. [Salviato, Marco; Chau, Viet T.] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Viswanathan, Hari; Zubelewicz, Aleksander] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bazant, ZP (reprint author), Northwestern Univ, 2145 Sheridan Rd,CEE A135, Evanston, IL 60208 USA. EM z-bazant@northwestern.edu RI Bazant, Zdenek/B-6743-2009 FU U.S. Department of Energy through Northwestern University [37008]; Los Alamos National Laboratory; Institute for Sustainable Energy (ISEN) of Northwestern University [36126] FX Funding from the U.S. Department of Energy through subcontract No. 37008 of Northwestern University with Los Alamos National Laboratory is gratefully acknowledged. Crucial initial funding was provided under Grant No. 36126 by Institute for Sustainable Energy (ISEN) of Northwestern University. Thanks for valuable comments are due to Professor Charles Dowding of Northwestern University and to Norm Warpinski, Technology Fellow at Pinnacle-A Halliburton Service, Houston, Texas. NR 38 TC 19 Z9 24 U1 13 U2 214 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD OCT PY 2014 VL 81 IS 10 AR 101010 DI 10.1115/1.4028192 PG 10 WC Mechanics SC Mechanics GA AO6UC UT WOS:000341486200010 ER PT J AU Liu, C Thompson, DG AF Liu, C. Thompson, D. G. TI Crack Initiation and Growth in PBX 9502 High Explosive Subject to Compression SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article ID DIGITAL-IMAGE-CORRELATION AB Brittle and quasi-brittle solids, when subject to compression, fail by the development of microcracks that originate from heterogeneity. Lateral confinement has been shown to affect the failure pattern of the testing specimen, from splitting type of cracking with no confinement, to failure by shear banding with moderate confinement, to plasticitylike ductile failure when subject to high confining pressure. Even in the case of simple uni-axial compression, near local heterogeneity, e. g., pore or a small crack, the nonuniform stress state will introduce local confinement. As a result, different types of failure can occur simultaneously. In the present study, we investigate the process of damage initiation, accumulation, and cracking in a specimen of plastic bonded explosive (PBX), PBX 9502, containing a cavity and subject to compression. Due to the nonuniform deformation near the cavity, both tensile cracks and shear-dominated widespread material damage are generated. Detailed variation of quantities that characterize the process of crack initiation and growth will be presented and discussed. C1 [Liu, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Thompson, D. G.] Los Alamos Natl Lab, Weap Expt Div, Los Alamos, NM 87545 USA. RP Liu, C (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM cliu@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Program (JMP); Enhanced Surveillance Campaign (ESC); High Explosive Science and Engineering Program FX Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This study was supported by the Joint DoD/DOE Munitions Program (JMP), the Enhanced Surveillance Campaign (ESC), and the High Explosive Science and Engineering Program. The authors would like to thank Mr. M. L. Lovato and Ms. R. DeLuca of Los Alamos National Laboratory for the assistance in conducting the experiments presented in this study. Helpful discussions with Dr. A. Zubelewicz of Theoretical Division, Los Alamos National Laboratory, are also appreciated. NR 12 TC 0 Z9 1 U1 2 U2 22 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD OCT PY 2014 VL 81 IS 10 AR 101004 DI 10.1115/1.4028087 PG 13 WC Mechanics SC Mechanics GA AO6UC UT WOS:000341486200004 ER PT J AU Baig, HA Dorman, DB Bulka, BA Shivers, BL Chancey, VC Winkelstein, BA AF Baig, Hassam A. Dorman, Daniel B. Bulka, Ben A. Shivers, Bethany L. Chancey, Valeta C. Winkelstein, Beth A. TI Characterization of the Frequency and Muscle Responses of the Lumbar and Thoracic Spines of Seated Volunteers During Sinusoidal Whole Body Vibration SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE vibration; muscle; spine; resonance; electromyography; transmissibility ID MECHANICAL IMPEDANCE; DISCOMFORT; EXPOSURE; MODEL AB Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4Hz for both the lumbar (1.55 +/- 0.34) and thoracic (1.49 +/- 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain. C1 [Baig, Hassam A.; Bulka, Ben A.; Winkelstein, Beth A.] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA. [Dorman, Daniel B.; Shivers, Bethany L.] US Army Aeromed Res Lab, Injury Biomech Branch, Oak Ridge Inst Sci & Educ, Ft Rucker, AL 36362 USA. [Chancey, Valeta C.] US Army Aeromed Res Lab, Injury Biomech Branch, Ft Rucker, AL 36362 USA. RP Winkelstein, BA (reprint author), Univ Penn, Dept Bioengn, 210 S 33rd St,Room 240 Skirkanich Hall, Philadelphia, PA 19104 USA. EM winkelst@seas.upenn.edu FU DOD-CDMRP [W81XWH-10-2-0140]; USAARL [USAARL STO F USAARL.IV.ME.2000.04, USAARL ATO R.MRM.2010.06]; U.S. Department of Energy; U.S. Army Medical Research and Materiel Command FX Funding provided by a DOD-CDMRP (W81XWH-10-2-0140) Grant and USAARL (USAARL STO F USAARL.IV.ME.2000.04 and USAARL ATO R.MRM.2010.06).; This research was supported in part by an appointment to the Research Participation Program at the U. S. Army Aeromedical Research Laboratory administered by the Oak Ridge Institute for Science and Education through a Memorandum of Agreement between the U.S. Department of Energy and the U.S. Army Medical Research and Materiel Command. NR 26 TC 5 Z9 5 U1 0 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 EI 1528-8951 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD OCT PY 2014 VL 136 IS 10 AR 101002 DI 10.1115/1.4027998 PG 7 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA AO4HS UT WOS:000341298400002 PM 25010637 ER PT J AU Liliental-Weber, Z dos Reis, R Mancuso, M Song, CY Grzegory, I Porowski, S Bockowski, M AF Liliental-Weber, Z. dos Reis, R. Mancuso, M. Song, C. Y. Grzegory, I. Porowski, S. Bockowski, M. TI Structural defects in bulk GaN SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 8th International Workshop on Bulk Nitride Semiconductors (IWBNS) CY SEP 30-OCT 05, 2013 CL Seeon, GERMANY DE Dislocations; Precipitates; Defects in high pressure grow layers; Crystal perfection in HVPE layers grown on ammonothermal substrates ID FEED-SEED CONFIGURATION; VAPOR-PHASE EPITAXY; PRESSURE SOLUTION GROWTH; MG-DOPED GAN; AMMONOTHERMAL METHOD; CRYSTALS; CRYSTALLIZATION; POLARITY; SAMPLES; LAYERS AB Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices. (C) 2014 Elsevier B.V. All rights reserved. C1 [Liliental-Weber, Z.; Mancuso, M.; Song, C. Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [dos Reis, R.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Grzegory, I.; Porowski, S.; Bockowski, M.] Unipress, Inst High Pressure Phys PAS, Warsaw, Poland. [Grzegory, I.; Porowski, S.; Bockowski, M.] TopGaN LTD, Warsaw, Poland. RP Liliental-Weber, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, M-S 62R203-8255, Berkeley, CA 94720 USA. EM z_liliental-weber@lbl.gov RI dos Reis, Roberto/E-9486-2012 OI dos Reis, Roberto/0000-0002-6011-6078 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. Use of the facility in the National Center for Electron Microscopy in LBNL, Berkeley, CA is greatly appreciated. NR 27 TC 0 Z9 0 U1 6 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD OCT 1 PY 2014 VL 403 BP 66 EP 71 DI 10.1016/j.jcrysgro.2014.06.022 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA AO5VG UT WOS:000341412900013 ER PT J AU Ren, WJ Swindeman, R AF Ren, Weiju Swindeman, Robert TI Status of Alloy 800H in Considerations for the Gen IV Nuclear Energy Systems SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Review ID HIGH-TEMPERATURE ALLOYS; CREEP; BEHAVIOR; RUPTURE; EMBRITTLEMENT; COMPONENTS; HELIUM; STEELS AB Alloy 800H is currently under consideration for applications in the next generation nuclear plant (NGNP) at operational temperatures above 750 degrees C. This paper first describes service requirements of the nuclear system for structural materials; and then an extensive review of Alloy 800H is given on its codification with respect to development and research history, mechanical behavior and design allowables, metallurgical aging resistance, environmental effect considerations, data requirements and availability, weldments, as well as many other aspects relevant to the intended nuclear application. Finally, further research and development activities to support the materials qualification are suggested. C1 [Ren, Weiju] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Swindeman, Robert] Cromtech, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, MS 6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; rswindeman@comcast.net FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX Work sponsored by the U.S. Department of Energy, Office of Nuclear Energy Science and Technology under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. NR 75 TC 1 Z9 1 U1 3 U2 15 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD OCT PY 2014 VL 136 IS 5 AR 054001 DI 10.1115/1.4025093 PG 12 WC Engineering, Mechanical SC Engineering GA AO6UJ UT WOS:000341486900019 ER PT J AU Webb-Robertson, BJ Kim, YM Zink, EM Hallaian, KA Zhang, QB Madupu, R Waters, KM Metz, TO AF Webb-Robertson, Bobbie-Jo Kim, Young-Mo Zink, Erika M. Hallaian, Katherine A. Zhang, Qibin Madupu, Ramana Waters, Katrina M. Metz, Thomas O. TI A statistical analysis of the effects of urease pre-treatment on the measurement of the urinary metabolome by gas chromatography-mass spectrometry SO METABOLOMICS LA English DT Article DE Urease; Urine; Gas chromatography-mass spectrometry; Metabolomics; Statistics ID BIOMARKER DISCOVERY; LIQUID-CHROMATOGRAPHY; PROTEOMICS DATA; INBORN-ERRORS; KIDNEY CANCER; EXPOSURE; GENDER; HEALTH; AGE AB Urease pre-treatment of urine has been utilized since the early 1960s to remove high levels of urea from samples prior to further processing and analysis by gas chromatography-mass spectrometry (GC-MS). Aside from the obvious depletion or elimination of urea, the effect, if any, of urease pre-treatment on the urinary metabolome has not been studied in detail. Here, we report the results of three separate but related experiments that were designed to assess possible indirect effects of urease pre-treatment on the urinary metabolome as measured by GC-MS. In total, 235 GC-MS analyses were performed and over 106 identified and 200 unidentified metabolites were quantified across the three experiments. The results showed that data from urease pre-treated samples (1) had the same or lower coefficients of variance among reproducibly detected metabolites, (2) more accurately reflected quantitative differences and the expected ratios among different urine volumes, and (3) increased the number of metabolite identifications. Overall, we observed no negative consequences of urease pre-treatment. In contrast, urease pre-treatment enhanced the ability to distinguish between volume-based and biological sample types compared to no treatment. Taken together, these results show that urease pre-treatment of urine offers multiple beneficial effects that outweigh any artifacts that may be introduced to the data in urinary metabolomics analyses. C1 [Webb-Robertson, Bobbie-Jo; Kim, Young-Mo; Zink, Erika M.; Hallaian, Katherine A.; Zhang, Qibin; Waters, Katrina M.; Metz, Thomas O.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Madupu, Ramana] J Craig Venter Inst, Rockville, MD USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM thomas.metz@pnnl.gov RI Kim, Young-Mo/D-3282-2009; OI Kim, Young-Mo/0000-0002-8972-7593; Metz, Tom/0000-0001-6049-3968 FU NIH NIDDK [DP3 DK094343]; Department of Energy's (DOE) Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) in Richland, Washington; DOE [DE-AC05-76RLO 1830] FX This work was funded by NIH NIDDK Grant DP3 DK094343. Significant portions of the work were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 36 TC 5 Z9 5 U1 2 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3882 EI 1573-3890 J9 METABOLOMICS JI Metabolomics PD OCT PY 2014 VL 10 IS 5 BP 897 EP 908 DI 10.1007/s11306-014-0642-1 PG 12 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AO5YH UT WOS:000341422600011 PM 25254001 ER PT J AU Choquard, P Vuffray, M AF Choquard, Ph. Vuffray, M. TI The inviscid, compressible and rotational, 2D isotropic Burgers and pressureless Euler-Coriolis fluids: Solvable models with illustrations SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Cylindrical vortices; Compressible and rotational; Maxwell construction; Weak solutions; Variational formula ID EQUATIONS AB The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one-dimensional case, we show for an interesting application that both variational formulas are equivalent. (C) 2014 Elsevier B.V. All rights reserved. C1 [Choquard, Ph.] Ecole Polytech Fed Lausanne, ITP SB EPFL, CH-1015 Lausanne, Switzerland. [Vuffray, M.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Vuffray, M.] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Vuffray, M (reprint author), LANL, Div Theoret, Los Alamos, NM 87545 USA. EM philippe.choquard@epfl.ch; vuffray@lanl.gov OI Vuffray, Marc/0000-0001-7999-9897 FU Swiss National Science Foundation [200020-140388] FX The work of M.V. was supported by Swiss National Science Foundation grant No. 200020-140388. NR 17 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD OCT 1 PY 2014 VL 285 BP 18 EP 27 DI 10.1016/j.physd.2014.06.010 PG 10 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA AO7RH UT WOS:000341549800003 ER PT J AU Saha, P Datta, MK Velikokhatnyi, OI Manivannan, A Alman, D Kumta, PN AF Saha, Partha Datta, Moni Kanchan Velikokhatnyi, Oleg I. Manivannan, Ayyakkannu Alman, David Kumta, Prashant N. TI Rechargeable magnesium battery: Current status and key challenges for the future SO PROGRESS IN MATERIALS SCIENCE LA English DT Review DE Magnesium battery; Grignard reagents; Electrolyte; Current collector; Chevrel phase; Cathode; Anode ID GEL POLYMER ELECTROLYTE; MG-ION BATTERIES; PROMISING CATHODE MATERIAL; ELECTRICAL ENERGY-STORAGE; VANADIUM-OXIDE NANOTUBES; DOUBLE-LAYER CAPACITORS; SITU FTIR SPECTROSCOPY; MO6S8 CHEVREL-PHASE; WAVE BASIS-SET; ELECTROCHEMICAL INSERTION AB There is a tremendous need to have perennial and continuous access to cost-effective electricity generated from the intermittent energy sources (wind, solar, geothermal, hydropower, wave etc.). This will require development of inexpensive and efficient electrical energy storage (EES) devices such as stationary battery for uninterrupted electricity (power storage back up) and load leveling as well as grid energy storage systems [1-6]. Magnesium based secondary batteries are a viable 'environmental friendly, non-toxic' alternative compared to the immensely popular Li-ion systems owing to its high volumetric capacity (3833 mA h/cc for Mg vs. 2046 mA h/cc for Li) for stationary EES applications. Following the successful demonstration of a prototype magnesium cell capable of offering energy density similar to 60 W h/kg in the early 2000, the last decade has witnessed tremendous amount of work dedicated to magnesium battery and its components. The present review is an earnest attempt to collect all of the comprehensive body of research performed in the literature hitherto to develop non-aqueous nucleophilic/non-nucleophilic liquid electrolytes, ionic liquid based polymer as well as solid/gel polymer electrolytes; intercalation/insertion/conversion type cathodes; metallic magnesium and their alloys/intermetallic/composites as anodes; and electronically conductive but chemically and electrochemically inert current collectors for magnesium battery. The limited electrochemical oxidative stability of current generation of electrolytes with inherently slow magnesium-ion diffusion in to electrodes as well as the inability of Mg2+ to reversibly cycle in all but a few materials systems impede the growth of high power and high energy density magnesium cells, analogous to Li-ion systems. Before the successful fabrication of a prototype magnesium battery, optimization of electrolyte performance, the realization of suitable intercalation/insertion cathodes and the identification of alternative alloys, intermetallics, composites and compounds as anodes are highly critical. Exploration of the compatibility of various battery parts including metallic current collectors with currently used organochloro electrolytes sheds light on the electrochemical corrosion of metals such as Cu, Al, stainless steel (SS) toward chlorinated Grignard's salts warranting further investigation for identifying, electrically conducting and electrochemically inert current collectors. Results to date show the preferential selectivity of certain electronically conducting metallic and non-metallic current collectors for rechargeable magnesium batteries owing to its high anodic stability in the present electrolyte. Development of magnesium-ion battery therefore requires an interdisciplinary approach with a sound understanding of organometallic and inorganic chemistry, adequate knowledge of materials chemistry, materials science and engineering, as well as electrochemistry, and a comprehensive knowledge of metallic corrosion principles in basic/acidic electrolytic environments in order that a system with acceptable energy density (similar to 150-200 W h/kg) and operational voltage similar to 2-3 V can be developed in the near future. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Saha, Partha; Datta, Moni Kanchan; Manivannan, Ayyakkannu; Alman, David; Kumta, Prashant N.] Reg Univ Alliance, Natl Energy Technol Lab, Tampa, FL USA. [Saha, Partha; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kumta, Prashant N.] Univ Pittsburgh, Dept Bioengn, Swanson Sch Engn, Pittsburgh, PA 15261 USA. [Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Ctr Complex Engn Multifunct Mat, Pittsburgh, PA 15261 USA. [Manivannan, Ayyakkannu] USDA, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Alman, David] USDA, Natl Energy Technol Lab, Albany, OR 97321 USA. [Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Pittsburgh, PA 15261 USA. [Kumta, Prashant N.] Univ Pittsburgh, Sch Dent Med, Pittsburgh, PA 15261 USA. RP Kumta, PN (reprint author), Univ Pittsburgh, Dept Bioengn, Swanson Sch Engn, 815C,3700 OHara St, Pittsburgh, PA 15261 USA. EM pkumta@pitt.edu RI SAHA, PARTHA/D-5508-2011 OI SAHA, PARTHA/0000-0002-0309-8387 FU DOE-BATT program [DE-AC02-05CHI1231]; National Science Foundation [NSF-CBET-0933141]; Ford Foundation; Center for Complex Engineered Multifunctional Materials (CCEMM); Edward R. Weidlein Chair Professorship; National Energy Technology Laboratory's Regional University Alliance (NETLRUA), a collaborative initiative of the NETL under RES Contract [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETLRUA), a collaborative initiative of the NETL, this technical effort was performed under the RES Contract DE-FE0004000. Financial support of Dr. Robert Romanosky is acknowledged. The authors also gratefully acknowledge the financial support of the DOE-BATT program (Contract DE-AC02-05CHI1231), the National Science Foundation (NSF-CBET-0933141) and partial support of the Ford Foundation. The authors also acknowledge the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Multifunctional Materials (CCEMM) for partial support of this research. NR 235 TC 95 Z9 96 U1 101 U2 832 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD OCT PY 2014 VL 66 BP 1 EP 86 DI 10.1016/j.pmatsci.2014.04.001 PG 86 WC Materials Science, Multidisciplinary SC Materials Science GA AO6OU UT WOS:000341472200001 ER PT J AU Heckman, K Throckmorton, H Clingensmith, C Vila, FJG Horwath, WR Knicker, H Rasmussen, C AF Heckman, Katherine Throckmorton, Heather Clingensmith, Christopher Gonzalez Vila, Francisco Javier Horwath, William R. Knicker, Heike Rasmussen, Craig TI Factors affecting the molecular structure and mean residence time of occluded organics in a lithosequence of soils under ponderosa pine SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Occluded organic matter; Forest soil; Soil organic matter; Density fractionation; Black carbon ID STATE C-13 NMR; BLACK CARBON; RADIOCARBON MEASUREMENTS; MATTER FRACTIONS; MINERAL CONTROL; FOREST SOILS; AMS FACILITY; SPECTROSCOPY; TURNOVER; DYNAMICS AB Occluded, or intra-aggregate, soil organic matter (SOM) comprises a significant portion of the total C pool in forest soils and often has very long mean residence times (MRTs). However, occluded C characteristics vary widely among soils and the genesis and composition of the occluded organic matter pool are not well understood. This work sought to define the major controls on the composition and MRT of occluded SUM in western U.S. conifer forest soils with specific focus on the influence of soil mineral assemblage and aggregate stability. We sampled soils from a lithosequence of four parent materials (rhyolite, granite, basalt, and dolostone) under Pinus ponderosa. Three pedons were excavated to the depth of refusal at each site and sampled by genetic horizon. After density separation at 1.8 g cm(-3) into free/light, occluded and mineral fractions, the chemical nature and mean residence time of organics in each fraction were compared. SOM chemistry was explored through the use of stable isotope analyses, C-13 NMR, and pyrolysis GC/MS. Soil charcoal content estimates were based on C-13 NMR analyses. Estimates of SUM MRT were based on steady-state modeling of SUM radiocarbon abundance measurements. Across all soils, the occluded fraction was 0.5-5 times enriched in charcoal in comparison to the bulk soil and had a substantially longer MRT than either the mineral fraction or the free/light fraction. These results suggest that charcoal from periodic burning is the primary source of occluded organics in these soils, and that the structural properties of charcoal promote its aggregation and long-term preservation. Surprisingly, aggregate stability, as measured through ultrasonic dispersion, was not correlated with occluded SUM abundance or MRT, perhaps raising questions of how well laboratory measurements of aggregate stability capture the dynamics of aggregate turnover under field conditions. Examination of the molecular characteristics of the occluded fraction was more conclusive. Occluded fraction composition did not change substantially with soil mineral assemblage, but was increasingly enriched in charcoal with depth relative to bulk SOM. Enrichment levels of C-13 and N-15 suggested a similar degree of microbial processing for the free/light and occluded fractions, and molecular structure of occluded and free/light fractions were also similar aside from charcoal enrichment in the occluded fraction. Results highlight the importance of both fire and aggregate formation to the long-term preservation of organics in western U.S. conifer forests which experience periodic burning, and suggest that the composition of occluded SOM in these soils is dependent on fire and the selective occlusion of charcoal. Published by Elsevier Ltd. C1 [Heckman, Katherine; Clingensmith, Christopher; Rasmussen, Craig] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Throckmorton, Heather; Horwath, William R.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Gonzalez Vila, Francisco Javier; Knicker, Heike] CSIC, Inst Recursos Nat & Agrobiol Sevilla, E-41080 Seville, Spain. RP Heckman, K (reprint author), USDA, CAMS, Forest Serv, No Res Stn,,LLNL, L-397,7000 East Ave, Livermore, CA 94550 USA. EM kaheckman@fs.fed.us; hthrockmorton@lanl.gov; c.clingensmith.ufl@gmail.com; fjgon@irnase.csic.es; wrhorwath@usdavis.edu; knicker@irnase.csic.es; crasmuss@cals.arizona.edu RI Knicker, Heike/H-4530-2015 OI Knicker, Heike/0000-0002-0483-2109 FU National Science Foundation (EAR) [0725019]; USDA Forest Service, Lawrence Livermore National Laboratory; Michigan Technological University; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-646432]; National Science Foundation (DEB) [0543130]; Geological Society of America; National Science Foundation (EAR/IF) [0929850] FX This work was funded by a grant from the National Science Foundation to S. Brantley and T. White (EAR #0725019), a grant from the National Science Foundation to C. Rasmussen, J. Chorover and E. Schwartz (DEB #0543130), a grant from the National Science Foundation to C. Rasmussen and M. Schaap (EAR/IF # 0929850), and a graduate student research grant from the Geological Society of America. The authors wish to thank Trinidad Verdejo for her assistance in obtaining and analyzing pyrolysis GC/MS data at IRNAS, and Dr. S. Mercer Meding for his support and assistance at the University of Arizona. A portion of the radiocarbon data included in this manuscript was generously provided by the Radiocarbon Collaborative, which is jointly sponsored by the USDA Forest Service, Lawrence Livermore National Laboratory and Michigan Technological University. We acknowledge support from the J. G. Boswell Endowed Chair in Soil Science for supporting the pyrolysis GC/MS analysis. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, LLNL-JRNL-646432. We also wish to acknowledge the insights and efforts of two anonymous reviewers who helped improve the quality of this manuscript. NR 58 TC 4 Z9 4 U1 4 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD OCT PY 2014 VL 77 BP 1 EP 11 DI 10.1016/j.soilbio.2014.05.028 PG 11 WC Soil Science SC Agriculture GA AO7TX UT WOS:000341556600001 ER PT J AU Hu, JL Wang, YG Ying, Q Zhang, HL AF Hu, Jianlin Wang, Yungang Ying, Qi Zhang, Hongliang TI Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Particulate matter; PM2.5; Spatial variation; Temporal variation; China ID PARTICULATE AIR-POLLUTION; 2008 OLYMPIC GAMES; SOUTHERN CALIFORNIA; UNITED-STATES; REGIONAL HAZE; WEEKDAY/WEEKEND DIFFERENCES; CHEMICAL CHARACTERISTICS; SOURCE APPORTIONMENT; FORMATION MECHANISM; SIZE DISTRIBUTIONS AB The North China Plain (NCP) and the Yangtze River Delta (YRD) in China have been experiencing severe particulate matter (PM) pollution problems associated with the rapid economic growth and the accelerated urbanization. In this study, hourly mass concentrations of PM2.5 and PM10 during June 1st-August 31st, 2013 were collected in 13 cities located in or adjacent to the NCP region and 20 cities located in the YRD region. The overall average PM2.5 and PM10 concentrations were 77.0 mu g/m(3) and 136.2 mu g/m(3) in the NCP region, respectively, and 42.8 mu g/m(3) and 74.9 mu g/m(3) in the YRD region, respectively. The frequencies of occurrence of concentrations exceeding the China's Ambient Air Quality Standard (AAQS) (BG3095-12) Grade I standards were 83% for PM2.5 and 93% for PM10 in the NCP region, and 51% for PM2.5 and 66% for PM10 in the YRD region. Strong temporal correlation for both PM2.5 and PM10 between cities within 250 km was frequently observed. PM2.5 was found to be negatively associated with wind speed. On the PM2.5 episode days (when the 24 h PM2.5 concentration is greater than 75 mu g/m(3)), average PM2.5 concentrations were 2-4 times greater compared to the non-episode days. The PM2.5 to PM10 ratio increased from 0.50 (0.57) on the non-episode days to 0.64 (0.64) on the episode days in the NCP (YRD) region. No distinct weekday/weekend difference was observed for PM2.5, PM10, and other gaseous pollutants (CO, SO2, NO2, and O-3) in all cities. The results presented in this paper will serve as an important basis for future regional air quality modeling and source apportionment studies. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hu, Jianlin; Zhang, Hongliang] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Ying, Qi] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA. RP Zhang, HL (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. EM tamzhang@ucdavis.edu RI Zhang, Hongliang/C-2499-2012; Hu, Jianlin/C-2023-2014; Xiongfei, Zhao/G-7690-2015 OI Hu, Jianlin/0000-0001-7709-439X; NR 76 TC 40 Z9 47 U1 27 U2 200 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2014 VL 95 BP 598 EP 609 DI 10.1016/j.atmosenv.2014.07.019 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AO0CT UT WOS:000340977400060 ER PT J AU Megens, M Korman, CE Ajo-Franklin, CM Horsley, DA AF Megens, Mischa Korman, Christopher E. Ajo-Franklin, Caroline M. Horsley, David A. TI Faster-than-anticipated Na+/Cl- diffusion across lipid bilayers in vesicles SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Vesicles; Pyranine; Permeability; Electrodiffusion; Goldman-Hodgkin-Katz flux equation ID PHOSPHOLIPID-VESICLES; PROTON PERMEATION; ION PERMEABILITY; PH PROBE; MEMBRANES; LIPOSOMES; PYRANINE; FLUX AB Maintenance of electrochemical potential gradients across lipid membranes is critical for signal transduction and energy generation in biological systems. However, because ions with widely varying membrane permeabilities all contribute to the electrostatic potential, it can be difficult to measure the influence of diffusion of a single ion type across the bilayer. To understand the electrodiffusion of H+ across lipid bilayers, we used a pH-sensitive fluorophore to monitor the lumenal pH in vesicles after a stepwise change in the bulk pH. In vesicles containing the ion channel gramicidin, the lumenal pH rapidly approached the external pH. In contrast, the lumen of intact vesicles showed a two stage pH response: an initial rapid change occurred over similar to 1 min, followed by a much slower change over similar to 24 h. We provide a quantitative interpretation of these results based on the Goldman-Hodgkin-Katz ion fluxes discharging the electrical capacitance of the bilayer membrane. This interpretation provides an estimate of the permeability of the membranes to Na+ and Cl- ions of similar to 10(-8) cm/s, which is similar to 3 orders of magnitude faster than previous reports. We discuss possible mechanisms to account for this considerably higher permeability in vesicle membranes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Megens, Mischa; Korman, Christopher E.; Horsley, David A.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Horsley, DA (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. EM dahorsley@ucdavis.edu RI Foundry, Molecular/G-9968-2014 FU Office of Science and Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Materials Design Institute at UC Davis - Los Alamos National Laboratory/UC Davis Educational Collaborative [2511-002-06] FX We thank the staff at the Molecular Foundry for fruitful discussions and for experimental support. Work at the Molecular Foundry was supported by the Office of Science and Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at UC Davis was supported in part by the Materials Design Institute at UC Davis which is funded by the Los Alamos National Laboratory/UC Davis Educational Collaborative (Subcontract No. 2511-002-06). NR 23 TC 1 Z9 1 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 EI 0006-3002 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD OCT PY 2014 VL 1838 IS 10 BP 2420 EP 2424 DI 10.1016/j.bbamem.2014.05.010 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AO0CB UT WOS:000340975600008 PM 24853654 ER PT J AU Andreev, K Bianchi, C Laursen, JS Citterio, L Hein-Kristensen, L Gram, L Kuzmenko, I Olsen, CA Gidalevitz, D AF Andreev, Konstantin Bianchi, Christopher Laursen, Jonas S. Citterio, Linda Hein-Kristensen, Line Gram, Lone Kuzmenko, Ivan Olsen, Christian A. Gidalevitz, David TI Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Antimicrobial peptidomimetics; Peptide-peptoid chimeras; Guanidinium cation; Bacterial membrane; Phosphatidylglycerol; X-ray scattering ID PEPTIDE/BETA-PEPTOID CHIMERAS; HOST-DEFENSE PEPTIDES; AIR-WATER-INTERFACE; X-RAY REFLECTIVITY; DE-NOVO DESIGN; PRECURSOR LIPID II; IN-VIVO ACTIVITY; SIDE-CHAINS; ANTIBACTERIAL PROPERTIES; NEUTRON-SCATTERING AB Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial alpha-peptide beta-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies. (C) 2014 Elsevier B.V. All rights reserved. C1 [Andreev, Konstantin; Bianchi, Christopher; Gidalevitz, David] IIT, Pritzker Inst Biomed Sci & Engn, Ctr Mol Study Condensed Soft Matter CoSM, Chicago, IL 60616 USA. [Andreev, Konstantin; Bianchi, Christopher; Gidalevitz, David] IIT, Dept Phys, Chicago, IL 60616 USA. [Laursen, Jonas S.; Olsen, Christian A.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Citterio, Linda; Gram, Lone] Tech Univ Denmark, Dept Syst Biol, DK-2800 Lyngby, Denmark. [Hein-Kristensen, Line] Tech Univ Denmark, Natl Food Inst, DK-2800 Lyngby, Denmark. [Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Gidalevitz, D (reprint author), IIT, Dept Phys, 3440 S Dearbom St, Chicago, IL 60616 USA. EM gidalevitz@iit.edu FU NIH [R01 AI073892]; DARPA [W911NF-09-1-378]; Danish Research Council for Technology and Production [09-065902, 09-066098]; Danish Independent Research Council \ Natural Sciences (Steno) [10-080907]; Technical University of Denmark; DOE [W-31-109-Eng-38]; Lundbeck Foundation FX This work was supported by funds from NIH (R01 AI073892, D.G.), DARPA (W911NF-09-1-378, D.G.), the Danish Research Council for Technology and Production (09-065902 and 09-066098), the Danish Independent Research Council vertical bar Natural Sciences (Steno Grant no. 10-080907, C.A.O.), and the Technical University of Denmark. Use of the APS was supported by DOE under contract no. W-31-109-Eng-38. C.A.O. is also supported by the Lundbeck Foundation. NR 88 TC 11 Z9 11 U1 7 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 EI 0006-3002 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD OCT PY 2014 VL 1838 IS 10 BP 2492 EP 2502 DI 10.1016/j.bbamem.2014.05.022 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AO0CB UT WOS:000340975600016 PM 24878450 ER EF