FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Chen, CY Dawson, S Lewis, IM AF Chen, Chien-Yi Dawson, S. Lewis, I. M. TI Exploring resonant di-Higgs boson production in the Higgs singlet model SO PHYSICAL REVIEW D LA English DT Article ID PAIR PRODUCTION; MASS; LHC AB We study the enhancement of the di-Higgs production cross section resulting from the resonant decay of a heavy Higgs boson at hadron colliders in a model with a Higgs singlet. This enhancement of the double Higgs production rate is crucial in understanding the structure of the scalar potential and we determine the maximum allowed enhancement such that the electroweak minimum is a global minimum. The di-Higgs production enhancement can be as large as a factor of similar to 18(13) for the mass of the heavy Higgs around 270(420) GeV relative to the Standard Model rate at 14 TeV for parameters corresponding to a global electroweak minimum. C1 [Chen, Chien-Yi; Dawson, S.; Lewis, I. M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Lewis, I. M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Chen, CY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-76SF00515] FX This work is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886 and Contract No. DE-AC02-76SF00515. NR 40 TC 36 Z9 36 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 13 PY 2015 VL 91 IS 3 AR 035015 DI 10.1103/PhysRevD.91.035015 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD6MY UT WOS:000351204400006 ER PT J AU Lefky, C Prokudin, A AF Lefky, Christopher Prokudin, Alexei TI Extraction of the distribution function h(1T)(perpendicular to) from experimental data SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; TRANSVERSE-MOMENTUM DISTRIBUTIONS; ORBITAL ANGULAR-MOMENTUM; PARTON DISTRIBUTIONS; SPIN ASYMMETRIES; DRELL-YAN; AZIMUTHAL ASYMMETRIES; LEPTOPRODUCTION; FRAGMENTATION; COLLINS AB We attempt an extraction of the pretzelosity distribution (h(1T)(perpendicular to)) from preliminary COMPASS, HERMES, and JLAB experimental data on sin(3 phi(h) - phi(S)) asymmetry on proton, and effective deuteron and neutron targets. The resulting distributions, albeit with big errors, for the first time show tendency for up-quark pretzelosity to be positive and down-quark pretzelosity to be negative. A model relation of pretzelosity distribution and orbital angular momentum of quarks is used to estimate contributions of up and down quarks. C1 [Lefky, Christopher] Creighton Univ, Omaha, NE 68102 USA. [Prokudin, Alexei] Jefferson Lab, Newport News, VA 23606 USA. RP Lefky, C (reprint author), Creighton Univ, Omaha, NE 68102 USA. EM ChristopherLefky@creighton.edu; prokudin@jlab.org FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177] FX We would like to thank Mauro Anselmino, Elena Boglione, Bakur Parsamyan, Gunar Schnell, Wally Melnitchouk, Alberto Accardi, and Pedro Jimenez-Delgado for help and fruitful discussions. We thank Gunar Schnell for discussion on experimental data and fitting procedures. We would like to thank the referee of this paper for his/her thoughtful comments that helped us to sharpen physics discussion. C. L. thanks the Department of Energy's Science Undergraduate Laboratory Internships (SULI) for support during his stay at Jefferson Lab. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177 (A. P.). NR 66 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 13 PY 2015 VL 91 IS 3 AR 034010 DI 10.1103/PhysRevD.91.034010 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD6MY UT WOS:000351204400002 ER PT J AU Milo, A Neel, AJ Toste, FD Sigman, MS AF Milo, Anat Neel, Andrew J. Toste, F. Dean Sigman, Matthew S. TI A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis SO SCIENCE LA English DT Article ID HIGH-THROUGHPUT DISCOVERY; PI-PI INTERACTIONS; STERIC PARAMETERS; CHEMISTRY; BENZENE; HYDROGENATION; DESIGN; ACIDS; DIMER AB Knowledge of chemical reaction mechanisms can facilitate catalyst optimization, but extracting that knowledge from a complex system is often challenging. Here, we present a data-intensive method for deriving and then predictively applying a mechanistic model of an enantioselective organic reaction. As a validating case study, we selected an intramolecular dehydrogenative C-N coupling reaction, catalyzed by chiral phosphoric acid derivatives, in which catalyst-substrate association involves weak, noncovalent interactions. Little was previously understood regarding the structural origin of enantioselectivity in this system. Catalyst and substrate substituent effects were probed by means of systematic physical organic trend analysis. Plausible interactions between the substrate and catalyst that govern enantioselectivity were identified and supported experimentally, indicating that such an approach can afford an efficient means of leveraging mechanistic insight so as to optimize catalyst design. C1 [Milo, Anat; Sigman, Matthew S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Neel, Andrew J.; Toste, F. Dean] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Neel, Andrew J.; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Toste, FD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM fdtoste@berkeley.edu; sigman@chem.utah.edu RI milo, anat/C-3255-2015 OI milo, anat/0000-0003-1552-8193 FU NSF [CHE-0749506, CHE-1361296]; National Institute of General Medical Sciences [R01 GM104534]; Center for High Performance Computing at the University of Utah; Amgen Fellowship in Organic Chemistry FX We thank the NSF (CHE-0749506 and CHE-1361296) and the National Institute of General Medical Sciences (R01 GM104534) for partial support of this work. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged. A.J.N. gratefully acknowledges an Amgen Fellowship in Organic Chemistry for funding and Jorg Hehn for early contributions to this work. NR 40 TC 32 Z9 33 U1 8 U2 79 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 13 PY 2015 VL 347 IS 6223 BP 737 EP 743 DI 10.1126/science.1261043 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA9DT UT WOS:000349221300040 PM 25678656 ER PT J AU Daw, CS Finney, CEA Kaul, BC Edwards, KD Wagner, RM AF Daw, C. S. Finney, C. E. A. Kaul, B. C. Edwards, K. D. Wagner, R. M. TI Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE engine; combustion; symbolic analysis; time series AB Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. C1 [Daw, C. S.; Finney, C. E. A.; Kaul, B. C.; Edwards, K. D.; Wagner, R. M.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Daw, CS (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM dawcs@ornl.gov RI Kaul, Brian/G-4056-2014 OI Kaul, Brian/0000-0001-8481-3620 FU Vehicle Technologies Office, Office of Energy Efficiency & Renewable Energy, US Department of Energy FX This work was sponsored by the Vehicle Technologies Office, Office of Energy Efficiency & Renewable Energy, US Department of Energy, Gurpreet Singh, Ken Howden, Leo Breton, managers. NR 14 TC 3 Z9 3 U1 1 U2 6 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD FEB 13 PY 2015 VL 373 IS 2034 AR 20140088 DI 10.1098/rsta.2014.0088 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX5JL UT WOS:000346962100002 ER PT J AU He, JT Schepmoes, AA Shi, TJ Wu, CC Fillmore, TL Gao, YQ Smith, RD Qian, WJ Rodland, KD Liu, T Camp, DG Rastogi, A Tan, SH Yan, WS Mohamed, AA Huang, W Banerjee, S Kagan, J Srivastava, S McLeod, DG Srivastava, S Petrovics, G Dobi, A Srinivasan, A AF He, Jintang Schepmoes, Athena A. Shi, Tujin Wu, Chaochao Fillmore, Thomas L. Gao, Yuqian Smith, Richard D. Qian, Wei-Jun Rodland, Karin D. Liu, Tao Camp, David G., II Rastogi, Anshu Tan, Shyh-Han Yan, Wusheng Mohamed, Ahmed A. Huang, Wei Banerjee, Sreedatta Kagan, Jacob Srivastava, Sudhir McLeod, David G. Srivastava, Shiv Petrovics, Gyorgy Dobi, Albert Srinivasan, Alagarsamy TI Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods SO JOURNAL OF TRANSLATIONAL MEDICINE LA English DT Article DE ERG; Quantification; Biomarker; PRISM-SRM; MRM; Mass spectrometry; ELISA; Prostate cancer; Diagnosis ID TARGETED QUANTIFICATION; QUANTITATIVE PROTEOMICS; ONCOPROTEIN EXPRESSION; GENE-EXPRESSION; ANTIBODY-FREE; FUSION; STRATIFICATION; PROGRESSION; FREQUENCY; ONCOGENE AB Background: The established methods for detecting prostate cancer (CaP) are based on tests using PSA (blood), PCA3 (urine), and AMACR (tissue) as biomarkers in patient samples. The demonstration of ERG oncoprotein overexpression due to gene fusion in CaP has thus provided ERG as an additional biomarker. Based on this, we hypothesized that ERG protein quantification methods can be of use in the diagnosis of prostate cancer. Methods: An antibody-free assay for ERG3 protein detection was developed based on PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry. We utilized TMPRSS2-ERG positive VCaP and TMPRSS2-ERG negative LNCaP cells to simulate three different sample types (cells, tissue, and post-DRE urine sediment). Enzyme-linked immunosorbent assay (ELISA), western blot, NanoString, and qRT-PCR were also used in the analysis of these samples. Results: Recombinant ERG3 protein spiked into LNCaP cell lysates could be detected at levels as low as 20 pg by PRISM-SRM analysis. The sensitivity of the PRISM-SRM assay was approximately 10,000 VCaP cells in a mixed cell population model of VCaP and LNCaP cells. Interestingly, ERG protein could be detected in as few as 600 VCaP cells spiked into female urine. The sensitivity of the in-house ELISA was similar to the PRISM-SRM assay, with detection of 30 pg of purified recombinant ERG3 protein and 10,000 VCaP cells. On the other hand, qRT-PCR exhibited a higher sensitivity, as TMPRSS2-ERG transcripts were detected in as few as 100 VCaP cells, in comparison to NanoString methodologies which detected ERG from 10,000 cells. Conclusions: Based on this data, we propose that the detection of both ERG transcriptional products with RNA-based assays, as well as protein products of ERG using PRISM-SRM assays, may be of clinical value in developing diagnostic and prognostic assays for prostate cancer given their sensitivity, specificity, and reproducibility. C1 [He, Jintang; Schepmoes, Athena A.; Shi, Tujin; Wu, Chaochao; Gao, Yuqian; Smith, Richard D.; Qian, Wei-Jun; Rodland, Karin D.; Liu, Tao; Camp, David G., II] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Fillmore, Thomas L.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Rastogi, Anshu; Tan, Shyh-Han; Yan, Wusheng; Mohamed, Ahmed A.; Huang, Wei; Banerjee, Sreedatta; McLeod, David G.; Srivastava, Shiv; Petrovics, Gyorgy; Dobi, Albert; Srinivasan, Alagarsamy] Uniformed Serv Univ Hlth Sci, Dept Surg, Ctr Prostate Dis Res, Bethesda, MD 20814 USA. [Kagan, Jacob; Srivastava, Sudhir] NCI, Canc Biomarkers Res Grp, Canc Prevent Div, Bethesda, MD 20892 USA. [McLeod, David G.] Walter Reed Natl Mil Med Ctr, Urol Serv, Bethesda, MD USA. RP Srinivasan, A (reprint author), Uniformed Serv Univ Hlth Sci, Dept Surg, Ctr Prostate Dis Res, Bethesda, MD 20814 USA. EM asrinivasan@cpdr.org RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Tan, Shyh-Han/0000-0001-8250-7005 FU National Cancer Institute (NCI) Early Detection Research Network (EDRN) Interagency Agreement [ACN12003-001-00000]; National Institutes of Health [P41GM103493]; DoD/CDMRP/PCRP [PC073614]; NCI/EDRN [ACN12011-001-0]; Department of Energy and located at Pacific Northwest National Laboratory; Department of Energy [DE-AC05-76RL0 1830]; Center for Prostate Disease Research; Basic Science Research Program; Department of Surgery, at Uniformed Services University of the Health Sciences FX Portions of this work were supported by the National Cancer Institute (NCI) Early Detection Research Network (EDRN) Interagency Agreement ACN12003-001-00000 (to K.D.R. and D.G.C.) and National Institutes of Health grant P41GM103493 (to R.D.S.), as well as the DoD/CDMRP/PCRP grant PC073614 (to S.S.) and the NCI/EDRN ACN12011-001-0 (to S.S.). The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL0 1830, as well as The Center for Prostate Disease Research, under the Basic Science Research Program under the Department of Surgery, at the Uniformed Services University of the Health Sciences. NR 38 TC 7 Z9 8 U1 2 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1479-5876 J9 J TRANSL MED JI J. Transl. Med. PD FEB 12 PY 2015 VL 13 AR 54 DI 10.1186/s12967-015-0418-z PG 14 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA CC6VL UT WOS:000350507000003 PM 25889691 ER PT J AU Biswas, R Zheng, TY Olson, DG Lynd, LR Guss, AM AF Biswas, Ranjita Zheng, Tianyong Olson, Daniel G. Lynd, Lee R. Guss, Adam M. TI Elimination of hydrogenase active site assembly blocks H-2 production and increases ethanol yield in Clostridium thermocellum SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Cellulosic ethanol; Clostridium thermocellum; Hydrogenase maturation; Metabolic engineering ID PROTEIN EXPRESSION; ATCC 27405; FERMENTATION; CELLULOSE; TRANSFORMATION; PROFILES; INSIGHTS; MUTANT; GENE; FLUX AB Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H-2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H-2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H-2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H-2 production in Delta hydG Delta ech was undetectable, and the ethanol yield nearly doubled to 64% of the maximum theoretical yield. Genomic analysis of Delta hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation was found in ethanol-tolerant C. thermocellum strain E50C, Delta hydG and Delta hydG Delta ech are not more ethanol tolerant than the wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. Conclusions: The dramatic increase in ethanol production suggests that targeting protein post-translational modification is a promising new approach for simultaneous inactivation of multiple enzymes. C1 [Biswas, Ranjita; Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. RP Guss, AM (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. EM gussam@oml.gov RI Olson, Daniel/F-2058-2011; Guss, Adam/A-6204-2011 OI Olson, Daniel/0000-0001-5393-6302; Guss, Adam/0000-0001-5823-5329 FU BioEnergy Science Center, U.S. DOE Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science; U.S. DOE [DE-AC05-00OR22725] FX This work was supported by the BioEnergy Science Center, U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 26 Z9 26 U1 1 U2 41 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 12 PY 2015 VL 8 AR 20 DI 10.1186/s13068-015-0204-4 PG 8 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CC9YW UT WOS:000350728100001 PM 25763101 ER PT J AU Wakeham, N Wang, YQ Fisk, Z Ronning, F Thompson, JD AF Wakeham, N. Wang, Y. Q. Fisk, Z. Ronning, F. Thompson, J. D. TI Surface state reconstruction in ion-damaged SmB6 SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL KONDO-INSULATOR; NEUTRON-IRRADIATION; GAP AB We have used ion irradiation to damage the (001) surfaces of SmB6 single crystals to varying depths, and have measured the resistivity as a function of temperature for each depth of damage. We observe a reduction in the residual resistivity with increasing depth of damage. Our data are consistent with a model in which the surface state is not destroyed by the ion irradiation, but instead the damaged layer is poorly conducting and the initial surface state is reconstructed below the damage. This behavior is consistent with a surface state that is topologically protected. C1 [Wakeham, N.; Wang, Y. Q.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Wakeham, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Ronning, Filip/0000-0002-2679-7957 FU Los Alamos National Laboratory LDRD program; US Department of Energy, Office of Science; Center for Integrated Nanotechnologies (CINT) FX N. W. acknowledges the support of the Los Alamos National Laboratory LDRD program. The work of F. R. and J. T. was performed under the auspices of the US Department of Energy, Office of Science. The ion implantation facility was partially supported by the Center for Integrated Nanotechnologies (CINT), a DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories. NR 31 TC 14 Z9 14 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 12 PY 2015 VL 91 IS 8 AR 085107 DI 10.1103/PhysRevB.91.085107 PG 5 WC Physics, Condensed Matter SC Physics GA CB8YB UT WOS:000349917200002 ER PT J AU Moller, P Sierk, AJ Ichikawa, T Iwamoto, A Mumpower, M AF Moeller, Peter Sierk, Arnold J. Ichikawa, Takatoshi Iwamoto, Akira Mumpower, Matthew TI Fission barriers at the end of the chart of the nuclides SO PHYSICAL REVIEW C LA English DT Article ID POTENTIAL-ENERGY SURFACES; GROUND-STATE MASSES; HALF-LIVES; ACTINIDE NUCLEI; HEAVIEST NUCLEI; HEAVY-NUCLEI; DEFORMATIONS; ELEMENTS; URANIUM; MODES AB We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 <= A <= 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than 5 000 000 different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (epsilon) and the spherical-harmonic (beta) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (epsilon,gamma) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about 1 MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on beta-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. These studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined. C1 [Moeller, Peter; Sierk, Arnold J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ichikawa, Takatoshi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Iwamoto, Akira] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Mumpower, Matthew] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU University of Tennessee [DE-FG02-06ER41407]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; MEXT SPIRE; JICFuS; JSPS KAKENHI Grant [25287065]; Notre Dame Joint Institute for Nuclear Astrophysics, NSF Grant [PHY0822648] FX This work was supported by travel grants for P. M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under Grant No. DE-FG02-06ER41407 (University of Tennessee). This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. T.I. was supported in part by MEXT SPIRE and JICFuS and JSPS KAKENHI Grant No. 25287065. M. M. was supported by the Notre Dame Joint Institute for Nuclear Astrophysics, NSF Grant No. PHY0822648. NR 66 TC 20 Z9 20 U1 3 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 12 PY 2015 VL 91 IS 2 AR 024310 DI 10.1103/PhysRevC.91.024310 PG 27 WC Physics, Nuclear SC Physics GA CB8YG UT WOS:000349917700001 ER PT J AU Accardi, A Anderle, DP Ringer, F AF Accardi, Alberto Anderle, Daniele P. Ringer, Felix TI Interplay of threshold resummation and hadron mass corrections in deep inelastic processes SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING-ORDER; LARGE-X; PARTON DISTRIBUTIONS; ELECTRON-SCATTERING; CROSS-SECTIONS; HEAVY QUARKS; HIGHER TWIST; QCD ANALYSIS; FRAGMENTATION; PROTON AB We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering lN - l'X and semi-inclusive annihilation e(+)e(-) -> hX processes, and provide a prescription how to consistently combine these two corrections respecting all kinematic thresholds. We find an interesting interplay between threshold resummation and target mass corrections for deep-inelastic scattering at large values of Bjorken x(B). In semi-inclusive annihilation, on the contrary, the two considered corrections are relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless of interest in light of recent high precision data from BABAR and BELLE on pion and kaon production, with which we compare our calculations. For both deep inelastic scattering and single inclusive annihilation, the size of the combined corrections compared to the precision of world data is shown to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in order to extract precise parton distributions at large Bjorken xB, and fragmentation functions over the whole kinematic range. C1 [Accardi, Alberto] Hampton Univ, Hampton, VA 23668 USA. [Accardi, Alberto] Jefferson Lab, Newport News, VA 23606 USA. [Anderle, Daniele P.; Ringer, Felix] Univ Tubingen, D-72076 Tubingen, Germany. RP Accardi, A (reprint author), Hampton Univ, Hampton, VA 23668 USA. FU German Research Foundation [VO 1049/1-1]; DOE [DE-AC05-06OR23177]; US Department of Energy [DE-SC008791]; Fondazione Cassa Rurale di Trento FX We are grateful to Werner Vogelsang for support and helpful discussions. We would like to thank Peter Monaghan, Marco Stratmann, and Christian Weiss for useful conversations. D. P. A. and F. R. acknowledge the kind hospitality of Hampton University and JLab, where part of this work was carried out. This work was supported by the German Research Foundation (Grant No. VO 1049/1-1), by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and by the US Department of Energy Grant No. DE-SC008791. In addition, D. P. A. was partially supported by a grant from Fondazione Cassa Rurale di Trento. NR 72 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 12 PY 2015 VL 91 IS 3 AR 034008 DI 10.1103/PhysRevD.91.034008 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8YL UT WOS:000349918300003 ER PT J AU Shi, M Danilkin, IV Fernandez-Ramirez, C Mathieu, V Pennington, MR Schott, D Szczepaniak, P AF Shi, M. Danilkin, I. V. Fernandez-Ramirez, C. Mathieu, V. Pennington, M. R. Schott, D. Szczepaniak, P. TI Double-Regge exchange limit for the gamma p -> K(+)K(-)p reaction SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED VENEZIANO MODEL; HADRON-COLLISIONS; HIGH-ENERGY; AMPLITUDE; BARDAKCI; ANALYTICITY; PARAMETERS; DUALITY; MESONS; PION AB We apply the generalized Veneziano model (B-5 model) in the double-Regge exchange limit to the gamma p -> K(+)K(-)p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges [(K*, a(2) /f(2)), (K*, rho/omega), K*(2), a(2) /f(2)), (K-2*, rho/omega)] have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K(+)K(-)p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K(+)K(-)p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia, hybrids and exotics using gamma p -> K(+)K(-)p reaction. We expect that data currently under analysis, and those to come in the future, will allow verification of the double- Regge behavior and a better assessment of this component of the amplitude. C1 [Shi, M.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Shi, M.; Danilkin, I. V.; Fernandez-Ramirez, C.; Pennington, M. R.; Szczepaniak, P.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Mathieu, V.; Szczepaniak, P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Mathieu, V.; Szczepaniak, P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Schott, D.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. RP Shi, M (reprint author), Peking Univ, Dept Phys, Beijing 100871, Peoples R China. EM shimeng1031@pku.edu.cn RI Fernandez Ramirez, Cesar/E-9213-2010 OI Fernandez Ramirez, Cesar/0000-0001-8979-5660 FU CSC scholarship of the Chinese government; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR231]; U.S. Department of Energy [DE-FG0287ER40365]; National Science Foundation [PHY-1415459] FX We thank V. Mokeev and C. Salgado for useful comments. We also thank W.F. Perger for providing the hypergeometric function code. Meng Shi's stay at Jefferson Lab was supported by the CSC scholarship of the Chinese government. These studies were performed by a collaboration of the Joint Physics Analysis Center with the support of the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR231, and in part by the U.S. Department of Energy under Grant No. DE-FG0287ER40365, and by the National Science Foundation under Grant No. PHY-1415459. NR 44 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 12 PY 2015 VL 91 IS 3 AR 034007 DI 10.1103/PhysRevD.91.034007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8YL UT WOS:000349918300002 ER PT J AU Park, HS Rudd, RE Cavallo, RM Barton, NR Arsenlis, A Belof, JL Blobaum, KJM El-dasher, BS Florando, JN Huntington, CM Maddox, BR May, MJ Plechaty, C Prisbrey, ST Remington, BA Wallace, RJ Wehrenberg, CE Wilson, MJ Comley, AJ Giraldez, E Nikroo, A Farrell, M Randall, G Gray, GT AF Park, H. -S. Rudd, R. E. Cavallo, R. M. Barton, N. R. Arsenlis, A. Belof, J. L. Blobaum, K. J. M. El-dasher, B. S. Florando, J. N. Huntington, C. M. Maddox, B. R. May, M. J. Plechaty, C. Prisbrey, S. T. Remington, B. A. Wallace, R. J. Wehrenberg, C. E. Wilson, M. J. Comley, A. J. Giraldez, E. Nikroo, A. Farrell, M. Randall, G. Gray, G. T., III TI Grain-Size-Independent Plastic Flow at Ultrahigh Pressures and Strain Rates SO PHYSICAL REVIEW LETTERS LA English DT Article ID NANOCRYSTALLINE MATERIALS; CONSTITUTIVE BEHAVIOR; TAYLOR INSTABILITY; DEFORMATION; TANTALUM; MODEL; IMPACTS; METALS AB A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (similar to 10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 mu m sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion. C1 [Park, H. -S.; Rudd, R. E.; Cavallo, R. M.; Barton, N. R.; Arsenlis, A.; Belof, J. L.; Blobaum, K. J. M.; El-dasher, B. S.; Florando, J. N.; Huntington, C. M.; Maddox, B. R.; May, M. J.; Plechaty, C.; Prisbrey, S. T.; Remington, B. A.; Wallace, R. J.; Wehrenberg, C. E.; Wilson, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Comley, A. J.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Giraldez, E.; Nikroo, A.; Farrell, M.; Randall, G.] Gen Atom Co, San Diego, CA 92121 USA. [Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM park1@llnl.gov OI Cavallo, Robert/0000-0002-7696-3650 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 36 TC 7 Z9 7 U1 4 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2015 VL 114 IS 6 AR 065502 DI 10.1103/PhysRevLett.114.065502 PG 5 WC Physics, Multidisciplinary SC Physics GA CB8YZ UT WOS:000349919700009 PM 25723227 ER PT J AU Rachek, IA Arrington, J Dmitriev, VF Gauzshtein, VV Gerasimov, RE Gramolin, AV Holt, RJ Kaminskiy, VV Lazarenko, BA Mishnev, SI Muchnoi, NY Neufeld, VV Nikolenko, DM Sadykov, RS Shestakov, YV Stibunov, VN Toporkov, DK de Vries, H Zevakov, SA Zhilich, VN AF Rachek, I. A. Arrington, J. Dmitriev, V. F. Gauzshtein, V. V. Gerasimov, R. E. Gramolin, A. V. Holt, R. J. Kaminskiy, V. V. Lazarenko, B. A. Mishnev, S. I. Muchnoi, N. Yu. Neufeld, V. V. Nikolenko, D. M. Sadykov, R. Sh. Shestakov, Yu. V. Stibunov, V. N. Toporkov, D. K. de Vries, H. Zevakov, S. A. Zhilich, V. N. TI Measurement of the Two-Photon Exchange Contribution to the Elastic e(+/-)p Scattering Cross Sections at the VEPP-3 Storage Ring SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; POSITRON-PROTON; ELECTRON-PROTON; NUCLEON AB The ratio of the elastic e(+)p to e(-)p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15 degrees and 105 degrees. The data obtained show evidence of a significant two-photon exchange effect. The results are compared with several theoretical predictions. C1 [Rachek, I. A.; Dmitriev, V. F.; Gerasimov, R. E.; Gramolin, A. V.; Kaminskiy, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Nikolenko, D. M.; Sadykov, R. Sh.; Shestakov, Yu. V.; Toporkov, D. K.; Zevakov, S. A.; Zhilich, V. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Arrington, J.; Holt, R. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dmitriev, V. F.; Gerasimov, R. E.; Muchnoi, N. Yu.; Toporkov, D. K.; Zhilich, V. N.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Gauzshtein, V. V.; Stibunov, V. N.] Tomsk Polytech Univ, Tomsk 634050, Russia. [de Vries, H.] Nikhef, NL-1098 XG Amsterdam, Netherlands. RP Rachek, IA (reprint author), Budker Inst Nucl Phys, Novosibirsk 630090, Russia. EM I.A.Rachek@inp.nsk.su; A.V.Gramolin@inp.nsk.su; D.M.Nikolenko@inp.nsk.su RI Arrington, John/D-1116-2012; Gramolin, Alexander/C-1218-2011; Muchnoi, Nickolai/N-3611-2015; OI Arrington, John/0000-0002-0702-1328; Gramolin, Alexander/0000-0001-5436-7375; Muchnoi, Nickolai/0000-0003-2936-0029; Gerasimov, Roman/0000-0002-6090-2378 FU Grant Council of the President of the Russian Federation [MK-525.2013.2]; Ministry of Education and Science of the Russian Federation [02.740.11.0245.1]; Russian Foundation for Basic Research [12-02-00560, 12-02-33140, 13-02-00991, 13-02-01023]; US Department of Energy [DE-AC02-06CH11357] FX The authors are grateful to V. S. Fadin, A. L. Feldman, and A. I. Milstein for fruitful discussions. P. G. Blunden and E. Tomasi-Gustafsson are thanked for providing us with their calculations. We acknowledge the VEPP-3 staff for the stable operation of the storage ring during the experiment. This work was supported by the Grant Council of the President of the Russian Federation (Grant No. MK-525.2013.2), the Ministry of Education and Science of the Russian Federation (Contract No. 02.740.11.0245.1), the Russian Foundation for Basic Research (Grants No. 12-02-00560, No. 12-02-33140, No. 13-02-00991, and No. 13-02-01023), and the US Department of Energy (Grant No. DE-AC02-06CH11357). NR 40 TC 15 Z9 15 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2015 VL 114 IS 6 AR 062005 DI 10.1103/PhysRevLett.114.062005 PG 5 WC Physics, Multidisciplinary SC Physics GA CB8YZ UT WOS:000349919700006 PM 25723211 ER PT J AU Dinh, LN Cairns, GA Strickland, RA McLean, W Maxwell, RS AF Dinh, L. N. Cairns, G. A. Strickland, R. A. McLean, W., II Maxwell, R. S. TI Mechanism and Kinetic Modeling of Hydrogenation in the Organic Getter/Palladium Catalyst/Activated Carbon Systems SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SPILLOVER; DPB AB Experiments to measure the hydrogen uptake kinetics of DEB getter/Pd catalyst/activated carbon pellets have been performed under isothermal isobaric conditions. The extracted kinetics were then used to predict the performance of the getter pellets under different temperatures and pressures, including nonisobaric situations. For isothermal isobaric uptake at higher H-2 pressure (666.6-2666.5 Pa), H-2 solubility in the getter matrix is responsible for the uptake observed up to a 40-60% reacted fraction. Once the hydrogenated product becomes thicker, the diffusions of the reactants (atomic hydrogen and getter molecules) toward the reaction front become the rate limiting step. However, in a dynamic but very low H-2 pressure, encountered in many vacuum electronic applications, the hydrogen spillover effect, over micrometer scale, becomes the dominant reaction mechanism. Despite such a complex dependence of the rate limiting mechanisms on the experimental environment, there is good agreement between kinetic prediction models and experiments. The investigation also reveals that the ultimate uptake capacity in the getter pellets scales inversely with the free volume of the vacuum vessel in which the DEB getter pellets are used, and that DEB getter pellets performance greatly deteriorates during the final 10-15% capacity (as evidenced by the sharp bend in the slopes of the reacted fraction vs time curves at 85-90% reacted fraction). C1 [Dinh, L. N.; McLean, W., II; Maxwell, R. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cairns, G. A.; Strickland, R. A.] AWE Plc, Reading RG7 4PR, Berks, England. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dinhl@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Furthermore, the authors express their gratitude for the useful discussion with Dr. P. Monks. NR 18 TC 2 Z9 2 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 12 PY 2015 VL 119 IS 6 BP 943 EP 951 DI 10.1021/jp511052a PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB4DN UT WOS:000349578500002 PM 25626014 ER PT J AU Wolter, T Elstner, M Fischer, S Smith, JC Bondar, AN AF Wolter, Tino Elstner, Marcus Fischer, Stefan Smith, Jeremy C. Bondar, Ana-Nicoleta TI Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RESOLVED FTIR SPECTROSCOPY; PRIMARY PROTON-TRANSFER; SCHIFF-BASE; MOLECULAR-DYNAMICS; LOW-TEMPERATURE; ENERGY-STORAGE; STRUCTURAL-CHANGES; WATER-MOLECULES; L-INTERMEDIATE; 9-METHYL GROUP AB Relaxation of the twisted-retinal photoproduct state triggers proton-coupled reaction cycle in retinal proteins. Given the crowded protein environments in which the retinal resides, a key open question is whether the retinal relaxation path is governed by the intrinsic torsional properties of the retinal or rather by the interactions of the retinal with protein and water groups. Here we address this question by performing systematic quantum mechanical/molecular mechanical molecular dynamics computations of retinal dynamics in bacteriorhodopsin at different temperatures, reaction path computations, and assessment of the vibrational fingerprints of the retinal molecule. The results demonstrate a complex dependence of the retinal dynamics and preferred geometry on temperature. As the temperature increases, the retinal dihedral angle samples values largely determined by its internal conformational energy. The protein environment shapes the energetics of retinal relaxation and provides hydrogen-bonding partners that stabilize the retinal geometry. C1 [Wolter, Tino; Elstner, Marcus] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany. [Fischer, Stefan] Heidelberg Univ, IWR, D-69120 Heidelberg, Germany. [Smith, Jeremy C.] Univ Tenessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Bondar, Ana-Nicoleta] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany. RP Elstner, M (reprint author), Karlsruhe Inst Technol, Inst Phys Chem, Kaiserstr 12, D-76131 Karlsruhe, Germany. EM marcus.elstner@kit.edu; nicoleta.bondar@uci.edu RI Elstner, Marcus/H-3463-2013; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU Deutsche Forschungsgemeinschaft [SM 63/7, FOR 1279 EI 206/8-1]; Marie Curie International Reintegration Award [IRG-279620] FX This work was supported in part by the Deutsche Forschungsgemeinschaft through Grants SM 63/7 (J.C.S.), FOR 1279 EI 206/8-1 (M.E.) and by the Marie Curie International Reintegration Award IRG-279620 (A.-N.B.). NR 85 TC 1 Z9 1 U1 4 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 12 PY 2015 VL 119 IS 6 SI SI BP 2229 EP 2240 DI 10.1021/jp505818r PG 12 WC Chemistry, Physical SC Chemistry GA CB4DO UT WOS:000349578600015 PM 25196390 ER PT J AU Cooper, JK Gul, S Toma, FM Chen, L Liu, YS Guo, JH Ager, JW Yano, J Sharp, ID AF Cooper, Jason K. Gul, Sheraz Toma, Francesca M. Chen, Le Liu, Yi-Sheng Guo, Jinghua Ager, Joel W. Yano, Junko Sharp, Ian D. TI Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-SCATTERING; ELECTRONIC-STRUCTURE; BIVO4 PHOTOANODES; EDGE; GRAPHITE; DIAMOND; FILMS; CDO AB Monoclinic scheelite bismuth vanadate (m-BiVO4) is a promising semiconductor photoanode for photoelectrochemical (PEC) water splitting. Despite considerable recent progress in achieving improved photocurrents and photovoltages, there remain open questions about the basic optoelectronic properties of this material. Indeed, there is disagreement about the nature of its fundamental bandgap, with theoretical predictions and some experimental observations pointing to an indirect bandgap and other experimental studies to a direct bandgap. Knowledge of this property is critical for understanding light absorption and photocarrier properties, as well as for establishing rational approaches to improved efficiency. Here, experimental spectroscopic techniques are used to resolve this issue and provide a fundamental portrait of the optical properties of the material. Resonant inelastic X-ray scattering proves conclusively that m-BiVO4 is an indirect bandgap semiconductor. These measurements are supported by UVvis absorption spectroscopy and spectroscopic ellipsometry, which confirm this finding and also indicate the presence of a direct transition located at 200 meV above the indirect one. The spectral dependence of the optical constants is determined by development of a photophysical model for the ellipsometric data. Photogenerated carrier dynamics are probed by transient absorption spectroscopy, which reveals a relatively long lifetime compared to other commonly utilized metal oxide photoanodes and is attributed to the indirect nature of the fundamental gap. The combination of strong visible light absorption and relatively long excited state lifetime provides the basis for the high performance that has been achieved from BiVO4 photoanodes for water splitting. C1 [Cooper, Jason K.; Toma, Francesca M.; Chen, Le; Ager, Joel W.; Yano, Junko; Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Cooper, Jason K.; Chen, Le; Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Gul, Sheraz; Yano, Junko; Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Toma, Francesca M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Sharp, ID (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM idsharp@lbl.gov RI Sharp, Ian/I-6163-2015; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX We thank Jeremy Van Derslice for insightful discussions about ellipsometry. This material is based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. XAS, XES, and RIXS experiments were performed at the Advanced Light Source (BL 8.0.1), Berkeley, which is operated under DOE (DE-AC02-05CH11231). NR 29 TC 34 Z9 34 U1 12 U2 108 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 12 PY 2015 VL 119 IS 6 BP 2969 EP 2974 DI 10.1021/jp512169w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB4DM UT WOS:000349578400007 ER PT J AU Zarzycki, P Kerisit, S Rosso, KM AF Zarzycki, Piotr Kerisit, Sebastien Rosso, Kevin M. TI Molecular Dynamics Study of Fe(II) Adsorption, Electron Exchange, and Mobility at Goethite (alpha-FeOOH) Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FREE-ENERGY; AQUEOUS FE(II); ISOTOPE FRACTIONATION; ATOMISTIC SIMULATION; IRON(III) OXIDES; WATER INTERFACES; FERRIC HYDROXIDE; POLAR-SOLVENTS; ATOM EXCHANGE; FERROUS IRON AB We present classical molecular simulations of the adsorption free energy profiles for the aqueous Fe(II) ion approaching key low index crystal faces of goethite at neutral surface charge conditions. Calculated profiles show minima corresponding to stable outer- and inner-sphere adsorbed structures. We analyzed the energetics and kinetics of most possible interfacial electron transfer reactions, as well as analyzing the same for subsurface migration pathways of injected electrons through calculating the Marcus free energy surfaces. We conclude that inner-sphere Fe(II)-complex formation is required for the interfacial electron transfer to occur, but the energetic cost of moving from the outer-sphere to inner-sphere geometry may prevent electron injection at some faces. We also show that some surfaces, especially (101), (100) and (001), are more energetically prone toward reduction than others. We demonstrate that subsurface charge migration in directions parallel to the surface, which run along the iron chains, is more energetically plausible than conduction through the resistive crystal bulk phase. Collectively this leads to the conclusion that Fe(II)-catalyzed recrystallization of goethite most likely proceeds by short path length electron migration through specific goethite surfaces along specific directions, until capture at Fe sites structurally susceptible to reduction and release. C1 [Zarzycki, Piotr] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland. [Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zarzycki, P (reprint author), Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland. EM zarzycki.piotrek@gmail.com OI Zarzycki, Piotr/0000-0003-3891-7159 FU Geosciences Research Program in the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Ministry of Science and Higher Education [MNiSW IP2012 059872]; DOE's Office of Biological and Environmental Research FX This research was supported by the Geosciences Research Program in the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and also by the Ministry of Science and Higher Education (Grant MNiSW IP2012 059872). A portion of this research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. NR 71 TC 13 Z9 14 U1 18 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 12 PY 2015 VL 119 IS 6 BP 3111 EP 3123 DI 10.1021/jp511086r PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB4DM UT WOS:000349578400023 ER PT J AU Zhang, X Daku, MLL Zhang, J Suarez-Alcantara, K Jennings, G Kurtz, CA Canton, SE AF Zhang, X. Daku, M. L. Lawson Zhang, J. Suarez-Alcantara, K. Jennings, G. Kurtz, C. A. Canton, S. E. TI Dynamic Jahn-Teller Effect in the Metastable High-Spin State of Solvated [Fe(terpy)(2)](2+) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; PHOTOINDUCED PHASE-TRANSITION; IRON(II) COMPLEX; COORDINATION-COMPOUNDS; CROSSOVER COMPLEXES; DENSITY FUNCTIONALS; FRAMEWORK MATERIAL; SCREENING MODEL; METAL-COMPLEXES; BASIS-SETS AB Characterizing structural distortions in the metastable spin states of d(4)d(7) transition metal ion complexes is crucial to understand the nature of their bistability and eventually control their switching dynamics. In particular, the impact of the JahnTeller effect needs to be assessed for any electronic configuration that could be effectively degenerate, as in e.g. the high-spin (HS) manifold of highly symmetric homoleptic FeII complexes. However, capturing its manifestations remains challenging since crystallization generally alters the molecular conformations and their interconversion. With the rapid progress of ultrafast X-ray absorption spectroscopy, it is now possible to collect data with unprecedented signal-to-noise ratio, opening up for detailed structural characterization of transient species in the homogeneous solution phase. By combining the analysis of picosecond X-ray absorption spectra with DFT simulations, the structure of the photoinduced HS state is elucidated for solvated [Fe(terpy)(2)](2+) (terpy = 2,2':6',2 ''-terpyridine). This species can be viewed as the average 5B structure in D-2 symmetry that originates from a dynamic JahnTeller effect in the HS manifold. These results evidence the active role played by this particular instance of vibronic coupling in the formation of the HS state for this benchmark molecule. Ultimately, correlating the interplay between intramolecular and intermolecular degrees of freedom to conformational strain and distortions in real time should contribute to the development of advanced functionalities in transition metal ion complexes. C1 [Zhang, X.; Jennings, G.; Kurtz, C. A.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Daku, M. L. Lawson] Univ Geneva, Dept Chim Phys, CH-1211 Geneva 4, Switzerland. [Zhang, J.] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China. [Suarez-Alcantara, K.; Canton, S. E.] Lund Univ, Dept Synchrotron Radiat Instrumentat, S-22100 Lund, Sweden. RP Canton, SE (reprint author), Lund Univ, Dept Synchrotron Radiat Instrumentat, POB 118, S-22100 Lund, Sweden. EM sophie.canton@desy.de RI Lawson Daku, Latevi/B-9646-2008; Canton, Sophie/A-8432-2016 OI Lawson Daku, Latevi/0000-0003-1305-6807; FU Swedish Research Council; Crafoord Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Swiss National Supercomputing Centre (CSCS) [s103, s296]; Center for Advanced Modeling Science (CADMOS) [CTESIM] FX The Swedish Research Council and the Crafoord Foundation are greatly acknowledged as funding sources. X.Z, G.J., C.A.K, and the use of the Advanced Photon Source were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The theoretical work was supported by allocations of computing time from the Swiss National Supercomputing Centre (CSCS) under project IDs s103 and s296 and the Center for Advanced Modeling Science (CADMOS) under project ID CTESIM. We thank Pr L. X. Chen (Argonne National Laboratory and Northwestern University) for initial contributions on the Nd:YLF laser. Finally, we thank Pr. A. Hauser, Pr. S. Iuchi, and Dr Y. Liu for helpful comments and stimulating discussions. NR 105 TC 6 Z9 6 U1 7 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 12 PY 2015 VL 119 IS 6 BP 3312 EP 3321 DI 10.1021/jp5117068 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB4DM UT WOS:000349578400046 ER PT J AU Canton, SE Zhang, X Daku, MLL Liu, Y Zhang, J Alvarez, S AF Canton, S. E. Zhang, X. Daku, M. L. Lawson Liu, Y. Zhang, J. Alvarez, S. TI Mapping the Ultrafast Changes of Continuous Shape Measures in Photoexcited Spin Crossover Complexes without Long-Range Order SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYPYRIDYL FERROUS COMPLEXES; CONTINUOUS SYMMETRY MEASURES; EXCITED-STATE LIFETIME; IRON(II) COMPLEXES; ROOM-TEMPERATURE; TRIDENTATE LIGANDS; RU(II) COMPLEXES; MOLECULAR ARRAYS; SCREENING MODEL; METAL-COMPOUNDS AB Establishing a tractable yet complete reaction coordinate for the spin-state interconversion in d(4)-d(7) transition metal complexes is an integral aspect of controlling the dynamics that govern their functionality. For spin crossover phenomena, the limitations of a single-mode approximation that solely accounts for an isotropic increase in the metal-ligand bond length have long been recognized for all but the simple octahedral monodentate FeII compounds. However, identifying the coupled deformations that also impact on the unimolecular rate constants remains experimentally and theoretically challenging, especially for samples that do not display long-range order or when crystallization profoundly alters the dynamics. Owing to the rapid progress in ultrafast X-ray absorption spectroscopy (XAS), it is now possible to obtain transient structural information in any physical phase with unprecedented details. Using picosecond XAS and DFT modeling, the structure adopted by the photoinduced high-spin state of solvated [Fe(terpy)(2)](2+) (terpy: 2,2':6',2 ''-terpyridine) has been recently established. Based on these results, the methodology of the continuous shape measure is applied to classify and quantify the short-lived distortion of the first coordination shell. The reaction coordinate of the spin-state interconversion is clearly identified as a double axial bending. This finding sets a benchmark for gauging the influence of first-sphere and second-sphere interactions in the family of FeII complexes that incorporate terpy derivatives. Some implications for the optimization of related photoactive FeII complexes are also outlined. C1 [Canton, S. E.] Lund Univ, Dept Synchrotron Radiat Instrumentat, S-22100 Lund, Sweden. [Zhang, X.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Daku, M. L. Lawson] Univ Geneva, Dept Chim Phys, CH-1211 Geneva 4, Switzerland. [Liu, Y.] Lund Univ, Dept Chem, Ctr Anal & Synth, S-22100 Lund, Sweden. [Zhang, J.] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China. [Alvarez, S.] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Alvarez, S.] Univ Barcelona, Inst Quim Teor & Computac, E-08028 Barcelona, Spain. RP Canton, SE (reprint author), Lund Univ, Dept Synchrotron Radiat Instrumentat, POB 118, S-22100 Lund, Sweden. EM sophie.canton@maxlab.lu.se RI Lawson Daku, Latevi/B-9646-2008; Alvarez, Santiago/A-1090-2009; Canton, Sophie/A-8432-2016 OI Lawson Daku, Latevi/0000-0003-1305-6807; Alvarez, Santiago/0000-0002-4618-4189; FU Swedish Research Council; Crafoord Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Swiss National Supercomputing Centre (CSCS) [s103, s296]; Center for Advanced Modeling Science (CADMOS) [CTESIM]; Spanish Ministerio de Economia y Competitividad [CTQ2011-23862-C02-02]; Generalitat de Catalunya [2009SGR-1459] FX The Swedish Research Council and the Crafoord Foundation are greatly acknowledged as funding sources. X.Z. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. This work was supported by allocations of computing time from the Swiss National Supercomputing Centre (CSCS) under Project IDs s103 and s296 and the Center for Advanced Modeling Science (CADMOS) under Project ID CTESIM. The authors also thank financial support from the Spanish Ministerio de Economia y Competitividad (Project CTQ2011-23862-C02-02) and Generalitat de Catalunya (Project 2009SGR-1459). We thank Andreas Hauser for helpful comments and stimulating discussions. Dr L. Fredin and Pr P. Persson are also gratefully acknowledged for very useful discussions. NR 92 TC 4 Z9 4 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 12 PY 2015 VL 119 IS 6 BP 3322 EP 3330 DI 10.1021/jp5117189 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB4DM UT WOS:000349578400047 ER PT J AU Ji, X Makarov, NS Wang, WT Palui, G Robel, I Mattoussi, H AF Ji, Xin Makarov, Nikolay S. Wang, Wentao Palui, Goutam Robel, Istvan Mattoussi, Hedi TI Tuning the Redox Coupling between Quantum Dots and Dopamine in Hybrid Nanoscale Assemblies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RESONANCE ENERGY-TRANSFER; ULTRAFAST CHARGE SEPARATION; SEMICONDUCTOR NANOCRYSTALS; MULTIFUNCTIONAL LIGANDS; ELECTRON INJECTION; CDSE NANOCRYSTALS; CARRIER DYNAMICS; INTRACELLULAR PH; SOLAR-CELLS; SIZE AB We explored the charge transfer interactions between CdSe-ZnS core-shell quantum dots (QDs) and the redox active neurotransmitter dopamine, using covalently assembled QD-dopamine conjugates. We combined steady-state fluorescence, time-resolved fluorescence, and transient absorption bleach measurements to probe the effects of changing the QD size (thus the QD energy levels) and the conjugate valence on the rate of QD photoluminescence quenching when the pH of the medium was adjusted from acidic to alkaline. We measured substantially larger quenching efficiencies, combined with more pronounced shortening of the carrier dynamics of these assemblies for smaller size QDs and in alkaline pH. Moreover, we found that changes in the QD size alter the electron and hole relaxation of photoexcited QDs but with different extents. For instance, a pronounced change in the hole relaxation was measured in alkaline buffers. Moreover, the hole relaxation was faster for conjugates of green-emitting QDs as compared to their red-emitting counterparts. We attribute these results to the more favorable electron transfer rates from the reduced form of the dopamine to the valence band of the QDs, a process that becomes more efficient for green-emitting QDs. The latter benefits from lower oxidation potential and larger energy mismatch with the green QDs in alkaline buffers. In comparison, the effects of pH changes on the rates of electron transfer from excited QDs to dopamine are less affected by the QD size. These findings reflect the importance of the energy mismatch between the QD energy levels and the redox levels of dopamine, and shed light onto the complex interactions involved in these assemblies. Such conjugates also provide promising sensing and imaging tools for use in in vivo experiments. C1 [Ji, Xin; Wang, Wentao; Palui, Goutam; Mattoussi, Hedi] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Makarov, Nikolay S.; Robel, Istvan] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Mattoussi, H (reprint author), Florida State Univ, Dept Chem & Biochem, 95 Chieftan Way, Tallahassee, FL 32306 USA. EM mattoussi@chem.fsu.edu RI JI, XIN/N-6861-2015; Robel, Istvan/D-4124-2011 OI Robel, Istvan/0000-0002-9738-7728 FU FSU; National Science Foundation [1058957]; Pfizer; Center for Advanced Solar Photophysics, an Energy Frontier Research Center - Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy FX X.J., W.W., G.P., and H.M. thank FSU, the National Science Foundation (Grant No. 1058957), and Pfizer for financial support. N.S.M. and I.R. were supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. We also thank Victor Klimov for the fruitful discussions. NR 66 TC 10 Z9 10 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 12 PY 2015 VL 119 IS 6 BP 3388 EP 3399 DI 10.1021/jp511178u PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB4DM UT WOS:000349578400054 ER PT J AU Keimer, B Kivelson, SA Norman, MR Uchida, S Zaanen, J AF Keimer, B. Kivelson, S. A. Norman, M. R. Uchida, S. Zaanen, J. TI From quantum matter to high-temperature superconductivity in copper oxides SO NATURE LA English DT Review ID T-C SUPERCONDUCTOR; QUASI-PARTICLE INTERFERENCE; NORMAL-STATE TRANSPORT; CUPRATE SUPERCONDUCTORS; UNDERDOPED BI2SR2CACU2O8+DELTA; PSEUDOGAP STATE; MOTT INSULATOR; SPIN DYNAMICS; FERMI-SURFACE; ELECTRONIC-STRUCTURE AB The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures. C1 [Keimer, B.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Kivelson, S. A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Norman, M. R.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Zaanen, J.] Leiden Univ, Lorentz Inst Theoret Phys, NL-2300 RA Leiden, Netherlands. RP Zaanen, J (reprint author), Leiden Univ, Lorentz Inst Theoret Phys, POB 9506, NL-2300 RA Leiden, Netherlands. EM jan@lorentz.leidenuniv.nl RI Norman, Michael/C-3644-2013 FU US DOE, Basic Energy Sciences, Materials Science and Engineering at Stanford University [DE-AC02-76SF00515]; Center for Emergent Superconductivity, an Energy Frontier Research Center - US DOE, Basic Energy Sciences [DE-AC0298CH1088]; Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW); Templeton foundation FX We thank A. Yazdani for many discussions. S.A.K. was supported by the US DOE, Basic Energy Sciences, Materials Science and Engineering, under Award No. DE-AC02-76SF00515 at Stanford University. M.N. was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Basic Energy Sciences, under Award No. DE-AC0298CH1088. J.Z. acknowledges financial support by the Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW), and a grant from the Templeton foundation: the opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton foundation. NR 120 TC 128 Z9 128 U1 49 U2 233 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 12 PY 2015 VL 518 IS 7538 BP 179 EP 186 DI 10.1038/nature14165 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8SD UT WOS:000349190300029 PM 25673411 ER PT J AU Sadowski, A Narayan, R Tchekhovskoy, A Abarca, D Zhu, YC McKinney, JC AF Sadowski, Aleksander Narayan, Ramesh Tchekhovskoy, Alexander Abarca, David Zhu, Yucong McKinney, Jonathan C. TI Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; relativistic processes; methods: numerical; galaxies: jets ID MAGNETOHYDRODYNAMIC SIMULATIONS; DOMINATED ACCRETION; NUMERICAL SIMULATIONS; COMPARABLE RADIATION; TRANSFER EQUATION; THICK ACCRETION; GODUNOV METHOD; GAS-PRESSURE; M1 CLOSURE; DISKS AB We present a mean-field model that emulates the magnetic dynamo operating in magnetized accretion discs. We have implemented this model in the general relativisic radiation magnetohydrodynamic (GRRMHD) code KORAL, using results from local shearing sheet simulations of the magnetorotational instability to fix the parameters of the dynamo. With the inclusion of this dynamo, we are able to run 2D axisymmetric GRRMHD simulations of accretion discs for arbitrarily long times. The simulated discs exhibit sustained turbulence, with the poloidal and toroidal magnetic field components driven towards a state similar to that seen in 3D studies. Using this dynamo code, we present a set of long-duration global simulations of super-Eddington, optically thick discs around non-spinning and spinning black holes. Super-Eddington discs around non-rotating black holes exhibit a surprisingly large efficiency, eta approximate to 0.04, independent of the accretion rate, where we measure efficiency in terms of the total energy output, both radiation and mechanical, flowing out to infinity. This value significantly exceeds the efficiency predicted by slim disc models for these accretion rates. Super-Eddington discs around spinning black holes are even more efficient, and appear to extract black hole rotational energy through a process similar to the Blandford-Znajek mechanism. All the simulated models are characterized by highly super-Eddington radiative fluxes collimated along the rotation axis. We also present a set of simulations that were designed to have Eddington or slightly sub-Eddington accretion rates ((M) over dot less than or similar to 2 (M) over dot(Edd)). None of these models reached a steady state. Instead, the discs collapsed as a result of runaway cooling, presumably because of a thermal instability. C1 [Sadowski, Aleksander; Narayan, Ramesh; Abarca, David; Zhu, Yucong] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02134 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McKinney, Jonathan C.] Univ Maryland, Dept Phys, Joint Space Sci Inst, College Pk, MD 20742 USA. RP Sadowski, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02134 USA. EM asadowski@cfa.harvard.edu OI Narayan, Ramesh/0000-0002-1919-2730 FU NSF [AST1312651]; NASA [TCAN NNX14AB47G, NAS8-03060]; NASA by the Chandra X-ray Center [PF3-140115]; NSF via XSEDE resources [TG-AST080026N, TG-AST100040] FX AS and RN were supported in part by NSF grant AST1312651 and NASA grant TCAN NNX14AB47G. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140115 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. We also acknowledge computational support from NSF via XSEDE resources (grant TG-AST080026N to RN and AS, and grant TG-AST100040 to AT), and from NASA (to RN and AS) via the High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The authors thank Dimitrios Psaltis and the anonymous referee for valuable comments on the manuscript. NR 67 TC 34 Z9 34 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2015 VL 447 IS 1 BP 49 EP 71 DI 10.1093/mnras/stu2387 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TK UT WOS:000350272700004 ER PT J AU Marinucci, A Matt, G Bianchi, S Lu, TN Arevalo, P Balokovic, M Ballantyne, D Bauer, FE Boggs, SE Christensen, FE Craig, WW Gandhi, P Hailey, CJ Harrison, F Puccetti, S Rivers, E Walton, DJ Stern, D Zhang, W AF Marinucci, A. Matt, G. Bianchi, S. Lu, T. N. Arevalo, P. Balokovic, M. Ballantyne, D. Bauer, F. E. Boggs, S. E. Christensen, F. E. Craig, W. W. Gandhi, P. Hailey, C. J. Harrison, F. Puccetti, S. Rivers, E. Walton, D. J. Stern, D. Zhang, W. TI The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron K alpha line SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: individual: NGC 2110; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; PHOTON IMAGING CAMERA; XMM-NEWTON; SUZAKU OBSERVATIONS; COMPTON-THICK; COLD MATTER; REFLECTION; AGN; SPECTRUM; NGC-2110 AB We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad-band spectra (in the 3-80 keV range) indicate a cutoff energy E-c > 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton-thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K alpha line on time-scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole). C1 [Marinucci, A.; Matt, G.; Bianchi, S.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Lu, T. N.; Balokovic, M.; Harrison, F.; Rivers, E.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Arevalo, P.; Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Valparaiso, Chile. [Ballantyne, D.; Bauer, F. E.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gandhi, P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Puccetti, S.] ASDC ASI, I-00133 Rome, Italy. [Puccetti, S.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Marinucci, A (reprint author), Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. EM marinucci@fis.uniroma3.it RI Bianchi, Stefano/B-4804-2010; Boggs, Steven/E-4170-2015; XRAY, SUZAKU/A-1808-2009 OI Bianchi, Stefano/0000-0002-4622-4240; Boggs, Steven/0000-0001-9567-4224; FU Italian Space Agency [ASI/INAF I/037/12/0-011/13]; European Union [312789]; NASA [NNG08FD60C]; National Aeronautics and Space Administration; International Fulbright Science and Technology Award FX AM and GM acknowledge financial support from Italian Space Agency under grant ASI/INAF I/037/12/0-011/13 and from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n.312789. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA).; MB acknowledges support from the International Fulbright Science and Technology Award. NR 54 TC 10 Z9 10 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2015 VL 447 IS 1 BP 160 EP 167 DI 10.1093/mnras/stu2439 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TK UT WOS:000350272700012 ER PT J AU White, M Reid, B Chuang, CH Tinker, JL McBride, CK Prada, F Samushia, L AF White, Martin Reid, Beth Chuang, Chia-Hsun Tinker, Jeremy L. McBride, Cameron K. Prada, Francisco Samushia, Lado TI Tests of redshift-space distortions models in configuration space for the analysis of the BOSS final data release SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe ID OSCILLATION SPECTROSCOPIC SURVEY; HALO OCCUPATION DISTRIBUTION; COSMOLOGICAL MASS DENSITY; DIGITAL SKY SURVEY; SDSS-III; POWER SPECTRUM; GROWTH-RATE; LINEAR REGIME; LUMINOSITY DEPENDENCE; SYSTEMATIC-ERRORS AB Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In preparation for analysis of redshift-space distortions from the Baryon Oscillation Spectroscopic Survey (BOSS) final data release, we compare a number of analytic and phenomenological models, specified in configuration space, to mock catalogues derived in different ways from several N-body simulations. The galaxies in each mock catalogue have properties similar to those of the higher redshift galaxies measured by BOSS but differ in the details of how small-scale velocities and halo occupancy are determined. We find that all of the analytic models fit the simulations over a limited range of scales while failing at small scales. We discuss which models are most robust and on which scales they return reliable estimates of the rate of growth of structure: we find that models based on some form of resummation can fit our N-body data for BOSS-like galaxies above 30 h(-1) Mpc well enough to return unbiased parameter estimates. C1 [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, Martin; Reid, Beth] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chuang, Chia-Hsun; Prada, Francisco] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Tinker, Jeremy L.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [McBride, Cameron K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Samushia, Lado] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Samushia, Lado] Ilia State Univ, Natl Abastumani Astrophys Observ, GE-1060 Tbilisi, Rep of Georgia. RP White, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM mwhite@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU NASA; Leibniz-Institute for Astrophysics Potsdam (AIP) [CSD2009-00064]; Spanish MultiDark Consolider Project [CSD2009-00064] FX MW would like to thank Chris Blake for helpful comments on an early draft of the manuscript. MW is supported by NASA. This work made extensive use of the NASA Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. The analysis made use of the computing resources of the National Energy Research Scientific Computing Center. The MultiDark Database used in this paper and the web application providing online access to it were constructed as part of the activities of the German Astrophysical Virtual Observatory as result of a collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the Spanish MultiDark Consolider Project CSD2009-00064. The BigMD simulation suite was performed in the supercomputer at LRZ. NR 90 TC 18 Z9 18 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2015 VL 447 IS 1 BP 234 EP 245 DI 10.1093/mnras/stu2460 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TK UT WOS:000350272700017 ER PT J AU Tchekhovskoy, A Giannios, D AF Tchekhovskoy, Alexander Giannios, Dimitrios TI Magnetic flux of progenitor stars sets gamma-ray burst luminosity and variability SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE MHD; methods: analytical; methods: numerical; stars: magnetic field; gamma-rays: stars ID BLANDFORD-ZNAJEK MECHANISM; ACCRETING BLACK-HOLES; MAGNETOHYDRODYNAMIC SIMULATIONS; INTERNAL SHOCKS; COLLAPSING STAR; SWIFT J1644+57; CENTRAL ENGINE; WHITE-DWARFS; LONG; JETS AB Long-duration gamma-ray bursts (GRBs) are thought to come from the core collapse of Wolf-Rayet stars. Whereas their stellar masses M-* have a rather narrow distribution, the population of GRBs is very diverse, with gamma-ray luminosities L-gamma spanning several orders of magnitude. This suggests the existence of a 'hidden' stellar variable whose burst-to-burst variation leads to a spread in L-gamma. Whatever this hidden variable is, its variation should not noticeably affect the shape of GRB light curves, which display a constant luminosity (in a time-average sense) followed by a sharp drop at the end of the burst seen with Swift/XRT. We argue that such a hidden variable is progenitor star's large-scale magnetic flux. Shortly after the core collapse, most of stellar magnetic flux accumulates near the black hole (BH) and remains there. The flux extracts BH rotational energy and powers jets of roughly a constant luminosity, L-j. However, once BH mass accretion rate (M) over dot falls below similar to L-j/c(2), the flux becomes dynamically important and diffuses outwards, with the jet luminosity set by the rapidly declining mass accretion rate, L-j similar to (M) over dotc(2). This provides a potential explanation for the sharp end of GRBs and the universal shape of their light curves. During the GRB, gas infall translates spatial variation of stellar magnetic flux into temporal variation of L-j. We make use of the deviations from constancy in L-j to perform stellar magnetic flux 'tomography'. Using this method, we infer the presence of magnetized tori in the outer layers of progenitor stars for GRB 920513 and GRB 940210. C1 [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Giannios, Dimitrios] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. RP Tchekhovskoy, A (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM atchekho@berkeley.edu FU NASA by the Chandra X-ray Center [PF3-140115]; NASA [NAS8-03060]; Fermi 6 cycle grant [61122] FX We thank Eliot Quataert, Brian Metzger, Alexander Heger, and Omer Bromberg for valuable discussions. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140115 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060, and NASA via High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center that provided access to the Pleiades supercomputer, as well as NSF through an XSEDE computational time allocation TG-AST100040 on NICS Kraken, Nautilus, TACC Stampede, Maverick, and Ranch. DG acknowledges support from the Fermi 6 cycle grant number 61122. We used Enthought Canopy Python distribution to generate figures for this work. NR 63 TC 10 Z9 10 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2015 VL 447 IS 1 BP 327 EP 344 DI 10.1093/mnras/stu2229 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TK UT WOS:000350272700026 ER PT J AU Baron, D Poznanski, D Watson, D Yao, YS Prochaska, JX AF Baron, Dalya Poznanski, Dovi Watson, Darach Yao, Yushu Prochaska, J. Xavier TI Dusting off the diffuse interstellar bands: DIBs and dust in extragalactic Sloan Digital Sky Survey spectra SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrochemistry; techniques: spectroscopic; surveys; dust, extinction; ISM: lines and bands; ISM: molecules ID PHYSICAL CONDITIONS; ABSORPTION; CARRIERS; CLOUDS; MAPS; IDENTIFICATION; SPECTROSCOPY; CONSTRAINTS; EXTINCTION; ANGSTROM AB Using over a million and a half extragalactic spectra we study the properties of the mysterious diffuse interstellar bands (DIBs) in the Milky Way. These data provide us with an unprecedented sampling of the skies at high Galactic latitude and low dust column density. We present our method, study the correlation of the equivalent width of eight DIBs with dust extinction and with a few atomic species, and the distribution of four DIBs -5780.6, 5797.1, 6204.3, and 6613.6 angstrom - over nearly 15 000 deg(2). As previously found, DIBs strengths correlate with extinction and therefore inevitably with each other. However, we show that DIBs can exist even in dust-free areas. Furthermore, we find that the DIBs correlation with dust varies significantly over the sky. DIB under-or overdensities, relative to the expectation from dust, are often spread over hundreds of square degrees. These patches are different for the four DIBs, showing that they are unlikely to originate from the same carrier, as previously suggested. C1 [Baron, Dalya; Poznanski, Dovi] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Watson, Darach] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Yao, Yushu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Prochaska, J. Xavier] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. RP Baron, D (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. EM dovi@tau.ac.il OI Watson, Darach/0000-0002-4465-8264 FU Alon fellowship for outstanding young researchers; Raymond and Beverly Sackler Chair for young scientists; Dark Cosmology Center - Danish National Research Foundation; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX DP acknowledges the support of the Alon fellowship for outstanding young researchers, and of the Raymond and Beverly Sackler Chair for young scientists. DB and DP thank the Dark Cosmology Center which is funded by the Danish National Research Foundation for hosting them while working on this topic.; The bulk of our computations was performed on the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, using the open source scientific data base SCIDB.6 The spectroscopic analysis was made using IPYTHON (Perez & Granger 2007). We also used these PYTHON packages: PYSPECKIT,7 HEALPY,8 and ASTROPY.9; This work made extensive use of SDSS-III10 data. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 48 TC 9 Z9 9 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 11 PY 2015 VL 447 IS 1 BP 545 EP 558 DI 10.1093/mnras/stu2448 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TK UT WOS:000350272700044 ER PT J AU McKeown, JT Wu, YY Fowlkes, JD Rack, PD Campbell, GH AF McKeown, Joseph T. Wu, Yueying Fowlkes, Jason D. Rack, Philip D. Campbell, Geoffrey H. TI Simultaneous In-Situ Synthesis and Characterization of Co@Cu Core-Shell Nanoparticle Arrays SO ADVANCED MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; COBALT-COPPER ALLOYS; SURFACE-TENSION; PHASE-SEPARATION; LIQUID SURFACE; METAL-FILMS; ENERGIES C1 [McKeown, Joseph T.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Wu, Yueying; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP McKeown, JT (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. EM mckeown3@llnl.gov OI Rack, Philip/0000-0002-9964-3254 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; Center for Nanophase Materials Science, DOE Office of Science User Facility; NSF Grant [CBET-1235651]; TN-SCORE program - NSF [EPS 1004083] FX Work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under FWP SCW0974. J.D.F. acknowledges support from the Center for Nanophase Materials Science, which is a DOE Office of Science User Facility. P.D.R. acknowledges support from NSF Grant No. CBET-1235651. Y.W. acknowledges support from the TN-SCORE program funded by NSF EPS 1004083. NR 36 TC 5 Z9 5 U1 9 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 11 PY 2015 VL 27 IS 6 BP 1060 EP 1065 DI 10.1002/adma.201404374 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB9TL UT WOS:000349975800010 PM 25534954 ER PT J AU Sieber, JR Crable, BR Sheik, CS Hurst, GB Rohlin, L Gunsalus, RP McInerney, MJ AF Sieber, Jessica R. Crable, Bryan R. Sheik, Cody S. Hurst, Gregory B. Rohlin, Lars Gunsalus, Robert P. McInerney, Michael J. TI Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE syntrophy; Syntrophomonas wolfei; interspecies electron transfer; reverse electron transfer; hydrogen; methanogenesis ID PROTEIN IDENTIFICATION TECHNOLOGY; ELECTRON BIFURCATION; SHOTGUN PROTEOMICS; FATTY-ACIDS; GROWTH; COOPERATION; FERREDOXIN; REDUCTION; BACTERIUM; OXIDATION AB Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status. C1 [Sieber, Jessica R.; Crable, Bryan R.; McInerney, Michael J.] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Sheik, Cody S.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Hurst, Gregory B.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Rohlin, Lars; Gunsalus, Robert P.] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA. RP McInerney, MJ (reprint author), Univ Oklahoma, Dept Bot & Microbiol, 770 Van Vleet Oval, Norman, OK 73019 USA. EM mcinemey@ou.edu OI Hurst, Gregory/0000-0002-7650-8009; Sheik, Cody/0000-0003-0413-1924 FU Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725, DE-FG03-86ER13498]; Physical Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-96ER20214]; UCLA-DOE Institute of Genomics and Proteomics [DE-FC02-02ER63421] FX Proteome sequencing was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Cultivation and interpretation of the proteomic data by Dr. McInerney's group was supported by grant DE-FG02-96ER20214 from the Physical Biosciences, Office of Basic Energy Sciences, the U.S. Department of Energy. Analysis of regulatory proteins by Dr. Gunsalus' group was supported by U.S. Department of Energy grant DE-FG03-86ER13498 and the UCLA-DOE Institute of Genomics and Proteomics DE-FC02-02ER63421. We thank N. Q. Wofford (OU) and P. K. Landford and M. Shah (ORNL) for technical assistance. NR 42 TC 5 Z9 5 U1 4 U2 38 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD FEB 11 PY 2015 VL 6 AR 115 DI 10.3389/fmicb.2015.00115 PG 9 WC Microbiology SC Microbiology GA CC3AB UT WOS:000350215300002 PM 25717324 ER PT J AU Abe, Y Anjos, JC Barriere, JC Baussan, E Bekman, I Bergevin, M Bezerra, TJC Bezrukov, L Blucher, E Buck, C Busenitz, J Cabrera, A Caden, E Camilleri, L Carr, R Cerrada, M Chang, PJ Chauveau, E Chimenti, P Collin, AP Conover, E Conrad, JM Crespo-Anadon, JI Crum, K Cucoanes, AS Damon, E Dawson, JV Dhooghe, J Dietrich, D Djurcic, Z Dracos, M Elnimr, M Etenko, A Fallot, M von Feilitzsch, F Felde, J Fernandes, SM Fischer, V Franco, D Franke, M Furuta, H Gil-Botella, I Giot, L Goger-Neff, M Gonzalez, LFG Goodenough, L Goodman, MC Grant, C Haag, N Hara, T Haser, J Hofmann, M Horton-Smith, GA Hourlier, A Ishitsuka, M Jochum, J Jollet, C Kaether, F Kalousis, LN Kamyshkov, Y Kaplan, DM Kawasaki, T Kemp, E de Kerret, H Kryn, D Kuze, M Lachenmaier, T Lane, CE Lasserre, T Letourneau, A Lhuillier, D Lima, HP Lindner, M Lopez-Castao, JM LoSecco, JM Lubsandorzhiev, B Lucht, S Maeda, J Mariani, C Maricic, J Martino, J Matsubara, T Mention, G Meregaglia, A Miletic, T Milincic, R Minotti, A Nagasaka, Y Nikitenko, Y Novella, P Oberauer, L Obolensky, M Onillon, A Osborn, A Palomares, C Pepe, IM Perasso, S Pfahler, P Porta, A Pronost, G Reichenbacher, J Reinhold, B Rohling, M Roncin, R Roth, S Rybolt, B Sakamoto, Y Santorelli, R Schilithz, AC Schonert, S Schoppmann, S Shaevitz, MH Sharankova, R Shimojima, S Shrestha, D Sibille, V Sinev, V Skorokhvatov, M Smith, E Spitz, J Stahl, A Stancu, I Stokes, LFF Strait, M Stuken, A Suekane, F Sukhotin, S Sumiyoshi, T Sun, Y Svoboda, R Terao, K Tonazzo, A Thi, HHT Valdiviesso, G Vassilopoulos, N Veyssiere, C Vivier, M Wagner, S Walsh, N Watanabe, H Wiebusch, C Winslow, L Wurm, M Yang, G Yermia, F Zimmer, V AF Abe, Y. dos Anjos, J. C. Barriere, J. C. Baussan, E. Bekman, I. Bergevin, M. Bezerra, T. J. C. Bezrukov, L. Blucher, E. Buck, C. Busenitz, J. Cabrera, A. Caden, E. Camilleri, L. Carr, R. Cerrada, M. Chang, P. -J. Chauveau, E. Chimenti, P. Collin, A. P. Conover, E. Conrad, J. M. Crespo-Anadon, J. I. Crum, K. Cucoanes, A. S. Damon, E. Dawson, J. V. Dhooghe, J. Dietrich, D. Djurcic, Z. Dracos, M. Elnimr, M. Etenko, A. Fallot, M. von Feilitzsch, F. Felde, J. Fernandes, S. M. Fischer, V. Franco, D. Franke, M. Furuta, H. Gil-Botella, I. Giot, L. Goeger-Neff, M. Gonzalez, L. F. G. Goodenough, L. Goodman, M. C. Grant, C. Haag, N. Hara, T. Haser, J. Hofmann, M. Horton-Smith, G. A. Hourlier, A. Ishitsuka, M. Jochum, J. Jollet, C. Kaether, F. Kalousis, L. N. Kamyshkov, Y. Kaplan, D. M. Kawasaki, T. Kemp, E. de Kerret, H. Kryn, D. Kuze, M. Lachenmaier, T. Lane, C. E. Lasserre, T. Letourneau, A. Lhuillier, D. Lima, H. P., Jr. Lindner, M. Lopez-Castao, J. M. LoSecco, J. M. Lubsandorzhiev, B. Lucht, S. Maeda, J. Mariani, C. Maricic, J. Martino, J. Matsubara, T. Mention, G. Meregaglia, A. Miletic, T. Milincic, R. Minotti, A. Nagasaka, Y. Nikitenko, Y. Novella, P. Oberauer, L. Obolensky, M. Onillon, A. Osborn, A. Palomares, C. Pepe, I. M. Perasso, S. Pfahler, P. Porta, A. Pronost, G. Reichenbacher, J. Reinhold, B. Roehling, M. Roncin, R. Roth, S. Rybolt, B. Sakamoto, Y. Santorelli, R. Schilithz, A. C. Schoenert, S. Schoppmann, S. Shaevitz, M. H. Sharankova, R. Shimojima, S. Shrestha, D. Sibille, V. Sinev, V. Skorokhvatov, M. Smith, E. Spitz, J. Stahl, A. Stancu, I. Stokes, L. F. F. Strait, M. Stueken, A. Suekane, F. Sukhotin, S. Sumiyoshi, T. Sun, Y. Svoboda, R. Terao, K. Tonazzo, A. Trinh Thi, H. H. Valdiviesso, G. Vassilopoulos, N. Veyssiere, C. Vivier, M. Wagner, S. Walsh, N. Watanabe, H. Wiebusch, C. Winslow, L. Wurm, M. Yang, G. Yermia, F. Zimmer, V. TI Improved measurements of the neutrino mixing angle theta(13) with the Double Chooz detector (vol 10, 086, 2014) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Correction C1 [Bekman, I.; Lucht, S.; Roth, S.; Schoppmann, S.; Stahl, A.; Stueken, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Busenitz, J.; Elnimr, M.; Fernandes, S. M.; Reichenbacher, J.; Stancu, I.; Sun, Y.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Djurcic, Z.; Goodenough, L.; Goodman, M. C.; Yang, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cabrera, A.; Dawson, J. V.; Franco, D.; Hourlier, A.; de Kerret, H.; Kryn, D.; Lasserre, T.; Novella, P.; Obolensky, M.; Perasso, S.; Roncin, R.; Tonazzo, A.] Univ Paris Diderot, IN2P3, AstroParticule & Cosmol, CNRS,CEA IRFU,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [dos Anjos, J. C.; Lima, H. P., Jr.; Pepe, I. M.; Schilithz, A. C.; Valdiviesso, G.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Blucher, E.; Conover, E.; Crum, K.; Strait, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cerrada, M.; Crespo-Anadon, J. I.; Gil-Botella, I.; Lopez-Castao, J. M.; Palomares, C.; Santorelli, R.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Camilleri, L.; Carr, R.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA. [Bergevin, M.; Dhooghe, J.; Felde, J.; Grant, C.; Svoboda, R.; Walsh, N.] Univ Calif Davis, Davis, CA 95616 USA. [Caden, E.; Damon, E.; Lane, C. E.; Maricic, J.; Miletic, T.; Milincic, R.; Smith, E.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Kaplan, D. M.; Yang, G.] IIT, Dept Phys, Chicago, IL 60616 USA. [Bezrukov, L.; Lubsandorzhiev, B.; Nikitenko, Y.; Sinev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Barriere, J. C.; Fischer, V.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Mention, G.; Sibille, V.; Veyssiere, C.; Vivier, M.] IRFU, Ctr Saclay, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Chang, P. -J.; Horton-Smith, G. A.; Shrestha, D.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Hara, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Etenko, A.; Skorokhvatov, M.; Sukhotin, S.] NRC Kurchatov Inst, Moscow 123182, Russia. [Conrad, J. M.; Spitz, J.; Terao, K.; Winslow, L.] MIT, Cambridge, MA 02139 USA. [Buck, C.; Collin, A. P.; Haser, J.; Kaether, F.; Lindner, M.; Reinhold, B.; Wagner, S.; Watanabe, H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Kawasaki, T.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Baussan, E.; Dracos, M.; Jollet, C.; Meregaglia, A.; Minotti, A.; Vassilopoulos, N.] Univ Strasbourg, CNRS, IN2P3, IPHC, F-67037 Strasbourg, France. [Cucoanes, A. S.; Fallot, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Yermia, F.] Univ Nantes, Ecole Mines Nantes, IN2P3, SUBATECH,CNRS, F-44307 Nantes, France. [Kamyshkov, Y.; Osborn, A.; Rybolt, B.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bezerra, T. J. C.; Chauveau, E.; Furuta, H.; Suekane, F.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Sakamoto, Y.] Tohoku Gakuin Univ, Sendai, Miyagi 9813193, Japan. [Abe, Y.; Ishitsuka, M.; Kuze, M.; Sharankova, R.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Maeda, J.; Matsubara, T.; Shimojima, S.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [von Feilitzsch, F.; Franke, M.; Goeger-Neff, M.; Haag, N.; Hofmann, M.; Oberauer, L.; Pfahler, P.; Schoenert, S.; Trinh Thi, H. H.; Zimmer, V.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Dietrich, D.; Jochum, J.; Lachenmaier, T.; Roehling, M.; Stokes, L. F. F.; Wurm, M.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. [Chimenti, P.] Univ Fed ABC, BR-09210580 Santo Andre, SP, Brazil. [Gonzalez, L. F. G.; Kemp, E.] Univ Estadual Campinas, UNICAMP, BR-13083970 Campinas, SP, Brazil. [Kalousis, L. N.; Mariani, C.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. RP Kuze, M (reprint author), Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. EM kuze@phys.titech.ac.jp RI Stahl, Achim/E-8846-2011; Gil Botella, Ines/H-8991-2015; Bezrukov, Leonid/M-5654-2013; Schoppmann, Stefan/M-3057-2015; Palomares, Carmen/H-7783-2015; Cerrada, Marcos/J-6934-2014; Roth, Stefan/J-2757-2016; Kamyshkov, Yuri/J-7999-2016; Chimenti, Pietro/F-9898-2012; Skorokhvatov, Mikhail/R-9735-2016; Wiebusch, Christopher/G-6490-2012 OI Stahl, Achim/0000-0002-8369-7506; Schoppmann, Stefan/0000-0002-7208-0578; Palomares, Carmen/0000-0003-4374-9065; Cerrada, Marcos/0000-0003-0112-1691; Roth, Stefan/0000-0003-3616-2223; Kamyshkov, Yuri/0000-0002-3789-7152; Chimenti, Pietro/0000-0002-9755-5066; Wiebusch, Christopher/0000-0002-6418-3008 NR 1 TC 23 Z9 23 U1 3 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 11 PY 2015 IS 2 BP 1 EP 4 AR 074 DI 10.1007/JHEP02(2015)074 PG 4 WC Physics, Particles & Fields SC Physics GA CC4PD UT WOS:000350334400001 ER PT J AU Kaminski, A Kondo, T Takeuchi, T Gu, G AF Kaminski, Adam Kondo, Takeshi Takeuchi, Tsunehiro Gu, Genda TI Pairing, pseudogap and Fermi arcs in cuprates SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 16th National Conference on Superconductivity and Strongly Correlated Systems CY OCT 07-12, 2013 CL Zakopane, POLAND SP Jagiellonian Univ, Marian Smoluchowski Inst Phys, AGH Univ Sci & Technology, Fac Phys & Appl Comp Sci, Fdn Polish Sci DE high temperature superconductivity; cuprates; pairing; Fermi arcs ID HIGH-T-C; COPPER-OXIDE METALS; UNDERDOPED BI2SR2CACU2O8+DELTA; SUPERFLUID DENSITY; NORMAL-STATE; ENERGY-GAP; SUPERCONDUCTORS; PHASE; TEMPERATURE; FLUCTUATIONS AB We use Angle Resolved Photoemission Spectroscopy to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High-quality data measured over a wide range of dopings reveal a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below T [GRAPHICS] K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below T [GRAPHICS] , and its interplay with strong scattering creates "artificial" Fermi arcs for T [GRAPHICS] T [GRAPHICS] T [GRAPHICS] . However, above T [GRAPHICS] , the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. We demonstrate that these findings resolve a number of seemingly contradictory scenarios. C1 [Kaminski, Adam] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kaminski, Adam] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kondo, Takeshi] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba, Japan. [Takeuchi, Tsunehiro] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Kaminski, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM kaminski@ameslab.gov RI Kondo, Takeshi/H-2680-2016 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University [contract # DE-AC02-07CH11358]. NR 49 TC 5 Z9 5 U1 3 U2 25 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD FEB 11 PY 2015 VL 95 IS 5-6 BP 453 EP 466 DI 10.1080/14786435.2014.906758 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA CC4SI UT WOS:000350343300002 ER PT J AU Dmowski, W Tong, Y Iwashita, T Yokoyama, Y Egami, T AF Dmowski, W. Tong, Y. Iwashita, T. Yokoyama, Y. Egami, T. TI Universal mechanism of thermomechanical deformation in metallic glasses SO PHYSICAL REVIEW B LA English DT Article ID STRUCTURAL ANISOTROPY; SHEAR BANDS; TEMPERATURE; BEHAVIOR AB We investigated the atomistic structure of metallic glasses subjected to thermomechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in situ at high temperatures as a time dependent deformation in the elastic regime, and ex situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples that have undergone thermomechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level, and the sign of the stress, demonstrating universal behavior and pointing to a unique atomistic unit of anelastic deformation. The structural changes due to creep are strongly localized within the second nearest neighbors, involving only a small group of atoms. C1 [Dmowski, W.; Tong, Y.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Iwashita, T.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Yokoyama, Y.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu RI Iwashita, Takuya/D-2724-2009 FU Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC05-00OR22725]; DOE FX This work was supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. We also acknowledge use of the DESY facility, beamline BW5. We thank J. Okasinski (APS) and J. Bednarcik (DESY) for help with the experimental setup. This manuscript has been authored by UT-Batelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. Government retains a nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. NR 27 TC 5 Z9 5 U1 4 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 11 PY 2015 VL 91 IS 6 AR 060101 DI 10.1103/PhysRevB.91.060101 PG 4 WC Physics, Condensed Matter SC Physics GA CB8VC UT WOS:000349908600001 ER PT J AU Gainer, JS Lykken, J Matchev, KT Mrenna, S Park, M AF Gainer, James S. Lykken, Joseph Matchev, Konstantin T. Mrenna, Stephen Park, Myeonghun TI Beyond geolocating: Constraining higher dimensional operators in H -> 4l with off-shell production and more SO PHYSICAL REVIEW D LA English DT Article ID DYNAMIC LIKELIHOOD METHOD; HIGGS-BOSON DECAYS; STANDARD MODEL; MISSING MOMENTUM; LEPTONIC SIGNALS; HADRON COLLIDERS; TOP-QUARK; ONE-LOOP; LHC; MASS AB We extend the study of Higgs boson couplings in the "golden" gg -> H -> ZZ* -> 4l channel in two important respects. First, we demonstrate the importance of off-shell Higgs boson production (gg -> H -> ZZ* -> 4l) in determining which operators contribute to the HZZ vertex. Second, we include the five operators of lowest nontrivial dimension, including the Z(mu)Z(mu)square H and HZ(mu)square Z(mu) operators that are often neglected. We point out that the former operator can be severely constrained by the measurement of the off-shell H* -> ZZ rate and/or unitarity considerations. We provide analytic expressions for the off-peak cross sections in the presence of these five operators. On shell, the Z(mu)Z(mu)square H operator is indistinguishable from its Standard Model counterpart HZ(mu)Z(mu), while the HZ(mu)square Z(mu) operator can be probed, in particular, by the Z* invariant mass distribution. C1 [Gainer, James S.; Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Lykken, Joseph] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Mrenna, Stephen] Fermilab Natl Accelerator Lab, Comp Div, SSE Grp, Batavia, IL 60510 USA. [Park, Myeonghun] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. RP Gainer, JS (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. FU World Premier International Research Center Initiative (WPI Initiative); MEXT, Japan; U.S. Department of Energy [DE-SC0010296]; Fermi Research Alliance [DE-AC02-07CH11359] FX We thank A. Gritsan, A. Korytov, I. Low, F. Maltoni, G. Mitselmakher, and C. Williams for useful discussions and an anonymous referee for a useful suggestion on how to clarify the aims of this work. J.G., J.L., K.M. and S.M. thank their CMS colleagues. J.L. acknowledges the hospitality of the SLAC Theoretical Physics Group. M.P. is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. Work supported in part by U.S. Department of Energy Grant No. DE-SC0010296. Fermilab is operated by the Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 156 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 11 PY 2015 VL 91 IS 3 AR 035011 DI 10.1103/PhysRevD.91.035011 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8VK UT WOS:000349909500005 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Sciolla, G Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Anulli, F Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Lewis, P Lindemann, D Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Anulli, F. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Lewis, P. Lindemann, D. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA Babar Collaboration TI Observation of the baryonic decay (B)over-bar(0) -> Lambda(+)(c)(p)over-barK(-)K(+) SO PHYSICAL REVIEW D LA English DT Article ID BABAR DETECTOR; MODELS AB We report the observation of the baryonic decay (B) over bar (0) -> Lambda(+)(c)(p) over barK(-)K(+) using a data sample of 471 x 10(6) B (B) over bar pairs produced in e(+)e(-) annihilations at root s = 10.58 GeV. This data sample was recorded with the BABAR detector at the PEP- II storage ring at SLAC. We find B((B) over bar (0) -> Lambda(+)(c)(p) over barK(-)K(+)) = (2.5 +/- 0.4((stat)) +/- 0.2((syst)) +/- 0.6(B(Lambda c+)) ) x 10(-5) where the uncertainties are statistical, systematic, and due to the uncertainty of the Lambda(+)(c) -> (p) over barK(-)pi(+) branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay (B) over bar (0) -> Lambda(+)(c)(p) over bar phi, we determine the upper limit B((B) over bar (0) -> Lambda(+)(c)(p) over bar phi) < 1.2 x 10(-5) at 90% confidence level. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] IN2P3, CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.] Univ Paris 11, Ctr Scientif Orsay, F-91898 Orsay, France. [Wormser, G.; Lange, D. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Napoli Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Denis Diderot Paris7, UPMC, IN2P3, CNRS,Lab, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Patrignani, Claudia/C-5223-2009; Forti, Francesco/H-3035-2011; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Martinez Vidal, F*/L-7563-2014; Oyanguren, Arantza/K-6454-2014; Monge, Maria Roberta/G-9127-2012; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Patrignani, Claudia/0000-0002-5882-1747; Forti, Francesco/0000-0001-6535-7965; White, Ryan/0000-0003-3589-5900; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Martinez Vidal, F*/0000-0001-6841-6035; Oyanguren, Arantza/0000-0002-8240-7300; Monge, Maria Roberta/0000-0003-1633-3195; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288 FU U.S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A.P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 17 TC 0 Z9 0 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 11 PY 2015 VL 91 IS 3 AR 031102(R) DI 10.1103/PhysRevD.91.031102 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8VK UT WOS:000349909500001 ER PT J AU Winkler, R Szkudlarek, A Fowlkes, JD Rack, PD Utke, I Plank, H AF Winkler, Robert Szkudlarek, Aleksandra Fowlkes, Jason D. Rack, Philip D. Utke, Ivo Plank, Harald TI Toward Ultraflat Surface Morphologies During Focused Electron Beam Induced Nanosynthesis: Disruption Origins and Compensation SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE focused electron beam induced deposition; patterning; morphology; platinum ID INDUCED DEPOSITION; RESOLUTION; PURIFICATION; NANOSTRUCTURES; FABRICATION; SIMULATION; EVOLUTION AB Emerging applications for nanoscale materials demand precise deposit shape retention from design to deposition. This study investigates the effects that disrupt high-fidelity shapes during focused electron beam induced nanosynthesis. It is shown that process parameters, patterning strategies and deposit topography can impose lateral precursor coverage gradients during growth resulting in unwanted topographic artifacts. The study classifies the evolving surface shapes into four general types and explains the formation and transition from a fundamental point of view. Continuum model calculations and simulations expand the experimental results to provide a comprehensive insight into understand the disruption mechanism. The findings demonstrate that the well-established concept of growth regimes has to be expanded by its lateral gradients as they strongly influence final shape fidelities. Finally, the study is complemented by a compensation strategy that improves the edge fidelity on the lower nanoscale to further push this technique toward the intrinsic limitations. C1 [Winkler, Robert; Plank, Harald] Graz Ctr Elect Microscopy, A-8010 Graz, Austria. [Szkudlarek, Aleksandra; Utke, Ivo] EMPA, Swiss Fed Labs Mat Sci & Technol, Lab Mech Mat & Nanostruct, CH-3602 Thun, Switzerland. [Szkudlarek, Aleksandra] AGH Univ Sci & Technol, Acad Ctr Mat & Nanotechnol, PL-30059 Krakow, Poland. [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fowlkes, Jason D.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Plank, Harald] Graz Univ Technol, Inst Elect Microscopy & Nanoanal, A-8010 Graz, Austria. RP Plank, H (reprint author), Graz Ctr Elect Microscopy, Steyrergasse 17, A-8010 Graz, Austria. EM harald.plank@felmi-zfe.at RI Utke, Ivo/C-6521-2011; OI Rack, Philip/0000-0002-9964-3254 FU COST action CELINA [CM1301]; EUROSTARS project TRIPLE-S [E! 8213]; Center for Nanophase Materials Sciences - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX R.W. and H.P. gratefully acknowledge the valuable support provided by Prof. Dr. Ferdinand Hofer, DI Roland Schmied, DI Barbara Geier, DI Angelina Orthacker, DI Thomas Gannet, Ulrich Haselmann, Georg Arnold, and Martha Dienstleder. R.W. and H.P. also acknowledge financial support by the COST action CELINA (No. CM1301) and the EUROSTARS project TRIPLE-S (No. E! 8213). P.D.R. and J.D.F. acknowledge that their contributions were supported by the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 7 Z9 7 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 11 PY 2015 VL 7 IS 5 BP 3289 EP 3297 DI 10.1021/am508052k PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CB4EK UT WOS:000349580800035 PM 25591033 ER PT J AU Zhang, C Binienda, WK Goldberg, RK AF Zhang, Chao Binienda, Wieslaw K. Goldberg, Robert K. TI Free-edge effect on the effective stiffness of single-layer triaxially braided composite SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Textile composites; Elastic properties; Finite element analysis; Statistics; Free-edge effect AB Free-edge effect is known to play an important role in the failure of triaxially braided composites, especially under transverse tension loading conditions. However, there is little understanding available regarding the free-edge effect on the elastic property of the material. The emphasis of the present study is to examine the impact of the free-edge effect on the effective elastic response of a single-layer triaxially braided composite. Transverse tension straight-sided coupon specimens with various widths are tested and analyzed. The experimental results demonstrate an obvious increase in the tangent modulus and failure strength as the specimen width increases. The surface out-of-plane displacement contours present a continuous out-of-plane warping behavior distributed periodically along the free edges in an antisymmetric way. A meso-scale finite element model is utilized to study the coupon specimens; it is found to correlate well with the experimental data in predicting elastic properties and out-of-plane warping behavior. The results indicate that free-edge effect is an inherent factor of the antisymmetric braided architecture of bias fiber bundles. By conducting a dimensional analysis, the relationships between effective moduli and specimen width are quantified using Weibull equations; this method could potentially be used to predict the material properties of large structural components using small-scale test data. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhang, Chao; Binienda, Wieslaw K.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Goldberg, Robert K.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zhang, C (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. EM Chao.Zhang@nrel.gov RI Zhang, Chao/H-3397-2013 NR 23 TC 5 Z9 5 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 EI 1879-1050 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD FEB 11 PY 2015 VL 107 BP 145 EP 153 DI 10.1016/j.compscitech.2014.12.016 PG 9 WC Materials Science, Composites SC Materials Science GA CB4DV UT WOS:000349579300019 ER PT J AU Chou, SS Huang, YK Kim, J Kaehr, B Foley, BM Lu, P Dykstra, C Hopkins, PE Brinker, CJ Huang, JX Dravid, VP AF Chou, Stanley S. Huang, Yi-Kai Kim, Jaemyung Kaehr, Bryan Foley, Brian M. Lu, Ping Dykstra, Conner Hopkins, Patrick E. Brinker, C. Jeffrey Huang, Jiaxing Dravid, Vinayak P. TI Controlling the Metal to Semiconductor Transition of MoS2 and WS2 in Solution SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHEMICALLY EXFOLIATED MOS2; SINGLE-LAYER MOS2; MOLYBDENUM-DISULFIDE; LITHIUM INTERCALATION; HYDROGEN EVOLUTION; RESTACKED MOS2; NANOSHEETS; DICHALCOGENIDES; FABRICATION; SYSTEMS AB Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. Here, we report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. This process connects the scalability of chemical exfoliation with the simplicity of solution processing, ultimately enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium. C1 [Chou, Stanley S.; Kaehr, Bryan; Lu, Ping; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Huang, Yi-Kai; Kim, Jaemyung; Dykstra, Conner; Huang, Jiaxing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Foley, Brian M.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Dykstra, Conner; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Biomol Engn, Ctr Microengn Mat, Albuquerque, NM 87106 USA. RP Dravid, VP (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Int Inst Nanotechnol, Evanston, IL 60208 USA. EM schou@sandia.gov; jiaxing-huang@northwestern.edu; v-dravid@northwestern.edu RI Huang, Jiaxing/B-7521-2009; Dravid, Vinayak/B-6688-2009 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; NSF [DMR 0955612]; National Cancer Institute Center for Cancer Nanotechnology Excellence (CCNE) initiative at Northwestern University [U54A119341]; Army Research Office [W911NF-13-4-0528]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX S.C., B.K., and C.J.B. acknowledge the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division for support. J.H. thanks the NSF for a CAREER Award (DMR 0955612). V.P.D. acknowledges support by the National Cancer Institute Center for Cancer Nanotechnology Excellence (CCNE) initiative at Northwestern University award number U54A119341. B.M.F. and P.E.H. are appreciative for funding from the Army Research Office (W911NF-13-4-0528). Sandia National Laboratories is managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract number DE-AC04-94AL85000. Parts of this work made use of the NUANCE facility with support from NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and Northwestern University. We thank Dr. M. Lilly and Dr. T. Harris for assistance with four probe measurements at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Los Alamos National Laboratory and Sandia National Laboratories. NR 35 TC 37 Z9 37 U1 29 U2 268 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 11 PY 2015 VL 137 IS 5 BP 1742 EP 1745 DI 10.1021/ja5107145 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CB4CM UT WOS:000349575800006 PM 25608577 ER PT J AU Su, Z Miao, YR Mao, SM Zhang, GH Dillon, S Miller, JT Suslick, KS AF Su, Zhi Miao, Yu-Run Mao, Shi-Min Zhang, Guang-Hui Dillon, Shen Miller, Jeffrey T. Suslick, Kenneth S. TI Compression-Induced Deformation of Individual Metal-Organic Framework Microcrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORK; PRESSURE-INDUCED AMORPHIZATION; STRUCTURAL TRANSITION; FTIR SPECTROSCOPY; ZIF-8 FILMS; NANOCRYSTALS; SURFACE AB The deformation and mechanical behavior of individual zeoliticimidazolate framework (ZIF-8) micro- and sub-microcrystals were observed under compression. Youngs modulus and volume changes as a function of applied pressure were determined on individual single crystals, offering insights in the relationship among structure, morphology, and mechanical properties. Dramatic volume decreases and amorphization were detected during compression over a pressure range of 0-4 GPa for individual 1.2 mu m ZIF-8 microcrystals, and the deformed microcrystals partially recovered after pressure release. The orientation and size effects on the mechanical behavior of ZIF-8 nano- and microcrystals were also investigated. The presence of solvates within the pores of the ZIF-8 has a dramatic effect on the mechanical properties of the single crystals. Methanol-solvated ZIF-8 microcrystals are much less deformable than the desolvated microcrystals and shatter completely at very low applied force. C1 [Su, Zhi; Miao, Yu-Run; Suslick, Kenneth S.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Mao, Shi-Min; Dillon, Shen] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zhang, Guang-Hui; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Suslick, KS (reprint author), Univ Illinois, Dept Chem, Urbana, IL 61801 USA. EM ksuslick@illinois.edu RI Zhang, Guanghui/C-4747-2008; ID, MRCAT/G-7586-2011; Suslick, Kenneth/C-3281-2011; OI Zhang, Guanghui/0000-0002-5854-6909; Suslick, Kenneth/0000-0001-5422-0701; Dillon, Shen/0000-0002-6192-4026; Mao, Shimin/0000-0001-9855-3217 FU U.S. Navy [MURI N000141210828]; NSF [DMR 1206355]; U.S. DOE-BES [DEFG02-05ER46217, DE-AC02-06CH11357]; UIUC Frederick Seitz Materials Research Laboratory Central Facilities FX We acknowledge grants from the U.S. Navy (MURI N000141210828, K.S.S.), NSF (DMR 1206355, K.S.S.), U.S. DOE-BES (DEFG02-05ER46217, S.D.), UIUC Frederick Seitz Materials Research Laboratory Central Facilities, the Advanced Photon Source supported by the U.S. DOE-BES (DE-AC02-06CH11357), and MRCAT supported by DOE and MRCAT members. NR 29 TC 7 Z9 7 U1 2 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 11 PY 2015 VL 137 IS 5 BP 1750 EP 1753 DI 10.1021/ja5113436 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CB4CM UT WOS:000349575800008 PM 25633236 ER PT J AU Swanson, KD Ratzloff, MW Mulder, DW Artz, JH Ghose, S Hoffman, A White, S Zadvornyy, OA Broderick, JB Bothner, B King, PW Peters, JW AF Swanson, Kevin D. Ratzloff, Michael W. Mulder, David W. Artz, Jacob H. Ghose, Shourjo Hoffman, Andrew White, Spencer Zadvornyy, Oleg A. Broderick, Joan B. Bothner, Brian King, Paul W. Peters, John W. TI [FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FE-ONLY HYDROGENASE; ACTIVE-SITE; CLOSTRIDIUM-PASTEURIANUM; DESULFOVIBRIO-DESULFURICANS; CHLAMYDOMONAS-REINHARDTII; PHOTOSYNTHETIC ORGANISMS; OXIDATIVE INACTIVATION; MOLECULAR-DYNAMICS; LIGHT SENSITIVITY; ACTIVATION AB The [FeFe]-hydrogenase catalytic site H cluster is a complex iron sulfur cofactor that is sensitive to oxygen (O-2). The O-2 sensitivity is a significant barrier for production of hydrogen as an energy source in water-splitting, oxygenic systems. Oxygen reacts directly with the H cluster, which results in rapid enzyme inactivation and eventual degradation. To investigate the progression of O-2-dependent [FeFe]-hydrogenase inactivation and the process of H cluster degradation, the highly O2-sensitive [FeFe]-hydrogenase HydA1 from the green algae Chlamydomonas reinhardtii was exposed to defined concentrations of O-2 while monitoring the loss of activity and accompanying changes in H cluster spectroscopic properties. The results indicate that H cluster degradation proceeds through a series of reactions, the extent of which depend on the initial enzyme reduction/oxidation state. The degradation process begins with O-2 interacting and reacting with the 2Fe subcluster, leading to degradation of the Fe-2 subcluster and leaving an inactive [4Fe-4S] subcluster state. This final inactive degradation product could be reactivated in vitro by incubation with 2Fe subcluster maturation machinery, specifically HydF(EG), which was observed by recovery of enzyme activity. C1 [Swanson, Kevin D.; Artz, Jacob H.; Ghose, Shourjo; Hoffman, Andrew; White, Spencer; Zadvornyy, Oleg A.; Broderick, Joan B.; Bothner, Brian; Peters, John W.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Ratzloff, Michael W.; Mulder, David W.; King, Paul W.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM paul.king@nrel.gov; john.peters@chemistry.montana.edu RI King, Paul/D-9979-2011; OI King, Paul/0000-0001-5039-654X; Broderick, Joan/0000-0001-7057-9124; Peters, John/0000-0001-9117-9568 FU Air Force Office of Scientific Research [574 FA-9550-11-1-0218]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC36-08-GO28308, DE-FG02-10ER16194]; National Renewable Energy Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-765F00515]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Institute of General Medical Sciences [P41GM103393]; Murdock Charitable Trust; NIH of the Cobre program [5P20RR02437] FX J.W.P. thanks the Air Force Office of Scientific Research grant 574 FA-9550-11-1-0218 for supporting work on the mechanism of oxygen sensitivity. M.W.R, D.W.M, and P.W.K. gratefully acknowledge funding support for CrHydA1 and CaI preparation and FTIR spectra measurements from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and support of the U.S. Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The work on reactivation of damaged CrHydA1 with purified HydF was supported by the U.S. Department of Energy grant DE-FG02-10ER16194 (to J.B.B. and J.W.P.). Use of the. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-765F00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The mass spectrometry facility at MSU receives funding from the Murdock Charitable Trust and NIH 5P20RR02437 of the Cobre program. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. Atomic coordinates were deposited in the PDB (code, 4ROV). NR 50 TC 23 Z9 23 U1 9 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 11 PY 2015 VL 137 IS 5 BP 1809 EP 1816 DI 10.1021/ja510169s PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB4CM UT WOS:000349575800022 PM 25579778 ER PT J AU Ding, TNX Olshansky, JH Leone, SR Alivisatos, AP AF Ding, Tina X. Olshansky, Jacob H. Leone, Stephen R. Alivisatos, A. Paul TI Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOINDUCED CHARGE-TRANSFER; RU-POLYPYRIDINE COMPLEXES; ELECTRON-TRANSFER; CDSE QUANTUM; CHALCOGENIDE NANOCRYSTALS; EXCITON DISSOCIATION; TRANSFER DYNAMICS; LIGAND-EXCHANGE; PHOTOLUMINESCENCE; INTERFACE AB Hole transfer from high photoluminescence quantum yield (PLQY) CdSe-core CdS-shell semiconductor nanocrystal quantum dots (QDs) to covalently linked molecular hole acceptors is investigated. H-1 NMR is used to independently calibrate the average number of hole acceptor molecules per QD, N, allowing us to measure PLQY as a function of N, and to extract the hole transfer rate constant per acceptor, k(ht). This value allows for reliable comparisons between nine different donoracceptor systems with variant shell thicknesses and acceptor ligands, with kht spanning over 4 orders of magnitude, from single acceptor time constants as fast as 16 ns to as slow as 0.13 ms. The PLQY variation with acceptor coverage for all kht follows a universal equation, and the shape of this curve depends critically on the ratio of the total hole transfer rate to the sum of the native recombination rates in the QD. The dependence of k(ht) on the CdS thickness and the chain length of the acceptor is investigated, with damping coefficients beta measured to be (0.24 +/- 0.025) angstrom(-1) and (0.85 +/- 0.1) angstrom(-1) for CdS and the alkyl chain, respectively. We observe that QDs with high intrinsic PLQYs (>79%) can donate holes to surface-bound molecular acceptors with efficiencies up to 99% and total hole transfer time constants as fast as 170 ps. We demonstrate the merits of a system where ill-defined nonradiative channels are suppressed and well-defined nonradiative channels are engineered and quantified. These results show the potential of QD systems to drive desirable oxidative chemistry without undergoing oxidative photodegradation. C1 [Ding, Tina X.; Olshansky, Jacob H.; Leone, Stephen R.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ding, Tina X.; Olshansky, Jacob H.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Ding, Tina X.; Olshansky, Jacob H.; Alivisatos, A. Paul] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apalivisatos@lbl.gov RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11232]; National Science Foundation Graduate Research Fellowship [DGE 1106400] FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11232. T.X.D and J.H.O. acknowledge the National Science Foundation Graduate Research Fellowship under Grant DGE 1106400, and their research peers Brandon Beberwyck and Noah Bronstein for helpful discussions. NR 47 TC 29 Z9 29 U1 12 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 11 PY 2015 VL 137 IS 5 BP 2021 EP 2029 DI 10.1021/ja512278a PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CB4CM UT WOS:000349575800045 PM 25591013 ER PT J AU Elliott, SR Franz, M AF Elliott, Steven R. Franz, Marcel TI Colloquium: Majorana fermions in nuclear, particle, and solid-state physics SO REVIEWS OF MODERN PHYSICS LA English DT Article ID DOUBLE-BETA-DECAY; NON-ABELIAN STATISTICS; NEUTRAL HEAVY-LEPTONS; TOPOLOGICAL INSULATORS; SCINTILLATING BOLOMETERS; SUPERCONDUCTOR; NEUTRINOS; NANOWIRE; SEARCH; LEPTOGENESIS AB Ettore Majorana (1906-1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year, that established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own antiparticle. This work has long had a significant impact in neutrino physics, where this fundamental question regarding the particle remains unanswered. But the formalism he developed has found many uses as there are now a number of candidate spin-1/2 neutral particles that may be truly neutral with no quantum number to distinguish them from their antiparticles. If such particles exist, they will influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double beta decay can exist only if neutrinos are massive Majorana particles. Hence, many efforts to search for this process are underway. Majorana's influence does not stop with particle physics, however, even though that was his original consideration. The equations he derived also arise in solid-state physics where they describe electronic states in materials with superconducting order. Of special interest here is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero energy. These Majorana zero modes are endowed with some remarkable physical properties that may lead to advances in quantum computing and, in fact, there is evidence that they have been experimentally observed. This Colloquium first summarizes the basics of Majorana's theory and its implications. It then provides an overview of the rich experimental programs trying to find a fermion that is its own antiparticle in nuclear, particle, and solid-state physics. C1 [Elliott, Steven R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Franz, Marcel] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Elliott, SR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM elliotts@lanl.gov; franz@physics.ubc.ca FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC52-06NA25396]; NSERC; CIfAR FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-AC52-06NA25396 (S. R. E.). We acknowledge support from NSERC and CIfAR (M. F.). In addition, we are indebted to numerous colleagues for discussions and correspondence that helped shape our understanding of the subject. Of these, our special thanks go to J. Alicea, C. W. J. Beenakker, C.-K. Chiu, A. M. Cook, T. Goldman, I. Herbut, W. Louis, R. Mohapatra, N. Read, G. Refael, G. Senjanovic, and M. M. Vazifeh. NR 173 TC 95 Z9 98 U1 31 U2 99 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD FEB 11 PY 2015 VL 87 IS 1 DI 10.1103/RevModPhys.87.137 PG 27 WC Physics, Multidisciplinary SC Physics GA CB8UT UT WOS:000349907700001 ER PT J AU Payne, CM Knott, BC Mayes, HB Hansson, H Himmel, ME Sandgren, M Stahlberg, J Beckham, GT AF Payne, Christina M. Knott, Brandon C. Mayes, Heather B. Hansson, Henrik Himmel, Michael E. Sandgren, Mats Stahlberg, Jerry Beckham, Gregg T. TI Fungal Cellulases SO CHEMICAL REVIEWS LA English DT Review ID TRICHODERMA-REESEI CELLOBIOHYDROLASE; CELLULOSE-BINDING DOMAIN; GLYCOSIDE HYDROLASE FAMILY; PLANT-CELL-WALL; X-RAY-SCATTERING; HEN EGG-WHITE; FLAVOCYTOCHROME CELLOBIOSE DEHYDROGENASE; LYTIC POLYSACCHARIDE MONOOXYGENASES; NEUTRON FIBER DIFFRACTION; ALPHA-HYDROXYLATING MONOOXYGENASE C1 [Payne, Christina M.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Payne, Christina M.] Univ Kentucky, Ctr Computat Sci, Lexington, KY 40506 USA. [Knott, Brandon C.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Mayes, Heather B.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Hansson, Henrik; Sandgren, Mats; Stahlberg, Jerry] Swedish Univ Agr Sci, Uppsala BioCtr, Dept Chem & Biotechnol, SE-75651 Uppsala, Sweden. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov RI Stahlberg, Jerry/D-4163-2013; Payne, Christina/C-7338-2011; Mayes, Heather/D-8755-2016 OI Stahlberg, Jerry/0000-0003-4059-8580; Payne, Christina/0000-0001-5264-0964; Mayes, Heather/0000-0001-9373-0106 FU August T. Larsson Guest Researcher Programme at the Swedish University of Agricultural Sciences; NREL Laboratory Directed Research and Development Program; US Department of Energy BioEnergy Technologies Office; DOE Computational Science Graduate Fellowship (CSGF) [DE-FG02-97ER25308]; ARCS Foundation Inc., Chicago Chapter; faculty for Natural Resources and Agriculture at the Swedish University of Agricultural Sciences FX We thank our colleagues, past and present, for many productive collaborations and engaging discussions that contributed to ideas in this review. C.M.P. acknowledges the August T. Larsson Guest Researcher Programme at the Swedish University of Agricultural Sciences for funding. B.C.K. and G.T.B. acknowledge the NREL Laboratory Directed Research and Development Program and Director's Fellowship Program for funding. G.T.B. and M.E.H. acknowledge funding from the US Department of Energy BioEnergy Technologies Office. H.B.M. thanks the DOE Computational Science Graduate Fellowship (CSGF), provided under Grant DE-FG02-97ER25308 and the ARCS Foundation Inc., Chicago Chapter. H.H, M.S., and J.S. thank the faculty for Natural Resources and Agriculture at the Swedish University of Agricultural Sciences for support of research through the program "MicroDrivE". NR 1048 TC 77 Z9 78 U1 34 U2 263 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB 11 PY 2015 VL 115 IS 3 BP 1308 EP 1448 DI 10.1021/cr500351c PG 141 WC Chemistry, Multidisciplinary SC Chemistry GA CB4CQ UT WOS:000349576200002 PM 25629559 ER PT J AU Miao, YB Mo, K Zhou, ZJ Liu, X Lan, KC Zhang, GM Miller, MK Powers, KA Almer, J Stubbins, JF AF Miao, Yinbin Mo, Kun Zhou, Zhangjian Liu, Xiang Lan, Kuan-Che Zhang, Guangming Miller, Michael K. Powers, Kathy A. Almer, Jonathan Stubbins, James F. TI In situ synchrotron tensile investigations on the phase responses within an oxide dispersion-strengthened (ODS) 304 steel SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Structure materials; Oxide-dispersion strengthened steel; Atom probe tomography; Transmission electron microscopy; Synchrotron; Wide-angle X-ray scattering ID X-RAY-DIFFRACTION; STAINLESS-STEEL; FERRITIC STEELS; MARTENSITE; DEFORMATION; IRRADIATION; EVOLUTION; NANOCLUSTERS; TEMPERATURE; ALLOYS AB Austenitic oxide dispersion-strengthened (ODS) alloys provide excellent mechanical strength and radiation tolerance along with their intrinsic advantages in corrosion resistance and high temperature creep resistance. This paper reports the in situ synchrotron X-ray diffraction (XRD) tensile test results of ODS 304 stainless steel specimens. The oxygen-enriched nanoparticles were first characterized by both atom probe tomography (APT) and analytic scanning transmission electron microscopy (STEM). Three different types of precipitate phases were recognized, including large scale (around 100 nm) TiN, intermediate scale (around 20 nm) Y-Al-O, and small scale ( < 5 nm) Y-Ti-O. The lattice responses of different phases within the alloy to the externally applied stress indicate a prominent load partitioning phenomenon. This phenomenon was found to be highly dependent on the size of the precipitates. In addition, deformation-induced martensitic transformation was examined by the modified Williamson-Hall analyses of peak broadening, and was found to be different from that in ordinary 304 stainless steel. (C) 2014 Elsevier B.V. All rights reserved. C1 [Miao, Yinbin; Liu, Xiang; Lan, Kuan-Che; Zhang, Guangming; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Mo, Kun] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60493 USA. [Zhou, Zhangjian; Zhang, Guangming] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Miller, Michael K.; Powers, Kathy A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Almer, Jonathan] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60493 USA. RP Miao, YB (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, 216 Talbot Lab,104 South Wright St, Urbana, IL 61801 USA. EM miao2@illinois.edu RI Liu, Xiang/D-2005-2017; OI Liu, Xiang/0000-0002-2634-1888; Miao, Yinbin/0000-0002-3128-4275 FU 973 DOE INL [120293]; U.S. Department of Energy [DEFG02-07ER46453, DE-FG02-07ER46471, DE-AC02-06CH11357]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by 973 DOE INL 120293. The TEM experiments were carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which is partially supported by the U.S. Department of Energy under Grants DEFG02-07ER46453 and DE-FG02-07ER46471. Atom probe tomography (APT) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. M.K.M. was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. Argonne National Laboratory's work was supported by U.S. DOE under Contract no. DE-AC02-06CH11357. NR 41 TC 14 Z9 14 U1 5 U2 52 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 11 PY 2015 VL 625 BP 146 EP 152 DI 10.1016/j.msea.2014.12.017 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CB4DS UT WOS:000349579000017 ER PT J AU Darkins, R Sushko, ML Liu, J Duffy, DM AF Darkins, R. Sushko, M. L. Liu, J. Duffy, D. M. TI The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE self-assembly; micelle; ctac; silicon; topography ID CATIONIC SURFACTANTS; TEMPLATED SYNTHESIS; GRAPHITE SURFACE; ADSORPTION; SIMULATION; MICELLES; FILMS; MESOCHANNELS; BEHAVIOR AB Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C(16)TAC) surfactants at the Si(1 0 0)- and Si(1 1 1)aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(1 0 0) but hemispherical micelles on Si(1 1 1). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces, and reveals that micelle structure can be governed by epitaxial matching even with nonpolar substrates. C1 [Darkins, R.; Duffy, D. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, M. L.; Liu, J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Darkins, R (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM d.duffy@ucl.ac.uk RI Sushko, Maria/C-8285-2014 OI Sushko, Maria/0000-0002-7229-7072 FU EPSRC under the Molecular Modelling and Materials Science Industrial Doctorate Centre; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE; DOE by Battelle [DE-AC05-76RL01830] FX RD acknowledges funding from EPSRC under the Molecular Modelling and Materials Science Industrial Doctorate Centre for force-field testing and the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152 for molecular simulation of surfactant self-assembly. MLS and JL acknowledge DOE support under the same award. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 41 TC 1 Z9 1 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 11 PY 2015 VL 27 IS 5 AR 054008 DI 10.1088/0953-8984/27/5/054008 PG 7 WC Physics, Condensed Matter SC Physics GA AZ8XF UT WOS:000348494300015 PM 25530446 ER PT J AU An, FP Balantekin, AB Band, HR Beriguete, W Bishai, M Blyth, S Brown, RE Butorov, I Cao, GF Cao, J Carr, R Chan, YL Chang, JF Chang, L Chang, Y Chasman, C Chen, HS Chen, HY Chen, QY Chen, SJ Chen, SM Chen, XC Chen, XH Chen, Y Chen, YX Cheng, YP Cherwinka, JJ Chu, MC Cummings, JP Dale, E de Arcos, J Deng, ZY Ding, YY Diwan, MV Draeger, E Du, XF Dwyer, DA Edwards, WR Ely, SR Fu, JY Ge, LQ Gill, R Goett, J Gonchar, M Gong, GH Gong, H Gu, WQ Guan, MY Guo, XH Hackenburg, RW Han, GH Hans, S He, M He, Q Heeger, KM Heng, YK Hinrichs, P Hor, YK Hsiung, YB Hu, BZ Hu, LJ Hu, LM Hu, T Hu, W Huang, EC Huang, HX Huang, HZ Huang, XT Huber, P Hussain, G Isvan, Z Jaffe, DE Jaffke, P Jetter, S Ji, XL Ji, XP Jiang, HJ Jiao, JB Johnson, RA Kang, L Kebwaro, JM Kettell, SH Kramer, M Kwan, KK Kwok, MW Kwok, T Lai, WC Lai, WH Lau, K Lebanowski, L Lee, J Lei, RT Leitner, R Leung, A Leung, JKC Lewis, CA Li, DJ Li, F Li, GS Li, QJ Li, WD Li, XN Li, XQ Li, YZB Liang, H Lin, CJ Lin, GL Lin, PY Lin, SK Link, JM Littenberg, L Littlejohn, BR Liu, DW Liu, H Liu, JC Liu, JL Liu, SS Liu, YB Lu, C Lu, HQ Luk, KB Ma, QM Ma, XB Ma, XY Ma, YQ McDonald, KT McFarlane, MC McKeown, RD Meng, Y Mitchell, I Mohapatra, D Morgan, JE Nakajima, Y Napolitano, J Naumov, D Naumova, E Nemchenok, I Newsom, C Ngai, HY Ngai, WK Ning, Z Ochoa-Ricoux, JP Olshevski, A Patton, S Pec, V Pearson, CE Peng, JC Piilonen, LE Pinsky, L Pun, CSJ Qi, FZ Qi, M Qian, X Raper, N Ren, B Ren, J Rosero, R Roskovec, B Ruan, XC Shao, BB Steiner, H Sun, GX Sun, JL Tam, YH Tang, X Themann, H Tsang, KV Tsang, RHM Tull, CE Tung, YC Viren, B Virostek, S Vorobel, V Wang, CH Wang, LS Wang, LY Wang, LZ Wang, M Wang, NY Wang, RG Wang, W Wang, WW Wang, X Wang, YF Wang, Z Wang, Z Wang, ZM Webber, DM Wei, HY Wei, YD Wen, LJ Whisnant, K White, CG Whitehead, L Wilhelmi, J Wise, T Wong, HLH Wong, SCF Worcester, E Wu, Q Xia, DM Xia, JK Xia, X Xing, ZZ Xu, GH Xu, J Xu, JL Xu, JY Xu, Y Xue, T Yan, J Yang, CG Yang, L Yang, MS Yang, MT Ye, M Yeh, M Yeh, YS Young, BL Yu, GY Yu, JY Yu, ZY Zang, SL Zhan, L Zhang, C Zhang, FH Zhang, JW Zhang, K Zhang, QM Zhang, SH Zhang, YH Zhang, YM Zhang, YX Zhang, ZJ Zhang, ZP Zhang, ZY Zhao, J Zhao, QW Zhao, Y Zhao, YB Zheng, L Zhong, WL Zhou, L Zhou, ZY Zhuang, HL Zou, JH AF An, F. P. Balantekin, A. B. Band, H. R. Beriguete, W. Bishai, M. Blyth, S. Brown, R. E. Butorov, I. Cao, G. F. Cao, J. Carr, R. Chan, Y. L. Chang, J. F. Chang, L. Chang, Y. Chasman, C. Chen, H. S. Chen, H. Y. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, Y. Chen, Y. X. Cheng, Y. P. Cherwinka, J. J. Chu, M. C. Cummings, J. P. Dale, E. de Arcos, J. Deng, Z. Y. Ding, Y. Y. Diwan, M. V. Draeger, E. Du, X. F. Dwyer, D. A. Edwards, W. R. Ely, S. R. Fu, J. Y. Ge, L. Q. Gill, R. Goett, J. Gonchar, M. Gong, G. H. Gong, H. Gu, W. Q. Guan, M. Y. Guo, X. H. Hackenburg, R. W. Han, G. H. Hans, S. He, M. He, Q. Heeger, K. M. Heng, Y. K. Hinrichs, P. Hor, Y. K. Hsiung, Y. B. Hu, B. Z. Hu, L. J. Hu, L. M. Hu, T. Hu, W. Huang, E. C. Huang, H. X. Huang, H. Z. Huang, X. T. Huber, P. Hussain, G. Isvan, Z. Jaffe, D. E. Jaffke, P. Jetter, S. Ji, X. L. Ji, X. P. Jiang, H. J. Jiao, J. B. Johnson, R. A. Kang, L. Kebwaro, J. M. Kettell, S. H. Kramer, M. Kwan, K. K. Kwok, M. W. Kwok, T. Lai, W. C. Lai, W. H. Lau, K. Lebanowski, L. Lee, J. Lei, R. T. Leitner, R. Leung, A. Leung, J. K. C. Lewis, C. A. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. Z. B. Liang, H. Lin, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Link, J. M. Littenberg, L. Littlejohn, B. R. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. S. Liu, Y. B. Lu, C. Lu, H. Q. Luk, K. B. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. McDonald, K. T. McFarlane, M. C. McKeown, R. D. Meng, Y. Mitchell, I. Mohapatra, D. Morgan, J. E. Nakajima, Y. Napolitano, J. Naumov, D. Naumova, E. Nemchenok, I. Newsom, C. Ngai, H. Y. Ngai, W. K. Ning, Z. Ochoa-Ricoux, J. P. Olshevski, A. Patton, S. Pec, V. Pearson, C. E. Peng, J. C. Piilonen, L. E. Pinsky, L. Pun, C. S. J. Qi, F. Z. Qi, M. Qian, X. Raper, N. Ren, B. Ren, J. Rosero, R. Roskovec, B. Ruan, X. C. Shao, B. B. Steiner, H. Sun, G. X. Sun, J. L. Tam, Y. H. Tang, X. Themann, H. Tsang, K. V. Tsang, R. H. M. Tull, C. E. Tung, Y. C. Viren, B. Virostek, S. Vorobel, V. Wang, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Webber, D. M. Wei, H. Y. Wei, Y. D. Wen, L. J. Whisnant, K. White, C. G. Whitehead, L. Wilhelmi, J. Wise, T. Wong, H. L. H. Wong, S. C. F. Worcester, E. Wu, Q. Xia, D. M. Xia, J. K. Xia, X. Xing, Z. Z. Xu, G. H. Xu, J. Xu, J. L. Xu, J. Y. Xu, Y. Xue, T. Yan, J. Yang, C. G. Yang, L. Yang, M. S. Yang, M. T. Ye, M. Yeh, M. Yeh, Y. S. Young, B. L. Yu, G. Y. Yu, J. Y. Yu, Z. Y. Zang, S. L. Zhan, L. Zhang, C. Zhang, F. H. Zhang, J. W. Zhang, K. Zhang, Q. M. Zhang, S. H. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhao, J. Zhao, Q. W. Zhao, Y. Zhao, Y. B. Zheng, L. Zhong, W. L. Zhou, L. Zhou, Z. Y. Zhuang, H. L. Zou, J. H. TI The muon system of the Daya Bay Reactor antineutrino experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrinos; Water shield; Cosmic ray; Muons; Underground ID NEUTRINO EXPERIMENT; CHARGE RATIO; WATER; REFLECTIVITY; DETECTOR; LUMINESCENCE; SPECTRA; PHYSICS; DESIGN; MUSIC AB The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (C) 2014 Elsevier By. All rights reserved. C1 [An, F. P.] East China Univ Sci & Technol, Inst Modern Phys, Shanghai, Peoples R China. [An, F. P.; Cao, G. F.; Cao, J.; Chang, J. F.; Chen, H. S.; Chen, X. H.; Cheng, Y. P.; Deng, Z. Y.; Ding, Y. Y.; Du, X. F.; Fu, J. Y.; Guan, M. Y.; He, M.; Heng, Y. K.; Hu, T.; Hu, W.; Jetter, S.; Ji, X. L.; Li, F.; Li, Q. J.; Li, W. D.; Li, X. N.; Liu, J. C.; Liu, Y. B.; Lu, H. Q.; Ma, Q. M.; Ma, X. Y.; Ma, Y. Q.; Ning, Z.; Qi, F. Z.; Sun, G. X.; Tang, X.; Wang, L. S.; Wang, L. Y.; Wang, R. G.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Wen, L. J.; Wong, H. L. H.; Xia, D. M.; Xing, Z. Z.; Xu, J. L.; Yang, C. G.; Yang, M. S.; Ye, M.; Yu, Z. Y.; Zhan, L.; Zhang, F. H.; Zhang, J. W.; Zhang, S. H.; Zhang, Y. H.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhuang, H. L.; Zou, J. H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Balantekin, A. B.; Band, H. R.; Chen, Q. Y.; Cherwinka, J. J.; Heeger, K. M.; Hinrichs, P.; Lewis, C. A.; McFarlane, M. C.; Webber, D. M.; Wise, T.] Univ Wisconsin, Madison, WI USA. [Band, H. R.; Heeger, K. M.] Yale Univ, Dept Phys, New Haven, CT USA. [Beriguete, W.; Bishai, M.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hackenburg, R. W.; Hans, S.; Hu, L. M.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Rosero, R.; Themann, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.; Zhang, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blyth, S.; Hsiung, Y. B.; Tung, Y. C.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Blyth, S.; Chang, Y.; Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Butorov, I.; Gonchar, M.; Naumov, D.; Naumova, E.; Nemchenok, I.; Olshevski, A.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Carr, R.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.] CALTECH, Pasadena, CA 91125 USA. [Chan, Y. L.; Chen, X. C.; Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Lau, K.; Tam, Y. H.; Wong, S. C. F.; Xu, J. Y.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Chang, L.; Chen, H. Y.; Hu, B. Z.; Lai, W. H.; Lin, G. L.; Lin, P. Y.; Yeh, Y. S.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. [Chen, S. J.; Qi, M.; Wang, W. W.; Yu, G. Y.; Zang, S. L.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. [Chen, S. M.; Gong, G. H.; Gong, H.; Hussain, G.; Lebanowski, L.; Shao, B. B.; Wang, Z.; Wei, H. Y.; Xue, T.; Yu, J. Y.; Zhang, Y. M.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chen, Y.] Shenzhen Univ, Shenzhen, Peoples R China. [Chen, Y. X.; Ma, X. B.; Wang, L. Z.; Zhao, Y.] North China Elect Power Univ, Beijing, Peoples R China. [Cummings, J. P.] Siena Coll, Loudonville, NY USA. [de Arcos, J.; Draeger, E.; White, C. G.] IIT, Dept Phys, Chicago, IL 60616 USA. [Dwyer, D. A.; Edwards, W. R.; Kramer, M.; Lee, J.; Lin, C. J.; Luk, K. B.; Nakajima, Y.; Ochoa-Ricoux, J. P.; Patton, S.; Steiner, H.; Tsang, K. V.; Virostek, S.; Wong, H. L. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ely, S. R.; Huang, E. C.; Liu, D. W.; Ngai, W. K.; Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ge, L. Q.; Jiang, H. J.; Lai, W. C.] Chengdu Univ Technol, Chengdu, Peoples R China. [Goett, J.; Napolitano, J.; Raper, N.; Wilhelmi, J.] Rensselaer Polytech Inst, Dept Phys Applied Phys & Astron, Troy, NY USA. [Gu, W. Q.; Li, G. S.; Liu, J. L.] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. [Guo, X. H.; Hu, L. J.; Wang, N. Y.; Xu, J.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Han, G. H.; McKeown, R. D.; Wang, W.; Zhao, Y.] Coll William & Mary, Williamsburg, VA USA. [He, Q.; Lu, C.; McDonald, K. T.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Hor, Y. K.; Huber, P.; Jaffke, P.; Link, J. M.; Meng, Y.; Mohapatra, D.; Morgan, J. E.; Piilonen, L. E.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA USA. [Huang, H. X.; Ren, J.; Ruan, X. C.; Zhou, Z. Y.] China Inst Autom Energy, Beijing, Peoples R China. [Huang, H. Z.] Univ Calif Los Angeles, Los Angeles, CA USA. [Huang, X. T.; Jiao, J. B.; Wang, M.; Wu, Q.; Xia, X.] Shandong Univ, Jinan 250100, Peoples R China. [Ji, X. P.; Li, X. Q.; Xu, Y.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Johnson, R. A.; Littlejohn, B. R.] Univ Cincinnati, Dept Phys, Cincinnati, OH USA. [Kang, L.; Lei, R. T.; Ren, B.; Wei, Y. D.; Yang, L.; Zhang, Z. J.] Dongguan Univ Technol, Dongguan, Peoples R China. [Kebwaro, J. M.; Yan, J.; Zhang, Q. M.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Kramer, M.; Luk, K. B.; Steiner, H.; Wong, H. L. H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kwok, T.; Leung, A.; Leung, J. K. C.; Liu, S. S.; Ngai, H. Y.; Pun, C. S. J.] Univ Hong Kong, Dept Phys, Pokfulam, Hong Kong, Peoples R China. [Lebanowski, L.; Lin, S. K.; Liu, D. W.; Liu, H.; Mitchell, I.; Newsom, C.; Pinsky, L.; Whitehead, L.; Xu, G. H.] Univ Houston, Dept Phys, Houston, TX USA. [Leitner, R.; Pec, V.; Roskovec, B.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Li, D. J.; Liang, H.; Zhang, Z. P.; Zheng, L.] Univ Sci & Technol, Hefei, Peoples R China. [Li, Y. Z. B.] Sun Yat Sen Zhongshan Univ, Guangzhou, Guangdong, Peoples R China. [Napolitano, J.; Wilhelmi, J.] Temple Univ, Dept Phys, Coll Sci & Technol, Philadelphia, PA 19122 USA. [Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile. [Sun, J. L.; Zhang, Y. X.] China Guangdong Nucl Power Grp, Shenzhen, Peoples R China. [Wang, X.] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China. [Whisnant, K.; Young, B. L.] Iowa State Univ, Ames, IA USA. RP An, FP (reprint author), East China Univ Sci & Technol, Inst Modern Phys, Shanghai, Peoples R China. EM hack@bnl.gov RI Wen, Liangjian/C-5113-2015; Balantekin, Akif Baha/E-4776-2010; Nemchenok, Igor/F-9715-2014; Olshevskiy, Alexander/I-1580-2016; Link, Jonathan/L-2560-2013; Liu, Jianglai/P-2587-2015; Cao, Jun/G-8701-2012; OI Wen, Liangjian/0000-0003-4541-9422; Balantekin, Akif Baha/0000-0002-2999-0111; Olshevskiy, Alexander/0000-0002-8902-1793; Link, Jonathan/0000-0002-1514-0650; Liu, Jianglai/0000-0002-4563-3157; Zhong, Weili/0000-0002-4566-5490; Wang, Zhimin/0000-0002-8651-8999; Cao, Jun/0000-0002-3586-2319; Ngai, Ho Yin/0000-0003-0336-2165; HSIUNG, YEE/0000-0003-4801-1238; Qian, Xin/0000-0002-7903-7935; Lebanowski, Logan/0000-0002-8255-6613; Zhang, Chao/0000-0003-2298-6272; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555 FU Ministry of Science and Technology of China; United States Department of Energy; Chinese Academy of Sciences; National Natural Science Foundation of China; Guangdong provincial government; Shenzhen Municipal government; China General Nuclear Power Corporation; Shanghai Laboratory for particle physics and cosmology; Research Grants Council of the Hong Kong Special Administrative Region of China; focused investment scheme of CUHK; University Development Fund of The University of Hong Kong; MOE program for Research of Excellence at National Taiwan University; NSC funding support from Taiwan; U.S. National Science Foundation; Alfred P. Sloan Foundation; University of Wisconsin; Virginia Polytechnic Institute and State University; Princeton University; California Institute of Technology, University of California at Berkeley; Ministry of Education, Youth and Sports of the Czech Republic; Joint Institute of Nuclear Research in Dubna, Russia; NSFC-RFBR joint research program FX The Daya Bay experiment is supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen Municipal government, the China General Nuclear Power Corporation (formerly the China Guangdong Nuclear Power Group), Shanghai Laboratory for particle physics and cosmology, the Research Grants Council of the Hong Kong Special Administrative Region of China, the focused investment scheme of CUHK and University Development Fund of The University of Hong Kong, the MOE program for Research of Excellence at National Taiwan University and NSC funding support from Taiwan, the U.S. National Science Foundation, the Alfred P. Sloan Foundation, the University of Wisconsin, the Virginia Polytechnic Institute and State University, Princeton University, California Institute of Technology, University of California at Berkeley, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, and the NSFC-RFBR joint research program. We are grateful for the ongoing cooperation from the China General Nuclear Power Corporation. NR 40 TC 9 Z9 9 U1 5 U2 84 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2015 VL 773 BP 8 EP 20 DI 10.1016/j.nima.2014.09.070 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX3GH UT WOS:000346827700002 ER PT J AU Iyengar, A Beach, M Newby, RJ Fabris, L Heilbronn, LH Hayward, JP AF Iyengar, A. Beach, M. Newby, R. J. Fabris, L. Heilbronn, L. H. Hayward, J. P. TI Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fast neutron; Background radiation; Passive detection; Liquid scintillation detectors; Standoff detection ID COSMIC-RAYS; BORDERS AB Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was < 2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of Lens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric. (C) 2014 Elsevier B.V. All rights reserved. C1 [Iyengar, A.; Beach, M.; Heilbronn, L. H.; Hayward, J. P.] Univ Tennessee, Dept Nucl & Radiol Engn, Knoxville, TN 37996 USA. [Newby, R. J.; Fabris, L.; Hayward, J. P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Iyengar, A (reprint author), Univ Tennessee, Dept Nucl & Radiol Engn, Knoxville, TN 37996 USA. EM aiyengar@utk.edu OI Newby, Robert/0000-0003-3571-1067 FU US Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-10-X-00662, IAA HSHQDC-13-X-00172] FX This work has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-10-X-00662 and IAA HSHQDC-13-X-00172. This support does not constitute an express or implied endorsement on the part of the Government. NR 15 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2015 VL 773 BP 27 EP 32 DI 10.1016/j.nima.2014.10.045 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX3GH UT WOS:000346827700004 ER PT J AU Fomin, N Greene, GL Allen, RR Cianciolo, V Crawford, C Tito, TM Huffman, PR Iverson, EB Mahurin, R Snow, WM AF Fomin, N. Greene, G. L. Allen, R. R. Cianciolo, V. Crawford, C. Tito, T. M. Huffman, P. R. Iverson, E. B. Mahurin, R. Snow, W. M. TI Fundamental neutron physics beamline at the spallation neutron source at ORNL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fundamental neutron physics; Spallation; Beta decay ID ULTRACOLD NEUTRONS; COLD NEUTRONS; PSI; FACILITY; DESIGN; GUIDE; SINQ AB We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fomin, N.; Greene, G. L.] Univ Tennessee, Knoxville, TN 37996 USA. [Greene, G. L.; Allen, R. R.; Cianciolo, V.; Huffman, P. R.; Iverson, E. B.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Crawford, C.] Univ Kentucky, Lexington, KY USA. [Huffman, P. R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Mahurin, R.] Middle Tennessee State Univ, Murfreesboro, TN 37130 USA. [Snow, W. M.] Indiana Univ, Bloomington, IN USA. [Snow, W. M.] Ctr Explorat Energy & Matter, Bloomington, IN USA. [Tito, T. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mahurin, R.] Univ Manitoba, Winnipeg, MB, Canada. RP Fomin, N (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM nfomin@utk.edu OI Iverson, Erik /0000-0002-7920-705X FU NSF [NSF PHYS-0457219, NSF PHYS-0758018]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-03ER41258, DE-FG02-97ER41042]; Indiana University Center for Spacetime Symmetries FX W.M. Snow acknowledges support from NSF grants # NSF PHYS-0457219 and NSF PHYS-0758018, as well as the Indiana University Center for Spacetime Symmetries. The material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under award numbers DE-FG02-03ER41258 and DE-FG02-97ER41042. This work was carried out at the Spallation Neutron Source at ORNL, a DOE Office of Science User Facility. NR 34 TC 4 Z9 4 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2015 VL 773 BP 45 EP 51 DI 10.1016/j.nima.2014.10.042 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX3GH UT WOS:000346827700007 ER PT J AU Collar, JI Fields, NE Hai, M Hossbach, TW Orrell, JL Overman, CT Perumpilly, G Scholz, B AF Collar, J. I. Fields, N. E. Hai, M. Hossbach, T. W. Orrell, J. L. Overman, C. T. Perumpilly, G. Scholz, B. TI Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino interactions; Spallation sources; Cesium iodide; Coherent neutrino scattering; CENNS ID PULSE-SHAPE DISCRIMINATION; DARK-MATTER EXPERIMENTS; CSI(TL) CRYSTALS; INTERNAL AMPLIFICATION; DIGITAL DISCRIMINATION; GERMANIUM DETECTOR; CSI(NA) CRYSTALS; STELLAR COLLAPSE; RARE PROCESSES; GAMMA-RAYS AB We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated similar to 7 keVnr low energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross section. The cross section for the (208)pb (nu(e),e(-))Bi-208 reaction, of interest for future supernova neutrino defection, can be simultaneously obtained. (C) 2014 Elsevier B.V. All rights reserved. C1 [Collar, J. I.; Fields, N. E.; Hai, M.; Perumpilly, G.; Scholz, B.] Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Collar, J. I.; Fields, N. E.; Hai, M.; Perumpilly, G.; Scholz, B.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hossbach, T. W.; Orrell, J. L.; Overman, C. T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Collar, JI (reprint author), Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. EM collar@uchicago.edu RI Orrell, John/E-9313-2015 OI Orrell, John/0000-0001-7968-4051 FU NNSA Stewardship Science Graduate Fellowship program [DE-FC52-08NA28752]; Intelligence Community Postdoctoral Research Fellowship Program; University of Chicago [NSF PHY-1125897] FX We are indebted to our colleagues from the COHERENT collaboration for many useful exchanges, in particular to P.S. Barbeau, Yu. Efremenko and K. Scholberg, and to I. Lawson for facilitating many sample measurements at SNOLAB. N.E.F. was supported by the NNSA Stewardship Science Graduate Fellowship program under grant number DE-FC52-08NA28752. T.W.H. was supported by the Intelligence Community Postdoctoral Research Fellowship Program. Additional support was received from the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. J.I.C. acknowledges the hospitality of the International Institute of Physics at the Universidade Federal do Rio Grande do Norte during the completion of this manuscript. This work was completed in part with resources provided by the University of Chicago Research Computing Center. NR 81 TC 5 Z9 5 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2015 VL 773 BP 56 EP 65 DI 10.1016/j.nima.2014.11.037 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX3GH UT WOS:000346827700009 ER PT J AU Abrecht, DG Schwantes, JM Kukkadapu, RK McDonald, BS Eiden, GC Sweet, LE AF Abrecht, David G. Schwantes, Jon M. Kukkadapu, Ravi K. McDonald, Benjamin S. Eiden, Gregory C. Sweet, Lucas E. TI Real-time noise reduction for Mossbauer spectroscopy through online implementation of a modified Kalman filter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Mossbauer spectroscopy; Software; Spectrum filtering; Signal-to-noise ratio ID RESOLUTION; ALGORITHM; SPECTRA AB Spectrum-processing software that incorporates a Gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mossbauer spectroscopy. The filter was optimized for the breadth of the Gaussian using the Mossbauer spectrum of natural iron foil, and comparisons among the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a Gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed that no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications. (C) 2014 Elsevier B.V. All rights reserved C1 [Abrecht, David G.; Schwantes, Jon M.; McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Abrecht, DG (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM david.abrecht@pnnl.gov OI McDonald, Benjamin/0000-0002-4596-9670 FU Pacific Northwest National Laboratory utilizing Laboratory Directed Research and Development (LDRD) funds; Battelle Memorial Institute for the US Department of Energy [DE-AC06-76RL0-1830] FX The authors would like to thank Drs. Sean Robinson and Rick Wittman for insightful comments and in-depth review. We would also like to acknowledge the Environmental Molecular Sciences Laboratory (EMSL), located at Pacific Northwest National Laboratory, for assistance with the Mossbauer efforts. This work was funded by Pacific Northwest National Laboratory utilizing Laboratory Directed Research and Development (LDRD) funds. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under contract DE-AC06-76RL0-1830. NR 24 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2015 VL 773 BP 66 EP 71 DI 10.1016/j.nima.2014.10.053 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AX3GH UT WOS:000346827700010 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakira, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Calobaa, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepaa, A Bret, MC Cantero, J Cantrilla, R Cao, T Garrido, MDMC Caprinia, I Caprinia, M Capua, M Caputo, R Cardarellia, R Carli, T Carlinoa, G Carminati, L Caron, S Carquina, E Carrillo-Montoyac, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Mirandab, E Castelli, A Gimenez, VC Castroa, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavallia, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueirab, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetinb, SA Chafaqa, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaeva, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Mourslie, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodinia, G Chisholm, AS Chislett, RT Chitana, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftcia, AK Ciftcia, R Cinca, D Cindro, V Ciocio, A Cirkovicb, P Citron, ZH Citterioa, M Ciubancana, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colomboc, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connellb, SH Connelly, IA Consonni, SM Consorti, V Constantinescua, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradia, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costaa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuca, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M Sousa, MJDCS Da Via, C Dabrowskia, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darboa, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davie, E Davies, M Davignon, O Davison, AR Davison, P Davygoraa, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundisa, R De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedisa, D De Salvoa, A De Sanctis, U De Santo, A DeVivieDeRegie, JB Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orsoa, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaza, MA Diehl, EB Dietrich, J Dietzscha, TA Diglio, S Dimitrievskaa, A Dingfelder, J Dionisi, C Ditaa, P Ditaa, S Dittus, F Djama, F Djobavab, T Do Valec, MAB Wemans, ADV Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadellid, M Donati, S Dondero, P Donini, J Dopke, J Doriaa, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducua, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunforda, M Yildiza, HD Duren, M Durglishvilib, A Dwuznika, M Dyndala, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Erikssona, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falcianoa, S Falla, RJ Faltova, J Fanga, Y Fanti, M Farbin, A Farillaa, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassie, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federica, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Fengd, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferraria, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustosb, ACF Flowerdew, MJ Formica, A Forti, A Fortina, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Gonalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gssling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hopkins, WH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Kneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kudaya, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P LeDortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Lie, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopesa, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminaria, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzicb, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A De Andrade Filho, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjrnmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrella, S Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruanc, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharfa, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seustera, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shana, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silversteina, SB Simak, V Simard, O Simica, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighia, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescua, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavinaa, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chiltona, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoiceaa, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoyc, S Sumida, T Sun, S Suna, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykoraa, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirouta, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarellia, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK TenKate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokara, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Ah, JT Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Triggera, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncona, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadzea, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorachea, A Tudorachea, V Tuna, AN Tupputi, SA Af, ST Turecek, D Cakird, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Varia, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Venezianoa, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesia, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Ai, TV Boeriuc, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogela, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevica, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Aj, CW Wang, C Wang, F Wang, H Wang, H Wang, J Wanga, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wesselsa, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xua, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yange, H Yang, H Yang, UK Yang, Y Yanush, S Yaoa, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmazb, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemlaa, A Zengel, K Zenin, O Zenisa, T Zerwas, D Della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhangd, X Zhang, Z Zhaob, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhud, CG Zhua, H Zhu, J Zhub, Y Zhuanga, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakira, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Calobaa, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepaa, A. Bret, M. Cano Cantero, J. Cantrilla, R. Cao, T. Garrido, M. D. M. Capeans Caprinia, I. Caprinia, M. Capua, M. Caputo, R. Cardarellia, R. Carli, T. Carlinoa, G. Carminati, L. Caron, S. Carquina, E. Carrillo-Montoyac, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Mirandab, E. Castelli, A. Gimenez, V. Castillo Castroa, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavallia, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueirab, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetinb, S. A. Chafaqa, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaeva, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Mourslie, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodinia, G. Chisholm, A. S. Chislett, R. T. Chitana, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftcia, A. K. Ciftcia, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovicb, P. Citron, Z. H. Citterioa, M. Ciubancana, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colomboc, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connellb, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescua, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradia, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costaa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuca, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowskia, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darboa, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davie, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygoraa, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundisa, R. De Castro, S. De Cecco, S. De Groot, N. De Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedisa, D. De Salvoa, A. De Sanctis, U. De Santo, A. DeVivieDeRegie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orsoa, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaza, M. A. Diehl, E. B. Dietrich, J. Dietzscha, T. A. Diglio, S. Dimitrievskaa, A. Dingfelder, J. Dionisi, C. Ditaa, P. Ditaa, S. Dittus, F. Djama, F. Djobavab, T. Do Valec, M. A. B. Wemans, A. Do Valle Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadellid, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doriaa, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducua, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunforda, M. Yildiza, H. Duran Duren, M. Durglishvilib, A. Dwuznika, M. Dyndala, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Erikssona, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falcianoa, S. Falla, R. J. Faltova, J. Fanga, Y. Fanti, M. Farbin, A. Farillaa, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassie, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federica, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Fengd, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferraria, R. De Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustosb, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortina, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Gonalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. De la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gssling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Jimenez, Y. Hernndez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Kneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kudaya, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. LeDortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Lie, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopesa, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminaria, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzicb, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mckee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjrnmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrella, S. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruanc, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharfa, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seustera, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shana, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silversteina, S. B. Simak, V. Simard, O. Simica, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighia, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescua, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavinaa, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chiltona, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoiceaa, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoyc, S. Sumida, T. Sun, S. Suna, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykoraa, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirouta, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarellia, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. TenKate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokara, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torr Ah, J. Toth Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Triggera, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncona, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadzea, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorachea, A. Tudorachea, V. Tuna, A. N. Tupputi, S. A. Af, S. Turchikhin Turecek, D. Cakird, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Varia, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Venezianoa, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesia, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Ai, T. Vickeyc Boeriuc, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogela, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevica, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Aj, C. Wang Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wanga, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wesselsa, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xua, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yange, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yaoa, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmazb, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemlaa, A. Zengel, K. Zenin, O. Zenisa, T. Zerwas, D. Della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhangd, X. Zhang, Z. Zhaob, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhud, C. G. Zhua, H. Zhu, J. Zhub, Y. Zhuanga, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for resonant diboson production in the llq(q)over-bar final state in pp collisions at root s=8 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CARLO EVENT GENERATOR; HADRON COLLIDERS; TECHNICOLOR; LEPTONS; PHYSICS; LHC AB This paper reports on a search for narrow resonances in diboson production in the llq (q) over bar final state using pp collision data corresponding to an integrated luminosity of 20 fb(-1) collected at root s = 8 TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95 % confidence level are set on the production cross section times branching ratio for Kaluza-Klein gravitons predicted by the Randall-Sundrum model and for Extended Gauge Model W' bosons. These results lead to the exclusion of mass values below 740 and 1590 GeV for the graviton and W' boson respectively. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakira, O.; Ciftcia, A. K.; Ciftcia, R.; Yildiza, H. Duran; Kudaya, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmazb, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoyc, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakird, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievskaa, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simica, Lj.; Milosavljevica, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovicb, P.; Mamuzicb, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Schulz, H.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetinb, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradia, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighia, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hill, J. C.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Amundsen, G.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Calobaa, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueirab, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [Do Valec, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadellid, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprinia, I.; Caprinia, M.; Chitana, A.; Ciubancana, M.; Constantinescua, S.; Cuciuca, C. -M.; Ditaa, P.; Ditaa, S.; Ducua, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoiceaa, G.; Tudorachea, A.; Tudorachea, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; TenKate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquina, E.; Diaza, M. A.; Vogela, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fanga, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shana, L. Y.; Suna, X.; Wanga, J.; Xua, D.; Yaoa, L.; Zhua, H.; Zhuanga, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhaob, Z.; Zhub, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Fengd, C.; Ge, P.; Mad, L. L.; Zhangd, X.; Zhud, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Lie, L.; Yange, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] IN2P3, CNRS, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowskia, W.; Dwuznika, M.; Dyndala, M.; Grabowska-Bold, I.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemlaa, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gssling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Buehrer, F.; Buscher, D.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Kneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bruneliere, R.; Bucci, F.; Toro, R. Camacho; Clark, A.; Clark, P. J.; Coniavitis, E.; Delitzsch, C. M.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darboa, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadzea, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobavab, T.; Durglishvilib, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; De Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kareem, M. J.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygoraa, Y.; Dietzscha, T. A.; Dunforda, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharfa, V.; Schultz-Coulon, H. -C.; Wesselsa, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colomboc, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Isaksson, C.; Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodinia, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjrnmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Hulsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Ah, J. Toth; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Ah, J. Toth; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavallia, D.; Citterioa, M.; Consonni, S. M.; Costaa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarellia, G. F.; Troncona, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Af, S. Turchikhin] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlinoa, G.; Chiefari, G.; Conventi, F.; De Asmundisa, R.; Della Pietra, M.; Di Donato, C.; Doriaa, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Triggera, I. M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Triggera, I. M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; DeVivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; DeVivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davie, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferraria, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesia, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orsoa, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orsoa, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrilla, R.; Carvalho, J.; Castroa, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Gonalo, R.; Jorge, P. M.; Lopesa, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedisa, D.; De Salvoa, A.; Di Domenico, A.; Dionisi, C.; Falcianoa, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminaria, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Varia, R.; Venezianoa, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarellia, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farillaa, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescua, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaqa, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimic, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaouid, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaouid, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Mourslie, R. Cherkaoui; Fassie, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] Commissariat Energie Atom & Energies Alternat, CEA Saclay, Inst Rech Lois Fondament Univers, DSM,IRFU, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Galhardo, B.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federica, P.; Plazak, L.; Stavinaa, P.; Sykoraa, I.; Tokara, S.; Zenisa, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Mirandab, E.; Connellb, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoyac, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruanc, X.; Ai, T. Vickeyc; Boeriuc, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silversteina, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Aj, C. Wang; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Int Ctr Elementary Particle Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepaa, A.; Chekulaeva, S. V.; Fortina, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seustera, R.; Stelzer-Chiltona, O.; Tafirouta, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustosb, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Alhroob, M.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernndez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torr; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernndez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torr; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernndez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torr; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernndez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torr; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernndez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torr; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Galea, C.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.; Davie, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Galhardo, B.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores; Lee, L.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS, IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Af, S. Turchikhin] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Ah, J. Toth] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Ai, T. Vickeyc] Univ Oxford, Dept Phys, Oxford, England. [Aj, C. Wang] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Chekulaev, Sergey/O-1145-2015; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ferrando, James/A-9192-2012; Boyko, Igor/J-3659-2013; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Warburton, Andreas/N-8028-2013; Livan, Michele/D-7531-2012; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Mitsou, Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017 OI Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; spagnolo, stefania/0000-0001-7482-6348; Ferrando, James/0000-0002-1007-7816; Boyko, Igor/0000-0002-3355-4662; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315; Livan, Michele/0000-0002-5877-0062; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Mitsou, Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759; Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, UK; Royal Society, UK; Leverhulme Trust, UK; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 59 TC 38 Z9 38 U1 10 U2 52 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 10 PY 2015 VL 75 IS 2 AR 69 DI 10.1140/epjc/s10052-015-3261-8 PG 20 WC Physics, Particles & Fields SC Physics GA CI1ZU UT WOS:000354544800006 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, C Martins, TD Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, S Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Nowak, F Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schrder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, U Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendia, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Biasotto, M Branca, A Dall'Osso, M Dorigo, T Dosselli, U Galanti, M Gasparini, F Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Ventura, S Zotto, P Zucchetta, A Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Caiulo, D Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, TA Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Park, S Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Ershov, A Gribushin, A Khein, L Klyukhin, V Kodolova, O Lokhtin, I Lukina, O Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C De Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berneta, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschia, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimiae, M Piparo, D Plagge, M Racz, A Rolandia, G Rovere, M Sakulin, H Schaefer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicasa, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veresa, GI Vlimant, JR Wardle, N Woehri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC Del Arbol, PMR Meister, D Mohr, N Nagelia, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumova, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amslera, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakircia, MN Cercia, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onenguta, G Ozdemir, K Ozturka, S Polatoz, A Soguta, K Cercia, DS Talia, B Topaklia, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinara, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildaka, B Kayaa, M Kayaa, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbolda, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaeva, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucasa, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenkoa, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCDLB Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Babb, J Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienkoa, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovica, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayraka, EA Bilkia, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkayaa, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozoka, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkina, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Iii, RPK Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Sticklanda, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhalia, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamona, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Martins Junior, Correa Dos Reis Martins, T. Herrera, C. Mora Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, S. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schrder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendia, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Biasotto, M. Branca, A. Dall'Osso, M. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Ventura, S. Zotto, P. Zucchetta, A. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Caiulo, D. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, T. A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Park, S. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Ershov, A. Gribushin, A. Khein, L. Klyukhin, V. Kodolova, O. Lokhtin, I. Lukina, O. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. De Martino, E. Navarro Yzquierdo, A. Perez-Calero Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Soares, M. S. Albajar, C. De Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Campderros, J. Duarte Fernandez, M. Gomez, G. Graziano, A. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berneta, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschia, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandia, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicasa, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veresa, G. I. Vlimant, J. R. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Dunser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. Del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Nagelia, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumova, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amslera, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakircia, M. N. Cercia, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onenguta, G. Ozdemir, K. Ozturka, S. Polatoz, A. Soguta, K. Cercia, D. Sunar Talia, B. Topaklia, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinara, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildaka, B. Kayaa, M. Kayaa, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbolda, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaeva, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucasa, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenkoa, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Babb, J. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wurthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienkoa, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovica, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayraka, E. A. Bilkia, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkayaa, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozoka, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkina, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Iii, R. P. Kenny Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stockli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Sticklanda, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhalia, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamona, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Vuosalo, C. Woods, N. CA CMS Collaboration TI Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at root s=8 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID RAPIDITY GAPS; LHC AB The purely electroweak (EW) cross section for the production of two jets in association with a Z boson, in proton-proton collisions at root s = 8 TeV, is measured using data recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 19.7 fb(-1). The electroweak cross section for the lljj final state (with l = e or mu and j representing the quarks produced in the hard interaction) in the kinematic region defined by M-ll > 50 GeV, M-jj > 120 GeV, transverse momentum p(Tj) > 25 GeV, and pseudorapidity vertical bar eta(j)vertical bar < 5, is found to be sigma(EW) (lljj) = 174 +/- 15 (stat) +/- 40 (syst) fb, in agreement with the standard model prediction. The associated jet activity of the selected events is studied, in particular in a signal-enriched region of phase space, and the measurements are found to be in agreement with QCD predictions. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Martins Junior, Correa; Dos Reis Martins, T.; Herrera, C. Mora; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Mahmoud, M. A.; Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, IN2P3 CNRS, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Univ Haute Alsace Mulhouse, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, CNRS IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schrder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] INPP, NCSR Demokritos, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendia, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [Di Guida, S.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Biasotto, M.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Ventura, S.; Zotto, P.; Zucchetta, A.] INFN Sez Padova, Padua, Italy. [Branca, A.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] INFN Sez Paviaa, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Caiulo, D.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] INFN Sez Pisa, Pisa, Italy. [Caiulo, D.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Caiulo, D.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] INFN Sez Romaa, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Ozoka, F.] CIEMAT, Madrid, Spain. [Albajar, C.; De Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berneta, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschia, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandia, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicasa, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veresa, G. I.; Vlimant, J. R.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nagelia, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumova, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amslera, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakircia, M. N.; Cercia, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onenguta, G.; Ozdemir, K.; Ozturka, S.; Polatoz, A.; Soguta, K.; Cercia, D. Sunar; Talia, B.; Topaklia, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinara, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildaka, B.; Kayaa, M.; Kayaa, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbolda, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaeva, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucasa, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenkoa, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wurthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienkoa, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovica, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayraka, E. A.; Bilkia, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkayaa, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozoka, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkina, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Iii, R. P. Kenny; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Sticklanda, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhalia, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamona, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Masetti, G.; Giordano, F.; Fiorendi, S.; Gennai, S.; Lucchini, M. T.; Di Guida, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Argiro, S.; Casasso, S.; Obertino, M. M.; Schizzi, A.; Sticklanda, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien,Univ Strasb, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.; Berneta, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veresa, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Debrecen Univ Med, H-4012 Debrecen, Hungary. [Banerjee, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Moon, C. S.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.; Heredia-de La Cruz, I.] Purdue Univ, W Lafayette, IN 47907 USA. Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienkoa, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschia, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandia, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandia, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicasa, P.] Univ Athens, Athens, Greece. [Nagelia, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumova, A.; Nikitenkoa, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amslera, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakircia, M. N.; Ozturka, S.; Topaklia, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cercia, S.; Cercia, D. Sunar; Talia, B.] Adiyaman Univ, Adiyaman, Turkey. [Onenguta, G.] Cag Univ, Mersin, Turkey. [Soguta, K.] Mersin Univ, Mersin, Turkey. [Karapinara, G.] Izmir Inst Technol, Izmir, Turkey. [Isildaka, B.] Ozyegin Univ, Istanbul, Turkey. [Kayaa, M.] Marmara Univ, Istanbul, Turkey. [Kayaa, O.] Kafkas Univ, Kars, Turkey. [Newbolda, D. M.; Lucasa, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaeva, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovica, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovica, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Albayraka, E. A.; Ozoka, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilkia, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkayaa, H.] Erzincan Univ, Erzincan, Turkey. [Yetkina, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhalia, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamona, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Lokhtin, Igor/D-7004-2012; Lo Vetere, Maurizio/J-5049-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Manganote, Edmilson/K-8251-2013; candelise, vieri/H-2195-2015; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Petrushanko, Sergey/D-6880-2012; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Lo Vetere, Maurizio/0000-0002-6520-4480; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Rahatlou, Shahram/0000-0001-9794-3360; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR (Italy) [20108T4XTM]; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 51 TC 1 Z9 1 U1 11 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 10 PY 2015 VL 75 IS 2 AR 66 DI 10.1140/epjc/s10052-014-3232-5 PG 35 WC Physics, Particles & Fields SC Physics GA CI1ZU UT WOS:000354544800003 ER PT J AU Lee, K Howe, JD Lin, LC Smit, B Neaton, JB AF Lee, Kyuho Howe, Joshua D. Lin, Li-Chiang Smit, Berend Neaton, Jeffrey B. TI Small-Molecule Adsorption in Open-Site Metal-Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design SO CHEMISTRY OF MATERIALS LA English DT Article ID IRON(II) COORDINATION SITES; CARBON-DIOXIDE ADSORPTION; AUGMENTED-WAVE METHOD; CO2 ADSORPTION; FORCE-FIELD; HYDROGEN ADSORPTION; ACETYLENE STORAGE; ROOM-TEMPERATURE; BINDING NATURE; HIGH-CAPACITY AB Using density functional theory, we systematically compute and investigate the binding enthalpies of 14 different small molecules in a series of isostructural metalorganic frameworks, M-MOF-74, with M = Mg, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. The small molecules we consider include major flue-gas components, trace gases, and small hydrocarbons, i.e., H-2, CO, CO2, H2O, H2S, N-2, NH3, SO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8. In total, the adsorption energetics of 140 unique systems are presented and discussed. Dispersion interactions are included by employing a nonlocal van der Waals density functional, vdW-DF2. Hubbard U corrections are applied to the localized d electrons of transition metal atoms, and the impact of such corrections is assessed quantitatively. For systems for which measured binding enthalpies have been reported, our calculations lead to excellent overall agreement with experimentally determined structures and isosteric heats of adsorption. For systems that have yet to be realized or characterized, this study provides quantitative predictions, establishes a better understanding of the role of different transition-metal cations in small-molecule binding at open-metal sites, and identifies routes for predicting potential candidates for energy-related gas-separation applications. For example, we predict that Cu-MOF-74 will exhibit selectivity of CO2 over H2O and that Mn-MOF-74 can be used to separate trace flue-gas impurities and toxic gases from gas mixtures. C1 [Lee, Kyuho; Howe, Joshua D.; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Lee, Kyuho; Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Howe, Joshua D.; Lin, Li-Chiang; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. [Smit, Berend] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. RP Smit, B (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM Berend-Smit@berkeley.edu; jbneaton@lbl.gov RI Smit, Berend/B-7580-2009; Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Lin, Li-Chiang/J-8120-2014; OI Smit, Berend/0000-0003-4653-8562; Neaton, Jeffrey/0000-0001-7585-6135; Lin, Li-Chiang/0000-0002-2821-9501 FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. K.L. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Award DE-FG02-12ER16362. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231, and computational resources were provided by DOE (LBNL Lawrencium and NERSC). NR 80 TC 39 Z9 39 U1 44 U2 236 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 668 EP 678 DI 10.1021/cm502760q PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500004 ER PT J AU Jones, CJ Chattopadhyay, S Gonzalez-Pech, NI Avendano, C Hwang, NN Lee, SS Cho, MJ Ozarowski, A Prakash, A Mayo, JT Yavuz, C Colvin, VL AF Jones, Christopher J. Chattopadhyay, Soma Gonzalez-Pech, Natalia I. Avendano, Carolina Hwang, Nina Lee, Seung Soo Cho, Minjung Ozarowski, Andrew Prakash, Arjun Mayo, J. T. Yavuz, Cafer Colvin, Vicki. L. TI A Novel, Reactive Green Iron Sulfide (Sulfide Green Rust) Formed on Iron Oxide Nanocrystals SO CHEMISTRY OF MATERIALS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ZERO-VALENT IRON; REDUCTIVE TRANSFORMATION; MAGNETITE STOICHIOMETRY; NANOPARTICLES; MOSSBAUER; COMPLEXES; CHEMISTRY; OXIDATION; GOETHITE AB Iron oxide nanocrystals are of great scientific and technological interest. In this work, these materials are the starting point for producing a reactive nanoparticle whose surface resembles that of natural green rusts. Treatment of iron oxide nanoparticles with cysteamine leads to the reduction of iron and the formation of a brilliant green aqueous solution of nanocrystals rich in iron(II). These materials remained crystalline with magnetic and structural features of the original iron oxide. However, new low-angle X-ray diffraction peaks as well as vibrational features characteristic of cysteamine were found in the nanocrystalline product. X-ray absorption spectroscopy (XAS), X-ray photoemission (XPS) and Mossbauer spectroscopies indicated the presence of an iron(II)-rich phase with high sulfur content analogous to the ironoxygen structures found in natural green rusts. Electron microscopy found that these structural components remained associated with the nonreduced iron oxide cores. These sulfur-rich analogs of natural green rusts are highly reactive and were able to rapidly degrade a model organic dye in water. This observation suggests possible actuation with a cysteamine treatment of inert and magnetic iron oxide particles at the point-of-use for environmental remediation. C1 [Jones, Christopher J.; Gonzalez-Pech, Natalia I.; Avendano, Carolina; Hwang, Nina; Lee, Seung Soo; Cho, Minjung; Prakash, Arjun; Mayo, J. T.; Yavuz, Cafer; Colvin, Vicki. L.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Chattopadhyay, Soma] Argonne Natl Lab, CSRRI IIT, MRCAT, Adv Photon Source, Argonne, IL 60439 USA. [Chattopadhyay, Soma] IIT, Dept Phys, Chicago, IL 60616 USA. [Ozarowski, Andrew] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Colvin, VL (reprint author), Rice Univ, Dept Chem, MS 60, Houston, TX 77005 USA. EM colvin@rice.edu RI ID, MRCAT/G-7586-2011; Lee, Seung Soo/A-6418-2012; Yavuz, Cafer/B-8330-2011 OI Yavuz, Cafer/0000-0003-0580-3331 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX S.C. would like to thank Dr. Tomohiro Shibata of the Illinois Institute of Technology; Dr. Shelly D. Kelly of EXAFS Analysis, Inc. for discussions and help during the EXAFS measurements and analysis of EXAFS data; and Dr. Vladislav Zyranov for his help in making the necessary sample holders for the experiments. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Advanced Photon Source at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 47 TC 3 Z9 3 U1 8 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 700 EP 707 DI 10.1021/cm5028942 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500007 ER PT J AU Han, JK McBean, C Wang, L Hoy, J Jaye, C Liu, HQ Li, ZQ Sfeir, MY Fischer, DA Taylor, GT Misewich, JA Wong, SS AF Han, Jinkyu McBean, Coray Wang, Lei Hoy, Jessica Jaye, Cherno Liu, Haiqing Li, Zhuo-Qun Sfeir, Matthew Y. Fischer, Daniel A. Taylor, Gordon T. Misewich, James A. Wong, Stanislaus S. TI Probing Structure-Induced Optical Behavior in a New Class of Self-Activated Luminescent OD/1D CaWO4 Metal Oxide-CdSe Nanocrystal Composite Heterostructures SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY-ABSORPTION; MULTIWALLED CARBON NANOTUBES; QUANTUM DOTS; CALCIUM TUNGSTATE; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; SCINTILLATING CRYSTALS; CO-PHTHALOCYANINE; CHARGE-TRANSFER; RAMAN-SPECTRA AB In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dots (QDs) coupled with (ii) both one- and zero-dimensional (1D and 0D) motifs of self-activated luminescent CaWO4 metal oxides. Specifically, similar to 4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring similar to 230 nm in diameter and similar to 3 mu m in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of similar to 80 nm) of CaWO4 through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e., IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO4 as compared with unbound CaWO4. We propose that a photoinduced electron transfer process occurs from CaWO4 to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO4 nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO4 within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of immobilized CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO4 itself. C1 [Han, Jinkyu; Misewich, James A.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [McBean, Coray; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hoy, Jessica; Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20889 USA. [Li, Zhuo-Qun; Taylor, Gordon T.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. RP Wong, SS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA. EM sswong@bnl.gov FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886]; NSF-MRI [OCE-1336724] FX This research (including support for J.K.H, C.M, L.W, J.H., H.L, M.Y.S., J.A.M., and S.S.W) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Experiments were performed in part at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under contract number DE-AC02-98CH10886. Raman data were collected on an instrument obtained with an NSF-MRI grant OCE-1336724. We also acknowledge Dr. Dmytro Nykypanchuk at Brookhaven National Laboratory for help with lifetime measurements. NEXAFS measurements were collected at the U7A NIST/DOW beamline, located at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy under contract number DE-AC02-98CH10886. NR 88 TC 2 Z9 2 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 778 EP 792 DI 10.1021/cm503611q PG 15 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500015 ER PT J AU Shanker, GS Tandon, B Shibata, T Chattopadhyay, S Nag, A AF Shanker, G. Shiva Tandon, Bharat Shibata, Tomohiro Chattopadhyay, Soma Nag, Angshuman TI Doping Controls Plasmonics, Electrical Conductivity, and Carrier-Mediated Magnetic Coupling in Fe and Sn Codoped In2O3 Nanocrystals: Local Structure Is the Key SO CHEMISTRY OF MATERIALS LA English DT Article ID DOPED INDIUM OXIDE; PHOTOTHERMAL THERAPY; X-RAY; COLLOIDAL NANOCRYSTALS; ZNO NANOCRYSTALS; FACILE SYNTHESIS; OXIDATION-STATE; QUANTUM DOTS; TRANSPARENT; ABSORPTION AB Multifunctional FeSn codoped In(2)O3 colloidal nanocrystals simultaneously exhibiting localized surface plasmon resonance band, high electrical conductivity, and charge mediated magnetic coupling have been developed. Interactions between Sn and Fe dopant ions have been found critical to control all these properties. Sn doping slowly releases free electrons in the colloidal nanocrystals, after reduction of active complex between Sn4+ and interstitial O-2. Unexpectedly, Fe codoping reduces the free electron concentration. Our X-ray absorption fine structure spectroscopy (XAFS) results show that Fe3+ and Sn4+ substitutes In3+ in the In2O3 lattice for all Fe-doped In2O3 NCs and Sn-doped In2O3 NCs. Interestingly, for FeSn codoped NCs, a smaller fraction of Fe2+ gets reduced to Fe2+ by consuming free electrons produced by Sn doping. Therefore, Fe doping can manipulate free electron concentration in FeSn codoped In2O3 nanocrystals, controlling both plasmonic band and electrical conductivity. Free electrons, on the other hand, facilitate magnetic coupling between distant Fe3+ ions. Such charge mediated magnetic coupling is useful for spin-based applications. C1 [Shanker, G. Shiva; Tandon, Bharat; Nag, Angshuman] IISER, Dept Chem, Pune 411008, Maharashtra, India. [Shibata, Tomohiro; Chattopadhyay, Soma] Argonne Natl Lab, MRCAT, Argonne, IL 60439 USA. [Shibata, Tomohiro; Chattopadhyay, Soma] IIT, CSRRI, Chicago, IL 60616 USA. [Shibata, Tomohiro; Chattopadhyay, Soma] IIT, Dept Phys, Adv Mat Grp, Chicago, IL 60616 USA. RP Nag, A (reprint author), IISER, Dept Chem, Pune 411008, Maharashtra, India. EM angshuman@iiserpune.ac.in RI ID, MRCAT/G-7586-2011 FU Science and Engineering Research Board (SERB) [SR/S2/RJN-61/2012]; DAE-BRNS, Govt. of India [2013/20/37C/1/BRNS/954]; Nanoscience Unit of DST, Govt. of India [SR/NM/NS-42/2009]; UGC, Govt. of India; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr. Debraj Choudhury from the University of Arkansas and Dr. Pankaj Mandal and Dr. Pramod Pillai both from IISER Pune for useful discussions. A.N. acknowledges the Science and Engineering Research Board (SERB) for the Ramanujan Fellowship (SR/S2/RJN-61/2012) and the DAE-BRNS grant (2013/20/37C/1/BRNS/954) Govt. of India. We thank the Nanoscience Unit Grant (SR/NM/NS-42/2009) of DST, Govt. of India. G.S.S. acknowledges UGC, Govt. of India, for a junior research fellowship. MRCAT operations are supported by the Department of energy and MRCAT host institutions. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 48 TC 16 Z9 16 U1 10 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 892 EP 900 DI 10.1021/cm5048936 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500027 ER PT J AU Pattinson, SW Viswanath, B Zakharov, DN Li, JJ Stach, EA Hart, AJ AF Pattinson, Sebastian W. Viswanath, Balakrishnan Zakharov, Dmitri N. Li, Jinjing Stach, Eric A. Hart, A. John TI Mechanism and Enhanced Yield of Carbon Nanotube Growth on Stainless Steel by Oxygen-Induced Surface Reconstruction SO CHEMISTRY OF MATERIALS LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; FLAME SYNTHESIS; CATALYST; SINGLE; REDUCTION; STABILITY; METHANE; METALS; MESH AB It is well-known that carbon nanotubes (CNTs) can be grown directly on the surface of stainless steel (SS) alloys, because the native composition of SS contains elements that seed CNT growth upon hydrocarbon exposure at elevated temperature. Often such methods use acid immersion or oxidation in air to treat the surface prior to hydrocarbon exposure for CNT growth. However, there lacks a general understanding of how the surface chemistry and morphology influences the nucleation and growth of CNTs. Using environmental transmission electron microscopy, we observe that CNT growth is enabled by surface reconstruction of SS upon oxygen exposure at elevated temperature, followed by further breakup of the surface upon reduction, and subsequent CNT nucleation and growth upon hydrocarbon exposure. Using electron energy loss spectroscopy, we find that catalyst particles consist of both pure iron as well as iron alloys such as FeCr and FeNi. We use these insights to study the synthesis of CNTs on bulk net-shaped porous SS materials and show that annealing of the SS at 1000 degrees C in air prior to CVD using an ethylene feedstock mixture produces a 70-fold increase in CNT yield. Our findings demonstrate how process conditions can be designed for efficient manufacturing of CNT-enhanced stainless steel materials, and guide improved understanding of CNT growth on other industrially relevant metal substrates. C1 [Pattinson, Sebastian W.; Viswanath, Balakrishnan; Hart, A. John] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Pattinson, Sebastian W.; Viswanath, Balakrishnan; Hart, A. John] MIT, Lab Mfg & Prod, Cambridge, MA 02139 USA. [Zakharov, Dmitri N.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Li, Jinjing] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Hart, AJ (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RI Stach, Eric/D-8545-2011; Hart, A. John/A-9027-2010; Zakharov, Dmitri/F-4493-2014; OI Stach, Eric/0000-0002-3366-2153; Hart, A. John/0000-0002-7372-3512; , /0000-0002-7851-7718 FU Pall Corporation; National Science Foundation Science, Engineering, and Education for Sustainability (NSF SEES) [1415129]; Department of Energy, Office of Basic Energy Sciences [DE-SC0004927]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [DMR-08-19762, ECS-0335765] FX Primary financial support was provided by Pall Corporation, to S.W.P, J.L., and A.J.H. Additional support to S.W.P was provided by a National Science Foundation Science, Engineering, and Education for Sustainability (NSF SEES) postdoctoral fellowship (Award Number 1415129). Financial support to B.V. and travel for in situ TEM experiments were provided by the Department of Energy, Office of Basic Energy Sciences (DE-SC0004927). We thank Scott Hopkins and Hongbin Zhao of Pall Corporation for technical discussions about the SS filter media and for providing samples. In situ TEM experiments were performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). XPS analysis made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation (DMR-08-19762). Electron microscopy was performed at the Center for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation (ECS-0335765). NR 43 TC 6 Z9 6 U1 7 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 932 EP 937 DI 10.1021/cm504209u PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500032 ER PT J AU Hudry, D Abeykoon, AMM Hoy, J Sfeir, MY Stach, EA Dickerson, JH AF Hudry, D. Abeykoon, A. M. M. Hoy, J. Sfeir, M. Y. Stach, E. A. Dickerson, J. H. TI Ultrathin Europium Oxide Nanoplatelets: "Hidden" Parameters and Controlled Synthesis, Unusual Crystal Structure, and Photoluminescence Properties SO CHEMISTRY OF MATERIALS LA English DT Article ID PAIR DISTRIBUTION FUNCTION; UPCONVERTING OPTICAL-PROPERTIES; UP-CONVERSION; MONODISPERSE NANOCRYSTALS; LUMINESCENT PROPERTIES; NONAQUEOUS SYNTHESIS; SHELL NANOPARTICLES; MAGNETIC-RESONANCE; ENERGY MIGRATION; DEPENDENCE AB A good understanding of the relationship between the atomic scale structure of ultrasmall europium oxide nanocrystals (NCs) and their photoluminescence properties is of major interest in the design and development of innovative europium-based nanophosphors. As a consequence, the preparation of reliable (controlled size and shape distributions) and structurally well characterized ultrasmall europium oxide NCs is an essential prerequisite to understand the size effects on their photoluminescence properties. First, we reveal that nonaqueous approaches used to synthesize ultrasmall europium oxide NCs are deeply affected by hidden parameters that are directly related to the preparation of the reactive mixture. Indeed, trace amounts of products of side reactions and byproducts, such as acetic acid and water, act as growth-directing agents. Second, the challenging problem related to the structural characterization of ultrasmall europium oxide NCs is addressed for the first time by coupling high-resolution transmission electron microscopy and X-ray atomic pair distribution function. The ultrasmall thickness of the as-prepared NCs apparently dictates the crystalline structure, which can no longer be described by the crystal phases of their bulk counterparts. The induced distortions due to the ultrasmall thickness as well as the bonding of the stabilizing organic ligand are strong enough to break down the symmetry and, hence, prevent the europium oxide NCs from accommodating the usual bulk crystal phase. Finally, the formation of such unusual polymorphs of europium oxide has a profound impact on the resulting crystal field, with direct effects on the photoluminescence properties. C1 [Hudry, D.; Dickerson, J. H.] Brown Univ, Dept Phys, Providence, RI 02912 USA. Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Hoy, J.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hoy, J.; Sfeir, M. Y.; Stach, E. A.; Dickerson, J. H.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Hudry, D (reprint author), Brown Univ, Dept Phys, Providence, RI 02912 USA. EM damien.hudry@gmail.com; james_dickerson@brown.edu RI Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Sfeir, Matthew/0000-0001-5619-5722 FU National Science Foundation (NSF) [CHE-1402298]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704] FX This research was supported by the National Science Foundation (NSF) Award CHE-1402298. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. D.H. would like to thank Kim Kisslinger for TEM training. NR 70 TC 3 Z9 3 U1 7 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 965 EP 974 DI 10.1021/cm504255y PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500037 ER PT J AU Yan, PF Xiao, L Zheng, JM Zhou, YG He, Y Zu, XT Mao, SX Xiao, J Gao, F Zhang, JG Wang, CM AF Yan, Pengfei Xiao, Liang Zheng, Jianming Zhou, Yungang He, Yang Zu, Xiaotao Mao, Scott X. Xiao, Jie Gao, Fei Zhang, Ji-Guang Wang, Chong-Min TI Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; EXCESS LAYERED OXIDES; MANGANESE OXIDES; SURFACE RECONSTRUCTION; OXYGEN VACANCIES; LOCAL-STRUCTURE; HIGH-CAPACITY; VOLTAGE FADE; SPINEL PHASE; ELECTRODES AB Capacity and voltage fading of Li2MnO3 is a major challenge for the application of this category of material, which is believed to be associated with the structural and chemical evolution of the materials. This paper reports the detailed structural and chemical evolutions of Li2MnO3 cathode captured by using aberration corrected scanning/transmission electron microscopy (S/TEM) after certain numbers of chargedischarge cycling of the batteries. It is found that structural degradation occurs from the very first cycle and is spatially initiated from the surface of the particle and propagates toward the inner bulk as the cyclic number increases, featuring the formation of the surface phase transformation layer and gradual thickening of this layer. The structure degradation is found to follow a sequential phase transformation: monoclinic C-2/m -> tetragonal I41 -> cubic spinel, which is consistently supported by the decreasing lattice formation energy based on DFT calculations. For the first time, high spatial resolution quantitative chemical analysis reveals that 20% oxygen in the surface phase transformation layer is removed and such a newly developed surface layer is a Li-depleted layer with reduced Mn cations. This work demonstrates a direct correlation between structural degradation and the cells electrochemical degradation, which enhances our understanding of LiMn-rich (LMR) cathode materials. C1 [Yan, Pengfei; Wang, Chong-Min] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Xiao, Liang; Zheng, Jianming; Xiao, Jie; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Xiao, Liang] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Dept Chem, Wuhan 430070, Hubei, Peoples R China. [Zhou, Yungang; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [He, Yang; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Gao, Fei] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM jiguang.zhang@pnnl.gov; Chongmin.wang@pnnl.gov RI yan, pengfei/E-4784-2016; Zheng, Jianming/F-2517-2014 OI yan, pengfei/0000-0001-6387-7502; Zheng, Jianming/0000-0002-4928-8194 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 6951379]; Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, Subcontract No. 6951379, under the Batteries for Advanced Transportation Technologies (BATT) Program. Part of the high resolution transmission electron microscopy study described in this paper is supported by the Laboratory Directed Research and Development Program as part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 44 TC 32 Z9 32 U1 23 U2 178 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 975 EP 982 DI 10.1021/cm504257m PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500038 ER PT J AU Seabold, JA Neale, NR AF Seabold, Jason A. Neale, Nathan R. TI All First Row Transition Metal Oxide Photoanode for Water Splitting Based on Cu3V2O8 SO CHEMISTRY OF MATERIALS LA English DT Article ID OXYGEN-EVOLVING CATALYST; PHOTOELECTROCHEMICAL PROPERTIES; HYDROGEN-PRODUCTION; SOLAR; OXIDATION; CELLS; ELECTRODES; EFFICIENT; PHOTOELECTROLYSIS; PHOTOOXIDATION AB Identification of viable photoanode candidates for use in a tandem photoelectrochemical water splitting system remains a significant challenge to the realization of efficient solar-driven hydrogen production. Herein, copper vanadate (Cu3V2O8) is introduced as a new, all first row transition metal oxide with a band gap of near 2 eV that makes it suitable as a photoanode candidate in such a solar water splitting system. In this work, many of the key physical and photoelectrochemical properties of Cu3V2O8 are established including band gap, doping type, ability to extrinsically dope, flat-band potential, band positions, electron diffusion length, chemical stability, and O-2 evolution faradaic efficiency. This study provides a key initial step in identifying the features that can lead to a complete understanding of this new ternary metal oxide and motivate discovery of related photoanodes comprised of multicomponent oxides. C1 [Seabold, Jason A.; Neale, Nathan R.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Neale, NR (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM Nathan.Neale@nrel.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC36-08GO28308] FX The authors would like to thank Dr. Todd G. Deutsch (NREL) for assistance with the Mott-Schottky measurements and Dr. Yong Yan (NREL) for assistance with the O2 measurements. This publication is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Grant DE-AC36-08GO28308 to NREL. NR 50 TC 18 Z9 18 U1 9 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 1005 EP 1013 DI 10.1021/cm504327f PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500042 ER PT J AU Jung, H Allan, PK Hu, YY Borkiewicz, OJ Wang, XL Han, WQ Du, LS Pickard, CJ Chupas, PJ Chapman, KW Morris, AJ Grey, CP AF Jung, Hyeyoung Allan, Phoebe K. Hu, Yan-Yan Borkiewicz, Olaf J. Wang, Xiao-Liang Han, Wei-Qiang Du, Lin-Shu Pickard, Chris J. Chupas, Peter J. Chapman, Karena W. Morris, Andrew J. Grey, Clare P. TI Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; IN-SITU XRD; LI; GE; ELECTRODES; SILICON; NMR; PHASE; CAPACITY AB Metallic germanium is a promising anode material in secondary lithium-ion batteries (LIBs) due to its high theoretical capacity (1623 mAh/g) and low operating voltage, coupled with the high lithium-ion diffusivity and electronic conductivity of lithiated Ge. Here, the lithiation mechanism of micron-sized Ge anodes has been investigated with X-ray diffraction (XRD), pair distribution function (PDF) analysis, and in-/ex-situ high-resolution Li-7 solid-state nuclear magnetic resonance (NMR), utilizing the structural information and spectroscopic fingerprints obtained by characterizing a series of relevant Li(x)Gey model compounds. In contrast to previous work, which postulated the formation of Li9Ge4 upon initial lithiation, we show that crystalline Ge first reacts to form a mixture of amorphous and crystalline Li7Ge3 (space group P32(1)2). Although Li7Ge3 was proposed to be stable in a recent theoretical study of the Li-Ge phase diagram (Morris, A. J.; Grey, C. P.; Pickard, C. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 054111), it had not been identified in prior experimental studies. Further lithiation results in the transformation of Li7Ge3, via a series of disordered phases with related structural motifs, to form a phase that locally resembles Li7Ge2, a process that involves the gradual breakage of the Ge-Ge bonds in the Ge-Ge dimers (dumbbells) on lithiation. Crystalline Li15Ge4 then grows, with an overlithiated phase, Li15+delta Ge4, being formed at the end of discharge. This study provides comprehensive experimental evidence, by using techniques that probe short-, medium-, and long-range order, for the structural transformations that occur on electrochemical lithiation of Ge; the results are consistent with corresponding theoretical studies regarding stable lithiated LixGey phases. C1 [Jung, Hyeyoung; Du, Lin-Shu; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allan, Phoebe K.; Hu, Yan-Yan; Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Allan, Phoebe K.] Univ Cambridge Gonville & Caius Coll, Cambridge CB2 1TA, England. [Borkiewicz, Olaf J.; Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Wang, Xiao-Liang; Han, Wei-Qiang] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China. [Pickard, Chris J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Morris, Andrew J.] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 0HE, England. RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM cpg27@cam.ac.uk RI Han, WQ/E-2818-2013; Pickard, Chris/D-4704-2016 OI Pickard, Chris/0000-0002-9684-5432 FU NECCES, the Northeastern Energy Center for Chemical Energy Storage - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001294]; DOE Office of Science [DE-AC02-06CH11357]; Gonville and Caius College; University of Cambridge; EPSRC; Royal Society; Marie Curie International Incoming Fellowship [PIIF-GA-2011_299341]; National Natural Science Foundation of China [51371186]; Zhejiang Province Key Science and Technology Innovation Team; Winton Programme for the Physics of Sustainability FX This work was supported by NECCES, the Northeastern Energy Center for Chemical Energy Storage, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001294. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. P.K.A. acknowledges a Junior Research Fellowship from Gonville and Caius College, an Oppenheimer Fellowship from the University of Cambridge, and the EPSRC for funding. Y.-Y.H. acknowledges support from a Newton International Fellowship from the Royal Society and a Marie Curie International Incoming Fellowship (PIIF-GA-2011_299341). W.-Q.H. acknowledges the support from the National Natural Science Foundation of China (Grant No. 51371186) and Zhejiang Province Key Science and Technology Innovation Team. A.J.M. acknowledges the support from the Winton Programme for the Physics of Sustainability. We thank Jim Quinn and Hee Jung Chang for experimental support and Nicole Trease for helpful discussions. NR 42 TC 22 Z9 23 U1 14 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 10 PY 2015 VL 27 IS 3 BP 1031 EP 1041 DI 10.1021/cm504312x PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB9EJ UT WOS:000349934500045 ER PT J AU Li, J Overall, CC Nakayasu, ES Kidwai, AS Jones, MB Johnson, RC Nguyen, NT McDermott, JE Ansong, C Heffron, F Cambronne, ED Adkins, JN AF Li, Jie Overall, Christopher C. Nakayasu, Ernesto S. Kidwai, Afshan S. Jones, Marcus B. Johnson, Rudd C. Nguyen, Nhu T. McDermott, Jason E. Ansong, Charles Heffron, Fred Cambronne, Eric D. Adkins, Joshua N. TI Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in sigma(E)-regulated SPI-2 gene expression SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE Salmonella; RpoE; microarray; SPI-2; H-NS; regulation; ChIP-seq ID ENTERICA-SEROVAR TYPHIMURIUM; ALTERNATIVE SIGMA-FACTOR; III SECRETION SYSTEM; ESCHERICHIA-COLI; STRESS-RESPONSE; EXTRACYTOPLASMIC STRESS; RNA-POLYMERASE; TRANSCRIPTIONAL REGULATION; PATHOGENICITY ISLAND-2; SEROTYPE TYPHIMURIUM AB The extracytoplasmic functioning sigma factor GE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by GE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition GE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by GE in at least one of the three conditions. An important finding is that GE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, GE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between GE and SPI-2 genes, combined with the global regulatory effect of GE, may account for the lethality of rpoE-deficient Salmonella in murine infection. C1 [Li, Jie; Kidwai, Afshan S.; Johnson, Rudd C.; Nguyen, Nhu T.; Heffron, Fred; Cambronne, Eric D.] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. [Overall, Christopher C.; Nakayasu, Ernesto S.; McDermott, Jason E.; Ansong, Charles; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Jones, Marcus B.] J Craig Venter Inst, Dept Infect Dis, Rockville, MD USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd,POB 999,MSIN K8-98, Richland, WA 99352 USA. EM joshua.adkins@pnnl.gov FU National Institute of Allergy and Infectious Diseases [5R01 A1022933, IAA Y1-AI-8401]; National Institute of General Medical Sciences [GM094623] FX This work was supported by the National Institute of Allergy and Infectious Diseases (5R01 A1022933 and IAA Y1-AI-8401) and the National Institute of General Medical Sciences (GM094623). NR 64 TC 3 Z9 4 U1 2 U2 7 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD FEB 10 PY 2015 VL 6 AR 27 DI 10.3389/fmicb.2015.00027 PG 12 WC Microbiology SC Microbiology GA CC2YP UT WOS:000350211400001 PM 25713562 ER PT J AU Szulik, MW Pallan, PS Nocek, B Voehler, M Banerjee, S Brooks, S Joachimiak, A Egli, M Eichman, BF Stone, MP AF Szulik, Marta W. Pallan, Pradeep S. Nocek, Boguslaw Voehler, Markus Banerjee, Surajit Brooks, Sonja Joachimiak, Andrzej Egli, Martin Eichman, Brandt F. Stone, Michael P. TI Differential Stabilities and Sequence-Dependent Base Pair Opening Dynamics of Watson-Crick Base Pairs with 5-Hydroxymethylcytosine, 5-Formylcytosine, or 5-Carboxylcytosine SO BIOCHEMISTRY LA English DT Article ID THYMINE DNA GLYCOSYLASE; B-DNA; STRUCTURAL ENERGETICS; MAMMALIAN DNA; PROTON RESONANCES; CRYSTAL-STRUCTURE; NMR-SPECTROSCOPY; EXCISION-REPAIR; NUCLEIC-ACIDS; ADENINE TRACT AB 5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes. C1 [Szulik, Marta W.; Voehler, Markus; Stone, Michael P.] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Vanderbilt Inst Chem Biol, Dept Chem, Nashville, TN 37235 USA. [Szulik, Marta W.; Voehler, Markus; Brooks, Sonja; Eichman, Brandt F.; Stone, Michael P.] Vanderbilt Univ, Struct Biol Ctr, Nashville, TN 37235 USA. [Pallan, Pradeep S.; Egli, Martin] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Vanderbilt Inst Chem Biol, Dept Biochem,Sch Med, Nashville, TN 37232 USA. [Pallan, Pradeep S.; Egli, Martin] Vanderbilt Univ, Sch Med, Struct Biol Ctr, Nashville, TN 37232 USA. [Nocek, Boguslaw; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Banerjee, Surajit] Cornell Univ, Argonne Natl Lab, Northeastern Collaborat Access Team, Argonne, IL 60439 USA. [Banerjee, Surajit] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA. [Brooks, Sonja; Eichman, Brandt F.] Vanderbilt Univ, Dept Biol Sci, Vanderbilt Inst Chem Biol, Nashville, TN 37235 USA. RP Stone, MP (reprint author), Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Vanderbilt Inst Chem Biol, Dept Chem, Nashville, TN 37235 USA. EM michael.p.stone@vanderbilt.edu OI Eichman, Brandt/0000-0002-0965-2297; Banerjee, Surajit/0000-0002-9414-7163 FU NIH [R01 CA-55678, R01 ES-019625, P41 GM103403, S10 RR-05805, S10 RR-025677]; NSF [DBI 0922862]; American Recovery and Reinvestment Act [Public Law 111-5]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by NIH grants R01 CA-55678 (M.P.S.), R01 ES-019625 (B.F.E.), and P41 GM103403 (NE-CAT). Funding for NMR was supplied by NIH grants S10 RR-05805 and S10 RR-025677 and NSF grant DBI 0922862, the latter was funded by the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Vanderbilt University assisted with the purchase of NMR instrumentation. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 99 TC 16 Z9 16 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 10 PY 2015 VL 54 IS 5 BP 1294 EP 1305 DI 10.1021/bi501534x PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CB4CD UT WOS:000349574900016 PM 25632825 ER PT J AU Cao, Z Stevens, MJ Carrillo, JMY Dobrynin, AV AF Cao, Zhen Stevens, Mark J. Carrillo, Jan-Michael Y. Dobrynin, Andrey V. TI Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition between Wenzel and Cassie-Baxter States SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; ELASTIC SOLIDS; ROUGHNESS; WATER; LITHOGRAPHY; WETTABILITY; COLLECTION; MECHANICS; CONTACT; SYSTEMS AB We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticle in contact with substrate undergo first order transition between the Cassie-Baxter and Wenzel states which depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts and nanoparticle size, R-p. There is a range of system parameters where these two states coexist such that the average indentation delta produced by substrate posts changes with nanoparticle shear modulus, G(p). We have developed a scaling model that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, W-eff, which describes the first order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus G(p) and surface tension gamma(p). Shape of small nanoparticles with size R-p < gamma(3/2)(p)G(p)(-1)W(eff)(-1/2) is controlled by capillary forces while deformation of large nanoparticles, R-p > gamma(3/2)(p)G(p)(-1)W(eff)(-1/2) , is determined by nanoparticle elastic and contact free energies. The model predictions are in a good agreement with simulation results. C1 [Cao, Zhen; Dobrynin, Andrey V.] Univ Connecticut, Polymer Program, Storrs, CT 06269 USA. [Cao, Zhen; Dobrynin, Andrey V.] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Stevens, Mark J.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Carrillo, Jan-Michael Y.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Dobrynin, AV (reprint author), Univ Connecticut, Polymer Program, Storrs, CT 06269 USA. EM avd@ims.uconn.edu RI Carrillo, Jan-Michael/K-7170-2013; OI Carrillo, Jan-Michael/0000-0001-8774-697X; Dobrynin, Andrey/0000-0002-6484-7409 FU National Science Foundation [DMR-1409710]; U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; United States Department of Energy [DE-AC04-94AL85000]; Office of Advanced Scientific Computing Research, U.S. Department of Energy [De-AC05-00OR22725] FX We are grateful to the National Science Foundation for financial support under Grant DMR-1409710. This work was performed at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (contract no. DE-AC52-06NA25396) and Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract no. DE-AC04-94AL85000. J.-M.Y.C's contribution was sponsored by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, and performed at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under contract no. De-AC05-00OR22725. NR 48 TC 2 Z9 2 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 10 PY 2015 VL 31 IS 5 BP 1693 EP 1703 DI 10.1021/la5045442 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB4CG UT WOS:000349575200012 PM 25594314 ER PT J AU Al-Azizi, AA Eryilmaz, O Erdemir, A Kim, SH AF Al-Azizi, Ala' A. Eryilmaz, Osman Erdemir, Ali Kim, Seong H. TI Surface Structure of Hydrogenated Diamond-like Carbon: Origin of Run-In Behavior Prior to Superlubricious Interfacial Shear SO LANGMUIR LA English DT Article ID TETRAHEDRAL AMORPHOUS-CARBON; MEAN FREE PATHS; THERMAL-STABILITY; SUPERLOW-FRICTION; OXIDATION BEHAVIOR; TOF-SIMS; TA-C; FILMS; WEAR; RAMAN AB The oxidized layers at the surface of hydrogenated diamond-like carbon (H-DLC) were studied with X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, and Raman spectroscopy. The structure of these layers was correlated with the friction and wear behavior observed on H-DLC. H-DLC is well-known for its ultralow friction in inert environments, but the steady superlubricious state is always preceded by a run-in period with a high friction. It was hypothesized that the run-in period is related to the surface oxide layer formed naturally upon exposure of the sample to air. To test this hypothesis, thermal oxide layers were grown, and their structures were analyzed and compared with the native oxide layer on a pristine sample. It was found that the Raman spectra of the surface oxide layers of H-DLC have higher D/G band ratio than the bulk, indicating a larger amount of aromatic clusters compared to the bulk film. Thick oxide layers grown at 300 degrees C showed a run-in friction behavior that resembled the friction of graphite. The run-in periods were found to become longer when the thickness of the oxide layers increased, indicating that the run-in behavior of H-DLC is attributed to the removal of the surface oxide layers. C1 [Al-Azizi, Ala' A.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Al-Azizi, Ala' A.; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Eryilmaz, Osman; Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU National Science Foundation [CMMI-1131128]; U.S. Department of Energy, Basic Energy Sciences, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the National Science Foundation (Grant CMMI-1131128). O.E. and A.E. were supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Efficiency and Renewable Energy, under Contract DE-AC02-06CH11357. We also acknowledge Dr. Filippo Mangolini and Prof. Robert Carpick for NEXAF measurements. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 60 TC 6 Z9 6 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 10 PY 2015 VL 31 IS 5 BP 1711 EP 1721 DI 10.1021/la504612c PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CB4CG UT WOS:000349575200014 PM 25583366 ER PT J AU Liu, J Wang, XJ Li, DY Coates, NE Segalman, RA Cahill, DG AF Liu, Jun Wang, Xiaojia Li, Dongyao Coates, Nelson E. Segalman, Rachel A. Cahill, David G. TI Thermal Conductivity and Elastic Constants of PEDOT:PSS with High Electrical Conductivity SO MACROMOLECULES LA English DT Article ID POLY(3,4-ETHYLENEDIOXYTHIOPHENE); ELECTRODES; EFFICIENCY; ADDITIVES; HEAT; PSS AB Mixtures of poly(3,4-ethylenedioxythiophene) and polystyrenesulfonate (PEDOT:PSS) have high electrical conductivity when cast from aqueous suspensions in combination with a high boiling-point cosolvent dimethyl sulfoxide (DMSO). The electronic component of the thermal conductivity of these highly conducting polymers is of interest for evaluating their potential for thermoelectric cooling and power generation. We find, using time-domain thermoreflectance measurements of thermal conductivity along multiple directions of thick (>20 mu m) drop-cast PEDOT films, that the thermal conductivity can be highly anisotropic (Lambda(1) approximate to 1.0 W m(-1) K-1 and Lambda(1) approximate to 0.3 W m(-1) K-1 for the in-plane and through-plane directions, respectively) when the electrical conductivity in the in-plane direction is large (sigma approximate to 500 S cm(-1)). We relate the increase in thermal conductivity to the estimated electronic component of the thermal conductivity using the WiedemannFranz law, and find that our data are consistent with conventional Sommerfeld value of the Lorenz number. We use measurements of the elastic constants (C-11 approximate to 11 GPa and C-44 approximate to 17 GPa) of spin-cast PEDOT films and through-plane thermal conductivity (Lambda(1) approximate to 0.3 W m(-1) K-1) of drop-cast and spin-cast films to support our assumption that the phonon contribution to the thermal conductivity does not change significantly with DMSO composition. C1 [Liu, Jun; Li, Dongyao; Cahill, David G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Liu, Jun; Li, Dongyao; Cahill, David G.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Wang, Xiaojia] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Li, Dongyao; Cahill, David G.] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Fukuoka 8190395, Japan. [Coates, Nelson E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Liu, J (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM junliu@illinois.edu RI Wang, Xiaojia/C-3861-2016; Foundry, Molecular/G-9968-2014; U-ID, Kyushu/C-5291-2016 OI Wang, Xiaojia/0000-0001-7612-1739; FU AFOSR MURI [FA9550-12-1-0002]; World Premier International Research Center Initiative (WPI), MEXT, Japan; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX Thermal conductivity measurements were supported by AFOSR MURI FA9550-12-1-0002. Development and application of SAW measurements to thin polymer films was supported by the International Institute for Carbon Neutral Energy Research (WPI-I2CNER sponsored by the World Premier International Research Center Initiative (WPI), MEXT, Japan. TDTR measurements were done using the equipment in the Laser Facility of the Frederick Seitz Materials Research Laboratory (MRL) at the University of Illinois at Urbana-Champaign (UIUC). Diamond blade ultramicrotomy was done in the Center for Microanalysis of Materials (CMM) of the MRL at UIUC. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 44 Z9 44 U1 19 U2 105 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 10 PY 2015 VL 48 IS 3 BP 585 EP 591 DI 10.1021/ma502099t PG 7 WC Polymer Science SC Polymer Science GA CB4BV UT WOS:000349574100016 ER PT J AU Tsai, TH Ertem, SP Maes, AM Seifert, S Herring, AM Coughlin, EB AF Tsai, Tsung-Han Ertem, S. Piril Maes, Ashley M. Seifert, Soenke Herring, Andrew M. Coughlin, E. Bryan TI Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers SO MACROMOLECULES LA English DT Article ID FUEL-CELL APPLICATIONS; FREE-RADICAL POLYMERIZATION; BLOCK-COPOLYMERS; TRANSPORT; MORPHOLOGY; LINKING; NAFION; CONDUCTIVITY; PERFORMANCE; HYDROXIDE AB Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity. C1 [Tsai, Tsung-Han; Ertem, S. Piril; Coughlin, E. Bryan] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Maes, Ashley M.; Herring, Andrew M.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Coughlin, EB (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, 120 Governors Dr, Amherst, MA 01003 USA. EM Coughlin@mail.pse.umass.edu OI Ertem, S. Piril/0000-0001-5742-8831; Herring, Andrew/0000-0001-7318-5999 FU US Army MURI on Ion Transport in Complex Heterogenous Organic Materials [W911NF-10-1-0520]; U.S. DOE [DE-AC02-06CH11357] FX Funding was provided by the US Army MURI on Ion Transport in Complex Heterogenous Organic Materials (W911NF-10-1-0520). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. NR 40 TC 18 Z9 18 U1 16 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 10 PY 2015 VL 48 IS 3 BP 655 EP 662 DI 10.1021/ma502362a PG 8 WC Polymer Science SC Polymer Science GA CB4BV UT WOS:000349574100023 ER PT J AU Woltornist, SJ Carrillo, JMY Xu, TO Dobrynin, AV Adamson, DH AF Woltornist, Steven J. an Carrillo, Jan-Michael Y. Xu, Thomas O. Dobrynin, Andrey V. Adamson, Douglas H. TI Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams SO MACROMOLECULES LA English DT Article ID IN-SITU REDUCTION; GRAPHITE-OXIDE; LAYER GRAPHENE; FREE-ENERGY; FILMS; POLYMERIZATION; SOLVENT; PHASE; FIELD AB The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm(-3) that exhibit remarkable mechanical and electrical properties including compressive moduli up to similar to 100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m. C1 [Woltornist, Steven J. an; Xu, Thomas O.; Adamson, Douglas H.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Dobrynin, Andrey V.; Adamson, Douglas H.] Univ Connecticut, Polymer Program, Storrs, CT 06269 USA. [Carrillo, Jan-Michael Y.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Dobrynin, AV (reprint author), Univ Connecticut, Polymer Program, Storrs, CT 06269 USA. EM avd@ims.uconn.edu; adamson@uconn.edu RI Carrillo, Jan-Michael/K-7170-2013; Adamson, Douglas/C-8721-2009; OI Carrillo, Jan-Michael/0000-0001-8774-697X; Dobrynin, Andrey/0000-0002-6484-7409 FU National Science Foundation [DMR-1004576, DMR-1111021]; Office of Advanced Scientific Computing Research, U.S. Department of Energy; UT-Battelle, LLC [De-AC05-00OR22725] FX The authors are grateful to the National Science Foundation for financial support under grants DMR-1004576 and DMR-1111021. J.-M Y.C's contribution was sponsored by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, and performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, under Contract No. De-AC05-00OR22725. NR 37 TC 12 Z9 12 U1 8 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 10 PY 2015 VL 48 IS 3 BP 687 EP 693 DI 10.1021/ma5024236 PG 7 WC Polymer Science SC Polymer Science GA CB4BV UT WOS:000349574100027 ER PT J AU Ye, CH Wiener, CG Tyagi, M Uhrig, D Orski, SV Soles, CL Vogt, BD Simmons, DS AF Ye, Changhuai Wiener, Clinton G. Tyagi, Madhusudan Uhrig, David Orski, Sara V. Soles, Christopher L. Vogt, Bryan D. Simmons, David S. TI Understanding the Decreased Segmental Dynamics of Supported Thin Polymer Films Reported by Incoherent Neutron Scattering SO MACROMOLECULES LA English DT Article ID GLASS-TRANSITION TEMPERATURE; GENERALIZED LOCALIZATION MODEL; ULTRATHIN POLYSTYRENE FILMS; FORMING LIQUIDS; T-G; SURFACE-TENSION; POSITRON-ANNIHILATION; STRUCTURAL RELAXATION; INTERFACIAL ENERGY; CONFINEMENT AB Incoherent neutron scattering (INS) has commonly reported a suppression of segmental dynamics for supported thin polymer films as thickness is decreased, which is counter to expectations based on other measurement techniques such as ellipsometry and fluorescence. Here INS is utilized to measure the dynamics of thin films of comb polystyrene (PS) from 50 to 525 K. There is a significant suppression in dynamics as determined from the similar to 5 ns DebyeWaller factor, < u(2)>, as measured via INS for films as thick as 213 nm, while there is no change in the glass transition temperature (T-g) as determined by ellipsometry for films as thin as 20 nm. This poor correlation between T-g from ellipsometry and dynamics as measured by is attributed to contamination of nanosecond by incipient relaxation processes, differences in sensitivity to the postulated dynamically dead layer near the substrate due to the relative weighting of the distribution of dynamics between the two techniques, differences in the time scales probed, and possible decoupling between fast and slow dynamics under nanoconfinement. These results suggest that branching of PS significantly increases the interactions with the substrate to suppress the dynamics. Both technique-specific sensitivity to time scales and its weighing of the average over the gradient in dynamic properties present at the interfaces are important to consider when qualitatively different phenomena are inferred from different measurements. C1 [Ye, Changhuai; Wiener, Clinton G.; Vogt, Bryan D.; Simmons, David S.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Tyagi, Madhusudan] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Orski, Sara V.; Soles, Christopher L.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Tyagi, Madhusudan] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Simmons, DS (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM dsimmon@uakron.edu RI Vogt, Bryan/H-1986-2012; Uhrig, David/A-7458-2016; OI Vogt, Bryan/0000-0003-1916-7145; Uhrig, David/0000-0001-8447-6708; Simmons, David/0000-0002-1436-9269 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [DMR-0944772, DMR1310433] FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. D.S.S. acknowledges support for this work by the National Science Foundation under Grant No. DMR1310433. The identification of commercial products does not imply endorsement by the National Institute of Standards and Technology nor does it imply that these are the best for the purpose. NR 92 TC 15 Z9 15 U1 6 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 10 PY 2015 VL 48 IS 3 BP 801 EP 808 DI 10.1021/ma501780g PG 8 WC Polymer Science SC Polymer Science GA CB4BV UT WOS:000349574100040 ER PT J AU Ting, CL Stevens, MJ Frischknecht, AL AF Ting, Christina L. Stevens, Mark J. Frischknecht, Amalie L. TI Structure and Dynamics of Coarse-Grained Ionomer Melts in an External Electric Field SO MACROMOLECULES LA English DT Article ID MOBILE ION CONCENTRATION; POLYMER ELECTROLYTES; MOLECULAR-DYNAMICS; SULFONATE IONOMERS; PRECISE IONOMERS; CATION TYPE; MORPHOLOGY; BATTERIES AB We perform molecular dynamics simulations on a set of ionomer melts in the presence of a static, external electric field. We employ the same coarse-grained beadspring model from our previous simulations, which characterized the zero-field morphologies and dynamics of the isolated or percolated ionic aggregates observed in these systems. Here we investigate the electric field effects on these aggregates. In the linear response regime, the morphology of both isolated and percolated aggregates is unaltered because the force between the two ions at contact is much stronger than the force on an ion due to the external field. However, the same fields are strong enough to bias the local ion dynamics so that ions in the percolated systems, which contain a continuous ionic network, transition to the steady state drift regime. Furthermore, the field biases the motion of oppositely charged ions in opposite directions and decorrelates the ionic aggregates along the field direction. In the systems with isolated ionic aggregates, higher fields are required to observe the same dynamical response. Finally, we find that the conductivity is strongly influenced by the equilibrium aggregate morphologies of these systems; the ionomers with percolating ionic aggregates have the largest conductivities. C1 [Ting, Christina L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Stevens, Mark J.; Frischknecht, Amalie L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov; alfrisc@sandia.gov RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU Harry S. Truman Fellowship in National Security Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Prof. Karen I. Winey and Prof. James Runt for helpful discussions and the reviewers for useful comments. C.L.T. is thankful for support from the Harry S. Truman Fellowship in National Security Science and Engineering. This work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 34 TC 9 Z9 9 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 10 PY 2015 VL 48 IS 3 BP 809 EP 818 DI 10.1021/ma501916z PG 10 WC Polymer Science SC Polymer Science GA CB4BV UT WOS:000349574100041 ER PT J AU Mong, B Cook, S Walton, T Chambers, C Craycraft, A Benitez-Medina, C Hall, K Fairbank, W Albert, JB Auty, DJ Barbeau, PS Basque, V Beck, D Breidenbach, M Brunner, T Cao, GF Cleveland, B Coon, M Daniels, T Daugherty, SJ DeVoe, R Didberidze, T Dilling, J Dolinski, MJ Dunford, M Fabris, L Farine, J Feldmeier, W Fierlinger, P Fudenberg, D Giroux, G Gornea, R Graham, K Gratta, G Heffner, M Hughes, M Jiang, XS Johnson, TN Johnston, S Karelin, A Kaufman, LJ Killick, R Koffas, T Kravitz, S Krucken, R Kuchenkov, A Kumar, KS Leonard, DS Licciardi, C Lin, YH Ling, J MacLellan, R Marino, MG Moore, D Odian, A Ostrovskiy, I Piepke, A Pocar, A Retiere, F Rowson, PC Rozo, MP Schubert, A Sinclair, D Smith, E Stekhanov, V Tarka, M Tolba, T Twelker, K Vuilleumier, JL Walton, J Weber, M Wen, LJ Wichoski, U Yang, L Yen, YR Zhao, YB AF Mong, B. Cook, S. Walton, T. Chambers, C. Craycraft, A. Benitez-Medina, C. Hall, K. Fairbank, W., Jr. Albert, J. B. Auty, D. J. Barbeau, P. S. Basque, V. Beck, D. Breidenbach, M. Brunner, T. Cao, G. F. Cleveland, B. Coon, M. Daniels, T. Daugherty, S. J. DeVoe, R. Didberidze, T. Dilling, J. Dolinski, M. J. Dunford, M. Fabris, L. Farine, J. Feldmeier, W. Fierlinger, P. Fudenberg, D. Giroux, G. Gornea, R. Graham, K. Gratta, G. Heffner, M. Hughes, M. Jiang, X. S. Johnson, T. N. Johnston, S. Karelin, A. Kaufman, L. J. Killick, R. Koffas, T. Kravitz, S. Kruecken, R. Kuchenkov, A. Kumar, K. S. Leonard, D. S. Licciardi, C. Lin, Y. H. Ling, J. MacLellan, R. Marino, M. G. Moore, D. Odian, A. Ostrovskiy, I. Piepke, A. Pocar, A. Retiere, F. Rowson, P. C. Rozo, M. P. Schubert, A. Sinclair, D. Smith, E. Stekhanov, V. Tarka, M. Tolba, T. Twelker, K. Vuilleumier, J-L Walton, J. Weber, M. Wen, L. J. Wichoski, U. Yang, L. Yen, Y-R Zhao, Y. B. CA nEXO Collaboration TI Spectroscopy of Ba and Ba+ deposits in solid xenon for barium tagging in nEXO SO PHYSICAL REVIEW A LA English DT Article ID DOUBLE-BETA DECAY; MAJORANA NEUTRINOS; MATRICES; SPECTRA; ATOMS; STATE; COMPLEXES; MOLECULES; HYDROGEN; H2 AB Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence, and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba+ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of fewer than or equal to 10(4) Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed. C1 [Mong, B.; Cook, S.; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank, W., Jr.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Mong, B.; Cleveland, B.; Farine, J.; Wichoski, U.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, CEEM, Bloomington, IN 47405 USA. [Auty, D. J.; Didberidze, T.; Hughes, M.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Barbeau, P. S.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Barbeau, P. S.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Basque, V.; Dunford, M.; Graham, K.; Killick, R.; Koffas, T.; Licciardi, C.; Rozo, M. P.; Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Beck, D.; Coon, M.; Ling, J.; Tarka, M.; Walton, J.; Yang, L.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Breidenbach, M.; Daniels, T.; Odian, A.; Rowson, P. C.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Brunner, T.; DeVoe, R.; Fudenberg, D.; Gratta, G.; Kravitz, S.; Moore, D.; Ostrovskiy, I.; Schubert, A.; Twelker, K.; Weber, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Cao, G. F.; Jiang, X. S.; Wen, L. J.; Zhao, Y. B.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Dilling, J.; Kruecken, R.; Retiere, F.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Dolinski, M. J.; Lin, Y. H.; Smith, E.; Yen, Y-R] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Fabris, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Giroux, G.; Gornea, R.; Tolba, T.; Vuilleumier, J-L] Univ Bern, Lab High Energy Phys, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Johnston, S.; Pocar, A.] Univ Massachusetts, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA. [Johnston, S.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Karelin, A.; Kuchenkov, A.; Stekhanov, V.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Kumar, K. S.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Leonard, D. S.] Univ Seoul, Dept Phys, Seoul, South Korea. [MacLellan, R.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Cleveland, B.] SNOLAB, Sudbury, ON P3Y 1N2, Canada. RP Fairbank, W (reprint author), Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RI Fabris, Lorenzo/E-4653-2013; Ling, Jiajie/I-9173-2014; Kruecken, Reiner/A-1640-2013; OI Fabris, Lorenzo/0000-0001-5605-5615; Brunner, Thomas/0000-0002-3131-8148; Ling, Jiajie/0000-0003-2982-0670; Kruecken, Reiner/0000-0002-2755-8042; Ostrovskiy, Igor/0000-0003-4939-0225 FU National Science Foundation [PHY-1132428]; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-FG02-03ER41255] FX Conversations with David Wright and experimental assistance of Nicholas Kaufhold, Thomas Topel, Thomas Murray, and Holly Sheldon are appreciated. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1132428 and the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award No. DE-FG02-03ER41255. NR 25 TC 2 Z9 2 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 10 PY 2015 VL 91 IS 2 AR 022505 DI 10.1103/PhysRevA.91.022505 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CB1XV UT WOS:000349422200004 ER PT J AU Adikaram, D Rimal, D Weinstein, LB Raue, B Khetarpal, P Bennett, RP Arrington, J Brooks, WK Adhikari, KP Afanasev, AV Amaryan, MJ Anderson, MD Pereira, SA Avakian, H Ball, J Battaglieri, M Bedlinskiy, I Biselli, AS Bono, J Boiarinov, S Briscoe, WJ Burkert, VD Carman, DS Careccia, S Celentano, A Chandavar, S Charles, G Colaneri, L Cole, PL Contalbrigo, M Crede, V D'Angelo, A Dashyan, N De Vita, R De Sanetis, E Deur, A Djalali, C Dodge, GE Dupre, R Egiyan, H El Alaoui, A El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Fegan, S Filippi, A Fleming, JA Fradi, A Garillon, B Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guegan, B Guidal, M Guo, L Hafidi, K Hakobyan, H Hanretty, C Harrison, N Hattawy, M Hicks, K Holtrop, M Hughes, SM Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Jenkins, D Jiang, H Jo, HS Joo, K Joosten, S Kalantarians, N Keller, D Khandaker, M Kim, A Kim, W Klein, A Klein, FJ Koirala, S Kubarovsky, V Kuhn, SE Livingston, K Lu, HY MacGregor, IJD Markov, N Mattione, P Mayer, M McKinnon, B Mestayer, MD Meyer, CA Mirazita, M Mokeev, V Montgomery, RA Moody, CI Moutarde, H Movsisyan, A Camacho, CM Nadel-Turonski, P Niccolai, S Niculescu, G Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Pena, C Pisano, S Pogorelko, O Price, JW Procureur, S Prok, Y Protopopescu, D Puckett, AJR Ripani, M Rizzo, A Rosner, G Rossi, P Roy, P Sabatie, F Salgado, C Schott, D Schumacher, RRA Seder, E Sharabian, YG Simonyan, A Skorodumina, I Smith, ES Smith, GD Sober, DI Sokhan, D Sparveris, N Stepanyan, S Stoler, P Strauch, S Sytnik, V Taiuti, M Tian, Y Trivedi, A Ungaro, M Voskanyan, H Voutier, E Walford, NK Watts, DP Wei, X Wood, MH Zachariou, N Zana, L Zhang, J Zhao, ZW Zonta, I AF Adikaram, D. Rimal, D. Weinstein, L. B. Raue, B. Khetarpal, P. Bennett, R. P. Arrington, J. Brooks, W. K. Adhikari, K. P. Afanasev, A. V. Amaryan, M. J. Anderson, M. D. Pereira, S. Anefalos Avakian, H. Ball, J. Battaglieri, M. Bedlinskiy, I. Biselli, A. S. Bono, J. Boiarinov, S. Briscoe, W. J. Burkert, V. D. Carman, D. S. Careccia, S. Celentano, A. Chandavar, S. Charles, G. Colaneri, L. Cole, P. L. Contalbrigo, M. Crede, V. D'Angelo, A. Dashyan, N. De Vita, R. De Sanetis, E. Deur, A. Djalali, C. Dodge, G. E. Dupre, R. Egiyan, H. El Alaoui, A. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Fegan, S. Filippi, A. Fleming, J. A. Fradi, A. Garillon, B. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guegan, B. Guidal, M. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Harrison, N. Hattawy, M. Hicks, K. Holtrop, M. Hughes, S. M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Jenkins, D. Jiang, H. Jo, H. S. Joo, K. Joosten, S. Kalantarians, N. Keller, D. Khandaker, M. Kim, A. Kim, W. Klein, A. Klein, F. J. Koirala, S. Kubarovsky, V. Kuhn, S. E. Livingston, K. Lu, H. Y. MacGregor, I. J. D. Markov, N. Mattione, P. Mayer, M. McKinnon, B. Mestayer, M. D. Meyer, C. A. Mirazita, M. Mokeev, V. Montgomery, R. A. Moody, C. I. Moutarde, H. Movsisyan, A. Camacho, C. Munoz Nadel-Turonski, P. Niccolai, S. Niculescu, G. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Pena, C. Pisano, S. Pogorelko, O. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Puckett, A. J. R. Ripani, M. Rizzo, A. Rosner, G. Rossi, P. Roy, P. Sabatie, F. Salgado, C. Schott, D. Schumacher, R. R. A. Seder, E. Sharabian, Y. G. Simonyan, A. Skorodumina, I. Smith, E. S. Smith, G. D. Sober, D. I. Sokhan, D. Sparveris, N. Stepanyan, S. Stoler, P. Strauch, S. Sytnik, V. Taiuti, M. Tian, Ye Trivedi, A. Ungaro, M. Voskanyan, H. Voutier, E. Walford, N. K. Watts, D. P. Wei, X. Wood, M. H. Zachariou, N. Zana, L. Zhang, J. Zhao, Z. W. Zonta, I. CA CLAS Colloboration TI Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELASTIC-SCATTERING; NUCLEON; CLAS; 2-PHOTON-EXCHANGE; TRANSFERS; SYSTEM; EP AB There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p). from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing epsilon at Q(2) = 1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q(2) approximate to 1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2. C1 [Adikaram, D.; Weinstein, L. B.; Bennett, R. P.; Adhikari, K. P.; Amaryan, M. J.; Careccia, S.; Dodge, G. E.; El Fassi, L.; Hyde, C. E.; Klein, A.; Koirala, S.; Kuhn, S. E.; Mayer, M.; Prok, Y.; Zhao, Z. W.] Old Dominion Univ, Norfolk, VA 23529 USA. [Rimal, D.; Raue, B.; Khetarpal, P.; Bono, J.; Guo, L.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Arrington, J.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.; Moody, C. I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Brooks, W. K.; El Alaoui, A.; Hakobyan, H.; Pena, C.; Sytnik, V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Lu, H. Y.; Mattione, P.; Meyer, C. A.; Schumacher, R. R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Sober, D. I.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Prok, Y.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Harrison, N.; Joo, K.; Kim, A.; Markov, N.; Puckett, A. J. R.; Seder, E.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Crede, V.; Eugenio, P.; Ostrovidov, A. I.; Roy, P.] Florida State Univ, Tallahassee, FL 32306 USA. [Taiuti, M.] Univ Genoa, I-16146 Genoa, Italy. [Afanasev, A. V.; Briscoe, W. J.; Schott, D.; Zachariou, N.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Khandaker, M.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Movsisyan, A.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Pereira, S. Anefalos; De Sanetis, E.; Mirazita, M.; Montgomery, R. A.; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; Celentano, A.; De Vita, R.; Fegan, S.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Colaneri, L.; D'Angelo, A.; Rizzo, A.; Zonta, I.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Filippi, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Charles, G.; Dupre, R.; Fradi, A.; Garillon, B.; Guegan, B.; Guidal, M.; Hattawy, M.; Jo, H. S.; Camacho, C. Munoz; Niccolai, S.; Pisano, S.] CNRS, Inst Phys Nucl, IN2P3, F-91405 Orsay, France. [Charles, G.; Dupre, R.; Fradi, A.; Garillon, B.; Guegan, B.; Guidal, M.; Hattawy, M.; Jo, H. S.; Camacho, C. Munoz; Niccolai, S.; Pisano, S.] Univ Paris 11, Orsay, France. [Bedlinskiy, I.; Pogorelko, O.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble Alpes, LPSC, CNRS, IN2P3, Grenoble, France. [Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Chandavar, S.; Goetz, J. T.; Hicks, K.] Ohio Univ, Athens, OH 45701 USA. [Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [Colaneri, L.; D'Angelo, A.; Rizzo, A.; Zonta, I.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Mokeev, V.; Skorodumina, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia. [Djalali, C.; Fedotov, G.; Gothe, R. W.; Ilieva, Y.; Jiang, H.; Lu, H. Y.; Skorodumina, I.; Strauch, S.; Tian, Ye; Trivedi, A.; Zachariou, N.] Univ S Carolina, Columbia, SC 29208 USA. [Joosten, S.; Sparveris, N.] Temple Univ, Philadelphia, PA 19122 USA. [Avakian, H.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Girod, F. X.; Hanretty, C.; Kubarovsky, V.; Mestayer, M. D.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Rossi, P.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Ungaro, M.; Wei, X.; Zhang, J.; Zhao, Z. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Fleming, J. A.; Hughes, S. M.; Smith, G. D.; Watts, D. P.; Zana, L.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Anderson, M. D.; Fegan, S.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Smith, G. D.; Sokhan, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Jenkins, D.] Virginia Tech, Blacksburg, VA 24061 USA. [Kalantarians, N.; Keller, D.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.; Simonyan, A.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Weinstein, LB (reprint author), Old Dominion Univ, Norfolk, VA 23529 USA. EM weinstein@odu.edu RI Meyer, Curtis/L-3488-2014; Brooks, William/C-8636-2013; Arrington, John/D-1116-2012; Zhang, Jixie/A-1461-2016; Adikaram, Dasuni/D-1539-2016; Adikaram, D/H-7128-2016; Celentano, Andrea/J-6190-2012; El Alaoui, Ahmed/B-4638-2015; MacGregor, Ian/D-4072-2011; Sabatie, Franck/K-9066-2015; Schumacher, Reinhard/K-6455-2013; Osipenko, Mikhail/N-8292-2015; D'Angelo, Annalisa/A-2439-2012 OI Zonta, Irene/0000-0003-4952-2160; Bono, Jason/0000-0002-3018-714X; Hyde, Charles/0000-0001-7282-8120; Meyer, Curtis/0000-0001-7599-3973; Brooks, William/0000-0001-6161-3570; Arrington, John/0000-0002-0702-1328; Celentano, Andrea/0000-0002-7104-2983; Sabatie, Franck/0000-0001-7031-3975; Schumacher, Reinhard/0000-0002-3860-1827; Osipenko, Mikhail/0000-0001-9618-3013; D'Angelo, Annalisa/0000-0003-3050-4907 FU U.S. Department of Energy [DE-FG02-96ER40960, DE-AC02-06CHI 1357]; U.S. National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; UK Science and Technology Facilities Council (STFC); National Research Foundation of Korea; United States Department of Energy [DE-AC05-060R23177] FX We acknowledge the outstanding efforts of the Jefferson Lab staff (especially Dave Kashy and the CLAS technical staff) that made this experiment possible. This work was supported in part by the U.S. Department of Energy under several grants including Grants No. DE-FG02-96ER40960 and No DE-AC02-06CHI 1357, the U.S. National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the UK Science and Technology Facilities Council (STFC), and the National Research Foundation of Korea. Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No DE-AC05-060R23177. NR 48 TC 18 Z9 19 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 10 PY 2015 VL 114 IS 6 AR 062003 DI 10.1103/PhysRevLett.114.062003 PG 6 WC Physics, Multidisciplinary SC Physics GA CB2WW UT WOS:000349490200003 PM 25723209 ER PT J AU Berges, J Boguslavski, K Schlichttng, S Venugopalan, R AF Berges, J. Boguslavski, K. Schlichttng, S. Venugopalan, R. TI Universality Far from Equilibrium: From Superfluid Bose Gases to Heavy-Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID THERMALIZATION AB Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. This overpopulation gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultrarelativistic limit admit a dual description in terms of a Bose condensed scalar field theory. C1 [Berges, J.; Boguslavski, K.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Berges, J.] GSI Helmholtzzentrum, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Schlichttng, S.; Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Berges, J (reprint author), Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. NR 23 TC 14 Z9 14 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 10 PY 2015 VL 114 IS 6 AR 061601 DI 10.1103/PhysRcvLett.114.061601 PG 5 WC Physics, Multidisciplinary SC Physics GA CB2WW UT WOS:000349490200001 PM 25723203 ER PT J AU Aliu, E Archambault, S Archer, A Aune, T Barnacka, A Beilicke, M Benbow, W Bird, R Buckley, JH Bugaev, V Byrum, K Cardenzana, JV Cerruti, M Chen, X Ciupik, L Connolly, MP Cui, W Dickinson, HJ Dumm, J Eisch, JD Errando, M Falcone, A Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Griffiths, ST Grube, J Gyuk, G Kansson, NH Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kertzman, M Kieda, D Krennrich, F Kumar, S Lang, MJ Lyutikov, M Madhavan, AS Maier, G McArthur, S McCann, A Meagher, K Millis, J Moriarty, P Mukherjee, R Nieto, D de Bhroithe, AO Ong, RA Otte, AN Park, N Pohl, M Popkow, A Prokoph, H Pueschel, E Quinn, J Ragan, K Reyes, LC Reynolds, PT Richards, GT Roache, E Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Tucci, JV Tyler, J Varlotta, A Vincent, S Wakely, SP Weinstein, A Williams, DA Zajczyk, A Zitzer, B AF Aliu, E. Archambault, S. Archer, A. Aune, T. Barnacka, A. Beilicke, M. Benbow, W. Bird, R. Buckley, J. H. Bugaev, V. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Ciupik, L. Connolly, M. P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Kansson, N. H. A. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kertzman, M. Kieda, D. Krennrich, F. Kumar, S. Lang, M. J. Lyutikov, M. Madhavan, A. S. Maier, G. McArthur, S. McCann, A. Meagher, K. Millis, J. Moriarty, P. Mukherjee, R. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Pohl, M. Popkow, A. Prokoph, H. Pueschel, E. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Richards, G. T. Roache, E. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Varlotta, A. Vincent, S. Wakely, S. P. Weinstein, A. Williams, D. A. Zajczyk, A. Zitzer, B. TI A SEARCH FOR PULSATIONS FROM GEMINGA ABOVE 100 GeV WITH VERITAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; pulsars: general; pulsars: individual (PSR J0633+1746, Geminga) ID TEV GAMMA-RAYS; LARGE-AREA TELESCOPE; HIGH-ENERGY EMISSION; FERMI-LAT OBSERVATIONS; CRAB PULSAR; GALACTIC SOURCES; VELA PULSAR; PG 1553+113; X-RAY; CATALOG AB We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM-Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0x10(-13) s(-1) cm(-2) and 1.7 x 10(-13) s(-1) cm(-2) for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above similar to 50 GeV. C1 [Aliu, E.; Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Aliu, E.] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Dept Astron & Meteorol, E-08028 Barcelona, Spain. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Zajczyk, A.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Aune, T.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Barnacka, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Pueschel, E.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Madhavan, A. S.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Kansson, N. H. A.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Golm, Germany. [Chen, X.; Fleischhack, H.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.] DESY, D-15738 Zeuthen, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Lyutikov, M.; Sembroski, G. H.; Tucci, J. V.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Fortson, L.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kar, P.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [McArthur, S.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Aliu, E (reprint author), Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM mccann@kicp.uchicago.edu; gtrichards@gatech.edu RI Nieto, Daniel/J-7250-2015; OI Nieto, Daniel/0000-0003-3343-0755; Pueschel, Elisa/0000-0002-0529-1973; Cui, Wei/0000-0002-6324-5772; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. A. Mc. is supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. NR 61 TC 6 Z9 6 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 61 DI 10.1088/0004-637X/800/1/61 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900061 ER PT J AU Balokovic, M Matt, G Harrison, FA Zoghbi, A Ballantyne, DR Boggs, SE Christensen, FE Craig, WW Esmerian, CJ Fabian, AC Furst, F Hailey, CJ Marinucci, A Parker, ML Reynolds, CS Stern, D Walton, DJ Zhang, WW AF Balokovic, M. Matt, G. Harrison, F. A. Zoghbi, A. Ballantyne, D. R. Boggs, S. E. Christensen, F. E. Craig, W. W. Esmerian, C. J. Fabian, A. C. Fuerst, F. Hailey, C. J. Marinucci, A. Parker, M. L. Reynolds, C. S. Stern, D. Walton, D. J. Zhang, W. W. TI CORONAL PROPERTIES OF THE SEYFERT 1.9 GALAXY MCG-05-23-016 DETERMINED FROM HARD X-RAY SPECTROSCOPY WITH NuSTAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (MCG-5-23-016); galaxies: nuclei; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; BLACK-HOLES; BEPPOSAX OBSERVATIONS; COMPTON REFLECTION; XMM-NEWTON; IC 4329A; MCG-5-23-16; EMISSION; SPECTRUM; LINE AB Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116(-5)(+6) keV with 90% confidence. Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT(e) = 29 +/- 2 keV and tau(e) = 1.23 +/- 0.08 assuming a slab (disk-like) geometry, and kT(e) = 25 +/- 2 keV and tau(e) = 3.5 +/- 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the tau(e) greater than or similar to 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous. C1 [Balokovic, M.; Harrison, F. A.; Esmerian, C. J.; Fuerst, F.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Matt, G.; Marinucci, A.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Zoghbi, A.; Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Zoghbi, A.; Reynolds, C. S.] Joint Space Sci Inst JSI, College Pk, MD 20742 USA. [Ballantyne, D. R.] Georgia Inst Technol, Ctr Relativist Astrophys, Sch Phys, Atlanta, GA 30332 USA. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, A. C.; Parker, M. L.] Inst Astron, Cambridge CB3 0HA, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Balokovic, M (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RI Boggs, Steven/E-4170-2015; Zoghbi, Abderahmen/A-8445-2017 OI Boggs, Steven/0000-0001-9567-4224; Zoghbi, Abderahmen/0000-0002-0572-9613 FU International Fulbright Science and Technology Award; Italian Space Agency [ASI/INAF I/037/12/0-011/13]; European Union Seventh Framework Programme (FP7) [312789]; NASA [NNX14AF86G, NNG08FD60C]; National Aeronautics and Space Administration FX M.B. acknowledges support from the International Fulbright Science and Technology Award. A.M. and G.M. acknowledge financial support from the Italian Space Agency under grant ASI/INAF I/037/12/0-011/13 and from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 312789. C.S.R. thanks NASA for support under ADAP grant NNX14AF86G. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has made use of NASA's Astrophysics Data System. NR 44 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 62 DI 10.1088/0004-637X/800/1/62 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900062 ER PT J AU Boyer, ML McQuinn, KBW Barmby, P Bonanos, AZ Gehrz, RD Gordon, KD Groenewegen, MAT Lagadec, E Lennon, D Marengo, M McDonald, I Meixner, M Skillman, E Sloan, GC Sonneborn, G van Loon, JT Zijlstra, A AF Boyer, Martha L. McQuinn, Kristen B. W. Barmby, Pauline Bonanos, Alceste Z. Gehrz, Robert D. Gordon, Karl D. Groenewegen, M. A. T. Lagadec, Eric Lennon, Daniel Marengo, Massimo McDonald, Iain Meixner, Margaret Skillman, Evan Sloan, G. C. Sonneborn, George van Loon, Jacco Th. Zijlstra, Albert TI AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: stellar content; infrared: stars; Local Group; stars: AGB and post-AGB; stars: carbon ID ASYMPTOTIC GIANT BRANCH; LARGE-MAGELLANIC-CLOUD; LONG-PERIOD VARIABLES; GRAVITATIONAL LENSING EXPERIMENT.; DWARF SPHEROIDAL GALAXY; LOCAL GROUP GALAXIES; MASS-LOSS RETURN; YOUNG STELLAR OBJECTS; MU-M RANGE; EVOLVED STARS AB The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 mu m imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called "extreme" or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < -1.5 and 12 are in galaxies with [Fe/H] < -2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of approximate to 30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments. C1 [Boyer, Martha L.; Sonneborn, George] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, Martha L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Barmby, Pauline] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Bonanos, Alceste Z.] Natl Observ Athens, IAASARS, GR-15236 Penteli, Greece. [Gordon, Karl D.; Meixner, Margaret] STScI, Baltimore, MD 21218 USA. [Groenewegen, M. A. T.] Royal Observ Belgium, B-1180 Brussels, Belgium. [Lagadec, Eric] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06300 Nice, France. [Lennon, Daniel] European Space Astron Ctr, ESA, E-28691 Madrid, Spain. [Marengo, Massimo] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McDonald, Iain; Zijlstra, Albert] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [van Loon, Jacco Th.] Keele Univ, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. RP Boyer, ML (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM martha.boyer@nasa.gov RI Bonanos, Alceste/K-5392-2013; Barmby, Pauline/I-7194-2016; OI Bonanos, Alceste/0000-0003-2851-1905; Barmby, Pauline/0000-0003-2767-0090; Lennon, Daniel/0000-0003-3063-4867 FU Spitzer [GO80063]; NASA Astrophysics Data Analysis Program [N3-ADAP13-0058]; NASA Postdoctoral Program at the Goddard Space Flight Center; NASA; United States Air Force; European Union (European Social Fund); National Resources under the "ARISTEIA" action of the Operational Programme "Education and Lifelong Learning" in Greece FX We thank Patricia Whitelock & Michael Feast for discussions about stellar variability that improved the paper and the referee for helpful comments. This work is supported by Spitzer via grant GO80063 and by the NASA Astrophysics Data Analysis Program grant number N3-ADAP13-0058. M. L. B. is supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by ORAU through a contract with NASA. R. D. G. was supported by NASA and the United States Air Force. A.Z.B. acknowledges funding by the European Union (European Social Fund) and National Resources under the "ARISTEIA" action of the Operational Programme "Education and Lifelong Learning" in Greece. NR 110 TC 13 Z9 13 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 51 DI 10.1088/0004-637X/800/1/51 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900051 ER PT J AU Dolence, JC Burrows, A Zhang, WQ AF Dolence, Joshua C. Burrows, Adam Zhang, Weiqun TI TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; hydrodynamics; neutrinos; stars: interiors ID EQUATION-OF-STATE; SPECTRAL NEUTRINO TRANSPORT; CIRCLE-DOT STAR; DRIVEN SUPERNOVA; HYDRODYNAMICS SIMULATIONS; RADIATION HYDRODYNAMICS; NUCLEAR-MATTER; 3 DIMENSIONS; EXPLOSIONS; MECHANISM AB We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying "ray-by-ray" approach employed by all other groups may be compromising their results. We show that "ray-by-ray" calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion. C1 [Dolence, Joshua C.; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Zhang, Weiqun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Dolence, JC (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM jdolence@astro.princeton.edu; burrows@astro.princeton.edu; weiqunzhang@lbl.gov OI Dolence, Joshua/0000-0003-4353-8751 FU Scientific Discovery through Advanced Computing (SciDAC) program of the DOE [DE-FG02-08ER41544]; NSF [ND201387, OCI-0905046, 44592]; Office of Science of the US Department of Energy [DE-AC03-76SF00098]; National Science Foundation [TG-AST100001] FX The authors acknowledge conversations and collaborations with Jeremiah Murphy, Christian Ott, Stan Woosley, Ann Almgren, John Bell, and Louis Howell. The development of the CASTRO code was supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the DOE under grant No. DE-FG02-08ER41544, the NSF under the sub-award No. ND201387 to the Joint Institute for Nuclear Astro-physics (JINA; NSF PHY-0822648), and the NSF PetaApps program, under award OCI-0905046 via subaward No. 44592 from Louisiana State University to Princeton University. The authors employed computational resources provided by the TIGRESS high performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology; by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098; and on the Kraken supercomputer, hosted at NICS and provided by the National Science Foundation through the TeraGrid Advanced Support Program under grant No. TG-AST100001. NR 54 TC 22 Z9 22 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 10 DI 10.1088/0004-637X/800/1/10 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900010 ER PT J AU Liao, K Treu, T Marshall, P Fassnacht, CD Rumbaugh, N Dobler, G Aghamousa, A Bonvin, V Courbin, F Hojjati, A Jackson, N Kashyap, V Kumar, SR Linder, E Mandel, K Meng, XL Meylan, G Moustakas, LA Prabhu, TP Romero-Wolf, A Shafieloo, A Siemiginowska, A Stalin, CS Tak, H Tewes, M van Dyk, D AF Liao, Kai Treu, Tommaso Marshall, Phil Fassnacht, Christopher D. Rumbaugh, Nick Dobler, Gregory Aghamousa, Amir Bonvin, Vivien Courbin, Frederic Hojjati, Alireza Jackson, Neal Kashyap, Vinay Kumar, S. Rathna Linder, Eric Mandel, Kaisey Meng, Xiao-Li Meylan, Georges Moustakas, Leonidas A. Prabhu, Tushar P. Romero-Wolf, Andrew Shafieloo, Arman Siemiginowska, Aneta Stalin, Chelliah S. Tak, Hyungsuk Tewes, Malte van Dyk, David TI STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: strong; methods: data analysis ID HUBBLE CONSTANT; COSMOLOGICAL PARAMETERS; EXPANSION HISTORY; DARK ENERGY; QUASARS; VARIABILITY; COSMOGRAIL; DISTANCES; GALAXIES; UNIVERSE AB We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statisticsmeasuring accuracy (or bias) A, goodness of fit chi(2), precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give vertical bar A vertical bar < 0.03, P < 0.03, and chi(2) < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and vertical bar A vertical bar < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration. C1 [Liao, Kai] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Liao, Kai; Treu, Tommaso] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Marshall, Phil] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Fassnacht, Christopher D.; Rumbaugh, Nick] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Dobler, Gregory] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Aghamousa, Amir; Shafieloo, Arman] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Bonvin, Vivien; Courbin, Frederic; Meylan, Georges] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Hojjati, Alireza] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hojjati, Alireza] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Jackson, Neal] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Kashyap, Vinay; Mandel, Kaisey; Siemiginowska, Aneta] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kumar, S. Rathna; Prabhu, Tushar P.; Stalin, Chelliah S.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Linder, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Linder, Eric] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Linder, Eric] Korea Astron & Space Sci Inst, Taejon 305248, South Korea. [Meng, Xiao-Li; Tak, Hyungsuk] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA. [Moustakas, Leonidas A.; Romero-Wolf, Andrew] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Shafieloo, Arman] POSTECH, Dept Phys, Pohang 790784, Gyeongbuk, South Korea. [Tewes, Malte] Argelander Inst Astron, D-53121 Bonn, Germany. [van Dyk, David] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Liao, Kai; Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Dobler, Gregory] NYU, Ctr Urban Sci Progress, Brooklyn, NY 11201 USA. RP Liao, K (reprint author), Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. OI Prabhu, Tushar/0000-0003-0797-5057; Moustakas, Leonidas/0000-0003-3030-2360 FU National Science Foundation collaborative grant "Collaborative Research: Accurate cosmology with strong gravitational lens time delays" [AST-1312329, AST-1450141]; Packard Foundation through a Packard Research Fellowship; China Scholarship Council; U.S. Department of Energy [DE-AC02-76SF00515]; Swiss National Science Foundation (SNSF); DFG [Hi 1495/2-1]; Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do; Pohang City for Independent Junior Research Groups at the Asia Pacific Center for Theoretical Physics; National Research Foundation of Korea [NRF-2013R1A1A2013795]; DOE [DE-SC-0007867, DE-AC02-05CH11231]; NSERC grant; NSF [AST-1211196] FX We acknowledge the LSST Dark Energy Science Collaboration for hosting several meetings of the "Evil" Team, and the private code repository used in this work. We thank the referee for constructive criticism which helped improved this paper. T.T., C.D.F., and K.L. acknowledge support from the National Science Foundation collaborative grant "Collaborative Research: Accurate cosmology with strong gravitational lens time delays" (AST-1312329 and AST-1450141). T.T. gratefully acknowledges support by the Packard Foundation through a Packard Research Fellowship. K.L. is supported by China Scholarship Council. The work of P.J.M. was supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. V.B. and F.C. are supported by the Swiss National Science Foundation (SNSF). M.T. acknowledges support by the DFG grant Hi 1495/2-1. A.A and A.S. wish to acknowledge support from the Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City for Independent Junior Research Groups at the Asia Pacific Center for Theoretical Physics. A.S. would like to acknowledge the support of the National Research Foundation of Korea (NRF-2013R1A1A2013795). E.L. is supported by DOE grant DE-SC-0007867 and contract No. DE-AC02-05CH11231. A.H. is supported by an NSERC grant and thanks the Institute for the Early Universe, Korea, for computational resources. A.A., A.S., A.H., and E.L. thank IBS Korea for hospitality. The work of L.A.M. and A.R.W. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. K.M. is supported at Harvard by NSF grant AST-1211196. NR 46 TC 20 Z9 20 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 11 DI 10.1088/0004-637X/800/1/11 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900011 ER PT J AU Saunders, C Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Bongard, S Buton, C Canto, A Cellier-Holzem, F Childress, M Chotard, N Copin, Y Fakhouri, HK Feindt, U Gangler, E Guy, J Kerschhaggl, M Kim, AG Kowalski, M Nordin, J Nugent, P Paech, K Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rigault, M Rubin, D Runge, K Scalzo, R Smadja, G Tao, C Thomas, RC Weaver, BA Wu, C AF Saunders, C. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Bongard, S. Buton, C. Canto, A. Cellier-Holzem, F. Childress, M. Chotard, N. Copin, Y. Fakhouri, H. K. Feindt, U. Gangler, E. Guy, J. Kerschhaggl, M. Kim, A. G. Kowalski, M. Nordin, J. Nugent, P. Paech, K. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rigault, M. Rubin, D. Runge, K. Scalzo, R. Smadja, G. Tao, C. Thomas, R. C. Weaver, B. A. Wu, C. CA Nearby Supernova Factory TI TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; supernovae: general ID INTEGRAL-FIELD SPECTROGRAPH; HUBBLE-SPACE-TELESCOPE; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; FACTORY OBSERVATIONS; DATA SET; COSMOLOGICAL CONSTRAINTS; LEGACY SURVEY; EXTINCTION; MAGNITUDES; PHOTOMETRY AB We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a given supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than similar to 0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty. C1 [Saunders, C.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Kim, A. G.; Nordin, J.; Perlmutter, S.; Rubin, D.; Runge, K.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Saunders, C.; Childress, M.; Fakhouri, H. K.; Perlmutter, S.; Rubin, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Pain, R.; Wu, C.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Feindt, U.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Rigault, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Nugent, P.; Thomas, R. C.] Lawrence Berkeley Natl Lab, Computat Res Div, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Nugent, P.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Pecontal, E.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. [Scalzo, R.] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Tao, C.] Aix Marseille Univ, CNRS, IN2P3, Ctr Phys Particules Marseille, F-13288 Marseille 09, France. [Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wu, C.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. RP Saunders, C (reprint author), Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Copin, Yannick/B-4928-2015; OI Copin, Yannick/0000-0002-5317-7518; Scalzo, Richard/0000-0003-3740-1214 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Gordon & Betty Moore Foundation; CNRS/INSU; PNC; DFG [TRR33]; LABEX Lyon Institute of Origins of the Universite de Lyon within the program "Investissements d'Avenir" of the French government [ANR-10-LABX-0066, ANR-11-IDEX-0007]; National Science Foundation [ANI-0087344]; University of California, San Diego; [CNRS/IN2P3] FX The authors are grateful to the technical and scientific staff of the University of Hawaii 2.2 m telescope, the Palomar Observatory, and the High Performance Wireless Radio Network (HPWREN). We thank Dan Birchall for his assistance in collecting data with SNIFS. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231; by a grant from the Gordon & Betty Moore Foundation; in France by support from CNRS/IN2P3, CNRS/INSU, and PNC; and in Germany by the DFG through TRR33 "The Dark Universe." N.C. is grateful to the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR). National Science Foundation grant Number ANI-0087344 and the University of California, San Diego provided funding for HPWREN. NR 43 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2015 VL 800 IS 1 AR 57 DI 10.1088/0004-637X/800/1/57 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA9IQ UT WOS:000349236900057 ER PT J AU Yan, H Wang, SQ Billesbach, D Oechel, W Bohrer, G Meyers, T Martin, TA Matamala, R Phillips, RP Rahman, F Yu, Q Shugart, HH AF Yan, Hao Wang, Shao-qiang Billesbach, Dave Oechel, Walter Bohrer, Gil Meyers, Tilden Martin, Timothy A. Matamala, Roser Phillips, Richard P. Rahman, Faiz Yu, Qin Shugart, Herman H. TI Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants SO ECOLOGICAL MODELLING LA English DT Article DE Gross primary production; Eddy covariance; Carbon flux model; Light use efficiency; MODIS ID NET PRIMARY PRODUCTION; LEAF-AREA INDEX; DROUGHT-INDUCED REDUCTION; CARBON-DIOXIDE EXCHANGE; PHOTOSYNTHETICALLY ACTIVE RADIATION; ENHANCED VEGETATION INDEX; REMOTELY-SENSED DATA; USE EFFICIENCY MODEL; LIGHT USE EFFICIENCY; ENERGY-EXCHANGE AB Accurate simulation of terrestrial gross primary production (GPP), the largest global carbon flux, benefits our understanding of carbon cycle and its source of variation. This paper presents a novel light use efficiency-based GPP model called the terrestrial ecosystem carbon flux model (TEC) driven by MODIS FPAR and climate data coupled with a precipitation-driven evapotranspiration (E) model (Yan et al., 2012). TEC incorporated a new water stress factor, defined as the ratio of actual E to Priestley and Taylor (1972) potential evaporation (E-PT). A maximum light use efficiency (epsilon*) of 1.8 gCMJ(-1) and 2.76 gCMJ(-1) was applied to C3 and C4 ecosystems, respectively. An evaluation at 18 eddy covariance flux towers representing various ecosystem types under various climates indicates that the TEC model predicted monthly average GPP for all sites with overall statistics of r = 0.85, RMSE = 2.20 gC m(-2) day(-1), and bias = -0.05 gC m(-2) day(-1). For comparison the MODIS GPP products (MOD17A2) had overall statistics of r = 0.73, RMSE = 2.82 gC m(-2) day(-1), and bias = -0.31 gC m(-2) day(-1) for this same set of data. In this case, the TEC model performed better than MOD17A2 products, especially for C4 plants. We obtained an estimate of global mean annual GPP flux at 128.2 +/- 1.5 Pg Cyr(-1) from monthly MODIS FPAR and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA reanalysis data at a 1.0 degrees spatial resolution over 11 year period from 2000 to 2010. This falls in the range of published land GPP estimates that consider the effect of C4 and C3 species. The TEC model with its new definition of water stress factor and its parameterization of C4 and C3 plants should help better understand the coupled climate-carbon cycle processes. (C) 2014 Elsevier B.V. All rights reserved. C1 [Yan, Hao] China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R China. [Wang, Shao-qiang] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Billesbach, Dave] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68583 USA. [Oechel, Walter] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Meyers, Tilden] NOAA, ARL, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37831 USA. [Martin, Timothy A.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. [Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Phillips, Richard P.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Rahman, Faiz] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Yu, Qin] George Washington Univ, Dept Geog, Washington, DC 20052 USA. [Shugart, Herman H.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP Yan, H (reprint author), China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R China. EM yanhaon@hotmail.com; sqwang@igsnrr.ac.cn; dbillesbach1@unl.edu; oechel@sunstroke.sdsu.edu; bohrer.17@osu.edu; tilden.meyers@noaa.gov; tamartin@ufl.edu; matamala@anl.gov; rpp6@indiana.edu; farahman@indiana.edu; qy4a@virginia.edu; hhs@virginia.edu RI Shugart, Herman/C-5156-2009; Meyers, Tilden/C-6633-2016; OI Bohrer, Gil/0000-0002-9209-9540; Martin, Timothy/0000-0002-7872-4194 FU National Natural Science Foundation of China [41171284, 40801129]; Chinese Academy of Sciences [XDA05050602-1]; NASA Earth Science Division [10-CARBON10-0068, Climate Change/09-IDS09-116] FX We would like to thank the flux site investigators for providing their data through AmeriFlux program for the development of TEC GPP model. This work was supported by National Natural Science Foundation of China (41171284, 40801129), Chinese Academy of Sciences (XDA05050602-1), and partly funded by NASA Earth Science Division, as well as by the following NASA grants to H.H. Shugart: 10-CARBON10-0068, and Climate Change/09-IDS09-116. Finally the reviewers are thanked for the constructive remarks and suggestions. NR 115 TC 6 Z9 6 U1 5 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD FEB 10 PY 2015 VL 297 BP 42 EP 59 DI 10.1016/j.ecolmodel.2014.11.002 PG 18 WC Ecology SC Environmental Sciences & Ecology GA CB1ZA UT WOS:000349425300007 ER PT J AU Rafique, R Kumar, S Luo, Y Kiely, G Asrar, G AF Rafique, Rashad Kumar, Sandeep Luo, Yiqi Kiely, Gerard Asrar, Ghassem TI An algorithmic calibration approach to identify globally optimal parameters for constraining the DayCent model SO ECOLOGICAL MODELLING LA English DT Article DE DayCent model; ParameterESTimation (PEST); N2O; Corn yield; Sensitivity analysis; Identifiability ID NITROUS-OXIDE EMISSIONS; TEMPERATE GRASSLAND; N2O; IDENTIFIABILITY; DNDC; MANAGEMENT; COLORADO; SYSTEMS AB The accurate calibration of complex biogeochemical models is essential for the robust estimation of soil greenhouse gases (GHG) as well as other environmental conditions and parameters that are used in research and policy decisions. DayCent is a popular biogeochemical model used both nationally and internationally for this purpose. Despite DayCent's popularity, its complex parameter estimation is often based on experts' knowledge which is somewhat subjective. In this study we used the inverse modelling parameter estimation software (PEST), to calibrate the DayCent model based on sensitivity and identifiability analysis. Using previously published N2O and crop yield data as a basis of our calibration approach, we found that half of the 140 parameters used in this study were the primary drivers of calibration differences (i.e. the most sensitive) and the remaining parameters could not be identified given the data set and parameter ranges we used in this study. The post calibration results showed improvement over the pre-calibration parameter set based on, a decrease in residual differences 79% for N2O fluxes and 84% for crop yield, and an increase in coefficient of determination 63% for N2O fluxes and 72% for corn yield. The results of our study suggest that future studies need to better characterize germination temperature, number of degree-days and temperature dependency of plant growth; these processes were highly sensitive and could not be adequately constrained by the data used in our study. Furthermore, the sensitivity and identifiability analysis was helpful in providing deeper insight for important processes and associated parameters that can lead to further improvement in calibration of DayCent model. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rafique, Rashad; Luo, Yiqi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Kumar, Sandeep] S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA. [Kiely, Gerard] Univ Coll Cork, Dept Civil & Environm Engn, Corcaigh, Ireland. [Rafique, Rashad; Asrar, Ghassem] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Rafique, R (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM rashidbao@gmail.com OI Kiely, Gerard/0000-0003-2189-6427 NR 23 TC 3 Z9 3 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD FEB 10 PY 2015 VL 297 BP 196 EP 200 DI 10.1016/j.ecolmodel.2014.11.022 PG 5 WC Ecology SC Environmental Sciences & Ecology GA CB1ZA UT WOS:000349425300021 ER PT J AU Schneeloch, JA Xu, ZJ Wen, JS Gehring, PM Stock, C Matsuda, M Winn, B Gu, GD Shapiro, SM Birgeneau, RJ Ushiyama, T Yanagisawa, Y Tomioka, Y Ito, T Xu, GY AF Schneeloch, John A. Xu, Zhijun Wen, Jinsheng Gehring, P. M. Stock, C. Matsuda, M. Winn, B. Gu, Genda Shapiro, Stephen M. Birgeneau, R. J. Ushiyama, T. Yanagisawa, Y. Tomioka, Y. Ito, T. Xu, Guangyong TI Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO3 SO PHYSICAL REVIEW B LA English DT Article ID BISMUTH FERRITE; TEMPERATURE; CRYSTALS AB We present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA(1) along [010], and TA(2) along [1 (1) over bar0]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T-N = 640 K. This suggests that the magnetic order and low-energy lattice dynamics in this multiferroic material are coupled. C1 [Schneeloch, John A.; Xu, Zhijun; Gu, Genda; Shapiro, Stephen M.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Schneeloch, John A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Xu, Zhijun; Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Zhijun; Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gehring, P. M.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Matsuda, M.; Winn, B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058562, Japan. RP Xu, GY (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM gxu@bnl.gov RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Winn, Barry/A-5065-2016; Matsuda, Masaaki/A-6902-2016; Xu, Guangyong/A-8707-2010; OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Winn, Barry/0000-0001-6383-4318; Matsuda, Masaaki/0000-0003-2209-9526; Xu, Guangyong/0000-0003-1441-8275; Schneeloch, John/0000-0002-3577-9574; Gehring, Peter/0000-0002-9236-2046 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Carnegie Trust for the Universities of Scotland; Royal Society; Mitsubishi Foundation FX J.A.S., Z.J.X., G.D.G., S.M.S., and G.Y.X. acknowledge support by Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. J.W. and R.J.B. are also supported by the Office of Basic Energy Sciences, U.S. Department of Energy through Contract No. DE-AC02-05CH11231. This research at the Oak Ridge National Laboratory Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. C.S. acknowledges the support of the Carnegie Trust for the Universities of Scotland and the Royal Society. T.I. is partly supported by the Mitsubishi Foundation. NR 27 TC 3 Z9 3 U1 3 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2015 VL 91 IS 6 AR 064301 DI 10.1103/PhysRevB.91.064301 PG 5 WC Physics, Condensed Matter SC Physics GA CB2TX UT WOS:000349482300002 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duehrssen, M Dunford, M Yildiz, HD Dueren, M Durglishvili, A Duschinger, D Dwuznik, M Dyndal, M Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gabizon, O Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L De la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM Van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huelsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koeneke, K Konig, AC Koenig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Koepke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kyriazopoulos, D La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Maettig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Moenig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morton, A Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nellist, C Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rao, K Rauscher, F Rave, S Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruehr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schaefer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smith, M Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R Van der Ster, D Van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M Von der Schmitt, H Von Radziewski, H Von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. De Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dwuznik, M. Dyndal, M. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Martinez, P. Fernandez Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. De Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gabizon, O. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. De la Hoz, S. Gonzlez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. Van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kyriazopoulos, D. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morton, A. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, S. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smith, M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. Van der Ster, D. Van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. Von der Schmitt, H. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zwalinski, L. CA Atlas Collaboration TI Measurement of the transverse polarization of Lambda and (Lambda)over-bar hyperons produced in proton-proton collisions at root s=7 TeV using the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID INCLUSIVE HADRON-PRODUCTION; HIGH-ENERGIES; DECAY; PARAMETERS; PARTICLE AB The transverse polarization of Lambda and (Lambda) over bar hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 mu b(-1) of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman x(F) from 5 x 10(-5) to 0.01 and transverse momentum p(T) from 0.8 to 15 GeV is -0.010 +/- 0.005(stat) +/- 0.004(syst) for Lambda and 0.002 +/- 0.006(stat) +/- 0.004(syst) for (Lambda) over bar. It is also measured as a function of x(F) and p(T), but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the x(F) range covered by this measurement. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.; Cakir, I. Turk] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Ozturk, N.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Ibragimov, I.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; Vogel, A.; Von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Van Eldik, N.; Van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Krizka, K.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Morton, A.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Morton, A.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Wang, C.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; Von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; Della Volpe, D.; Doglioni, C.; Ferrere, D.; Gabizon, O.; Golling, T.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; De Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. [Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Glonti, G. L.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Grosse-Knetter, J.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dassoulas, J.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Herbert, G. H.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Departamento Fis Teor C 15, Madrid, Spain. [Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hallewell, G. D.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Aloisio, A.; Barbero, M.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Hallewell, G. D.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; Von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Kharlamov, A.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Beacham, J. B.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, K.; Boddy, C. R.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Derkaoui, J. E.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Derkaoui, J. E.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Annovi, A.; Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Brelier, B.; Chau, C. C.; DeMarco, D. A.; Ilic, N.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; De la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Davies, E.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Davies, E.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.; Gao, J.] Univ Napoli Parthenope, Naples, Italy. Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Liu, K.] CNRS, IN2P3, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; spagnolo, stefania/A-6359-2012; Tassi, Enrico/K-3958-2015; Ciubancan, Liviu Mihai/L-2412-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Villa, Mauro/C-9883-2009; White, Ryan/E-2979-2015; Carquin, Edson/G-5221-2015; Riu, Imma/L-7385-2014; Joergensen, Morten/E-6847-2015; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Connell, Simon/F-2962-2015; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017 OI Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Villa, Mauro/0000-0002-9181-8048; White, Ryan/0000-0003-3589-5900; Carquin, Edson/0000-0002-7863-1166; Riu, Imma/0000-0002-3742-4582; Joergensen, Morten/0000-0002-6790-9361; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Connell, Simon/0000-0001-6000-7245; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF; RCN, Norway; MNiSW; NCN, Poland; GRICES; FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 33 TC 2 Z9 2 U1 14 U2 87 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 10 PY 2015 VL 91 IS 3 AR UNSP 032004 DI 10.1103/PhysRevD.91.032004 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB2VQ UT WOS:000349487000001 ER PT J AU Cheng, JG Kweon, KE Larregola, SA Ding, Y Shirako, Y Marshall, LG Li, ZY Li, X dos Santos, AM Suchomel, MR Matsubayashi, K Uwatoko, Y Hwang, GS Goodenough, JB Zhou, JS AF Cheng, Jinguang Kweon, K. E. Larregola, S. A. Ding, Yang Shirako, Y. Marshall, L. G. Li, Z. -Y. Li, X. dos Santos, Antonio M. Suchomel, M. R. Matsubayashi, K. Uwatoko, Y. Hwang, G. S. Goodenough, John B. Zhou, J. -S. TI Charge disproportionation and the pressure-induced insulator-metal transition in cubic perovskite PbCrO3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high pressure; perovskite; insulator-metal transition; charge disproportionation ID LARGE-VOLUME; MICROSTRUCTURE; SPECTROSCOPY; CHROMIUM; CRYSTAL AB The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr(4+) -> 2Cr(3+) + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT + U) calculations. C1 [Cheng, Jinguang; Larregola, S. A.; Shirako, Y.; Marshall, L. G.; Li, Z. -Y.; Li, X.; Goodenough, John B.; Zhou, J. -S.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Cheng, Jinguang; Larregola, S. A.; Shirako, Y.; Marshall, L. G.; Li, Z. -Y.; Li, X.; Goodenough, John B.; Zhou, J. -S.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Cheng, Jinguang] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Cheng, Jinguang] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Cheng, Jinguang; Matsubayashi, K.; Uwatoko, Y.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Kweon, K. E.; Hwang, G. S.] Univ Texas Austin, Chem Engn & Texas Mat Inst, Austin, TX 78712 USA. [Ding, Yang; Suchomel, M. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Marshall, L. G.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. [dos Santos, Antonio M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Goodenough, JB (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. EM jgoodenough@mail.utexas.edu; jszhou@mail.utexas.edu RI Marshall, Luke/L-5116-2014; dos Santos, Antonio/A-5602-2016; Cheng, Jinguang/A-8342-2012; Li, Zongyao/I-9642-2016; Matsubayashi, Kazuyuki/F-7696-2013; OI Marshall, Luke/0000-0003-1100-1474; dos Santos, Antonio/0000-0001-6900-0816; Li, Zongyao/0000-0002-0382-561X; SUCHOMEL, Matthew/0000-0002-9500-5079 FU National Science Foundation (NSF) Materials Interdisciplinary Research Teams [1122603]; Welch Foundation [F-1066, F-1535]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB07000000]; Ministry of Science and Technology (MOST); NSF of China [2014CB921500, 11304371]; Japan Society for the Promotion of Science (JSPS) [12F02023]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The Texas Advanced Computing Center is acknowledged for providing HPC resources. This work was supported by the National Science Foundation (NSF) Materials Interdisciplinary Research Teams (Division of Material Research-1122603) and the Welch Foundation (F-1066 and F-1535). J.C. acknowledges the support of the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB07000000), the Ministry of Science and Technology (MOST) and NSF of China (Grants 2014CB921500 and 11304371), and Japan Society for the Promotion of Science (JSPS) fellowship for foreign researchers (Grant 12F02023). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Research at Spallation Neutron Source in Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 21 TC 7 Z9 7 U1 7 U2 53 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 10 PY 2015 VL 112 IS 6 BP 1670 EP 1674 DI 10.1073/pnas.1424431112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8XL UT WOS:000349204200026 PM 25624483 ER PT J AU Bhattacharya, T Byrne, R Bohnel, H Wogau, K Kienelc, U Ingram, BL Zimmerman, S AF Bhattacharya, Tripti Byrne, Roger Boehnel, Harald Wogau, Kurt Kienel, Ulrike Ingram, B. Lynn Zimmerman, Susan TI Cultural implications of late Holocene climate change in the Cuenca Oriental, Mexico SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mesoamerica; paleoclimate; late Holocene; Cantona; paleolimnology ID EL-NINO/SOUTHERN-OSCILLATION; TROPICAL PACIFIC CLIMATE; ENVIRONMENTAL HISTORY; MAYA CIVILIZATION; VARIABILITY; COLLAPSE; DROUGHT; RESILIENCE; MECHANISMS; VEGETATION AB There is currently no consensus on the importance of climate change in Mesoamerican prehistory. Some invoke drought as a causal factor in major cultural transitions, including the abandonment of many sites at 900 CE, while others conclude that cultural factors were more important. This lack of agreement reflects the fact that the history of climate change in many regions of Mesoamerica is poorly understood. We present paleolimnological evidence suggesting that climate change was important in the abandonment of Cantona between 900 CE and 1050 CE. At its peak, Cantona was one of the largest cities in pre-Columbian Mesoamerica, with a population of 90,000 inhabitants. The site is located in the Cuenca Oriental, a semiarid basin east of Mexico City. We developed a subcentennial reconstruction of regional climate from a nearby maar lake, Aljojuca. The modern climatology of the region suggests that sediments record changes in summer monsoonal precipitation. Elemental geochemistry (X-ray fluorescence) and delta O-18 from authigenic calcite indicate a centennial-scale arid interval between 500 CE and 1150 CE, overlaid on a long-term drying trend. Comparison of this record to Cantona's chronology suggests that both the city's peak population and its abandonment occurred during this arid period. The human response to climate change most likely resulted from the interplay of environmental and political factors. During earlier periods of Cantona's history, increasing aridity and political unrest may have actually increased the city's importance. However, by 1050 CE, this extended arid period, possibly combined with regional political change, contributed to the city's abandonment. C1 [Bhattacharya, Tripti; Byrne, Roger; Ingram, B. Lynn] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Ingram, B. Lynn] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Boehnel, Harald; Wogau, Kurt] Univ Nacl Autonoma Mexico, Ctr Geociencias, Queretaro 76230, Mexico. [Kienel, Ulrike] Helmholtz Ctr Potsdam, German Res Ctr Geosci, D-14473 Potsdam, Germany. [Zimmerman, Susan] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Bhattacharya, T (reprint author), Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. EM tripti@berkeley.edu RI Zimmerman, Susan/A-3351-2013; OI Bhattacharya, Tripti/0000-0002-5528-3760 FU National Science Foundation (NSF) Graduate Research Fellowship [DGE 1106400]; NSF DDRIG [BCS-13333370]; University of California (UC) Museum of Paleontology Graduate Research Award; Berkeley's Stahl Foundation; UC Berkeley's Larsen Fund; German Research Foundation International Ocean Discovery Program [HA 2756/8-1] FX We thank Christiane Hassel (Indiana University Bloomington Flow Cytometry Core Facility), Tim Teague and Wenbo Yang (University of California, Berkeley), Tom Guilderson and Paula Zermeno (Lawrence Livermore National Laboratory), Gabriela Castaneda (UNAM Juriquilla), and several undergraduate assistants. We also thank John Chiang, David Wahl, Liam Reidy, and Cindy Looy for helpful discussions. This material is based upon work supported by the National Science Foundation (NSF) Graduate Research Fellowship under Grant DGE 1106400. Additional funding comes from NSF DDRIG (BCS-13333370), a University of California (UC) Museum of Paleontology Graduate Research Award (Summer 2013), grants from Berkeley's Stahl Foundation (Summer 2012), UC Berkeley's Larsen Fund, and German Research Foundation International Ocean Discovery Program Grant HA 2756/8-1. This article is LLNL-JRNL-657962. We thank three reviewers and the editor for their helpful comments. NR 48 TC 9 Z9 9 U1 2 U2 28 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 10 PY 2015 VL 112 IS 6 BP 1693 EP 1698 DI 10.1073/pnas.1405653112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8XL UT WOS:000349204200031 PM 25624470 ER PT J AU Rashidian, J Le Scolan, E Ji, XD Zhu, QW Mulvihill, MM Nomura, D Luo, KX AF Rashidian, Juliet Le Scolan, Erwan Ji, Xiaodan Zhu, Qingwei Mulvihill, Melinda M. Nomura, Daniel Luo, Kunxin TI Ski regulates Hippo and TAZ signaling to suppress breast cancer progression SO SCIENCE SIGNALING LA English DT Article ID EPITHELIAL-MESENCHYMAL TRANSITION; CELL SELF-RENEWAL; YES-ASSOCIATED PROTEIN; ORGAN SIZE CONTROL; TUMOR-SUPPRESSOR; CONTACT INHIBITION; GROWTH-CONTROL; SMAD PROTEINS; CO-REPRESSOR; PATHWAY AB Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor-beta (TGF-beta)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-beta signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells. C1 [Rashidian, Juliet; Le Scolan, Erwan; Ji, Xiaodan; Zhu, Qingwei; Luo, Kunxin] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Mulvihill, Melinda M.; Nomura, Daniel] Univ Calif Berkeley, Dept Nutr Sci, Berkeley, CA 94720 USA. [Luo, Kunxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Luo, KX (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kluo@berkeley.edu FU NIH [RO1 CA101891, R21 CA187632, RO1 DK090347, KG101263] FX This work is supported by NIH RO1 CA101891, R21 CA187632, and RO1 DK090347 to K.L. and Susan G. Komen for the Cure KG101263 to J.R. NR 60 TC 10 Z9 11 U1 0 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1945-0877 EI 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD FEB 10 PY 2015 VL 8 IS 363 AR ra14 DI 10.1126/scisignal.2005735 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CB4VZ UT WOS:000349627700002 PM 25670202 ER PT J AU Brettin, T Davis, JJ Disz, T Edwards, RA Gerdes, S Olsen, GJ Olson, R Overbeek, R Parrello, B Pusch, GD Shukla, M Thomason, JA Stevens, R Vonstein, V Wattam, AR Xia, FF AF Brettin, Thomas Davis, James J. Disz, Terry Edwards, Robert A. Gerdes, Svetlana Olsen, Gary J. Olson, Robert Overbeek, Ross Parrello, Bruce Pusch, Gordon D. Shukla, Maulik Thomason, James A., III Stevens, Rick Vonstein, Veronika Wattam, Alice R. Xia, Fangfang TI RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes SO SCIENTIFIC REPORTS LA English DT Article ID MICROBIAL GENOMES; RNA GENES; RESISTANCE; DATABASE; SYSTEM; IDENTIFICATION; GENERATION; SEQUENCES; RESOURCE; ARCHAEA AB The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception. C1 [Brettin, Thomas; Davis, James J.; Gerdes, Svetlana; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Stevens, Rick; Vonstein, Veronika] Argonne Natl Lab, Argonne, IL 60439 USA. [Brettin, Thomas; Davis, James J.; Olson, Robert; Stevens, Rick; Xia, Fangfang] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Disz, Terry; Gerdes, Svetlana; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Vonstein, Veronika] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. [Edwards, Robert A.; Olson, Robert; Xia, Fangfang] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Olsen, Gary J.] Univ Illinois, Dept Microbiol, Urbana, IL USA. [Shukla, Maulik; Wattam, Alice R.] Virginia Tech Univ, Virginia Bioinformat Inst, Blacksburg, VA 24060 USA. [Thomason, James A., III] USDA ARS, Lab Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Stevens, Rick] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. RP Davis, JJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jimdavis@uchicago.edu FU United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Service [HHSN272201400027C]; United States Department of Energy, DOE Systems Biology Knowledgebase [DE-AC02-06CH11357]; United States National Science Foundation [CNS-1305112]; Experimental and Computational Determination of Microbial Genotypes and Phenotypes [MCB-1330800]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA13AA91A] FX We thank Emily Dietrich for her helpful comments. This work was supported by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Service [Contract No. HHSN272201400027C]; the United States Department of Energy [DE-AC02-06CH11357], as part of the DOE Systems Biology Knowledgebase; R.A.E. was supported by United States National Science Foundation Grants grants II-EN: Computational Enhancement of Analytical Metagenomics Systems CNS-1305112, and Experimental and Computational Determination of Microbial Genotypes and Phenotypes MCB-1330800; and G.J.O. was supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA13AA91A issued through the Science Mission Directorate. United States Department of Energy: National Institute of Allergy and Infectious Diseases. NR 40 TC 56 Z9 57 U1 5 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2015 VL 5 AR 8365 DI 10.1038/srep08365 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8LV UT WOS:000349172800009 PM 25666585 ER PT J AU Zhang, JS Cui, LS Jiang, DQ Liu, YN Hao, SJ Ren, Y Han, XD Liu, ZY Wang, YZ Yu, C Huan, Y Zhao, XQ Zheng, YJ Xu, HB Ren, XB Li, XD AF Zhang, Junsong Cui, Lishan Jiang, Daqiang Liu, Yinong Hao, Shijie Ren, Yang Han, Xiaodong Liu, Zhenyang Wang, Yunzhi Yu, Cun Huan, Yong Zhao, Xinqing Zheng, Yanjun Xu, Huibin Ren, Xiaobing Li, Xiaodong TI A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess SO SCIENTIFIC REPORTS LA English DT Article ID X-RAY-DIFFRACTION; HIGH-STRENGTH; IN-SITU; ENHANCED PLASTICITY; DEFORMATION; COMPOSITES; BEHAVIOR; ALLOYS; NACRE; MICROSTRUCTURE AB The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. C1 [Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Hao, Shijie; Liu, Zhenyang; Yu, Cun; Zheng, Yanjun] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Hao, Shijie; Liu, Zhenyang; Yu, Cun; Zheng, Yanjun] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China. [Liu, Yinong] Univ Western Australia, Sch Mech & Chem Engn, Crawley, WA 6009, Australia. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Han, Xiaodong] Beijing Univ Technol, Inst Microstruct & Properties Adv Mat, Beijing 100124, Peoples R China. [Wang, Yunzhi] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Wang, Yunzhi] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. [Wang, Yunzhi] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Huan, Yong] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China. [Zhao, Xinqing; Xu, Huibin] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Li, Xiaodong] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. RP Cui, LS (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. EM lscui@cup.edu.cn; yinong.liu@uwa.edu.au; xl3p@virginia.edu RI Liu, Yinong/G-6637-2011; Wang, Yunzhi/B-2557-2010; 赵, 新青/I-3313-2016; Jiang, Daqiang /G-5511-2014 OI Liu, Yinong/0000-0002-8784-8543; FU key program project of National Natural Science Foundation of China (NSFC) [51231008]; National 973 programs of China [2012CB619400]; NSFC [51071175]; Australian Research Council [DP140103805]; Foundation for Innovative Research Groups of the NSFC [51221163]; National Basic Research Program of China [2012CB619402, 2014CB644003]; U.S. Natural Science Foundation [DMR-1410322]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX We thank Q. Zhou, J. X. Wei, X. B. Shi, S. Guo, and Q. K. Meng for valuable discussions on the damping capacity and deformation mechanism of the composite. This work is supported by the key program project of National Natural Science Foundation of China (NSFC) (51231008), the National 973 programs of China (2012CB619400), the NSFC (51071175), Australian Research Council (Grant No. DP140103805), and Foundation for Innovative Research Groups of the NSFC (Grant No. 51221163). Y. W. acknowledges support by National Basic Research Program of China (Grants Nos. 2012CB619402, 2014CB644003) and U.S. Natural Science Foundation DMR-1410322. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. NR 38 TC 3 Z9 3 U1 2 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2015 VL 5 AR 8357 DI 10.1038/srep08357 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8LV UT WOS:000349172800001 PM 25665501 ER PT J AU Mukherjee, S Lapidus, A Shapiro, N Cheng, JF Han, J Reddy, TBK Huntemann, M Ivanova, N Mikhailova, N Chen, A Palaniappan, K Spring, S Goker, M Markowitz, V Woyke, T Tindall, BJ Klenk, HP Kyrpides, NC Pati, A AF Mukherjee, Supratim Lapidus, Alla Shapiro, Nicole Cheng, Jan-Fang Han, James Reddy, T. B. K. Huntemann, Marcel Ivanova, Natalia Mikhailova, Natalia Chen, Amy Palaniappan, Krishna Spring, Stefan Goeker, Markus Markowitz, Victor Woyke, Tanja Tindall, Brian J. Klenk, Hans-Peter Kyrpides, Nikos C. Pati, Amrita TI High quality draft genome sequence and analysis of Pontibacter roseus type strain SRC-1(T) (DSM 17521(T)) isolated from muddy waters of a drainage system in Chandigarh, India SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Aerobic; Gram-negative; Non-motile; Obligate aerobe; Halotolerant; Menaquinone; GEBA; KMG-I ID MENAQUINONE VITAMIN-K-2 BIOSYNTHESIS; ESCHERICHIA-COLI; SP-NOV.; NUCLEOTIDE-SEQUENCE; MICROBIAL GENOMES; EFFLUVIIBACTER-ROSEUS; O-SUCCINYLBENZOATE; MULTIDRUG EFFLUX; RNA GENES; BACTERIA AB Pontibacter roseus is a member of genus Pontibacter family Cytophagaceae, class Cytophagia. While the type species of the genus Pontibacter actiniarum was isolated in 2005 from a marine environment, subsequent species of the same genus have been found in different types of habitats ranging from seawater, sediment, desert soil, rhizosphere, contaminated sites, solar saltern and muddy water. Here we describe the features of Pontibacter roseus strain SRC-1(T) along with its complete genome sequence and annotation from a culture of DSM 17521(T). The 4,581,480 bp long draft genome consists of 12 scaffolds with 4,003 protein-coding and 50 RNA genes and is a part of Genomic Encyclopedia of Type Strains: KMG-I project. C1 [Mukherjee, Supratim; Shapiro, Nicole; Cheng, Jan-Fang; Han, James; Reddy, T. B. K.; Huntemann, Marcel; Ivanova, Natalia; Mikhailova, Natalia; Woyke, Tanja; Kyrpides, Nikos C.; Pati, Amrita] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Lapidus, Alla] St Petersburg State Univ, T Dobzhansky Ctr Genome Bionformat, St Petersburg 199034, Russia. [Lapidus, Alla] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg 199034, Russia. [Spring, Stefan; Goeker, Markus; Tindall, Brian J.; Klenk, Hans-Peter] Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany. [Chen, Amy; Palaniappan, Krishna; Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. RP Pati, A (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA USA. EM apati@lbl.gov RI Kyrpides, Nikos/A-6305-2014; Spring, Stefan/N-6933-2013; Lapidus, Alla/I-4348-2013; OI Kyrpides, Nikos/0000-0002-6131-0462; Spring, Stefan/0000-0001-6247-0938; Lapidus, Alla/0000-0003-0427-8731; Ivanova, Natalia/0000-0002-5802-9485 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Russian Ministry of Science [11.G34.31.0068] FX The authors gratefully acknowledge the assistance of Andrea Schutze for growing P. roseus DSM 17521T cultures and Evelyne-Marie Brambilla for DNA extraction and quality control (both at the DSMZ). The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A. L. was supported in part by Russian Ministry of Science Mega-grant no. 11.G34.31.0068 (PI. Dr. Stephen J O'Brien). NR 70 TC 1 Z9 1 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD FEB 9 PY 2015 VL 10 DI 10.1186/1944-3277-10-8 PG 9 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7IB UT WOS:000367976700002 PM 26203325 ER PT J AU Reeve, W Ardley, J Tian, R Eshragi, L Yoon, JW Ngamwisetkun, P Seshadri, R Ivanova, NN Kyrpides, NC AF Reeve, Wayne Ardley, Julie Tian, Rui Eshragi, Leila Yoon, Je Won Ngamwisetkun, Pinyaruk Seshadri, Rekha Ivanova, Natalia N. Kyrpides, Nikos C. TI A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey SO STANDARDS IN GENOMIC SCIENCES LA English DT Editorial Material DE GEBA-RNB; Root nodule bacteria; Diversity; Symbiosis; Nitrogen fixation ID NITROGEN-FIXATION; EFFECTIVE MICROSYMBIONT; SEQUENCE; AGRICULTURE; TRIFOLII; NODULATION; STANDARDS; LEGUMES; ETHANOL; FUTURE AB Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts. C1 [Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk] Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. [Eshragi, Leila] Murdoch Univ, Ctr Phytophthora Sci & Management, Murdoch, WA 6150, Australia. [Seshadri, Rekha; Ivanova, Natalia N.; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. RP Reeve, W (reprint author), Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. EM W.Reeve@murdoch.edu.au RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 NR 35 TC 19 Z9 19 U1 2 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD FEB 9 PY 2015 VL 10 AR 14 DI 10.1186/1944-3277-10-14 PG 8 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7KT UT WOS:000367983700001 PM 25685260 ER PT J AU Meng, QP Han, MG Tao, J Xu, GY Welch, DO Zhu, YM AF Meng, Qingping Han, Myung-Geun Tao, Jing Xu, Guangyong Welch, David O. Zhu, Yimei TI Velocity of domain-wall motion during polarization reversal in ferroelectric thin films: Beyond Merz's Law SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; STOCHASTIC-THEORY; PEROVSKITES; NUCLEATION; MECHANISM; DYNAMICS; KINETICS; GROWTH; MODEL AB The motion of domain walls (DWs) is critical to switching kinetics in ferroelectric (FE) materials. Merz's law, dependent only on the applied electric field, cannot explain recent experimental observations in FE thin films because these experiments showed that the DW velocity depends not only on the strength of the applied electric field but also on size of the reversal domain. In this paper, we derive a model to understand the dominant factors controlling the velocity of FE DWs. Our calculations reveal that the DW velocities are not only a function of the strength of the electric field but also decay exponentially with the increasing characteristic time of the measurement or the size of the growing domain. Our observations can naturally explain the gigantic variation reported in the literature, over 15 orders of magnitude, in the experimentally measured DW velocities and the formation of the stripe shape of FE domains. C1 [Meng, Qingping; Han, Myung-Geun; Tao, Jing; Xu, Guangyong; Welch, David O.; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Meng, Qingping] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. RP Meng, QP (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM qmeng@bnl.gov; zhu@bnl.gov RI Xu, Guangyong/A-8707-2010 OI Xu, Guangyong/0000-0003-1441-8275 FU US Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886]; National Natural Science Foundation of China [50471014] FX This paper was supported by the US Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. Q.M. acknowledges the National Natural Science Foundation of China (Grant No. 50471014) for partial support. NR 45 TC 2 Z9 2 U1 3 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 9 PY 2015 VL 91 IS 5 AR 054104 DI 10.1103/PhysRevB.91.054104 PG 7 WC Physics, Condensed Matter SC Physics GA CC2JE UT WOS:000350170500001 ER PT J AU Hau-Riege, SP Bennion, BJ AF Hau-Riege, Stefan P. Bennion, Brian J. TI Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS; PLASMAS; SIMULATIONS; LASER AB X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging. C1 [Hau-Riege, Stefan P.; Bennion, Brian J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU NIH [P41 RR-01081]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Karol Nass, Ilme Schlichting, and Jon Weisheit for helpful discussions. VMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. Unit cell structures were produced using the UCSF CHIMERA package from the Computer Graphics Laboratory, University of California, San Francisco (supported by NIH Grant No. P41 RR-01081). This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. B.J.B. prepared the molecular model and S.H.-R. performed the explosion dynamics calculations. S.H.-R. analyzed the data. Both B.J.B. and S.H.-R. coauthored the manuscript. NR 29 TC 2 Z9 2 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD FEB 9 PY 2015 VL 91 IS 2 AR 022705 DI 10.1103/PhysRevE.91.022705 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CC3IH UT WOS:000350239900009 PM 25768529 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the B-s(0) Lifetime in the Flavor-Specific Decay Channel B-s(0)-> D-s(-)mu(+)nu X SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present an updated measurement of the B-s(0) lifetime using the semileptonic decays B-s(0) -> D-s(-)mu(+)nu X, with D-s(-) -> phi pi(-) and phi -> K+K- (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at root s = 1.96 TeV, comprising an integrated luminosity of 10.4 fb(-1). We find a flavor-specific lifetime tau(fs)(B-s(0)) = 1.479 +/- 0.010(stat) +/- 0.021(syst) ps. This technique is also used to determine the B-0 lifetime using the analogous B-0 -> D- mu(+)nu X decay with D- -> phi pi(-) and phi -> K+K-, yielding tau(B-0) = 1.534 +/- 0.019(stat) +/- 0.021(syst) ps. Both measurements are consistent with the current world averages, and the B-s(0) lifetime measurement is one of the most precise to date. Taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio tau(fs)(B-s(0))/tau(B-0) = 0.964 +/- 0.013(stat) +/- 0.007(syst). C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Petroff, P.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69365 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Gutierrez, Phillip/C-1161-2011; Li, Liang/O-1107-2015 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; Li, Liang/0000-0001-6411-6107 FU Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Department of Science and Technology (India); Administrative Department of Science, Technology, and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council (United Kingdom); Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) (Germany); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences (China); National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology, and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 20 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 9 PY 2015 VL 114 IS 6 AR 062001 DI 10.1103/PhysRevLett.114.062001 PG 7 WC Physics, Multidisciplinary SC Physics GA CC3JV UT WOS:000350244900003 PM 25723207 ER PT J AU Al-Hassanieh, KA Rincon, J Alvarez, G Dagotto, E AF Al-Hassanieh, K. A. Rincon, Julian Alvarez, G. Dagotto, E. TI Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; FERROMAGNET; SUPERCONDUCTORS; DEPENDENCE; TRANSPORT; JUNCTIONS AB Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known singlespin- species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflection at metalsuperconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed. C1 [Al-Hassanieh, K. A.; Rincon, Julian; Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rincon, Julian] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Alvarez, G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Al-Hassanieh, KA (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. FU Center for Nanophase Materials Sciences - U.S. Department of Energy; DOE early career research program; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division; Simons Foundation (Many Electron Collaboration); Government of Canada through Industry Canada; Province of Ontario through the Ministry of Research and Innovation FX K. A. A.-H. thanks G. B. Martins, C. D. Batista, and A. Rahmani for insightful discussions. J. R. acknowledges fruitful conversations with G. Baskaran. This work was supported by the Center for Nanophase Materials Sciences, sponsored by the U.S. Department of Energy. K. A. A.-H., J. R., and G. A. acknowledge support from the DOE early career research program. E. D. is supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division. J. R. also acknowledges support by the Simons Foundation (Many Electron Collaboration). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. NR 40 TC 1 Z9 1 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 9 PY 2015 VL 114 IS 6 AR 066401 DI 10.1103/PhysRevLett.114.066401 PG 5 WC Physics, Multidisciplinary SC Physics GA CC3JV UT WOS:000350244900010 PM 25723231 ER PT J AU Belashchenko, KD Ke, LQ Dane, M Benedict, LX Lamichhane, TN Taufour, V Jesche, A Bud'ko, SL Canfield, PC Antropov, VP AF Belashchenko, Kirill D. Ke, Liqin Daene, Markus Benedict, Lorin X. Lamichhane, Tej Nath Taufour, Valentin Jesche, Anton Bud'ko, Sergey L. Canfield, Paul C. Antropov, Vladimir P. TI Origin of the spin reorientation transitions in (Fe1-xCox)(2)B alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETOCRYSTALLINE ANISOTROPY; BORIDES AB Low-temperature measurements of the magnetocrystalline anisotropy energy K in (Fe1-xCox)(2)B alloys are reported, and the origin of this anisotropy is elucidated using a first-principles electronic structure analysis. The calculated concentration dependence K(x) with a maximum near x = 0.3 and a minimum near x = 0.8 is in excellent agreement with experiment. This dependence is traced down to spin-orbital selection rules and the filling of electronic bands with increasing electronic concentration. At the optimal Co concentration, K depends strongly on the tetragonality and doubles under a modest 3% increase of the c/a ratio, suggesting that the magnetocrystalline anisotropy can be further enhanced using epitaxial or chemical strain. (C) 2015 AIP Publishing LLC. C1 [Belashchenko, Kirill D.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Belashchenko, Kirill D.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Ke, Liqin; Lamichhane, Tej Nath; Taufour, Valentin; Jesche, Anton; Bud'ko, Sergey L.; Canfield, Paul C.; Antropov, Vladimir P.] US DOE, Ames Lab, Ames, IA 50011 USA. [Daene, Markus; Benedict, Lorin X.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lamichhane, Tej Nath; Taufour, Valentin; Jesche, Anton; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Belashchenko, KD (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. RI Belashchenko, Kirill/A-9744-2008 OI Belashchenko, Kirill/0000-0002-8518-1490 FU National Science Foundation [DMR-1308751]; Critical Materials Institute, an Energy Innovation Hub - U.S. DOE; Office of Basic Energy Science, Division of Materials Science and Engineering; U.S. DOE [DE-AC02-07CH11358, DE-AC52-07NA27344] FX The work at UNL was supported by the National Science Foundation through Grant No. DMR-1308751 and performed utilizing the Holland Computing Center of the University of Nebraska. Work at Ames Lab and LLNL was supported in part by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. DOE and by the Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. Lawrence Livermore National Laboratory is operated for the U.S. DOE under Contract No. DE-AC52-07NA27344. NR 14 TC 9 Z9 9 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 9 PY 2015 VL 106 IS 6 AR 062408 DI 10.1063/1.4908056 PG 4 WC Physics, Applied SC Physics GA CB7YR UT WOS:000349845300048 ER PT J AU Chen, G N'Diaye, AT Wu, YZ Schmid, AK AF Chen, Gong N'Diaye, Alpha T. Wu, Yizheng Schmid, Andreas K. TI Ternary superlattice boosting interface-stabilized magnetic chirality SO APPLIED PHYSICS LETTERS LA English DT Article ID DOMAIN-WALLS; WEAK FERROMAGNETISM; SPIN TORQUE; SKYRMIONS; DYNAMICS; DRIVEN; MOTION AB In cobalt-nickel multilayers grown on iridium surfaces, magnetic homo-chirality can be stabilized by Dzyaloshinskii-Moriya interactions (DMI) at the interface with the substrate. When thickness of the multilayers is increased beyond threshold values, then non-chiral bulk properties exceed interface contributions and this type of chirality vanishes. Here, we use spin-polarized low energy electron microscopy to measure these thickness thresholds, and we determine estimates of the strength of the DMI from the measurements. Even though the same 5d heavy metal is used as a substrate, a remarkably large variation is found between the two 3d magnets: our results indicate that the strength of the DMI at Co/Ir interfaces is three times larger than at Ni/Ir interfaces. We show how this finding provides ways to extend interfacial-DMI stabilization of domain wall chirality to 3d/5d/3d ternary multilayers such as [Ni/Ir/Co](n). Such strategies may extend chirality-control to larger film thickness and a wider range of substrates, which may be useful for designing new spintronics devices. (C) 2015 AIP Publishing LLC. C1 [Chen, Gong; Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. [N'Diaye, Alpha T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wu, Yizheng] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Wu, Yizheng] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. RP Chen, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. RI Chen, Gong/H-3074-2015; Wu, yizheng/P-2395-2014; Foundry, Molecular/G-9968-2014 OI Wu, yizheng/0000-0002-9289-1271; FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Key Basic Research Program of China [2015CB921401]; National Science foundation of China [11434003, 11474066] FX We acknowledge Professor S. Blugel, Professor R. Q. Wu, and Professor E. G. Michel for fruitful discussions. Experiments were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by National Key Basic Research Program of China (Grant No. 2015CB921401), National Science foundation of China (Grant Nos. 11434003 and 11474066). NR 28 TC 6 Z9 6 U1 4 U2 31 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 9 PY 2015 VL 106 IS 6 AR 062402 DI 10.1063/1.4907889 PG 4 WC Physics, Applied SC Physics GA CB7YR UT WOS:000349845300042 ER PT J AU Rice, KP Russek, SE Geiss, RH Shaw, JM Usselman, RJ Evarts, ER Silva, TJ Nembach, HT Arenholz, E Idzerda, YU AF Rice, Katherine P. Russek, Stephen E. Geiss, Roy H. Shaw, Justin M. Usselman, Robert J. Evarts, Eric R. Silva, Thomas J. Nembach, Hans T. Arenholz, Elke Idzerda, Yves U. TI Temperature-dependent structure of Tb-doped magnetite nanoparticles SO APPLIED PHYSICS LETTERS LA English DT Article ID AMORPHOUS THIN-FILMS; FERROMAGNETIC-RESONANCE; COMPLEX PERMEABILITY; EARTH; MAGNETIZATION; ANISOTROPY; GARNET; SIZE AB High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, alpha, is remarkably low for the Tb-doped nanoparticles, with alpha = 0.024 +/- 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures. (C) 2015 AIP Publishing LLC. C1 [Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.] NIST, Boulder, CO 80305 USA. [Geiss, Roy H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Idzerda, Yves U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Russek, SE (reprint author), NIST, Boulder, CO 80305 USA. EM stephen.russek@nist.gov RI Shaw, Justin/C-1845-2008; Silva, Thomas/C-7605-2013 OI Shaw, Justin/0000-0003-2027-1521; Silva, Thomas/0000-0001-8164-9642 FU National Science Foundation [CBET-0709358]; DOE; NRC-RAP program FX Y.U.I. acknowledges the support of the National Science Foundation under grant CBET-0709358. The XMCD work at the Advanced Light Source is supported by DOE. The authors thank Dr. Thompson Mefford and Dr. John Ballato for helpful discussions. K.P.R. and E.R.E. acknowledge funding support from the NRC-RAP program. We gratefully acknowledge the assistance of the NIST Precision Imaging Facility. NR 25 TC 2 Z9 2 U1 8 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 9 PY 2015 VL 106 IS 6 AR 062409 DI 10.1063/1.4907332 PG 4 WC Physics, Applied SC Physics GA CB7YR UT WOS:000349845300049 ER PT J AU Cao, Y Liu, XJ He, LY Long, GL Hu, H AF Cao, Ye Liu, Xia-Ji He, Lianyi Long, Gui-Lu Hu, Hui TI Superfluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit-coupled Fulde-Ferrell superfluid SO PHYSICAL REVIEW A LA English DT Article ID LONG-RANGE ORDER; FERMI GAS; TOPOLOGICAL INSULATORS; 2-DIMENSIONAL SYSTEMS; BOSE-CONDENSATION; SUPERCONDUCTIVITY; METASTABILITY; STATES AB We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit-coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF, and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the x direction, the tensor component along the y direction n(s,yy) is generally larger than n(s,xx) in most parameter space. At zero temperature, there is always a discontinuity jump in n(s,xx) as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit-coupling strength, interatomic interaction strength, and in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1T(F), where T-F is the Fermi degenerate temperature. Therefore, their observation is within the reach of current experimental techniques in cold-atom laboratories. C1 [Cao, Ye; Liu, Xia-Ji; Hu, Hui] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia. [Cao, Ye; Long, Gui-Lu] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Cao, Ye; Long, Gui-Lu] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [He, Lianyi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Long, Gui-Lu] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Long, Gui-Lu] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China. RP Cao, Y (reprint author), Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia. EM hhu@swin.edu.au RI He, Lianyi/G-5110-2010; Liu, Xia-Ji/C-6888-2009; Cao, Ye/G-3040-2016; HU, Hui/C-6878-2009 OI He, Lianyi/0000-0002-9965-0446; Liu, Xia-Ji/0000-0003-4158-5474; HU, Hui/0000-0002-1541-1756 FU Australian Research Council (ARC) [FT140100003, FT130100815, DP140103231, DP140100637]; National Key Basic Research Special Foundation of China (NKBRSFC-China) [2011CB921502]; US Department of Energy Nuclear Physics Office; National Natural Science Foundation of China (NSFC-China) [11175094, 91221205]; NKBRSFC-China [2011CB921602] FX X.J.L. and H.H. were supported by the Australian Research Council (ARC) (Grants No. FT140100003, No. FT130100815, No. DP140103231, and No. DP140100637) and the National Key Basic Research Special Foundation of China (NKBRSFC-China) (Grant No. 2011CB921502). L.H. was supported by US Department of Energy Nuclear Physics Office. G.L.L. was supported by the National Natural Science Foundation of China (NSFC-China) (Grants No. 11175094 and No. 91221205) and the NKBRSFC-China (Grant No. 2011CB921602). NR 75 TC 4 Z9 4 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 9 PY 2015 VL 91 IS 2 AR 023609 DI 10.1103/PhysRevA.91.023609 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC2IW UT WOS:000350169700012 ER PT J AU dos Santos, SF Douguet, N Orel, AE Rescigno, TN AF dos Santos, S. Fonseca Douguet, N. Orel, A. E. Rescigno, T. N. TI Ligand effects in carbon-K-shell photoionization SO PHYSICAL REVIEW A LA English DT Article ID MOMENTUM SPECTROSCOPY; RECOIL-ION AB We consider the effect of substituting atomic ligands X with different electronic properties in the carbon-K-shell photoionization of the linear XCCX molecules. We study the cases of lithium, hydrogen, and fluorine as ligands bonded to the carbon atoms. The molecular frame photoelectron angular distributions are computed using the variational complex Kohn technique. The electronic properties of the ligands have direct observable effects on the angular distribution of the emitted carbon core-hole photoelectron. These effects have already been observed experimentally using the cold target recoil ion momentum spectroscopy technique. We propose a simple classical explanation based on the intramolecular electrostatic potential to qualitatively explain the preferred directions of electron emission. C1 [dos Santos, S. Fonseca; Douguet, N.; Orel, A. E.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP dos Santos, SF (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. FU US Department of Energy [DE-AC02-05CH11231]; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation FX Work at University of California Lawrence Berkeley National Laboratory was performed under the auspices of the US Department of Energy under Contract No. DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. A.E.O. acknowledges support by the National Science Foundation, with some of this material being based on work done while serving at the NSF. NR 19 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 9 PY 2015 VL 91 IS 2 AR 023408 DI 10.1103/PhysRevA.91.023408 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CC2IW UT WOS:000350169700008 ER PT J AU Paradela, C Calviani, M Tarrio, D Leal-Cidoncha, E Leong, LS Tassan-Got, L Le Naour, C Duran, I Colonna, N Audouin, L Mastromarco, M Lo Meo, S Ventura, A Aerts, G Altstadt, S Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Badurek, G Barbagallo, M Baumann, P Becares, V Becvar, F Belloni, F Berthier, B Berthoumieux, E Billowes, J Boccone, V Bosnar, D Brugger, M Calvino, F Cano-Ott, D Capote, R Carrapico, C Cennini, P Cerutti, F Chiaveri, E Chin, M Cortes, G Cortes-Giraldo, MA Cosentino, L Couture, A Cox, J David, S Diakaki, M Dillmann, I Domingo-Pardo, C Dressler, R Dridi, W Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Finocchiaro, P Fraval, K Fujii, K Furman, W Ganesan, S Garcia, AR Giubrone, G Gomez-Hornillos, MB Goncalves, IF Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Gurusamy, P Haight, R Heil, M Heinitz, S Igashira, M Isaev, S Jenkins, DG Jericha, E Kadi, Y Kappeler, F Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Kivel, N Kokkoris, M Konovalov, V Krticka, M Kroll, J Lampoudis, C Langer, C Lederer, C Leeb, H Losito, R Lozano, M Manousos, A Marganiec, J Martinez, T Marrone, S Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Mingrone, F Mirea, M Mondelaers, W Moreau, C Mosconi, M Musumarra, A O'Brien, S Pancin, J Patronis, N Pavlik, A Pavlopoulos, P Perkowski, J Perrot, L Pigni, MT Plag, R Plompen, A Plukis, L Poch, A Pretel, C Praena, J Quesada, J Rauscher, T Reifarth, R Riego, A Roman, F Rudolf, G Rubbia, C Rullhusen, P Salgado, J Santos, C Sarchiapone, L Sarmento, R Saxena, A Schillebeeckx, P Schmidt, S Schumann, D Stephan, C Tagliente, G Tain, JL Tavora, L Terlizzi, R Tsinganis, A Valenta, S Vannini, G Variale, V Vaz, P Versaci, R Vermeulen, MJ Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Wallner, A Walter, S Ware, T Weigand, M Weiss, C Wiesher, M Wisshak, K Wright, T Zugec, P AF Paradela, C. Calviani, M. Tarrio, D. Leal-Cidoncha, E. Leong, L. S. Tassan-Got, L. Le Naour, C. Duran, I. Colonna, N. Audouin, L. Mastromarco, M. Lo Meo, S. Ventura, A. Aerts, G. Altstadt, S. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Badurek, G. Barbagallo, M. Baumann, P. Becares, V. Becvar, F. Belloni, F. Berthier, B. Berthoumieux, E. Billowes, J. Boccone, V. Bosnar, D. Brugger, M. Calvino, F. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Cerutti, F. Chiaveri, E. Chin, M. Cortes, G. Cortes-Giraldo, M. A. Cosentino, L. Couture, A. Cox, J. David, S. Diakaki, M. Dillmann, I. Domingo-Pardo, C. Dressler, R. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Finocchiaro, P. Fraval, K. Fujii, K. Furman, W. Ganesan, S. Garcia, A. R. Giubrone, G. Gomez-Hornillos, M. B. Goncalves, I. F. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Gurusamy, P. Haight, R. Heil, M. Heinitz, S. Igashira, M. Isaev, S. Jenkins, D. G. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Kivel, N. Kokkoris, M. Konovalov, V. Krticka, M. Kroll, J. Lampoudis, C. Langer, C. Lederer, C. Leeb, H. Losito, R. Lozano, M. Manousos, A. Marganiec, J. Martinez, T. Marrone, S. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Mingrone, F. Mirea, M. Mondelaers, W. Moreau, C. Mosconi, M. Musumarra, A. O'Brien, S. Pancin, J. Patronis, N. Pavlik, A. Pavlopoulos, P. Perkowski, J. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, L. Poch, A. Pretel, C. Praena, J. Quesada, J. Rauscher, T. Reifarth, R. Riego, A. Roman, F. Rudolf, G. Rubbia, C. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Sarmento, R. Saxena, A. Schillebeeckx, P. Schmidt, S. Schumann, D. Stephan, C. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Tsinganis, A. Valenta, S. Vannini, G. Variale, V. Vaz, P. Versaci, R. Vermeulen, M. J. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Wallner, A. Walter, S. Ware, T. Weigand, M. Weiss, C. Wiesher, M. Wisshak, K. Wright, T. Zugec, P. CA n TOF Collaboration TI High-accuracy determination of the U-238/U-235 fission cross section ratio up to approximate to 1 GeV at n_TOF at CERN SO PHYSICAL REVIEW C LA English DT Article ID ANGULAR-DISTRIBUTION; FACILITY; ENERGY AB The U-238 to U-235 fission cross section ratio has been determined at n_TOF up to approximate to 1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++ /Gemini++ combination up to the highest measured energy. The n_TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to approximate to 1 GeV. C1 [Paradela, C.; Tarrio, D.; Leal-Cidoncha, E.; Duran, I.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Paradela, C.; Belloni, F.; Mondelaers, W.; Plompen, A.; Rullhusen, P.; Schillebeeckx, P.] European Commiss JRC, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Calviani, M.; Boccone, V.; Brugger, M.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Pavlopoulos, P.; Roman, F.; Rubbia, C.; Sarchiapone, L.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland. [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Leong, L. S.; Tassan-Got, L.; Le Naour, C.; Audouin, L.; Berthier, B.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.] CNRS, IN2P3, F-91405 Orsay, France. [Leong, L. S.] JAEA, Naka, Ibaraki, Japan. [Colonna, N.; Mastromarco, M.; Barbagallo, M.; Marrone, S.; Tagliente, G.; Terlizzi, R.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Lo Meo, S.; Mengoni, A.] ENEA, Bologna, Italy. [Ventura, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Fraval, K.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, L.] CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Alvarez-Velarde, F.; Becares, V.; Cano-Ott, D.; Embid-Segura, M.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vincente, M. C.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Badurek, G.; Leeb, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS, IN2P3, IReS, Strasbourg, France. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Billowes, J.; Ware, T.; Wright, T.] Univ Manchester, Manchester, Lancs, England. [Bosnar, D.; Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Calvino, F.; Poch, A.; Pretel, C.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Carrapico, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Sarmento, R.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal. [Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Cortes-Giraldo, M. A.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, Seville, Spain. [Cosentino, L.; Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Couture, A.; Cox, J.; O'Brien, S.; Wiesher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Diakaki, M.; Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Dillmann, I.; Heil, M.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Eleftheriadis, C.; Lampoudis, C.; Manousos, A.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Ganesan, S.; Gurusamy, P.; Saxena, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Goverdovski, A.; Ketlerov, V.; Konovalov, V.] Inst Phys & Power Engn, Obninsk, Russia. [Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Milan, Italy. [Griesmayer, E.; Jericha, E.] Vienna Univ Technol, Atominst, Vienna, Austria. [Haight, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Kaeppeler, F.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Karadimos, D.; Karamanis, D.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Massimi, C.; Mingrone, F.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.] Sezione Ist Nazl Fis Nucl, Perugia, Italy. [Mirea, M.] Horia Hulubei Natl Inst Phys & Nucl Engn, IFIN HH, Bucharest 077125, Romania. [Musumarra, A.] Univ Catania, Dipartimento Fis & Astron DFA, Catania, Italy. [Musumarra, A.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Rauscher, T.] Univ Hertfordshire, Sch Phys Astron & Math, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Rauscher, T.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Paradela, C (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain. EM nicola.colonna@ba.infn.it RI Mirea, Mihail/C-2297-2011; Vaz, Pedro/K-2464-2013; Cortes-Giraldo, Miguel Antonio/K-6031-2014; Rauscher, Thomas/D-2086-2009; Gonzalez Romero, Enrique/L-7561-2014; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Capote Noy, Roberto/M-1245-2014; Chin, Mary Pik Wai/B-6644-2012; Wallner, Anton/G-1480-2011; Mendoza Cembranos, Emilio/K-5789-2014; Becares, Vicente/K-4514-2014; Martinez, Trinitario/K-6785-2014; Calvino, Francisco/K-5743-2014; Langer, Christoph/L-3422-2016; Quesada Molina, Jose Manuel/K-5267-2014; Mengoni, Alberto/I-1497-2012; OI Mirea, Mihail/0000-0002-9333-6595; Vaz, Pedro/0000-0002-7186-2359; Cortes-Giraldo, Miguel Antonio/0000-0002-3646-1015; Rauscher, Thomas/0000-0002-1266-0642; Gonzalez Romero, Enrique/0000-0003-2376-8920; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Capote Noy, Roberto/0000-0002-1799-3438; Chin, Mary Pik Wai/0000-0001-5176-9723; Wallner, Anton/0000-0003-2804-3670; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Becares, Vicente/0000-0003-3434-9086; Martinez, Trinitario/0000-0002-0683-5506; Calvino, Francisco/0000-0002-7198-4639; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Mengoni, Alberto/0000-0002-2537-0038; Paradela Dobarro, Carlos/0000-0003-0175-8334 FU European Atomic Energy Communitys (Euratom) Seventh Framework Program FP7 under the Project CHANDA [605203] FX The research leading to these results has received funding from the European Atomic Energy Communitys (Euratom) Seventh Framework Program FP7/2007-2011 under the Project CHANDA (Grant No. 605203). NR 22 TC 7 Z9 7 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 9 PY 2015 VL 91 IS 2 AR 024602 DI 10.1103/PhysRevC.91.024602 PG 11 WC Physics, Nuclear SC Physics GA CC2KN UT WOS:000350174000004 ER PT J AU Basu, D Mazumder, S Shi, XT Baydoun, H Niklas, J Poluektov, O Schlegel, HB Verani, CN AF Basu, Debashis Mazumder, Shivnath Shi, Xuetao Baydoun, Habib Niklas, Jens Poluektov, Oleg Schlegel, H. Bernhard Verani, Claudio N. TI Ligand Transformations and Efficient Proton/Water Reduction with Cobalt Catalysts Based on Pentadentate Pyridine-Rich Environments SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE cobalt complexes; Co-I-H- species; proton reduction; pyridine ligands; water reduction ID HYDROGEN EVOLUTION; 5-COORDINATE IRON(III); MOLECULAR ELECTROCATALYSTS; FUNCTIONAL MODELS; COMPLEXES; WATER; COBALOXIMES; MECHANISM AB A series of cobalt complexes with pentadentate pyridine-rich ligands is studied. An initial Co-II amine complex 1 is prone to aerial oxidation yielding a Co-III imine complex 2 that is further converted into an amide complex 4 in presence of adventitious water. Introduction of an N-methyl protecting group to the ligand inhibits this oxidation and gives rise to the Co-II species 5. Both the Co-III 4 and Co-II 5 show electrocatalytic H-2 generation in weakly acidic media as well as in water. Mechanisms of catalysis seem to involve the protonation of a Co-II-H species generated in situ. C1 [Basu, Debashis; Mazumder, Shivnath; Shi, Xuetao; Baydoun, Habib; Schlegel, H. Bernhard; Verani, Claudio N.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Niklas, Jens; Poluektov, Oleg] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Schlegel, HB (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM cnverani@chem.wayne.edu RI Niklas, Jens/I-8598-2016; OI Niklas, Jens/0000-0002-6462-2680; baydoun, habib/0000-0003-1530-1677 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001907] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001907 to C.N.V. and H.B.S., including financial support for D.B. (synthesis and catalysis), H.B. (crystallography), S.M. and X.S. (calculations). Prof. John F. Endicott is acknowledged for critical discussions. NR 45 TC 9 Z9 9 U1 9 U2 62 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 9 PY 2015 VL 54 IS 7 BP 2105 EP 2110 DI 10.1002/anie.201409813 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CB1ME UT WOS:000349391000014 PM 25533319 ER PT J AU Campione, S Basilio, LI Warne, LK Sinclair, MB AF Campione, Salvatore Basilio, Lorena I. Warne, Larry K. Sinclair, Michael B. TI Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces SO OPTICS EXPRESS LA English DT Article ID LIGHT-SCATTERING; NANOPARTICLES; METAMATERIALS; PARAMETERS AB In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometry in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens' metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies. (C) 2015 Optical Society of America C1 [Campione, Salvatore] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Sinclair, Michael B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Campione, S (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, POB 5800, Albuquerque, NM 87185 USA. EM sncampi@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge fruitful discussions with Dr. O. Wolf, Sandia National Laboratories. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 32 TC 19 Z9 21 U1 3 U2 42 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 9 PY 2015 VL 23 IS 3 BP 2293 EP 2307 DI 10.1364/OE.23.002293 PG 15 WC Optics SC Optics GA CB5SV UT WOS:000349688800055 PM 25836097 ER PT J AU Bills, B Morris, N Dubey, M Wang, Q Fan, QH AF Bills, Braden Morris, Nathan Dubey, Mukul Wang, Qi Fan, Qi Hua TI Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells SO OPTICS EXPRESS LA English DT Article ID WHITE PAINT; SILICON; LIGHT; INTENSITY AB Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This work reports titanium dioxide (TiO2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge /dielectric breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigmentbased reflectors on complex shape and flexible substrates. Mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long. (C) 2015 Optical Society of America C1 [Bills, Braden; Morris, Nathan; Fan, Qi Hua] Appl NanoFilms, Brookings, SD 57006 USA. [Bills, Braden; Dubey, Mukul; Fan, Qi Hua] S Dakota State Univ, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA. [Wang, Qi] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bills, B (reprint author), Appl NanoFilms, 2301 Res Pk Way STE 217, Brookings, SD 57006 USA. EM braden.bills@sdstate.edu FU NSF-IGERT program `Nanostructured Solar Cells: Materials, Processes and Devices' [DGE-0903685]; NSF SBIR phase I/IB program [1248970]; NSF/EPSCoR [0903804]; State of South Dakota; South Dakota Board of Regents Performance Improvement Fund FX This research has been supported in part by the NSF-IGERT program `Nanostructured Solar Cells: Materials, Processes and Devices' (DGE-0903685) and NSF SBIR phase I/IB program for award #1248970 `Low-cost highly-reflective and light scattering dielectric nanoparticle based thin films for solar cells'. "This material is based upon work supported by the NSF/EPSCoR Grant No. 0903804 and by the State of South Dakota." The authors thank Xunlight Corp. for supplying Ag/ZnO and Al/ZnO back reflectors and Bill Nemeth of National Renewable Energy Laboratory for fabricating thin film Si solar cell. Also acknowledged is South Dakota Board of Regents Performance Improvement Fund. NR 18 TC 2 Z9 2 U1 1 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 9 PY 2015 VL 23 IS 3 BP A71 EP A82 DI 10.1364/OE.23.000A71 PG 12 WC Optics SC Optics GA CB5SV UT WOS:000349688800008 PM 25836255 ER PT J AU McLellan, R Palacios, MA Beavers, CM Teat, SJ Piligkos, S Brechin, EK Dalgarno, SJ AF McLellan, Ross Palacios, Maria A. Beavers, Christine M. Teat, Simon J. Piligkos, Stergios Brechin, Euan K. Dalgarno, Scott J. TI Linked Supramolecular Building Blocks for Enhanced Cluster Formation SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE calixarenes; clusters; coordination chemistry; magnetism; supramolecular chemistry ID SINGLE-MOLECULE MAGNETS; SPIN FRUSTRATION AB Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures. C1 [McLellan, Ross; Dalgarno, Scott J.] Heriot Watt Univ, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Palacios, Maria A.; Brechin, Euan K.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3FJ, Midlothian, Scotland. [Beavers, Christine M.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Stn 11 3 1, Berkeley, CA 94720 USA. [Piligkos, Stergios] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. RP Piligkos, S (reprint author), Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark. EM piligkos@kiku.dk; ebrechin@staffmail.ed.ac.uk; S.J.Dalgarno@hw.ac.uk RI Beavers, Christine/C-3539-2009; Piligkos, Stergios/C-7409-2013; Palacios Lopez, Maria Angeles /K-3903-2016; Dalgarno, Scott/A-7358-2010 OI McLellan, Ross/0000-0001-9700-0258; Brechin, Euan/0000-0002-9365-370X; Beavers, Christine/0000-0001-8653-5513; Piligkos, Stergios/0000-0002-4011-6476; Dalgarno, Scott/0000-0001-7831-012X FU EPSRC [EP/I03255X/1]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank the EPSRC for financial support of this work under grant reference EP/I03255X/1. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no DE-AC02-05CH11231. NR 26 TC 4 Z9 4 U1 1 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 9 PY 2015 VL 21 IS 7 BP 2804 EP 2812 DI 10.1002/chem.201405746 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CB1JU UT WOS:000349384300014 PM 25641542 ER PT J AU Galda, A Mel'nikov, AS Vinokur, VM AF Galda, Alexey Mel'nikov, A. S. Vinokur, V. M. TI Resonant tunneling of fluctuation Cooper pairs SO SCIENTIFIC REPORTS LA English DT Article ID CONDUCTIVITY AB Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, T-c, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at T-c. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon. C1 [Galda, Alexey; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Mel'nikov, A. S.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. [Mel'nikov, A. S.] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia. RP Galda, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM agalda@anl.gov RI Mel'nikov, Alexander/E-8099-2017 OI Mel'nikov, Alexander/0000-0002-4241-467X FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Russian Foundation for Basic Research; Russian Ministry of Science and Education [02.B.49.21.0003] FX This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. The work of A.S.M. was also supported by the Russian Foundation for Basic Research and the grant of the Russian Ministry of Science and Education (02.B.49.21.0003). NR 15 TC 0 Z9 0 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 9 PY 2015 VL 5 AR 8315 DI 10.1038/srep08315 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA6AM UT WOS:000348990600004 PM 25661237 ER PT J AU Xiao, HY Weber, WJ Zhang, Y Zu, XT Li, S AF Xiao, H. Y. Weber, W. J. Zhang, Y. Zu, X. T. Li, S. TI Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study SO Scientific Reports LA English DT Article ID SELF-RADIATION DAMAGE; NUCLEAR-WASTE; PLUTONIUM DISPOSITION; IMMOBILIZATION; TOLERANCE; GD2TI2O7; OXIDES; PHASE; TRANSITION; CERAMICS AB The response of titanate pyrochlores (A(2)Ti(2)O(7), A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O-2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.; Zhang, Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zu, X. T.] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China. [Li, S.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU University of Electronic Science and Technology of China [Y02002010401085]; NSAF Joint Foundation of China [U1330103]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; Office of Science, US Department of Energy [DEAC02-05CH11231] FX H.Y. Xiao was supported by the scientific research starting funding of University of Electronic Science and Technology of China (Grant No. Y02002010401085) and by the NSAF Joint Foundation of China (Grant No. U1330103). W.J. Weber and Y. Zhang were supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division. The theoretical calculations were performed using the supercomputer resources at TianHe-1 located at National Supercomputer Center in Tianjin and the resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231. NR 48 TC 6 Z9 6 U1 7 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 9 PY 2015 VL 5 AR 8265 DI 10.1038/srep08265 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA6AJ UT WOS:000348990200001 PM 25660219 ER PT J AU Dimitrov, DA Smithe, D Cary, JR Ben-Zvi, I Rao, T Smedley, J Wang, E AF Dimitrov, D. A. Smithe, D. Cary, J. R. Ben-Zvi, I. Rao, T. Smedley, J. Wang, E. TI Modeling electron emission and surface effects from diamond cathodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SINGLE-CRYSTAL; INTERFACE-ROUGHNESS; FDTD ALGORITHM; TRANSPORT; AFFINITY; DIELECTRICS; SIMULATION; CASCADES; FIELDS; LASER AB We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity chi is the only parameter varied in the simulations, the value chi = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data. (C) 2015 AIP Publishing LLC. C1 [Dimitrov, D. A.; Smithe, D.; Cary, J. R.] Tech X Corp, Boulder, CO 80303 USA. [Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Dimitrov, DA (reprint author), Tech X Corp, Boulder, CO 80303 USA. FU U.S. DoE Office of Basic Energy Sciences [DE-SC0006246, DE-SC0007577] FX D. A. Dimitrov would like to thank K. Jensen, S. Karkare, and I. Bazarov for helpful discussions. We are grateful to the U.S. DoE Office of Basic Energy Sciences for supporting this work under Grant Nos. DE-SC0006246 and DE-SC0007577. NR 63 TC 1 Z9 1 U1 5 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2015 VL 117 IS 5 AR 055708 DI 10.1063/1.4907393 PG 18 WC Physics, Applied SC Physics GA CB4QT UT WOS:000349613600068 ER PT J AU Kim, JW Mun, ED Baiardo, JP Smith, AI Richmond, S Mitchell, J Schwartz, D Zapf, VS Mielke, CH AF Kim, Jae Wook Mun, E. D. Baiardo, J. P. Smith, A. I. Richmond, S. Mitchell, J. Schwartz, D. Zapf, V. S. Mielke, C. H. TI Detecting low concentrations of plutonium hydride with magnetization measurements SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALLOYS; SYSTEM AB We report the formation of plutonium hydride in 2 at.% Ga-stabilized delta-Pu, with 1 at.% H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx on the surface of the sample with x similar to 1.9. We observe magnetic hysteresis loops below 40K with magnetic remanence, consistent with ferromagnetic PuH1.9. (C) 2015 AIP Publishing LLC. C1 [Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.] Los Alamos Natl Lab, Nucl Mat Sci Grp, Los Alamos, NM 87545 USA. RP Kim, JW (reprint author), Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. OI Richmond, Scott/0000-0003-3899-0372; Mun, Eundeok/0000-0001-5120-1492; Smith, Alice I./0000-0002-4727-1487; Mitchell, Jeremy/0000-0001-7109-3505 FU Laboratory-Directed Research and Development program; U.S. National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy; DOE-Basic Energy Sciences under FWP [2012LANLE389] FX We acknowledge the valuable assistance of M. Pacheco with titanium encapsulation. Work at LANL was supported by the Laboratory-Directed Research and Development program. The magnetization measurements were performed at the National High Magnetic Field Laboratory at LANL, funded by the U.S. National Science Foundation through Cooperative Grant No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. The neutron diffraction work was performed on the NPDF instrument at the Lujan Neutron Scattering Center at LANL, supported by DOE-Basic Energy Sciences under FWP No. 2012LANLE389. NR 18 TC 0 Z9 0 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2015 VL 117 IS 5 AR 053905 DI 10.1063/1.4907216 PG 4 WC Physics, Applied SC Physics GA CB4QT UT WOS:000349613600015 ER PT J AU McGuire, MA Rios, O AF McGuire, Michael A. Rios, Orlando TI Evolution of magnetic properties and microstructure of Hf2Co11B alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INTERMETALLIC COMPOUNDS; PERMANENT-MAGNETS; RIBBONS; ZR2CO11; COBALT; ENHANCEMENT; CRYSTAL; PHASE AB Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 degrees C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 degrees C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 degrees C contains HfCo3B2, Hf6Co23, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature. (C) 2015 AIP Publishing LLC. C1 [McGuire, Michael A.; Rios, Orlando] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McGuire, MA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM McGuireMA@ornl.gov RI McGuire, Michael/B-5453-2009; Rios, Orlando/E-6856-2017 OI McGuire, Michael/0000-0003-1762-9406; Rios, Orlando/0000-0002-1814-7815 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program FX Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program. Microscopy work supported by ORNL SHaRE, Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 38 TC 4 Z9 4 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2015 VL 117 IS 5 AR 053912 DI 10.1063/1.4907575 PG 8 WC Physics, Applied SC Physics GA CB4QT UT WOS:000349613600022 ER PT J AU White, AF Head-Gordon, M McCurdy, CW AF White, Alec F. Head-Gordon, Martin McCurdy, C. William TI Complex basis functions revisited: Implementation with applications to carbon tetrafluoride and aromatic N-containing heterocycles within the static-exchange approximation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SELF-CONSISTENT-FIELD; CORRELATED MOLECULAR CALCULATIONS; CARTESIAN GAUSSIAN FUNCTIONS; CONFIGURATION-INTERACTION; ABSORBING POTENTIALS; AUTOIONIZING STATES; RESONANCE STATES; ELECTRON-ATTACHMENT; COORDINATE METHOD; MATRIX-ELEMENTS AB The method of complex basis functions for computing positions and widths of molecular resonances is revisited. An open-ended and efficient implementation is described. The basis set requirements of the complex basis are investigated within the computationally inexpensive static-exchange approximation, and the results of this investigation lead to a hierarchy of basis sets for complex basis function calculations on small molecules. These basis sets are then applied in static-exchange calculations on some larger molecules with multiple low energy shape resonances: carbon tetrafluoride, benzene, pyridine, pyrimidine, pyrazine, and s-triazine. The results indicate that more sophisticated methods using complex basis functions are worth pursuing in the search for accurate and computationally feasible methods for computing resonance energies in molecular systems. (C) 2015 AIP Publishing LLC. C1 [White, Alec F.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [White, Alec F.; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP White, AF (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Basic Energy Sciences FX Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Basic Energy Sciences. The authors thank Satoshi Yabushita for providing valuable computational benchmarks using an independent complex Gaussian implementation based on the COLUMBUS quantum chemistry codes. The authors thank Zhengting Gan for advice on the implementation of the complex ERIs. NR 72 TC 10 Z9 10 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 7 PY 2015 VL 142 IS 5 AR 054103 DI 10.1063/1.4906940 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CB4QZ UT WOS:000349614200007 PM 25662632 ER PT J AU Shuster, J Johnston, CW Magarvey, NA Gordon, RA Barron, K Banerjee, NR Southam, G AF Shuster, Jeremiah Johnston, Chad W. Magarvey, Nathan A. Gordon, Robert A. Barron, Keith Banerjee, Neil R. Southam, Gordon TI Structural and Chemical Characterization of Placer Gold Grains: Implications for Bacterial Contributions to Grain Formation SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE geomicrobiology; biogeochemistry; gold grain; secondary gold enrichment; bacterial cast ID NANO-PARTICULATE GOLD; FILAMENTOUS CYANOBACTERIA; MINERAL EXPLORATION; MINING DISTRICT; UNITED-STATES; NEW-ZEALAND; IN-VITRO; DEPOSITS; MORPHOLOGY; GEOMICROBIOLOGY AB Gold grains collected from the Rio Saldana River, Colombia were hundreds of micrometers in size and discoid-ellipse in shape. Fourteen of 63 grains contained an iron oxyhydroxide coating that occurred as ca. 50 to 100nm thick lamina while thicker coatings were comprised of colloids 200nm to 4 mu m in diameter. Bacterial-size casts were observed throughout the thicker iron oxyhydroxide coating and intuitively represent relic impressions of bacterial cells. The surface textures of gold grains were generally smooth with surficial depressions or crevices containing detrital material colonized by bacteria. Focus Ion Beam (FIB) milled cross-sections demonstrated that the detrital material contained nanophase gold particles. Biofilm attached to this detrital material contained ca. 2 to 3nm colloidal gold attached to exopolymeric substances. Cross sections of grains revealed solid cores with vesicular voids near the grain edge including a bacterial-size cast interpreted to be a permineralized bacterial cell. Synchrotron-based elemental mapping indicated that grains contained heterogenously distributed Ag and Cu. While strong Ag and Cu signals (relative to Au) were detected in the core, a stronger Au signal occurred at the edge of grains demonstrating enriched rims of secondary gold. The preservation of bacterial casts and biofilms associated with secondary gold structures at the surface of grains suggest that bacteria may contribute to gold enrichment and growth in this placer environment. Bacteria, occurring on the surface of 13 of 25 gold grains, were enriched by "inoculating" individual grains into separate test tubes containing R2B growth medium. Enriched growth of bacteria on gold grain surfaces demonstrated preferential attachment onto detrital material within creviced regions. The dominant bacteria from these enrichments were transferred to solid R2A medium to obtain pure isolates. The isolates were identified as one of four bacterial species: Nitrobacter sp. 263, Shewanella sp. YM-8, Sediminibacterium sp. B2-10-2 and sp. I-32 based on 16S ribosomal DNA sequencing. C1 [Shuster, Jeremiah; Southam, Gordon] Univ Queensland, Sch Earth Sci, St Lucia, Qld 4072, Australia. [Johnston, Chad W.; Magarvey, Nathan A.] McMaster Univ, Dept Biochem, Hamilton, ON, Canada. [Johnston, Chad W.; Magarvey, Nathan A.] McMaster Univ, Hamilton, ON, Canada. [Gordon, Robert A.] Argonne Natl Lab, PNC XSD Sect Adv Photon Source 20, Argonne, IL 60439 USA. [Barron, Keith] U308 Corp, Toronto, ON, Canada. [Banerjee, Neil R.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. RP Shuster, J (reprint author), Univ Queensland, Sch Earth Sci, St Lucia, Qld 4072, Australia. EM j.shuster@uq.edu.au RI Southam, Gordon/D-1983-2013; OI Southam, Gordon/0000-0002-8941-1249; Shuster, Jeremiah/0000-0002-9839-6618 FU Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Department of Energy, Basic Energy Sciences FX Funding was provided through a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to Gordon Southam. Experiments performed at the Pacific Northwest Consortium/X-ray Science Division (PNC-XSD) Sector 20, Advanced Photon Source, Argonne National Laboratory, was supported by the U.S. Department of Energy, Basic Energy Sciences, a major facilities access grant from the NSERC and the Advanced Photon Source. NR 61 TC 2 Z9 2 U1 3 U2 38 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-0451 EI 1521-0529 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD FEB 7 PY 2015 VL 32 IS 2 BP 158 EP 169 DI 10.1080/01490451.2014.935534 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AW4IR UT WOS:000346245000006 ER PT J AU Huang, XZ Jennings, SF Bruce, B Buchan, A Cai, LM Chen, PY Cramer, CL Guan, WH Hilgert, UKK Jiang, HM Li, ZL McClure, G McMullen, DF Nanduri, B Perkins, A Rekepalli, B Salem, S Specker, J Walker, K Wunsch, D Xiong, DH Zhang, SZ Zhang, Y Zhao, ZM Moore, JH AF Huang, Xiuzhen Jennings, Steven F. Bruce, Barry Buchan, Alison Cai, Liming Chen, Pengyin Cramer, Carole L. Guan, Weihua Hilgert, Uwe K. K. Jiang, Hongmei Li, Zenglu McClure, Gail McMullen, Donald F. Nanduri, Bindu Perkins, Andy Rekepalli, Bhanu Salem, Saeed Specker, Jennifer Walker, Karl Wunsch, Donald Xiong, Donghai Zhang, Shuzhong Zhang, Yu Zhao, Zhongming Moore, Jason H. TI Big data - a 21st century science Maginot Line? No-boundary thinking: shifting from the big data paradigm SO BIODATA MINING LA English DT Editorial Material DE Big data; Maginot Line; No-Boundary thinking AB Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century. Big data is not "lots of data" as a phenomena anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of data. Big data overall is disconnecting researchers and science challenges. We propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem defining to address science challenges. C1 [Huang, Xiuzhen] Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA. [Jennings, Steven F.] Sector3 Informat, Marana, AZ 85658 USA. [Bruce, Barry] Univ Tennessee, Sustainable Energy & Educ Res Ctr, Knoxville, TN 37996 USA. [Buchan, Alison] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Cai, Liming] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA. [Chen, Pengyin] Univ Arkansas, Fayetteville, AR 72701 USA. [Cramer, Carole L.] Arkansas State Univ, Arkansas Biosciences Inst, Dept Biol Sci, Jonesboro, AR 72467 USA. [Guan, Weihua] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA. [Hilgert, Uwe K. K.] Univ Arizona, Inst BIO5, Tucson, AZ 85721 USA. [Hilgert, Uwe K. K.] Univ Arizona, iPlant Collaborat, Tucson, AZ 85721 USA. [Jiang, Hongmei] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA. [Li, Zenglu] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. [McClure, Gail] Arkansas NSF EPSCoR, Arkansas Sci & Technol Author, Little Rock, AR 72201 USA. [McMullen, Donald F.] Univ Arkansas, Arkansas High Performance Comp Ctr, Fayetteville, AR 72701 USA. [Nanduri, Bindu] Mississippi State Univ, Coll Vet Med, Dept Basic Sci, Jackson, MS 39762 USA. [Perkins, Andy] Mississippi State Univ, Dept Comp Sci & Engn, Jackson, MS 39762 USA. [Rekepalli, Bhanu] UTK, Dept Elect Engn & Comp Sci, Natl Inst Computat Sci, Oak Ridge, TN 37832 USA. [Rekepalli, Bhanu] ORNL, Oak Ridge, TN 37832 USA. [Salem, Saeed] N Dakota State Univ, Dept Comp Sci, Fargo, ND 58102 USA. [Specker, Jennifer] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Walker, Karl] Univ Arkansas, Dept Comp Sci, Pine Bluff, AR 71601 USA. [Wunsch, Donald] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA. [Xiong, Donghai] Med Coll Wisconsin, Dept Pharmacol & Toxicol, Milwaukee, WI 53223 USA. [Zhang, Shuzhong] Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA. [Zhang, Yu] Trinity Univ, Dept Comp Sci, San Antonio, TX 78212 USA. [Zhao, Zhongming] Vanderbilt Univ, Dept Biomed Informat, Sch Med, Nashville, TN 37203 USA. [Moore, Jason H.] Dartmouth Coll, Geisel Sch Med, Dept Genet, Lebanon, NH 03756 USA. RP Huang, XZ (reprint author), Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA. EM xhuang@astate.edu; jason.h.moore@dartmouth.edu OI Buchan, Alison/0000-0001-7420-985X FU NCI NIH HHS [P30 CA023108]; NCRR NIH HHS [P20 RR016460]; NIGMS NIH HHS [P20 GM103429, P20 GM103476, P20 GM103646] NR 6 TC 3 Z9 3 U1 2 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1756-0381 J9 BIODATA MIN JI BioData Min. PD FEB 6 PY 2015 VL 8 AR 7 DI 10.1186/s13040-015-0037-5 PG 5 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA CB6CN UT WOS:000349714600002 PM 25670967 ER PT J AU Srinivasan, R Karaoz, U Volegova, M MacKichan, J Kato-Maeda, M Miller, S Nadarajan, R Brodie, EL Lynch, SV AF Srinivasan, Ramya Karaoz, Ulas Volegova, Marina MacKichan, Joanna Kato-Maeda, Midori Miller, Steve Nadarajan, Rohan Brodie, Eoin L. Lynch, Susan V. TI Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens SO PLOS ONE LA English DT Article ID REAL-TIME PCR; STREPTOCOCCUS-PNEUMONIAE; STAPHYLOCOCCUS-AUREUS; SEQUENCE-ANALYSIS; RAPID DETECTION; DATABASE; SYSTEM; IMPACT; DIFFERENTIATION; RESISTANCE AB According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naive Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. C1 [Srinivasan, Ramya; Lynch, Susan V.] Univ Calif San Francisco, Div Gastroenterol, Dept Med, San Francisco, CA 94143 USA. [Karaoz, Ulas; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Miller, Steve; Nadarajan, Rohan] Univ Calif San Francisco, Clin Microbiol Lab, San Francisco, CA 94107 USA. [Volegova, Marina] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kato-Maeda, Midori] San Francisco Gen Hosp, Dept Med, San Francisco, CA 94110 USA. [MacKichan, Joanna] Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand. RP Lynch, SV (reprint author), Univ Calif San Francisco, Div Gastroenterol, Dept Med, 513 Parnassus Ave, San Francisco, CA 94143 USA. EM susan.lynch@ucsf.edu RI Brodie, Eoin/A-7853-2008; Karaoz, Ulas/J-7093-2014 OI Brodie, Eoin/0000-0002-8453-8435; FU NIH [U01 AI075410] FX Funding provided by NIH U01 AI075410. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 8 Z9 8 U1 6 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 6 PY 2015 VL 10 IS 2 AR e0117617 DI 10.1371/journal.pone.0117617 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CB2GK UT WOS:000349444900191 PM 25658760 ER PT J AU Pallan, PS Nagy, LD Lei, L Gonzalez, E Kramlinger, VM Azumaya, CM Wawrzak, Z Waterman, MR Guengerich, FP Egli, M AF Pallan, Pradeep S. Nagy, Leslie D. Lei, Li Gonzalez, Eric Kramlinger, Valerie M. Azumaya, Caleigh M. Wawrzak, Zdzislaw Waterman, Michael R. Guengerich, F. Peter Egli, Martin TI Structural and Kinetic Basis of Steroid 17 alpha,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID IN-SITU PROTEOLYSIS; 17,20-LYASE ACTIVITY; ORTERONEL TAK-700; ESCHERICHIA-COLI; HUMAN P450C17; ANDROGEN BIOSYNTHESIS; CYNOMOLGUS MONKEYS; PROSTATE-CANCER; LYASE ACTIVITY; OXIDATION AB Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17 alpha-hydroxylation and a subsequent 17 alpha,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17 alpha-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17 alpha-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b(5). P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17 alpha-OHproduct dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116-119) showed only a few differences near the active site, despite only similar to 50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. C1 [Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA. [Wawrzak, Zdzislaw] Argonne Natl Lab, Adv Photon Source, Sect 21, Life Sci Collaborat Access Team, Argonne, IL 60439 USA. RP Guengerich, FP (reprint author), Vanderbilt Univ, Sch Med, Dept Biochem, 638 Robinson Res Bldg,2200 Pierce Ave, Nashville, TN 37232 USA. EM f.guengerich@vanderbilt.edu; martin.egli@vanderbilt.edu FU United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Millennium Pharmaceuticals for orteronel, J. A. Oates for use of the radio-TLC imaging scanner, and K. Trisler for assistance in preparation of the manuscript. Vanderbilt University is a member institution of the Life Sciences Collaborative Access Team (LSCAT) at Sector 21 of the Advanced Photon Source (APS), Argonne, IL. Use of the APS at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 77 TC 13 Z9 13 U1 3 U2 16 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 6 PY 2015 VL 290 IS 6 BP 3248 EP 3268 DI 10.1074/jbc.M114.627265 PG 21 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CB2KL UT WOS:000349456000006 PM 25533464 ER PT J AU Abell, DT Meiser, D Ranjbar, VH Barber, DP AF Abell, Dan T. Meiser, Dominic Ranjbar, Vahid H. Barber, Desmond P. TI Accurate and efficient spin integration for particle accelerators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID POLARIZATION; TRACKING; FIELD; COMPUTATION; ELECTRON; RINGS AB Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units. C1 [Abell, Dan T.; Meiser, Dominic] Tech X Corp, Boulder, CO 80303 USA. [Ranjbar, Vahid H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barber, Desmond P.] Deutsch Elektronen Synchroton DESY, D-22603 Hamburg, Germany. [Barber, Desmond P.] Sci Tech Daresbury, Cockcroft Inst, Daresbury, Cheshire, England. [Barber, Desmond P.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. RP Abell, DT (reprint author), Tech X Corp, 5621 Arapahoe Ave, Boulder, CO 80303 USA. EM dabell@txcorp.com FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0004432]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Javier von Stecher for useful discussions and his help with some of the figures. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, including Grant No. DE-SC0004432. In addition, this research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 3 Z9 3 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB 6 PY 2015 VL 18 IS 2 AR 024001 DI 10.1103/PhysRevSTAB.18.024001 PG 25 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CB2FO UT WOS:000349442500001 ER PT J AU Radchenko, V Engle, JW Wilson, JJ Maassen, JR Nortier, FM Taylor, WA Birnbaum, ER Hudston, LA John, KD Fassbender, ME AF Radchenko, V. Engle, J. W. Wilson, J. J. Maassen, J. R. Nortier, F. M. Taylor, W. A. Birnbaum, E. R. Hudston, L. A. John, K. D. Fassbender, M. E. TI Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Thorium metal; Actinium isotopes; Thorium chelation; Ion exchange; Extraction chromatography; Lanthanide separation ID GENERATOR; TARGETS; THERAPY AB Actinium-225 (t(1/2) = 9.92 d) is an alpha-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for Bi-213 (t(1/2) 45.6 mm), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived Ac-227 (t(1/2) = 21.8 a, 99% beta-, 1% alpha) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the Ac-226/Ac-227 ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)AC spike added prior to separation was recovered at >= 98%, and Ac decontamination from Th was found to be >= 10(6). The purified actinium fraction allowed for highly accurate (227)AC determination at analytical scales, i.e., at (227)AC activities of 1-100 kBq (27 nCi to 2.7 mu Ci). (C) 2014 Elsevier B.V. All rights reserved. C1 [Radchenko, V.; Engle, J. W.; Wilson, J. J.; Maassen, J. R.; Nortier, F. M.; Taylor, W. A.; Birnbaum, E. R.; Hudston, L. A.; John, K. D.; Fassbender, M. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fassbender, ME (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mifa@lanl.gov OI John, Kevin/0000-0002-6181-9330; Wilson, Justin/0000-0002-4086-7982; Nortier, Francois/0000-0002-7549-8101 FU United States Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC52-06NA253996] FX This material is based upon work supported by the United States Department of Energy, Office of Science, Office of Nuclear Physics, via an award from the Isotope Development and Production for Research and Applications subprogram (under contract number DE-AC52-06NA253996). We are also very thankful for the technical assistance provided by LANL C-IIAC and LANSCE-AOT groups. For help in alpha-particle spectroscopy we thank the staff of the LANL C-NR counting facility. NR 24 TC 11 Z9 11 U1 9 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD FEB 6 PY 2015 VL 1380 BP 55 EP 63 DI 10.1016/j.chroma.2014.12.045 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA CA4RW UT WOS:000348893100007 PM 25596759 ER PT J AU Damewood, L Busemeyer, B Shaughnessy, M Fong, CY Yang, LH Felser, C AF Damewood, L. Busemeyer, B. Shaughnessy, M. Fong, C. Y. Yang, L. H. Felser, C. TI Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMnZ (Z=N, P, Si) SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DESIGN; NI AB Due to their similarities to metastable zinc-blende half-metals, we systematically examined the half-Heusler compounds beta-LiMnZ (Z = N, P and Si) for their electronic, magnetic, and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. We also report the other phases of the half-Heusler structure (alpha and gamma phases), but they are unlikely to be grown. The magnetic moments of these stable Li-based compounds are expected to reach as high as 4 mu(B) per unit cell when Z = Si and 5 mu(B) per unit cell when Z = N and P; however, the antiferromagnetic spin configuration is energetically favored when Z is a pnictogen. beta-LiMnSi at a lattice constant 14% larger than its equilibrium lattice constant is a promising half-metal due to its large magnetic moment, large gap, and vibrational stability. The modified Slater-Pauling rule for these compounds is determined. Finally, we investigated a plausible method for developing half-metallic Li(x)MnZ at equilibrium by tuning x, but this type of alloying introduces local structural changes that preclude half-metallicity. C1 [Damewood, L.; Fong, C. Y.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Busemeyer, B.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Shaughnessy, M.] RTBiQ Inc, San Francisco, CA 94121 USA. [Yang, L. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. RP Damewood, L (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM damewood@physics.ucdavis.edu RI Felser, Claudia/A-5779-2009 OI Felser, Claudia/0000-0002-8200-2063 FU National Science Foundation [ECCS-0725902]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Work at UC Davis was supported in part by National Science Foundation Grant No. ECCS-0725902. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. One of the authors (L.D.) would like to thank Dr. B. Klein for useful discussions. NR 31 TC 5 Z9 5 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 6 PY 2015 VL 91 IS 6 AR 064409 DI 10.1103/PhysRevB.91.064409 PG 8 WC Physics, Condensed Matter SC Physics GA CB2DK UT WOS:000349436700002 ER PT J AU Sun, X Masui, H Poskanzer, AM Schmah, A AF Sun, X. Masui, H. Poskanzer, A. M. Schmah, A. TI Blast wave fits to elliptic flow data at root s(NN)=7.7-2760 GeV SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; MODEL; COLLABORATION; MATTER; STAR AB We present blast wave fits to elliptic flow [v(2)(p(T))] data in minimum bias collisions from root s(NN) = 7.7-200 GeV at the BNL Relativistic Heavy Ion Collider, and also at the CERN Large Hadron Collider energy of 2.76 TeV. The fits are performed separately for particles and corresponding antiparticles. The mean transverse velocity parameter beta shows an energy-dependent difference between particles and corresponding antiparticles, which increases as the beam energy decreases. Possible effects of feed down, baryon stopping, antiparticle absorption, and early production times for antiparticles are discussed. C1 [Sun, X.] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. [Sun, X.; Poskanzer, A. M.; Schmah, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Masui, H.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. RP Sun, X (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. EM xsun@hit.edu.cn FU China Scholarship Council; Office of Science, Office of Nuclear Science of the US Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [NSFC U1332125]; Program for Innovation Research of Science in Harbin Institute of Technology [PIRS OF HIT B201408] FX We thank Xin Dong, Ulrich Heinz, Volker Koch, Mike Lisa, Paul Sorensen, Sergei Voloshin, and Nu Xu for important and useful discussions. This work was partly supported by the China Scholarship Council and by the Director, Office of Science, Office of Nuclear Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work is also supported by the National Natural Science Foundation of China (NSFC U1332125) and the Program for Innovation Research of Science in Harbin Institute of Technology (PIRS OF HIT B201408). NR 41 TC 6 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 6 PY 2015 VL 91 IS 2 AR 024903 DI 10.1103/PhysRevC.91.024903 PG 7 WC Physics, Nuclear SC Physics GA CB2DT UT WOS:000349437600002 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Aramo, C Aranda, VM Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Badescu, AM Barber, KB Bauml, J Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Coleman, A Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Cronin, J Curutiu, A Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M de Jong, SJ Neto, JRTD De Mitri, I de Oliveira, J de Souza, V del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A Hasankiadeh, QD Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Luis, PFS Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fernandes, M Fick, B Figueira, JM Filevich, A Filipcic, A Fox, BD Fratu, O Frohlich, U Fuchs, B Fujii, T Gaior, R Garcia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Garilli, G Bravo, AG Gate, F Gemmeke, H Ghia, PL Giaccari, U Giammarchi, M Giller, M Glaser, C Glass, H Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Grebe, S Griffith, N Grillo, AF Grubb, TD Guardincerri, Y Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Hartmann, S Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Islo, K Jandt, I Jansen, S Jarne, C Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Malacari, M Maldera, S Mallamaci, M Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, JJ Matthews, AJ Matthiae, G Maurel, D Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Melissas, M Melo, D Menshikov, A Messina, S Meyhandan, R Micanovic, S Micheletti, MI Middendorf, L Minaya, A Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morello, C Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Newton, D Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Ochilo, L Olinto, A Oliveira, M Olmos-Gilbaja, VM Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Petrov, Y Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Prado, RR Privitera, P Prouza, M Purrello, V Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rizi, V Roberts, J de Carvalho, WR Fernandez, GR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salamida, F Salazar, H Saleh, A Greus, FS Salina, G Sanchez, F Sanchez-Lucas, P Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarmento, R Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Scholten, O Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Szuba, M Taborda, OA Tapia, A Tartare, M Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trovato, E Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Widom, A Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhou, J Zhu, Y Silva, MZ Ziolkowski, M Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allen, J. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Aramo, C. Aranda, V. M. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Badescu, A. M. Barber, K. B. Baeuml, J. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Cronin, J. Curutiu, A. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. de Jong, S. J. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Diaz Castro, M. L. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. Hasankiadeh, Q. Dorosti Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Luis, P. Facal San Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fernandes, M. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fox, B. D. Fratu, O. Froehlich, U. Fuchs, B. Fujii, T. Gaior, R. Garcia, B. Garcia Roca, S. T. Garcia-Gamez, D. Garcia-Pinto, D. Garilli, G. Gascon Bravo, A. Gate, F. Gemmeke, H. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glaser, C. Glass, H. Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Gonzalez, J. G. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Grebe, S. Griffith, N. Grillo, A. F. Grubb, T. D. Guardincerri, Y. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Hartmann, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Islo, K. Jandt, I. Jansen, S. Jarne, C. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Louedec, K. Lozano Bahilo, J. Lu, L. Lucero, A. Ludwig, M. Malacari, M. Maldera, S. Mallamaci, M. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Mathys, S. Matthews, J. J. Matthews, A. J. Matthiae, G. Maurel, D. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Melissas, M. Melo, D. Menshikov, A. Messina, S. Meyhandan, R. Micanovic, S. Micheletti, M. I. Middendorf, L. Minaya, A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Newton, D. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Ochilo, L. Olinto, A. Oliveira, M. Olmos-Gilbaja, V. M. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Palmieri, N. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Petrov, Y. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Prado, R. R. Privitera, P. Prouza, M. Purrello, V. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rizi, V. Roberts, J. Rodrigues de Carvalho, W. Fernandez, G. Rodriguez Rodriguez Rojo, J. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salamida, F. Salazar, H. Saleh, A. Greus, F. Salesa Salina, G. Sanchez, F. Sanchez-Lucas, P. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarmento, R. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Scholten, O. Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Taborda, O. A. Tapia, A. Tartare, M. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Torres Machado, D. Travnicek, P. Trovato, E. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Widom, A. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhou, J. Zhu, Y. Zimbres Silva, M. Ziolkowski, M. Zuccarello, F. CA Pierre Auger Collaboration TI Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events SO PHYSICAL REVIEW D LA English DT Article ID ENERGY COSMIC-RAYS; DETECTOR; MODEL AB We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62 degrees and 80 degrees. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 10(19) eV shower with a zenith angle of 67 degrees, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 +/- 0.04 +/- 0.48(sys)) x 10(7) muons with energies larger than 0.3 GeV. The logarithmic gain d lnN mu/d ln E of muons with increasing energy between 4 x 10(18) eV and 5 x 10(19) eV is measured to be (1.029 +/- 0.024) 0.030(sys)). C1 [Allekotte, I.; Asorey, H.; Ave, M.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Ave, M.; Bertou, X.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O. A.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Dasso, S.; Dova, M. T.; Guardincerri, Y.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Masias Meza, J. J.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, P.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Micheletti, M. I.] UNR, CONICET, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina. [Garcia, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Mendoza, Argentina. [Garcia, B.] Natl Technol Univ, CONICET CNEA, Fac Mendoza, Mendoza, Argentina. [Almela, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Schroeder, F. G.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Saffi, S. J.; Sorokin, J.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Leao, M. S. A. B.] Fac Independente Nordeste, Vitoria Da Conquista, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.; Zimbres Silva, M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Fernandes, M.; Giaccari, U.; Torres Machado, D.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Micanovic, S.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Nucl & Particle Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.; Rossler, T.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Cordier, A.; Garcia-Gamez, D.; Kegl, B.; Ragaigne, D. Monnier; Veberic, D.] Univ Paris 11, CNRS, IN2P3, LAL, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble Alpes, CNRS, IN2P3, LPSC, Grenoble, France. [Dallier, R.; Martin, L.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, Paris, France. [Dallier, R.; Gate, F.; Kieckhafer, R. M.; Lautridou, P.; Maller, J.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44035 Nantes, France. [Becker, K. H.; Bleve, C.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Lu, L.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Wuppertal, Germany. [Baeuml, J.; Baus, C.; Bluemer, H.; Fuchs, B.; Gonzalez, J. G.; Huber, D.; Kambeitz, O.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Palmieri, N.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, D-76021 Karlsruhe, Germany. [Bluemer, H.; Daumiller, K.; Dembinski, H.; Hasankiadeh, Q. Dorosti; Engel, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Mathes, H. J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F. G.; Schulz, A.; Smida, R.; Szuba, M.; Tomankova, L.; Ulrich, R.; Unger, M.; Weindl, A.; Will, M.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Weber, M.; Zhu, Y.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Scharf, N.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Batista, R. Alves; Schiffer, P.; Sigl, G.; van Vliet, A.] Univ Hamburg, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Collica, L.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.; Zuccarello, F.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Trovato, E.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Ist Nazl Fis Nucl, Pavia, Italy. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Riggi, S.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Boncioli, D.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, Laquila, Italy. [Aglietta, M.; Bertaina, M. E.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, INAF, Osservatorio Astrofis Torino, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Parra, A.; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Mexico City 14000, DF, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Adv Radiat Technol Ctr, KVI, NL-9700 AB Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C. E.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Brancus, I.; Mitrica, B.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Magurele, Romania. [Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Saleh, A.; Stanic, S.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Aranda, V. M.; Arqueros, F.; Garcia-Pinto, D.; Minaya, A.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Garcia Roca, S. T.; Newton, D.; Olmos-Gilbaja, V. M.; Parente, G.; Riggi, S.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago, Spain. [Lu, L.; Newton, D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.; Gookin, B.] Colorado State Univ, Pueblo, CO 81001 USA. [Anchordoqui, L.] CUNY, Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Matthews, A. J.; Shadkam, A.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY 10003 USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Keivani, A.; Mostafa, M.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; Luis, P. Facal San; Fang, K.; Fujii, T.; Hollon, N.; Monasor, M.; Olinto, A.; Privitera, P.; Williams, C.; Yamamoto, T.; Zhou, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Fox, B. D.; Gorham, P.; Meyhandan, R.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Lauer, R.; Matthews, J. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anchordoqui, L.; Islo, K.; Paul, T.; Vlcek, B.] Univ Wisconsin, Milwaukee, WI 53201 USA. RP Aab, A (reprint author), Univ Siegen, D-57068 Siegen, Germany. RI Ridky, Jan/H-6184-2014; Zuccarello, Francesca/R-1834-2016; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Fauth, Anderson/F-9570-2012; De Domenico, Manlio/B-5826-2014; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Lozano-Bahilo, Julio/F-4881-2016; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Arqueros, Fernando/K-9460-2014; Goncalves, Patricia /D-8229-2013; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Torralba Elipe, Guillermo/A-9524-2015; Carvalho Jr., Washington/H-9855-2015; Caramete, Laurentiu/C-2328-2011; Garcia Pinto, Diego/J-6724-2014; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Sima, Octavian/C-3565-2011; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; van den Berg, Adriaan/P-6792-2015; Pech, Miroslav/G-5760-2014; Parente, Gonzalo/G-8264-2015; Horvath, Pavel/G-6334-2014; Brogueira, Pedro/K-3868-2012; Bueno, Antonio/F-3875-2015; Badescu, Alina/B-6087-2012; Albuquerque, Ivone/H-4645-2012; Todero Peixoto, Carlos Jose/G-3873-2012; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; de souza, Vitor/D-1381-2012; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012 OI Mussa, Roberto/0000-0002-0294-9071; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Del Peral, Luis/0000-0003-2580-5668; Salamida, Francesco/0000-0002-9306-8447; Aglietta, Marco/0000-0001-8354-5388; Segreto, Alberto/0000-0001-7341-6603; Ravignani, Diego/0000-0001-7410-8522; Ridky, Jan/0000-0001-6697-1393; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Zuccarello, Francesca/0000-0003-1853-2550; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Aramo, Carla/0000-0002-8412-3846; Fauth, Anderson/0000-0001-7239-0288; De Domenico, Manlio/0000-0001-5158-8594; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Lozano-Bahilo, Julio/0000-0003-0613-140X; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Arqueros, Fernando/0000-0002-4930-9282; Goncalves, Patricia /0000-0003-2042-3759; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Coutu, Stephane/0000-0003-2923-2246; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Yuan, Guofeng/0000-0002-1907-8815; Marsella, Giovanni/0000-0002-3152-8874; Torralba Elipe, Guillermo/0000-0001-8738-194X; Carvalho Jr., Washington/0000-0002-2328-7628; Garcia Pinto, Diego/0000-0003-1348-6735; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Parente, Gonzalo/0000-0003-2847-0461; Horvath, Pavel/0000-0002-6710-5339; Brogueira, Pedro/0000-0001-6069-4073; Bueno, Antonio/0000-0002-7439-4247; Albuquerque, Ivone/0000-0001-7328-0136; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Sao Paulo Research Foundation (FAPESP) [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers [SDU-INSU/CNRS]; Institut Lagrange de Paris, within the Investissements d'Avenir Programme, France [ILP LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forchung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttermberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds; FEDER funds within COMPETE-Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS [CNDI-UEFISCDI, 20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme for research-Space Technology and Advanced Research-STAR, Romania [83/2013]; Slovenian Research Agency, Slovenia; Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, The Grainger Foundation, USA [0450696]; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005]; [CZ.1.05/2.1.00/03.0058] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grants No. MSMT-CR LG13007, No. 7AMB14AR005, No. CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant No.14-17501S, Czech Republic; Centre de Calcul Grant No. IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (Grant No. PNC-IN2P3/CNRS), Departement Sciences de l'Univers (Grant No. SDU-INSU/CNRS), Institut Lagrange de Paris, Grant No. ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forchung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttermberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE-Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, Grants No. CNDI-UEFISCDI, No. 20/2012 and No. 194/2012, No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17, and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research-Space Technology and Advanced Research-STAR, Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 42 TC 28 Z9 28 U1 6 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 6 PY 2015 VL 91 IS 3 AR 032003 DI 10.1103/PhysRevD.91.032003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB2DV UT WOS:000349437800002 ER PT J AU Amendt, P Bellei, C Ross, JS Salmonson, J AF Amendt, Peter Bellei, Claudio Ross, J. Steven Salmonson, Jay TI Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions SO PHYSICAL REVIEW E LA English DT Article ID PLASMAS; SIMULATIONS; TRANSPORT AB Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured. C1 [Amendt, Peter; Bellei, Claudio; Ross, J. Steven; Salmonson, Jay] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM amendt1@llnl.gov FU Lawrence Livermore National Security, LLC (LLNS) [DE-AC52-07NA27344, LDRD-11-ERD-075] FX Useful discussions with Siegfried Glenzer and Scott Wilks are gratefully acknowledged. This work was performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344 and supported by LDRD-11-ERD-075. NR 35 TC 4 Z9 4 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD FEB 6 PY 2015 VL 91 IS 2 AR 023103 DI 10.1103/PhysRevE.91.023103 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CB2ER UT WOS:000349440000007 PM 25768614 ER PT J AU Ratner, D Abela, R Amann, J Behrens, C Bohler, D Bouchard, G Bostedt, C Boyes, M Chow, K Cocco, D Decker, FJ Ding, Y Eckman, C Emma, P Fairley, D Feng, Y Field, C Flechsig, U Gassner, G Hastings, J Heimann, P Huang, Z Kelez, N Krzywinski, J Loos, H Lutman, A Marinelli, A Marcus, G Maxwell, T Montanez, P Moeller, S Morton, D Nuhn, HD Rodes, N Schlotter, W Serkez, S Stevens, T Turner, J Walz, D Welch, J Wu, J AF Ratner, D. Abela, R. Amann, J. Behrens, C. Bohler, D. Bouchard, G. Bostedt, C. Boyes, M. Chow, K. Cocco, D. Decker, F. J. Ding, Y. Eckman, C. Emma, P. Fairley, D. Feng, Y. Field, C. Flechsig, U. Gassner, G. Hastings, J. Heimann, P. Huang, Z. Kelez, N. Krzywinski, J. Loos, H. Lutman, A. Marinelli, A. Marcus, G. Maxwell, T. Montanez, P. Moeller, S. Morton, D. Nuhn, H. D. Rodes, N. Schlotter, W. Serkez, S. Stevens, T. Turner, J. Walz, D. Welch, J. Wu, J. TI Experimental Demonstration of a Soft X-Ray Self-Seeded Free-Electron Laser SO PHYSICAL REVIEW LETTERS LA English DT Article ID FEL AB The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users. C1 [Ratner, D.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Cocco, D.; Decker, F. J.; Ding, Y.; Eckman, C.; Emma, P.; Fairley, D.; Feng, Y.; Field, C.; Gassner, G.; Hastings, J.; Heimann, P.; Huang, Z.; Kelez, N.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Marcus, G.; Maxwell, T.; Montanez, P.; Moeller, S.; Morton, D.; Nuhn, H. D.; Schlotter, W.; Turner, J.; Walz, D.; Welch, J.; Wu, J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94720 USA. [Abela, R.; Flechsig, U.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Chow, K.; Rodes, N.; Stevens, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Serkez, S.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. RP Ratner, D (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94720 USA. EM dratner@slac.stanford.edu FU Department of Energy [DE-AC02-76SF00515, DE-AC02-05CH1123] FX We would like to give special thanks for contributions from D. Van Campen, R. Follath, T. Rabedeau, S. Reiche, and S. Spielmann. Work at SLAC is supported by Department of Energy Contract No. DE-AC02-76SF00515. Work at LBNL in part is supported by Department of Energy Contract No. DE-AC02-05CH1123. NR 23 TC 29 Z9 29 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 6 PY 2015 VL 114 IS 5 AR 054801 DI 10.1103/PhysRevLett.114.054801 PG 5 WC Physics, Multidisciplinary SC Physics GA CB2FD UT WOS:000349441300002 PM 25699448 ER PT J AU Mecklenburg, M Hubbard, WA White, ER Dhall, R Cronin, SB Aloni, S Regan, BC AF Mecklenburg, Matthew Hubbard, William A. White, E. R. Dhall, Rohan Cronin, Stephen B. Aloni, Shaul Regan, B. C. TI Nanoscale temperature mapping in operating microelectronic devices SO SCIENCE LA English DT Article ID ELECTRON-MICROSCOPY; THERMAL MICROSCOPY; THERMOMETRY; SCALE; ALUMINUM AB Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz-1/2, an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. C1 [Mecklenburg, Matthew] Univ So Calif, Ctr Electron Microscopy & Microanal, Los Angeles, CA 90089 USA. [Hubbard, William A.; White, E. R.; Regan, B. C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hubbard, William A.; White, E. R.; Regan, B. C.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Dhall, Rohan; Cronin, Stephen B.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Mecklenburg, M (reprint author), Univ So Calif, Ctr Electron Microscopy & Microanal, Los Angeles, CA 90089 USA. EM matthew.mecklenburg@usc.edu; regan@physics.ucla.edu RI Foundry, Molecular/G-9968-2014 FU National Science Foundation [DMR-1206849]; Function Accelerated nanoMaterial Engineering (FAME), one of six centers of Semiconductor Technology Advanced Research network (STARnet), a Semiconductor Research Corporation; Microelectronics Advanced Research Corporation; Defense Advanced Research Projects Agency; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work has been supported by National Science Foundation award DMR-1206849 and in part by Function Accelerated nanoMaterial Engineering (FAME), one of six centers of Semiconductor Technology Advanced Research network (STARnet), a Semiconductor Research Corporation program sponsored by the Microelectronics Advanced Research Corporation and Defense Advanced Research Projects Agency. Data presented in this article were acquired at the Center for Electron Microscopy and Microanalysis at the University of Southern California. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 29 TC 39 Z9 39 U1 22 U2 150 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 6 PY 2015 VL 347 IS 6222 BP 629 EP 632 DI 10.1126/science.aaa2433 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8CX UT WOS:000349145200036 PM 25657242 ER PT J AU Yu, Q Qi, L Tsuru, T Traylor, R Rugg, D Morris, JW Asta, M Chrzan, DC Minor, AM AF Yu, Qian Qi, Liang Tsuru, Tomohito Traylor, Rachel Rugg, David Morris, J. W., Jr. Asta, Mark Chrzan, D. C. Minor, Andrew M. TI Origin of dramatic oxygen solute strengthening effect in titanium SO SCIENCE LA English DT Article ID STACKING-FAULT ENERGY; DISLOCATION; ALUMINUM; TI AB Structural alloys are often strengthened through the addition of solute atoms. However, given that solute atoms interact weakly with the elastic fields of screw dislocations, it has long been accepted that solution hardening is only marginally effective in materials with mobile screw dislocations. By using transmission electron microscopy and nanomechanical characterization, we report that the intense hardening effect of dilute oxygen solutes in pure a-Ti is due to the interaction between oxygen and the core of screw dislocations that mainly glide on prismatic planes. First-principles calculations reveal that distortion of the interstitial sites at the screw dislocation core creates a very strong but short-range repulsion for oxygen that is consistent with experimental observations. These results establish a highly effective mechanism for strengthening by interstitial solutes. C1 [Yu, Qian; Qi, Liang; Traylor, Rachel; Morris, J. W., Jr.; Asta, Mark; Chrzan, D. C.; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electon Microscopy, Berkeley, CA 94720 USA. [Tsuru, Tomohito] Japan Atom Energy, Nucl Sci & Engn Directorate, Tokai, Ibaraki, Japan. [Rugg, David] Rolls Royce PLC, Derby DE24 8BJ, England. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Qi, Liang/A-3851-2010; Foundry, Molecular/G-9968-2014 OI Qi, Liang/0000-0002-0201-9333; FU U.S. Office of Naval Research [N00014-12-1-0413]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) FX We gratefully acknowledge funding from the U.S. Office of Naval Research under grant N00014-12-1-0413. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. T.T. acknowledges the financial support of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scientific Research in Innovative Areas "Bulk Nanostructured Materials." We thank J. Kacher for dislocation tomography training and Timet (Exton, PA) for the production of the high-purity model alloys used in this study. NR 20 TC 26 Z9 26 U1 30 U2 206 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 6 PY 2015 VL 347 IS 6222 BP 635 EP 639 DI 10.1126/science.1260485 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8CX UT WOS:000349145200038 PM 25657243 ER PT J AU Savee, JD Papajak, E Rotavera, B Huang, HF Eskola, AJ Welz, O Sheps, L Taatjes, CA Zador, J Osborn, DL AF Savee, John D. Papajak, Ewa Rotavera, Brandon Huang, Haifeng Eskola, Arkke J. Welz, Oliver Sheps, Leonid Taatjes, Craig A. Zador, Judit Osborn, David L. TI Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH) SO SCIENCE LA English DT Article ID LOW-TEMPERATURE COMBUSTION; HYDROCARBON AUTOIGNITION; ATMOSPHERIC OXIDATION; ORGANIC AEROSOL; CHEMISTRY; ISOPRENE; MECHANISM; O-2; PHOTOOXIDATION; ISOMERIZATION AB Oxidation of organic compounds in combustion and in Earth's troposphere is mediated by reactive species formed by the addition of molecular oxygen (O-2) to organic radicals. Among the most crucial and elusive of these intermediates are hydroperoxyalkyl radicals, often denoted "QOOH." These species and their reactions with O-2 are responsible for the radical chain branching that sustains autoignition and are implicated in tropospheric autoxidation that can form low-volatility, highly oxygenated organic aerosol precursors. We report direct observation and kinetics measurements of a QOOH intermediate in the oxidation of 1,3-cycloheptadiene, a molecule that offers insight into both resonance-stabilized and nonstabilized radical intermediates. The results establish that resonance stabilization dramatically changes QOOH reactivity and, hence, that oxidation of unsaturated organics can produce exceptionally long-lived QOOH intermediates. C1 [Savee, John D.; Papajak, Ewa; Rotavera, Brandon; Huang, Haifeng; Eskola, Arkke J.; Welz, Oliver; Sheps, Leonid; Taatjes, Craig A.; Zador, Judit; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Osborn, DL (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM dlosbor@sandia.gov RI Welz, Oliver/C-1165-2013; Zador, Judit/A-7613-2008 OI Welz, Oliver/0000-0003-1978-2412; Zador, Judit/0000-0002-9123-8238 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Science, BES/DOE [DE-AC02-05CH11231] FX Additional details of the experiments, calculations, and kinetic model are available in the supplementary materials. We thank H. Johnsen and the staff at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) for technical support. This material is based on work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94AL85000. This research used resources of the ALS, which is a DOE Office of Science User Facility. The ALS is supported by the Director, Office of Science, BES/DOE, under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the DOE. NR 33 TC 22 Z9 22 U1 21 U2 159 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 6 PY 2015 VL 347 IS 6222 BP 643 EP 646 DI 10.1126/science.aaa1495 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA8CX UT WOS:000349145200040 PM 25657245 ER PT J AU Schaeffer, DA Polizos, G Smith, DB Lee, DF Hunter, SR Datskos, PG AF Schaeffer, Daniel A. Polizos, Georgios Smith, D. Barton Lee, Dominic F. Hunter, Scott R. Datskos, Panos G. TI Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles SO NANOTECHNOLOGY LA English DT Article DE superhydrophobic; anti-soiling; self-cleaning; transparent; nanoparticles ID HIGHLY TRANSPARENT; SILICA NANOPARTICLES; UV-RESISTANT; SURFACES; FILMS; FABRICATION; DEPOSITION AB Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a 'self-cleaning' effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100 degrees to 120 degrees. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160 degrees-175 degrees. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA >= 160 degrees. C1 [Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; Hunter, Scott R.; Datskos, Panos G.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Lee, Dominic F.] Oak Ridge Natl Lab, Elect & Elect Syst Res Div, Oak Ridge, TN 37831 USA. RP Schaeffer, DA (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM schaefferda@ornl.gov RI Schaeffer, Daniel/N-5774-2015 OI Schaeffer, Daniel/0000-0002-1868-6632 FU UT-Battelle [DE-AC05-00OR22725]; U.S. Department of Energy, SunShot Program of the Office of Energy Efficiency and Renewable Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Oak Ridge National Laboratory is operated for the U.S. Department of Energy by UT-Battelle under Contract No. DE-AC05-00OR22725. This work was supported by the U.S. Department of Energy, SunShot Program of the Office of Energy Efficiency and Renewable Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 37 TC 7 Z9 7 U1 15 U2 143 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 6 PY 2015 VL 26 IS 5 AR 055602 DI 10.1088/0957-4484/26/5/055602 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AZ0RJ UT WOS:000347952000019 PM 25573924 ER PT J AU Cuevas-Maraver, J Kevrekidis, PG Saxena, A AF Cuevas-Maraver, Jesus Kevrekidis, Panayotis G. Saxena, Avadh TI Solitary waves in a discrete nonlinear Dirac equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE solitons; nonlinear Dirac equation; anti-continuum limit; existence; stability; dynamics ID SCHRODINGER-EQUATION; FIELD-THEORIES; DARK SOLITONS; NEUTRAL ATOMS; BREATHERS; STABILITY AB In the present work, we introduce a discrete formulation of the nonlinear Dirac equation in the form of a discretization of the Gross-Neveu model. The motivation for this discrete model proposal is both computational (near the continuum limit) and theoretical (using the understanding of the anti-continuum limit of vanishing coupling). Numerous unexpected features are identified including a staggered solitary pattern emerging from a single site excitation, as well as two- and three-site excitations playing a role analogous to one- and two-site excitations, respectively, of the discrete nonlinear Schrodinger analogue of the model. Stability exchanges between the two- and three-site states are identified, as well as instabilities that appear to be persistent over the coupling strength epsilon, for a subcritical value of the propagation constant Lambda. Variations of the propagation constant, coupling parameter and nonlinearity exponent are all examined in terms of their existence and stability implications and long dynamical simulations are used to unravel the evolutionary phenomenology of the system (when unstable). C1 [Cuevas-Maraver, Jesus] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Grp Fis Lineal, E-41011 Seville, Spain. [Cuevas-Maraver, Jesus] Univ Sevilla IMUS, Inst Matemat, E-41012 Seville, Spain. [Kevrekidis, Panayotis G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Cuevas-Maraver, J (reprint author), Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Grp Fis Lineal, C Virgen de Africa 7, E-41011 Seville, Spain. EM jcuevas@us.es RI Cuevas-Maraver, Jesus/A-1255-2008 OI Cuevas-Maraver, Jesus/0000-0002-7162-5759 FU US Department of Energy; National Science Foundation [CMMI-1000337, DMS-1312856]; FP7-People under Binational (US-Israel) Science Foundation [IRSES-605096, 2010239]; US-AFOSR [FA9550-12-10332] FX This work was supported in part by the US Department of Energy (AS). PGK acknowledges support from the National Science Foundation under grants CMMI-1000337, DMS-1312856, from FP7-People under grant IRSES-605096 from the Binational (US-Israel) Science Foundation through grant 2010239, and from the US-AFOSR under grant FA9550-12-10332. We are indebted to Faustino Palmero for technical assistance with some parts of the manuscript. NR 54 TC 3 Z9 3 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD FEB 6 PY 2015 VL 48 IS 5 AR 055204 DI 10.1088/1751-8113/48/5/055204 PG 22 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA AY9CZ UT WOS:000347848500010 ER PT J AU Xu, H Kevrekidis, PG Saxena, A AF Xu, H. Kevrekidis, P. G. Saxena, A. TI Generalized dimers and their Stokes-variable dynamics SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE Stokes variables; AC-dimers; dynamics; PT-symmetry ID PARITY-TIME SYMMETRY; OPTICAL LATTICES; WAVE-GUIDE; SOLITONS; POTENTIALS; STABILITY; COUPLERS AB In the present work, we generalize the setting of dimers with potential gain and loss which have been extensively considered recently in PT-symmetric contexts. We consider a pair of waveguides which are evanescently coupled but may also be coupled in a way inducing gain/loss and may additionally possess onsite gain and loss, as well as (possibly non-uniform) nonlinearity. We identify (and where appropriate review from earlier work) a plethora of interesting dynamical scenarios ranging from the existence of stable and unstable fixed points and integrable dynamics, to the emergence of pitchfork or Hopf bifurcations and the generation of additional fixed points and limit cycles, respectively, as well as the potential deviation of trajectories to infinity. Thus, a catalogue of a large number of possible cases is given and their respective settings physically justified (where appropriate). C1 [Xu, H.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xu, H (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. EM haitao@math.umass.edu; kevrekid@gmail.com; avadh@lanl.gov NR 59 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD FEB 6 PY 2015 VL 48 IS 5 AR 055101 DI 10.1088/1751-8113/48/5/055101 PG 21 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA AY9CZ UT WOS:000347848500005 ER PT J AU Hogan, E O'Rourke, J Traub, C Veomett, E AF Hogan, Emilie O'Rourke, Joseph Traub, Cindy Veomett, Ellen TI On coloring box graphs SO DISCRETE MATHEMATICS LA English DT Article DE Graph coloring; Box graph; Chromatic number ID MAP AB We consider the chromatic number of a family of graphs we call box graphs, which arise from a box complex in n-space. It is straightforward to show that any box graph in the plane has an admissible coloring with three colors, and that any box graph in n-space has an admissible coloring with n + 1 colors. We show that for box graphs in n-space, if the lengths of the boxes in the corresponding box complex take on no more than two values from the set {1, 2, 3}, then the box graph is 3-colorable, and for some graphs three colors are required. We also show that box graphs in 3-space which do not have cycles of length four (which we call "string complexes") are 3-colorable. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hogan, Emilie] Pacific NW Natl Lab, Richland, WA 99352 USA. [O'Rourke, Joseph] Smith Coll, Northampton, MA 01063 USA. [Traub, Cindy] So Illinois Univ Edwardsville, Chicago, IL USA. [Veomett, Ellen] St Marys Coll Calif, New York, NY 10020 USA. RP Veomett, E (reprint author), St Marys Coll Calif, New York, NY 10020 USA. EM erv2@stmarys-ca.edu OI Traub, Cynthia/0000-0001-5036-4118 FU AMS Mathematics Research Communities grant FX We thank the participants of the 2012 AMS Mathematics Research Institute for stimulating discussions, and we thank the referees for their insightful comments. The proof of Theorem 2 was developed in collaboration with Smith students Lily Du, Jessica Lord, Micaela Mendlow, Emily Merrill, Viktoria Pardey, Rawia Salih, and Stephanie Wang. The first, third and last authors were supported by an AMS Mathematics Research Communities grant. NR 8 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-365X EI 1872-681X J9 DISCRETE MATH JI Discret. Math. PD FEB 6 PY 2015 VL 338 IS 2 BP 209 EP 216 DI 10.1016/j.disc.2014.09.004 PG 8 WC Mathematics SC Mathematics GA AW6SI UT WOS:000346398300007 ER PT J AU Santana, JA Trabert, E AF Santana, Juan A. Traebert, Elmar TI Resonance and intercombination lines in Mg-like ions of atomic numbers Z=13-92 SO PHYSICAL REVIEW A LA English DT Article ID ZN-LIKE IONS; MAGNESIUM ISOELECTRONIC SEQUENCE; PERTURBATION-THEORY CALCULATIONS; GAUSSIAN-BASIS-SET; CU-LIKE IONS; ENERGY-LEVELS; NA-LIKE; OSCILLATOR-STRENGTHS; EXCITATION-ENERGIES; DIRAC-FOCK AB While prominent lines of various Na-like ions have been measured with an accuracy of better than 100 ppm and corroborate equally accurate calculations, there have been remarkably large discrepancies between calculations for Mg-like ions of high atomic number. We present ab initio calculations using the multireference Moller-Plesset approach for Mg-like ions of atomic numbers Z = 13-92 and compare the results with other calculations of this isoelectronic sequence as well as with experimental data. Our results come very close to experiment (typically 100 ppm) over a wide range. Data at high values of Z are sparse, which calls for further accurate measurements in this range where relativistic and QED effects are large. C1 [Santana, Juan A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Traebert, Elmar] Lawrence Livermore Natl Lab, Div Phys, PLS, Livermore, CA 94550 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. RP Santana, JA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM santanajua@gmail.com FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; German Research Association DFG [Tr171/19] FX This work was supported by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. E.T. acknowledges support from the German Research Association DFG (Grant No. Tr171/19). NR 52 TC 6 Z9 6 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD FEB 5 PY 2015 VL 91 IS 2 AR 022503 DI 10.1103/PhysRevA.91.022503 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CE3YZ UT WOS:000351767300003 ER PT J AU Langhammer, J Navratil, P Quaglioni, S Hupin, G Calci, A Roth, R AF Langhammer, Joachim Navratil, Petr Quaglioni, Sofia Hupin, Guillaume Calci, Angelo Roth, Robert TI Continuum and three-nucleon force effects on Be-9 energy levels SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; NUCLEI AB We extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon (3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction observables of p-and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the Be-9 system for which all excited states lie above the n-Be-8 threshold. For all energy levels, the inclusion of the continuum significantly improves the agreement with experiment, which was an issue in standard no-core shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable statements about the quality of the adopted 3N interaction from chiral effective field theory. In particular, we find the 1/2(+) resonance energy, which is of astrophysical interest, in good agreement with experiment. C1 [Langhammer, Joachim; Calci, Angelo; Roth, Robert] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Navratil, Petr; Calci, Angelo] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Quaglioni, Sofia; Hupin, Guillaume] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Langhammer, J (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM joachim.langhammer@physik.tu-darmstadt.de; navratil@triumf.ca; robert.roth@physik.tu-darmstadt.de RI Roth, Robert/B-6502-2008 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse; BMBF [06DA7047I]; NSERC [401945-2011]; LLNL [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [SCW1158]; National Research Council Canada FX Numerical calculations have been performed at the National Energy Research Scientific Computing Center (Edison) supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, at the LOEWE-CSC Frankfurt, and at the computing center of the TU Darmstadt (lichtenberg). Computing support for this work came in part from the LLNL institutional Computing Grand Challenge program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Supported by the Deutsche Forschungsgemeinschaft through Contract SFB 634, by the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse, and the BMBF through Contract No. 06DA7047I, and from NSERC Grant No. 401945-2011. Prepared in part by LLNL under Contract No. DE-AC52-07NA27344 and supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Work Proposal No. SCW1158. TRIUMF receives funding via a contribution through the National Research Council Canada. NR 43 TC 11 Z9 11 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 5 PY 2015 VL 91 IS 2 AR 021301 DI 10.1103/PhysRevC.91.021301 PG 7 WC Physics, Nuclear SC Physics GA CE7LD UT WOS:000352020400001 ER PT J AU Greensite, J Szczepaniak, AP AF Greensite, Jeff Szczepaniak, Adam P. TI Coulomb string tension, asymptotic string tension, and the gluon chain SO PHYSICAL REVIEW D LA English DT Article AB We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four. C1 [Greensite, Jeff] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Szczepaniak, Adam P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Szczepaniak, Adam P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Szczepaniak, Adam P.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Greensite, J (reprint author), San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. OI Greensite, Jeff/0000-0003-1720-9436 FU U.S. Department of Energy (DOE) [DE-FG03-92ER40711, DE-FG0287ER40365]; Jefferson Science Associates, LLC, under U.S. DOE [DE-AC05- 06OR23177] FX This work was supported in part by the U.S. Department of Energy (DOE) under Awards No. DE-FG03-92ER40711 (J. G.) and No. DE-FG0287ER40365 (A. P. S.). The work was authored in part by Jefferson Science Associates, LLC, under U.S. DOE Award No. DE-AC05- 06OR23177. NR 10 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 5 PY 2015 VL 91 IS 3 AR 034503 DI 10.1103/PhysRevD.91.034503 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE7ME UT WOS:000352024200004 ER PT J AU Hill, RJ Solon, MP AF Hill, Richard J. Solon, Mikhail P. TI Standard Model anatomy of WIMP dark matter direct detection. II. QCD analysis and hadronic matrix elements SO PHYSICAL REVIEW D LA English DT Article ID 3-LOOP SPLITTING FUNCTIONS; LATTICE QCD; INVARIANCE CONSTRAINTS; PARTON DISTRIBUTIONS; TENSOR CHARGE; QUARK MASSES; NUCLEON; HEAVY; TRANSVERSITY; SCATTERING AB Models of weakly interacting massive particles (WIMPs) specified at the electroweak scale are systematically matched to effective theories at hadronic scales where WIMP-nucleus scattering observables are evaluated. Anomalous dimensions and heavy-quark threshold matching conditions are computed for the complete basis of lowest-dimension effective operators involving quarks and gluons. The resulting QCD renormalization group evolution equations are solved. The status of relevant hadronic matrix elements is reviewed and phenomenological illustrations are given, including details for the computation of the universal limit of nucleon scattering with heavy SU(2)(W) x U(1)(Y) charged WIMPs. Several cases of previously underestimated hadronic uncertainties are isolated. The results connect arbitrary models specified at the electroweak scale to a basis of n(f) = 3-flavor QCD operators. The complete basis of operators and Lorentz invariance constraints through order v(2)/c(2) in the nonrelativistic nucleon effective theory are derived. C1 [Hill, Richard J.; Solon, Mikhail P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hill, Richard J.; Solon, Mikhail P.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Solon, Mikhail P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94270 USA. [Solon, Mikhail P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94270 USA. RP Hill, RJ (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Hill, Richard/C-8820-2017 OI Hill, Richard/0000-0003-1982-589X FU United States Department of Energy [DE-FG02-13ER41958]; Bloomenthal Scholarship at the University of Chicago; Office, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Andreas Kronfeld for comments on the manuscript. This work was supported by the United States Department of Energy under Grant No. DE-FG02-13ER41958. M. S. acknowledges support from a Bloomenthal Scholarship at the University of Chicago, and from the Office, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 101 TC 36 Z9 36 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 5 PY 2015 VL 91 IS 4 AR 043505 DI 10.1103/PhysRevD.91.043505 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE7MH UT WOS:000352024500002 ER PT J AU Kucerka, N van Oosten, B Pan, JJ Heberle, FA Harroun, TA Katsaras, J AF Kucerka, Norbert van Oosten, Brad Pan, Jianjun Heberle, Frederick A. Harroun, Thad A. Katsaras, John TI Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained from Simulation-to-Experiment Comparisons and Experimental Scattering Density Profiles SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE NEUTRON; CHARMM FORCE-FIELD; DYNAMICS SIMULATIONS; LIPID-BILAYERS; SURFACE-TENSION; MITOCHONDRIAL DYSFUNCTION; LIQUID/LIQUID INTERFACES; COMPUTER-SIMULATION; PHASE-EQUILIBRIA AB Following our previous efforts in determining the structures of commonly used PC, PG, and PS bilayers, we continue our studies of fully hydrated, fluid phase PE bilayers. The newly designed parsing scheme for PE bilayers was based on extensive MD simulations, and is utilized in the SDP analysis of both X-ray and neutron (contrast varied) scattering measurements. Obtained experimental scattering form factors are directly compared to our simulation results, and can serve as a benchmark for future developed force fields. Among the evaluated structural parameters, namely, area per lipid A, overall bilayer thickness DB, and hydrocarbon region thickness 2DC, the PE bilayer response to changing temperature is similar to previously studied bilayers with different headgroups. On the other hand, the reduced hydration of PE headgroups, as well as the strong hydrogen bonding between PE headgroups, dramatically affects lateral packing within the bilayer. Despite sharing the same glycerol backbone, a markedly smaller area per lipid distinguishes PE from other bilayers (i.e., PC, PG, and PS) studied to date. Overall, our data are consistent with the notion that lipid headgroups govern bilayer packing, while hydrocarbon chains dominate the bilayers response to temperature changes. C1 [Kucerka, Norbert] CNR, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Kucerka, Norbert] Comenius Univ, Fac Pharm, Dept Phys Chem Drugs, Bratislava 83232, Slovakia. [Kucerka, Norbert] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Moscow Region, Russia. [van Oosten, Brad; Harroun, Thad A.] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. [Pan, Jianjun] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Pan, Jianjun; Heberle, Frederick A.; Katsaras, John] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Katsaras, John] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Katsaras, John] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. RP Kucerka, N (reprint author), CNR, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. EM Kucerka@nf.jinr.ru; KatsarasJ@ornl.gov OI Katsaras, John/0000-0002-8937-4177; Harroun, Thad/0000-0001-9816-2590 FU Department of Energy (DOE) Scientific User Facilities Division, Office of Basic Energy Sciences; DOE Office of Biological and Environmental Research; DOE [DEAC05-00OR2275]; National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-0936384] FX J. K. is supported through the Department of Energy (DOE) Scientific User Facilities Division, Office of Basic Energy Sciences. This work acknowledges additional support from the DOE Office of Biological and Environmental Research, for the BioSANS instrument at the ORNL Center for Structural Molecular Biology. The facility is managed for DOE by UT-Battelle, LLC under contract no. DEAC05-00OR2275. SAXS data were collected at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-0936384. The MD simulations in this work were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada. NR 74 TC 7 Z9 7 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 5 PY 2015 VL 119 IS 5 BP 1947 EP 1956 DI 10.1021/jp511159q PG 10 WC Chemistry, Physical SC Chemistry GA CA7ZT UT WOS:000349137000017 PM 25436970 ER PT J AU Mason, PE Ansell, S Neilson, GW Rempe, SB AF Mason, P. E. Ansell, S. Neilson, G. W. Rempe, S. B. TI Neutron Scattering Studies of the Hydration Structure of Li+ SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; CONCENTRATED AQUEOUS-SOLUTION; QUASI-CHEMICAL THEORY; X-RAY-DIFFRACTION; SET AB-INITIO; COORDINATION NUMBERS; CROSS-SECTIONS; ION HYDRATION; LIQUID WATER; LITHIUM ION AB New results derived from the experimental method of neutron diffraction and isotopic substitution (NDIS) are presented for the hydration structure of the lithium cation (Li+) in aqueous solutions of lithium chloride in heavy water (D2O) at concentrations of 6, 3, and 1 m and at 1.5 m lithium sulfate. By introducing new and more-accurate data reduction procedures than in our earlier studies (I. Howell and G. W. Neilson, J. Phys: Condens. Matter, 1996, 8, 4455-4463), we find, in the first hydration shell of Li+, similar to 4.3(2) water molecules at 6 m, 4.9(3) at 3 m, 4.8(3) at 1 m in the LiCl solutions, and 5.0(3) water molecules in the case of Li2SO4 solution. The general form of the first hydration shell is similar in all four solutions, with the correlations for Li-O and Li-D sited at 1.96 (0.02) angstrom and 2.58 (0.02) angstrom, respectively. The results resemble those presented in 1996, in terms of ion-water distances and local coordination, but the hydration number is significantly lower for the case at 1 m than the 6.5 (1.0) given at that time. Thus, experimental and theoretical results now agree that lithium is hydrated by a small number of water molecules (4-5) in the nearest coordination shell. C1 [Mason, P. E.] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic. [Ansell, S.] Rutherford Appleton Labs, Chilton OX11 0QX, Oxon, England. [Neilson, G. W.] Univ Bristol, Dept Phys, Bristol BS8 1TL, Avon, England. [Rempe, S. B.] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA. RP Mason, PE (reprint author), Acad Sci Czech Republic, Inst Organ Chem & Biochem, Flemingovo Nam 2, CR-16610 Prague 6, Czech Republic. EM thunderf00t@hotmail.com; stuart.ansell@stfc.ac.uk; phgwn@bristol.ac.uk; slrempe@sandia.gov FU Sandia Laboratory Directed Research & Development (LDRD) program FX The authors are grateful to Henry Fischer for help with the neutron diffraction experiments and the excellent technical support of the Institut Laue-Langevin (ILL). The authors are also grateful to Lawrence Pratt, who pointed out atypical features in the lower concentration data of ref 3 and suggested revisiting the Li+ hydration problem experimentally, in light of theoretical results and challenges associated with treating momentum truncations during data analysis. The authors also thank Caroline Rempe and Jason Harris for assistance with the graphics. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Dept. of Energy's National Nuclear Security Administration (NNSA). This work was funded in part by the Sandia Laboratory Directed Research & Development (LDRD) program. NR 44 TC 14 Z9 14 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 5 PY 2015 VL 119 IS 5 BP 2003 EP 2009 DI 10.1021/jp511508n PG 7 WC Chemistry, Physical SC Chemistry GA CA7ZT UT WOS:000349137000023 PM 25559086 ER PT J AU Bai, JM Hong, J Chen, HY Graetz, J Wang, F AF Bai, Jianming Hong, Jian Chen, Haiyan Graetz, Jason Wang, Feng TI Solvothermal Synthesis of LiMn1-xFexPO4 Cathode Materials: A Study of Reaction Mechanisms by Time-Resolved in Situ Synchrotron X-ray Diffraction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; HYDROTHERMAL SYNTHESIS; ELECTRODE MATERIALS; PHOSPHO-OLIVINES; LIFEPO4; CRYSTAL; NANOPARTICLES; OXIDES; ION AB We applied time-resolved in situ synchrotron X-ray diffraction (XRD) to study the reaction processes and pathways during the solvothermal synthesis of the olivine-structured LiFePO4, LiMnPO4, and LiFe0.4Mn0.6PO4 with ethylene glycol C2H6O2 (EG) as the solvent by following the evolution of the crystal structures of the Fe/Mn-containing phases. We identified a stable intermediate phase in the synthetic reaction process of LiFePO4, viz., a ferrous oxalate EG complex (FeC2O4 center dot C2H6O2), and resolved its structure; thus, we established a two-step reaction mechanism involving dissolution-precipitation followed by interface-coupled dissolution-reprecipitation for the synthesis of LiFePO4. The synthetic reactions in an LiFe0.4Mn0.6PO4 solid solution also followed a two-step process via the formation of a metastable intermediate phase bearing a structural similarity to FeC2O4 center dot C2H6O2 that, however, has a slightly larger unit-cell, indicating that the substitution of Fe by Mn occurred at the intermediate stage. In contrast, the reaction in the synthesis of LiMnPO4 proceeds through a simple process of precipitation. Our findings provide important information for optimizing the synthesis of olivine cathode materials. The in situ XRD method we developed in this work offers a new way of exploring a wide range of solvothermal synthesis reactions, which is valuable for the rational design of new batteries. C1 [Bai, Jianming] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Hong, Jian; Graetz, Jason; Wang, Feng] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Chen, Haiyan] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Bai, JM (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg 741, Upton, NY 11973 USA. EM jmbai@bnl.gov RI Bai, Jianming/O-5005-2015; Wang, Feng/C-1443-2016 OI Wang, Feng/0000-0003-4068-9212 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (DOE-EERE) [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (DOE-EERE) under the Batteries, for Advanced Transportation Technologies (BATT) Program, under Contract DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 24 TC 7 Z9 7 U1 15 U2 129 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2266 EP 2276 DI 10.1021/jp508600u PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400003 ER PT J AU Lin, YJ Kapadia, R Yang, JH Zheng, M Chen, K Hettick, M Yin, XT Battaglia, C Sharp, ID Ager, JW Javey, A AF Lin, Yongjing Kapadia, Rehan Yang, Jinhui Zheng, Maxwell Chen, Kevin Hettick, Mark Yin, Xingtian Battaglia, Corsin Sharp, Ian D. Ager, Joel W. Javey, Ali TI Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN-PRODUCTION; SEMICONDUCTOR ELECTRODES; ARTIFICIAL LEAVES; EFFICIENT SOLAR; H-2 EVOLUTION; STEADY-STATE; SILICON; RECOMBINATION; FILMS; OXIDE AB The role of TiO2 thin films deposited by atomic layer deposition on p-InP photocathodes used for solar hydrogen generation was examined. It was found that, in addition to its previously reported corrosion protection role, the large valence band offset between TiO2 and InP creates an energy barrier for holes reaching the surface. Also, the conduction band of TiO2 is well-aligned with that of InP. The combination of these two effects creates an electron-selective contact with low interface recombination. Under simulated solar illumination in HClO4 aqueous electrolyte, an onset potential of >800 mV vs RHE was achieved, which is the highest yet reported for an InP photocathode. C1 [Lin, Yongjing; Kapadia, Rehan; Zheng, Maxwell; Chen, Kevin; Hettick, Mark; Yin, Xingtian; Battaglia, Corsin; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lin, Yongjing; Yang, Jinhui; Hettick, Mark; Sharp, Ian D.; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Lin, Yongjing; Kapadia, Rehan; Yang, Jinhui; Zheng, Maxwell; Chen, Kevin; Hettick, Mark; Yin, Xingtian; Battaglia, Corsin; Sharp, Ian D.; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Physcial Biosci Div, Berkeley, CA 94720 USA. RP Ager, JW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM jwager@lbl.gov; ajavey@eecs.berkeley.edu RI Sharp, Ian/I-6163-2015; Javey, Ali/B-4818-2013; Battaglia, Corsin/B-2917-2010; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; WCU program at Sunchon National University FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. A.J. acknowledges support from the WCU program at Sunchon National University. NR 37 TC 20 Z9 21 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2308 EP 2313 DI 10.1021/jp5107313 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400008 ER PT J AU Beste, A Overbury, SH AF Beste, Ariana Overbury, Steven H. TI Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CLEAN CEO2(111) SURFACE; AUGMENTED-WAVE METHOD; CO ADSORPTION; THIN-FILMS; BASIS-SET; DEPENDENCE; OXIDATION AB We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred on both surfaces. Our results are consistent with temperature-programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure. C1 [Beste, Ariana] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. [Beste, Ariana] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Beste, A (reprint author), Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov RI Overbury, Steven/C-5108-2016; OI Overbury, Steven/0000-0002-5137-3961; Beste, Ariana/0000-0001-9132-792X FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. The computational part of this project was conducted at the Center for Nanophase Materials Sciences under a user proposal. The Center is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was in part supported by an allocation of advanced computing resources provided by the National Science Foundation and performed on Kraken and Darter at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 6 Z9 6 U1 10 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2447 EP 2455 DI 10.1021/jp509686f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400024 ER PT J AU Ewing, CS Hartmann, MJ Martin, KR Musto, AM Padinjarekutt, SJ Weiss, EM Veser, G McCarthy, JJ Johnson, JK Lambrecht, DS AF Ewing, Christopher S. Hartmann, Michael J. Martin, Kaitlin R. Musto, Allison M. Padinjarekutt, Surya J. Weiss, Elliott M. Veser, Goetz McCarthy, Joseph J. Johnson, J. Karl Lambrecht, Daniel S. TI Structural and Electronic Properties of Pt-13 Nanoclusters on Amorphous Silica Supports SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CO OXIDATION; METAL NANOPARTICLES; PLATINUM CATALYSTS; MESOPOROUS SILICA; CARBON-MONOXIDE; AU CLUSTERS; SIZE; REACTIVITY; SURFACES; ADSORPTION AB An accurate description of metal nanoparticle (NP)support interactions is required for designing and optimizing NP catalytic systems because NPsupport interactions may significantly impact NP stability and properties, such as catalytic activity. The ability to calculate NP interactions with amorphous supports, which are commonly used in industrial practice, is hampered because of a general lack of accurate atomically detailed model structures of amorphous surfaces. We have systematically studied relaxation processes of Pt13 NPs on amorphous silica using recently developed realistic model amorphous silica surfaces. We have modeled the NP relaxation process in multiple steps: hard-sphere interactions were first used to generate initial placement of NPs on amorphous surfaces, then Ptsilica bonds were allowed to form, and finally both the NP and substrate were relaxed with density functional theory calculations. We find that the amorphous silica surface significantly impacts the morphology and electronic structure of the Pt clusters. Both NP energetics and charge transfer from NP to the support depend linearly on the number of Ptsilica bonds. Moreover, we find that the number of Ptsilica bonds is determined by the silica silanol number, which is a function of the silica pretreatment temperature. We predict that catalyst stability and electronic charge can be tuned via the pretreatment temperature of the support materials. The extent of support effects suggests that experiments aiming to measure the intrinsic catalytic properties of very small NPs on amorphous supports will fail because the measurable catalytic properties will depend critically on metalsupport interactions. The magnitude of support effects highlights the need for explicitly including amorphous supports in atomistic studies. C1 [Ewing, Christopher S.; Martin, Kaitlin R.; Weiss, Elliott M.; Veser, Goetz; McCarthy, Joseph J.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15206 USA. [Ewing, Christopher S.; Veser, Goetz] Univ Pittsburgh, Mascaro Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA. [Hartmann, Michael J.; Musto, Allison M.; Padinjarekutt, Surya J.; Lambrecht, Daniel S.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15206 USA. [Veser, Goetz; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Lambrecht, DS (reprint author), Univ Pittsburgh, Dept Chem, 219 Parkman Ave, Pittsburgh, PA 15206 USA. EM qclab@pitt.edu RI Johnson, Karl/E-9733-2013; OI Johnson, Karl/0000-0002-3608-8003; McCarthy, Joseph/0000-0002-2841-3128 FU Department of Education GAANN program [P200A100087]; Mascaro Center for Sustainable Innovation at the University of Pittsburgh; National Science Foundation [TG-CHE140046, ACI-1053575]; Central Research Development Fund (CRDF) at the University of Pittsburgh; Arts & Sciences Undergraduate Research award from the University of Pittsburgh FX This work was supported by the Department of Education GAANN program (Grant P200A100087) and the Mascaro Center for Sustainable Innovation at the University of Pittsburgh. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), Grant TG-CHE140046, which is supported by National Science Foundation Grant ACI-1053575. D.S.L. acknowledges financial support by the Central Research Development Fund (CRDF) at the University of Pittsburgh. Computational resources at the University of Pittsburgh's Center for Simulation and Modeling are also acknowledged. S.J.P. acknowledges support from an Arts & Sciences Undergraduate Research award from the University of Pittsburgh. NR 54 TC 8 Z9 9 U1 5 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2503 EP 2512 DI 10.1021/jp5105104 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400030 ER PT J AU Luo, S Nguyen-Phan, TD Johnston-Peck, AC Barrio, L Sallis, S Arena, DA Kundu, S Xu, WQ Piper, LFJ Stach, EA Polyansky, DE Fujita, E Rodriguez, JA Senanayake, SD AF Luo, Si Thuy-Duong Nguyen-Phan Johnston-Peck, Aaron C. Barrio, Laura Sallis, Shawn Arena, Dario A. Kundu, Shankhamala Xu, Wenqian Piper, Louis F. J. Stach, Eric A. Polyansky, Dmitry E. Fujita, Etsuko Rodriguez, Jose A. Senanayake, Sanjaya D. TI Hierarchical Heterogeneity at the CeOx-TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CEO2-TIO2 MIXED OXIDES; WET AIR OXIDATION; VISIBLE-LIGHT; MODIFIED TIO2; THIN-FILMS; CATALYSTS; CERIA; TITANIA; SURFACE; SPECTROSCOPY AB Mixed oxide interfaces are critical for delivering active components of demanding catalytic processes such as the photocatalytic splitting of water. We have studied CeOxTiO(2) catalysts with low ceria loadings of 1, 3, and 6 wt % that were prepared with wet impregnation methods to favor a strong interaction between CeOx and TiO2. In these materials the interfaces between CeOxTiO(2) have been sequentially loaded (1%, 3%, and 6%), with and without Pt (0.5 wt %). The structure and properties of the catalysts were characterized using several X-ray and electron based techniques including XRD, XPS, UPS, NEXAFS, UVvis, and HR-STEM/STEM-EELS to unravel the local morphology, bulk structure, surface states, and electronic structure. The combination of all these techniques allows us to analyze in a systematic way the complete structural and electronic properties that prevail at the CeOxTiO(2) interface. Fluorite structured nanocrystallites of ceria on anatase-structured titania were identified by both XRD and NEXAFS. A sequential increase of the CeOx loading led to the formation of clusters, then plates, and finally nanoparticles in a hierarchical manner on the TiO2 support. The electronic structures of these catalysts indicate that the interaction between TiO2 and CeO2 is closely related to the local morphology of nanostructured CeO2. Ce3+ cations were detected at the surface of CeO2 and at the interface of the two oxides. In addition, the titania is perturbed by the interaction with ceria and also with Pt. The photocatalytic activity for the splitting of H2O using UV light was measured for these materials and correlated with our understanding of the electronic and structural properties. Optimal catalytic performance and photoresponse results were found for the 1 wt % CeOxTiO(2) catalyst where low dimensional geometry of the ceria provided ideal electronic and geometrical properties. The structural and electronic properties of the interface were critical for the photocatalytic performance of this mixed-oxide nanocatalyst system. C1 [Luo, Si; Thuy-Duong Nguyen-Phan; Kundu, Shankhamala; Xu, Wenqian; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, Jose A.; Senanayake, Sanjaya D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Johnston-Peck, Aaron C.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Arena, Dario A.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Barrio, Laura] CSIC, Inst Catalisis & Petroleoquim Cantoblanco, E-28049 Madrid, Spain. [Luo, Si; Rodriguez, Jose A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11790 USA. [Sallis, Shawn; Piper, Louis F. J.] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. RP Senanayake, SD (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ssenanay@bnl.gov RI Stach, Eric/D-8545-2011; Polyansky, Dmitry/C-1993-2009; Nguyen Phan, Thuy Duong/C-8751-2014; Piper, Louis/C-2960-2011; Senanayake, Sanjaya/D-4769-2009 OI Stach, Eric/0000-0002-3366-2153; Polyansky, Dmitry/0000-0002-0824-2296; Piper, Louis/0000-0002-3421-3210; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Catalysis Science Program [DE-SC0012704]; JAE-CSIC grant FX The research carried out in this manuscript was performed at Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under Contract DE-SC0012704. This work used resources of the National Synchrotron Light Source (NSLS) and the Center for Functional Nanomaterials (CFN), which are DOE Office of Science User Facilities. L.B. also acknowledges financial support from the JAE-CSIC grant program. NR 61 TC 14 Z9 14 U1 7 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2669 EP 2679 DI 10.1021/jp511986n PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400048 ER PT J AU Doughty, B Ma, YZ Shaw, RW AF Doughty, Benjamin Ma, Ying-Zhong Shaw, Robert W. TI Probing Interfacial Electronic States in CdSe Quantum Dots Using Second Harmonic Generation Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYPER-RAYLEIGH-SCATTERING; NONLINEAR-OPTICAL PROPERTIES; EXCITON RELAXATION DYNAMICS; SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; MOLECULAR-ORIENTATION; AUGER RECOMBINATION; SURFACE OXIDATION; SIZE DEPENDENCE; FINE-STRUCTURE AB Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting, and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial-based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 +/- 6 nm, which coincides with transitions to the 2S(1/2) 1S(e) state, and a much more pronounced band at 423 +/- 4 nm arising from electronic transitions to the 1P(3/2) 1P(e) state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P(3/2) 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs. C1 [Doughty, Benjamin; Ma, Ying-Zhong; Shaw, Robert W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Doughty, B (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM doughtybl@ornl.gov RI Ma, Yingzhong/L-6261-2016; Doughty, Benjamin /M-5704-2016 OI Ma, Yingzhong/0000-0002-8154-1006; Doughty, Benjamin /0000-0001-6429-9329 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX The authors acknowledge Drs. Daniel A. Lutterman and Jagjit Nanda at Oak Ridge National Laboratory for use of their UV-vis spectrometer and fluorometer, respectively. B.D.'s research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Work by Y.-Z.M. and R.W.S. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 97 TC 5 Z9 5 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2752 EP 2760 DI 10.1021/jp510357p PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400056 ER PT J AU Egan, GC LaGrange, T Zachariah, MR AF Egan, Garth C. LaGrange, Thomas Zachariah, Michael R. TI Time-Resolved Nanosecond Imaging of Nanoscale Condensed Phase Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; MASS-SPECTROMETRY; OXYGEN RELEASE; METAL-OXIDES; COMBUSTION; NANOTHERMITES; NANOALUMINUM; THERMITES; MECHANISM; PRESSURE AB The reaction between metallic fuel and oxygen carriers produced by the laser heating of aluminum and copper oxide (CuO) nanoparticles (NPs) was investigated (NPs) using movie mode dynamic transmission electron microscopy (MM-DTEM), which enables multiframe imaging with nanometer spatial and nanosecond temporal resolution. Nanothermite materials heated in situ at similar to 1011 K/s showed significant morphological changes on time scales of 1-5 mu s. The resulting structures were typically phase-separated into adjoining spheroids. Further analysis with energy dispersive spectroscopy (EDS) and selected area electron diffraction (SAED) was used to determine the extent of reaction. Bulk scale reaction experiments using temperature jump wire heating (similar to 105K/s) revealed that both the reaction products and general processes were comparable to the reactions driven by the DTEM laser heating. These results indicate that condensed phase and interfacial reactions are fast and dominant mechanisms in nanothermite combustion. C1 [Egan, Garth C.; Zachariah, Michael R.] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Egan, Garth C.; Zachariah, Michael R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [LaGrange, Thomas] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Zachariah, MR (reprint author), Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. EM mrz@umd.edu FU Army Research Office; Defense Threat Reduction Agency; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under FWP [SCW0979]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Maryland NanoCenter, NispLab FX Work conducted by M.R.Z and G.C.E has been supported by the Army Research Office and the Defense Threat Reduction Agency. DTEM Research was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under FWP# SCW0979, and the work conducted at LLNL was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge the support of the Maryland NanoCenter and its NispLab. NR 30 TC 9 Z9 9 U1 4 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2792 EP 2797 DI 10.1021/jp5084746 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400061 ER PT J AU Chen, H Golder, MR Wang, F Doorn, SK Jasti, R Tretiak, S Swan, AK AF Chen, Hang Golder, Matthew R. Wang, Feng Doorn, Stephen K. Jasti, Ramesh Tretiak, Sergei Swan, Anna K. TI Raman-Active Modes of Even-Numbered Cycloparaphenylenes: Comparisons between Experiments and Density Functional Theory (DFT) Calculations with Group Theory Arguments SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON NANOTUBES; CRYSTAL-STRUCTURE; VIBRATIONAL-MODES; FORCE-FIELDS; SPECTROSCOPY; GRAPHENE; CHIRALITY; GRAPHITE; GROWTH AB [6]-, [8]-, [10]-, and [12]cycloparaphenylenes (CPPs), the smallest even-numbered carbon nanohoops synthesized to date, are probed by Raman spectroscopy. For the highly symmetric even [n]CPPs, group theory predicts that there are 133 Raman-active modes in total for n >= 8, 73 for [6]CPP, and 100 for [4]CPP. The Raman-active modes of these even-numbered CPPs are identified by comparing experimental results with theoretical Raman spectra calculated using density functional theory (DFT). Taking advantage of the symmetry arguments in these symmetric molecules allows the assignment of the observed Raman peaks, as well as the identification of their dependence on the sizes of the CPPs C1 [Chen, Hang; Swan, Anna K.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Chen, Hang; Swan, Anna K.] Boston Univ, Photon Ctr, Boston, MA 02215 USA. [Golder, Matthew R.; Jasti, Ramesh] Boston Univ, Dept Chem, Boston, MA 02215 USA. [Wang, Feng] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Doorn, Stephen K.; Tretiak, Sergei] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Chen, H (reprint author), Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. EM chenhang@bu.edu; swan@bu.edu RI Wang, Feng/J-8583-2014; Tretiak, Sergei/B-5556-2009 OI Wang, Feng/0000-0002-2740-3534; Tretiak, Sergei/0000-0001-5547-3647 FU Boston University College of Engineering; National Science Foundation [CHE-1255219]; Vertex Pharmaceuticals; Arkansas Biosciences Institute; LANL LDRD program FX H.C. and A.K.S. acknowledge support from Boston University College of Engineering. M.R.G. and R.J acknowledge the National Science Foundation (CHE-1255219), and M.R.G. thanks Vertex Pharmaceuticals for a graduate research fellowship. F.W. acknowledges support from the Arkansas Biosciences Institute. S.K.D. and S.T. acknowledge partial support of the LANL LDRD program. This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. NR 38 TC 9 Z9 9 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 5 PY 2015 VL 119 IS 5 BP 2879 EP 2887 DI 10.1021/jp5117195 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA7ZN UT WOS:000349136400072 ER PT J AU Stoerzinger, KA Choi, WS Jeen, H Lee, HN Shao-Horn, Y AF Stoerzinger, Kelsey A. Choi, Woo Seok Jeen, Hyoungjeen Lee, Ho Nyung Shao-Horn, Yang TI Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID REGENERATIVE FUEL-CELL; METAL-AIR BATTERIES; SPIN-STATE; DESIGN PRINCIPLES; OXIDE CATALYSTS; REDUCTION; EVOLUTION; SURFACES; NANOSCALE; FERROMAGNETISM AB The slow kinetics of the oxygen reduction and evolution reactions (ORR, OER) hinder energy conversion and storage in alkaline fuel cells and electrolyzers employing abundant transition metal oxide catalysts. Systematic studies linking material properties to catalytic activity are lacking, in part due to the heterogeneous nature of powder-based electrodes. We demonstrate, for the first time, that epitaxial strain can tune the activity of oxygen electrocatalysis in alkaline solutions, focusing on the model chemistry of LaCoO3, where moderate tensile strain can further induce changes in the electronic structure leading to increased activity. The resultant decrease in charge transfer resistance to the electrolyte reduces the overpotential in the ORR more notably than the OER and suggests a different dependence of the respective rate-limiting steps on electron transfer. This provides new insight into the reaction mechanism applicable to a range of perovskite chemistries, key to the rational design of highly active catalysts. C1 [Stoerzinger, Kelsey A.; Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Choi, Woo Seok] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Jeen, Hyoungjeen] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Shao-Horn, Yang] MIT, Mech Engn Dept, Cambridge, MA 02139 USA. RP Stoerzinger, KA (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM kastoerz@mit.edu; shaohorn@mit.edu RI Choi, Woo Seok/G-8783-2014; Lee, Ho Nyung/K-2820-2012; OI Lee, Ho Nyung/0000-0002-2180-3975; Stoerzinger, Kelsey/0000-0002-3431-8290 FU MRSEC Program of the National Science Foundation [DMR-0819762]; Skoltech-MIT Center for Electrochemical Energy; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation [DGE-1122374]; National Research Foundation of Korea (NRF) - Korean government (MSIP) [NRF-2014R1A2A2A01006478] FX This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0819762 and the Skoltech-MIT Center for Electrochemical Energy. The film growth and structural characterization at ORNL were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. K.A.S. was supported by the National Science Foundation Graduate Research Fellowship under Grant no. DGE-1122374. W.S.C. was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (NRF-2014R1A2A2A01006478). We thank Wesley T. Hong for helpful discussion and comments. NR 51 TC 14 Z9 14 U1 18 U2 155 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 5 PY 2015 VL 6 IS 3 BP 487 EP 492 DI 10.1021/jz502692a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA7ZX UT WOS:000349137400031 PM 26261968 ER PT J AU Li, YB Cooper, JK Buonsanti, R Giannini, C Liu, Y Toma, FM Sharp, ID AF Li, Yanbo Cooper, Jason K. Buonsanti, Raffaella Giannini, Cinzia Liu, Yi Toma, Francesca M. Sharp, Ian D. TI Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; EFFICIENT; CHLORIDE; PERFORMANCE; DEPOSITION; ABSORBER; LIGHT; CRYSTALLIZATION; HYSTERESIS; EMERGENCE AB A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material. C1 [Li, Yanbo; Cooper, Jason K.; Buonsanti, Raffaella; Toma, Francesca M.; Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Li, Yanbo; Cooper, Jason K.; Buonsanti, Raffaella] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Giannini, Cinzia] CNR, Inst Crystallog, I-70126 Bari, Italy. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Toma, Francesca M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Toma, FM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM fmtoma@lbl.gov; idsharp@lbl.gov RI Li, Yanbo/A-3461-2009; Liu, yi/A-3384-2008; Sharp, Ian/I-6163-2015; Foundry, Molecular/G-9968-2014 OI Li, Yanbo/0000-0002-3017-762X; Liu, yi/0000-0002-3954-6102; Sharp, Ian/0000-0001-5238-7487; FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-05CH11231] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Photovoltaic characterization was performed at the Molecular Foundry, which is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division, under Contract No. DE-AC02-05CH11231. We gratefully acknowledge Dan Guevarra and Joel A. Haber of the Joint Center for Artificial Photosynthesis, California Institute of Technology, for providing elemental analysis of thin film samples by X-ray fluorescence spectroscopy, and Teresa L. Chen from the Molecular Foundry for help with PV measurements. NR 42 TC 50 Z9 50 U1 14 U2 165 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 5 PY 2015 VL 6 IS 3 BP 493 EP 499 DI 10.1021/jz502720a PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA7ZX UT WOS:000349137400032 PM 26261969 ER PT J AU Wilson, RC Tambe, A Kidwell, MA Noland, CL Schneider, CP Doudna, JA AF Wilson, Ross C. Tambe, Akshay Kidwell, Mary Anne Noland, Cameron L. Schneider, Catherine P. Doudna, Jennifer A. TI Dicer-TRBP Complex Formation Ensures Accurate Mammalian MicroRNA Biogenesis SO MOLECULAR CELL LA English DT Article ID BINDING PROTEINS TRBP; RNA RECOGNITION; PACT; CANCER; DOMAIN; ARGONAUTE2; EXPRESSION; ASYMMETRY; PATHWAYS; SEQUENCE AB RNA-mediated gene silencing in human cells requires the accurate generation of similar to 22 nt microRNAs (miRNAs) from double-stranded RNA substrates by the endonuclease Dicer. Although the phylogenetically conserved RNA-binding proteins TRBP and PACT are known to contribute to this process, their mode of Dicer binding and their genome-wide effects on miRNA processing have not been determined. We solved the crystal structure of the human Dicer-TRBP interface, revealing the structural basis of the interaction. Interface residues conserved between TRBP and PACT show that the proteins bind to Dicer in a similar manner and by mutual exclusion. Based on the structure, a catalytically active Dicer that cannot bind TRBP or PACT was designed and introduced into Dicer-deficient mammalian cells, revealing selective defects in guide strand selection. These results demonstrate the role of Dicer-associated RNA binding proteins in maintenance of gene silencing fidelity. C1 [Wilson, Ross C.; Tambe, Akshay; Kidwell, Mary Anne; Noland, Cameron L.; Schneider, Catherine P.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU NIH [GM073794, GM096689] FX We thank Doudna Lab members for helpful discussion, Lior Pachter for essential insights, Jamie Cate for critically reading the manuscript, Jeff Pelton for assistance with NMR, David King for providing mass spectrometry, the Lawrence Berkeley National Laboratory beam line staff, Ian MacRae for sharing of Dicer architecture coordinates, Eric Lai and Alexander Tarakhovsky for contributing the Dcr-/- MEF cell line, Chrysi Kanellopoulou for the kind gift of Dicer antibodies, Ann Fischer for assistance with cell culture, Minyong Chung at the Vincent J. Coates Genomics Sequencing Laboratory for providing sequencing, Kendall Condon and Megan Hochstrasser for technical assistance, Mary Matyskiela for providing reagents, and Amy Lee for providing reagents and discussion. This work was supported by NIH grants GM073794 and GM096689. NR 48 TC 32 Z9 32 U1 0 U2 21 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD FEB 5 PY 2015 VL 57 IS 3 BP 397 EP 407 DI 10.1016/j.molcel.2014.11.030 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CB3TD UT WOS:000349550700004 PM 25557550 ER PT J AU Muhs, M Hilal, T Mielke, T Skabkin, MA Sanbonmatsu, KY Pestova, TV Spahn, CMT AF Muhs, Margarita Hilal, Tarek Mielke, Thorsten Skabkin, Maxim A. Sanbonmatsu, Karissa Y. Pestova, Tatyana V. Spahn, Christian M. T. TI Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES SO MOLECULAR CELL LA English DT Article ID EUKARYOTIC TRANSLATION INITIATION; METHIONINE-INDEPENDENT INITIATION; AMINOACYL-TRANSFER-RNA; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; RELEASE FACTOR; ENTRY SITE; 70S RIBOSOME; STRUCTURE PREDICTION; VIRAL IRES AB The cricket paralysis virus (CrPV) uses an internal ribosomal entry site (IRES) to hijack the ribosome. In a remarkable RNA-based mechanism involving neither initiation factor nor initiator tRNA, the CrPV IRES jumpstarts translation in the elongation phase from the ribosomal A site. Here, we present cryoelectron microscopy (cryo-EM) maps of 80S, CrPV-STOP.eRF1.eRF3.GMPPNP and 80S. CrPV-STOP.eRF1 complexes, revealing a previously unseen binding state of the IRES and directly rationalizing that an eEF2-dependent translocation of the IRES is required to allow the first A-site occupation. During this unusual translocation event, the IRES undergoes a pronounced conformational change to a more stretched conformation. At the same time, our structural analysis provides information about the binding modes of eRF1.eRF3.GMPPNP and eRF1 in a minimal system. It shows that neither eRF3 nor ABCE1 are required for the active conformation of eRF1 at the intersection between eukaryotic termination and recycling. C1 [Muhs, Margarita; Hilal, Tarek; Mielke, Thorsten; Spahn, Christian M. T.] Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany. [Mielke, Thorsten] Max Planck Inst Mol Genet, UltraStrukturNetzwerk, D-14195 Berlin, Germany. [Skabkin, Maxim A.; Pestova, Tatyana V.] Suny Downstate Med Ctr, Dept Cell Biol, Brooklyn, NY 11203 USA. [Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Sanbonmatsu, Karissa Y.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Spahn, CMT (reprint author), Charite, Inst Med Phys & Biophys, Charitepl 1, D-10117 Berlin, Germany. EM christian.spahn@charite.de FU Senatsverwaltung fur Wissenschaft; Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum); HFSP grant [RGP0062/2012]; NIH [GM80623] FX We thank L. Yu. Frolova for eRF1 and eRF3 expression vectors and E. Alkalaeva for constructing the transcription vector for CrPV-STOP mRNA. This work was supported by Senatsverwaltung fur Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum), HFSP grant RGP0062/2012 to C. M. T. S, T. V. P., and K. S., and NIH grant GM80623 to T.V.P. NR 58 TC 22 Z9 22 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD FEB 5 PY 2015 VL 57 IS 3 BP 422 EP 432 DI 10.1016/j.molcel.2014.12.016 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CB3TD UT WOS:000349550700006 PM 25601755 ER PT J AU Xie, J McCellan, M Sun, R Kohale, SC Govind, N Hase, WL AF Xie, Jing McCellan, Miranda Sun, Rui Kohale, Swapnil C. Govind, Niranjan Hase, William L. TI Direct Dynamics Simulation of Dissociation of the [CH3--I--OH](-) Ion-Molecule Complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EXCHANGE-CORRELATION FUNCTIONALS; ELECTRONIC-STRUCTURE THEORY; GAUSSIAN-BASIS SETS; SYMPLECTIC INTEGRATION; ATOMISTIC MECHANISMS; TEMPERATURE; HYDROGEN; SYSTEMS; OH AB Direct dynamics simulations were used to study dissociation of the [CH3--I--OH](-) complex ion, which was observed in a previous study of the OH- + CH3I gas phase reaction ( J. Phys. Chem. A 2013 , 117 , 7162 ). Restricted B97-1 simulations were performed to study dissociation at 65, 75, and 100 kcal/mol and the [CH3--I--OH](-) ion dissociated exponentially, in accord with RRKM theory. For these energies the major dissociation products are CH3I + OH-, CH2I- + H2O, and CH3OH + I-. Unrestricted B97-1 and restricted and unrestricted CAM-B3LYP simulations were also performed at 100 kcal/mol to compare with the restricted B97-1 results. The {CH3I + OH-}:{CH2I- + H2O}:{CH3OH + I-} product ratio is 0.72:0.15:0.13, 0.81:0.05:0.14, 0.71:0.19:0.10, and 0.83:0.13:0.04 for the restricted B97-1, unrestricted B97-1, restricted CAM-B3LYP, and unrestricted CAM-B3LYP simulations, respectively. Other product channels found are CH2 + I- + H2O, CH2 + I-(H2O), CH4 + IO-, CH3- + IOH, and CH3 + IOH-. The CH3- + IOH singlet products are only given by the restricted B97-1 simulation and the lower energy CH3 + IOH- doublet products are only formed by the unrestricted B97-1 simulation. Also studied were the direct and indirect atomic-level mechanisms for forming CH3I + OH-, CH2I- + H2O, and CH3OH + I-. The majority of CH3I + OH- were formed through a direct mechanism. For both CH2I- + H2O and CH3OH + I-, the direct mechanism is overall more important than the indirect mechanisms, with the roundabout like mechanism the most important indirect mechanism at high excitation energies. Mechanism comparisons between the B97-1 and CAM-B3LYP simulations showed that formation of the CH3OH---I- complex is favored for the B97-1 simulations, whereas formation of the HO----HCH2I complex is favored for the CAM-B3LYP simulations. The unrestricted simulations give a higher percentage of indirect mechanisms than the restricted simulations. The possible role of the self-interaction error in the simulations is also discussed. The work presented here gives a detailed picture of the [CH3--I--OH](-) dissociation dynamics and is very important for unraveling the role of [CH3--I--OH](-) in the dynamics of the OH-(H2O)(n=1,2) + CH3I reactions. C1 [Xie, Jing; McCellan, Miranda; Sun, Rui; Kohale, Swapnil C.; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [McCellan, Miranda] Sch Talented & Gifted, Dallas, TX 75203 USA. [Govind, Niranjan] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hase, WL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM bill.hase@ttu.edu FU Robert A. Welch Foundation [D-0005]; Welch Summer Scholar Program; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-76RL01830] FX The direct dynamics simulations reported here are based upon work supported by the Robert A. Welch Foundation under Grant No. D-0005. The simulations were performed on the Chemdynm cluster of the Hase research group. The authors acknowledge the Welch Summer Scholar Program which supported the summer research of Miranda McClellan. The authors also acknowledge important collaborations with the Roland Wester and Al Viggiano research groups regarding SN2 reaction dynamics. This work was done in part using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830. NR 36 TC 4 Z9 4 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 5 PY 2015 VL 119 IS 5 BP 817 EP 825 DI 10.1021/jp511898y PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CA7ZP UT WOS:000349136600001 PM 25574690 ER PT J AU Bradbury, A Pluckthun, A AF Bradbury, Andrew Plueckthun, Andreas TI Standardize antibodies used in research SO NATURE LA English DT Editorial Material ID REPRODUCIBILITY; PROTEINS C1 [Bradbury, Andrew] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87454 USA. [Plueckthun, Andreas] Univ Zurich, Dept Biochem, CH-8006 Zurich, Switzerland. RP Bradbury, A (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87454 USA. EM amb@lanl.gov RI Chalmers, Andrew/D-4103-2009; OI Chalmers, Andrew/0000-0003-4182-6717; Pluckthun, Andreas/0000-0003-4191-5306; Bradbury, Andrew/0000-0002-5567-8172 NR 10 TC 118 Z9 118 U1 5 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 5 PY 2015 VL 518 IS 7537 BP 27 EP 29 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7LE UT WOS:000349098000013 PM 25652980 ER PT J AU Long, JCS Loy, F Morgan, MG AF Long, Jane C. S. Loy, Frank Morgan, M. Granger TI Start research on climate engineering SO NATURE LA English DT Editorial Material C1 [Long, Jane C. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Loy, Frank] State Global Affairs, Columbus, OH USA. [Morgan, M. Granger] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Long, JCS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM janecslong@gmail.com NR 6 TC 9 Z9 9 U1 2 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 5 PY 2015 VL 518 IS 7537 BP 29 EP 31 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7LE UT WOS:000349098000014 PM 25652981 ER PT J AU Yue, GQ Zhang, Y Sun, Y Shen, B Dong, F Wang, ZY Zhang, RJ Zheng, YX Kramer, MJ Wang, SY Wang, CZ Ho, KM Chen, LY AF Yue, G. Q. Zhang, Y. Sun, Y. Shen, B. Dong, F. Wang, Z. Y. Zhang, R. J. Zheng, Y. X. Kramer, M. J. Wang, S. Y. Wang, C. Z. Ho, K. M. Chen, L. Y. TI Local structure order in Pd78Cu6Si16 liquid SO SCIENTIFIC REPORTS LA English DT Article ID PD-CU-SI; MOLECULAR-DYNAMICS SIMULATION; AUGMENTED-WAVE METHOD; BULK METALLIC-GLASS; MEDIUM-RANGE ORDER; ALLOY THIN-FILMS; TEMPERATURE; DIFFUSION AB The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction andab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motif is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability. C1 [Yue, G. Q.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Chen, L. Y.] Fudan Univ, Dept Opt Sci & Engn, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China. [Yue, G. Q.; Zhang, Y.; Sun, Y.; Kramer, M. J.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Yue, G. Q.; Zhang, Y.; Sun, Y.; Kramer, M. J.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, S. Y.] Key Lab Informat Sci Elect Waves MoE, Shanghai 200433, Peoples R China. RP Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China. EM songyouwang@fudan.edu.cn; wangcz@ameslab.gov RI Wang, Songyou/H-4529-2011; Zhang, Rong-jun/B-1436-2012 OI Wang, Songyou/0000-0002-4249-3427; FU NSF of China [11374055, 10974029]; National Basic Research Program of China [2010CB933703, 2012CB934303]; Fudan High-end Computing Center; US Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering; grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA [DE-AC02-07CH11358]; 6-ID-D sector of the Advanced Photon Source, Argonne National Laboratory [DE-AC02-06CH11357] FX The work at Fudan university was supported by the NSF of China (Grant Nos. 11374055 and 10974029), National Basic Research Program of China (Nos. 2010CB933703 and 2012CB934303), and the Fudan High-end Computing Center. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. The high-energy X-ray experiments were performed at the 6-ID-D sector of the Advanced Photon Source, Argonne National Laboratory, under Grant No. DE-AC02-06CH11357. NR 34 TC 5 Z9 5 U1 11 U2 63 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 5 PY 2015 VL 5 AR 8277 DI 10.1038/srep08277 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA3WA UT WOS:000348833600006 PM 25652079 ER PT J AU Geist, D Gammer, C Rentenberger, C Karnthaler, HP AF Geist, D. Gammer, C. Rentenberger, C. Karnthaler, H. P. TI Sessile dislocations by reactions in NiAl severely deformed at room temperature SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE High pressure torsion; B2 intermetallic compound; Transmission electron microscopy; 3D dislocation networks; Deformation-induced embrittlement ID SEVERE PLASTIC-DEFORMATION; HIGH-PRESSURE TORSION; FAULT ENERGY ALLOY; MECHANICAL-PROPERTIES; SINGLE-CRYSTALS; ELECTRON-MICROSCOPY; TENSILE PROPERTIES; GRAIN-REFINEMENT; DUCTILITY; NANOCRYSTALLINE AB B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a < 1 0 0 > carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a < 1 1 0 > dislocations by dislocation reactions; the a < 1 1 0 > dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a < 1 1 0 > dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.] Univ Vienna, Fac Phys, Phys Nanostruct Mat, A-1090 Vienna, Austria. [Gammer, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Rentenberger, C (reprint author), Univ Vienna, Fac Phys, Phys Nanostruct Mat, Waehringer Guertel 18, A-1090 Vienna, Austria. EM christian.rentenberger@univie.ac.at OI Rentenberger, Christian/0000-0002-3385-8850; Gammer, Christoph/0000-0003-1917-4978 FU Faculty Center for Nanostructure Research, University of Vienna; Austrian Science Fund (FWF) [P22440, J3397] FX The authors would like to thank Dr. Sergiy Divinski for the provision of NiAl samples. Support by the Faculty Center for Nanostructure Research, University of Vienna and financial support by the Austrian Science Fund (FWF): [P22440, J3397] are acknowledged. NR 47 TC 1 Z9 1 U1 3 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 5 PY 2015 VL 621 BP 371 EP 377 DI 10.1016/j.jallcom.2014.09.226 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AU2BU UT WOS:000345421900057 ER PT J AU Pathak, AK Gschneidner, KA Pecharsky, VK AF Pathak, Arjun K. Gschneidner, K. A. Pecharsky, V. K. TI Negative to positive magnetoresistance and magnetocaloric effect in Pr0.6Er0.4Al2 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth; Dialuminides; Magnetocaloric; Magnetoresistance AB We report on the magnetic, magnetocaloric and magnetotransport properties of Pr0.6Er0.4Al2. The title compound exhibits a large positive magnetoresistance (MR) for H >= 40 kOe and a small but non negligible negative MR for H <= 30 kOe. The maximum positive MR reaches 13% at H = 80 kOe. The magnetic entropy and adiabatic temperature changes as functions of temperature each show two anomalies: a broad dome-like maximum below 20 K and a relatively sharp peak at higher temperature. Observed behaviors are unique among other binary and mixed lanthanide compounds. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pathak, Arjun K.; Gschneidner, K. A.; Pecharsky, V. K.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pathak, AK (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM pathak138@ameslab.gov FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract #DE-AC02-07CH11358. NR 25 TC 0 Z9 0 U1 2 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 5 PY 2015 VL 621 BP 411 EP 414 DI 10.1016/j.jallcom.2014.09.227 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AU2BU UT WOS:000345421900063 ER PT J AU Dwyer, DA AF Dwyer, D. A. TI Antineutrinos from nuclear reactors: recent oscillation measurements SO NEW JOURNAL OF PHYSICS LA English DT Article DE neutrinos; reactor; oscillation ID NEUTRON FISSION-PRODUCTS; ATMOSPHERIC NEUTRINOS; DOUBLE CHOOZ; THETA(13); SPECTRA; ENERGY; PU-239; SOLAR; MASS AB Nuclear reactors are the most intense man-made source of antineutrinos, providing a useful tool for the study of these particles. Oscillation due to the neutrino mixing angle theta(13) is revealed by the disappearance of reactor (nu) over bar (e) over similar to km distances. Use of additional identical detectors located near nuclear reactors reduce systematic uncertainties related to reactor (nu) over bar (e) emission and detector efficiency, significantly improving the sensitivity of oscillation measurements. The Double Chooz, RENO, and Daya Bay experiments set out in search of theta(13) using these techniques. All three experiments have recently observed reactor (nu) over bar (e) disappearance, and have estimated values for theta(13) of 9.3 degrees +/- 2.1 degrees, 9.2 degrees +/- 0.9 degrees, and 8.7 degrees +/- 0.4 degrees respectively. The energy-dependence of (nu) over bar (e) disappearance has also allowed measurement of the effective neutrino mass difference, \Delta m(ee)(2)\ approximate to \Delta m(31)(2)\. Comparison with \Delta m(mu mu)(2)\ approximate to \Delta m(32)(2)\ from accelerator nu(mu) measurements supports the three-flavor model of neutrino oscillation. The current generation of reactor (nu) over bar (e) experiments are expected to reach similar to 3% precision in both theta(13) and \Delta m(ee)(2)\. Precise knowledge of these parameters aids interpretation of planned nu(mu) measurements, and allows future experiments to probe the neutrino mass hierarchy and possible CP-violation in neutrino oscillation. Absolute measurements of the energy spectra of (nu) over bar (e) deviate from existing models of reactor emission, particularly in the range of 5-7 MeV. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dwyer, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dadwyer@lbl.gov FU DOE OHEP [DE-AC02-05CH11231] FX I would like to thank Cheng-Ju Lin, Herb Steiner, and Kam-Biu Luk for helpful comments during preparation of this manuscript. This work was supported under DOE OHEP DE-AC02-05CH11231. NR 71 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 4 PY 2015 VL 17 AR 025003 DI 10.1088/1367-2630/17/2/025003 PG 12 WC Physics, Multidisciplinary SC Physics GA CF9EE UT WOS:000352864900003 ER PT J AU Voon, LCLY Lopez-Bezanilla, A Wang, J Zhang, Y Willatzen, M AF Voon, L. C. Lew Yan Lopez-Bezanilla, A. Wang, J. Zhang, Y. Willatzen, M. TI Effective Hamiltonians for phosphorene and silicene SO NEW JOURNAL OF PHYSICS LA English DT Article DE silicene; phosphorene; two-dimensional material; k.p; method of invariant; group theory; band structure ID BLACK PHOSPHORUS; ELECTRONIC-PROPERTIES; STRAIN; MODULATION; TENSION AB We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (New J. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene. We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of the wave vector. We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k center dot p parameters. C1 [Voon, L. C. Lew Yan] Citadel, Sch Sci & Math, Charleston, SC 29409 USA. [Lopez-Bezanilla, A.] Argonne Natl Lab, Lomont, IL USA. [Wang, J.; Zhang, Y.] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. [Willatzen, M.] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark. RP Voon, LCLY (reprint author), Citadel, Sch Sci & Math, Charleston, SC 29409 USA. EM llewyanv@citadel.edu RI Lopez-Bezanilla, Alejandro/B-9125-2015 OI Lopez-Bezanilla, Alejandro/0000-0002-4142-2360 FU Traubert Chair; DOE-BES [DE-AC02-06CH11357]; Glue from DOE (FWP) [70081]; Bissell Distinguished Professorship FX LLYV acknowledges the support of the Traubert Chair. Work at Argonne is supported by DOE-BES under contract no. DE-AC02-06CH11357; ALB acknowledges Glue funding from DOE (FWP#70081). MW would like to thank The Citadel for travel support. YZ acknowledges the support of the Bissell Distinguished Professorship. NR 32 TC 16 Z9 16 U1 6 U2 47 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 4 PY 2015 VL 17 AR 025004 DI 10.1088/1367-2630/17/2/025004 PG 10 WC Physics, Multidisciplinary SC Physics GA CF9EE UT WOS:000352864900004 ER PT J AU Lv, DP Shao, YY Lozano, T Bennett, WD Graff, GL Polzin, B Zhang, JG Engelhard, MH Saenz, NT Henderson, WA Bhattacharya, P Liu, J Xiao, J AF Lv, Dongping Shao, Yuyan Lozano, Terence Bennett, Wendy D. Graff, Gordon L. Polzin, Bryant Zhang, Jiguang Engelhard, Mark H. Saenz, Natalio T. Henderson, Wesley A. Bhattacharya, Priyanka Liu, Jun Xiao, Jie TI Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes SO ADVANCED ENERGY MATERIALS LA English DT Article ID ENERGY-STORAGE; ANODES; ION; LI; SPECTROSCOPY; PERFORMANCE; CHALLENGES; ELECTRODES; DEPOSITION; CELLS AB In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes. C1 [Lv, Dongping; Shao, Yuyan; Lozano, Terence; Bennett, Wendy D.; Graff, Gordon L.; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie] Pacific NW Natl Lab, Energy & Environm Directorate, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. [Polzin, Bryant] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Xiao, J (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. EM Jie.Xiao@pnnl.gov RI Shao, Yuyan/A-9911-2008; OI Shao, Yuyan/0000-0001-5735-2670; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy's (DOE's) Advanced Research Projects Agency-Energy (ARPA-E) [DE-AR0000319]; DOE's Office of Biological and Environmental Research (BER); DOE [DE-AC05-76RLO1830] FX This work was fully supported by the U.S. Department of Energy's (DOE's) Advanced Research Projects Agency-Energy (ARPA-E) (Contract DE-AR0000319). The SEM and XPS characterization was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL)-a national scientific user facility located at PNNL, which is sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 23 TC 21 Z9 21 U1 32 U2 191 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB 4 PY 2015 VL 5 IS 3 AR 1400993 DI 10.1002/aenm.201400993 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CC7RH UT WOS:000350565400007 ER PT J AU Richter, LJ DeLongchamp, DM Bokel, FA Engmann, S Chou, KW Amassian, A Schaible, E Hexemer, A AF Richter, Lee J. DeLongchamp, Dean M. Bokel, Felicia A. Engmann, Sebastian Chou, Kang Wei Amassian, Aram Schaible, Eric Hexemer, Alexander TI In Situ Morphology Studies of the Mechanism for Solution Additive Effects on the Formation of Bulk Heterojunction Films SO ADVANCED ENERGY MATERIALS LA English DT Article ID ORGANIC SOLAR-CELLS; POLYMER/FULLERENE BLEND FILMS; POLYMER PHOTOVOLTAIC CELLS; STRUCTURAL EVOLUTION; CHARGE-TRANSPORT; FULLERENE BLENDS; POLY(3-HEXYLTHIOPHENE); MIXTURES; CRYSTALLIZATION; MISCIBILITY AB The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. C1 [Richter, Lee J.; DeLongchamp, Dean M.; Bokel, Felicia A.; Engmann, Sebastian] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Chou, Kang Wei; Amassian, Aram] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia. [Schaible, Eric; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Richter, LJ (reprint author), NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM lee.richter@nist.gov; dean.delongchamp@nist.gov RI Richter, Lee/N-7730-2016 OI Richter, Lee/0000-0002-9433-3724 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank Jacquline Johnson and Edwin Chan for assistance in the development of the remote dispense system. Beamline 7.3.3 of the Advanced Light Source is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 34 Z9 34 U1 12 U2 94 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB 4 PY 2015 VL 5 IS 3 AR 1400975 DI 10.1002/aenm.201400975 PG 11 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CC7RH UT WOS:000350565400004 ER PT J AU Reyes-Gil, KR Stephens, ZD Stavila, V Robinson, DB AF Reyes-Gil, Karla R. Stephens, Zachary D. Stavila, Vitalie Robinson, David B. TI Composite WO3/TiO2 Nanostructures for High Electrochromic Activity SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE electrochromism; reflectance devices; TiO2 nanotubes; WO3 nanostructures; Ti anodization; WO3 electrodepostion ID SENSITIZED SOLAR-CELLS; TIO2 NANOTUBE ARRAYS; WO3; DETACHMENT; FILMS; ELECTRODEPOSITION; GROWTH AB A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials. C1 [Reyes-Gil, Karla R.; Stavila, Vitalie; Robinson, David B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Stephens, Zachary D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reyes-Gil, KR (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM krreyes@sandia.gov FU Laboratory-Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors want to thanks Nancy Yang, Jeffery M. Chames and Ryan Nishimoto for the SEM and EDS data collection. This work was supported by the Laboratory-Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 18 Z9 19 U1 25 U2 181 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 4 PY 2015 VL 7 IS 4 BP 2202 EP 2213 DI 10.1021/am5050696 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CA7ZW UT WOS:000349137300011 PM 25562778 ER PT J AU Schrauben, JN Zhao, YX Mercado, C Dron, PI Ryerson, JL Michl, J Zhu, K Johnson, JC AF Schrauben, Joel N. Zhao, Yixin Mercado, Candy Dron, Paul I. Ryerson, Joseph L. Michl, Josef Zhu, Kai Johnson, Justin C. TI Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE photovoltaics; singlet fission; triplet; spectroscopy; charge transfer; photocurrent ID EXCITON-FISSION; THIN-FILMS; ELECTRON-TRANSFER; BLOCKING LAYERS; 1,3-DIPHENYLISOBENZOFURAN; RECOMBINATION; EFFICIENCY; KINETICS; PHOTOVOLTAICS; PHOTOPHYSICS AB Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of similar to 70% and a power conversion efficiency of similar to 1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 angstrom modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 1015 angstrom of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion. C1 [Schrauben, Joel N.; Zhao, Yixin; Mercado, Candy; Ryerson, Joseph L.; Zhu, Kai; Johnson, Justin C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mercado, Candy; Dron, Paul I.; Ryerson, Joseph L.; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Prague 16110, Czech Republic. RP Zhu, K (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM kai.zhu@nrel.gov; justin.johnson@nrel.gov RI Michl, Josef/G-9376-2014; Zhao, Yixin/D-2949-2012 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences; NREL [DE-AC36-08GO28308]; DOE [DE-SC0007004] FX This material is based on worked supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. J.N.S, J.L.R, Y.Z, K.Z., and J.C.J. acknowledge Contract DE-AC36-08GO28308 with NREL, and J.M. and P.I.D. acknowledge DOE Grant DE-SC0007004. NR 40 TC 9 Z9 9 U1 6 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 4 PY 2015 VL 7 IS 4 BP 2286 EP 2293 DI 10.1021/am506329v PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CA7ZW UT WOS:000349137300020 PM 25607825 ER PT J AU Wang, WW Wang, WY Li, H Lu, XY Chen, JH Kang, NG Zhang, QY Mays, J AF Wang, Wenwen Wang, Weiyu Li, Hui Lu, Xinyi Chen, Jihua Kang, Nam-Goo Zhang, Qiuyu Mays, Jimmy TI Synthesis and Characterization of Graft Copolymers Poly(isoprene-g-styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID REGULAR MULTIGRAFT COPOLYMERS; MACROMOLECULAR ARCHITECTURES; MICROPHASE SEPARATION; COMB POLYSTYRENES; POLYISOPRENE; CENTIPEDES; LATEX; HOMOPOLYMERIZATION; MACROMONOMERS; POLYBUTADIENE AB In this work, high molecular weight comb-shaped graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermal analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5-12 x 10 (5) g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt % polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. These materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers. C1 [Wang, Wenwen; Li, Hui; Zhang, Qiuyu] Northwestern Polytech Univ, Sch Sci, Key Lab Appl Phys & Chem Space, Minist Educ, Xian 710072, Peoples R China. [Wang, Weiyu; Lu, Xinyi; Kang, Nam-Goo; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhang, QY (reprint author), Northwestern Polytech Univ, Sch Sci, Key Lab Appl Phys & Chem Space, Minist Educ, Xian 710072, Peoples R China. EM qyzhang1803@gmail.com; jimmymays@utk.edu RI Chen, Jihua/F-1417-2011; Wang, Weiyu/A-6317-2016 OI Chen, Jihua/0000-0001-6879-5936; Wang, Weiyu/0000-0002-2914-1638 FU U.S. National Science Foundation; NSF Partnerships for Innovation, Building Innovation Capacity program [1237787]; U.S. Army Research Office [W911NF-11-1-0417]; Bill & Melinda Gates Foundation through Grand Challenges Explorations program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Natural Science Foundation of China [51433008]; Graduate School of Northwestern Polytechnical University FX We are grateful for financial support from the U.S. National Science Foundation, Award 1237787 from the NSF Partnerships for Innovation, Building Innovation Capacity program. Portions of this work were supported by the U.S. Army Research Office through Grant No. W911NF-11-1-0417 and by the Bill & Melinda Gates Foundation through their Grand Challenges Explorations program. The TEM work was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We also acknowledge the financial support from National Natural Science Foundation of China (No. 51433008) and Graduate School of Northwestern Polytechnical University. NR 40 TC 4 Z9 4 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 4 PY 2015 VL 54 IS 4 BP 1292 EP 1300 DI 10.1021/ie504457e PG 9 WC Engineering, Chemical SC Engineering GA CA8AN UT WOS:000349139000014 ER PT J AU Rangasamy, E Liu, ZC Gobet, M Pilar, K Sahu, G Zhou, W Wu, H Greenbaum, S Liang, CD AF Rangasamy, Ezhiylmurugan Liu, Zengcai Gobet, Mallory Pilar, Kartik Sahu, Gayatri Zhou, Wei Wu, Hui Greenbaum, Steve Liang, Chengdu TI An Iodide-Based Li7P2S8I Superionic Conductor SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GLASS-CERAMIC ELECTROLYTES; LITHIUM-ION BATTERIES; SOLID-STATE NMR; OVERCHARGE REACTION; LI2S-P2S5 GLASSES; LI+ MOBILITY; LI6PS5X AB In an example of stability from instability, a Li7P2S8I solid-state Li-ion conductor derived from beta-Li3PS4 and LiI demonstrates electrochemical stability up to 10 V vs Li/Li+. The oxidation instability of I is subverted via its incorporation into the coordinated structure. The inclusion of I also creates stability with the metallic Li anode while simultaneously enhancing the interfacial kinetics and ionic conductivity. Low-temperature membrane processability enables facile fabrication of dense membranes, making this conductor suitable for industrial adoption. C1 [Rangasamy, Ezhiylmurugan; Liu, Zengcai; Sahu, Gayatri; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gobet, Mallory; Pilar, Kartik; Greenbaum, Steve] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA. [Zhou, Wei; Wu, Hui] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhou, Wei; Wu, Hui] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Liang, CD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM liangcn@ornl.gov RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008; Gobet, Mallory/I-2498-2013 OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617; Gobet, Mallory/0000-0001-9735-0741 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE BES Division of Materials Chemistry [DE-SC0005029]; Oak Ridge National Laboratory by Division of Scientific User Facilities, U.S. DOE FX This work was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). The NMR measurements were supported by the DOE BES Division of Materials Chemistry under award DE-SC0005029.The synthesis and characterization of materials were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. DOE. NR 36 TC 33 Z9 33 U1 23 U2 183 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 4 PY 2015 VL 137 IS 4 BP 1384 EP 1387 DI 10.1021/ja508723m PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CA8AJ UT WOS:000349138600001 PM 25602621 ER PT J AU Weichman, ML Kim, JB DeVine, JA Levine, DS Neumark, DM AF Weichman, Marissa L. Kim, Jongjin B. DeVine, Jessalyn A. Levine, Daniel S. Neumark, Daniel M. TI Vibrational and Electronic Structure of the alpha- and beta-Naphthyl Radicals via Slow Photoelectron Velocity-Map Imaging SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIFFUSE INTERSTELLAR BANDS; BOND-DISSOCIATION ENERGIES; NAPHTHALENE DERIVATIVES; REACTION-MECHANISM; LARGE MOLECULES; NEGATIVE-IONS; SPECTROSCOPY; SPECTRA; FLAMES AB Slow photoelectron velocity-map imaging (SEVI) spectroscopy has been used to study the vibronic structure of gas-phase alpha- and beta-naphthyl radicals (C10H7). SEVI of cryogenically cooled anions yields spectra with <4 cm(-1) resolution, allowing for the observation and interpretation of congested vibrational structure. Isomer-specific photoelectron spectra of detachment to the radical ground electronic states show detailed structure, allowing assignment of vibrational fundamental frequencies. Transitions to the first excited states of both radical isomers are also observed; vibronic coupling and photodetachment threshold effects are considered to explain the structure of the excited bands. C1 [Weichman, Marissa L.; Kim, Jongjin B.; DeVine, Jessalyn A.; Levine, Daniel S.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Weichman, Marissa/0000-0002-2551-9146 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.L.W. and D.S.L. thank the National Science Foundation for graduate research fellowships. NR 41 TC 11 Z9 11 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 4 PY 2015 VL 137 IS 4 BP 1420 EP 1423 DI 10.1021/ja5124896 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CA8AJ UT WOS:000349138600010 PM 25602742 ER PT J AU Yang, WX Liu, XJ Yue, XY Jia, JB Guo, SJ AF Yang, Wenxiu Liu, Xiangjian Yue, Xiaoyu Jia, Jianbo Guo, Shaojun TI Bamboo-like Carbon Nanotube/Fe3C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COMPOSITE; ELECTROCATALYSIS; PERFORMANCE; NANOWIRES; GROWTH; IRON; PD AB The design of a new class of non-noble-metal catalysts with oxygen reduction reaction (ORR) activity superior to that of Pt is extremely important for future fuel cell devices. Here we demonstrate a one-pot, large-scale protocol for the controlled synthesis of new one-dimensional bamboo-like carbon nanotube/Fe3C nanoparticle hybrid nanoelectrocatalysts, which are directly prepared by annealing a mixture of PEG-PPG-PEG Pluronic P123, melamine, and Fe(NO3)(3) at 800 degrees C in N-2. The resulting hybrid electrocatalysts show very high ORR activity with a half-wave potential of 0.861 V (vs reversible hydrogen electrode) in 0.10 M KOH solution, 49 mV more positive than that of 20 wt% Pt/C catalyst. Furthermore, they exhibit good ORR activity in acidic media, with an onset potential comparable to that of the Pt/C catalyst. Most importantly, they show much higher stability and better methanol tolerance, with almost no ORR polarization curve shift and no change of the oxygen reduction peak in the cyclic voltammogram in the presence of 1.0 M methanol, than those of the commercial Pt/C catalyst in both alkaline and acidic solutions. This makes them one of the best non-noble-metal catalysts ever reported for ORR in both alkaline and acidic solutions. C1 [Yang, Wenxiu; Liu, Xiangjian; Yue, Xiaoyu; Jia, Jianbo] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China. [Yang, Wenxiu; Liu, Xiangjian; Yue, Xiaoyu] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jia, JB (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China. EM jbjia@ciac.ac.cn; sguo@lanl.gov RI Guo, Shaojun/A-8449-2011 OI Guo, Shaojun/0000-0002-5941-414X FU Ministry of Science and Technology of China [2013YQ170585] FX We acknowledge financial support from the Ministry of Science and Technology of China (No. 2013YQ170585). NR 19 TC 150 Z9 151 U1 106 U2 619 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 4 PY 2015 VL 137 IS 4 BP 1436 EP 1439 DI 10.1021/ja5129132 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CA8AJ UT WOS:000349138600014 PM 25607754 ER PT J AU Zhou, YN Sina, M Pereira, N Yu, XQ Amatucci, GG Yang, XQ Cosandey, F Nam, KW AF Zhou, Yong-Ning Sina, Mahsa Pereira, Nathalie Yu, Xiqian Amatucci, Glenn G. Yang, Xiao-Qing Cosandey, Frederic Nam, Kyung-Wan TI FeO0.7F1.3/C Nanocomposite as a High-Capacity Cathode Material for Sodium-Ion Batteries SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE sodium ion batteries; electrode material; energy storage; reaction mechanism ID METAL FLUORIDE NANOCOMPOSITES; LITHIUM BATTERIES; ELECTRODE MATERIALS; ELECTROCHEMICAL PROPERTIES; NA BATTERIES; LI BATTERIES; SPECTROSCOPY; NANOPARTICLES; OXYFLUORIDES; PEROVSKITE AB Searching high capacity cathode materials is one of the most important fields of the research and development of sodium-ion batteries (SIBs). Here, we report a FeO0.7F1.3/C nanocomposite synthesized via a solution process as a new cathode material for SIBs. This material exhibits a high initial discharge capacity of 496 mAh g(-1) in a sodium cell at 50 degrees C. From the 3(rd) to 50(th) cycle, the capacity fading is only 0.14% per cycle (from 388 mAh g(-1) at 3(rd) the cycle to 360 mAh g(-1) at the 50(th) cycle), demonstrating superior cyclability. A high energy density of 650 Wh kg(-1) is obtained at the material level. The reaction mechanism studies of FeO0.7F1.3/C with sodium show a hybridized mechanism of both intercalation and conversion reaction. C1 [Zhou, Yong-Ning; Yu, Xiqian; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Sina, Mahsa; Cosandey, Frederic] Rutgers State Univ, Piscataway, NJ 08854 USA. [Pereira, Nathalie; Amatucci, Glenn G.] Rutgers State Univ, ESRG, North Brunswick, NJ 08902 USA. [Nam, Kyung-Wan] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea. RP Zhou, YN (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM xyang@bnl.gov; cosandey@rci.rutgers.edu; knam@dongguk.edu RI Nam, Kyung-Wan/E-9063-2015; Yu, Xiqian/B-5574-2014 OI Nam, Kyung-Wan/0000-0001-6278-6369; Yu, Xiqian/0000-0001-8513-518X FU Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001294]; US Department of Energy, Office of Vehicle Technologies [DE-AC02-98CH10886]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-98CH10886]; Dongguk University FX The work was supported by the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract Number DE-SC0001294. Yong-Ning Zhou and Xiqian Yu were supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DE-AC02-98CH10886. The use of the National Synchrotron Light Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. K.W. Nam was supported by the Dongguk University Research Fund of 2014. NR 41 TC 13 Z9 13 U1 13 U2 126 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 4 PY 2015 VL 25 IS 5 BP 696 EP 703 DI 10.1002/adfm.201403241 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FA UT WOS:000349225400005 ER PT J AU Li, JX Chen, SQ Yang, HF Li, JJ Yu, P Cheng, H Gu, CZ Chen, HT Tian, JG AF Li, Jianxiong Chen, Shuqi Yang, Haifang Li, Junjie Yu, Ping Cheng, Hua Gu, Changzhi Chen, Hou-Tong Tian, Jianguo TI Simultaneous Control of Light Polarization and Phase Distributions Using Plasmonic Metasurfaces SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE metasurfaces; plasmonics; phase; polarization; radially polarized beams ID BROAD-BAND; DISCONTINUITIES; METAMATERIALS; MANIPULATION; PROPAGATION; REFLECTION; REFRACTION AB Harnessing light for modern photonic applications often involves the control and manipulation of light polarization and phase. Traditional methods require a combination of multiple discrete optical components, each of which contributes to a specific functionality. Here, plasmonic metasurfaces are proposed that accomplish the simultaneous manipulation of polarization and phase of the transmitted light. Arbitrary spatial field distribution of the optical phase and polarization direction can be obtained. The multifunctional metasurfaces are validated by demonstrating a broadband near-perfect anomalous refraction with controllable linear polarization through introducing a constant phase gradient along the interface. Furthermore, the power of the proposed metasurfaces is demonstrated by generating a radially polarized beam. The new degrees of freedom of metasurfaces facilitate arbitrary manipulation of light and will profoundly affect a wide range of photonic applications. C1 [Li, Jianxiong; Chen, Shuqi; Yu, Ping; Cheng, Hua; Tian, Jianguo] Nankai Univ, Sch Phys, Minist Educ, Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China. [Li, Jianxiong; Chen, Shuqi; Yu, Ping; Cheng, Hua; Tian, Jianguo] Nankai Univ, Teda Appl Phys Inst, Tianjin 300071, Peoples R China. [Yang, Haifang; Li, Junjie; Gu, Changzhi] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Chen, Hou-Tong] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, JX (reprint author), Nankai Univ, Sch Phys, Minist Educ, Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China. EM schen@nankai.edu.cn; jjtian@nankai.edu.cn RI Chen, Hou-Tong/C-6860-2009; Chen, Shuqi/N-3651-2013 OI Chen, Hou-Tong/0000-0003-2014-7571; FU National Basic Research Program (973 Program) of China [2012CB921900, 2009CB930502]; Chinese National Key Basic Research Special Fund [2011CB922003]; Natural Science Foundation of China [61378006, 11304163, 11174362, 91023041, 91323304, 61390503]; Program for New Century Excellent Talents in University [NCET-13-0294]; Knowledge Innovation Project of CAS [KJCX2-EW-W02]; Natural Science Foundation of Tianjin [13JCQNJC01900]; 111 project [B07013]; LANL LDRD program; Center for Integrated Nanotechnologies FX This work was supported by the National Basic Research Program (973 Program) of China (2012CB921900 and 2009CB930502), the Chinese National Key Basic Research Special Fund (2011CB922003), the Natural Science Foundation of China (61378006, 11304163, 11174362, 91023041, 91323304 and 61390503), the Program for New Century Excellent Talents in University (NCET-13-0294), the Knowledge Innovation Project of CAS (Grand No. KJCX2-EW-W02), the Natural Science Foundation of Tianjin (13JCQNJC01900), and the 111 project (B07013). H.T.C. acknowledges the partial support from the LANL LDRD program and the Center for Integrated Nanotechnologies. NR 29 TC 27 Z9 30 U1 9 U2 83 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 4 PY 2015 VL 25 IS 5 BP 704 EP 710 DI 10.1002/adfm.201403669 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FA UT WOS:000349225400006 ER PT J AU Qin, GK Glassman, MJ Lam, CN Chang, D Schaible, E Hexemer, A Olsen, BD AF Qin, Guokui Glassman, Matthew J. Lam, Christopher N. Chang, Dongsook Schaible, Eric Hexemer, Alexander Olsen, Bradley D. TI Topological Effects on Globular Protein-ELP Fusion Block Copolymer Self-Assembly SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE self-assembly; fusion proteins; mCherry-ELPs; nanostructure formation ID ELASTIN-LIKE POLYPEPTIDE; SECONDARY STRUCTURE ANALYSES; POLYMER DIBLOCK COPOLYMER; RECOMBINANT PROTEINS; CARBONIC-ANHYDRASE; IONIC LIQUID; BIOMATERIALS; PURIFICATION; HYDROGELS; BIOCONJUGATION AB Perfectly defined, monodisperse fusion protein block copolymers of a thermoresponsive coil-like protein, ELP, and a globular protein, mCherry, are demonstrated to act as fully biosynthetic analogues to protein-polymer conjugates that can self-assemble into biofunctional nanostructures such as hexagonal and lamellar phases in concentrated solutions. The phase behavior of two mCherry-ELP fusions, E-10-mCherry-E-10 and E-20-mCherry, is investigated to compare linear and bola fusion self-assembly both in diluted and concentrated aqueous solution. In dilute solution, the molecular topology impacts the stability of micelles formed above the thermal transition temperature of the ELP block, with the diblock forming micelles and the bola forming unstable aggregates. Despite the chemical similarity of the two protein blocks, the materials order into block copolymer-like nanostructures across a wide range of concentrations at 30 wt% and above, with the bola fusion having a lower order-disorder transition concentration than the diblock fusion. The topology of the molecule has a large impact on the type of nanostructure formed, with the two fusions forming phases in the opposite order as a function of temperature and concentration. This new system provides a rich landscape to explore the capabilities of fusion architecture to control supramolecular assemblies for bioactive materials. C1 [Qin, Guokui; Glassman, Matthew J.; Lam, Christopher N.; Chang, Dongsook; Olsen, Bradley D.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Schaible, Eric; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Qin, GK (reprint author), MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bdolsen@mit.edu RI Qin, Guokui/B-1520-2012; OI Qin, Guokui/0000-0002-2212-1597; Olsen, Bradley/0000-0002-7272-7140 FU National Science Foundation [DMR-1253306]; Department of Energy Office of Basic Energy Sciences [DE-SC0007106]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by National Science Foundation (award number DMR-1253306) and the Department of Energy Office of Basic Energy Sciences (award number DE-SC0007106). SANS experiments were performed at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The research conducted at ORNL's HFIR was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. SAXS experiments were performed at ALS Beamline 7.3.3 at Lawrence Berkeley National Laboratory and NSLS beamline X9 at Brookhaven National Laboratory. We thank Dr. Chenhui Zhu (ALS) for experimental assistance with SAXS. CD and DLS were collected from Biophysical Instrumentation Facility at MIT. We also thank Shengchang Tang for help with UV-Vis studies and Charlotte Stewart-Sloan for help with DSC experiments performed at the Institute for Soldier Nanotechnologies (ISN). NR 58 TC 8 Z9 8 U1 9 U2 68 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 4 PY 2015 VL 25 IS 5 BP 729 EP 738 DI 10.1002/adfm.201403453 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FA UT WOS:000349225400009 ER PT J AU Bocharova, V Agapov, AL Tselev, A Collins, L Kumar, R Berdzinski, S Strehmel, V Kisliuk, A Kravchenko, II Sumpter, BG Sokolov, AP Kalinin, SV Strelcov, E AF Bocharova, Vera Agapov, Alexander L. Tselev, Alexander Collins, Liam Kumar, Rajeev Berdzinski, Stefan Strehmel, Veronika Kisliuk, Alexander Kravchenko, Ivan I. Sumpter, Bobby G. Sokolov, Alexei P. Kalinin, Sergei V. Strelcov, Evgheni TI Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE ionic transport; nanofabrication; polymer softening; polymerized ionic liquids; scanning probe microscopy ID ATOMIC-FORCE MICROSCOPY; ELECTROSTATIC NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FILMS; NANOSTRUCTURES; WATER; CONDUCTIVITY; INSTABILITY AB Nanolithography has become a driving force in advancements of the modern day's electronics, allowing for miniaturization of devices and a steady increase of the calculation, power, and storage densities. Among various nanofabrication approaches, scanning probe techniques, including atomic force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. In this study, the potential of using the electric field localized at the apex of an AFM tip to induce and control changes in the mechanical properties of an ion containing polymera polymerized ionic liquid (PolyIL)on a very localized scale is explored. In particular, it is demonstrated that by means of AFM, one can form topographical features on the surface of PolyIL-based thin films with a significantly lower electric potential and power consumption as compared to nonconductive polymer materials. Furthermore, by tuning the applied voltage and ambient air humidity, control over dimensions of the formed structures is reproducibly achieved. C1 [Bocharova, Vera; Kisliuk, Alexander; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Agapov, Alexander L.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Tselev, Alexander; Kumar, Rajeev; Kravchenko, Ivan I.; Sumpter, Bobby G.; Kalinin, Sergei V.; Strelcov, Evgheni] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Collins, Liam] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Kumar, Rajeev; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Berdzinski, Stefan; Strehmel, Veronika] Hsch Niederrhein Univ Appl Sci, Dept Chem, D-47798 Krefeld, Germany. [Berdzinski, Stefan; Strehmel, Veronika] Hsch Niederrhein Univ Appl Sci, Inst Coatings & Surface Chem, D-47798 Krefeld, Germany. RP Bocharova, V (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bocharovav@ornl.gov RI Strelcov, Evgheni/H-1654-2013; Kravchenko, Ivan/K-3022-2015; Tselev, Alexander/L-8579-2015; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015; Collins, Liam/A-3833-2016; Kalinin, Sergei/I-9096-2012 OI Kravchenko, Ivan/0000-0003-4999-5822; Tselev, Alexander/0000-0002-0098-6696; Sumpter, Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488; Collins, Liam/0000-0003-4946-9195; Kalinin, Sergei/0000-0001-5354-6152 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), and Materials Sciences and Engineering Division; NSF [DMR-1104824]; Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy [CNMS2013-238] FX V.B., R.K., and B.G.S. would like to acknowledge sponsorship by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Work by A.K. and A.P.S. were supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), and Materials Sciences and Engineering Division. A.L.A. thanks the NSF Polymer program (DMR-1104824). This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy under user proposal No. CNMS2013-238. The authors would like to especially acknowledge Dr. Joshua R. Sangoro (University of Tennessee, USA) for providing a polymer sample for this study. NR 39 TC 6 Z9 6 U1 3 U2 72 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 4 PY 2015 VL 25 IS 5 BP 805 EP 811 DI 10.1002/adfm.201402852 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FA UT WOS:000349225400017 ER PT J AU Tunuguntla, RH Bangar, MA Kim, K Stroeve, P Grigoropoulos, C Ajo-Franklin, CM Noy, A AF Tunuguntla, Ramya H. Bangar, Mangesh A. Kim, Kyunghoon Stroeve, Pieter Grigoropoulos, Costas Ajo-Franklin, Caroline M. Noy, Aleksandr TI Bioelectronic Light-Gated Transistors with Biologically Tunable Performance SO ADVANCED MATERIALS LA English DT Article DE bioelectronics; silicon nanowire field-effect transistors (FETs); bacteriorhodopsin; biological regulation; ionophores ID DRIVEN PROTON PUMP; MEMBRANE-PROTEIN; BACTERIORHODOPSIN; LIPOSOMES; PERMEABILITY; PHOTOCYCLE; BIOSENSORS; MODEL AB Light-activated bioelectronic silicon nanowire transistor devices are made by fusing proteoliposomes containing a bacteriorhodopsin ( bR) proton pump onto the nanowire surface. Under green-light illumination, bR pumps protons toward the nanowire, and the pH gradient developed by the pump changes the transistor output. Furthermore, co-assembly of small biomolecules that alter the bilayer permeability to other ions can upregulate and downregulate the response of fieldeffect transistor devices. C1 [Tunuguntla, Ramya H.; Bangar, Mangesh A.; Kim, Kyunghoon; Noy, Aleksandr] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Tunuguntla, Ramya H.; Stroeve, Pieter] Univ Calif Davis, Mat Sci & Chem Engn Dept, Davis, CA 95616 USA. [Tunuguntla, Ramya H.; Bangar, Mangesh A.; Kim, Kyunghoon; Ajo-Franklin, Caroline M.; Noy, Aleksandr] Univ Calif Berkeley, Div Mat Sci, Mol Foundry, Berkeley, CA 94704 USA. [Kim, Kyunghoon; Grigoropoulos, Costas] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94704 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95340 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM noy1@llnl.gov RI Foundry, Molecular/G-9968-2014 FU U.S. Department of Energy, the Office of Basic Energy Sciences, the Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; LSP program at LLNL FX M.A.B. and K.K. contributed equally to this work. This work was supported by the U.S. Department of Energy, the Office of Basic Energy Sciences, the Division of Materials Sciences and Engineering. Work at the Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231. R.T. acknowledges support from the LSP program at LLNL. NR 29 TC 6 Z9 6 U1 9 U2 61 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 4 PY 2015 VL 27 IS 5 BP 831 EP 836 DI 10.1002/adma.201403988 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FK UT WOS:000349226900007 PM 25410490 ER PT J AU Liu, F Ferdous, S Schaible, E Hexemer, A Church, M Ding, XD Wang, C Russell, TP AF Liu, Feng Ferdous, Sunzida Schaible, Eric Hexemer, Alexander Church, Matthew Ding, Xiaodong Wang, Cheng Russell, Thomas P. TI Fast Printing and In Situ Morphology Observation of Organic Photovoltaics Using Slot-Die Coating SO ADVANCED MATERIALS LA English DT Article DE low bandgap polymers; morphology; organic photovoltaics; X-ray diffraction ID HETEROJUNCTION SOLAR-CELLS; X-RAY; PROCESSING ADDITIVES; STRUCTURAL EVOLUTION; BLEND FILMS; EFFICIENCY; SOLIDIFICATION; SCATTERING; TIME AB The mini-slot-die coater offers a simple, convenient, materials-efficient route to print bulk-heterojunction (BHJ) organic photovoltaics (OPVs) that show efficiencies similar to spin-coating. Grazing-incidence X-ray diffraction (GIXD) and GI small-angle X-ray scattering (GISAXS) methods are used in real time to characterize the active-layer formation during printing. A polymer-aggregationphase- separation-crystallization mechanism for the evolution of the morphology describes the observations. C1 [Liu, Feng; Ferdous, Sunzida; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Liu, Feng; Russell, Thomas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaible, Eric; Hexemer, Alexander; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Church, Matthew; Ding, Xiaodong] Jema Sci Inc, Berkeley, CA 94720 USA. RP Wang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM tom.p.russell@gmail.com; tom.p.russell@gmail.com RI Wang, Cheng/A-9815-2014; Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001087]; DOE, Office of Science; DOE, Office of Basic Energy Sciences FX This work was supported by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001087. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 27 TC 26 Z9 27 U1 12 U2 80 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 4 PY 2015 VL 27 IS 5 BP 886 EP 891 DI 10.1002/adma.201404040 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CA9FK UT WOS:000349226900016 PM 25503869 ER PT J AU Yu, ZG Sun, J Sullivan, MB Zhang, YW Gong, H Singh, DJ AF Yu, Zhi Gen Sun, Jian Sullivan, Michael B. Zhang, Yong-Wei Gong, Hao Singh, David J. TI Dopant chemical potential modulation on oxygen vacancies formation in In2O3: A comparative density functional study SO CHEMICAL PHYSICS LETTERS LA English DT Article ID AB-INITIO; OXIDE; ZNO; APPROXIMATION AB We report first principles calculations aimed at understanding the dopant chemical potential modulation on the oxygen vacancy formation in In2O3. Relaying on our results, it implies that oxygen vacancies are deep donors in undoped In2O3 and change to shallow donors with embedded Zn and Al in contrast to previous expectations of native carrier from oxygen vacancy. Our results well explain the anomalous carrier concentration increase in Zn and Al codoped In2O3. Our proposed models reveal the chemical potential modulation on oxygen vacancy formation and lead to a natural oxygen vacancy formation mechanism in the presence of metallic dopants in In2O3. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yu, Zhi Gen; Sullivan, Michael B.; Zhang, Yong-Wei] Inst High Performance Comp, Singapore 138632, Singapore. [Sun, Jian] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China. [Gong, Hao] Natl Univ Singapore, Dpet Mat Sci & Engn, Singapore 117543, Singapore. [Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yu, ZG (reprint author), Inst High Performance Comp, Singapore 138632, Singapore. EM yuzg@ihpc.a-star.edu.sg RI Zhang, Yong-Wei/D-5191-2012 OI Zhang, Yong-Wei/0000-0001-7255-1678 FU A*STAR of Singapore; Department of Energy, Basic Energy Science, Materials Sciences and Engineering Division FX This research was sponsored by A*STAR of Singapore and computational source was provided by ACRC. Z. G. Yu thanks Dr. S.-H. Wei from NREL for useful discussions and suggestions on the band structure alignment. Work of DJS is supported by the Department of Energy, Basic Energy Science, Materials Sciences and Engineering Division. NR 39 TC 1 Z9 1 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 4 PY 2015 VL 621 BP 141 EP 145 DI 10.1016/j.cplett.2015.01.008 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CA3WW UT WOS:000348836600024 ER PT J AU Kong, LM Joly, AG Droubay, TC Hess, WP AF Kong, Lingmei Joly, Alan G. Droubay, Timothy C. Hess, Wayne P. TI Quantum efficiency enhancement in CsI/metal photocathodes SO CHEMICAL PHYSICS LETTERS LA English DT Article ID CESIUM IODIDE; SURFACE; DESORPTION; CU(111) AB High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(1 0 0), Ag(1 0 0), Au(1 1 1) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement. (C) 2015 Published by Elsevier B.V. C1 [Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Hess, WP (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 FU Department of Energy's Office of Biological and Environmental Research located at PNNL FX This research is part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) and was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL, a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy. NR 20 TC 1 Z9 1 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 4 PY 2015 VL 621 BP 155 EP 159 DI 10.1016/j.cplett.2015.01.010 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CA3WW UT WOS:000348836600026 ER PT J AU Ninomiya, Y Bentz, W Cloet, IC AF Ninomiya, Y. Bentz, W. Cloet, I. C. TI Dressed quark mass dependence of pion and kaon form factors SO PHYSICAL REVIEW C LA English DT Article ID JONA-LASINIO MODEL; EXTENDED NJL MODEL; QUANTUM CHROMODYNAMICS; FADDEEV EQUATION; DYNAMICAL MODEL; DIQUARK MODEL; CHARGE RADIUS; LATTICE QCD; NUCLEON; MESONS AB The structure of hadrons is described well by the Nambu-Jona-Lasinio (NJL) model, which is a chiral effective quark theory of QCD. In this work we explore the electromagnetic structure of the pion and kaon using the three-flavor NJL model in the proper-time regularization scheme, including effects of the pion cloud at the quark level. In the calculation there is only one free parameter, which we take as the dressed light quark (u and d) mass. In the regime where the dressed light quark mass is approximately 0.25 GeV we find that the calculated values of the kaon decay constant, current quark masses, and quark condensates are consistent with experiment- and QCD-based analyses. We also investigate the dressed light quark mass dependence of the pion and kaon electromagnetic form factors, where comparison with empirical data and QCD predictions also favors a dressed light quark mass near 0.25 GeV. C1 [Ninomiya, Y.; Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Cloet, I. C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Ninomiya, Y (reprint author), Tokai Univ, Sch Sci, Dept Phys, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan. EM 3bsnm017@mail.tokai-u.jp FU Japanese Ministry of Education, Culture, Sports, Science and Technology [20168769]; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX Y.N. wishes to thank E. V. Morooka and S. Hakamada for their careful reading of the manuscript and for their help in the preparation of some figures of the paper. W.B. acknowledges support by the Grant in Aid for Scientific Research (Kakenhi) of the Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769. I.C. is supported by the Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 56 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 4 PY 2015 VL 91 IS 2 AR 025202 DI 10.1103/PhysRevC.91.025202 PG 14 WC Physics, Nuclear SC Physics GA CA9MQ UT WOS:000349248700004 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De la Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De la Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De la Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the Forward-Backward Asymmetry in the Production of B-+/- Mesons in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID RUN-II; DETECTOR AB We present a measurement of the forward-backward asymmetry in the production of B-+/- mesons, A(FB)(B-+/-) using B-+/- -> J/ Psi K-+/- decays in 10.4 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment during Run II of the Tevatron collider. A nonzero asymmetry would indicate a preference for a particular flavor, i.e., b quark or (b) over bar antiquark, to be produced in the direction of the proton beam. We extract A(FB) (B-+/-) from a maximum likelihood fit to the difference between the numbers of forward-and backward-produced B-+/- mesons. We measure an asymmetry consistent with zero: A(FB) (B-+/-) = [-0.24 +/- 0.41 (stat) +/- 0.19 (syst)] %. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS IN2P3, Inst Natl Polytech Grenoble, LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Faure, A.; Grohsjean, A.; Hynek, V.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPNL, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Univ Munich, Munich, Germany. [Choudhary, B.; Dubey, A.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [De la Cruz-Burelo, E.; Fisher, W.; Melnitchouk, A.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca Estudis & Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Bross, A.; Burdin, S.; Fox, H.; Ratoff, P. N.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Deterre, C.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Desai, S.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Greenlee, H.; Gruenewald, M. W.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, E.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lincoln, D.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Gerber, C. E.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Gogota, O.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Gutierrez, Phillip/C-1161-2011; Li, Liang/O-1107-2015 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; Li, Liang/0000-0001-6411-6107 FU Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council; Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 36 TC 10 Z9 10 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2015 VL 114 IS 5 AR UNSP 051803 DI 10.1103/PhysRevLett.114.051803 PG 8 WC Physics, Multidisciplinary SC Physics GA CA9MX UT WOS:000349249500007 PM 25699435 ER PT J AU Davoudiasl, H AF Davoudiasl, Hooman TI Nucleon Decay into a Dark Sector SO PHYSICAL REVIEW LETTERS LA English DT Article ID MATTER; MASS; BARYON AB A sub-GeV dark sector fermion X can have baryon-number-violating interactions induced by high-scale physics, leading to nucleon decay into X + meson and neutron -> X + photon. Such processes can mimic standard search modes containing a neutrino, but have different kinematics and may have escaped detection. If a dark force mediated by a light vector Z(d) acts on X, depending on parameters, neutron -> X + Z(d) can be important. In typical scenarios, Z(d) decays into l(+)l(-) where l = e, mu, with an order unity branching fraction. Nucleon decay searches can potentially uncover new dark states that are otherwise inaccessible, due to their negligible coupling to ordinary matter or cosmological abundance. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX We thank P. Huber, I. Lewis, W. Marciano, J. Millener, and K. Sigurdson for discussions. This work is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 48 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2015 VL 114 IS 5 AR 051802 DI 10.1103/PhysRevLett.114.051802 PG 5 WC Physics, Multidisciplinary SC Physics GA CA9MX UT WOS:000349249500006 PM 25699434 ER PT J AU Gruner, ME Keune, W Cuenya, BR Weis, C Landers, J Makarov, SI Klar, D Hu, MY Alp, EE Zhao, J Krautz, M Gutfleisch, O Wende, H AF Gruner, M. E. Keune, W. Cuenya, B. Roldan Weis, C. Landers, J. Makarov, S. I. Klar, D. Hu, M. Y. Alp, E. E. Zhao, J. Krautz, M. Gutfleisch, O. Wende, H. TI Element-Resolved Thermodynamics of Magnetocaloric LaFe13-xSix SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEAR RESONANT SCATTERING; GENERALIZED GRADIENT APPROXIMATION; MAGNETIC ENTROPY CHANGE; SYNCHROTRON-RADIATION; METAMAGNETIC TRANSITION; COMPOUND LAFE11.4SI1.6; NEUTRON-DIFFRACTION; THERMAL-EXPANSION; ALLOYS; DENSITY AB By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe13-xSix. These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. The increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronic entropy changes to the excellent magneto- and barocaloric properties. C1 [Gruner, M. E.; Keune, W.; Weis, C.; Landers, J.; Makarov, S. I.; Klar, D.; Wende, H.] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. [Gruner, M. E.; Keune, W.; Weis, C.; Landers, J.; Makarov, S. I.; Klar, D.; Wende, H.] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47048 Duisburg, Germany. [Gruner, M. E.; Krautz, M.] IFW Gresden, D-01171 Dresden, Germany. [Keune, W.] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Cuenya, B. Roldan] Ruhr Univ Bochum, Dept Phys, D-44780 Bochum, Germany. [Hu, M. Y.; Alp, E. E.; Zhao, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gutfleisch, O.] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. RP Gruner, ME (reprint author), Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. RI Wende, Heiko/J-8505-2012; Gruner, Markus/D-9726-2011; Roldan Cuenya, Beatriz/L-1874-2016; Gutfleisch, Oliver/C-7241-2011 OI Gruner, Markus/0000-0002-2306-1258; Roldan Cuenya, Beatriz/0000-0002-8025-307X; Gutfleisch, Oliver/0000-0001-8021-3839 FU DFG [SPP1239, SPP1599, SPP1538]; U.S. National Science Foundation (NSF-DMR) [1207065]; U.S. DOE [DE-AC02-06CH11357] FX The authors would like to thank P. Entel (Duisburg-Essen), G. Bayreuther and J. Kirschner (Halle), and S. Fahler (Dresden) for important discussions and support. We are grateful to U. v. Horsten (Duisburg-Essen) and Wenli Bi (Argonne) for technical assistance. Calculations were carried out on the massively parallel computers (Cray XT6/m and Opterox) of the Center of Computational Sciences and Simulation, CCSS, of the University of Duisburg-Essen. Funding by the DFG via SPP1239, SPP1599 and SPP1538 is gratefully acknowledged. BRC (RUB/UCF) was funded by the U.S. National Science Foundation (NSF-DMR 1207065). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE No. (DE-AC02-06CH11357). NR 84 TC 23 Z9 23 U1 7 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2015 VL 114 IS 5 AR 057202 DI 10.1103/PhysRevLett.114.057202 PG 6 WC Physics, Multidisciplinary SC Physics GA CA9MX UT WOS:000349249500019 PM 25699465 ER PT J AU Heuer, A Menzel, R Milonni, PW AF Heuer, A. Menzel, R. Milonni, P. W. TI Induced Coherence, Vacuum Fields, and Complementarity in Biphoton Generation SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-PHOTON; INDISTINGUISHABILITY; INTERFEROMETER; INTERFERENCE; SCATTERING; CONVERSION; QUANTUM; WAVE AB It is well established that spontaneous parametric down-conversion with induced coherence across two coupled interferometers results in high-visibility single-photon interference. We describe experiments in which additional photon channels are introduced such that "which-path" information is made possible and the fringe visibility in single-photon interference is reduced in accordance with basic notions of complementarity. However, these additional pathways result in nearly perfect visibility when photons are counted in coincidence. A simplified theoretical model accounts for these observations and attributes them directly to the vacuum fields at the different crystals. C1 [Heuer, A.; Menzel, R.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Milonni, P. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Milonni, P. W.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Heuer, A (reprint author), Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str E 24-25, D-14476 Potsdam, Germany. NR 18 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2015 VL 114 IS 5 AR 053601 DI 10.1103/PhysRevLett.114.053601 PG 5 WC Physics, Multidisciplinary SC Physics GA CA9MX UT WOS:000349249500009 PM 25699438 ER PT J AU Zhang, Q Fernandes, RM Lamsal, J Yan, JQ Chi, SX Tucker, GS Pratt, DK Lynn, JW McCallum, RW Canfield, PC Lograsso, TA Goldman, AI Vaknin, D McQueeney, RJ AF Zhang, Qiang Fernandes, Rafael M. Lamsal, Jagat Yan, Jiaqiang Chi, Songxue Tucker, Gregory S. Pratt, Daniel K. Lynn, Jeffrey W. McCallum, R. W. Canfield, Paul C. Lograsso, Thomas A. Goldman, Alan I. Vaknin, David McQueeney, Robert J. TI Neutron-Scattering Measurements of Spin Excitations in LaFeAsO and Ba(Fe0.953Co0.047)(2)As-2: Evidence for a Sharp Enhancement of Spin Fluctuations by Nematic Order SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON ARSENIDE SUPERCONDUCTOR; DETWINNED BA(FE1-XCOX)(2)AS-2; TRANSITION; STATE; ANISOTROPY; PNICTIDES; BAFE2AS2 AB Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe0.953Co0.047)(2)As-2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T-S, sets in well above the stripe antiferromagnetic ordering at T-N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T-S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. Our findings can be consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides. C1 [Zhang, Qiang; Lamsal, Jagat; Tucker, Gregory S.; McCallum, R. W.; Lograsso, Thomas A.; Goldman, Alan I.; Vaknin, David; McQueeney, Robert J.] Ames Lab, Ames, IA 50011 USA. [Zhang, Qiang; Lamsal, Jagat; Tucker, Gregory S.; Goldman, Alan I.; Vaknin, David; McQueeney, Robert J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fernandes, Rafael M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Yan, Jiaqiang; Chi, Songxue; McQueeney, Robert J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pratt, Daniel K.; Lynn, Jeffrey W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [McCallum, R. W.; Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, Q (reprint author), Ames Lab, Ames, IA 50011 USA. RI Zhang, Qiang/A-7901-2010; Fernandes, Rafael/E-9273-2010; Chi, Songxue/A-6713-2013; Vaknin, David/B-3302-2009 OI Zhang, Qiang/0000-0003-0389-7039; McQueeney, Robert/0000-0003-0718-5602; Chi, Songxue/0000-0002-3851-9153; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; U.S. Department of Energy [DE-SC0012336]; U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division; U.S. Department of Commerce FX Research at Ames Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. R. M. F. is supported by the U.S. Department of Energy under Award No. DE-SC0012336. Use of the high flux isotope reactor at the Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. The NIST Center for Neutron Research is supported by the U.S. Department of Commerce. We acknowledge Dan Parshall for his technical assistance in measuring Ba(Fe0.953Co0.047)2As2 at the BT-7 triple-axis neutron spectrometer at the NIST Center for Neutron Research. NR 64 TC 14 Z9 14 U1 5 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 4 PY 2015 VL 114 IS 5 AR 057001 DI 10.1103/PhysRevLett.114.057001 PG 6 WC Physics, Multidisciplinary SC Physics GA CA9MX UT WOS:000349249500017 PM 25699463 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N SuarezGonzalez, J Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Kalogeropoulos, A Keaveney, J Kim, TJ Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Klein, B Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Liao, J Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Martins, MC Martins, TD Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, D Liang, S Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hellwig, G Hempel, M Horton, D Jung, H Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Nowak, F Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A RibeiroCipriano, PM Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Erfle, J Garutti, E Goebel, K Gorner, M Gosselink, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kalsi, AK Kaur, M Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Sgaravatto, M Tosi, M Triossi, A Ventura, S Zucchetta, A Zumerle, G Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoza, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B LaLicata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, H Kim, JH Park, IC Park, S Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Golutvin, I Karjavin, V Konoplyanikov, V Korenkov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Dordevic, M Ekmedzic, M Milosevic, J Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Treille, D Tsirou, A Veres, GI Vlimant, JR Wardle, N Wohri, HK Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Ronga, FJ Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Rikova, MI Kilminster, B Mejias, BM Ngadiuba, J Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Bahtiyar, H Barlas, E Cankocak, K Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Richardson, C Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wuerthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Hopkins, W Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Gray, J Kenny, RP Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Wulsin, HW Berry, E Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Miner, DC Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. . Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. SuarezGonzalez, J. Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Kalogeropoulos, A. Keaveney, J. Kim, T. J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Klein, B. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Liao, J. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Correa Martins Junior, M. Dos Reis Martins, T. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, D. Liang, S. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hellwig, G. Hempel, M. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. RibeiroCipriano, P. M. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Erfle, J. Garutti, E. Goebel, K. Goerner, M. Gosselink, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Sgaravatto, M. Tosi, M. Triossi, A. Ventura, S. Zucchetta, A. Zumerle, G. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoza, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. LaLicata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, H. Kim, J. H. Park, I. C. Park, S. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Golutvin, I. Karjavin, V. Konoplyanikov, V. Korenkov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Dordevic, M. Ekmedzic, M. Milosevic, J. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wardle, N. Woehri, H. K. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Ronga, F. J. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Ngadiuba, J. Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Bahtiyar, H. Barlas, E. Cankocak, K. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Negra, M. Della Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Richardson, C. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Hopkins, W. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Gray, J. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Wulsin, H. W. Berry, E. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Woods, N. CA CMS Collaboration TI Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at root s=7 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; W plus jets; Vector boson; Jets; Electroweak; Standard model AB Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (p(T)) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (H-T), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb (1). The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the p(T) distributions of the leading jets at high p(T) values, the distributions of the H-T at high-H-T and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A. .] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; SuarezGonzalez, J.] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol, Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, CNRS IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Phys Nucl Lyon, CNRS IN2P3, Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, Tbilisi, GA USA. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; RibeiroCipriano, P. M.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Gosselink, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Tricomi, A.] CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Tosi, M.; Triossi, A.; Ventura, S.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Tosi, M.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Padua, Italy. [Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] INFN Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoza, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; LaLicata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; LaLicata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Woehri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Tech Univ Istanbul, Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Negra, M. Della; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.] Univ London Imperial Coll Sci Technol & Med, London, England. [Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Baylor Univ, Waco, TX 76798 USA. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Hopkins, W.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Masetti, G.; Giordano, F.; Gori, V.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Argiro, S.; Casasso, S.; Obertino, M. M.; Schizzi, A.; Chamizo Llatas, M.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Dias, F. A.; Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.; Bernet, C.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Sez INFN, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A& M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; candelise, vieri/H-2195-2015; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Menasce, Dario Livio/A-2168-2016; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Stahl, Achim/E-8846-2011; Manganote, Edmilson/K-8251-2013; Petrushanko, Sergey/D-6880-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Calderon, Alicia/K-3658-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Lokhtin, Igor/D-7004-2012; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Varela, Joao/K-4829-2016; OI Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Gulmez, Erhan/0000-0002-6353-518X; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Rahatlou, Shahram/0000-0001-9794-3360; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Tricomi, Alessia Rita/0000-0002-5071-5501; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Gonzi, Sandro/0000-0003-4754-645X; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Stahl, Achim/0000-0002-8369-7506; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Korenkov, Vladimir/0000-0002-2342-7862; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Novaes, Sergio/0000-0003-0471-8549 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Scientific and Industrial Research, India; HOMING PLUS programme of Foundation For Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Scientific and Industrial Research, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 54 TC 23 Z9 23 U1 13 U2 91 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 4 PY 2015 VL 741 BP 12 EP 37 DI 10.1016/j.physletb.2014.12.003 PG 26 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AZ5XC UT WOS:000348290800002 ER PT J AU Abelev, B Adam, J Adamova, D Aggarwal, MM Agnello, M Agostinelli, A Agrawal, N Ahammed, Z Ahmad, N Ahmed, I Ahn, SU Ahn, SA Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alta, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Belmont, R Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Berger, ME Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Boehmer, FV Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, D Das, I Das, K Das, S Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E D'Erasmo, G De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Dillenseger, P Divia, R Di Bari, D Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dorheim, S Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Hilden, TE Ehlers, RJ Elia, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Esposito, M Estienne, M Esumi, S Evans, D Evdokimov, S Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, M Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Gladysz-Dziadus, E Glaessel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gumbo, M Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hippolyte, B Hladky, J Hristov, P Huang, M Humanic, TJ Hussain, N Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalcher, S Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpecheva, E Kebschull, U Keidel, R Keijdener, DLD Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Boesing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Koehler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y de Guevara, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A La Pointe, S La Rocca, P Lea, R Leardini, L Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Leoncino, M Monzon, I Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Lopez, X Torres, EL Lu, XG Luettig, P Lunardon, M Luparello, G Ma, R Maevskaya, A Mager, M Mahapatra, DP Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mlynarz, J Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muehlheim, D Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Okatan, A Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Sahoo, P Pachmayer, Y Pachr, M Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palmeri, A Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Pohjoisaho, EHO Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Porter, J Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, R Sahu, PK Saini, J Sakai, S Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Rodriguez, FJS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Seger, JE Sekiguchi, Y Selyuzhenkov, I Seo, J Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Shangaraev, A Sharma, N Sharma, S Shigaki, K Shtejer, K Sibiriak, Y Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, J Song, M Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tarzila, MG Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV Van Der Maarel, J Van Hoorne, JW van Leeuwen, M Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wagner, V Wang, M Wang, Y Watanabe, D Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zaman, A Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, F Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zoccarato, Y Zyzaka, M AF Abelev, B. Adam, J. Adamova, D. Aggarwal, M. M. Agnello, M. Agostinelli, A. Agrawal, N. Ahammed, Z. Ahmad, N. Ahmed, I. Ahn, S. U. Ahn, S. A. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alta, T. Altinpinar, S. Altsybeev, I. Garcia Prado, C. Alves Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Dos Santos Pedrosa, F. Baltasar Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Belmont, R., III Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Berger, M. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boehmer, F. V. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Sanchez, C. Ceballos Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, D. Das, I. Das, K. Das, S. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. D'Erasmo, G. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Di Bari, D. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Dorheim, S. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Hilden, T. E. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Esposito, M. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Fusco Girard, M. Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gumbo, M. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hippolyte, B. Hladky, J. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalcher, S. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpecheva, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. de Guevara, P. Ladron Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. La Pointe, S. L. La Rocca, P. Lea, R. Leardini, L. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Leoncino, M. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Lopez, X. Torres, E. Lopez Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mlynarz, J. Mohammadi, N. Mohanty, B. Molnar, L. Zetina, L. Montano Montes, E. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Okatan, A. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Sahoo, P. Pachmayer, Y. Pachr, M. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palmeri, A. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira De Oliveira, E. Pereira Peresunko, D. Lara, C. E. Perez Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Pohjoisaho, E. H. O. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Porter, J. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Raesaenen, S. S. Rascanu, B. T. Rathee, D. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rocco, E. Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, R. Sahu, P. K. Saini, J. Sakai, S. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Rodriguez, F. J. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Seo, J. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Shangaraev, A. Sharma, N. Sharma, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, J. Song, M. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szabo, A. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tarzila, M. G. Tauro, A. Munoz, G. Tejeda Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande Van Der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Limon, S. Vergara Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wagner, V. Wang, M. Wang, Y. Watanabe, D. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zaman, A. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, F. Zhou, Y. Zhou, Zhuo Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zoccarato, Y. Zyzaka, M. CA ALICE Collaboration TI Multiplicity dependence of jet-like two-particle correlation structures in p-Pb collisions at root s(NN)=5.02 TeV SO PHYSICS LETTERS B LA English DT Article ID RANGE ANGULAR-CORRELATIONS; TRANSVERSE-MOMENTUM; LONG-RANGE; PPB COLLISIONS; FLOW; SIDE; LHC AB Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < p(T),(assoc) < p(T),(trig) < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range vertical bar eta vertical bar < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton-parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab Fdn, Yerevan 375036, Armenia. [Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Limon, S. Vergara] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.; Ghosh, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Raha, S.] Bose Inst, CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Dang, R.; Li, S.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan 430070, Peoples R China. [Vernet, R.] Ctr Calcul, IN2P3, Villeurbanne, France. [Sanchez, C. Ceballos; Torres, E. Lopez] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano] CINVESTAV, Mexico City 14000, DF, Mexico. [Sanchez, C. Ceballos; Torres, E. Lopez] Ctr Fermi, Museo Stor Fis, Rome, Italy. [Sanchez, C. Ceballos; Torres, E. Lopez] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahmed, I.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roehrich, D.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Yang, S.; Zhou, Zhuo] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, N.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Di Liberto, S.; Mazzoni, M. A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Aleksandrov, D.; Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Ahn, S. A.; Arnaldi, R.; Bagnasco, S.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Rivetti, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Delagrange, H.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Alexandre, D.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Catania Univ, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; Jacholkowski, A.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Fusco Girard, M.; Pagano, P.; Virgili, T.] ER Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Fusco Girard, M.; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; de Cataldo, G.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Augustinus, A.; Dos Santos Pedrosa, F. Baltasar; Betev, L.; Buncic, P.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Di Mauro, A.; Erazmus, B.; Esposito, M.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hristov, P.; Ionita, C.; Kalweit, A.; Kluge, A.; Kobdaj, C.; Kofarago, M.; Kryshen, E.; Kugathasan, T.; Legrand, I.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Reidt, F.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Krelina, M.; Pachr, M.; Petracek, V.; Petran, M.; Schulc, M.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alta, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Hilden, T. E.; Pohjoisaho, E. H. O.; Raesaenen, S. S.] HIP, Helsinki, Finland. [Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai 400076, Maharashtra, India. [Mishra, A. N.; Sahoo, P.; Pareek, P.; Roy, A.; Sahoo, R.] IITI, Indore, India. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Kramer, F.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Zyzaka, M.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Sicking, E.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpecheva, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; La Pointe, S. L.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Thomas, D.; Van Der Maarel, J.; van Leeuwen, M.; Veldhoen, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Ajaz, M.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Hladky, J.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Bustamante, R. T. Jimenez; de Guevara, P. Ladron; Cervantes, I. Maldonado; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Hellen Res Fdn, iThemba LABS, Somerset West, NJ USA. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Baek, Y. W.; Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, IN2P3, CNRS,LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Phys Engn Inst, Moscow, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.; Nayak, K.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands. [Lemmon, R. C.; Romita, R.] STFC Daresbury Lab, Nuclear Phys Grp, Daresbury, Cheshire, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Phys Nucl, Rez, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE USA. [Aggarwal, M. M.; Bhati, A. K.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Cleymans, J.; Gumbo, M.; Murray, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Berger, M. E.; Boehmer, F. V.; Dorheim, S.] Tech Univ Munich, Dept Phys, Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Klein, J.; Kweon, M. J.; Leardini, L.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Agnello, M.; Ahn, S. A.; Bedda, C.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, Res Div & ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Planinic, M.; Poljak, N.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Alam, S. N.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alessandro, B.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Sect Fis, Lima, Peru. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.; Stolpovskiy, M.] SSC IHEP NRC Kurchatov Inst, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.] Univ Nantes, Ecole Mines, CNRS, IN2P3,SUBATECH, Nantes, France. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Leon Monzon, I.; Podesta-Lerma, P. L. M.; Rodriguez, F. J. Sanchez] Univ Autonoma Sinaloa, Culiacan, Mexico. [Garcia Prado, C. Alves; Bregant, M.; Cosentino, M. R.; Domenicis Gimenez, D.; Jahnke, C.; Fernandes, C. Lagana; Moreira De Godoy, D. A.; Munhoz, M. G.; Da Silva, A. C. Oliveira; De Oliveira, E. Pereira; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Figueredo, M. A. S.; Norman, J.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sano, M.; Watanabe, D.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Planinic, M.; Simatovic, G.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Akindinov, A.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Variable Energy Cyclotron Ctr, Kolkata, India. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Tech Univ Warsaw, PL-00662 Warsaw, Poland. [Belmont, R., III; Borissov, A.; Cormier, T. M.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aimo, I.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Ma, R.; Majka, R. D.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, M.; Kim, T.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhochschule Worms, Worms, Germany. [Milosevic, J.; Oh, S. K.; Redlich, K.; Takaki, J. D. Tapia; Zichichi, A.] St Petersburg State Polytechn Univ, St Petersburg, Russia. [Khan, M. M.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, D V Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Vechernin, Vladimir/J-5832-2013; Graczykowski, Lukasz/O-7522-2015; Janik, Malgorzata/O-7520-2015; feofilov, grigory/A-2549-2013; Ferencei, Jozef/H-1308-2014; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; de Cuveland, Jan/H-6454-2016; Sumbera, Michal/O-7497-2014; Barnby, Lee/G-2135-2010; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vajzer, Michal/G-8469-2014; Kovalenko, Vladimir/C-5709-2013; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Sevcenco, Adrian/C-1832-2012; Felea, Daniel/C-1885-2012; Ahmed, Ijaz/E-9144-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bregant, Marco/I-7663-2012; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; OI Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; de Cuveland, Jan/0000-0003-0455-1398; Sumbera, Michal/0000-0002-0639-7323; Barnby, Lee/0000-0001-7357-9904; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Kovalenko, Vladimir/0000-0001-6012-6615; Sevcenco, Adrian/0000-0002-4151-1056; Felea, Daniel/0000-0002-3734-9439; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Beole', Stefania/0000-0003-4673-8038; Fernandez Tellez, Arturo/0000-0001-5092-9748 FU Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; CNCS-UEFISCDI, Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI, Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 30 TC 8 Z9 8 U1 0 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 4 PY 2015 VL 741 BP 38 EP 50 DI 10.1016/j.physletb.2014.11.028 PG 13 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AZ5XC UT WOS:000348290800003 ER PT J AU Mezrag, C Chang, L Moutarde, H Roberts, CD Rodriguez-Quintero, J Sabatie, F Schmidt, SM AF Mezrag, C. Chang, L. Moutarde, H. Roberts, C. D. Rodriguez-Quintero, J. Sabatie, F. Schmidt, S. M. TI Sketching the pion's valence-quark generalised parton distribution SO PHYSICS LETTERS B LA English DT Article DE Deeply virtual Compton scattering; Dynamical chiral symmetry breaking; Dyson-Schwinger equations; Generalised parton distribution functions; pi meson ID DEEP INELASTIC-SCATTERING; VIRTUAL COMPTON-SCATTERING; PERTURBATION-THEORY; FORM-FACTOR; QCD; ELECTROPRODUCTION; FEATURES; THEOREM; DYSON; MODEL AB In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD's Dyson-Schwinger equations and exemplified via the pion's valence dressed-quark GPD, H-pi(V)(chi, xi, t). Our analysis focuses primarily on xi = 0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H-pi(V)(chi, xi = +/- 1, t) with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H(pi)(V)p(chi, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H pi V(chi, 0, t) and the associated impact-parameter dependent distribution, q(pi)(V)(chi, vertical bar(b) over right arrow (perpendicular to)vertical bar), which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale zeta = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods. (C) 2014 Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Mezrag, C.; Moutarde, H.; Sabatie, F.] IRFU, Ctr Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Chang, L.] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. [Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Rodriguez-Quintero, J.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, E-21071 Huelva, Spain. [Schmidt, S. M.] JARA, D-52425 Julich, Germany. [Schmidt, S. M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. RP Mezrag, C (reprint author), IRFU, Ctr Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. EM cdroberts@anl.gov RI Sabatie, Franck/K-9066-2015; Rodriguez-Quintero, Jose/L-3229-2014 OI Sabatie, Franck/0000-0001-7031-3975; Rodriguez-Quintero, Jose/0000-0002-1651-5717 FU Helmholtz Association; Commissariat a l'Energie Atomique; JRA under the EU [283286]; GDR [3034 PH-QCD]; University of Adelaide; Australian Research Council [FL0992247]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; Forschungszentrum Julich GmbH; [ANR-12-MONU-0008-01]; [FPA2011-23781] FX We thank A. Besse, I.C. Cloet, D. Muller, P. Fromholz, C. Keppel, P. Kroll, J.-Ph. Lansberg, C. Lorce, J. Segovia and S. Wallon for valuable discussions. C.M., L.C., H.M., C.D.R. and J.R.-Q. are grateful for the chance to participate in the workshop "Many Manifestations of Nonperturbative QCD under the Southern Cross", Ubatuba, Sao Paulo, where significant parts of this work were first presented and improvements discussed. C.D.R. acknowledges support from an International Fellow Award from the Helmholtz Association; and this research was otherwise supported by: Commissariat a l'Energie Atomique; JRA "Study of Strongly Interacting Matter" (Grant Agreement no. 283286, HadronPhysics3) under the EU Seventh Framework Programme; GDR 3034 PH-QCD; ANR-12-MONU-0008-01 "PARTONS"; University of Adelaide and Australian Research Council through grant no. FL0992247; Spanish ministry Research Project FPA2011-23781; U.S. Department of Energy, Office of Science, Office of Nuclear Physics, contract no. DE-AC02-06CH11357; and Forschungszentrum Julich GmbH. NR 69 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 4 PY 2015 VL 741 BP 190 EP 196 DI 10.1016/j.physletb.2014.12.027 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AZ5XC UT WOS:000348290800028 ER PT J AU McLerran, L Praszalowicz, M AF McLerran, Larry Praszalowicz, Michal TI Geometrical scaling and the dependence of the average transverse momentum on the multiplicity and energy for the ALICE experiment SO PHYSICS LETTERS B LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; HIGH-DENSITY QCD; TO 7 TEV; NUCLEUS COLLISIONS; P(T) DISTRIBUTIONS; CROSS-SECTION; MEAN P(T); LOW X; PP AB We review the recent ALICE data on charged particle multiplicity in p-p collisions, and show that it exhibits Geometrical Scaling (GS) with energy dependence given with characteristic exponent lambda = 0.22. Next, starting from the GS hypothesis and using results of the Color Glass Condensate effective theory, we calculate < p(T)> as a function N-ch including dependence on the scattering energy W. We show that < p(T)> both in p-p and p-Pb collisions scales in terms of scaling variable (W/W-0)(lambda/(2+lambda)) root N-ch/S-perpendicular to where S-perpendicular to is multiplicity-dependent interaction area in the transverse plane. Furthermore, we discuss how the behavior of the interaction radius Rat large multiplicities affects the mean p(T) dependence on N-ch, and make a prediction that < p(T)> at high multiplicity should reach an energy-independent limit. (C) 2014 The Authors. Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [McLerran, Larry] Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. [McLerran, Larry] RIKEN, Brookhaven Natl Lab, BNL, Res Ctr, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan 430079, Peoples R China. [Praszalowicz, Michal] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30348 Krakow, Poland. RP Praszalowicz, M (reprint author), Jagiellonian Univ, M Smoluchowski Inst Phys, S Lojasiewicza 11, PL-30348 Krakow, Poland. EM mclerran@me.com; michal@if.uj.edu.pl RI Praszalowicz, Michal/F-1912-2016 FU Polish NCN [2011/01/B/ST2/00492]; DOE [DE-AC02-98CH10886] FX This research of M.P. has been supported by the Polish NCN grant 2011/01/B/ST2/00492. The research of L.M. is supported under DOE Contract No. DE-AC02-98CH10886. NR 45 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 4 PY 2015 VL 741 BP 246 EP 251 DI 10.1016/j.physletb.2014.12.046 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AZ5XC UT WOS:000348290800038 ER PT J AU Briceno, RA Hansen, MT Walker-Loud, A AF Briceno, Raul A. Hansen, Maxwell T. Walker-Loud, Andre TI Multichannel 1 -> 2 transition amplitudes in a finite volume SO PHYSICAL REVIEW D LA English DT Article ID FINAL-STATE INTERACTIONS; CHIRAL PERTURBATION-THEORY; QUANTUM-FIELD THEORIES; LATTICE QCD; PARTICLE STATES; ENERGY-SPECTRUM; MATRIX-ELEMENTS; PHASE-SHIFTS; FORM-FACTORS; CAPTURE RATE AB We perform a model-independent, nonperturbative investigation of two-point and three-point finite-volume correlation functions in the energy regime where two-particle states can go on shell. We study three-point functions involving a single incoming particle and an outgoing two-particle state, relevant, for example, for studies of meson decays (e. g., B-0 -> K*l(+)l(-) -> pi Kl(+)l(-)) or meson photo production (e.g., pi gamma* -> pi pi). We observe that, while the spectrum solely depends on the on-shell scattering amplitude, the correlation functions also depend on off-shell amplitudes. The main result of this work is a generalization of the Lellouch-Lscher formula relating matrix elements of currents in finite and infinite spatial volumes. We extend that work by considering a theory with multiple, strongly coupled channels and by accommodating external currents which inject arbitrary four-momentum as well as arbitrary angular momentum. The result is exact up to exponentially suppressed corrections governed by the pion mass times the box size. We also apply our master equation to various examples, including the two processes mentioned above as well as examples where the final state is an admixture of two open channels. C1 [Briceno, Raul A.; Walker-Loud, Andre] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Hansen, Maxwell T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Walker-Loud, Andre] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Briceno, RA (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM rbriceno@jlab.org; mth28@uw.edu; walkloud@wm.edu FU U.S. Department of Energy, under Jefferson Science Associates, LLC [DE-AC05-06OR23177]; U.S. Department of Energy [DE-FG02-96ER40956] FX R. B. and A. W. L. acknowledge support from the U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates the Jefferson Lab. M. T. H. was supported in part by U.S. Department of Energy Grant No. DE-FG02-96ER40956. R. B. would like to thank Robert Edwards, Kostas Orginos, Christian Shultz, Jozef Dudek, David Wilson, Christopher Thomas, David Richards, Michael Peardon, Zohreh Davoudi, Igor Danilkin, Roman Zwicky, Akaki Rusetsky, and Stefan Meinel for many useful discussions. M. T. H. would like to thank Stephen Sharpe for useful discussions. The authors would like to thank Robert Edwards and Jozef Dudek for motivating the work by posing the question as to whether it is possible to rigorously study transition amplitudes via lattice QCD. NR 131 TC 25 Z9 25 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 3 PY 2015 VL 91 IS 3 AR 034501 DI 10.1103/PhysRevD.91.034501 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8CS UT WOS:000349856700004 ER PT J AU Carena, M Haber, HE Low, I Shah, NR Wagner, CEM AF Carena, Marcela Haber, Howard E. Low, Ian Shah, Nausheen R. Wagner, Carlos E. M. TI Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; COLOR-BREAKING MINIMA; EXPLICIT CP VIOLATION; ELECTROWEAK SYMMETRY-BREAKING; QCD CORRECTIONS; ATLAS DETECTOR; MASSES; SECTOR; LHC; UNIFICATION AB Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for "alignment independent of decoupling," where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the nonstandard Higgs boson masses. The combination of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of tan beta. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, Marcela; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, Marcela; Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Haber, Howard E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Haber, Howard E.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Low, Ian; Wagner, Carlos E. M.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shah, Nausheen R.] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermilab; U.S. Department of Energy [DE-AC02-07CH11359, DE-FG02-04ER41286, DE-SC0010143]; University of Chicago under the U.S. Department of Energy [DE-FG02-13ER41958]; Argonne National Laboratory, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-SC0007859]; National Science Foundation [PHYS-1066293, NSF PHY11-25915] FX We gratefully acknowledge informative discussions with Greg Landsberg. M. C. is supported in part by Fermilab, which is operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. M. C. and C. E. M. W. are supported in part by the University of Chicago under the U.S. Department of Energy Grant No. DE-FG02-13ER41958. H. E. H. is supported in part by U.S. Department of Energy Grant No. DE-FG02-04ER41286. I. L. is supported at Northwestern University by the U.S. Department of Energy under Contract No. DE-SC0010143. I. L. and C. E. M. W. are supported at Argonne National Laboratory in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. N. R. S is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award No. DE-SC0007859. M. C., H. E. H., N. R. S. and C. E. M. W. thank the hospitality of the Aspen Center for Physics, which is supported by the National Science Foundation under Grant No. PHYS-1066293. M. C., N. R. S. and C. E. M. W. also thank the hospitality of the Kavli Institute For Theoretical Physics at the University of California Santa Barbara, which is supported by the National Science Foundation under Grant No. NSF PHY11-25915. NR 87 TC 29 Z9 29 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 3 PY 2015 VL 91 IS 3 AR 035003 DI 10.1103/PhysRevD.91.035003 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8CS UT WOS:000349856700006 ER PT J AU Kojo, T Powell, PD Song, YF Baym, G AF Kojo, Toru Powell, Philip D. Song, Yifan Baym, Gordon TI Phenomenological QCD equation of state for massive neutron stars SO PHYSICAL REVIEW D LA English DT Article ID DENSE QUARK MATTER; VECTOR INTERACTION; NUCLEAR-FORCES; PHASE-DIAGRAM; HYBRID STARS; MODEL; CONDENSATION; TEMPERATURE; TRANSITIONS; MASSES AB We construct an equation of state for massive neutron stars based on quantum chromodynamics phenomenology. Our primary purpose is to delineate the relevant ingredients of equations of state that simultaneously have the required stiffness and satisfy constraints from thermodynamics and causality. These ingredients are (i) a repulsive density-density interaction, universal for all flavors, (ii) the colormagnetic interaction active from low to high densities, (iii) confining effects, which become increasingly important as the baryon density decreases, and (iv) nonperturbative gluons, which are not very sensitive to changes of the quark density. We use the following "3-window" description: At baryon densities below about twice normal nuclear density, 2n(0), we use the Akmal-Pandharipande-Ravenhall (APR) equation of state, and at high densities, >=(4 - 7)n(0), we use the three-flavor Nambu-Jona-Lasinio (NJL) model supplemented by vector and diquark interactions. In the transition density region, we smoothly interpolate the hadronic and quark equations of state in the chemical potential-pressure plane. Requiring that the equation of state approach APR at low densities, we find that the quark pressure in nonconfining models can be larger than the hadronic pressure, unlike in conventional equations of state. We show that consistent equations of state of stiffness sufficient to allow massive neutron stars are reasonably tightly constrained, suggesting that gluon dynamics remains nonperturbative even at baryon densities similar to 10n(0). C1 [Kojo, Toru; Powell, Philip D.; Song, Yifan; Baym, Gordon] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Powell, Philip D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Baym, Gordon] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. RP Kojo, T (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. FU NSF [PHY09-69790, PHY13-05891] FX Author T. K. thanks Y. Hidaka, A. Ohnishi, and R. Pisarski for enlightening discussions during the Fourth APS-JPS joint meeting HAWAII 2014 and M. Alford, S. Han, and K. Schwenzer for discussions during his visit to Washington University. He is also grateful to D. Blaschke for discussions and his lectures given at the University of Bielefeld in 2013. Authors G. B. and T. K. thank T. Hatsuda and K. Masuda for numerous discussions of the equation of state at intermediate densities. This research was supported in part by NSF Grants No. PHY09-69790 and No. PHY13-05891. NR 73 TC 24 Z9 24 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 3 PY 2015 VL 91 IS 4 AR 045003 DI 10.1103/PhysRevD.91.045003 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8DM UT WOS:000349858800009 ER PT J AU Hu, JS Sun, Z Guo, HY Li, JG Wan, BN Wang, HQ Ding, SY Xu, GS Liang, YF Mansfield, DK Maingi, R Zou, XL Wang, L Ren, J Zuo, GZ Zhang, L Duan, YM Shi, TH Hu, LQ AF Hu, J. S. Sun, Z. Guo, H. Y. Li, J. G. Wan, B. N. Wang, H. Q. Ding, S. Y. Xu, G. S. Liang, Y. F. Mansfield, D. K. Maingi, R. Zou, X. L. Wang, L. Ren, J. Zuo, G. Z. Zhang, L. Duan, Y. M. Shi, T. H. Hu, L. Q. CA East Team TI New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID REGIME; MODES; ELMS AB A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development. C1 [Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Guo, H. Y.] Gen Atom, San Diego, CA 92186 USA. [Liang, Y. F.] Forschungszentrum Julich, Assoc EURATOM FZ, D-52425 Julich, Germany. [Mansfield, D. K.; Maingi, R.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Zou, X. L.] CEA, IRFM, F-13108 St Paul Les Durance, France. RP Hu, JS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. EM hujs@ipp.ac.cn FU National Magnetic Confinement Fusion Science Program of China [2013GB114004, 2011GB107000]; National Nature Science Foundation of China [11321092, 11405210]; Chinese academy of sciences visiting professorship for senior international scientists [2012T1J0025] FX This work was supported by the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2013GB114004 and No. 2011GB107000, and National Nature Science Foundation of China under Contracts No. 11321092 and No. 11405210, and Chinese academy of sciences visiting professorship for senior international scientists under Contracts No. 2012T1J0025. NR 29 TC 15 Z9 15 U1 15 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 3 PY 2015 VL 114 IS 5 AR 055001 DI 10.1103/PhysRevLett.114.055001 PG 5 WC Physics, Multidisciplinary SC Physics GA CB8FM UT WOS:000349864300006 PM 25699449 ER PT J AU Armstrong, CR Nuessle, PR Brant, HA Hall, G Halverson, JE Cadieux, JR AF Armstrong, Christopher R. Nuessle, Patterson R. Brant, Heather A. Hall, Gregory Halverson, Justin E. Cadieux, James R. TI Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA: A Long-Term Study SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MASS-SPECTROMETRY; FALLOUT PLUTONIUM; SEDIMENTS; RELEASE; URANIUM; SAMPLES; RATIOS; RADIONUCLIDES; DISSOLUTION; ACCIDENT AB This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by a particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the Pu-238/Pu239+240 activity ratios attributed to SRS are substantially different than fallout due to past Pu-238 production on the site. The Pu-240/Pu-239 atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the Pu-242/Pu-239 atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment. C1 [Armstrong, Christopher R.; Nuessle, Patterson R.; Brant, Heather A.; Hall, Gregory; Halverson, Justin E.; Cadieux, James R.] Westinghouse Savannah River Co, Savannah River Lab, Nonproliferat Technol Sect, Aiken, SC 29808 USA. RP Armstrong, CR (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Nonproliferat Technol Sect, Aiken, SC 29808 USA. EM christopher.armstrong@srnl.doe.gov NR 28 TC 1 Z9 1 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 3 PY 2015 VL 49 IS 3 BP 1286 EP 1293 DI 10.1021/es504147d PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CA6XH UT WOS:000349060300008 PM 25535652 ER PT J AU Saxena, G Marzinelli, EM Naing, NN He, ZL Liang, YT Tom, L Mitra, S Ping, H Joshi, UM Reuben, S Mynampati, KC Mishra, S Umashankar, S Zhou, JZ Andersen, GL Kjelleberg, S Swarup, S AF Saxena, Gourvendu Marzinelli, Ezequiel M. Naing, Nyi N. He, Zhili Liang, Yuting Tom, Lauren Mitra, Suparna Ping, Han Joshi, Umid M. Reuben, Sheela Mynampati, Kalyan C. Mishra, Shailendra Umashankar, Shivshankar Zhou, Jizhong Andersen, Gary L. Kjelleberg, Staffan Swarup, Sanjay TI Ecogenomics Reveals Metals and Land-Use Pressures on Microbial Communities in the Waterways of a Megacity SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BACTERIAL COMMUNITY; SPATIAL HETEROGENEITY; ENVIRONMENTAL IMPACTS; FUNCTIONAL DIVERSITY; SEDIMENT; LAKE; CHINA; SOIL; CLASSIFICATION; POLLUTANTS AB Networks of engineered waterways are critical in meeting the growing water demands in megacities. To capture and treat rainwater in an energy-efficient manner, approaches can be developed for such networks that use ecological services from microbial communities. Traditionally, engineered waterways were regarded as homogeneous systems with little responsiveness of ecological communities and ensuing processes. This study provides ecogenomics-derived key information to explain the complexity of urban aquatic ecosystems in well-managed watersheds with densely interspersed land-use patterns. Overall, sedimentary microbial communities had higher richness and evenness compared to the suspended communities in water phase. On the basis of PERMANOVA analysis, variation in structure and functions of microbial communities over space within same land-use type was not significant. In contrast, this difference was significant between different land-use types, which had similar chemical profiles. Of the 36 environmental parameters from spatial analysis, only three metals, namely potassium, copper and aluminum significantly explained between 7% and 11% of the variation in taxa and functions, based on distance-based linear models (DistLM). The ecogenomics approach adopted here allows the identification of key drivers of microbial communities and their functions at watershed-scale. These findings can be used to enhance microbial services, which are critical to develop ecologically friendly waterways in rapidly urbanizing environments. C1 [Saxena, Gourvendu; Marzinelli, Ezequiel M.; Mitra, Suparna; Umashankar, Shivshankar; Kjelleberg, Staffan; Swarup, Sanjay] SCELSE, Singapore 637551, Singapore. [Saxena, Gourvendu; Mishra, Shailendra; Umashankar, Shivshankar; Swarup, Sanjay] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Marzinelli, Ezequiel M.] Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2026, Australia. [Marzinelli, Ezequiel M.] Sydney Inst Marine Sci, Sydney, NSW 2088, Australia. [Naing, Nyi N.; Ping, Han; Joshi, Umid M.; Reuben, Sheela; Mynampati, Kalyan C.] Natl Univ Singapore, Singapore Delft Water Alliance, Singapore 117576, Singapore. [He, Zhili; Liang, Yuting; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [He, Zhili; Liang, Yuting; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Tom, Lauren; Zhou, Jizhong; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, US DOE, Berkeley, CA 94720 USA. [Mishra, Shailendra; Umashankar, Shivshankar; Swarup, Sanjay] Natl Univ Singapore, NUS Environm Res Inst, Singapore 117411, Singapore. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Swarup, S (reprint author), SCELSE, Singapore 637551, Singapore. EM sanjay@nus.edu.sg RI Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Mitra, Suparna/D-2814-2014; Swarup, Sanjay/I-1592-2012; OI Andersen, Gary/0000-0002-1618-9827; Mitra, Suparna/0000-0002-9378-1496; Swarup, Sanjay/0000-0001-6391-0624; , Shivshankar/0000-0001-7478-1194 FU National Research Foundation, Singapore [R-264-001-002-272, R-711-500-003-271] FX The study was supported by grants R-264-001-002-272 (Singapore Delft Water Alliance) and R-711-500-003-271 (Singapore Centre on Environmental Life Sciences Engineering) from National Research Foundation, Singapore. NR 61 TC 5 Z9 6 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 3 PY 2015 VL 49 IS 3 BP 1462 EP 1471 DI 10.1021/es504531s PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CA6XH UT WOS:000349060300028 PM 25564876 ER PT J AU Lee, PKH Men, YJ Wang, SQ He, JZ Alvarez-Cohen, L AF Lee, Patrick K. H. Men, Yujie Wang, Shanquan He, Jianzhong Alvarez-Cohen, Lisa TI Development of a Fluorescence-Activated Cell Sorting Method Coupled with Whole Genome Amplification To Analyze Minority and Trace Dehalococcoides Genomes in Microbial Communities SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MULTIPLE DISPLACEMENT AMPLIFICATION; REDUCTIVE DEHALOGENASE GENES; VINYL-CHLORIDE REDUCTASE; IN-SITU HYBRIDIZATION; 16S RIBOSOMAL-RNA; SP STRAIN; CONTAMINATED GROUNDWATER; FLOW-CYTOMETRY; SINGLE CELLS; BACTERIUM AB Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells from a microbial community, and the DNA of the isolated cells was processed by whole genome amplification (WGA) and hybridized onto a D. mccartyi microarray for comparative genomics against four sequenced strains. First, FACS was successfully applied to a D. mccartyi isolate as positive control, and then microarray results verified that WGA from 10(6) cells or similar to 1 ng of genomic DNA yielded high-quality coverage detecting nearly all genes across the genome. As expected, some inter- and intrasample variability in WGA was observed, but these biases were minimized by performing multiple parallel amplifications. Subsequent application of the FACS and WGA protocols to two enrichment cultures containing similar to 10% and similar to 1% D. mccartyi cells successfully enabled genomic analysis. As proof of concept, this study demonstrates that coupling FACS with WGA and microarrays is a promising tool to expedite genomic characterization of target strains in environmental communities where the relative concentrations are low. C1 [Lee, Patrick K. H.; Men, Yujie; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Lee, Patrick K. H.] City Univ Hong Kong, Sch Energy & Environm, Hong Kong, Hong Kong, Peoples R China. [Wang, Shanquan; He, Jianzhong] Natl Univ Singapore, Div Environm Sci & Engn, Singapore 117576, Singapore. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Lee, Patrick K H/L-1844-2016 OI Lee, Patrick K H/0000-0003-0911-5317 FU Strategic Environmental Research and Development Program (SERDP) [ER-1587]; National Science Foundation [CBET-1336709]; NIEHS Superfund Basic Research Project [ES04705-19] FX We thank Hector Nolla and Alma Valeros for their expertise in flow cytometry and Denise Schichnes for her expertise in microscopy. This research was supported by the Strategic Environmental Research and Development Program (SERDP) through grant ER-1587, the National Science Foundation grant CBET-1336709, and the NIEHS Superfund Basic Research Project ES04705-19. NR 45 TC 2 Z9 2 U1 10 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 3 PY 2015 VL 49 IS 3 BP 1585 EP 1593 DI 10.1021/es503888y PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CA6XH UT WOS:000349060300043 PM 25565465 ER PT J AU Ipsen, A AF Ipsen, Andreas TI Derivation from First Principles of the Statistical Distribution of the Mass Peak Intensities of MS Data SO ANALYTICAL CHEMISTRY LA English DT Article ID NOISE MODEL; SPECTROMETRY; QUANTIZATION; PROTEOMICS; PRECISION; UNIFORM; DITHER AB Despite the widespread use of mass spectrometry (MS) in a broad range of disciplines, the nature of MS data remains very poorly understood, and this places important constraints on the quality of MS data analysis as well as on the effectiveness of MS instrument design. In the following, a procedure for calculating the statistical distribution of the mass peak intensity for MS instruments that use analog-to-digital converters (ADCs) and electron multipliers is presented. It is demonstrated that the physical processes underlying the data-generation process, from the generation of the ions to the signal induced at the detector, and on to the digitization of the resulting voltage pulse, result in data that can be well-approximated by a Gaussian distribution whose mean and variance are determined by physically meaningful instrumental parameters. This allows for a very precise understanding of the signal-to-noise ratio of mass peak intensities and suggests novel ways of improving it. Moreover, it is a prerequisite for being able to address virtually all data analytical problems in downstream analyses in a statistically rigorous manner. The model is validated with experimental data. C1 [Ipsen, Andreas] Swansea Univ, Inst Mass Spectrometry, Coll Med, Swansea SA2 8PP, W Glam, Wales. [Ipsen, Andreas] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ipsen, Andreas] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ipsen, A (reprint author), Swansea Univ, Inst Mass Spectrometry, Coll Med, Swansea SA2 8PP, W Glam, Wales. EM a.ipsen@swansea.ac.uk OI Ipsen, Andreas/0000-0002-2566-8811 FU MRC fellowship in biomedical informatics [MR/J013994/1] FX The author thanks Gareth Brenton for valuable discussions, and for assistance with the experimental work. The author is supported by an MRC fellowship in biomedical informatics (Grant No. MR/J013994/1). NR 29 TC 2 Z9 2 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD FEB 3 PY 2015 VL 87 IS 3 BP 1726 EP 1734 DI 10.1021/ac503554u PG 9 WC Chemistry, Analytical SC Chemistry GA CA6WX UT WOS:000349059000044 PM 25620060 ER PT J AU Ryan, KC Guce, AI Johnson, OE Brunold, TC Cabelli, DE Garman, SC Maroney, MJ AF Ryan, Kelly C. Guce, Abigail I. Johnson, Olivia E. Brunold, Thomas C. Cabelli, Diane E. Garman, Scott C. Maroney, Michael J. TI Nickel Superoxide Dismutase: Structural and Functional Roles of Nisi and Its H-Bonding Network SO BIOCHEMISTRY LA English DT Article ID ACTIVE-SITE; MECHANISM; RADICALS; INTERFACE; COMPLEXES; RESIDUES; REVEALS; INSIGHT AB Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the NH group of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intrasubunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network and compare the results with prior predictions from density functional theory calculations. The X-ray crystal structure of H1A-NiSOD, which lacks the apical ligand entirely, reveals that in the absence of the Glu17-His1 H-bond, the active site is disordered. Characterization of this variant using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N2S2 planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant retains 4% of wild-type (WT) NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand but perturb the H-bonding network: R47A-NiSOD, which lacks the intramolecular H-bonding interaction; E17R/R47A-NiSOD, which retains the intramolecular H-bond but lacks the intermolecular Glu17His1 H-bond; and E17A/R47A-NiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques, including XAS to probe the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and electron paramagnetic resonance to assess the Ni redox activity. The results indicate that in addition to the roles in redox tuning suggested on the basis of previous computational studies, the Glu17His1 H-bond plays an important structural role in the proper folding of the Ni-hook motif that is a critical feature of the active site. C1 [Ryan, Kelly C.; Guce, Abigail I.; Maroney, Michael J.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. [Garman, Scott C.] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA. [Johnson, Olivia E.; Brunold, Thomas C.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Maroney, MJ (reprint author), Univ Massachusetts, Dept Chem, 104 Lederle Grad Res Tower A, Amherst, MA 01003 USA. EM mmaroney@chemistry.umass.edu FU National Science Foundation [CHE-0809188]; National Institutes of Health [GM 64631] FX This work was supported by grants from the National Science Foundation (CHE-0809188 to M.J.M.) and the National Institutes of Health (GM 64631 to T.C.B.). NR 32 TC 4 Z9 4 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 3 PY 2015 VL 54 IS 4 BP 1016 EP 1027 DI 10.1021/bi501258u PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CA6WZ UT WOS:000349059400007 PM 25580509 ER PT J AU Galinato, MGI Bowman, SEJ Kleingardner, JG Martin, S Zhao, JY Sturhahn, W Alp, EE Bren, KL Lehnert, N AF Galinato, Mary Grace I. Bowman, Sarah E. J. Kleingardner, Jesse G. Martin, Sherri Zhao, Jiyong Sturhahn, Wolfgang Alp, E. Ercan Bren, Kara L. Lehnert, Nicolai TI Effects of Protein Structure on Iron-Polypeptide Vibrational Dynamic Coupling in Cytochrome c SO BIOCHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; RESONANCE RAMAN INVESTIGATIONS; FERROUS HEME-NITROSYLS; MOLECULAR CALCULATIONS; ELECTRONIC-STRUCTURE; SPECTROSCOPY; PORPHYRIN; COMPLEXES; IMIDAZOLE; LIGAND AB Cytochrome c (Cyt c) has a heme covalently bound to the polypeptide via a Cys-X-X-Cys-His (CXXCH) linker that is located in the interface region for protein-protein interactions. To determine whether the polypeptide matrix influences iron vibrational dynamics, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on Fe-57-labeled ferric Hydrogenobacter thermophilus cytochrome c-552, and variants M13V, M13V/K22M, and A7F, which have structural modifications that alter the composition or environment of the CXXCH pentapeptide loop. Simulations of the NRVS data indicate that the 150-325 cm(-1) region is dominated by N-His-Fe-S-Met axial ligand and polypeptide motions, while the 325-400 cm(-1) region shows dominant contributions from nu(Fe-N-Pyr) (Pyr = pyrrole) and other heme-based modes. Diagnostic spectral signatures that directly relate to structural features of the heme active site are identified using a quantum chemistry-centered normal coordinate analysis (QCC-NCA). In particular, spectral features that directly correlate with CXXCH loop stiffness, the strength of the Fe-His interaction, and the degree of heme distortion are identified. Cumulative results from our investigation suggest that compared to the wild type (wt), variants M13V and M13V/K22M have a more rigid CXXCH pentapeptide segment, a stronger Fe-N-His interaction, and a more ruffled heme. Conversely, the A7F variant has a more planar heme and a weaker Fe-N-His bond. These results are correlated to the observed changes in reduction potential between wt protein and the variants studied here. Implications of these results for Cyt c biogenesis and electron transfer are also discussed. C1 [Galinato, Mary Grace I.; Martin, Sherri; Lehnert, Nicolai] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Galinato, Mary Grace I.] Behrend Coll, Penn State Erie, Sch Chem Sci, Erie, PA 16563 USA. [Bowman, Sarah E. J.; Kleingardner, Jesse G.; Bren, Kara L.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. [Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan] Argonne Natl Lab, Expt Facil Div, Adv Photon Source, Argonne, IL 60439 USA. RP Galinato, MGI (reprint author), Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. EM mig11@psu.edu; bren@chem.rochester.edu; lehnertn@umich.edu OI Bren, Kara/0000-0002-8082-3634 FU National Institutes of Health [R01-GM63170] FX K.L.B. acknowledges support from the National Institutes of Health (R01-GM63170). NR 56 TC 3 Z9 3 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 3 PY 2015 VL 54 IS 4 BP 1064 EP 1076 DI 10.1021/bi501430z PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CA6WZ UT WOS:000349059400011 PM 25531247 ER PT J AU Schneider, JG Nadeau, JH AF Schneider, Jochen G. Nadeau, Joseph H. TI Turn Up the Heat: Circulating Serotonin Tunes Our Internal Heating System SO CELL METABOLISM LA English DT Editorial Material ID PERIPHERAL SEROTONIN AB Serotonin acts as neurotransmitter in the brain and as a multifaceted signaling molecule coordinating many physiological processes in the periphery. In a recent issue of Nature Medicine, Crane et al. (2014) find that peripheral serotonin controls thermogenesis in adipose tissue by modulating beta-adrenergic stimulation of UCP-1, thereby affecting glucose homeostasis and weight gain. C1 [Schneider, Jochen G.] Luxembourg Ctr Syst Biomed LCSB, L-4362 Luxembourg, Luxembourg. [Schneider, Jochen G.] Saarland Univ Med Ctr Homburg Saar, Dept Internal Med 2, D-66424 Homburg, Germany. [Nadeau, Joseph H.] Pacific Northwest Res Inst, Seattle, WA 98122 USA. RP Schneider, JG (reprint author), Luxembourg Ctr Syst Biomed LCSB, Campus Belval,7 Ave Hauts Fourneaux, L-4362 Luxembourg, Luxembourg. EM jg.schneider@outlook.com; jnadeau@pnri.org NR 10 TC 2 Z9 2 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1550-4131 EI 1932-7420 J9 CELL METAB JI Cell Metab. PD FEB 3 PY 2015 VL 21 IS 2 BP 156 EP 158 DI 10.1016/j.cmet.2015.01.011 PG 3 WC Cell Biology; Endocrinology & Metabolism SC Cell Biology; Endocrinology & Metabolism GA CB1IT UT WOS:000349381400004 PM 25651169 ER PT J AU Peng, B Su, YB Li, H Han, Y Guo, C Tian, YM Peng, XX AF Peng, Bo Su, Yu-bin Li, Hui Han, Yi Guo, Chang Tian, Yao-mei Peng, Xuan-xian TI Exogenous Alanine and/or Glucose plus Kanamycin Kills Antibiotic-Resistant Bacteria SO CELL METABOLISM LA English DT Article ID DEHYDROGENASE MULTIENZYME COMPLEX; EDWARDSIELLA-TARDA; ESCHERICHIA-COLI; METABOLIC PATHWAYS; INFECTIONS; FISH; ELUCIDATION; MECHANISM; DISCOVERY; TARGETS AB Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. C1 [Peng, Bo; Su, Yu-bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-mei; Peng, Xuan-xian] Sun Yat Sen Univ, State Key Lab Biocontrol, Ctr Prote & Metabol, Sch Life Sci,MOE Key Lab Aquat Food Safety, Guangzhou 510275, Guangdong, Peoples R China. [Peng, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Peng, XX (reprint author), Sun Yat Sen Univ, State Key Lab Biocontrol, Ctr Prote & Metabol, Sch Life Sci,MOE Key Lab Aquat Food Safety, Guangzhou 510275, Guangdong, Peoples R China. EM pxuanx@sysu.edu.cn FU "973" project [2012CB114406]; China Ocean Mineral Resources Research and Development Association [DY125-15-T-07]; NSFC [41276145, 31272702]; Guangdong Provincial Science and technology projects [2012A031100004] FX This work was sponsored by grants from the "973" project (2012CB114406), China Ocean Mineral Resources Research and Development Association (DY125-15-T-07), NSFC projects (41276145, 31272702), and Guangdong Provincial Science and technology projects (2012A031100004). NR 40 TC 27 Z9 29 U1 3 U2 42 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1550-4131 EI 1932-7420 J9 CELL METAB JI Cell Metab. PD FEB 3 PY 2015 VL 21 IS 2 BP 249 EP 261 DI 10.1016/j.cmet.2015.01.008 PG 13 WC Cell Biology; Endocrinology & Metabolism SC Cell Biology; Endocrinology & Metabolism GA CB1IT UT WOS:000349381400014 PM 25651179 ER PT J AU Shemilt, L Verbanis, E Schwenke, J Estandarte, AK Xiong, G Harder, R Parmar, N Yusuf, M Zhang, FC Robinson, IK AF Shemilt, Laura Verbanis, Ephanielle Schwenke, Joerg Estandarte, Ana K. Xiong, Gang Harder, Ross Parmar, Neha Yusuf, Mohammed Zhang, Fucai Robinson, Ian K. TI Karyotyping Human Chromosomes by Optical and X-Ray Ptychography Methods SO BIOPHYSICAL JOURNAL LA English DT Article ID MICROSCOPY; GENOME; SIZE AB Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the mass of chromosomes and perform a partial karyotype from the results. We also obtain high spatial resolution using this technique with synchrotron source x-rays. C1 [Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; Estandarte, Ana K.; Xiong, Gang; Parmar, Neha; Yusuf, Mohammed; Zhang, Fucai; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London, England. [Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; Estandarte, Ana K.; Parmar, Neha; Yusuf, Mohammed; Zhang, Fucai; Robinson, Ian K.] Rutherford Appleton Lab, Res Complex Harwell RCaH, Didcot OX11 0QX, Oxon, England. [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Shemilt, L (reprint author), UCL, London Ctr Nanotechnol, London, England. EM laura.shemilt.10@ucl.ac.uk FU BBSRC Professorial Fellowship [BB/H022597/1]; Argonne National Laboratory [DE-AC02-06CH11357]; National Science Foundation [DMR-9724294] FX This work was supported by a BBSRC Professorial Fellowship, grant number BB/H022597/1. This research used resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. The 34-ID-C Beamline at APS was built with a National Science Foundation grant DMR-9724294. NR 25 TC 8 Z9 8 U1 4 U2 29 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD FEB 3 PY 2015 VL 108 IS 3 BP 706 EP 713 DI 10.1016/j.bpj.2014.11.3456 PG 8 WC Biophysics SC Biophysics GA CA2SU UT WOS:000348758600029 PM 25650937 ER PT J AU Dobrescu, BA Frugiuele, C AF Dobrescu, Bogdan A. Frugiuele, Claudia TI GeV-scale dark matter: production at the Main Injector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Rare Decays; Beyond Standard Model; Neutrino Physics ID BARYON NUMBER; CONSTRAINTS; WIMPS AB Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NO nu A near detector is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes. C1 [Dobrescu, Bogdan A.; Frugiuele, Claudia] Fermi Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Frugiuele, C (reprint author), Fermi Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bdob@fnal.gov; claudiaf@fnal.gov FU United States Department of Energy [DE-AC02-07CH11359] FX We thank Prateek Agrawal, Brian Batell, Pilar Coloma, Patrick Fox, Martin Frank, Lisa Goodenough, Roni Harnik, Lauren Hsu, Siva Kasetti, Ian Lewis, Tongyan Lin, David McKeen, Denis Perevalov, Robert Plunkett, Adam Ritz and David Schmitz for valuable discussions and comments. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 69 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 3 PY 2015 IS 2 BP 1 EP 19 DI 10.1007/JHEP02(2015)019 PG 19 WC Physics, Particles & Fields SC Physics GA CB0JI UT WOS:000349311500001 ER PT J AU Lee, I Kim, CK Lee, J Billinge, SJL Zhong, RD Schneeloch, JA Liu, TS Valla, T Tranquada, JM Gu, GD Davis, JCS AF Lee, Inhee Kim, Chung Koo Lee, Jinho Billinge, Simon J. L. Zhong, Ruidan Schneeloch, John A. Liu, Tiansheng Valla, Tonica Tranquada, John M. Gu, Genda Davis, J. C. Seamus TI Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Cr-x(Bi0.1Sb0.9)(2-x)Te-3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ferromagnetic topological insulator; Dirac-mass gapmap; Dirac-mass disorder; magnetic dopant atoms ID SURFACE; FERMION; ORDER; STATE AB To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr-0.08(Bi0.1Sb0.9)(1.92)Te-3. Simultaneous visualization of the Dirac-mass gap Delta(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Delta(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Delta(r) alpha n(r) is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV.nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential. C1 [Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan; Schneeloch, John A.; Liu, Tiansheng; Valla, Tonica; Tranquada, John M.; Gu, Genda; Davis, J. C. Seamus] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Lee, Jinho] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Lee, Jinho] Inst for Basic Sci Korea, Ctr Correlated Elect Syst, Seoul 151742, South Korea. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Zhong, Ruidan] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Schneeloch, John A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Liu, Tiansheng] North Univ China, Sch Chem Engn & Environm, Taiyuan 030051, Shanxi, Peoples R China. [Davis, J. C. Seamus] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA. [Davis, J. C. Seamus] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Davis, J. C. Seamus] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Davis, JCS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jcseamusdavis@gmail.com RI Tranquada, John/A-9832-2009; Zhong, Ruidan/D-5296-2013; OI Tranquada, John/0000-0003-4984-8857; Zhong, Ruidan/0000-0003-1652-9454; KIM, CHUNG KOO/0000-0002-2463-197X; Schneeloch, John/0000-0002-3577-9574 FU US Department of Energy [DE-AC02-98CH10886]; Institute of Basic Science of Korea [IBS-R009-D1]; J. P. Reid under Engineering and Physical Sciences Research Council Programme Grant "Topological Protection and Non-Equilibrium States in Correlated Electron Systems" FX We acknowledge and thank A. V. Balatsky, M. Franz, D. Goldhaber-Gordon, Z. Hasan, D.-H. Lee, A. P. Mackenzie, V. Madhavan, and J. W. Orenstein for very helpful discussions and communications. Experimental studies and sample fabrication were supported by the US Department of Energy under Contract DE-AC02-98CH10886 (to I.L., J.C.S.D., T.V., J.M.T., and G.G.) and under the FlucTeam program at Brookhaven National Laboratory Contract DE-AC02-98CH10886 (to S.J.L.B. and C.K.K). J.L. acknowledges support from the Institute of Basic Science of Korea under Grant IBS-R009-D1. J.C.S.D. also acknowledges the support for conceptual design studies for this project with J. P. Reid under Engineering and Physical Sciences Research Council Programme Grant "Topological Protection and Non-Equilibrium States in Correlated Electron Systems." NR 34 TC 25 Z9 25 U1 13 U2 49 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 3 PY 2015 VL 112 IS 5 BP 1316 EP 1321 DI 10.1073/pnas.1424322112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7HF UT WOS:000349087700036 PM 25605947 ER PT J AU McKee, JJ Rose, AN Bright, EA Huynh, T Bhaduri, BL AF McKee, Jacob J. Rose, Amy N. Bright, Edward A. Timmy Huynh Bhaduri, Budhendra L. TI Locally adaptive, spatially explicit projection of US population for 2030 and 2050 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE population projections; population distribution; LandScan; high-resolution population ID URBAN FUTURES MODEL; CLIMATE-CHANGE; COASTAL ZONES; SRES; SCENARIOS; SIMULATION; PATTERNS; GIS AB Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations. C1 [McKee, Jacob J.; Rose, Amy N.; Bright, Edward A.; Timmy Huynh; Bhaduri, Budhendra L.] Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP McKee, JJ (reprint author), Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM mckeejj@ornl.gov OI McKee, Jacob/0000-0003-0205-8698 FU US Department of Energy [DE-AC05-00OR22725] FX The authors thank Olufemi Omitaomu for providing the motivation for this research. This manuscript has benefitted from the critical insights and suggestions from three anonymous reviewers and also our colleagues Jessica Moehl, Nicholas Nagle, Robert Stewart, Harini Sridharan, and Linda Sylvester. This manuscript has been authored by employees of UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the US Department of Energy. NR 47 TC 4 Z9 4 U1 9 U2 35 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 3 PY 2015 VL 112 IS 5 BP 1344 EP 1349 DI 10.1073/pnas.1405713112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7HF UT WOS:000349087700041 PM 25605882 ER PT J AU Haravifard, S Banerjee, A van Wezel, J Silevitch, DM dos Santos, AM Lang, JC Kermarrec, E Srajer, G Gaulin, BD Molaison, JJ Dabkowska, HA Rosenbaum, TF AF Haravifard, S. Banerjee, A. van Wezel, J. Silevitch, D. M. dos Santos, Antonio M. Lang, J. C. Kermarrec, E. Srajer, G. Gaulin, B. D. Molaison, J. J. Dabkowska, H. A. Rosenbaum, T. F. TI Reply to Zayed: Interplay of magnetism and structure in the Shastry-Sutherland model SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Haravifard, S.; Banerjee, A.; Silevitch, D. M.; Rosenbaum, T. F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Haravifard, S.; Banerjee, A.; Silevitch, D. M.; Rosenbaum, T. F.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Haravifard, S.; Lang, J. C.; Srajer, G.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Banerjee, A.; dos Santos, Antonio M.; Molaison, J. J.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [van Wezel, J.] Univ Bristol, Sch Phys, Bristol BS8 1TL, Avon, England. [Kermarrec, E.; Gaulin, B. D.; Dabkowska, H. A.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Kermarrec, E.; Gaulin, B. D.; Dabkowska, H. A.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. RP Rosenbaum, TF (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM tfr@caltech.edu RI dos Santos, Antonio/A-5602-2016; OI dos Santos, Antonio/0000-0001-6900-0816; Banerjee, Arnab/0000-0002-3088-6071 NR 5 TC 0 Z9 0 U1 0 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 3 PY 2015 VL 112 IS 5 BP E383 EP E384 DI 10.1073/pnas.1423100112 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA7HF UT WOS:000349087700002 PM 25609672 ER PT J AU Li, XY Deng, ZQD Brown, RS Fu, T Martinez, JJ McMichael, GA Skalski, JR Townsend, RL Trumbo, BA Ahmann, ML Renholds, JF AF Li, Xinya Deng, Zhiqun D. Brown, Richard S. Fu, Tao Martinez, Jayson J. McMichael, Geoffrey A. Skalski, John R. Townsend, Richard L. Trumbo, Bradly A. Ahmann, Martin L. Renholds, Jon F. TI Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival SO CONSERVATION PHYSIOLOGY LA English DT Article DE Acclimation depth; acoustic telemetry; juvenile salmonid; migration depth; three-dimensional tracking; turbine passage ID ACOUSTIC TELEMETRY SYSTEM; DIEL VERTICAL MIGRATION; HYDROTURBINE PASSAGE; ANTIPREDATION WINDOW; SOCKEYE-SALMON; INSTRUMENTATION; BAROTRAUMA; TRACKING; DESIGN AB Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from similar to 28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. C1 [Li, Xinya; Deng, Zhiqun D.; Fu, Tao; Martinez, Jayson J.] Pacific NW Natl Lab, Hydrol Grp, 3320 Innovat Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA. [Brown, Richard S.; McMichael, Geoffrey A.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Skalski, John R.; Townsend, Richard L.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98101 USA. [Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.] US Army Corps Engineers, Walla Walla, WA 99362 USA. RP Deng, ZQD (reprint author), Pacific NW Natl Lab, Hydrol Grp, 3320 Innovat Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU US Army Corps of Engineers, Walla Walla District FX This work was supported by the US Army Corps of Engineers, Walla Walla District. NR 33 TC 0 Z9 0 U1 10 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2051-1434 J9 CONSERV PHYSIOL JI Conserv. Physiol. PD FEB 3 PY 2015 VL 3 AR cou064 DI 10.1093/conphys/cou064 PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences; Physiology SC Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology GA DK8QV UT WOS:000375194200001 PM 27293685 ER PT J AU Li, X Yu, VY Lin, YP Chomvong, K Estrela, R Park, A Liang, JM Znameroski, EA Feehan, J Kim, SR Jin, YS Glass, NL Cate, JHD AF Li, Xin Yu, Vivian Yaci Lin, Yuping Chomvong, Kulika Estrela, Raissa Park, Annsea Liang, Julie M. Znameroski, Elizabeth A. Feehan, Joanna Kim, Soo Rin Jin, Yong-Su Glass, N. Louise Cate, Jamie H. D. TI Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels SO ELIFE LA English DT Article ID SACCHAROMYCES-CEREVISIAE STRAIN; ALDO-KETO REDUCTASE; TRANSCRIPTION FACTORS; NEUROSPORA-CRASSA; LIGNOCELLULOSIC BIOMASS; ETHANOL-PRODUCTION; HIGH-THROUGHPUT; CANDIDA-TENUIS; FERMENTATION; FUNDAMENTALS AB Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. C1 [Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Estrela, Raissa; Park, Annsea; Znameroski, Elizabeth A.; Feehan, Joanna; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Li, Xin] Impossible Foods Inc, Redwood City, CA 94063 USA. [Chomvong, Kulika; Glass, N. Louise] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Liang, Julie M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Soo Rin; Jin, Yong-Su] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Kim, Soo Rin] Kyungpook Natl Univ, Sch Food Sci & Biotechnol, Taegu 702701, South Korea. [Jin, Yong-Su] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov OI Kim, Soo Rin/0000-0001-5855-643X FU Energy Biosciences Institute; CNPq; CAPES FX We thank L. Acosta-Sampson and A. Gokhale for helpful discussions, J. Dueber for xylose utilization pathway plasmids, Z. Baer, J. Kuchenreuthe and M. Maurer for helps in anaerobic fermentation, and S. Bauer and A. Ibanez Zamora for help with analytical methods. This work was supported by funding from the Energy Biosciences Institute (J.H.D.C., N.L.G and Y.S.J.), and by a pre-doctoral fellowship from CNPq and CAPES through the program "Ciencia sem Fronteiras" (R.E.). NR 50 TC 7 Z9 7 U1 4 U2 8 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD FEB 3 PY 2015 VL 4 AR e05896 DI 10.7554/eLife.05896 PG 54 WC Biology SC Life Sciences & Biomedicine - Other Topics GA CA3CN UT WOS:000348783800003 ER PT J AU Cozad, A Sahinidis, NV Miller, DC AF Cozad, Alison Sahinidis, Nikolaos V. Miller, David C. TI A combined first-principles and data-driven approach to model building SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Regression; Surrogate models; Semi-infinite programming ID REGRESSION; OPTIMIZATION AB We address a central theme of empirical model building: the incorporation of first-principles information in a data-driven model-building process. By enabling modelers to leverage all available information, regression models can be constructed using measured data along with theory-driven knowledge of response variable bounds, thermodynamic limitations, boundary conditions, and other aspects of system knowledge. We expand the inclusion of regression constraints beyond intra-parameter relationships to relationships between combinations of predictors and response variables. Since the functional form of these constraints is more intuitive, they can be used to reveal hidden relationships between regression parameters that are not directly available to the modeler. First, we describe classes of a priori modeling constraints. Next, we propose a semi-infinite programming approach for the incorporation of these novel constraints. Finally, we detail several application areas and provide extensive computational results. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cozad, Alison; Sahinidis, Nikolaos V.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Sahinidis, Nikolaos V.; Miller, David C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sahinidis, NV (reprint author), Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM sahinidis@cmu.edu FU RES [DE-FE0004000]; Agency of the United States Government; Neither the United States Government nor any agency FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000, as part of the Carbon Capture Simulation Initiative. This report was prepared as an account of work sponsored by an Agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights, Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 31 TC 4 Z9 4 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD FEB 2 PY 2015 VL 73 BP 116 EP 127 DI 10.1016/j.compchemeng.2014.11.010 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA CB6RU UT WOS:000349755100011 ER PT J AU Adare, A Aidala, C Ajitanand, NN Akiba, Y Akimoto, R Al-Ta'ani, H Alexander, J Andrews, KR Angerami, A Aoki, K Apadula, N Appelt, E Aramaki, Y Armendariz, R Aschenauer, EC Atomssa, ET Awes, TC Azmoun, B Babintsev, V Bai, M Bannier, B Barish, KN Bassalleck, B Basye, AT Bathe, S Baublis, V Baumann, C Bazilevsky, A Belmont, R Ben-Benjamin, J Bennett, R Blau, DS Bok, JS Boyle, K Brooks, ML Broxmeyer, D Buesching, H Bumazhnov, V Bunce, G Butsyk, S Campbell, S Castera, P Chen, CH Chi, CY Chiu, M Choi, IJ Choi, JB Choudhury, RK Christiansen, P Chujo, T Chvala, O Cianciolo, V Citron, Z Cole, BA del Valle, ZC Connors, M Csanad, M Csorgo, T Dairaku, S Datta, A David, G Dayananda, MK Denisov, A Deshpande, A Desmond, EJ Dharmawardane, KV Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Durham, JM Durum, A D'Orazio, L Efremenko, YV Engelmore, T Enokizono, A En'yo, H Esumi, S Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Frantz, JE Franz, A Frawley, AD Fukao, Y Fusayasu, T Gal, C Garishvili, I Giordano, F Glenn, A Gong, X Gonin, M Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Guo, L Gustafsson, HA Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Han, R Hanks, J Harper, C Hashimoto, K Haslum, E Hayano, R He, X Hemmick, TK Hester, T Hill, JC Hollis, RS Holzmann, W Homma, K Hong, B Horaguchi, T Hori, Y Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Inaba, M Iordanova, A Isenhower, D Ishihara, M Issah, M Ivanischev, D Iwanaga, Y Jacak, BV Jia, J Jiang, X John, D Johnson, BM Jones, T Joo, KS Jouan, D Kamin, J Kaneti, S Kang, BH Kang, JH Kang, JS Kapustinsky, J Karatsu, K Kasai, M Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kim, BI Kim, DJ Kim, EJ Kim, YJ Kim, YK Kinney, E Kiss, A Kistenev, E Kleinjan, D Kline, P Kochenda, L Komkov, B Konno, M Koster, J Kotov, D Kral, A Kunde, GJ Kurita, K Kurosawa, M Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, DM Lee, J Lee, KB Lee, KS Lee, SH Lee, SR Leitch, MJ Leite, MAL Li, X Lim, SH Levy, LAL Liu, H Liu, MX Love, B Lynch, D Maguire, CF Makdisi, YI Manion, A Manko, VI Mannel, E Mao, Y Masui, H McCumber, M McGaughey, PL McGlinchey, D McKinney, C Means, N Mendoza, M Meredith, B Miake, Y Mibe, T Mignerey, AC Miki, K Milov, A Mitchell, JT Miyachi, Y Mohanty, AK Moon, HJ Morino, Y Morreale, A Morrison, DP Motschwiller, S Moukhanova, TV Murakami, T Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Newby, J Nguyen, M Nihashi, M Nouicer, R Nyanin, AS Oakley, C O'Brien, E Ogilvie, CA Oka, M Okada, K Oskarsson, A Ouchida, M Ozawa, K Pak, R Pantuev, V Papavassiliou, V Park, BH Park, IH Park, SK Pate, SF Patel, L Pei, H Peng, JC Pereira, H Peressounko, DY Petti, R Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Qu, H Rak, J Ravinovich, I Read, KF Reygers, K Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rubin, JG Sahlmueller, B Saito, N Sakaguchi, T Samsonov, V Sano, S Sarsour, M Sato, T Savastio, M Sawada, S Sedgwick, K Seidl, R Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shim, HH Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Sodre, T Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Stankus, PW Stenlund, E Stoll, SP Sugitate, T Sukhanov, A Sun, J Sziklai, J Takagui, EM Takahara, A Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tennant, E Themann, H Thomas, D Togawa, M Tomasek, L Tomasek, M Torii, H Towell, RS Tserruya, I Tsuchimoto, Y Utsunomiya, K Vale, C van Hecke, HW Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Virius, M Vossen, A Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Watanabe, YS Wei, F Wei, R Wessels, J White, SN Winter, D Woody, CL Wright, RM Wysocki, M Yamaguchi, YL Yang, R Yanovich, A Ying, J Yokkaichi, S Yoo, JS You, Z Young, GR Younus, I Yushmanov, IE Zajc, WA Zelenski, A Zhou, S AF Adare, A. Aidala, C. Ajitanand, N. N. Akiba, Y. Akimoto, R. Al-Ta'ani, H. Alexander, J. Andrews, K. R. Angerami, A. Aoki, K. Apadula, N. Appelt, E. Aramaki, Y. Armendariz, R. Aschenauer, E. C. Atomssa, E. T. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Bannier, B. Barish, K. N. Bassalleck, B. Basye, A. T. Bathe, S. Baublis, V. Baumann, C. Bazilevsky, A. Belmont, R. Ben-Benjamin, J. Bennett, R. Blau, D. S. Bok, J. S. Boyle, K. Brooks, M. L. Broxmeyer, D. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Campbell, S. Castera, P. Chen, C. -H. Chi, C. Y. Chiu, M. Choi, I. J. Choi, J. B. Choudhury, R. K. Christiansen, P. Chujo, T. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. del Valle, Z. Conesa Connors, M. Csanad, M. Csoergo, T. Dairaku, S. Datta, A. David, G. Dayananda, M. K. Denisov, A. Deshpande, A. Desmond, E. J. Dharmawardane, K. V. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Durham, J. M. Durum, A. D'Orazio, L. Efremenko, Y. V. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fusayasu, T. Gal, C. Garishvili, I. Giordano, F. Glenn, A. Gong, X. Gonin, M. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Guo, L. Gustafsson, H. -A. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Han, R. Hanks, J. Harper, C. Hashimoto, K. Haslum, E. Hayano, R. He, X. Hemmick, T. K. Hester, T. Hill, J. C. Hollis, R. S. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hori, Y. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Inaba, M. Iordanova, A. Isenhower, D. Ishihara, M. Issah, M. Ivanischev, D. Iwanaga, Y. Jacak, B. V. Jia, J. Jiang, X. John, D. Johnson, B. M. Jones, T. Joo, K. S. Jouan, D. Kamin, J. Kaneti, S. Kang, B. H. Kang, J. H. Kang, J. S. Kapustinsky, J. Karatsu, K. Kasai, M. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kim, B. I. Kim, D. J. Kim, E. -J. Kim, Y. -J. Kim, Y. K. Kinney, E. Kiss, A. Kistenev, E. Kleinjan, D. Kline, P. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kotov, D. Kral, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Lebedev, A. Lee, D. M. Lee, J. Lee, K. B. Lee, K. S. Lee, S. H. Lee, S. R. Leitch, M. J. Leite, M. A. L. Li, X. Lim, S. H. Levy, L. A. Linden Liu, H. Liu, M. X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Manion, A. Manko, V. I. Mannel, E. Mao, Y. Masui, H. McCumber, M. McGaughey, P. L. McGlinchey, D. McKinney, C. Means, N. Mendoza, M. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Miki, K. Milov, A. Mitchell, J. T. Miyachi, Y. Mohanty, A. K. Moon, H. J. Morino, Y. Morreale, A. Morrison, D. P. Motschwiller, S. Moukhanova, T. V. Murakami, T. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Nihashi, M. Nouicer, R. Nyanin, A. S. Oakley, C. O'Brien, E. Ogilvie, C. A. Oka, M. Okada, K. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pantuev, V. Papavassiliou, V. Park, B. H. Park, I. H. Park, S. K. Pate, S. F. Patel, L. Pei, H. Peng, J. -C. Pereira, H. Peressounko, D. Yu. Petti, R. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reygers, K. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rubin, J. G. Sahlmueller, B. Saito, N. Sakaguchi, T. Samsonov, V. Sano, S. Sarsour, M. Sato, T. Savastio, M. Sawada, S. Sedgwick, K. Seidl, R. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shim, H. H. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Sodre, T. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Stankus, P. W. Stenlund, E. Stoll, S. P. Sugitate, T. Sukhanov, A. Sun, J. Sziklai, J. Takagui, E. M. Takahara, A. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tennant, E. Themann, H. Thomas, D. Togawa, M. Tomasek, L. Tomasek, M. Torii, H. Towell, R. S. Tserruya, I. Tsuchimoto, Y. Utsunomiya, K. Vale, C. van Hecke, H. W. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Virius, M. Vossen, A. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Watanabe, Y. S. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wright, R. M. Wysocki, M. Yamaguchi, Y. L. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Yoo, J. S. You, Z. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zelenski, A. Zhou, S. CA PHENIX Collaboration TI Charged-pion cross sections and double-helicity asymmetries in polarized p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; PARTON DISTRIBUTIONS; SPIN STRUCTURE; PROTON; DETECTORS; UNCERTAINTIES; MOMENTUM; NUCLEON; G1 AB We present midrapidity charged-pion invariant cross sections, the ratio of the pi(-) to pi(+) cross sections and the charge-separated double-spin asymmetries in polarized p + p collisions at root s = p + 200 GeV. While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of similar to 0.03-0.16 and provide unique information on the sign of the gluon-helicity distribution. C1 [Andrews, K. R.; Basye, A. T.; Isenhower, D.; Jones, T.; Thomas, D.; Towell, R. S.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY, Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aschenauer, E. C.; Azmoun, B.; Bazilevsky, A.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Armendariz, R.; Barish, K. N.; Chvala, O.; Hester, T.; Hollis, R. S.; Iordanova, A.; Kleinjan, D.; Mendoza, M.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Choi, J. B.; Kim, E. -J.; Lee, S. R.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Akimoto, R.; Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Hori, Y.; Morino, Y.; Ozawa, K.; Sano, S.; Takahara, A.; Utsunomiya, K.; Watanabe, Y. S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Adare, A.; Kinney, E.; Levy, L. A. Linden; McCumber, M.; McGlinchey, D.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Lai, Y. S.; Mannel, E.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Lai, Y. S.; Mannel, E.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Pereira, H.; Silvestre, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.; Yoo, J. S.] Ewha Womans Univ, Seoul 120750, South Korea. [Frawley, A. D.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [Dayananda, M. K.; He, X.; Oakley, C.; Qu, H.; Sarsour, M.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Kang, B. H.; Kang, J. S.; Kim, Y. K.; Park, B. H.] Hanyang Univ, Seoul 133792, South Korea. [Homma, K.; Iwanaga, Y.; Kijima, K. M.; Nakamiya, Y.; Nihashi, M.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Denisov, A.; Durum, A.; Shein, I.; Yanovich, A.] State Res Ctr Russian Federat, IHEP Protvino, Inst High Energy Phys, Protvino 142281, Russia. [Choi, I. J.; Giordano, F.; Perdekamp, M. Grosse; Kim, Y. -J.; Koster, J.; McKinney, C.; Meredith, B.; Peng, J. -C.; Vossen, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Dion, A.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Silva, C. L.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Imai, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Naka, Ibaraki 3191195, Japan. [Kim, D. J.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Iinuma, H.; Mibe, T.; Nagamiya, S.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Lee, K. B.; Lee, K. S.; Park, S. K.; Shim, H. H.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow 123098, Russia. [Dairaku, S.; Imai, K.; Karatsu, K.; Murakami, T.; Nakamura, K. R.; Shoji, K.; Tanida, K.] Kyoto Univ, Kyoto 6068502, Japan. [del Valle, Z. Conesa; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore 54792, Pakistan. [Glenn, A.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Aidala, C.; Brooks, M. L.; Butsyk, S.; Durham, J. M.; Guo, L.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Sondheim, W. E.; van Hecke, H. W.; You, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [D'Orazio, L.; Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Datta, A.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.; Belmont, R.; Rubin, J. G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Baumann, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Ben-Benjamin, J.; Broxmeyer, D.; Fadem, B.; Harper, C.; Motschwiller, S.; Sodre, T.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Moon, H. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Taranenko, A.] Moscow Engn Phys Inst, Natl Res Nucl Univ, MEPhI, Moscow 115409, Russia. [Bassalleck, B.; Fields, D. E.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Ta'ani, H.; Dharmawardane, K. V.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Tennant, E.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Frantz, J. E.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Enokizono, A.; Hornback, D.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Kotov, D.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Aramaki, Y.; Dairaku, S.; En'yo, H.; Fukao, Y.; Goto, Y.; Hashimoto, K.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Karatsu, K.; Kasai, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Miki, K.; Miyachi, Y.; Murata, J.; Nagamiya, S.; Nakagawa, I.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Ouchida, M.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Watanabe, Y.; Yamaguchi, Y. L.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bathe, S.; Boyle, K.; Bunce, G.; Deshpande, A.; En'yo, H.; Goto, Y.; Ichihara, T.; Kawall, D.; Nakagawa, I.; Okada, K.; Seidl, R.; Taketani, A.; Tanida, K.; Togawa, M.; Watanabe, Y.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Hashimoto, K.; Kasai, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ajitanand, N. N.; Alexander, J.; Gong, X.; Jia, J.; Lacey, R.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Apadula, N.; Atomssa, E. T.; Bannier, B.; Bennett, R.; Campbell, S.; Castera, P.; Chen, C. -H.; Citron, Z.; Connors, M.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Gal, C.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Kaneti, S.; Kline, P.; Lee, S. H.; Manion, A.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Petti, R.; Proissl, M.; Sahlmueller, B.; Savastio, M.; Sun, J.; Taneja, S.; Themann, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Garishvili, I.; Hamblen, J.; John, D.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Horaguchi, T.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Oka, M.; Sato, T.; Shimomura, M.; Tanabe, R.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Appelt, E.; Belmont, R.; Greene, S. V.; Huang, S.; Issah, M.; Love, B.; Maguire, C. F.; Roach, D.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Milov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Nagy, M. I.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Nucl & Particle Phys, H-1525 Budapest, Hungary. [Bok, J. S.; Choi, I. J.; Kang, J. H.; Kwon, Y.; Lim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Morrison, DP (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM morrison@bnl.gov; jamie.nagle@colorado.edu RI Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences; Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (P. R. China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy; Department of Science and Technology (India); Israel Science Foundation (Israel); Basic Science Research Program through NRF of the Ministry of Education (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science; Russian Academy of Sciences; Federal Agency of Atomic Energy (Russia); VR and Wallenberg Foundation (Sweden); U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; Hungarian American Enterprise Scholarship Fund; U. S.-Israel Binational Science Foundation; Bundesministerium fur Bildung und Forschung FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (P. R. China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the U. S.-Israel Binational Science Foundation. NR 61 TC 2 Z9 2 U1 6 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 2 PY 2015 VL 91 IS 3 AR 032001 DI 10.1103/PhysRevD.91.032001 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8CN UT WOS:000349856100001 ER PT J AU Jiang, Y Huang, XG Liao, JF AF Jiang, Yin Huang, Xu-Guang Liao, Jinfeng TI Chiral electric separation effect in the quark-gluon plasma SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM-FIELD THEORY; TRANSPORT-COEFFICIENTS; QCD; VIOLATION AB In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma at very high temperature. This new coefficient sigma(chi epsilon), the chiral electric separation effect (CESE) conductivity, quantifies the amount of axial current (J) over right arrow (A) that is generated in response to an externally applied electric field e (E) over right arrow:(J) over right arrow (A) = sigma(chi epsilon)(e (E) over right arrow). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure sigma(chi epsilon) proportional to mu mu(5) emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density mu(5) not equal 0. Using the hardthermal-loop framework, the CESE conductivity for the quark-gluon plasma is found to be sigma(chi epsilon) = (#)TTr(f)Q(e)Q(A)/g(4) ln(1/g) mu mu(s)/T-2 to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#) = 14.5163 for u, d light flavors. C1 [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Huang, Xu-Guang] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Huang, Xu-Guang] Fudan Univ, Ctr Particle Phys & Field Theory, Shanghai 200433, Peoples R China. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Jiang, Y (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. EM jiangyin@indiana.edu; huangxuguang@fudan.edu.cn; liaoji@indiana.edu RI Huang, Xu-Guang/J-4988-2014 OI Huang, Xu-Guang/0000-0001-6293-4843 FU National Science Foundation [PHY-1352368]; Fudan University [EZH1512519]; Shanghai Natural Science Foundation [14ZR1403000]; RIKEN BNL Research Center FX We thank D. Kharzeev, S. Lin, S. Pu, A. Tang, G. Wang, Q. Wang, D. Yang, H. Yee, and Y. Yin for discussions and communications. The research of Y. J. and J. L. is supported by the National Science Foundation (Grant No. PHY-1352368). The research of X. G. H. is supported by Fudan University (Grant No. EZH1512519) and Shanghai Natural Science Foundation (Grant No. 14ZR1403000). J. L. is also grateful to the RIKEN BNL Research Center for partial support. NR 64 TC 20 Z9 20 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 2 PY 2015 VL 91 IS 4 AR 045001 DI 10.1103/PhysRevD.91.045001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB8DH UT WOS:000349858300005 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TDR Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DDJ Martins, CDO De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Heister, A Hindrichs, O Klein, K Ostapchuk, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R GuTh, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, s Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrens, U Bell, AJ Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Gilbert, A Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Muller, T Nurnberg, A Quast, G Rabbertz, K Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Chhibr, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Sharma, A Silvestris, L Venditti, R Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E la Cruz, IHD Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C De Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodrguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Loureno, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Isildak, B Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Albayrak, EA Golmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J John, JS Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Kovalskyi, D Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Krohn, M Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Kreis, BKB Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Mei, H Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P Moon, DH O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Ratnikov, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Luo, W Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Korjenevski, S Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Verwilligen, P Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Martins, T. Dos Reis Herrera, C. Mora Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santaolalla, J. Santoro, A. Sznajder, A. Manganote, E. J. Tonelli Pereira, A. Vilela Bernardes, C. A. Dogra, S. Tomei, T. R. Fernandez Perez Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zou, W. Avila, C. Cabrera, A. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Haerkoenen, J. Karimaeki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maeenpaeae, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Heister, A. Hindrichs, O. Klein, K. Ostapchuk, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrens, U. Bell, A. J. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, T. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Chhibr, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Linares, E. Casimiro Castilla-Valdez, H. De la Cruz-Burelo, E. la Cruz, I. Heredia-De Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Silva, C. Beirao Da Cruz E. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Iglesias, L. Lloret Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Peris, A. Delgado Vazquez, D. Dominguez Del Valle, A. Escalante Bedoya, C. Fernandez Ramos, J. P. Fernandez Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. De Martino, E. Navarro Yzquierdo, A. Perez-Calero Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Soares, M. S. Albajar, C. De Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Campderros, J. Duarte Fernandez, M. Gomez, G. Graziano, A. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodrguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Loureno, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Isildak, B. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, E. A. Goelmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. John, J. St. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. De La Barca Sanchez, M. Calderon Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Kovalskyi, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. Moon, D. H. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stockli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Ratnikov, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Luo, W. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Korjenevski, S. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Verwilligen, P. Vuosalo, C. Woods, N. CA CMS Collaboration TI Study of Vector Boson Scattering and Search for New Physics in Events with Two Same-Sign Leptons and Two Jets SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGGS-BOSON; WEAK INTERACTIONS; HIGH-ENERGIES; MASS; LHC AB A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for (WW +/-)-W-+/- and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Austrian Acad Sci, Inst Hochenergiephys, A-1050 Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.] Catholic Univ Louvain, Louvain, Belgium. [Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Herrera, C. Mora; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Tomei, T. R. Fernandez Perez; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn, Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Haerkoenen, J.; Karimaeki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maeenpaeae, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Phys Nucl Lyon, CNRS IN2P3, Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] RWTH Aachen Univ I, Phys Inst, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] RWTH Aachen Univ III, Phys Inst, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] RWTH Aachen Univ III, Phys Inst B, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] Deutsches Elektronen Synchrotron, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Inst Fundamental Res, Mumbai, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Chhibr, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Venditti, R.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Calabria, C.; Chhibr, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Naples, Italy. [Di Guida, S.; Meola, S.] Univ Guglielmo Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sezione Padova, Padua, Italy. [Bisello, D.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Kanishchev, K.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Vernieri, C.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] Ist Nazl Fis Nucl, INF, Rome, Italy. [Cavallari, F.; D'imperio, G.; Del Re, D.; Longo, E.; Margaroli, F.; Micheli, F.; Santanastasio, F.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Linares, E. Casimiro; Castilla-Valdez, H.; De la Cruz-Burelo, E.; la Cruz, I. Heredia-De; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Silva, C. Beirao Da Cruz E.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Iglesias, L. Lloret; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Fed, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys & Vinca Inst Nucl Sci, Belgrade, Serbia. [Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Peris, A. Delgado; Vazquez, D. Dominguez; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [Albajar, C.; De Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodrguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, IFCA, CSIC, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Loureno, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Adiguzel, A.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Ctr Univ, Chungli, Taiwan. [Abdulsalam, A.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.] Cukurova Univ, Adana, Turkey. [Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Goelmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Ctr Nat Sci, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] California Inst Technol, Pasadena, CA USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.] Johns Hopkins Univ, Baltimore, MD USA. [Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stockli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] State Univ New Jersey, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.; Plestina, R.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Giordano, F.; Gori, V.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Ciangottini, D.; Spiezia, A.; Donato, S.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Traczyk, P.; Casasso, S.; Finco, L.; Obertino, M. M.; Candelise, V.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bruno, G.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Hollar, J.] NICPB, Tallinn, Estonia. [Quertenmont, L.; Zhukov, V.; Katkov, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Manganote, E. J. Tonelli] Univ Estadual Campinas, Campinas, Brazil. Ecole Polytech, CNRS, IN2P3, Laboratoire Leprince Ringuet, F-91128 Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, ElFayoum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Sultan Qaboos Univ, Muscat, Oman. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn, Tehran, Iran. [Safarzadeh, B.] Islam Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Studi Siena, Siena, Italy. [Moon, C. S.; Linacre, J.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [la Cruz, I. Heredia-De] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Kim, V.] St Petersburg State Polytechn Univ, St Petersburg, Russia. [Dubinin, M.] CALTECH, Pasadena, CA USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Sezione INFN, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozdemir, K.; Cerci, D. Sunar] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Polatoz, A.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Bilin, B.] Anadolu Univ, Eskisehir, Turkey. [Bilmis, S.] Ozyegin Univ, Istanbul, Turkey. [Gamsizkan, H.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Necmettin Erbakan Univ, Konya, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys & Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Manganote, Edmilson/K-8251-2013; Bernardes, Cesar Augusto/D-2408-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; candelise, vieri/H-2195-2015; Lokhtin, Igor/D-7004-2012; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Montanari, Alessandro/J-2420-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Popov, Andrey/E-1052-2012; Ligabue, Franco/F-3432-2014; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Menasce, Dario Livio/A-2168-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; OI Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Montanari, Alessandro/0000-0003-2748-6373; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Popov, Andrey/0000-0002-1207-0984; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Levchenko, Petr/0000-0003-4913-0538; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; ORTONA, Giacomo/0000-0001-8411-2971; Giubilato, Piero/0000-0003-4358-5355; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; Diemoz, Marcella/0000-0002-3810-8530; Margaroli, Fabrizio/0000-0002-3869-0153; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Barbieri, Richard/0000-0002-7945-005X; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Marzocchi, Badder/0000-0001-6687-6214; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Gallinaro, Michele/0000-0003-1261-2277; Ulrich, Ralf/0000-0002-2535-402X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Jacob, Jeson/0000-0001-6895-5493 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA) FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). NR 37 TC 13 Z9 13 U1 11 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 2 PY 2015 VL 114 IS 5 AR UNSP 051801 DI 10.1103/PhysRevLett.114.051801 PG 16 WC Physics, Multidisciplinary SC Physics GA CB8FH UT WOS:000349863700004 ER PT J AU Kravets, VV Ocola, LE Khalavka, Y Pinchuk, AO AF Kravets, Vira V. Ocola, Leonidas E. Khalavka, Yuriy Pinchuk, Anatoliy O. TI Polarization and distance dependent coupling in linear chains of gold nanoparticles SO APPLIED PHYSICS LETTERS LA English DT Article ID OPTICAL-PROPERTIES; PLASMON RESONANCE; NANOSTRUCTURES; ENHANCEMENT; SENSITIVITY; ABSORPTION; DEVICES; ARRAYS AB We studied collective surface plasmon excitations in chains of gold nanoparticles. The resonance frequency of these excitations is a function of the distance between the particles and polarization of the incident light. The near-field coupling between the particles in a chain leads to a cosine squared angular dependence between the polarization of the incident light and the axis connecting the particles. The far-field coupling between the particles results in a sine squared angular dependence. When the incident light is polarized along the chain, the near-field coupling exhibits a red shift, while the far-field exhibits a blue shift of the collective plasmon mode with respect to the mode of the non-interacting particles. We experimentally determined the particle separation for which the resonance frequency in the extinction spectra is polarization-independent. (C) 2015 AIP Publishing LLC. C1 [Kravets, Vira V.; Pinchuk, Anatoliy O.] Univ Colorado, Dept Phys & Energy Sci, Colorado Springs, CO 80933 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Khalavka, Yuriy] Chernivtsi Natl Univ, UA-58012 Chernovtsy, Ukraine. RP Kravets, VV (reprint author), Univ Colorado, Dept Phys & Energy Sci, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80933 USA. RI Khalavka, Yuriy/A-6442-2008; OI Khalavka, Yuriy/0000-0002-6832-447X; Ocola, Leonidas/0000-0003-4990-1064 FU Biofrontiers Institute; CRDF [UKC2-7071-CH-12]; NATO [SFPP-984617]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge partial support from the Biofrontiers Institute, CRDF (UKC2-7071-CH-12) and NATO (SFPP-984617) grants. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (CNM proposal 1112). We also want to thank Dr. Zbigniew Celinski, Dr. Robert Camley, Dr. Anatoliy Glushchenko, Kyle Culhane, Nickolas Anderson, Sara Goldman, and Kristen Petersen for their insight and stimulating discussions of this work. NR 35 TC 2 Z9 2 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 2 PY 2015 VL 106 IS 5 AR 053104 DI 10.1063/1.4907322 PG 5 WC Physics, Applied SC Physics GA CB4QB UT WOS:000349611800050 ER PT J AU Puzyrev, YS Schrimpf, RD Fleetwood, DM Pantelides, ST AF Puzyrev, Y. S. Schrimpf, R. D. Fleetwood, D. M. Pantelides, S. T. TI Role of Fe impurity complexes in the degradation of GaN/AlGaN high-electron-mobility transistors SO APPLIED PHYSICS LETTERS LA English DT Article ID ALGAN/GAN HEMTS; 1ST-PRINCIPLES CALCULATIONS; DEFECTS; GAN; STRESS AB Recent experiments show that GaN/AlGaN high-electron-mobility transistors suffer from significant current collapse, which is caused by an increase in the concentration of traps with energy levels 0.5-0.6 eV below the conduction-band edge. This increase in trap concentration is consistent with thermally activated defect diffusion, but the responsible defect complexes have not been identified. It has been suggested that the defect complex may contain iron because of the proximity of the Fe-doped GaN substrate. Here, we report first-principles density-functional calculations of substitutional iron complexes, investigate their properties, and show that the Fe-Ga-V-N complex has properties that account for the observed degradation. (C) 2015 AIP Publishing LLC. C1 [Puzyrev, Y. S.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Schrimpf, R. D.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puzyrev, YS (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. FU Office of Naval research MURI through the DRIFT program [N-00014-08-100655]; McMinn Endowment at Vanderbilt University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported, in part, by the Office of Naval research MURI through the DRIFT program Grant No. N-00014-08-100655 and by the McMinn Endowment at Vanderbilt University. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 6 Z9 6 U1 8 U2 54 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 2 PY 2015 VL 106 IS 5 AR 053505 DI 10.1063/1.4907675 PG 4 WC Physics, Applied SC Physics GA CB4QB UT WOS:000349611800076 ER PT J AU Miller, GJ Meyer, G Mudring, AV AF Miller, Gordon J. Meyer, Gerd Mudring, Anja-Verena TI Corbett Special Issue Editorial SO INORGANIC CHEMISTRY LA English DT Editorial Material C1 [Miller, Gordon J.; Meyer, Gerd] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Miller, Gordon J.] US DOE, Ames Lab, Washington, DC 20585 USA. [Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA. [Mudring, Anja-Verena] US DOE, Ames Lab, Crit Mat Inst, Washington, DC 20585 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. NR 0 TC 0 Z9 0 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 705 EP 706 DI 10.1021/ic5026125 PG 2 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400001 PM 25640735 ER PT J AU Smetana, V Kienle, L Duppel, V Simon, A AF Smetana, Volodymyr Kienle, Lorenz Duppel, Viola Simon, Arndt TI Synthesis, Crystal Structure, and TEM Analysis of Sr19Li44 and Sr3Li2: A Reinvestigation of the Sr-Li Phase Diagram SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRON-DIFFRACTION DATA; PRECESSION TECHNIQUE; CLUSTERS; SYSTEM; REFINEMENT; SCATTERING; BALI4 AB Two intermetallic phases in the Sr-Li system have been synthesized and structurally characterized. According to single-crystal X-ray diffraction data, Sr19Li44 and Sr3Li2 crystallize with tetragonal unit cells (Sr19Li44, I-42d, a = 15.9122(7) angstrom, c = 31.831(2) angstrom, Z = 4, V = 8059(2) angstrom(3); Sr3Li2, P4(2)/mnm, a = 9.803(1) angstrom, c = 8.784(2) angstrom, Z = 4, V = 844.2(2) angstrom(3)). The first compound is isostructural with the recently discovered Ba19Li44. Sr in Sr19Li44 can be fully replaced by Ba with no changes to the crystal structure, whereas the substitution of Sr by Ca is only possible within a limited concentration range. Sr3Li2 can be assigned to the Al2Zr3 structure type. The crystal structure determination of Sr19Li44 was complicated by multiple twinning. As an experimental highlight, an electron microscopy investigation of the highly moisture- and electron-beam-sensitive crystals was performed, enabling high-resolution imaging of the defect structure. C1 [Smetana, Volodymyr; Kienle, Lorenz; Duppel, Viola; Simon, Arndt] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Smetana, Volodymyr] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. [Kienle, Lorenz] Inst Mat Wissensch, D-24143 Kiel, Germany. RP Smetana, V (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM smetana@ameslab.gov RI Smetana, Volodymyr/C-1340-2015; OI Smetana, Volodymyr/0000-0003-0763-1457 NR 32 TC 0 Z9 0 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 733 EP 739 DI 10.1021/ic5010165 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400006 PM 24969220 ER PT J AU Hu, LH Wang, CD Kennedy, RM Marks, LD Poeppelmeier, KR AF Hu, Linhua Wang, Chuandao Kennedy, Robert M. Marks, Laurence D. Poeppelmeier, Kenneth R. TI The Role of Oleic Acid: From Synthesis to Assembly of Perovskite Nanocuboid Two-Dimensional Arrays SO INORGANIC CHEMISTRY LA English DT Article ID NANOCRYSTAL SUPERLATTICES; NANOSTRUCTURED MATERIALS; COLLOIDAL NANOCRYSTALS; BATIO3; SRTIO3; NANOPARTICLES; BINARY; TEMPERATURE; SPHERES; ROUTE AB Oleic acid, an 18-carbon chain fatty acid, has been widely used as a surfactant to fabricate colloidal nanocrystals. In previous work, we discovered a lamellar microemulsion strategy to fabricate sub-20 nm SrTiO3 nanocuboids using oleic acid and oleate species. Here, we demonstrate (i) the general synthesis with lamellar microemulsions of a family of compositionally varied BaxSr1-xTiO3 crystalline nanocuboids with uniform size, and (ii) subsequent assembly into two-dimensional arrays by nanoparticle-bound oleate in a nonpolar solvent. The measured interparticle distance (2.4 nm) of adjacent nanoparticles in an array is less than the length of a double oleate layer (similar to 4 nm). On the basis of calculations of the interfacial free energy, we propose the hydrophobic, hydrocarbon-terminated groups of oleate from adjacent nanocuboids are situated closely but do not overlap. Lower aspect ratio nanocuboids are bordered by four adjacent nanocuboids which results in a uniform direction self-assembly array, whereas higher aspect ratio nanocuboids are bordered by five or six adjacent nanocuboids and can develop an arced local coordination. C1 [Hu, Linhua; Kennedy, Robert M.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Hu, Linhua; Wang, Chuandao; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Poeppelmeier, Kenneth R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hu, LH (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM l-hu@northwestern.edu; l-marks@northwestern.edu; krp@northwestern.edu RI Marks, Laurence/B-7527-2009 FU Northwestern University Institute for Catalysis in Energy Processes (ICEP) [DOE DE-FG02-03-ER15457]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We acknowledge funding from Northwestern University Institute for Catalysis in Energy Processes (ICEP) on Grant Number DOE DE-FG02-03-ER15457. It is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. This material is based in part upon work by R.M.K. supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 31 TC 6 Z9 6 U1 10 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 740 EP 745 DI 10.1021/ic5011715 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400007 PM 25153152 ER PT J AU Lin, QS AF Lin, Qisheng TI Lithiation-Induced Zinc Clustering of Zn-3, Zn-12, and Zn-18 Units in Zintl-Like Ca similar to 30Li3+xZn60-x (x=0.44-1.38) SO INORGANIC CHEMISTRY LA English DT Article ID ICOSAHEDRAL QUASI-CRYSTAL; INTERMETALLIC PHASES; BUILDING-BLOCKS; BERGMAN-TYPE; SOLID-STATE; SYSTEM; APPROXIMANTS; CA; SUBSTITUTION; CHEMISTRY AB Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca similar to 30Li3+xZn60-x, P6/mmm, Z = 1, which can be directly converted from CaZn2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca30Li3.44(6)Zn-59.56(6), a = 15.4651(9) angstrom, c = 9.3898(3) angstrom; Ca30.45(2)Li4.38(6)Zn58.62(6), a = 15.524(3) angstrom, c = 9.413(2) angstrom. The structures of Ca similar to 30Li3+xZn60-x feature a condensed anionic network of Zn-3 triangles, lithium-centered Zn-12 icosahedra, and arachno-(Zn,Li)(18) tubular clusters that are surrounded respectively by Ca-14, Ca-20, and Ca-30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical coloring analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca similar to 30Li3+xZn60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca-Zn polar covalent interactions is about 41%. C1 US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. RP Lin, QS (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM qslin@ameslab.gov FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); DOE [DE-AC02-07CH11358] FX Thanks go to Dr. T. Valentin from Ames Laboratory for resistivity measurements. The research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358. NR 63 TC 1 Z9 1 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 922 EP 929 DI 10.1021/ic502326j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400031 PM 25398001 ER PT J AU Smetana, V Steinberg, S Card, N Mudring, AV Miller, GJ AF Smetana, Volodymyr Steinberg, Simon Card, Nathan Mudring, Anja-Verena Miller, Gordon J. TI Crystal Structure and Bonding in BaAu5Ga2 and AeAu(4+x)Ga(3-x) (Ae = Ba and Eu): Hexagonal Diamond-Type Au Frameworks and Remarkable Cation/Anion Partitioning in the Ae-Au-Ga Systems SO INORGANIC CHEMISTRY LA English DT Article ID INTERMETALLIC COMPOUNDS; QUASI-CRYSTAL; GOLD; GALLIUM; PHASES; ALKALI; CLUSTERS; OCTAGALLIDE; REFINEMENT; POTASSIUM AB Five new polar intermetallic compounds in the Ae-Ga-Au system (Ae = Ba, Eu), BaAu5Ga2 (I), BaAu4.3Ga2.7 (II), Ba1.0Au4.5Ga2.4 (III), EuAu4.8Ga2.2 (IV), and Eu1.1Au4.4Ga2.2 (V), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. I crystallizes in the orthorhombic crystal system with a large unit cell [Pearson symbol oP64; Pnma, Z = 8, a = 8.8350(5) angstrom, b = 7.1888(3)angstrom, c = 20.3880(7) angstrom], whereas all other compounds are hexagonal [hP24; P (6) over bar 2m, Z = 3, a = 8.54-8.77(1) angstrom, c = 7.19-7.24(1) angstrom]. Both structures contain mutually orthogonal layers of Au6 hexagons in chair and boat conformations, resulting in a hexagonal diamond-like network. Ae atoms and additional (Au/Ga)(3) groups are formally encapsulated by (Au-6)(2) distorted hexagonal prisms formed of three edge-sharing hexagons in the boat conformation or, alternatively, lie between two Au6 hexagons in the chair conformation. The (Au/Ga)(3) groups can be substituted by Ae atoms in some of the hexagonal structures with no change to the structural symmetry. Tight-binding electronic structure calculations using linear-muffin-tin-orbital methods on idealized models BaAu5Ga2 and BaAu4Ga3 show both compounds to be metallic with evident pseudogaps near the corresponding Fermi levels. The integrated crystal orbital Hamilton populations are dominated by Au-Au and Au-Ga orbital interactions, although Ba-Au and Ba-Ga contributions are significant. Furthermore, Au-Au interactions vary considerably along different directions in the unit cells, with the largest values for the hexagons in the boat conformation and the lowest values for those in the chair conformation. II revealed that partial substitution of Au atoms in the hexagonal diamond net by a post-transition element (Ga) may occur in this family, whereas the sizes of the (Au/Ga)(3) groups and strong Ba-Au covalent interactions allow for their mutual replacement in the voids. C1 [Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena; Miller, Gordon J.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Smetana, Volodymyr; Steinberg, Simon; Card, Nathan; Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mudring, AV (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM mudring@iastate.edu; gmiller@iastate.edu RI Smetana, Volodymyr/C-1340-2015 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; Office of the Basic Energy Sciences, Materials Sciences Division, DOE; Department of Materials Science and Engineering at Iowa State University; DOE [DE-AC02-07CH11358] FX The research was supported in part by the Critical Materials Institute, an Energy Innovation Hub, funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, and the Office of the Basic Energy Sciences, Materials Sciences Division, DOE, and the Department of Materials Science and Engineering at Iowa State University. Ames Laboratory is operated for DOE by Iowa State University under Contract DE-AC02-07CH11358. NR 46 TC 7 Z9 7 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 1010 EP 1018 DI 10.1021/ic502402y PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400042 PM 25494103 ER PT J AU Lv, B Jawdat, BI Wu, Z Sorolla, M Gooch, M Zhao, K Deng, LZ Xue, YY Lorenz, B Guloy, AM Chu, CW AF Lv, Bing Jawdat, BenMaan I. Wu, Zheng Sorolla, Maurice, II Gooch, Melissa Zhao, Kui Deng, Liangzi Xue, Yu-Yi Lorenz, Bernd Guloy, Arnold M. Chu, Ching-Wu TI Synthesis, Structure, and Superconductivity in the New-Structure-Type Compound: SrPt6P2 SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL ANIONS; CRYSTAL-STRUCTURES; PHASES; PHOSPHIDES; PLATINUM; SOLIDS; EUPTP; GE; SI AB A metal-rich ternary phosphide, SrPt6P2, with a unique structure type was synthesized at high temperatures. Its crystal structure was determined by single-crystal X-ray diffraction [cubic space group Pa (3) over bar; Z = 4; a = 8.474(2) angstrom, and V = 608.51(2) angstrom(3)]. The structure features a unique three-dimensional anionic (Pt6P2)(2-) network of vertex-shared Pt6P trigonal prisms. The Sr atoms occupy a 12-coordinate (Pt) cage site and form a cubic close-packed (face-centered-cubic) arrangement, and the P atoms formally occupy tetrahedral interstices. The metallic compound becomes superconducting at 0.6 K, as evidenced by magnetic and resistivity measurements. C1 [Lv, Bing; Jawdat, BenMaan I.; Wu, Zheng; Sorolla, Maurice, II; Gooch, Melissa; Zhao, Kui; Deng, Liangzi; Xue, Yu-Yi; Lorenz, Bernd; Guloy, Arnold M.; Chu, Ching-Wu] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Lv, Bing; Jawdat, BenMaan I.; Wu, Zheng; Gooch, Melissa; Zhao, Kui; Deng, Liangzi; Xue, Yu-Yi; Lorenz, Bernd; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Sorolla, Maurice, II; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, Ching-Wu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lv, B (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. EM blv@uh.edu OI Deng, Liangzi/0000-0002-5379-2772 FU U.S. Air Force Office of Scientific Research [FA9550-09-1-0656]; T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston; University of Houston; R. A. Welch Foundation [E-1297] FX The work in Houston is supported, in part, by U.S. Air Force Office of Scientific Research Grant FA9550-09-1-0656, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. B.L. also acknowledges the New Faculty Award by University of Houston. A.M.G. acknowledges the R. A. Welch Foundation (Grant E-1297). NR 40 TC 1 Z9 1 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 1049 EP 1054 DI 10.1021/ic502377v PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400046 PM 25525885 ER PT J AU Kwolek, EJ Widmer, R Groning, O Deniz, O Walen, H Yuen, CD Huang, WY Schlagel, DL Wallingford, M Thiel, PA AF Kwolek, Emma J. Widmer, Roland Groening, Oliver Deniz, Okan Walen, Holly Yuen, Chad D. Huang, Wenyu Schlagel, Deborah L. Wallingford, Mark Thiel, Patricia A. TI The (111) Surface of NaAu2: Structure, Composition, and Stability SO INORGANIC CHEMISTRY LA English DT Article ID TEMPERATURE CO OXIDATION; NA/AU(111) SYSTEM; ALLOY FORMATION; CATALYSTS AB The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps, however, cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments. C1 [Kwolek, Emma J.; Walen, Holly; Yuen, Chad D.; Huang, Wenyu; Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Widmer, Roland; Groening, Oliver; Deniz, Okan] Swiss Fed Labs Mat Sci & Technol, EMPA, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland. [Schlagel, Deborah L.; Wallingford, Mark; Thiel, Patricia A.] Ames Lab, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM pthiel@iastate.edu RI Groning, Oliver/J-9727-2012; Widmer, Roland/E-7803-2011; Huang, Wenyu/L-3784-2014; Deniz, Okan/J-9874-2014 OI Widmer, Roland/0000-0002-9226-3136; Huang, Wenyu/0000-0003-2327-7259; Deniz, Okan/0000-0001-8634-8849 FU John D. Corbett Endowment of Iowa State University; Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-07CH11358]; Swiss National Science Foundation [200021-129511] FX The Ames portion of this work was supported by the John D. Corbett Endowment of Iowa State University, and the work was performed at The Ames Laboratory, which is supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy, under Contract DE-AC02-07CH11358. The EMPA portion of this work was supported by the Swiss National Science Foundation (Contract 200021-129511). We thank Dr. Lin-Lin Wang and Prof. Gordon Miller for many useful discussions. NR 15 TC 1 Z9 1 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 2 PY 2015 VL 54 IS 3 BP 1159 EP 1164 DI 10.1021/ic5025444 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CA4PO UT WOS:000348887400059 PM 25516067 ER PT J AU Alves, DSM Galloway, J Ruderman, JT Walsh, JR AF Alves, Daniele S. M. Galloway, Jamison Ruderman, Joshua T. Walsh, Jonathan R. TI Running electroweak couplings as a probe of new physics SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Renormalization Group ID QED RADIATIVE-CORRECTIONS; ONE-LOOP CORRECTIONS; MINIMAL DARK-MATTER; DRELL-YAN PROCESS; PARTON DISTRIBUTIONS; HADRON COLLIDERS; BOSON PRODUCTION; CROSS-SECTION; TEV SCALE; LHC AB The energy dependence of the electroweak gauge couplings has not been measured above the weak scale. We propose that percent-level measurements of the energy dependence of alpha(1,2) can be performed now at the LHC and at future higher energy hadron colliders. These measurements can be used to set limits on new particles with electroweak quantum numbers without relying on any assumptions about their decay properties. The shape of the high invariant mass spectrum of Drell-Yan, pp -> Z*/gamma* -> l (+) l (-) , constrains alpha(1,2)(Q), and the shape of the high transverse mass distribution of pp -> W* -> l nu constrains alpha(2)(Q). We use existing data to perform the first fits to alpha(1,2) above the weak scale. Percent-level measurements are possible because of high precision in theoretical predictions and existing experimental measurements. We show that the LHC already has the reach to improve upon electroweak precision tests for new particles that dominantly couple through their electroweak charges. The 14 TeV LHC is sensitive to the predicted Standard Model (SM) running of alpha(2), and can show that alpha(2) decreases with energy at 2-3 sigma significance. A future 100 TeV proton-proton collider will have significant reach to measure running weak couplings, with sensitivity to the SM running of alpha(2) at 4-5 sigma and sensitivity to winos with masses up to similar to 1.3 TeV at 2 sigma. C1 [Alves, Daniele S. M.; Galloway, Jamison; Ruderman, Joshua T.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Alves, Daniele S. M.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Walsh, Jonathan R.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Walsh, Jonathan R.] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. RP Alves, DSM (reprint author), NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. EM spier@nyu.edu; jamison.galloway@nyu.edu; ruderman@nyu.edu; jwalsh@lbl.gov FU National Science Foundation [PHYS-1066293]; Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [NSF-PHY-0969510, PHY-0947827, PHY-1316753]; James Arthur Postdoctoral Fellowship at NYU FX We thank Kyle Cranmer, Mike Hance, Beate Heinemann, Ye Li, Michelangelo Mangano, Alex Mitov, Frank Petriello, Matt Reece, Filippo Sala, Daniel Stolarski, Tim Tait, and Liantao Wang for useful discussions. JTR thanks the participants of the workshop "BSM physics opportunities at 100TeV", at CERN, for helpful comments. JTR thanks the CERN theory group and the CFHEP at IHEP for hospitality while part of this work was completed. JG thanks the Aspen Center for Physics for hospitality during the completion of this work, supported in part by National Science Foundation Grant No. PHYS-1066293. The work of JRW was supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231. This work used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. DSMA is supported by the NSF under grants NSF-PHY-0969510 (the LHC Theory Initiative), PHY-0947827 and PHY-1316753. JG is supported by the James Arthur Postdoctoral Fellowship at NYU. NR 106 TC 12 Z9 12 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 2 PY 2015 IS 2 BP 1 EP 42 AR 007 DI 10.1007/JHEP02(2015)007 PG 42 WC Physics, Particles & Fields SC Physics GA CB5KI UT WOS:000349665500001 ER PT J AU Walsh, A Scanlon, DO Chen, SY Gong, XG Wei, SH AF Walsh, Aron Scanlon, David O. Chen, Shiyou Gong, X. G. Wei, Su-Huai TI Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE hybrid perovskites; ionic compensation; Schottky defects ID SOLAR-CELLS; TRANSPORT; LENGTHS AB Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4% at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance. C1 [Walsh, Aron] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England. [Walsh, Aron] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Scanlon, David O.] UCL, Dept Chem, London WC1H 0AJ, England. [Scanlon, David O.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Chen, Shiyou] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China. [Gong, X. G.] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. [Gong, X. G.] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Walsh, A (reprint author), Univ Bath, Ctr Sustainable Chem Technol, Claverton Down, Bath BA2 7AY, Avon, England. EM a.walsh@bath.ac.uk; d.scanlon@ucl.ac.uk RI Walsh, Aron/A-7843-2008; Scanlon, David/B-1516-2008; gong, xingao/D-6532-2011 OI Walsh, Aron/0000-0001-5460-7033; Scanlon, David/0000-0001-9174-8601; FU EPSRC [EP/L000202/1, EP/K016288/1, EP/M009580/1]; Materials Design Network; ERC [277757]; NSF of China [11450110056]; Special Funds for Major State Basic Research; NSFC [61106087, 91233121]; U.S. Department of Energy [DE-AC36-08GO28308] FX We acknowledge membership of the UK's HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202/1) and the Materials Design Network. A.W. acknowledges support from the ERC (grant 277757) and EPSRC (EP/K016288/1 and EP/M009580/1). D.O.S. acknowledges support from the NSF of China (11450110056). S.C. and X.G. are supported by Special Funds for Major State Basic Research, and NSFC (61106087, 91233121). The work at NREL is funded by the U.S. Department of Energy under contract number DE-AC36-08GO28308. NR 30 TC 62 Z9 62 U1 6 U2 97 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 2 PY 2015 VL 54 IS 6 BP 1791 EP 1794 DI 10.1002/anie.201409740 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CA8ZH UT WOS:000349209200017 PM 25504875 ER PT J AU Foraita, S Fulton, JL Chase, ZA Vjunov, A Xu, PH Barath, E Camaioni, DM Zhao, C Lercher, JA AF Foraita, Sebastian Fulton, John L. Chase, Zizwe A. Vjunov, Aleksei Xu, Pinghong Barath, Eszter Camaioni, Donald M. Zhao, Chen Lercher, Johannes A. TI Impact of the Oxygen Defects and the Hydrogen Concentration on the Surface of Tetragonal and Monoclinic ZrO2 on the Reduction Rates of Stearic Acid on Ni/ZrO2 SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE decarbonylation; EDX-TEM; hydrodeoxygenation; IR spectroscopy; isotopes; XAFS ID X-RAY-ABSORPTION; ACETIC-ACID; CARBOXYLIC-ACIDS; MICROALGAE OIL; SELECTIVE HYDROGENATION; ZIRCONIA MORPHOLOGY; METHANOL SYNTHESIS; PART II; CATALYSTS; OXIDES AB The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2, whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2. Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the -hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O-2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2. C1 [Foraita, Sebastian; Barath, Eszter; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Foraita, Sebastian; Barath, Eszter; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, D-85747 Garching, Germany. [Fulton, John L.; Chase, Zizwe A.; Vjunov, Aleksei; Camaioni, Donald M.; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Xu, Pinghong] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. EM johannes.lercher@ch.tum.de FU Bavarian Ministry of Economic Affairs and Media, Energy and Technology (Bayerisches Staatsministerium fur Wirtschaft und Medien, Energie und Technologie); Bavarian State Ministry of Education, Science and the Arts (Bayerisches Staatsministerium fur Bildung und Kultus, Wissenschaft und Kunst); United States (US) Department of Energy (DOE) through University of California at Davis [DE-FG02-03ER46057]; DOE by Battelle [DE-AC05-76L01830]; Office of Biological and Environmental Research at PNNL; US DOE Office of Science, the Office of Basic Energy Sciences (BES), the Division of Chemical Sciences, Geosciences Biosciences; DOE/BES; Canadian Light Source; University of Washington; APS; DOE [DE- AC02-06CH11357] FX Financial support for S.F., E.B., and C.Z. in the framework of AlgenFlugKraft project of the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (Bayerisches Staatsministerium fur Wirtschaft und Medien, Energie und Technologie) and of the Bavarian State Ministry of Education, Science and the Arts (Bayerisches Staatsministerium fur Bildung und Kultus, Wissenschaft und Kunst) is highly appreciated. Support of P.X. to take TEM images was provided by the United States (US) Department of Energy (DOE) Grant No. DE-FG02-03ER46057 through the University of California at Davis. Use of TEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76L01830. TEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL. XAFS measurements and related work performed by J.L.F., Z.A.C., and D.M.C. were supported by the US DOE Office of Science, the Office of Basic Energy Sciences (BES), the Division of Chemical Sciences, Geosciences & Biosciences. PNC/XSD facilities at the Advanced Photon Source (APS), and research at these facilities, are supported by DOE/BES, the Canadian Light Source and its funding partners, the University of Washington, and the APS. Use of the APS, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under Contract No. DE- AC02-06CH11357. The assistance of Dr. Nigel Browning (PNNL) in performing TEM and Dr. Mahalingam Balasubramanian (APS) in performing XAFS measurements is highly appreciated. We thank Franz-Xaver Hecht for N2-sorption and Martin Neukamm for AAS measurements, and gratefully acknowledge help provided by Robin Kolvenbach for kinetic fitting, and Christian A. Gartner for isotopic exchange (16O-18O) experiments. NR 39 TC 13 Z9 13 U1 7 U2 84 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 2 PY 2015 VL 21 IS 6 BP 2423 EP 2434 DI 10.1002/chem.201405312 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA AZ9CZ UT WOS:000348510400020 PM 25504844 ER PT J AU Wu, HF Qiao, Q Hu, YG Teng, P Gao, WY Zuo, XB Wojtas, L Larsen, RW Ma, SQ Cai, JF AF Wu, Haifan Qiao, Qiao Hu, Yaogang Teng, Peng Gao, Wenyang Zuo, Xiaobing Wojtas, Lukasz Larsen, Randy W. Ma, Shengqian Cai, Jianfeng TI Sulfono-gamma- AApeptides as a New Class of Nonnatural Helical Foldamer SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE 2D NMR spectroscopy; helical foldamer; peptidomimetics; sulfono--AApeptides; X-ray crystal structure ID BETA-PEPTIDES; PEPTIDOMIMETICS; SPECTROSCOPY; PROTEINS; DESIGN; POTENT AB Foldamers offer an attractive opportunity for the design of novel molecules that mimic the structures and functions of proteins and enzymes including biocatalysis and biomolecular recognition. Herein we report a new class of nonnatural helical sulfono--AApeptide foldamers of varying lengths. The crystal structure of the sulfono--AApeptide monomer S6 illustrates the intrinsic folding propensity of sulfono--AApeptides, which likely originates from the bulkiness of tertiary sulfonamide moiety. The two-dimensional solution NMR spectroscopy data for the longest sequence S1 demonstrates a 10/16 right-handed helical structure. Optical analysis using circular dichroism further supports well- defined helical conformation of sulfono--AApeptides in solution containing as few as five building blocks. Future development of sulfono--AApeptides may lead to new foldamers with discrete functions, enabling expanded application in chemical biology and biomedical sciences. C1 [Wu, Haifan; Qiao, Qiao; Hu, Yaogang; Teng, Peng; Gao, Wenyang; Wojtas, Lukasz; Larsen, Randy W.; Ma, Shengqian; Cai, Jianfeng] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Zuo, Xiaobing] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cai, JF (reprint author), Univ S Florida, Dept Chem, 4202 E Fowler Ave, Tampa, FL 33620 USA. EM jianfengcai@usf.edu RI Teng, Peng/K-1046-2015; Ma, Shengqian/B-4022-2012; Gao, Wen-Yang/K-4109-2014; Wu, Haifan/F-8818-2014 OI Ma, Shengqian/0000-0002-1897-7069; Gao, Wen-Yang/0000-0002-9879-1634; Wu, Haifan/0000-0002-2050-9950 FU Bankhead-Coley Cancer Research Program; NSF [1351265] FX This work was supported by Bankhead-Coley Cancer Research Program and NSF CAREER award (1351265) for J.C. NR 45 TC 13 Z9 13 U1 2 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB 2 PY 2015 VL 21 IS 6 BP 2501 EP 2507 DI 10.1002/chem.201406112 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AZ9CZ UT WOS:000348510400029 PM 25504756 ER PT J AU Park, JS Cheng, L Zorba, V Mehta, A Cabana, J Chen, GY Doeff, MM Richardson, TJ Park, JH Son, JW Hong, WS AF Park, Joong Sun Cheng, Lei Zorba, Vassilia Mehta, Apurva Cabana, Jordi Chen, Guoying Doeff, Marca M. Richardson, Thomas J. Park, Jung Hoon Son, Ji-Won Hong, Wan-Shick TI Effects of crystallinity and impurities on the electrical conductivity of Li-La-Zr-O thin films SO THIN SOLID FILMS LA English DT Article DE Lithium; Solid electrolyte; Garnet; Lithium lanthanate zirconate; Pulsed laser deposition ID SOLID-ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; IONIC-CONDUCTIVITY; LI7LA3ZR2O12; BATTERIES; GARNET; AL; FABRICATION; LIPON AB We present a study of the fabrication of thin films from a Li7La3Zr2O12 ( LLZO) target using pulsed laser deposition. The effects of substrate temperatures and impurities on electrochemical properties of the films were investigated. The thin films of Li-La-Zr-O were deposited at room temperature and higher temperatures on a variety of substrates. Deposition above 600 degrees C resulted in a mixture of cubic and tetragonal phases of LLZO, as well as a La2Zr2O7 impurity, and resulted in aluminum enrichment at the surface when Al-containing substrates were used. Films deposited at 600 degrees C exhibited the highest room temperature conductivity, 1.61 x 10-6 S/cm. The chemical stability toward metallic lithium was also studied using X-ray photoelectron spectroscopy, which showed that the oxidation state of zirconium remained at +4 following physical contact with heated lithium metal. (C) 2014 Elsevier B.V. All rights reserved. C1 [Park, Joong Sun; Cheng, Lei; Zorba, Vassilia; Cabana, Jordi; Chen, Guoying; Doeff, Marca M.; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Park, Joong Sun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Cheng, Lei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mehta, Apurva] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Son, Ji-Won; Hong, Wan-Shick] Univ Seoul, Dept Nanosci & Technol, Seoul, South Korea. [Son, Ji-Won] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 136791, South Korea. RP Park, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM parkj@anl.gov; wshong@uos.ac.kr RI Zorba, Vassilia/C-4589-2015; Cabana, Jordi/G-6548-2012; OI Cabana, Jordi/0000-0002-2353-5986; Son, Ji-Won/0000-0002-5310-0633; Doeff, Marca/0000-0002-2148-8047 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; United States Government FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. A portion of this work was done at Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. NR 26 TC 3 Z9 3 U1 7 U2 119 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 2 PY 2015 VL 576 BP 55 EP 60 DI 10.1016/j.tsf.2014.11.019 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CB1FU UT WOS:000349373300009 ER PT J AU Adams, DP AF Adams, D. P. TI Reactive multilayers fabricated by vapor deposition: A critical review SO THIN SOLID FILMS LA English DT Review DE Thin film; Multilayer; Vapor deposition; Reactive multilayer; Exothermic reaction; Ignition; Deflagration ID SELF-PROPAGATING REACTIONS; TEMPERATURE COMBUSTION SYNTHESIS; AMORPHOUS-GERMANIUM FILMS; INTERMETALLIC REACTION-RATES; ATOMIC LAYER DEPOSITION; EXPLOSIVE CRYSTALLIZATION; GASLESS COMBUSTION; THIN-FILMS; SHOCK-CRYSTALLIZATION; PHASE-FORMATION AB Reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In this critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, with most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In subsequent sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components. (C) 2014 Published by Elsevier B.V. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Adams, DP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dpadams@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author gratefully acknowledges the help and support of many colleagues including: Robert Reeves, Joel McDonald, Ryan Murphy, Yoosuf Picard, Mark Rodriguez, Eric Jones, Jr., Cathy and Joseph Sobczak, V. Carter Hodges, Mark Grubelich, J. Bruce Kelley, Paul Kotula, Thomas LaGrange, Steven Yalisove, John Moore, Jeremy Palmer, Deidre Hirschfeld, Michael Hobbs, Joe Michael, Kathryn Chinn, Kim Archuleta, Alex Tappan, and Mailasu Bai. The work described in this article was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 252 TC 29 Z9 31 U1 12 U2 118 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 2 PY 2015 VL 576 BP 98 EP 128 DI 10.1016/j.tsf.2014.09.042 PG 31 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CB1FU UT WOS:000349373300015 ER PT J AU Yoon, Y Du, YG Garcia, JC Zhu, ZH Wang, ZT Petrik, NG Kimmel, GA Dohnalek, Z Henderson, MA Rousseau, R Deskins, NA Lyubinetsky, I AF Yoon, Yeohoon Du, Yingge Garcia, Juan C. Zhu, Zihua Wang, Zhi-Tao Petrik, Nikolay G. Kimmel, Gregory A. Dohnalek, Zdenek Henderson, Michael A. Rousseau, Roger Deskins, N. Aaron Lyubinetsky, Igor TI Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110) SO CHEMPHYSCHEM LA English DT Article DE density functional calculations; metal oxides; oxygen; scanning probe microscopy; surface chemistry ID SCANNING-TUNNELING-MICROSCOPY; RUTILE TIO2(110); REDUCED TIO2(110); TITANIUM-DIOXIDE; TIO2 110; OXYGEN; O-2; PHOTOCATALYSIS; OXIDE; BULK AB By using a combination of scanning tunneling microscopy (STM), density functional theory (DFT), and secondary-ion mass spectroscopy (SIMS), we explored the interplay and relative impact of surface versus subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (V-O) are virtually absent in the vicinity of positively charged subsurface point defects. This observation is consistent with DFT calculations of the impact of subsurface defect proximity on V-O formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O-2 was employed and was observed to be suppressed around them. DFT results attribute this to a perceived absence of intrinsic (Ti), and likely extrinsic interstitials in the nearest subsurface layer beneath inhibited areas. We also postulate that the entire nearest subsurface region could be devoid of any charged point defects, whereas prevalent surface defects (V-O) are largely responsible for mediation of the redox chemistry at the reduced TiO2(110). C1 [Yoon, Yeohoon; Petrik, Nikolay G.; Kimmel, Gregory A.; Dohnalek, Zdenek; Henderson, Michael A.; Rousseau, Roger] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Yoon, Yeohoon; Du, Yingge; Zhu, Zihua; Wang, Zhi-Tao; Petrik, Nikolay G.; Kimmel, Gregory A.; Dohnalek, Zdenek; Henderson, Michael A.; Rousseau, Roger; Lyubinetsky, Igor] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Du, Yingge; Zhu, Zihua; Wang, Zhi-Tao; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Garcia, Juan C.; Deskins, N. Aaron] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. RP Rousseau, R (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM roger.rousseau@pnnl.gov; nadeskins@wpi.edu; igor.lyubinetsky@pnnl.gov RI Petrik, Nikolay/G-3267-2015; Deskins, Nathaniel/H-3954-2012; Rousseau, Roger/C-3703-2014; Zhu, Zihua/K-7652-2012; OI Petrik, Nikolay/0000-0001-7129-0752; Garcia, Juan/0000-0002-5911-8850 FU US Department of Energy (DOE); Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE Office of Biological and Environmental Research FX We thank Dr. M. Dupuis for stimulating discussions. This work was supported by the US Department of Energy (DOE) and the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences,. A portion of this research was funded by the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory-Directed Research and Development at PNNL. The research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided by EMSL and in part by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (under an INCITE 2011-2012 award). NR 61 TC 7 Z9 7 U1 7 U2 83 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD FEB 2 PY 2015 VL 16 IS 2 BP 313 EP 321 DI 10.1002/cphc.201402599 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AZ9DC UT WOS:000348510700006 PM 25359161 ER PT J AU Mei, AB Hellman, O Wireklint, N Schleputz, CM Sangiovanni, DG Alling, B Rockett, A Hultman, L Petrov, I Greene, JE AF Mei, A. B. Hellman, O. Wireklint, N. Schlepuetz, C. M. Sangiovanni, D. G. Alling, B. Rockett, A. Hultman, L. Petrov, I. Greene, J. E. TI Dynamic and structural stability of cubic vanadium nitride SO PHYSICAL REVIEW B LA English DT Article ID COHERENT-POTENTIAL APPROXIMATION; MAGNETRON SPUTTER-DEPOSITION; LOW-TEMPERATURE RESISTIVITY; AUGMENTED-WAVE METHOD; X-RAY-DIFFRACTION; ELECTRICAL-RESISTIVITY; THIN-FILMS; TRANSPORT-PROPERTIES; MOLECULAR-DYNAMICS; PHASE-TRANSITION AB Structural phase transitions in epitaxial stoichiometric VN/MgO(011) thin films are investigated using temperature-dependent synchrotron x-ray diffraction (XRD), selected-area electron diffraction (SAED), resistivity measurements, high-resolution cross-sectional transmission electron microscopy, and ab initio molecular dynamics (AIMD). At room temperature, VN has the B1 NaCl structure. However, below T-c = 250 K, XRD and SAED results reveal forbidden (00l) reflections of mixed parity associated with a noncentrosymmetric tetragonal structure. The intensities of the forbidden reflections increase with decreasing temperature following the scaling behavior I proportional to (T-c - T)(1/2). Resistivity measurements between 300 and 4 K consist of two linear regimes resulting from different electron/phonon coupling strengths in the cubic and tetragonal-VN phases. The VN transport Eliashberg spectral function alpha F-2(tr)(h omega), the product of the phonon density of states F(h omega) and the transport electron/phonon coupling strength alpha(2)(tr)(h omega), is determined and used in combination with AIMD renormalized phonon dispersion relations to show that anharmonic vibrations stabilize the NaCl structure at T > T-c. Free-energy contributions due to vibrational entropy, often neglected in theoretical modeling, are essential for understanding the room-temperature stability of NaCl-structure VN, and of strongly anharmonic systems in general. C1 [Mei, A. B.; Rockett, A.; Petrov, I.; Greene, J. E.] Univ Illinois, Dept Mat Sci, Urbana, IL 61801 USA. [Mei, A. B.; Rockett, A.; Petrov, I.; Greene, J. E.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Hellman, O.; Sangiovanni, D. G.; Alling, B.; Hultman, L.; Petrov, I.; Greene, J. E.] Linkoping Univ, Dept Phys IFM, SE-58183 Linkoping, Sweden. [Hellman, O.] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Wireklint, N.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Schlepuetz, C. M.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Mei, AB (reprint author), Univ Illinois, Dept Mat Sci, 104 South Goodwin, Urbana, IL 61801 USA. RI Alling, Bjorn/I-3193-2012; Schleputz, Christian/C-4696-2008; Sangiovanni, Davide/I-5001-2012; OI Alling, Bjorn/0000-0001-5863-5605; Schleputz, Christian/0000-0002-0485-2708; Sangiovanni, Davide/0000-0002-1379-6656; Hellman, Olle/0000-0002-3453-2975 FU Swedish Research Council (VR) program [637-2013-7296, 2014-5790, 2009-00971, 2013-4018]; Swedish Government Strategic Research Area Grant in Materials Science [SFO Mat-LiU 2009-00971]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The authors thank Sebastian Wimmer, Dr. Kenneth E. Gray, Professor Goran Grimvall, Professor Tai-Chang Chiang, Professor Igor A. Abrikosov, and Professor John F. Zasadzinski for valuable discussions. The financial support of the Swedish Research Council (VR) program 637-2013-7296 as well as Grants No. 2014-5790, No. 2009-00971, and No. 2013-4018, and the Swedish Government Strategic Research Area Grant in Materials Science (Grant No. SFO Mat-LiU 2009-00971) on Advanced Functional Materials is greatly appreciated. Supercomputer resources were provided by the Swedish National Infrastructure for Computing (SNIC). This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 85 TC 14 Z9 14 U1 6 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB 2 PY 2015 VL 91 IS 5 AR 054101 DI 10.1103/PhysRevB.91.054101 PG 11 WC Physics, Condensed Matter SC Physics GA CA4KH UT WOS:000348872600001 ER PT J AU Bzdak, A Koch, V AF Bzdak, A. Koch, V. TI Local efficiency corrections to higher order cumulants SO PHYSICAL REVIEW C LA English DT Article AB In this Brief Report we derive and present the formulas necessary to correct measurements of cumulants for detection efficiency. In particular we consider the case where the efficiency may depend on the phase space, such as transverse momentum, rapidity, etc. C1 [Bzdak, A.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Bzdak, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Koch, V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Bzdak, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM abzdak@quark.phy.bnl.gov; vkoch@lbl.gov FU RIKEN-BNL Research Center [UMO-2013/09/B/ST2/00497]; Office of Nuclear Physics in the U.S. Department of Energy's Office of Science [DE-AC02-05CH11231] FX A.B. was supported through the RIKEN-BNL Research Center and Grant No. UMO-2013/09/B/ST2/00497. V.K. was supported by the Office of Nuclear Physics in the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. NR 12 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 2 PY 2015 VL 91 IS 2 AR 027901 DI 10.1103/PhysRevC.91.027901 PG 4 WC Physics, Nuclear SC Physics GA CA4LE UT WOS:000348874800002 ER PT J AU Sen, A Gerhard, J Torrieri, G Read, K Wong, CY AF Sen, Abhisek Gerhard, Jochen Torrieri, Giorgio Read, Kenneth Wong, Cheuk-Yin TI Longitudinal hydrodynamics from event-by-event Landau initial conditions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; RELATIVISTIC HYDRODYNAMICS; BRAHMS EXPERIMENT; PARTON-MODEL; FLOW; COLLABORATION; PERSPECTIVE; ENERGY AB We investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity is inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard. C1 [Sen, Abhisek; Read, Kenneth] Univ Tennessee, Knoxville, TN 37996 USA. [Gerhard, Jochen] Frankfurt Inst Adv Studies, Frankfurt, Germany. [Torrieri, Giorgio] Univ Estadual Campinas, IFGW, Sao Paulo, Brazil. [Read, Kenneth; Wong, Cheuk-Yin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sen, A (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Sen, Abhisek/J-1157-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Sen, Abhisek/0000-0003-1192-3938; Read, Kenneth/0000-0002-3358-7667 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; FAPESP [2014/13120-7] FX This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. G.T. also acknowledges support from FAPESP Proc. 2014/13120-7. We wish to thank Sean Gavin and Peter Steinberg for useful discussions. NR 58 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD FEB 2 PY 2015 VL 91 IS 2 AR 024901 DI 10.1103/PhysRevC.91.024901 PG 7 WC Physics, Nuclear SC Physics GA CA4LE UT WOS:000348874800001 ER PT J AU Bremer, PT Maljovec, D Saha, A Wang, B Gaffney, J Spears, BK Pascucci, V AF Bremer, Peer-Timo Maljovec, Dan Saha, Avishek Wang, Bei Gaffney, Jim Spears, Brian K. Pascucci, Valerio TI ND(2)AV: N-dimensional data analysis and visualization analysis for the National Ignition Campaign SO COMPUTING AND VISUALIZATION IN SCIENCE LA English DT Article DE Topological analysis; Visualization; Dimension reduction ID QUALITY METRICS; EXPLORATION; UNCERTAINTY; VALIDATION; REDUCTION AB One of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present the ND(2)AV: N-dimensional data analysis and visualization framework, a user-friendly tool aimed at exploiting the intuition and current workflow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. ND(2)AV uses a modular design providing easy extensibility and customization for different applications. ND(2)AV is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries. C1 [Bremer, Peer-Timo; Gaffney, Jim; Spears, Brian K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Maljovec, Dan; Wang, Bei; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA. [Saha, Avishek] Yahoo Labs, New York, NY USA. RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bremer5@llnl.gov; maljovec@cs.utah.edu; avishek@cs.utah.edu; beiwang@sci.utah.edu; gaffney3@llnl.gov; spears9@llnl.gov; pascucci@sci.utah.edu NR 47 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-9360 EI 1433-0369 J9 COMPUT VIS SCI JI Comput. Vis. Sci. PD FEB PY 2015 VL 17 IS 1 BP 1 EP 18 DI 10.1007/s00791-015-0241-3 PG 18 WC Mathematics, Interdisciplinary Applications SC Mathematics GA CW6MX UT WOS:000365112700001 ER PT J AU Gordon, J Gandhi, P Gilbert, JA Hampton-Marcell, JT AF Gordon, Julian Gandhi, Prasanthi Gilbert, Jack A. Hampton-Marcell, Jarrad T. TI Field Performance of a New Technology with the Potential to Identify Allergy and Asthma Triggers SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Academy-of-Allergy-Asthma-and-Immunology (AAAAI) CY FEB 20-24, 2015 CL Houston, TX SP Amer Acad Allergy, Asthma & Immunol C1 [Gordon, Julian; Gandhi, Prasanthi] Inspirotec LLC, Glenview, IL USA. [Gilbert, Jack A.; Hampton-Marcell, Jarrad T.] Argonne Natl Lab, Lemont, IL USA. [Gilbert, Jack A.; Hampton-Marcell, Jarrad T.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0091-6749 EI 1097-6825 J9 J ALLERGY CLIN IMMUN JI J. Allergy Clin. Immunol. PD FEB PY 2015 VL 135 IS 2 SU S MA 797 BP AB246 EP AB246 PG 1 WC Allergy; Immunology SC Allergy; Immunology GA CR2BN UT WOS:000361129600796 ER PT J AU Sun, G Liu, JL Li, GH Zhang, XH Chen, TT Chen, JY Zhang, H Wang, DP Sun, FJ Pan, HY AF Sun, Geng Liu, Jinliang Li, Guihua Zhang, Xianghui Chen, Tingting Chen, Jingyuan Zhang, Hao Wang, Dongping Sun, Fengjie Pan, Hongyu TI Quick and Accurate Detection and Quantification of Magnaporthe oryzae in Rice Using Real-Time Quantitative Polymerase Chain Reaction SO PLANT DISEASE LA English DT Article ID TRANSCRIPTOME ANALYSIS; BLAST DISEASE; RT-PCR; GRISEA AB Rice blast, caused by Magnaporthe oryzae, is one of the most severe fungal diseases in rice worldwide. In this study, we developed methods to quickly and accurately detect and quantify M. oryzae in the pure cultures of the fungus, rice plants, and rice seed by using SYBR Green I of the real-time quantitative polymerase chain reaction (qPCR). Results of absolute qPCR show that Magnaporthe oryzae can be detected at as low as 6.9 x 10(-5) ng of genomic DNA. Results also show that all 10 varieties of rice seed examined in this study contain this fungus, indicating that M. oryzae is generally widespread in rice seed. We report the quantification of DNA of M. oryzae in rice leaves collected in the field, instead of in the lab, using relative qPCR by using rice actin gene as a housekeeping gene. Our results show great practical significance because we would know the potential fungal infection even before planting. C1 [Sun, Geng; Li, Guihua; Zhang, Xianghui; Chen, Tingting; Chen, Jingyuan; Pan, Hongyu] Jilin Univ, Coll Plant Sci, Changchun 130062, Peoples R China. [Sun, Geng] Shenyang Res Inst Chem Ind Co Ltd, State Key Lab Discovery & Dev Novel Pesticide, Shenyang 110021, Peoples R China. [Zhang, Hao] Jilin Agr Univ, Coll Resource & Environm, Changchun, Peoples R China. [Wang, Dongping] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. [Sun, Fengjie] Georgia Gwinnett Coll, Sch Sci & Technol, Lawrenceville, GA 30043 USA. RP Sun, FJ (reprint author), Georgia Gwinnett Coll, Sch Sci & Technol, Lawrenceville, GA 30043 USA. EM fsun@ggc.edu; panhongyu@jlu.edu.cn FU 12th Five-Year Plan Project of Science and Technology Support, China [2014BAD14B02, 2013BAC09B01]; Project of Science and Technology Development Plan in Jilin Province, China [20090209] FX This study is supported by grants of the 12th Five-Year Plan Project of Science and Technology Support, China (2014BAD14B02 to H. Pan and 2013BAC09B01 to H. Zhang), and the Project of Science and Technology Development Plan in Jilin Province, China (20090209 to H. Pan). We thank K. Fang and J. Xi at the Jilin University for helping us design primers; and members at the Engineering Center of Functional Research of Microbial Resources in Jilin province and the State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry Co., Ltd. The authors declare that they have no conflict of interest. NR 22 TC 1 Z9 1 U1 2 U2 8 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0191-2917 EI 1943-7692 J9 PLANT DIS JI PLANT DIS. PD FEB PY 2015 VL 99 IS 2 BP 219 EP 224 DI 10.1094/PDIS-05-14-0485-RE PG 6 WC Plant Sciences SC Plant Sciences GA CQ8NQ UT WOS:000360865400006 ER PT J AU Faria, JP Edirisinghe, JN Davis, JJ Disz, T Hausmann, A Henry, CS Olson, R Overbeek, RA Pusch, GD Shukla, M Vonstein, V Wattam, AR AF Faria, Jose P. Edirisinghe, Janaka N. Davis, James J. Disz, Terrence Hausmann, Anna Henry, Christopher S. Olson, Robert Overbeek, Ross A. Pusch, Gordon D. Shukla, Maulik Vonstein, Veronika Wattam, Alice R. TI Enabling comparative modeling of closely related genomes: example genus Brucella SO 3 BIOTECH LA English DT Article ID DATABASE; RECONSTRUCTION; GENERATION; RESOURCE AB For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this short report, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as well as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration. C1 [Faria, Jose P.; Edirisinghe, Janaka N.; Davis, James J.; Disz, Terrence; Henry, Christopher S.; Olson, Robert; Overbeek, Ross A.; Vonstein, Veronika] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Hausmann, Anna; Overbeek, Ross A.; Pusch, Gordon D.; Vonstein, Veronika] Interpretat Genomes, Burr Ridge, IL USA. [Shukla, Maulik; Wattam, Alice R.] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA USA. [Faria, Jose P.] Univ Minho, Ctr Biol Engn, IBB, P-4710057 Braga, Portugal. [Edirisinghe, Janaka N.; Davis, James J.; Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Davis, JJ (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM jimdavis@uchicago.edu OI Faria, Jose/0000-0001-9302-7250 FU United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200900040C]; United States National Science Foundation [MCB-1153357]; FCT (Portuguese Foundation for Science and Technology) [FRH/BD/70824/2010] FX We thank Jean Jacques Letesson, Maite Iriarte, Stephan Kohler and David O'Callaghan for their input on improving specific annotations. This project has been funded by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200900040C, awarded to BW Sobral, and from the United States National Science Foundation under Grant MCB-1153357, awarded to CS Henry. J.P.F. acknowledges funding from [FRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) Ph.D. scholarship. NR 21 TC 1 Z9 1 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5738 EI 2190-572X J9 3 BIOTECH JI 3 Biotech PD FEB PY 2015 VL 5 IS 1 BP 101 EP 105 DI 10.1007/s13205-014-0202-4 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CM9SC UT WOS:000358048300012 PM 28324362 ER PT J AU Wang, YY Sokolov, AP AF Wang, Yangyang Sokolov, Alexei P. TI Design of superionic polymer electrolytes SO CURRENT OPINION IN CHEMICAL ENGINEERING LA English DT Review ID ION-TRANSPORT; SOLID ELECTROLYTES; POLY(VINYL ALCOHOL); DIELECTRIC FRICTION; AMORPHOUS MATERIALS; LIQUID-STATE; RELAXATION; DYNAMICS; CONDUCTIVITY; GLASSES AB Despite potential significant advantages of polymer based batteries, the poor ionic conductivity of dry polymer electrolytes at ambient and low temperatures has limited their application. This review describes the approach for improving conductivity by decoupling ionic transport from polymer segmental relaxation. It is emphasized that the decoupling approach is the key for design of superionic polymer electrolytes. C1 [Wang, Yangyang; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wang, YY (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM yywang@utk.edu; sokolov@utk.edu RI Wang, Yangyang/A-5925-2010 OI Wang, Yangyang/0000-0001-7042-9804 FU NSF Chemistry Program [CHE-1213444]; Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences FX YYW acknowledges the support by the NSF Chemistry Program (CHE-1213444). APS acknowledges the financial support from the Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences. NR 51 TC 11 Z9 11 U1 16 U2 69 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 2211-3398 J9 CURR OPIN CHEM ENG JI Curr. Opin. Chem. Eng. PD FEB PY 2015 VL 7 BP 113 EP 119 DI 10.1016/j.coche.2014.09.002 PG 7 WC Biotechnology & Applied Microbiology; Engineering, Chemical SC Biotechnology & Applied Microbiology; Engineering GA CM4QX UT WOS:000357670900016 ER PT J AU Lee, DY McMurray, CT AF Lee, Do-Yup McMurray, Cynthia T. TI Trinucleotide expansion in disease: Why is there a length threshold? (vol 26, pg 131, 2014) SO CURRENT OPINION IN GENETICS & DEVELOPMENT LA English DT Correction C1 [Lee, Do-Yup] Kookmin Univ, Dept Bio & Fermentat Convergence Technol, Seoul 136702, South Korea. [McMurray, Cynthia T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Lee, DY (reprint author), Kookmin Univ, Dept Bio & Fermentat Convergence Technol, Seoul 136702, South Korea. NR 2 TC 0 Z9 0 U1 1 U2 3 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-437X EI 1879-0380 J9 CURR OPIN GENET DEV JI Curr. Opin. Genet. Dev. PD FEB PY 2015 VL 30 BP 80 EP 80 DI 10.1016/j.gde.2014.07.003 PG 1 WC Cell Biology; Genetics & Heredity SC Cell Biology; Genetics & Heredity GA CM1KL UT WOS:000357439700011 ER PT J AU Sund, CJ Liu, SC Germane, KL Servinsky, MD Gerlach, ES Hurley, MM AF Sund, Christian J. Liu, Sanchao Germane, Katherine L. Servinsky, Matthew D. Gerlach, Elliot S. Hurley, Margaret M. TI Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose SO MICROBIOLOGY-SGM LA English DT Article ID GENOME-SCALE MODEL; METABOLIC NETWORK; TRANSCRIPTIONAL REGULATION; ALCOHOL FERMENTATION; ELECTRON FLOW; IN-SILICO; PATHWAY; CULTURE; SYSTEMS; SOLVENTOGENESIS AB Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in C. acetobutylicum has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in C. acetobutylicum, experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway's primary role in C. acetobutylicum is arabinose metabolism. C1 [Sund, Christian J.; Servinsky, Matthew D.] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA. [Liu, Sanchao; Gerlach, Elliot S.] Fed Staffing Resources, Annapolis, MD 21401 USA. [Germane, Katherine L.] Oak Ridge Associated Univ, Belcamp, MD 21017 USA. [Hurley, Margaret M.] US Army Res Lab, RDRL WML B, Aberdeen Proving Ground, MD 21005 USA. RP Hurley, MM (reprint author), US Army Res Lab, RDRL WML B, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 USA. EM margaret.m.hurley.civ@mail.mil NR 44 TC 2 Z9 2 U1 2 U2 9 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD FEB PY 2015 VL 161 BP 430 EP 440 DI 10.1099/mic.0.00008 PN 2 PG 11 WC Microbiology SC Microbiology GA CL0QR UT WOS:000356647800019 PM 25481877 ER PT J AU Lifton, N Caffee, M Finkel, R Marrero, S Nishiizumi, K Phillips, FM Goehring, B Gosse, J Stone, J Schaefer, J Theriault, B Jull, AJT Fifield, K AF Lifton, Nathaniel Caffee, Marc Finkel, Robert Marrero, Shasta Nishiizumi, Kunihiko Phillips, Fred M. Goehring, Brent Gosse, John Stone, John Schaefer, Joerg Theriault, Bailey Jull, A. J. Timothy Fifield, Keith TI In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features SO QUATERNARY GEOCHRONOLOGY LA English DT Article DE Cosmogenic nuclide; Production rate calibration; Inter-laboratory comparison; Lake Bonneville history; Beryllium-10; Aluminum-26; Carbon-14; Chlorine-36 ID HE-3 PRODUCTION-RATES; WESTERN UNITED-STATES; CL-36 PRODUCTION; GREAT-BASIN; CLIMATE-CHANGE; AMS STANDARDS; CAL BP; C-14; USA; PROVO AB Well-dated bedrock surfaces associated with the highstand and subsequent catastrophic draining of Pleistocene Lake Bonneville, Utah, during the Bonneville flood are excellent locations for in situ cosmogenic nuclide production rate calibration. The CRONUS-Earth project sampled wave-polished bedrock and boulders on an extensive wave-cut bench formed during the Bonneville-level highstand that was abandoned almost instantaneously during the Bonneville flood. CRONUS-Earth also sampled the Tabernacle Hill basalt flow that erupted into Lake Bonneville soon after its stabilization at the Provo level, following the flood. New radiocarbon dating results from tufa at the margins of Tabernacle Hill as part of this study have solidified key aspects of the exposure history at both sites. Both sites have well-constrained exposure histories in which factors such as potential prior exposure, erosion, and shielding are either demonstrably negligible or quantifiable. Multi-nuclide analyses from multiple labs serve as mad hoc inter-laboratory comparison that supplements and expands on the formalized CRONUS-Earth and CRONUS-EU inter-laboratory comparisons (Blard et al., 2015; Jull et al., 2015; Vermeesch et al., 2015). Results from Be-10, Al-26, and C-14 all exhibit scatter comparable to that observed in the CRONUS-Earth effort. Although a Cl-36 inter-laboratory comparison was not completed for Jull et al. (2015), Cl-36 from plagioclase mineral separates exhibits comparable reproducibility. Site production rates derived from these measurements provide valuable input to the global production rate calibration described by Borchers et al. (2015). Whole-rock Cl-36 concentrations, however, exhibit inter-laboratory variation exceeding analytical uncertainty and outside the ranges observed for the other nuclides (Jull et al., 2015). A rigorous inter-laboratory comparison studying the systematics of whole-rock Cl-36 extraction techniques is currently underway with the goals of delineating the source(s) of this discrepancy and standardizing these procedures going forward. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lifton, Nathaniel] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Lifton, Nathaniel; Caffee, Marc] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Lifton, Nathaniel; Caffee, Marc] Purdue Univ, Purdue Rare Isotope Measurement Lab PRIME Lab, W Lafayette, IN 47907 USA. [Finkel, Robert] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Nishiizumi, Kunihiko] Univ Calif Berkeley, Space Sci Lab 7450, Berkeley, CA 94720 USA. [Marrero, Shasta; Phillips, Fred M.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Goehring, Brent] Tulane Univ, Dept Earth & Environm Sci, New Orleans, LA 70118 USA. [Gosse, John] Dalhousie Univ, Dept Earth Sci, Halifax, NS B3H 4R2, Canada. [Stone, John] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Schaefer, Joerg] Columbia Univ, Earth Inst, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Theriault, Bailey] Golder Associates, Redmond, WA 98052 USA. [Jull, A. J. Timothy] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Jull, A. J. Timothy] Univ Arizona, Arizona Accelerator Mass Spectrometry Lab, Tucson, AZ 85721 USA. [Fifield, Keith] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. RP Lifton, N (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM nlifton@purdue.edu; mcaffee@purdue.edu; rfinkel@berkeley.edu; shastamarrero@gmail.com; kuni@ssl.berkeley.edu; phillips@nmt.edu; bgoehrin@tulane.edu; john.gosse@Dal.Ca; stone@geology.washington.edu; schaefer@Ideo.columbia.edu; jull@email.arizona.edu; keith.fifield@anu.edu.au RI Caffee, Marc/K-7025-2015; Lifton, Nathaniel/M-2017-2015 OI Caffee, Marc/0000-0002-6846-8967; Lifton, Nathaniel/0000-0002-6976-3298 FU NSF [EAR-0345150, EAR-0345932, EAR-0345820, EAR-1153689, EAR-0345949, EAR-0345574, EAR-0345835, EAR-0345817] FX The authors gratefully acknowledge support from NSF grants EAR-0345150 (Lifton), EAR-0345932 (Finkel), EAR-0345820 and EAR-1153689 (Caffee), EAR-0345949 (Phillips), EAR-0345574 (Stone), EAR-0345835 (Schaefer), and EAR-0345817 (Nishiizumi). We also thank Mr. John Young for allowing access to the Promontory Point site. Thure Cerling, Mark Kurz, Darryl Granger, and Terry Swanson helped to collect samples and provided valuable field insights. Adam Hudson processed the Tabernacle Hill tufas for radiocarbon dating, and Dylan Rood contributed significantly to sample analyses at CAMS. Finally, we thank P.H. Blard and an anonymous reviewer for thoughtful and thorough comments that greatly improved this manuscript. NR 54 TC 15 Z9 15 U1 3 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1871-1014 EI 1878-0350 J9 QUAT GEOCHRONOL JI Quat. Geochronol. PD FEB PY 2015 VL 26 SI SI BP 56 EP 69 DI 10.1016/j.quageo.2014.11.002 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CL0PC UT WOS:000356643600007 ER PT J AU Jiang, FG Doudna, JA AF Jiang, Fuguo Doudna, Jennifer A. TI The structural biology of CRISPR-Cas systems SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID BACTERIAL IMMUNE-SYSTEM; GUIDED SURVEILLANCE COMPLEX; IN-VITRO RECONSTITUTION; ADAPTIVE IMMUNITY; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; STREPTOCOCCUS-THERMOPHILUS; DNA RECOGNITION; SEED SEQUENCE; TARGET DNA AB Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of similar to 30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding. C1 [Jiang, Fuguo; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu RI JIANG, FUGUO/G-6581-2012 FU Howard Hughes Medical Institute; National Science Foundation; National Institutes of Health FX We are grateful to Megan L. Hochstrasser for critical reading of this manuscript, and David W. Taylor and other members of the Doudna laboratory for helpful discussions. Research in the Doudna laboratory is supported by the Howard Hughes Medical Institute, the National Science Foundation and the National Institutes of Health. J.A.D. is an HHMI Investigator. F.J. is a Merck Fellow of the Damon Runyon Cancer Research Foundation (DRG-2201-14). NR 63 TC 32 Z9 36 U1 8 U2 65 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD FEB PY 2015 VL 30 BP 100 EP 111 DI 10.1016/j.sbi.2015.02.002 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CI2PF UT WOS:000354588800015 PM 25723899 ER PT J AU Fang, XY Stagno, JR Bhandari, YR Zuo, XB Wang, YX AF Fang, Xianyang Stagno, Jason R. Bhandari, Yuba R. Zuo, Xiaobing Wang, Yun-Xing TI Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID REV-RESPONSE ELEMENT; TIME-RESOLVED SAXS; BIOLOGICAL MACROMOLECULES; MOLECULAR-STRUCTURE; SHAPE DETERMINATION; RESOLUTION; PROTEIN; COMPLEX; BINDING; HIV-1 AB Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNA molecules, particularly those that have proven difficult to study using other structure-determination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments. C1 [Fang, Xianyang; Wang, Yun-Xing] Natl Canc Inst, NCI Small Angle Xray Scattering Core Facil, Struct Biophys Lab, NIH, Rockville, MD 20850 USA. [Stagno, Jason R.; Bhandari, Yuba R.; Wang, Yun-Xing] Natl Canc Inst, Prot Nucle Acid Interact Sect, Struct Biophys Lab, NIH, Rockville, MD USA. [Zuo, Xiaobing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, YX (reprint author), Natl Canc Inst, NCI Small Angle Xray Scattering Core Facil, Struct Biophys Lab, NIH, Rockville, MD 20850 USA. EM wangyunx@mail.nih.gov OI Zuo, Xiaobing/0000-0002-0134-4804 FU Intramural Research Program of the National Institutes of Health, National Cancer Institute (NCI) Center for Cancer Research; U.S. DOE [DE-AC02-06CH11357]; NCI [PUP-77]; Argonne National Laboratory [PUP-77] FX We sincerely thank David Lilley, Samuel Butcher, Marc Jamin, Norman Pace, Alexei Kazanstev, Ajaykumar Gopal and William Gelbart for providing materials for figures. This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute (NCI) Center for Cancer Research. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under contract no. DE-AC02-06CH11357 and by NCI under the PUP-77 Agreement between NCI and Argonne National Laboratory. NR 94 TC 7 Z9 7 U1 1 U2 21 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD FEB PY 2015 VL 30 BP 147 EP 160 DI 10.1016/j.sbi.2015.02.010 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CI2PF UT WOS:000354588800019 PM 25765781 ER PT J AU Hardt, DJ James, RA Gut, CP McInturf, SM Sweeney, LM Erickson, RP Gargas, ML AF Hardt, Daniel J. James, R. Arden Gut, Chester P., Jr. McInturf, Shawn M. Sweeney, Lisa M. Erickson, Richard P. Gargas, Michael L. TI Evaluation of submarine atmospheres: effects of carbon monoxide, carbon dioxide and oxygen on general toxicology, neurobehavioral performance, reproduction and development in rats. II. Ninety-day study SO INHALATION TOXICOLOGY LA English DT Article DE Carbon dioxide; carbon monoxide; developmental toxicity; inhalation; mixtures; neurobehavioral; reproductive toxicity; submarine atmosphere ID PRENATAL EXPOSURE; CIGARETTE-SMOKE; AVOIDANCE-BEHAVIOR; GUINEA-PIG; WATER-MAZE; HYPOXIA; MICE; FETAL; PREGNANCY; CARBOXYHEMOGLOBIN AB Carbon monoxide (CO), carbon dioxide (CO2) and low-level oxygen (O-2) (hypoxia) are submarine atmosphere components of highest concern because of a lack of toxicological data available to address the potential effects from long-duration, combined exposures on female reproductive and developmental health. In this study, subchronic toxicity of mixed atmospheres of these three submarine air components was evaluated in rats. Male and female rats were exposed via inhalation to clean air (0.4 ppm CO; 0.13% CO2; 20.6% O-2) (control), a low-dose (5.0 ppm CO; 0.41% CO2; 17.1% O-2), a mid-dose (13.9 ppm CO; 1.19 or 1.20% CO2; 16.1% O-2) and a high-dose (89.9 ppm CO; 2.5% CO2; 15.0% O-2) gas mixture for 23 h per day for 70 d premating and a 14-d mating period. Impregnated dams continued exposure to gestation day 19. Adverse reproductive effects were not identified in exposed parents (P0) or first (F1) and second generation (F2) offspring during mating, gestation or parturition. No adverse changes to the estrous cycle or in reproductive hormone concentrations were identified. The exposure-related effects were reduced weight gains and adaptive up-regulation of erythropoiesis in male rats from the high-dose group. No adverse, dose-related health effects on clinical data or physiological data were observed. Neurobehavioral tests identified no apparent developmental deficits at the tested levels of exposure. In summary, subchronic exposures to the submarine atmosphere gases did not affect the ability of the exposed rats or their offspring to reproduce and did not appear to have any significant adverse health effects. C1 [Hardt, Daniel J.; Erickson, Richard P.; Gargas, Michael L.] Naval Med Res Unit Dayton, Wright Patterson AFB, OH 45433 USA. [James, R. Arden; Gut, Chester P., Jr.; McInturf, Shawn M.] CAMRIS, Wright Patterson AFB, OH USA. [Gut, Chester P., Jr.] Oak Ridge Inst Sci & Educ, Wright Patterson AFB, OH USA. [Sweeney, Lisa M.] Henry M Jackson Fdn Adv Mil Med, Wright Patterson AFB, OH USA. RP Sweeney, LM (reprint author), Naval Med Res Unit Dayton, 2729 R St, Wright Patterson AFB, OH 45433 USA. EM Lisa.sweeney.3.ctr@us.af.mil FU Office of Naval Research (ONR) under Work Unit [61064] FX This work was supported by Office of Naval Research (ONR) under Work Unit Number 61064. The study was approved by the Wright-Patterson Air Force Base Institutional Animal Care and Use Committee (Protocol F-WA-2010-0116-A) and conducted in compliance with the Animal Welfare Act and all applicable Federal regulations governing the protection of animals in research. NR 56 TC 0 Z9 0 U1 2 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0895-8378 EI 1091-7691 J9 INHAL TOXICOL JI Inhal. Toxicol. PD FEB PY 2015 VL 27 IS 3 BP 121 EP 137 DI 10.3109/08958378.2014.999294 PG 17 WC Toxicology SC Toxicology GA CI0DK UT WOS:000354406000001 PM 25687554 ER PT J AU Fischer, P AF Fischer, Peter TI X-Ray Imaging of Magnetic Structures SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Magnetic diffractive imaging; photoemission electron microscopy; soft X-ray spectromicroscopy; spin dynamics; X-ray magnetic circular dichroism (XMCD); X-ray optics ID TRANSMISSION ELECTRON-MICROSCOPE; FOURIER-TRANSFORM HOLOGRAPHY; ORBITAL ANGULAR-MOMENTUM; FORCE MICROSCOPY; CIRCULAR-DICHROISM; PHASE-CONTRAST; SPATIAL-RESOLUTION; DOMAIN-WALLS; ZONE PLATES; THIN-FILMS AB The characterization of nanoscale magnetic structures, their static properties, and fast spin dynamics with polarized soft X-rays has become an indispensable analytical tool due to the unique features of those probes. The spectroscopic magnetic response serves as a fingerprint of the specimen and can give quantitative information on element-specific spin and orbital magnetic moments. Images of magnetic domain structures at a spatial resolution down to nearly 10 nm, ultimately in all three dimensions, can be obtained with various X-ray microscopy techniques and can further be combined with stroboscopic pump-probe schemes to image the spin dynamics of spin structures, such as the motion of domain walls in nanowires or the vortex core dynamics in micropatterned magnetic elements. Next generation sources of polarized soft X-rays such as X-ray free electron lasers or high-harmonic generation laser sources hold the promise to provide nanometer spatial and femtosecond time resolution, enabling to address thus fundamental magnetic length and time scales in magnetism. This paper reviews the various X-ray imaging techniques using polarized soft X-rays by summarizing their characteristic features, recent achievements, and current limitations as well as future opportunities. A brief overview on other magnetic imaging techniques are given to set magnetic X-ray imaging techniques into context. C1 [Fischer, Peter] Ctr Xray Opt, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Fischer, P (reprint author), Ctr Xray Opt, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM pjfischer@lbl.gov RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through the Ministry of Education, Science and Technology, National Research Foundation of Korea [2012K1A4A3053565] FX This work was supported in part by the Director of the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract DE-AC02-05-CH11231, and in part by the Leading Foreign Research Institute Recruitment Program through the Ministry of Education, Science and Technology, National Research Foundation of Korea, under Grant 2012K1A4A3053565. NR 210 TC 5 Z9 5 U1 10 U2 49 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD FEB PY 2015 VL 51 IS 2 AR 0800131 DI 10.1109/TMAG.2014.2363054 PN 2 PG 31 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CG8WG UT WOS:000353595800002 ER PT J AU Arzilli, F Mancini, L Voltolini, M Cicconi, MR Mohammadi, S Giuli, G Mainprice, D Paris, E Barou, F Carroll, MR AF Arzilli, Fabio Mancini, Lucia Voltolini, Marco Cicconi, Maria Rita Mohammadi, Sara Giuli, Gabriele Mainprice, David Paris, Eleonora Barou, Fabrice Carroll, Michael R. TI Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms SO LITHOS LA English DT Article DE Spherulite; Alkali feldspar; Crystallization; Phase-contrast X-ray microtomography; Phase-retrieval processing; Electron backscatter diffraction ID X-RAY MICROTOMOGRAPHY; ORBICULAR ROCKS; CRYSTAL MORPHOLOGY; MTEX ALGORITHM; VOLCANIC-ROCKS; MAGMA ASCENT; NUCLEATION; KINETICS; PLAGIOCLASE; TEXTURES AB The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10(-6)-10(-7) cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10(-11)-10(-12) cm(3)/S) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of similar to 10 mu m(3) in 1 s. (C) 2014 Elsevier B.V. All rights reserved. C1 [Arzilli, Fabio; Mancini, Lucia; Mohammadi, Sara] Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy. [Voltolini, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cicconi, Maria Rita; Giuli, Gabriele; Paris, Eleonora; Carroll, Michael R.] Univ Camerino, Geol Div, Sch Sci & Technol, I-62032 Camerino, Italy. [Mohammadi, Sara] Abdus Salem Int Ctr Theoret Phys UNESCO, I-34151 Trieste, Italy. [Mainprice, David; Barou, Fabrice] Univ Montpellier 2, Geosci Montpellier UMR CNRS 5243, F-34095 Montpellier 05, France. RP Arzilli, F (reprint author), Elettra Sincrotrone Trieste SCpA, SS 14,Km 163-5 Area Sci Pk, I-34149 Trieste, Italy. EM arzilli.fabio@gmail.com RI Cicconi, Maria Rita/C-8987-2012; Voltolini, Marco/G-2781-2015; OI Cicconi, Maria Rita/0000-0002-4106-4057; GIULI, Gabriele/0000-0002-2984-5045; Mancini, Lucia/0000-0003-2416-3464 FU PRIN [2009PZ47NA_002]; Industrial funds ANPA; [FAR2012] FX We thank the anonymous reviewer, T. Shea and the editor for many constructive comments that significantly improved our paper. We are grateful to C. Zanolli (ICTP) for useful advice on Amira (R) software. We wish to thank D. Dreossi and D. R. Baker for helpful discussions. We would like to thank P. Scarlato, C. Freda and A. Cavallo for assistance with the SEM at INGV, Rome. We also grateful to M. W. Schmidt for allowing us to use the SEM at ETH of Zurich (Institute of Geochemistry and Petrology). Partial funding for experiments was provided by PRIN 2009 (2009PZ47NA_002) (M. R. Carroll), FAR2012 (M. R. Carroll) and Industrial funds ANPA (E. Paris). The EBSD-SEM national facility in Montpellier is supported by the Institut National de Sciences de l'Univers (INSU) du Centre National de la Recherche Scientifique (CNRS, France). NR 67 TC 5 Z9 5 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0024-4937 EI 1872-6143 J9 LITHOS JI Lithos PD FEB PY 2015 VL 216 BP 93 EP 105 DI 10.1016/j.lithos.2014.12.003 PG 13 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CH2JK UT WOS:000353851300007 ER PT J AU Battaglieri, M Briscoe, BJ Celentano, A Chung, SU D'Angelo, A De Vita, R Dring, M Dudek, JJ Eidelman, S Fegan, S Ferretti, J Filippi, A Fox, G Galata, G Garcia-Tecocoatzi, H Glazier, DI Grube, B Hanhart, C Hoferichter, M Hughes, SM Ireland, DG Ketzer, B Klein, FJ Kubis, B Liu, B Masjuan, P Mathieu, V McKinnon, B Mitchell, R Nerling, F Paul, S Pelaez, JR Rademacker, J Rizzo, A Salgado, C Santopinto, E Sarantsev, AV Sato, T Schluter, T da Silva, MLL Stankovic, I Strakovsky, I Szczepaniak, A Vassallo, A Walford, NK Watts, DP Zana, L AF Battaglieri, M. Briscoe, B. J. Celentano, A. Chung, S. -U. D'Angelo, A. De Vita, R. Doering, M. Dudek, J. J. Eidelman, S. Fegan, S. Ferretti, J. Filippi, A. Fox, G. Galata, G. Garcia-Tecocoatzi, H. Glazier, D. I. Grube, B. Hanhart, C. Hoferichter, M. Hughes, S. M. Ireland, D. G. Ketzer, B. Klein, F. J. Kubis, B. Liu, B. Masjuan, P. Mathieu, V. McKinnon, B. Mitchell, R. Nerling, F. Paul, S. Pelaez, J. R. Rademacker, J. Rizzo, A. Salgado, C. Santopinto, E. Sarantsev, A. V. Sato, T. Schlueter, T. da Silva, M. L. L. Stankovic, I. Strakovsky, I. Szczepaniak, A. Vassallo, A. Walford, N. K. Watts, D. P. Zana, L. TI ANALYSIS TOOLS FOR NEXT-GENERATION HADRON SPECTROSCOPY EXPERIMENTS SO ACTA PHYSICA POLONICA B LA English DT Article ID PI-PI-SCATTERING; FINAL-STATE INTERACTIONS; PARTIAL-WAVE ANALYSIS; FINITE-VOLUME; DISPERSION-RELATIONS; ISOBAR-MODEL; SUM-RULE; ISOSPIN AMPLITUDES; HIGH STATISTICS; KEDR DETECTOR AB The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document. The material presented in the article was edited by the following Editorial Board: Marco Battaglieri, Bill J. Briscoe, Su-Urk Chung, Michael Doring, Jozef Dudek, Geoffrey Fox, Christoph Hanhart, Martin Hoferichter, David G. Ireland, Bernhard Ketzer, Bastian Kubis, Vincent Mathieu, Ryan Mitchell, Jose R. Pelaez, Elena Santopinto, Adam Szczepaniak. C1 [Battaglieri, M.; Celentano, A.; De Vita, R.; Fegan, S.; Galata, G.; Garcia-Tecocoatzi, H.; Santopinto, E.; Vassallo, A.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Briscoe, B. J.; Doering, M.; Strakovsky, I.] George Washington Univ, Washington, DC USA. [Chung, S. -U.; Grube, B.; Paul, S.] Tech Univ Munich, Dept Phys, Garching, Germany. [Chung, S. -U.] Pusan Natl Univ, Dept Phys, Busan, South Korea. [Chung, S. -U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [D'Angelo, A.; Rizzo, A.] Univ Roma Tor Vergata, Rome, Italy. [D'Angelo, A.; Rizzo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Dudek, J. J.; Salgado, C.; Szczepaniak, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. [Dudek, J. J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Eidelman, S.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Eidelman, S.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Ferretti, J.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ferretti, J.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Filippi, A.; Fox, G.] Indiana Univ, Sch Informat & Comp, Bloomington, IN USA. [Garcia-Tecocoatzi, H.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Glazier, D. I.; Ireland, D. G.; McKinnon, B.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Hanhart, C.] Inst Adv Simulat, Inst Kernphys, Julich, Germany. [Hanhart, C.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. [Hoferichter, M.] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Hoferichter, M.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Hoferichter, M.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Hughes, S. M.; Stankovic, I.; Watts, D. P.; Zana, L.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Ketzer, B.; Kubis, B.; Sarantsev, A. V.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Klein, F. J.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA. [Kubis, B.] Univ Bonn, Bethe Ctr Theor Phys, Bonn, Germany. [Liu, B.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Masjuan, P.] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55122 Mainz, Germany. [Masjuan, P.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55122 Mainz, Germany. [Mathieu, V.; Mitchell, R.; Szczepaniak, A.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Mathieu, V.; Szczepaniak, A.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN USA. [Nerling, F.] GSI Helmholtzzentrum Darmstadt, Helmholtz Inst Mainz, Darmstadt, Germany. [Pelaez, J. R.] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain. [Rademacker, J.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Salgado, C.] Norfolk State Univ, Norfolk, VA USA. [Sarantsev, A. V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Sato, T.] Osaka Univ, Dept Phys, Toyonaka, Osaka 560, Japan. [Schlueter, T.] Univ Munich, Munich, Germany. [Schlueter, T.] Tech Univ Munich, Excellence Cluster Universe, Garching, Germany. [da Silva, M. L. L.] Univ Fed Pelotas, Inst Fis & Matemat, Pelotas, RS, Brazil. Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. RP Mathieu, V (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM Vincent.MATHIEU@umons.ac.be RI da Silva, Mario/K-6676-2012; Pelaez, Jose/K-9767-2014; Paul, Stephan/F-7596-2015; Celentano, Andrea/J-6190-2012; Paul, Stephan/K-9237-2016; Ireland, David/E-8618-2010; D'Angelo, Annalisa/A-2439-2012 OI Hanhart, Christoph/0000-0002-3509-2473; Pelaez, Jose/0000-0003-0737-4681; Paul, Stephan/0000-0002-8813-0437; Celentano, Andrea/0000-0002-7104-2983; Paul, Stephan/0000-0002-8813-0437; Ireland, David/0000-0001-7713-7011; D'Angelo, Annalisa/0000-0003-3050-4907 FU SCOAP3 FX Funded by SCOAP3 under Creative Commons License, CC-BY 3.0. NR 178 TC 12 Z9 12 U1 1 U2 22 PU JAGIELLONIAN UNIV PRESS PI KRAKOW PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2015 VL 46 IS 2 BP 257 EP 303 DI 10.5506/APhysPolB.46.257 PG 47 WC Physics, Multidisciplinary SC Physics GA CG8NM UT WOS:000353564900004 ER PT J AU Wang, W Shu, CW Yee, HC Kotov, DV Sjogreen, B AF Wang, Wei Shu, Chi-Wang Yee, H. C. Kotov, Dmitry V. Sjoegreen, Bjoern TI High Order Finite Difference Methods with Subcell Resolution for Stiff Multispecies Discontinuity Capturing SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Stiff reaction term; shock capturing; detonation; WENO; ENO subcell resolution; multispecies; multireactions ID HYPERBOLIC CONSERVATION-LAWS; RANDOM PROJECTION METHOD; REACTING SHOCK-WAVES; SOURCE TERMS; EFFICIENT IMPLEMENTATION; NUMERICAL STRUCTURE; EULER EQUATIONS; ENO SCHEMES; PROPAGATION; DETONATIONS AB In this paper, we extend the high order finite-difference method with subcell resolution (SR) in [34] for two-species stiff one-reaction models to multispecies and multireaction inviscid chemical reactive flows, which are significantly more difficult because of the multiple scales generated by different reactions. For reaction problems, when the reaction time scale is very small, the reaction zone scale is also small and the governing equations become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present SR method for reactive Euler system is a fractional step method. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with certain computed flow variables in the shock region modified by the Harten subcell resolution idea. Several numerical examples of multispecies and multireaction reactive flows are performed in both one and two dimensions. Studies demonstrate that the SR method can capture the correct propagation speed of discontinuities in very coarse meshes. C1 [Wang, Wei] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA. [Shu, Chi-Wang] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kotov, Dmitry V.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. [Sjoegreen, Bjoern] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wang, W (reprint author), Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA. EM weiwang1@fiu.edu; shu@dam.brown.edu; helen.m.yee@nasa.gov; dmitry.v.kotov@nasa.gov; sjogreen2@llnl.gov FU NASA [NNX12AJ62A]; NSF [DMS-1112700]; DOE/SciDAC SAP grant [DE-AI02-06ER25796] FX The research of W. Wang is supported by NASA grant NNX12AJ62A. The research of C.-W. Shu is supported by NASA grant NNX12AJ62A and NSF grant DMS-1112700. The research of H. C. Yee and D. V. Kotov is supported by DOE/SciDAC SAP grant DE-AI02-06ER25796. NR 34 TC 2 Z9 2 U1 0 U2 1 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2015 VL 17 IS 2 BP 317 EP 336 DI 10.4208/cicp.250214.130814a PG 20 WC Physics, Mathematical SC Physics GA CH0EY UT WOS:000353693400001 ER PT J AU Liang, X Khaliq, AQM Xing, Y AF Liang, X. Khaliq, A. Q. M. Xing, Y. TI Fourth Order Exponential Time Differencing Method with Local Discontinuous Galerkin Approximation for Coupled Nonlinear Schrodinger Equations SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Exponential time differencing; local discontinuous Galerkin; nonlinear Schrodinger equation; energy conserving; error estimate ID QUARTIC SPLINE APPROXIMATION; FINITE-ELEMENT-METHOD; NUMERICAL-SIMULATION; PULSE-PROPAGATION; DIFFUSION SYSTEMS; OPTICAL-FIBERS; SCHEMES; DISCRETIZATION; PDES AB This paper studies a local discontinuous Galerkin method combined with fourth order exponential time differencingRunge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrodinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrodinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods. C1 [Liang, X.; Khaliq, A. Q. M.] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Liang, X.; Khaliq, A. Q. M.] Middle Tennessee State Univ, Ctr Computat Sci, Murfreesboro, TN 37132 USA. [Xing, Y.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Xing, Y.] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. RP Liang, X (reprint author), Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. EM xl2h@mtmail.mtsu.edu; Abdul.Khaliq@mtsu.edu; xingy@math.utk.edu FU NSF [DMS-1216454]; Oak Ridge National Laboratory (ORNL); U.S. Department of Energy, Office of Advanced Scientific Computing Research; UT-Battelle, LLC [DE-AC05-00OR22725] FX Research of Y. Xing is sponsored by NSF grant DMS-1216454, Oak Ridge National Laboratory (ORNL) and the U.S. Department of Energy, Office of Advanced Scientific Computing Research. The work was partially performed at ORNL, which is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. NR 38 TC 7 Z9 7 U1 0 U2 5 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2015 VL 17 IS 2 BP 510 EP 541 DI 10.4208/cicp.060414.190914a PG 32 WC Physics, Mathematical SC Physics GA CH0EY UT WOS:000353693400008 ER PT J AU Lott, PA Woodward, CS Evans, KJ AF Lott, P. Aaron Woodward, Carol S. Evans, Katherine J. TI Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Preconditioning; Shallow-water equations; Atmospheric climate; Community atmospheric model; Spectral element method ID NAVIER-STOKES EQUATIONS; ELEMENT ATMOSPHERIC MODEL; SOLUTION FRAMEWORK; SYSTEM MODEL; CUBED-SPHERE; APPROXIMATIONS; CONVECTION AB Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). In this paper, we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE. C1 [Lott, P. Aaron] D Wave Syst Inc, Palo Alto, CA USA. [Woodward, Carol S.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Evans, Katherine J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. RP Woodward, CS (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM woodward6@llnl.gov; evanskj@ornl.gov RI Woodward, Carol/M-4008-2014; OI Evans, Katherine/0000-0001-8174-6450 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank Mark Taylor for his discussions and notes on CAM-SE operators and Andy Salinger for his assistance in porting our methods into the PIRO interface in Trilinos. We would also like to thank Judy Hill for her scripts that were helpful in generating the plots in this manuscript. Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and the Office of Biological and Environmental Research. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 32 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 EI 1573-1499 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD FEB PY 2015 VL 19 IS 1 BP 49 EP 61 DI 10.1007/s10596-014-9447-6 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA CH1ND UT WOS:000353787600004 ER PT J AU Thorkelsson, K Bai, P Xu, T AF Thorkelsson, Karl Bai, Peter Xu, Ting TI Self-assembly and applications of anisotropic nanomaterials: A review SO NANO TODAY LA English DT Review DE Self-assembly; Nanomaterial; Nanorod; Sensing; SERS; Photovoltaics ID ENHANCED RAMAN-SCATTERING; SIDE-BY-SIDE; PLASMONIC CIRCULAR-DICHROISM; FIELD-EFFECT TRANSISTORS; NANOROD LIQUID-CRYSTALS; GOLD NANORODS; BUILDING-BLOCKS; CDSE NANORODS; THIN-FILMS; NANOPARTICLE SUPERLATTICES AB Anisotropic nanoparticles are ideal building blocks for a variety of functional materials due to their unique and anisotropic optical, electronic, magnetic and mechanical properties. Precise control over the orientation and spatial arrangement of these nanomaterials is often requisite to achieve coupling between nanoparticles and thereby translate the properties of individual nanoparticles to macroscopic material properties. The physics and thermodynamics involved in the self-assembly are inherently more complex than isotropic nanoparticles due to the anisotropy within the system. However, the anisotropy also introduces anisotropic nanoparticle surface chemistry and stronger interparticle interactions which could be leveraged to achieve self-assembly. To address these challenges and opportunities, a plethora of strategies have been conceived and developed to induce the self-assembly of anisotropic nanoparticles into desired nanostructures over macroscopic areas and volumes. These strategies involve manipulation of interparticle physical interactions, modification of nanoparticle surface chemistry, application of external fields, and utilization of physically or chemically patterned templates to achieve the required level of spatial and orientational control over the assembly of anisotropic nanoparticles. The resulting ordered anisotropic nanoparticle assemblies display strong plasmonic, electronic, and excitonic coupling, which render these assemblies as ideal materials for chemical and biological sensing, energy harvesting, and many other technological applications. Considering the rapid advancement in this field of research, this review aims to provide an overview of the assembly, applications, and opportunities of anisotropic nanomaterials. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Thorkelsson, Karl; Bai, Peter; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu FU Department of Energy, Office of Basic Energy Science [DE-AC02-05CH11231] FX This work was supported by the Department of Energy, Office of Basic Energy Science under Contract DE-AC02-05CH11231 through the 'Organic-inorganic Nanocomposites' program. NR 177 TC 36 Z9 37 U1 74 U2 432 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1748-0132 EI 1878-044X J9 NANO TODAY JI Nano Today PD FEB PY 2015 VL 10 IS 1 BP 48 EP 66 DI 10.1016/j.nantod.2014.12.005 PG 19 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH2PK UT WOS:000353866900008 ER PT J AU Herman, Z Futrell, JH AF Herman, Zdenek Futrell, Jean H. TI Dynamics of ion-molecule reactions from beam experiments: A historical survey SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Ion-molecule reactions; Dynamics; Beam scattering ID SURFACE-INDUCED DISSOCIATION; CHARGE-TRANSFER REACTIONS; BOND-FORMING REACTIONS; SLOW POLYATOMIC IONS; COLLISION-INDUCED DISSOCIATION; DIFFERENTIAL CROSS-SECTIONS; ASSEMBLED MONOLAYER SURFACE; POTENTIAL-ENERGY SURFACES; PROTON-TRANSFER REACTIONS; REACTION-MECHANISMS AB A historical survey of beam scattering studies of ion-molecule reactions from the sixties up to the present time is presented. The centers of research that developed key instrumentation for these studies and early achievements in characterizing basic collisional mechanisms in scattering experiments are reviewed. Important classes of cation-molecule reaction dynamics, impulsive atom-transfer, reaction complexes, electron transfer (charge transfer) dynamics and the dynamics of negative ion-molecule reactions are described. Selected specific examples of ion-molecule reaction dynamics, including multiply-charged and ion-surface collisions, are briefly presented. (C) 2014 Elsevier B.V. All rights reserved. C1 [Herman, Zdenek] Acad Sci Czech Republic, Vvi, J Heyrovsky Inst Phys Chem, Prague 18223 8, Czech Republic. [Futrell, Jean H.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Herman, Z (reprint author), Acad Sci Czech Republic, Vvi, J Heyrovsky Inst Phys Chem, Dolejskova 3, Prague 18223 8, Czech Republic. EM zdenek.herman@jh-inst.cas.cz NR 123 TC 0 Z9 0 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 84 EP 92 DI 10.1016/j.ijms.2014.06.009 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100009 ER PT J AU Laskin, J AF Laskin, Julia TI Ion-surface collisions in mass spectrometry: Where analytical chemistry meets surface science SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Surface-induced dissociation; Ion soft landing; Self-assembled monolayer surfaces ID ASSEMBLED MONOLAYER SURFACES; SLOW POLYATOMIC IONS; NONCOVALENT PROTEIN COMPLEXES; ENHANCED RAMAN-SPECTROSCOPY; OFF-RESONANCE EXCITATION; PEPTIDE RADICAL CATIONS; ETHANOL MOLECULAR-IONS; SOFT-LANDING ISOLATION; LOW-ENERGY COLLISIONS; INDUCED DISSOCIATION AB This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications. (C) 2014 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, POBox 999 K8-88, Richland, WA 99354 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX I would like to thank all of the students, postdoctoral fellows, and colleagues who contributed to development of the research area described in this perspective article. In particular, I express ply appreciation to my former research advisor, Dr. Jean Futrell, who introduced me to this field, as well as current group members Drs. Grant Johnson and Don Gunaratne and former group members Drs. Eduard Denisov, Sergey Rakov, Anil Shukla, Omar Hadjar, Peng Wang, Zhibo Yang, and Qichi Hu-who all worked on various aspects of ion-surface collisions. I also thank Profs. Graham Cooks, Bill Hase, and Vicki Wysocki for helpful discussions and continued collaboration. Our ongoing research involving ion-surface collisions in mass spectrometry is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division. The research is performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 185 TC 3 Z9 3 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 188 EP 200 DI 10.1016/j.ijms.2014.07.004 PG 13 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100021 ER PT J AU Ma, X Loo, JA Wysocki, VH AF Ma, Xin Loo, Joseph A. Wysocki, Vicki H. TI Surface induced dissociation yields substructure of Methanosarcina thermophila 20S proteasome complexes SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Native mass spectrometry; Surface induced dissociation; 20S Proteasome; Stacked ring; Charge reduction; Triethylammonium acetate ID MOBILITY MASS-SPECTROMETRY; AMYLOID-P COMPONENT; CRYSTAL-STRUCTURE; GAS-PHASE; NONCOVALENT COMPLEXES; ANGSTROM RESOLUTION; PROTEIN COMPLEXES; GROEL; MECHANISMS; YEAST AB Native mass spectrometry (MS) and surface induced dissociation (SID) have been applied to study the stoichiometry and quaternary structure of non-covalent protein complexes. In this study, Methanosarcina thermophila 20S proteasome, which consists of four stacked heptameric rings (alpha(7)beta(7)beta(7)alpha(7) symmetry), has been selected to explore the SID dissociation pattern of a complicated stacked ring protein complex. SID produces both alpha and beta subunits while collision induced dissociation (CID) produces only highly charged alpha subunit. In addition, the charge reduced 20S proteasome produces the alpha(7)beta(7) fragment, reflecting the stacked ring topology of the complex. The combination of SID and charge reduction is shown to be a powerful tool for the study of protein complex structure. (C) 2014 Published by Elsevier B.V. C1 [Ma, Xin; Wysocki, Vicki H.] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Dept Biol Chem, Los Angeles, CA 90095 USA. [Loo, Joseph A.] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Wysocki, VH (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. EM wysocki.11@osu.edu FU National Science Foundation [0923551]; National Institutes of Health [R01GM103479] FX This work was financially supported by the National Science Foundation (Grant 0923551 to VHW) and the National Institutes of Health (R01GM103479 to JAL). NR 41 TC 0 Z9 0 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 201 EP 204 DI 10.1016/j.ijms.2014.09.011 PG 4 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100022 PM 26005366 ER PT J AU Johnson, GE Laskin, J AF Johnson, Grant E. Laskin, Julia TI Soft landing of mass-selected gold clusters: Influence of ion and ligand on charge retention and reactivity SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Soft landing; Mass-selected; Collision induced dissociation; Gold cluster; Charge retention; Reactivity ID ASSEMBLED MONOLAYER SURFACES; DENSITY-FUNCTIONAL CALCULATIONS; SIMPLE METAL-CLUSTERS; PEPTIDE IONS; GAS-PHASE; VIBRATIONAL SPECTROSCOPY; ELECTROSPRAY-IONIZATION; MOBILITY MEASUREMENTS; ELECTRONIC-PROPERTIES; DESORPTION-KINETICS AB We employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)(2+), L=1,3-bis(diphenylphosphino) propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)(2+), L=1,6-bis(diphenylphosphino) hexane, DPPH] were synthesized in solution for comparison to (11,5)(3+) precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24, 977). Similar to (11,5)(3+) precursor ions, the (10,4)(2+) product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)(2+) product ions that are not seen for (11,5)(3+) precursor ions. The abundance of (10,4)(2+) on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)(2+) product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)(2+) DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)(3+) precursor ions ligated with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)(2+) is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)(2+) is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by in-source CID is similar to precursor ions their reactivity during analysis with SIMS is different resulting in the formation of peaks corresponding to reaction products. The length of the diphosphine ligand exerts only a minor influence on the charge retention and reactivity of gold clusters. Based on the observed reactivity of (10,4)(2+) product ions it is anticipated that in-source CID will be increasingly applied for the preparation of a distribution of ions, including undercoordinated and reactive species, for soft landing onto surfaces. Published by Elsevier B.V. C1 [Johnson, Grant E.; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN k8-88, Richland, WA 99352 USA. EM grant.johnson@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences of the U.S. Department of Energy (DOE); Linus Pauling Fellowship; Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research and located at PNNL; U.S. DOE FX This research was funded by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences of the U.S. Department of Energy (DOE). GEJ acknowledges partial support from the Linus Pauling Fellowship and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 98 TC 6 Z9 6 U1 6 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 205 EP 213 DI 10.1016/j.ijms.2014.05.013 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100023 ER PT J AU Zhang, J Loo, RRO Loo, JA AF Zhang, Jiang Loo, Rachel R. Ogorzalek Loo, Joseph A. TI Increasing fragmentation of disulfide-bonded proteins for top-down mass spectrometry by supercharging SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article ID ELECTRON-CAPTURE DISSOCIATION; COLLISION-INDUCED DISSOCIATION; NATIVE CYTOCHROME-C; QUADRUPOLE ION-TRAP; CHARGE-STATE; GLOBULAR-PROTEINS; METAL-COMPLEXES; HUMAN-DISEASE; PEPTIDES; CLEAVAGE AB The disulfide bond is an important post-translational modification to form and maintain the native structure and biological functions of proteins. Characterization of disulfide bond linkages is therefore of essential interest in the structural elucidation of proteins. Top-down mass spectrometry (MS) of disulfide-bonded proteins has been hindered by relatively low sequence coverage due to disulfide cross-linking. In this study, we employed top-down ESI-MS with Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD) to study the fragmentation of supercharged proteins with multiple intramolecular disulfide bonds. With charge enhancement upon the addition of sulfolane to the analyte solution, improved protein fragmentation and disulfide bond cleavage efficiency was observed for proteins including bovine p-lactoglobulin, soybean trypsin inhibitor, human proinsulin, and chicken lysozyme. Both the number and relative abundances of product ions representing disulfide cleavage increase with increasing charge states for the proteins studied. Our studies suggest supercharging ESI-MS is a promising tool to aid in the top-down MS analysis of disulfide-bonded proteins, providing potentially useful information for the determination of disulfide bond linkages. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhang, Jiang; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Loo, Rachel R. Ogorzalek; Loo, Joseph A.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA. [Loo, Rachel R. Ogorzalek; Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Loo, JA (reprint author), Univ Calif Los Angeles, Inst Mol Biol, Dept Chem & Biochem, 402 Boyer Hall, Los Angeles, CA 90024 USA. EM JLoo@chem.ucla.edu FU US National Institutes of Health [R01GM103479, S10RR028893]; US Department of Energy (UCLA Institute for Genomics and Proteomics) [DE-FC03-02ER63421] FX Support from the US National Institutes of Health (R01GM103479, S10RR028893) and the US Department of Energy (UCLA Institute for Genomics and Proteomics; DE-FC03-02ER63421) are acknowledged. NR 54 TC 2 Z9 2 U1 4 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 546 EP 556 DI 10.1016/j.ijms.2014.07.047 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100058 PM 26028988 ER PT J AU Ibrahim, YM Baker, ES Danielson, WF Norheim, RV Prior, DC Anderson, GA Belov, ME Smith, RD AF Ibrahim, Yehia M. Baker, Erin S. Danielson, William F., III Norheim, Randolph V. Prior, David C. Anderson, Gordon A. Belov, Mikhail E. Smith, Richard D. TI Development of a new ion mobility (quadrupole) time-of-flight mass spectrometer SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article ID HIGH-RESOLUTION; LIQUID-CHROMATOGRAPHY; RESOLVING POWER; FUNNEL TRAP; PROTEOMICS; IMS; PROTEINS; GAS; BIOMOLECULES; PHASE AB A new ion mobility spectrometer (IMS) platform was developed to improve upon the sensitivity and reproducibility of our previous platforms, and further enhance IMS-MS utility for broad 'pan-omics' measurements. The new platform incorporated an improved electrospray ionization source and interface for enhanced sensitivity, and providing the basis for further benefits based upon implementation of multiplexed IMS. The ion optics included electrodynamic ion funnels at both the entrance and exit of the IMS, an ion funnel trap for ion injection, and a design in which nearly all ion optics (e.g., drift rings, ion funnels) were fabricated using printed circuit board technology. The IMS resolving power achieved was similar to 73 for singly-charged ions, very close to the predicted diffusion-limited resolving power (similar to 75). The platform's performance evaluation (e.g., for proteomics measurements) include LC-IMS-TOF MS datasets for 30 technical replicates for a trypsin digested human serum, and included platform performance in each dimension (LC, IMS and MS) separately. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F., III; Norheim, Randolph V.; Prior, David C.; Anderson, Gordon A.; Belov, Mikhail E.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Institute of General Medical Sciences [2 P41 GM 103493-11, 8 P41 GM103493-10, R21 GM103497]; NIH National Center for Research Resources (NCRR) under ARRA award [3P41RR018522-07S1]; National Cancer Institute [R21-CA12619-01, U24-CA-160019-01, Y01-CN-05013-29]; National Institute of Environmental Health Sciences of the NIH [R01ES022190]; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project; DOE [DE-AC05-76RL0 1830]; American Reinvestment and Recovery Act FX Portions of this research were supported by grants from the National Institute of General Medical Sciences (2 P41 GM 103493-11, 8 P41 GM103493-10 and R21 GM103497), NIH National Center for Research Resources (NCRR) under ARRA award 3P41RR018522-07S1, National Cancer Institute (R21-CA12619-01, U24-CA-160019-01, and Interagency Agreement Y01-CN-05013-29), National Institute of Environmental Health Sciences of the NIH (R01ES022190), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, American Reinvestment and Recovery Act of 2009 and by the U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. Work was performed in the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL0 1830. NR 43 TC 24 Z9 24 U1 6 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD FEB 1 PY 2015 VL 377 SI SI BP 655 EP 662 DI 10.1016/j.ijms.2014.07.034 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA CG1BD UT WOS:000353007100068 PM 26185483 ER PT J AU Jensen, MK Keasling, JD AF Jensen, Michael K. Keasling, Jay D. TI Recent applications of synthetic biology tools for yeast metabolic engineering SO FEMS YEAST RESEARCH LA English DT Review DE synthetic biology; production; chemicals ID CRISPR-CAS SYSTEMS; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; BUDDING YEAST; TRANSCRIPTION; PROMOTERS; DESIGN; EVOLUTION; PROTEINS; SCAFFOLD AB The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. C1 [Jensen, Michael K.; Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Jensen, MK (reprint author), Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Kogle Alle 6, DK-2970 Horsholm, Denmark. EM mije@biosustain.dtu.dk FU Novo Nordisk Foundation FX The authors wish to thank the Novo Nordisk Foundation for financial support. The authors declare no conflict of interests. NR 94 TC 5 Z9 5 U1 14 U2 80 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1567-1356 EI 1567-1364 J9 FEMS YEAST RES JI FEMS Yeast Res. PD FEB PY 2015 VL 15 IS 1 DI 10.1111/1567-1364.12185 PG 10 WC Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biotechnology & Applied Microbiology; Microbiology; Mycology GA CF8CE UT WOS:000352782200002 ER PT J AU Wohlfeld, K Chen, CC van Veenendaal, M Devereaux, TP AF Wohlfeld, K. Chen, Cheng-Chien van Veenendaal, M. Devereaux, T. P. TI Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 14th European Conference on Physics of Magnetism (PM) CY JUN 23-27, 2014 CL Poznan, POLAND SP Polish Acad Sci, Inst Mol Phys, Adam Mickiewicz Univ, Fac Phys ID HUBBARD-MODEL; STATE AB Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation, we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N = 2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain. C1 [Wohlfeld, K.; Devereaux, T. P.] SLAC Natl Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Wohlfeld, K.; Devereaux, T. P.] Stanford Univ, Menlo Pk, CA 94025 USA. [Wohlfeld, K.] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland. [Chen, Cheng-Chien; van Veenendaal, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Wohlfeld, K (reprint author), SLAC Natl Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM wohlfeld@stanford.edu RI Wohlfeld, Krzysztof/B-4489-2014 OI Wohlfeld, Krzysztof/0000-0002-6524-8264 NR 18 TC 0 Z9 0 U1 0 U2 2 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD FEB PY 2015 VL 127 IS 2 BP 201 EP 203 PG 3 WC Physics, Multidisciplinary SC Physics GA CE9BY UT WOS:000352139600012 ER PT J AU Reusser, L Bierman, P Rood, D AF Reusser, Lucas Bierman, Paul Rood, Dylan TI Quantifying human impacts on rates of erosion and sediment transport at a landscape scale SO GEOLOGY LA English DT Article ID UNITED-STATES; DENUDATION; AGRICULTURE; ALLUVIUM; BEDROCK; LEGACY; TIME AB Establishing background (geologic) rates of erosion is prerequisite to quantifying the impact of human activities on Earth's surface. Here, we present Be-10 estimates of background erosion rates for ten large (10,000-100,000 km(2)) river basins in the southeastern United States, an area that was cleared of native forest and used intensively for agriculture. These Be-10-based rates are indicative of the pace at which the North American passive-margin landscape eroded before European settlement (similar to 8 m/m.y.). Comparing these background rates to both rates of post-settlement hillslope erosion and to river sediment yields for the same basins, we find that following peak disturbance (late 1800s and early 1900s), rates of hillslope erosion (similar to 950 m/m.y.) exceeded Be-10-determined background rates more than one-hundred fold. Although large-basin sediment yields during peak disturbance increased 5-10x above pre-settlement norms, rivers at the time were transporting only similar to 6% of the eroded material; work by others suggests that the bulk of historically eroded material remained and still remains as legacy sediment stored at the base of hillslopes and along valley bottoms. Because background erosion rates, such as we present here, reflect the rate at which soil is generated over millennial time scales, they can inform and enhance landscape-management strategies. C1 [Reusser, Lucas; Bierman, Paul] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA. [Reusser, Lucas; Bierman, Paul] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Rood, Dylan] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Rood, Dylan] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Reusser, L (reprint author), Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA. EM pbierman@uvm.edu FU National Science Foundation [EAR-310208]; Department of Defense [DAAD19-03-1-0205] FX We thank M. Jungers, W. Hackett, and J. Duxbury for field assistance. Support was provided by National Science Foundation grant EAR-310208 and Department of Defense grant DAAD19-03-1-0205. We thank R. Hooke, T. Dunne, K. Wegmann, and D. Merritts for reviews that improved this paper. NR 34 TC 11 Z9 11 U1 3 U2 25 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD FEB PY 2015 VL 43 IS 2 BP 171 EP 174 DI 10.1130/G36272.1 PG 4 WC Geology SC Geology GA CE8ME UT WOS:000352095800019 ER PT J AU Turner, AK Hunke, EC AF Turner, Adrian K. Hunke, Elizabeth C. TI Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID CLIMATE SYSTEM MODEL; SALINITY PROFILE; MASS-BALANCE; MELT PONDS; GREASE ICE; SENSITIVITY; DRAINAGE; PHYSICS AB We perform global simulations of the Los Alamos sea-ice model, CICE, with a new thermodynamics component that has a fully prognostic, variable bulk salinity vertical profile based on mushy layer physics. The processes of gravity drainage, melt-water flushing and snow-ice formation are parameterized to allow the bulk salinity to evolve with time. We analyze the seasonal and spatial variation of sea-ice bulk salinity, area, volume and thickness and compare these quantities to simulations using the previous thermodynamic component. Adjusting one of the gravity drainage parameters, we find good agreement between simulation results and fieldwork ice-core observations of sea-ice bulk salinity. As expected, bulk salinity is highest during periods of ice growth and lowest after periods of ice melt. In the northern hemisphere the new thermodynamics component produces thicker ice than the previous thermodynamics component. Of the nine major differences between the two models, differences in how salinities are calculated and how melt-pond flushing is parameterized are the principal causes of this thickness difference. Thickness differences are smaller in the southern hemisphere than in the northern hemisphere since a greater fraction of ice melts, and differences cannot accumulate year-on-year. Model differences in how ice thickness changes and snow-ice formation are calculated are the most important causes of the different thickness between the two thermodynamic components in the southern hemisphere. The melt-pond area and volume are found to be highly sensitive to a parameter choice controlling drainage through macroscopic holes in the ice, in both hemispheres. C1 [Turner, Adrian K.; Hunke, Elizabeth C.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T 3, Los Alamos, NM 87545 USA. RP Turner, AK (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T 3, Los Alamos, NM 87545 USA. EM akt@lanl.gov FU Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science; DOE [DE-AC52-06NA25396] FX A. Turner and E. Hunke are supported by the Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science; Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the DOE under contract DE-AC52-06NA25396. The authors thank Martin Vancoppenolle for compiling and providing the observational data set. Simulation data used for producing the results herein may be requested by contacting the authors at akt@lanl.gov. NR 50 TC 5 Z9 5 U1 4 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD FEB PY 2015 VL 120 IS 2 BP 1253 EP 1275 DI 10.1002/2014JC010358 PG 23 WC Oceanography SC Oceanography GA CE9HM UT WOS:000352154800041 ER PT J AU Tumeo, A Feo, J Villa, O Secchi, S Mattson, TG AF Tumeo, Antonin Feo, John Villa, Oreste Secchi, Simone Mattson, Timothy G. TI Special Issue on Architectures and Algorithms for Irregular Applications (AAIA)-Guest editors' introduction SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Editorial Material C1 [Tumeo, Antonin] PNNL, Richland, WA 99354 USA. [Feo, John] Context Relevant, New York, NY USA. RP Tumeo, A (reprint author), PNNL, Richland, WA 99354 USA. EM antonino.tumeo@pnnl.gov; jfeo@contextrelevant.com; ovilla@nvidia.com; simone.secchi@arm.com; timothy.g.mattson@intel.com RI Tumeo, Antonino/L-3106-2016 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2015 VL 76 SI SI BP 1 EP 2 DI 10.1016/j.jpdc.2014.12.001 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA CE8TU UT WOS:000352117800001 ER PT J AU You, Y Fu, HH Song, SL Randles, A Kerbyson, D Marquez, A Yang, GW Hoisie, A AF You, Yang Fu, Haohuan Song, Shuaiwen Leon Randles, Amanda Kerbyson, Darren Marquez, Andres Yang, Guangwen Hoisie, Adolfy TI Scaling Support Vector Machines on modern HPC platforms SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Machine learning models; Dynamic modeling; Support Vector Machine; Multi & many-core architectures; Optimization techniques; Performance analysis ID DESIGN AB Support Vector Machines (SVM) have been widely used in data-mining and Big Data applications as modern commercial databases start to attach an increasing importance to the analytic capabilities. In recent years, SVM was adapted to the field of High Performance Computing for power/performance prediction, auto-tuning, and runtime scheduling. However, even at the risk of losing prediction accuracy due to insufficient runtime information, researchers can only afford to apply offline model training to avoid significant runtime training overhead. Advanced multi- and many-core architectures offer massive parallelism with complex memory hierarchies which can make runtime training possible, but form a barrier to efficient parallel SVM design. To address the challenges above, we designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multi-core and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools. MIC-SVM achieves 4.4-84x and 18-47x speedups against the popular LIBSVM, on MIC and Ivy Bridge CPUs respectively, for several real-world data-mining datasets. Even compared with GPUSVM, running on the NVIDIA k20x GPU, the performance of our MIC-SVM is competitive. We also conduct a cross-platform performance comparison analysis, focusing on Ivy Bridge CPUs, MIC and GPUs, and provide insights on how to select the most suitable advanced architectures for specific algorithms and input data patterns. (C) 2014 Elsevier Inc. All rights reserved. C1 [You, Yang; Fu, Haohuan] Minist Educ, Key Lab Earth Syst Modeling, Beijing, Peoples R China. [You, Yang; Fu, Haohuan] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [You, Yang] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. [Song, Shuaiwen Leon; Kerbyson, Darren; Marquez, Andres; Hoisie, Adolfy] Pacific NW Natl Lab, Performance & Architecture Lab, Richland, WA 99352 USA. [Randles, Amanda] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Fu, HH (reprint author), Minist Educ, Key Lab Earth Syst Modeling, Beijing, Peoples R China. EM chinayouyang1991@gmail.com FU National Natural Science Foundation of China [61303003, 41374113]; National High-tech R&D (863) Program of China [2013AA01A208]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE OSCAR Beyond Standard Model Project [62855] FX The authors would like to thank the reviewers for their valuable comments that lead to the improved quality of the article. The financial support from National Natural Science Foundation of China (Grant Nos. 61303003 and 41374113) and National High-tech R&D (863) Program of China (Grant No. 2013AA01A208) is also gratefully acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was also supported by DOE OSCAR Beyond Standard Model Project #62855. NR 44 TC 3 Z9 3 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2015 VL 76 SI SI BP 16 EP 31 DI 10.1016/j.jpdc.2014.09.005 PG 16 WC Computer Science, Theory & Methods SC Computer Science GA CE8TU UT WOS:000352117800003 ER PT J AU Bhowmick, S Chen, TY Halappanavar, M AF Bhowmick, Sanjukta Chen, Tzu-Yi Halappanavar, Mahantesh TI A new augmentation based algorithm for extracting maximal chordal subgraphs SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Maximal chordal subgraphs; Parallel graph algorithms ID LINEAR-TIME ALGORITHMS; GRAPHS AB A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph. (C) 2014 Elsevier Inc. All rights reserved. C1 [Bhowmick, Sanjukta] Univ Nebraska, Omaha, NE 68182 USA. [Chen, Tzu-Yi] Pomona Coll, Claremont, CA 91711 USA. [Halappanavar, Mahantesh] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Halappanavar, M (reprint author), Pacific NW Natl Lab, POB 999,MSIN J4-30, Richland, WA 99352 USA. EM sanjukta.bhowmick1@gmail.com; tzuyi.chen@pomona.edu; hala@pnnl.gov FU National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) [P20RR16469]; Center for Adaptive Super Computing Software-MultiThreaded Architectures (CASS-MT) at the US Department of Energy's Pacific Northwest National Laboratory [DE-ACO6-76RL01830] FX This work was made possible by the College of Information Science and Technology, University of Nebraska at Omaha and Grant Number P20RR16469 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are the sole responsibility of the authors and do not represent the official views of NCRR or NIH. This work was also funded in part by the Center for Adaptive Super Computing Software-MultiThreaded Architectures (CASS-MT) at the US Department of Energy's Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute under Contract DE-ACO6-76RL01830. NR 25 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2015 VL 76 SI SI BP 132 EP 144 DI 10.1016/j.jpdc.2014.10.006 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA CE8TU UT WOS:000352117800012 PM 25767331 ER PT J AU Peralta, P Loomis, E Chen, Y Brown, A McDonald, R Krishnan, K Lim, H AF Peralta, P. Loomis, E. Chen, Y. Brown, A. McDonald, R. Krishnan, K. Lim, H. TI Grain orientation effects on dynamic strength of FCC multicrystals at low shock pressures: a hydrodynamic instability study SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE plasticity; shock; anisotropy ID SPALL DAMAGE; STRAIN-RATE; COPPER; BEHAVIOR; METALS AB Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size approximate to 800 mu m) using the Richtmyer-Meshkov instability with a square-wave surface perturbation (wavelength=150 mu m, amplitude=5 mu m), shocked at 2.7GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close to < 001 > parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to < 101 > had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. Results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects. C1 [Peralta, P.; Chen, Y.; Brown, A.; McDonald, R.; Krishnan, K.; Lim, H.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Loomis, E.] Los Alamos Natl Lab, Plasma Phys P24, Los Alamos, NM 87544 USA. RP Peralta, P (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM pperalta@asu.edu OI Brown, Andrew/0000-0001-7965-9294 FU Department of Energy (DOE) from the National Nuclear Security Administration (NNSA) [DE-NA0002005]; Office of Fusion Energy Science [DE-SC0008683]; DOE Office of Fusion Energy Science; LANL FX This work was supported by the Department of Energy (DOE) [grant number DE-NA0002005] from the National Nuclear Security Administration (NNSA) and [grant number DE-SC0008683] from the Office of Fusion Energy Science to Arizona State University and an agreement between the DOE Office of Fusion Energy Science and LANL. NR 18 TC 2 Z9 2 U1 2 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 EI 1362-3036 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD FEB 1 PY 2015 VL 95 IS 2 BP 67 EP 76 DI 10.1080/09500839.2014.994571 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA CF5WZ UT WOS:000352629300001 ER PT J AU Imam, S Noguera, DR Donohue, TJ AF Imam, Saheed Noguera, Daniel R. Donohue, Timothy J. TI An Integrated Approach to Reconstructing Genome-Scale Transcriptional Regulatory Networks SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID RHODOBACTER-SPHAEROIDES 2.4.1; PHOTOSYNTHESIS GENE-EXPRESSION; DNA-BINDING SPECIFICITY; ESCHERICHIA-COLI; PHOTOSYSTEM FORMATION; ASSEMBLY PROTEINS; CARBON METABOLISM; COEXPRESSED GENES; MODULE NETWORKS; FNRL GENE AB Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied gamma-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making them highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the alpha-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that similar to 67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating comparative genomics of closely related organisms with gene expression data to assemble large-scale TRN models with high-quality predictions. C1 [Imam, Saheed] Univ Wisconsin, Program Cellular & Mol Biol, Madison, WI 53706 USA. [Imam, Saheed; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Imam, Saheed] Univ Wisconsin, Wisconsin Energy Inst, Madison, WI USA. [Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. RP Imam, S (reprint author), Univ Wisconsin, Program Cellular & Mol Biol, Madison, WI 53706 USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU Department of Energy, Office of Science, Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; Department of Energy Genomics: GTL Program; Department of Energy Genomics: SciDAC Program [DE-FG02-04ER25627]; William H. Peterson Predoctoral Fellowship from University of Wisconsin-Madison Bacteriology Department FX Funding: This work was funded by Department of Energy, Office of Science, Great Lakes Bioenergy Research Center (DE-FC02-07ER64494); Department of Energy Genomics: GTL and SciDAC Programs (DE-FG02-04ER25627); William H. Peterson Predoctoral Fellowship from the University of Wisconsin-Madison Bacteriology Department. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 87 TC 5 Z9 5 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2015 VL 11 IS 2 AR UNSP e1004103 DI 10.1371/journal.pcbi.1004103 PG 35 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA CE8GX UT WOS:000352081000043 PM 25723545 ER PT J AU Jorda, J Liu, Y Bobik, TA Yeates, TO AF Jorda, Julien Liu, Yu Bobik, Thomas A. Yeates, Todd O. TI Exploring Bacterial Organelle Interactomes: A Model of the Protein-Protein Interaction Network in the Pdu Microcompartment SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SEROVAR TYPHIMURIUM LT2; B-12-DEPENDENT 1,2-PROPANEDIOL DEGRADATION; DEHYDRATASE-REACTIVATING FACTOR; SALMONELLA-TYPHIMURIUM; DIOL DEHYDRATASE; SHELL PROTEIN; CARBOXYSOME SHELL; THIOBACILLUS-NEAPOLITANUS; CRYSTAL-STRUCTURE; BETA-CARBOXYSOME AB Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a "universal hub" for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding beta-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP. C1 [Jorda, Julien; Yeates, Todd O.] UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Liu, Yu; Bobik, Thomas A.] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA USA. [Yeates, Todd O.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. RP Jorda, J (reprint author), UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU National Institutes of Health [AI081146]; BER program of the U.S. Department of Energy Office of Science FX This work was funded by grant AI081146 from the National Institutes of Health. TOY is supported by the BER program of the U.S. Department of Energy Office of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 107 TC 3 Z9 3 U1 4 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2015 VL 11 IS 2 AR UNSP e1004067 DI 10.1371/journal.pcbi.1004067 PG 23 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA CE8GX UT WOS:000352081000027 PM 25646976 ER PT J AU Sun, YG Truong, TT Liu, YZ Hu, YX AF Sun, Yu-Gang Truong, Tu T. Liu, Yu-Zi Hu, Yong-Xing TI Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas SO CHINESE CHEMICAL LETTERS LA English DT Article DE Microwave synthesis; Manganese oxide nanosheets; Superparamagnetic nanoparticles; Hybrid nanostructures; Multifunctional nanostructures ID ELECTROCHEMICAL SUPERCAPACITORS; WATER-TREATMENT; NANOSTRUCTURES; BATTERIES AB Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gang Sun. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. C1 [Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi; Hu, Yong-Xing] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Truong, Tu/E-7029-2011; Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 3 Z9 3 U1 9 U2 57 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1001-8417 EI 1878-5964 J9 CHINESE CHEM LETT JI Chin. Chem. Lett. PD FEB PY 2015 VL 26 IS 2 BP 233 EP 237 DI 10.1016/j.cclet.2014.10.012 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA CE2MH UT WOS:000351649200015 ER PT J AU Vazquez, JA Carrillo-Gonzalez, M German, G Herrera-Aguilar, A Hidalgo, JC AF Alberto Vazquez, J. Carrillo-Gonzalez, Mariana German, Gabriel Herrera-Aguilar, Alfredo Carlos Hidalgo, Juan TI Constraining hybrid natural inflation with recent CMB data SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE primordial black holes; inflation; physics of the early universe; cosmological parameters from CMBR ID PARTICLE PHYSICS MODELS; UNIVERSE; PERTURBATION; COSMOLOGY; SYMMETRY; FLATNESS; SPECTRA; HORIZON AB We study the Hybrid Natural Inflation (HNI) model and some of its realisations in the light of recent CMB observations, mainly Planck temperature and WMAP-9 polarization, and compare with the recent release of BICEP2 dataset. The inflationary sector of HNI is essentially given by the potential V(phi) = V-0(1 + acos (phi/f)), where a is a positive constant smaller or equal to one and f is the scale of (pseudo Nambu-Goldstone) symmetry breaking. We show that to describe the HNI model realisations we only need two observables; the spectral index n(s), the tensor-to-scalar ratio, and a free parameter in the amplitude of the cosine function a. We find that in order to make the HNI model compatible with the BICEP2 observations, we require a large positive running of the spectra. We find that this could overproduce primordial black holes (PBHs) in the most theoretically consistent case of the model. This situation could be alleviated if, as recently argued, the BICEP2 data do not correspond to primordial gravitational waves. C1 [Alberto Vazquez, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Carrillo-Gonzalez, Mariana] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Carrillo-Gonzalez, Mariana] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [German, Gabriel; Carlos Hidalgo, Juan] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. [Herrera-Aguilar, Alfredo] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico. [Herrera-Aguilar, Alfredo] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. RP Vazquez, JA (reprint author), Brookhaven Natl Lab, 2 Ctr Rd, Upton, NY 11973 USA. EM jvazquez@bnl.gov; Mgonzalez2@perimeterinstitute.ca; gabriel@fis.unam.mx; aherrera@ifuap.buap.mx; hidalgo@fis.unam.mx OI Carrillo-Gonzalez, Mariana/0000-0003-1119-9097 FU Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) UNAM [IN103413-3]; Teorias de Kaluza-Klein; inflacion y perturbaciones gravitacionales; Fluctuaciones no-lineales en cosmologia relativista [IA101414-1]; PI; CONACyT; SNI FX We gratefully acknowledge support from Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) UNAM, IN103413-3, Teorias de Kaluza-Klein, inflacion y perturbaciones gravitacionales and IA101414-1, Fluctuaciones no-lineales en cosmologia relativista. AHA is grateful to the staff of ICF, UNAM and UAM-Iztapalapa for hospitality. MCG acknowledges a scholarship from PI and CONACyT. JAV, GG, AHA and JCH thank SNI for support. NR 39 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2015 IS 2 AR 039 DI 10.1088/1475-7516/2015/02/039 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE0NY UT WOS:000351502100040 ER PT J AU Mertens, S Lasserre, T Groh, S Drexlin, G Gluck, F Huber, A Poon, AWP Steidl, M Steinbrink, N Weinheimer, C AF Mertens, S. Lasserre, T. Groh, S. Drexlin, G. Glueck, F. Huber, A. Poon, A. W. P. Steidl, M. Steinbrink, N. Weinheimer, C. TI Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino experiments; dark matter experiments; neutrino properties ID WARM DARK-MATTER; DENSITY PROFILES; SPECTRUM; MASS; GALAXIES; SPECTROSCOPY; EMISSION; MODEL; T-2 AB We investigate the sensitivity of tritium beta-decay experiments for keV-scale sterile neutrinos. Relic sterile neutrinos in the keV mass range can contribute both to the cold and warm dark matter content of the universe. This work shows that a large-scale tritium beta-decay experiment, similar to the KATRIN experiment that is under construction, can reach a statistical sensitivity of the active-sterile neutrino mixing of sin(2) theta similar to 10(-8). The effect of uncertainties in the known theoretical corrections to the tritium beta-decay spectrum were investigated, and found not to affect the sensitivity significantly. It is demonstrated that controlling uncorrelated systematic effects will be one of the main challenges in such an experiment. C1 [Mertens, S.; Poon, A. W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Lasserre, T.] Commissariat Energie Atom & Energies Alternat, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Lasserre, T.] Astroparticules & Cosmol APC, F-75205 Paris 13, France. [Mertens, S.; Groh, S.; Drexlin, G.; Glueck, F.; Huber, A.; Steidl, M.] Karlsruhe Inst Technol, KCETA, D-76021 Karlsruhe, Germany. [Steinbrink, N.; Weinheimer, C.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Glueck, F.] Wigner Res Inst Phys, H-1525 Budapest, Hungary. RP Mertens, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. EM smertens@lbl.gov; thierry.lasserre@cea.fr; stefan.groh@kit.edu; guido.drexlin@kit.edu; ferenc.glueck@kit.edu; anton.huber@student.kit.edu; awpoon@lbl.gov; markus.steidl@kit.edu; n.steinbrink@uni-muenster.de; weinheimer@uni-muenster.de FU Feodor Lynen fellowship by the Alexander von Humboldt Foundation; Helmholtz Association; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; KIT; KHYS; European Research Council [StG-307184]; BMBF [05A11PM2] FX S. Mertens gratefully acknowledges support of a Feodor Lynen fellowship by the Alexander von Humboldt Foundation and support by the Helmholtz Association. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231. S. Groh and A. Huber would like to thank KIT and KHYS for financial support and LBNL for hospitality during their research stay at Berkeley. Th. Lasserre thanks the European Research Council for support under the Starting Grant StG-307184. N. Steinbrinck acknowledges funding by BMBF grant 05A11PM2. Special thanks to D. Radford and S. Neubauer for fruitful discussions. The authors wish to thank Marco Drewes for useful discussions and for providing astrophysical observations data of figure 4. NR 81 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2015 IS 2 AR 020 DI 10.1088/1475-7516/2015/02/020 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE0NY UT WOS:000351502100021 ER PT J AU Palanque-Delabrouille, N Yeche, C Lesgourgues, J Rossi, G Borde, A Viel, M Aubourg, E Kirkby, D LeGoff, JM Rich, J Roe, N Ross, NP Schneider, DP Weinberg, D AF Palanque-Delabrouille, Nathalie Yeche, Christophe Lesgourgues, Julian Rossi, Graziano Borde, Arnaud Viel, Matteo Aubourg, Eric Kirkby, David LeGoff, Jean-Marc Rich, James Roe, Natalie Ross, Nicholas P. Schneider, Donald P. Weinberg, David TI Constraint on neutrino masses from SDSS-III/BOSS Ly alpha forest and other cosmological probes SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino masses from cosmology; Lyman alpha forest; cosmological parameters from LSS ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; MATTER POWER SPECTRUM; MICROWAVE BACKGROUND ANISOTROPIES; LARGE-SCALE STRUCTURE; 9TH DATA RELEASE; INTERGALACTIC MEDIUM; MASSIVE NEUTRINOS; HYDRODYNAMICAL SIMULATIONS; TRANSMITTED FLUX AB We present constraints on the parameters of the ACDM cosmological model in the presence of massive neutrinos, using the one-dimensional Ly alpha forest power spectrum obtained with the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS) by Palanque-Delabrouille et al. [1], complemented by additional cosmological probes. The interpretation of the measured Ly alpha spectrum is done using a second-order Taylor expansion of the simulated power spectrum. BOSS Ly alpha data alone provide better bounds than previous Ly alpha results, but are still poorly constraining, especially for the sum of neutrino masses Sigma m(v), for which we obtain an upper bound of 1.1 eV (95% CL), including systematics for both data and simulations. Ly alpha constraints on ACDM parameters and neutrino masses are compatible with CMB bounds from the Planck collaboration [2]. Interestingly, the combination of Ly alpha with CMB data reduces the uncertainties significantly, due to very different directions of degeneracy in parameter space, leading to the strongest cosmological bound to date on the total neutrino mass, Sigma m(v) < 0.15 eV at 95% CL (with a best-fit in zero). Adding recent BAO results further tightens this constraint to Sigma m(v) < 0.14 eV at 95% CL. This bound is nearly independent of the statistical approach used, and of the different combinations of CMB and BAO data sets considered in this paper in addition to Ly alpha. Given the measured values of the two squared mass differences Delta m(2), this result tends to favor the normal hierarchy scenario against the inverted hierarchy scenario for the masses of the active neutrino species. C1 [Palanque-Delabrouille, Nathalie; Yeche, Christophe; Rossi, Graziano; Borde, Arnaud; LeGoff, Jean-Marc; Rich, James] CEA, Ctr Saclay, IRFU SPP, F-91191 Gif Sur Yvette, France. [Palanque-Delabrouille, Nathalie; Roe, Natalie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lesgourgues, Julian] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland. [Lesgourgues, Julian] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Lesgourgues, Julian] Univ Savoie, LAPTh, CNRS, F-74941 Annecy Le Vieux, France. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Viel, Matteo] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Viel, Matteo] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Aubourg, Eric] Univ Paris 07, APC, CNRS IN2P3, CEA,Observ Paris, Paris, France. [Kirkby, David] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Weinberg, David] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Weinberg, David] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. RP Palanque-Delabrouille, N (reprint author), CEA, Ctr Saclay, IRFU SPP, F-91191 Gif Sur Yvette, France. EM nathalie.palanque-delabrouille@cea.fr; christophe.yeche@cea.fr; Julien.Lesgourgues@cern.ch; graziano@kias.re.kr; arnaud.borde@polytechnique.org; matteoviel@gmail.com; eric@aubourg.net; dkirkby@uci.edu; Jean-Marc.Le-Goff@cea.fr; james.rich@cea.fr; naroe@lbl.gov; npross@lbl.gov; dps7@psu.edu; dhw@astronomy.ohio-state.edu RI EPFL, Physics/O-6514-2016; OI Kirkby, David/0000-0002-8828-5463; Viel, Matteo/0000-0002-2642-5707 FU Agence Nationale de la Recherche [ANR-11-JS0d4-011-01]; ERC-StG "CosmoIGM"; Royal Society University Research Fellowship; Sejong University; National Research Foundation of Korea [NRF-SGER 2014055950]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX A.B., N.P.-D., G.R. and Ch.Y. acknowledge support from grant ANR-11-JS0d4-011-01 of Agence Nationale de la Recherche.; M.V. is supported by ERC-StG "CosmoIGM".; JSB acknowledges the support of a Royal Society University Research Fellowship.; The work of G.R. is also supported by the faculty research fund of Sejong University in 2014, and by the National Research Foundation of Korea through NRF-SGER 2014055950. We thank Volker Springel for making GADGET-3 available to our team.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 75 TC 30 Z9 30 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2015 IS 2 AR 045 DI 10.1088/1475-7516/2015/02/045 PG 40 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE0NY UT WOS:000351502100046 ER PT J AU Senatore, L Zaldarriaga, M AF Senatore, Leonardo Zaldarriaga, Matias TI The IR-resummed Effective Field Theory of Large Scale Structures SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; cosmological perturbation theory; baryon acoustic oscillations ID MATTER POWER SPECTRUM; COSMOLOGICAL PERTURBATION-THEORY; PRECISION EMULATION; UNIVERSE AB We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ACDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k similar to 0.6 h Mpc(-1) to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique. C1 [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Zaldarriaga, Matias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Senatore, L (reprint author), Stanford Univ, Stanford Inst Theoret Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM senatore@stanford.edu; matiasz@ias.edu FU DOE [DE-FG02-12ER41854]; NSF [PHY-1068380, AST-0907969, PHY-1213563] FX We acknowledge useful discussions with Tobias Baldauf, J.J. Carrasco, Simon Foreman, Eiichiro Komatsu, Uros Seljak, Ravi Sheth, Rashid Sunyaev and Zvonimir Vlah. L.S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. M.Z. is supported in part by the NSF grants AST-0907969 and PHY-1213563. NR 26 TC 27 Z9 27 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2015 IS 2 AR 013 DI 10.1088/1475-7516/2015/02/013 PG 37 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE0NY UT WOS:000351502100014 ER PT J AU Xie, WW Liu, J Pecharsky, V Miller, GJ AF Xie, Weiwei Liu, Jing Pecharsky, Vitalij Miller, Gordon J. TI gamma-Brasses with Spontaneous Magnetization: Atom Site Preferences and Magnetism in the Fe-Zn and Fe-Pd-Zn Phase Spaces SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Magnetic properties; Iron; Zinc ID METALS; SYSTEM; DIFFRACTION; SUBOXIDES; SOLIDS AB The gamma-brasses in the binary Fe-Zn system were re-examined as part of the discovery of a new series of Fe-Pd-Zn gamma-brass compounds in the Zn-rich region of the Fe-Pd-Zn phase space. Fe2+xZn11-x, x = 1.60(4)-1.99(9), and FexPd2.2-yZn10.8-x+y, x = 0.08(5)2.46(8); y = 0.00(1)-1.44(4), all crystallize in the cubic crystal system, space group I (4) over bar 3m, with corresponding ranges of the lattice parameter of 8.977(1)-8.979(1) angstrom and 9.1028(4)-9.0347(2) angstrom as x increases, as determined by single-crystal X-ray diffraction. In the binary Fe-Zn system, iron atoms preferentially occupy the outer tetrahedron (OT) sites and partially mix with zinc atoms at the inner tetrahedron (IT) sites in the 26-atom gamma-brass clusters. At the refined upper limit of Fe content, Fe atoms also replace Zn atoms at the octahedron (OH) sites. For the ternaries FexPd2.2-yZn10.8-x+ y, refined site occupancies revealed three distinct patterns: (i) at low Fe content (x < 0.2), Fe/Pd and Pd/Zn mixing occurs, respectively, at the OT and OH sites; (ii) at intermediate Fe content (x approximate to 0.7), Fe/Pd and Fe/Zn mixing occurs, respectively, at the OT and IT sites; and (iii) at high Fe content (x > 0.9), Fe mixes at the IT (with Zn), OT (with Pd), and OH (with Zn) sites. Magnetization measurements of the Fe-rich (x > 0.9) ternary phases indicate ferromagnetic or ferrimagnetic responses, which are consistent with the results of electronic structure calculations on "FePdZn11" used to model this phase. In addition, a Mulliken population analysis of the different sites in the 26-atom.-brass cluster also provide a rationale for the complex behavior of atomic site occupancies vs. composition in both Fe2+xZn11-x and FexPd2.2-yZn10.8-x+y. C1 [Xie, Weiwei; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Xie, Weiwei; Liu, Jing; Pecharsky, Vitalij; Miller, Gordon J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Liu, Jing; Pecharsky, Vitalij] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu OI Xie, Weiwei/0000-0002-5500-8195 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors wish to thank Wei Tang for performing some of the magnetic measurements. NR 34 TC 0 Z9 0 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0044-2313 EI 1521-3749 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD FEB PY 2015 VL 641 IS 2 SI SI BP 270 EP 278 DI 10.1002/zaac.201400539 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CD9UR UT WOS:000351444500022 ER PT J AU Lin, QS Zhang, YM Taufour, V Lamichhane, TN Bud'ko, SL Canfield, PC Dennis, K Miller, G AF Lin, Qisheng Zhang, Yuemei Taufour, Valentin Lamichhane, Tej Nath Bud'ko, Sergey L. Canfield, Paul C. Dennis, Kevin Miller, Gordon TI On the Structure and Stability of BaAl4-Type Ordered Derivatives in the Sr-Au-Sn System for the 600 degrees C Section SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Solid-state structures; Electronic structure; X-ray diffraction; BaAl4-type; Intermetallic phases ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MAGNETIC-BEHAVIOR; BASIS-SET; CHEMISTRY; SUPERCONDUCTOR; SOLIDS AB The well-known BaAl4-type structure consists of three ordered ternary derivatives, i. e., BaNiSn3-(I4mm), ThCr2Si2-(I4/mmm), and CaBe2Ge2-type (P4/nmm). Few systems, such as Ba-Au-Sn, have been confirmed to manifest all three types as a function of valence electron count. In this work, the SrAuxSn4-x solid solution at the 600 degrees C section was studied thoroughly using both single crystal and powder X-ray diffraction. The crystal structures and phase width for the CaBe2Ge2-type SrAuxSn4-x solid solution were established to be a = 4.6528(2)-4.6233(3) angstrom and c = 11.3753(4)-11.2945(10) angstrom for x approximate to 1.65(1)-2.19(1). In the structure of SrAu2Sn2, no Au/Sn mixing was found, but for x < 2 compositions, Au/Sn mixings were only located at the Wyckoff 2a (3/4 1/4 0) site and for x > 2 compositions, at the 2b (3/4 1/4 1/2) site. Differential scanning calorimetry (DSC) analyses indicated that no phase transition occurred for the CaBe2Ge2-type SrAuxSn4-x phase up to 950 degrees C. Attempts to synthesize the ThCr2Si2- and BaNiSn3-type SrAuxSn4-x phases under the same reaction conditions were unsuccessful, and the BaNiSn3-type phase could not be attained even at a pressure of 3 GPa. The instability of a BaNiSn3-type "SrAuSn3" was investigated by both DSC measurements and first principles electronic structure calculations. C1 [Lin, Qisheng; Taufour, Valentin; Lamichhane, Tej Nath; Bud'ko, Sergey L.; Canfield, Paul C.; Dennis, Kevin; Miller, Gordon] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Zhang, Yuemei; Miller, Gordon] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Taufour, Valentin; Lamichhane, Tej Nath; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Miller, G (reprint author), US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM gmiller@iastate.edu RI Zhang, Yuemei/H-7370-2012 FU Office of the Basic Energy Sciences, Materials Sciences Division, U. S. Department of Energy (DOE); DOE by Iowa State University [DE-AC02-07CH11358]; National Science Foundation [DMR-12-09135] FX The research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U. S. Department of Energy (DOE). Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. The theoretical study (by Y.Z.) was supported by National Science Foundation, DMR-12-09135. NR 44 TC 0 Z9 0 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0044-2313 EI 1521-3749 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD FEB PY 2015 VL 641 IS 2 SI SI BP 375 EP 382 DI 10.1002/zaac.201400549 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CD9UR UT WOS:000351444500038 ER PT J AU Quinn, H Roussel-Dupre, D Caffrey, M Graham, P Wirthlin, M Morgan, K Salazar, A Nelson, T Howes, W Johnson, E Johnson, J Pratt, B Rollins, N Krone, J AF Quinn, Heather Roussel-Dupre, Diane Caffrey, Mike Graham, Paul Wirthlin, Michael Morgan, Keith Salazar, Anthony Nelson, Tony Howes, Will Johnson, Eric Johnson, Jon Pratt, Brian Rollins, Nathan Krone, Jim TI The Cibola Flight Experiment SO ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS LA English DT Article DE Reliability; Radiation effects in semiconductors ID SEU; FPGAS; SYSTEMS; TMR AB Over the past 15 years many organizations have researched the use of Static-Random Access Memory (SRAM)-based Field-Programmable Gate Arrays (FPGAs) in space. Although the components can provide a performance improvement over radiation-hardened processing components, random soft errors can occur from the naturally occurring space radiation environment. Many organizations have been developing methods for characterizing, emulating, and simulating radiation-induced events; mitigating and removing radiation-induced computational errors; and designing fault-tolerant reconfigurable spacecraft. Los Alamos National Laboratory has fielded one of the longest space-based FPGAs experiments, called the Cibola Flight Experiment (CFE), using Xilinx Virtex FPGAs. CFE has successfully deployed commercial SRAM FPGAs into a low-Earth orbit with Single-Event Upset (SEU) mitigation and was able to exploit effectively the reconfigurability and customization of FPGAs in a harsh radiation environment. Although older than current state-of-the-art FPGAs, these same concepts are used to deploy newer FPGA-based space systems since the launch of the CFE satellite and will continue to be useful for newer systems. In this article, we present how the system was designed to be fault tolerant, prelaunch predictions of expected on-orbit behaviors, and on-orbit results. C1 [Quinn, Heather; Caffrey, Mike; Graham, Paul; Salazar, Anthony; Nelson, Tony; Krone, Jim] Los Alamos Natl Lab, Intelligence & Space Res, Los Alamos, NM 87545 USA. [Roussel-Dupre, Diane] Aerosp Corp, Albuquerque, NM 87110 USA. [Wirthlin, Michael] Brigham Young Univ, Dept Elect & Comp Engn, NSF Ctr High Performance Reconfigurable Comp CHRE, Provo, UT 84602 USA. [Morgan, Keith; Johnson, Eric] Vienna Int Ctr, A-1400 Vienna, Austria. [Howes, Will] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Johnson, Jon] Centaur Technol Inc, Austin, TX 78731 USA. [Pratt, Brian] L 3 Commun, Salt Lake City, UT 84116 USA. [Rollins, Nathan] Govt Canada, Ottawa, ON, Canada. RP Quinn, H (reprint author), Los Alamos Natl Lab, Intelligence & Space Res, MSD440, Los Alamos, NM 87545 USA. EM hquinn@lanl.gov; drd@aero.org; mpc@lanl.goc; grahamp@lanl.gov; wirthlin@byu.edu; keith.morgan@byu.net; aasalazar@lanl.gov; tenelson@lanl.gov; howes1@llnl.gov; eric.johnson@byu.net; jon@centtech.com; brian.pratt@L-3com.com; nhrollins@gmail.com; jkrone@lanl.gov FU Department of Energy, National Nuclear Security Administration [NA-22] FX This work was supported under contract with the Department of Energy, National Nuclear Security Administration NA-22. NR 47 TC 1 Z9 1 U1 1 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1936-7406 EI 1936-7414 J9 ACM T RECONFIG TECHN JI ACM T. Reconfigurable Technol. Syst. PD FEB PY 2015 VL 8 IS 1 AR 3 DI 10.1145/2629556 PG 22 WC Computer Science, Hardware & Architecture SC Computer Science GA CD6YS UT WOS:000351237600003 ER PT J AU Meng, YJ Young, TM Liu, PZ Contescu, CI Huang, B Wang, SQ AF Meng, Yujie Young, Timothy M. Liu, Peizhi Contescu, Cristian I. Huang, Biao Wang, Siqun TI Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material SO CELLULOSE LA English DT Article DE Nanocellulose; Carbon aerogel; Oil absorption; 3D network structure ID CELLULOSE FIBERS; ABSORBENT; WATER; PYROLYSIS; EFFICIENT; SORPTION; FIBRILS; SPONGE AB The synthesis of a sponge-like carbon aerogel from microfibril cellulose, with high porosity (99 %), ultra-low density (0.01 g/cm(3)), hydrophobic properties (149 degrees static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 degrees C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m(2)/g) was significantly higher than of Sample C-950 (145 m(2)/g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils. C1 [Meng, Yujie; Young, Timothy M.; Huang, Biao; Wang, Siqun] Univ Tennessee, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. [Liu, Peizhi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Contescu, Cristian I.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Huang, Biao] Fujian Agr & Forestry Univ, Coll Engn, Fuzhou, Peoples R China. RP Wang, SQ (reprint author), Univ Tennessee, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. EM swang@utk.edu RI Young, Timothy/D-9949-2011; OI Young, Timothy/0000-0001-9564-6506; Contescu, Cristian/0000-0002-7450-3722 FU UTIA Innovation Grant; US Forest Service Southern Research Station under Southeastern Sun Grant Center [07-CR-11330115-087] FX The authors gratefully acknowledge financial support from the UTIA 2013 Innovation Grant and the US Forest Service Southern Research Station under contract agreement 07-CR-11330115-087, Southeastern Sun Grant Center. CIC acknowledges support for materials characterization from the US Department of Energy, Basic Energy Sciences, Materials Science and Technology Division. NR 32 TC 19 Z9 20 U1 17 U2 148 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD FEB PY 2015 VL 22 IS 1 BP 435 EP 447 DI 10.1007/s10570-014-0519-5 PG 13 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA CD2AY UT WOS:000350877100036 ER PT J AU Corbett, JE Tfaily, MM Burdige, DJ Glaser, PH Chanton, JP AF Corbett, J. Elizabeth Tfaily, Malak M. Burdige, David J. Glaser, Paul H. Chanton, Jeffrey P. TI The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE peatlands; permafrost; CO2 production; CH4 loss; bog; fen ID ANAEROBIC CARBON MINERALIZATION; LAKE AGASSIZ PEATLAND; LOST RIVER PEATLAND; METHANE PRODUCTION; STABLE CARBON; PORE-WATER; BOG; MINNESOTA; WETLANDS; RESPIRATION AB Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (8013% of CO2 production) than in fens (645.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO2-meth) can be considered equivalent to CH4 concentration before loss due to ebullition, plant-mediated transport, or diffusion. Bogs produced slightly less CO2-meth than fens (2.91.3 and 3.71.4mmol/L, respectively). Comparing the quantity of CH4 present to CO2-meth, fens lost slightly more CH4 than bogs (89 +/- 2.8% and 82 +/- 5.3%, respectively) likely due to the presence of vascular plant roots. In collapsed permafrost wetlands, bog moats produced half the amount of CO2-meth (0.8 +/- 0.2mmol/L) relative to midbogs (1.6 +/- 0.6mmol/L) and methanogenesis was less important (42 +/- 6.6% of total CO2 production relative to 55 +/- 8.1%). We hypothesize that the lower methane production potential in collapsed permafrost wetlands occurs because recently thawed organic substrates are being first exposed to the initial phases of anaerobic decomposition following collapse and flooding. Bog moats lost a comparable amount of CH4 as midbogs (63 +/- 7.0% and 64 +/- 9.3%). C1 [Corbett, J. Elizabeth; Tfaily, Malak M.; Chanton, Jeffrey P.] Florida State Univ, Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Corbett, J. Elizabeth] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tfaily, Malak M.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Tfaily, Malak M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Burdige, David J.] Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Norfolk, VA USA. [Glaser, Paul H.] Univ Minnesota, Dept Geol & Geophys, Minneapolis, MN USA. RP Corbett, JE (reprint author), Florida State Univ, Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. EM jecorbet@gmail.com OI TFAILY, MALAK/0000-0002-3036-2833 FU National Science Foundation [EAR-0628349, DEB 0841158]; Oak Ridge Associated Universities; NASA FX This research was supported by the National Science Foundation, EAR-0628349 and DEB 0841158. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies administered by Oak Ridge Associated Universities through a contract with NASA. The authors thank Claire Langford and Tyler Mauney for their help with the laboratory work. Data presented in this paper can be obtained by sending a written request to the corresponding author. NR 65 TC 8 Z9 8 U1 6 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB PY 2015 VL 120 IS 2 BP 280 EP 293 DI 10.1002/2014JG002797 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CD9FI UT WOS:000351402800007 ER PT J AU You, KH Kneafsey, TJ Flemings, PB Polito, P Bryant, SL AF You, Kehua Kneafsey, Timothy J. Flemings, Peter B. Polito, Peter Bryant, Steven L. TI Salinity-buffered methane hydrate formation and dissociation in gas-rich systems SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE methane hydrate; salinity; three-phase equilibrium; gas-rich system; CT scan ID AQUEOUS-ELECTROLYTE SOLUTIONS; SODIUM-CHLORIDE SOLUTIONS; POROUS-MEDIA; CARBON-DIOXIDE; ELECTRICAL-RESISTANCE; THERMAL-CONDUCTIVITY; STABILITY CONDITIONS; QUIESCENT REACTOR; PHASE-EQUILIBRIA; MARINE-SEDIMENTS AB Methane hydrate formation and dissociation are buffered by salinity in a closed system. During hydrate formation, salt excluded from hydrate increases salinity, drives the system to three-phase (gas, water, and hydrate phases) equilibrium, and limits further hydrate formation and dissociation. We developed a zero-dimensional local thermodynamic equilibrium-based model to explain this concept. We demonstrated this concept by forming and melting methane hydrate from a partially brine-saturated sand sample in a controlled laboratory experiment by holding pressure constant (6.94MPa) and changing temperature stepwise. The modeled methane gas consumptions and hydrate saturations agreed well with the experimental measurements after hydrate nucleation. Hydrate dissociation occurred synchronously with temperature increase. The exception to this behavior is that substantial subcooling (6.4 degrees C in this study) was observed for hydrate nucleation. X-ray computed tomography scanning images showed that core-scale hydrate distribution was heterogeneous. This implied core-scale water and salt transport induced by hydrate formation. Bulk resistivity increased sharply with initial hydrate formation and then decreased as the hydrate ripened. This study reproduced the salinity-buffered hydrate behavior interpreted for natural gas-rich hydrate systems by allowing methane gas to freely enter/leave the sample in response to volume changes associated with hydrate formation and dissociation. It provides insights into observations made at the core scale and log scale of salinity elevation to three-phase equilibrium in natural hydrate systems. C1 [You, Kehua; Flemings, Peter B.; Polito, Peter] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Kneafsey, Timothy J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Flemings, Peter B.] Univ Texas Austin, Bur Econ Geol, Austin, TX USA. [Bryant, Steven L.] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA. RP You, KH (reprint author), Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. EM khyouml@gmail.com RI Flemings, Peter/B-9676-2008; Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU U.S. Department of Energy [DE-FE0010406]; Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program of the U.S. Department of Energy [DE-AC02-05CH11231]; University of Texas at Austin Institute for Geophysics (UTIG) [2704] FX The data used in this study are collected in our laboratory experiment, which are available upon request. This project is supported by U.S. Department of Energy under contract DE-FE0010406. Tim Kneafsey was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program of the U.S. Department of Energy under contract DE-AC02-05CH11231. We thank the support from University of Texas at Austin Institute for Geophysics (UTIG) under the contribution 2704. We thank Alberto Malinverno and the Associate Editor for their constructive comments which have greatly improved the quality of this paper. NR 80 TC 2 Z9 2 U1 10 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB PY 2015 VL 120 IS 2 BP 643 EP 661 DI 10.1002/2014JB011190 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE0BD UT WOS:000351466000001 ER PT J AU Syracuse, EM Maceira, M Zhang, H Thurber, CH AF Syracuse, E. M. Maceira, M. Zhang, H. Thurber, C. H. TI Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE joint inversion; hypocenter; velocity; magma chamber ID 3-DIMENSIONAL P-WAVE; SATELLITE RADAR INTERFEROMETRY; DOUBLE-DIFFERENCE TOMOGRAPHY; LOCAL EARTHQUAKE TOMOGRAPHY; MOUNT-ST-HELENS; VELOCITY STRUCTURE; STRUCTURE BENEATH; RECEIVER FUNCTION; UNALASKA ISLAND; ALEUTIAN ARC AB Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here we jointly invert 14years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local V-p, V-s, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm. The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-V-p features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-V-p region beneath each volcano is slightly offset from each summit and centered at approximately 7km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the V-p and V-s data sets indicate that the results of these types of joint inversions must be interpreted carefully. C1 [Syracuse, E. M.; Maceira, M.] Los Alamos Natl Lab, EES 17, Los Alamos, NM 87544 USA. [Zhang, H.] Univ Sci & Technol China, Sch Earth & Space Sci, Lab Seismol & Phys Earths Interior, Hefei 230026, Peoples R China. [Thurber, C. H.] Univ Wisconsin, Dept Geosci, Madison, WI USA. RP Syracuse, EM (reprint author), Los Alamos Natl Lab, EES 17, Los Alamos, NM 87544 USA. EM syracuse@lanl.gov OI Maceira, Monica/0000-0003-1248-2185; Syracuse, Ellen/0000-0002-8145-8480 FU Los Alamos National Laboratory Director's Postdoctoral fellowship [LDRD-20130807PRD3]; Los Alamos National Laboratory [LDRD-20120047ER]; DOE/NNSA/DNNRD [SC12-BAA12-17-NDD03]; USGS Volcano Hazards Program [G10AC0618]; National Science Foundation [EAR-1358619]; China's State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams FX The data used in this study are available from AVO, and final data products are available in the online supporting information for this paper. This work was supported by Los Alamos National Laboratory Director's Postdoctoral fellowship LDRD-20130807PRD3, Los Alamos National Laboratory grant LDRD-20120047ER, DOE/NNSA/DNNRD award SC12-BAA12-17-NDD03, USGS Volcano Hazards Program award G10AC0618, National Science Foundation grant EAR-1358619, and China's State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. We thank James Dixon, John Power, and Stephanie Prejean of AVO for providing the seismic data used in this study and for their assistance in verifying station coordinates; Matt Haney for kindly providing his ambient noise tomography code; Mindy Zimmer for her helpful discussions; and Editor Robert Nowack, Carl Tape, and an anonymous reviewer for their comments on the manuscript. NR 74 TC 3 Z9 3 U1 4 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB PY 2015 VL 120 IS 2 BP 1036 EP 1052 DI 10.1002/2014JB011616 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE0BD UT WOS:000351466000024 ER PT J AU Chaput, J Campillo, M Aster, RC Roux, P Kyle, PR Knox, H Czoski, P AF Chaput, J. Campillo, M. Aster, R. C. Roux, P. Kyle, P. R. Knox, H. Czoski, P. TI Multiple scattering from icequakes at Erebus volcano, Antarctica: Implications for imaging at glaciated volcanoes SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE volcano seismology; multiple scattering ID AMBIENT SEISMIC NOISE; COHERENT BACKSCATTERING; ACOUSTIC-WAVES; ELASTIC-WAVES; DEEP EARTH; CODA WAVES; BODY WAVES; INTERFEROMETRY; MEDIA; FIELD AB We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between approximate to 1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned. C1 [Chaput, J.; Campillo, M.; Roux, P.] Univ Joseph Fourier, IST, Grenoble, France. [Aster, R. C.] Colorado State Univ, Dept Geosci, Ft Collins, CO 80523 USA. [Kyle, P. R.; Czoski, P.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Knox, H.] Sandia Natl Labs, Geophys & Atmospher Sci, Albuquerque, NM 87185 USA. RP Chaput, J (reprint author), Univ Joseph Fourier, IST, Grenoble, France. EM jchaput@ees.nmt.edu RI Campillo, Michel/K-6231-2012; roux, philippe/B-8538-2014; Aster, Richard/E-5067-2013 OI Aster, Richard/0000-0002-0821-4906 FU WHISPER project through the European Research Council (ERC) [227507]; NSF [ANT-0538414, ANT-0838817] FX This study is funded in part by the WHISPER project (grant 227507) through the European Research Council (ERC). Portable seismic instruments for the TOMO Erebus experiment were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data are available through the IRIS Data Management Center under network code ZO (2011-2012), YA, and ZW (2007-2009). The facilities of the IRIS Consortium are supported by the National Science Foundation under cooperative agreement EAR-1063471, the NSF Office of Polar Programs, and the DOE National Nuclear Security Administration. This research was also supported by NSF awards ANT-0538414 and ANT-0838817. NR 50 TC 4 Z9 4 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB PY 2015 VL 120 IS 2 BP 1129 EP 1141 DI 10.1002/2014JB011278 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE0BD UT WOS:000351466000028 ER PT J AU Chiaramonte, L White, JA Trainor-Guitton, W AF Chiaramonte, Laura White, Joshua A. Trainor-Guitton, Whitney TI Probabilistic geomechanical analysis of compartmentalization at the Snohvit CO2 sequestration project SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE geomechanics; in situ stress; CO2 sequestration; fault reactivation; uncertainty quantification; compartmentalized reservoirs ID CRUSTAL STRESSES; BARENTS SEA; NORTH-SEA; ORIENTATION; NORWAY; FAULT AB Pressure buildup caused by large-scale CO2 injection is a key concern during a carbon sequestration project. Large overpressures can compromise seal integrity, reactivate faults, and induce seismicity. Furthermore, pressure buildup is directly related with storage capacity. In this work we study the geomechanical response to CO2 injection at SnOhvit, to understand the potential for fault reactivation, leakage, and contamination of the producing interval through bounding faults. Furthermore, we evaluate the potential contribution of a structural component to reservoir compartmentalization. We combine simplified analytical models, based on critically stressed fracture theory and a Mohr-Coulomb failure criterion, with a rigorous sensitivity analysis. Large stress uncertainties are present and reflected in the modeling results. It was found that under the most likely stress state the faults are fairly stable and caprock hydrofracturing would be expected before fault reactivation. In most of the analyzed cases, the critical pressure perturbation needed for reactivation is above 13MPa, which was the limiting pressure increase before reaching the fracture pressure. Faults were found to be similar to 20% less stable when considering variations in S-Hmax orientation. In those cases, fault reactivation could be expected before caprock failure if injection continued. However, if the pressure increase did reach the critical values for seal failure estimated under the worst case (and least likely) stress state, no indication of such failure can be observed in the measured pressure response. Finally, the potential role of a structural component in the compartmentalization and fluid migration is difficult to assess due to the stress state uncertainty. C1 [Chiaramonte, Laura; White, Joshua A.; Trainor-Guitton, Whitney] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. RP Chiaramonte, L (reprint author), Baker Hughes, Palo Alto, CA 94306 USA. EM chiarlau@alumni.stanford.edu FU Statoil; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Fossil Energy FX The authors would like to acknowledge the data set and funding provided by Statoil and the Snohvit Production License partners, as well as very useful discussions and contributions from Phil Ringrose, Olav Hansen, Bamshad Nazarian, and Lykke Gemmer from Statoil. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We acknowledge funding from the U.S. Department of Energy, Fossil Energy. This report (LLNL-PRES-652215) has been reviewed by Lawrence Livermore National Laboratory and approved for public release. NR 32 TC 3 Z9 3 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB PY 2015 VL 120 IS 2 BP 1195 EP 1209 DI 10.1002/2014JB011376 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE0BD UT WOS:000351466000032 ER PT J AU Liu, S Xiao, FL Yang, C He, YH Zhou, QH Kletzing, CA Kurth, WS Hospodarsky, GB Spence, HE Reeves, GD Funsten, HO Blake, JB Baker, DN Wygant, JR AF Liu, Si Xiao, Fuliang Yang, Chang He, Yihua Zhou, Qinghua Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Spence, H. E. Reeves, G. D. Funsten, H. O. Blake, J. B. Baker, D. N. Wygant, J. R. TI Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE RBSP results; chorus and hiss excitation; relativistic electron acceleration; energetic electron flux; wave-particle interaction ID WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORM; MAGNETIC STORM; PITCH-ANGLE; OCTOBER 9; ACCELERATION; DIFFUSION; INSTABILITY; RING AB During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8-108.3 keV) and relativistic (2-3.6 MeV) electrons. Chorus waves were excited at locations L = 4-6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes approximate to 20-100pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or nonadiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts. C1 [Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha, Hunan, Peoples R China. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA. [Blake, J. B.] Aerosp Corp, Los Angeles, CA 90009 USA. [Baker, D. N.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Xiao, FL (reprint author), Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha, Hunan, Peoples R China. EM flxiao@126.com RI Xiao, Fuliang/B-9245-2011; Reeves, Geoffrey/E-8101-2011; OI Xiao, Fuliang/0000-0003-1487-6620; Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348; Funsten, Herbert/0000-0002-6817-1039; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878 FU 973 Program [2012CB825603]; National Natural Science Foundation of China [41274165, 41404130, 41204114]; Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province; Construct Program of the Key Discipline in Hunan Province; JHU/APL under NASA [921647, 967399, NAS5-01072] FX This work is supported by 973 Program 2012CB825603, the National Natural Science Foundation of China grants 41274165, 41404130, and 41204114, the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Construct Program of the Key Discipline in Hunan Province. All the Van Allen Probes data are publicly available at https://emfisis.physics.uiowa.edu/data/index by the EMFISIS instrument and at http://www.rbsp-ect.lanl.gov/data_pub/ by the REPT and MagEIS instrument. The OMNI data are obtained from ftp://spdf.gsfc.nasa.gov/pub/data/omni/. This work was also supported from JHU/APL contract 921647 and 967399 under NASA Prime contract NAS5-01072. NR 41 TC 3 Z9 3 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2015 VL 120 IS 2 BP 938 EP 948 DI 10.1002/2014JA020781 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD8QL UT WOS:000351360800007 ER PT J AU Ogasawara, K Dayeh, MA Funsten, HO Fuselier, SA Livadiotis, G McComas, DJ AF Ogasawara, K. Dayeh, M. A. Funsten, H. O. Fuselier, S. A. Livadiotis, G. McComas, D. J. TI Interplanetary magnetic field dependence of the suprathermal energetic neutral atoms originated in subsolar magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE energetic neutral atom; magnetopause; magnetosheath; Interstellar Boundary Explorer; suprathermal ion; shock acceleration ID SHOCK SURFING ACCELERATION; EARTHS MAGNETOPAUSE; SOLAR-WIND; DAYSIDE MAGNETOSHEATH; PARTICLE-ACCELERATION; NORTHWARD IMF; RECONNECTION; IONS; FLOWS AB Using energetic neutral atom (ENA) emission observations of the subsolar magnetopause measured by the Interstellar Boundary Explorer (IBEX), we study the correlation between the upstream interplanetary magnetic field (IMF) conditions and the spectral index of the source ion population. Our ENA data set includes hour-averaged ENA measurements at energies between approximate to 0.5 and approximate to 6keV obtained by the IBEX High Energy ENA imager from January 2009 to May 2011. Under the condition of quiet geomagnetic activity (SYM-H index >-20nT), we find that the shallower spectra in the suprathermal tail of the ion population of the subsolar magnetopause is weakly correlated (correlation coefficient of -0.30) with the shock angle of the Earth's bow shock, but not correlated with parameters related to magnetic reconnection (i.e., elevation and clock angle of the interplanetary magnetic field orientation). The observed correlation suggests suprathermal ion energization from diffusive shock acceleration and thus that the suprathermal ions in the subsolar magnetopause are of shocked solar wind origin. We also argue that the roles of magnetospheric ion leakage or ion acceleration by magnetic reconnection are reduced in the magnetopause emissions compared to shock acceleration processes. C1 [Ogasawara, K.; Dayeh, M. A.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.] SW Res Inst, San Antonio, TX 78238 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Fuselier, S. A.; McComas, D. J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. RP Ogasawara, K (reprint author), SW Res Inst, San Antonio, TX 78238 USA. EM kogasawara@swri.org OI Funsten, Herbert/0000-0002-6817-1039 NR 53 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2015 VL 120 IS 2 BP 964 EP 972 DI 10.1002/2014JA020851 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD8QL UT WOS:000351360800009 ER PT J AU Ali, AF Elkington, SR Tu, WC Ozeke, LG Chan, AA Friedel, RHW AF Ali, Ashar F. Elkington, Scot R. Tu, Weichao Ozeke, Louis G. Chan, Anthony A. Friedel, Reiner H. W. TI Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radial diffusion; diffusion coefficients; CRRES; ULF waves ID SEN REGRESSION ESTIMATOR; OUTER-ZONE ELECTRONS; BELT ELECTRONS; RESONANT INTERACTION; GEOMAGNETIC-FIELD; LINE RESONANCES; MAGNETOSPHERE; ACCELERATION; FLUCTUATIONS; OSCILLATIONS AB We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the approximate to 1 mHz to approximate to 8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute D-LL(B) [CRRES] as a function of L and Kp. The L dependence of D-LL(B) [CRRES] is systematically studied and is shown to depend on Kp. More significantly, we conclude that D-LL(B) is the dominant term driving radial diffusion, typically exceeding D-LL(B) by 1-2 orders of magnitude. C1 [Ali, Ashar F.; Elkington, Scot R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Tu, Weichao; Friedel, Reiner H. W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ozeke, Louis G.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Chan, Anthony A.] Rice Univ, Dept Phys & Astron, Houston, TX USA. RP Ali, AF (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM ashar.ali@lasp.colorado.edu RI Friedel, Reiner/D-1410-2012; Tu, Weichao/B-6507-2011; OI Friedel, Reiner/0000-0002-5228-0281; Tu, Weichao/0000-0003-4547-3269; Ali, Ashar/0000-0003-2981-5791 FU NASA [NNX09AI05G, NNX13AO43H]; LANL part of the LANL Space Weather Summer School FX The Combined Release and Radiation Effects Satellite (CRRES) magnetometer data were originally retrieved from Virtual Magnetospheric Observatory (VMO) hosted by IGPP/UCLA with open access rights (http://vmo.igpp.ucla.edu/). The CRRES data utilized for this study are also available at the Virtual Radiation Belt Observatory (http://virbo.org/similar to ali). This work was supported by NASA grants NNX09AI05G, NNX13AO43H, and LANL sponsored Vela Fellowship as part of the LANL Space Weather Summer School. Authors Ashar Ali and Scot Elkington would like to thank Howard Singer for many hours of useful discussions. Ashar Ali would like to thank Alexander Drozdov, Ksenia Orlova, Kyle Murphy, Michael Hartinger, Alexa Halford, and Mark Joseph for their invaluable comments and insights which helped bring this project to a successful conclusion. NR 83 TC 10 Z9 10 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2015 VL 120 IS 2 BP 973 EP 995 DI 10.1002/2014JA020419 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD8QL UT WOS:000351360800010 ER PT J AU Hartley, DP Chen, Y Kletzing, CA Denton, MH Kurth, WS AF Hartley, D. P. Chen, Y. Kletzing, C. A. Denton, M. H. Kurth, W. S. TI Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Van Allen Probes; EMFISIS; chorus waves; wave-particle interactions; radiation belts; energetic electrons ID OUTER RADIATION BELT; DRIVEN ELECTRON ACCELERATION; SOLAR-WIND; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; MAGNETIC-FIELD; DIFFUSION; MAGNETOSPHERE; PRECIPITATION; ENERGIES AB Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1-0.9 f(ce)). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10(-3) nT(2), using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons. C1 [Hartley, D. P.] Univ Lancaster, Dept Phys, Lancaster, England. [Chen, Y.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kletzing, C. A.; Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Denton, M. H.] Space Sci Inst, Boulder, CO USA. RP Hartley, DP (reprint author), Univ Lancaster, Dept Phys, Lancaster, England. EM d.hartley1@lancaster.ac.uk OI Hartley, David/0000-0001-8630-8054; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202 FU Science and Technology Facilities Council (STFC); NSF [1131871]; Los Alamos Space Weather Summer School; Royal Astronomical Society Conference Travel Fund; Institute of Physics Research Student Conference Fund; C R Barber Trust; RBSP [NNG13PJ05I]; JHU/APL under NASA [921647, NAS5-01072] FX Research at Lancaster is supported by a Science and Technology Facilities Council (STFC) studentship grant. Part of this work was carried out during the 2013 Los Alamos Space Weather Summer School and funded by NSF National Space Weather Program (project 1131871). D.P. Hartley would like to thank the Los Alamos Space Weather Summer School, Royal Astronomical Society Conference Travel Fund, the Institute of Physics Research Student Conference Fund, and the C R Barber Trust for financial support. Yue Chen is funded by RBSP funding contract NNG13PJ05I. Part of this work was performed under support of JHU/APL contract 921647 under NASA Prime contract NAS5-01072. Van Allen Probes EMFISIS data are available at http://emfisis.physics.uiowa.edu/data/index. NR 35 TC 2 Z9 2 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2015 VL 120 IS 2 BP 1144 EP 1152 DI 10.1002/2014JA020808 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD8QL UT WOS:000351360800022 ER PT J AU Nose, M Oimatsu, S Keika, K Kletzing, CA Kurth, WS De Pascuale, S Smith, CW MacDowall, RJ Nakano, S Reeves, GD Spence, HE Larsen, BA AF Nose, M. Oimatsu, S. Keika, K. Kletzing, C. A. Kurth, W. S. De Pascuale, S. Smith, C. W. MacDowall, R. J. Nakano, S. Reeves, G. D. Spence, H. E. Larsen, B. A. TI Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE inner magnetosphere; oxygen torus; magnetic storm; plasmasphere; ring current; ULF waves ID ION COMPOSITION MEASUREMENTS; EQUATORIAL MAGNETOSPHERE; OUTER PLASMASPHERE; PLASMAPAUSE; IONOSPHERE; MODEL; DENSITY; ENERGY; PHASE; SHEET AB We study the formation process of an oxygen torus during the 12-15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density ((L)) and the local electron number density (n(eL)) from the resonant frequencies of standing Alfven waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M approximate to (L)/n(eL) under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0-4.0 and L = 3.7-4.5, respectively, on the morning side. The oxygen torus has M = 4.5-8 amu and extends around the plasmapause that is identified at L approximate to 3.2-3.9. We find that during the initial phase, M is 4-7 amu throughout the plasma trough and remains at approximate to 1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase. C1 [Nose, M.] Kyoto Univ, Grad Sch Sci, Data Anal Ctr Geomagnetism & Space Magnetism, Kyoto, Japan. [Oimatsu, S.] Kyoto Univ, Grad Sch Sci, Dept Geophys, Kyoto, Japan. [Keika, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Kletzing, C. A.; Kurth, W. S.; De Pascuale, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Smith, C. W.; Spence, H. E.] Univ New Hampshire, Inst Earth Oceans & Space, Durham, NH 03824 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Nakano, S.] Res Org Informat & Syst, Inst Stat Math, Tokyo, Japan. [Reeves, G. D.; Larsen, B. A.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. RP Nose, M (reprint author), Kyoto Univ, Grad Sch Sci, Data Anal Ctr Geomagnetism & Space Magnetism, Kyoto, Japan. EM nose@kugi.kyoto-u.ac.jp RI Nose, Masahito/B-1900-2015; Reeves, Geoffrey/E-8101-2011; OI Nose, Masahito/0000-0002-2789-3588; Reeves, Geoffrey/0000-0002-7985-8098; Nakano, Shin'ya/0000-0003-0772-4610; De Pascuale, Sebastian/0000-0001-7142-0246; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) [25287127]; JHU/APL under NASA [921648, NAS5-01072]; RBSP-ECT by JHU/APL under NASA [NAS5-01072, 967399]; U.S. Department of Energy [LA-UR-15-20090] FX The AL and Dst indices were provided by the World Data Center for Geomagnetism, Kyoto, and are available at http://wdc.kugi.kyoto-u.ac.jp. The Kp index was provided by H. J. Linthe at the Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences and is available at http://www.gfz-potsdam.de/kp-index. The Wp index can be downloaded from http://s-cubed.info. The EMFISIS data are available at http://emfisis.physics.uiowa.edu. The ECT-HOPE data are available at http://www.rbsp-ect.lanl.gov. The electron number density at a local probe position can be obtained on request from W. S. Kurth (william-kurth@uiowa.edu). Geomagnetic field by the Tsyganenko 1989c model was calculated with GEOPACK routines developed by N. A. Tsyganenko and coded by H. Korth. We are thankful to K. Takahashi, and Y. Obana for their helpful comments. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), grant-in-aid for Scientific Research (B) (grant 25287127). The work at Iowa was supported by JHU/APL contract 921648 under NASA Prime contract NAS5-01072. This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA Prime contract NAS5-01072. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, LA-UR-15-20090. Part of the work by one of coauthors (KK) has been done at the ERG-Science Center operated by ISAS/JAXA and STEL/Nagoya University. NR 38 TC 7 Z9 7 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2015 VL 120 IS 2 BP 1182 EP 1196 DI 10.1002/2014JA020593 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD8QL UT WOS:000351360800025 ER PT J AU Freitas, EDC Fernandes, LMP Yahlali, N Perez, J Alvarez, V Borges, FIG Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Dafni, T Diaz, J Esteve, R Ferrario, P Ferreira, AL Gehman, VM Goldschmidt, A Gomez, H Gomez-Cadenas, JJ Diaz, DG Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Irastorza, IG Labarga, L Laing, A Liubarsky, I Lopez-March, N Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez, A Lema, GM Miller, T Monrabal, F Monserrate, M Mora, FJ Moutinho, LM Vidal, JM Guinot, MN Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Querol, M Renner, J Ripoll, L Rodriguez, A Rodriguez, J Santos, FP Dos Santos, JMF Segui, L Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, R White, J Monteiro, CMB AF Freitas, E. D. C. Fernandes, L. M. P. Yahlali, N. Perez, J. Alvarez, V. Borges, F. I. G. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Esteve, R. Ferrario, P. Ferreira, A. L. Gehman, V. M. Goldschmidt, A. Gomez, H. Gomez-Cadenas, J. J. Gonzalez Diaz, D. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Irastorza, I. G. Labarga, L. Laing, A. Liubarsky, I. Lopez-March, N. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez, A. Martinez Lema, G. Miller, T. Monrabal, F. Monserrate, M. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Aparicio, J. L. Perez Querol, M. Renner, J. Ripoll, L. Rodriguez, A. Rodriguez, J. Santos, F. P. Dos Santos, J. M. F. Segui, L. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. White, J. Monteiro, C. M. B. CA NEXT Collaboration TI PMT calibration of a scintillation detector using primary scintillation SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 16th International Workshop on Radiation Imaging Detectors CY JUN 22-26, 2014 CL Trieste, ITALY DE Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others); Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ID PHOTOMULTIPLIER AB We have studied the calibration of PMTs in scintillation detectors, inducing single electron response on the PMT from primary scintillation produced by x-ray interaction. The results agree with those obtained by the commonly used single electron response (SER) method, which uses LED light pulses to induce the PMT SER. The use of the primary scintillation for PMT calibration will be convenient in situations where the PMT is already in situ, when it becomes difficult or even impossible to apply the SER method, e.g. in commercial sealed scintillator/PMT devices. Furthermore, we have experimentally investigated the possibility of fitting the high-charge tail of the PMT SER pulse-height distribution to an exponential function, inferring the PMT gain from the inverse of the exponent. The results of the exponential fit method agree with those obtained by the SER method for pulse-height distributions resulting from an average number of around 1.0 photoelectrons reaching the first dynode per light/scintillation pulse. The SER method has higher precision and, therefore, is used in a larger number of applications. Nevertheless, the exponential fit method will be useful in situations where the single photoelectron peak is under the background or noise peak and it may present an alternative, simple way, for relative gain calibration of PMT arrays as well as for monitoring the PMT gain variations. C1 [Freitas, E. D. C.; Fernandes, L. M. P.; Borges, F. I. G.; Conde, C. A. N.; Santos, F. P.; Dos Santos, J. M. F.; Monteiro, C. M. B.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Yahlali, N.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain. [Yahlali, N.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.] Univ Valencia, Valencia 46980, Spain. [Cebrian, S.; Dafni, T.; Gomez, H.; Gonzalez Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Gehman, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Renner, J.; Shuman, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Esteve, R.; Mari, A.; Mora, F. J.; Toledo, J. F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna 141980, Russia. [Ferreira, A. L.; Moutinho, L. M.; Dos Santos, J. M. F.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat I3N, P-3810193 Aveiro, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hernando Morata, J. A.; Martinez Lema, G.] Univ Santiago de Compostela, Inst Gallego Fis Altas Energias, Santiago De Compostela 15782, Spain. [Labarga, L.; Perez, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Aparicio, J. L. Perez] Univ Politecn Valencia, Dept Mecan Medios Continuos & Toeria Estruct, Valencia 46071, Spain. [Perez, J.] CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Perez, J.] Univ Autonoma Madrid, Madrid 28049, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain. [Sofka, C.; Webb, R.; White, J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Dos Santos, JMF (reprint author), Univ Coimbra, Dept Fis, Rua Larga, P-3004516 Coimbra, Portugal. EM jmf@gian.fis.uc.pt RI Lopez March, Neus/P-4411-2014; AMADE Research Group, AMADE/B-6537-2014; Diaz, Jose/B-3454-2012; Perez-Aparicio, Jose/H-7053-2015; Gonzalez Diaz, Diego/K-7265-2014; Fernandes, Luis/E-2372-2011; Villar, Jose Angel/K-6630-2014; veloso, joao/J-4478-2013; Moutinho, Luis/J-6021-2013; Irastorza, Igor/B-2085-2012 OI Freitas, Elisabete/0000-0001-8235-3229; Martin-Albo, Justo/0000-0002-7318-1469; Lopez March, Neus/0000-0001-6586-0675; AMADE Research Group, AMADE/0000-0002-5778-3291; Diaz, Jose/0000-0002-7239-223X; Perez-Aparicio, Jose/0000-0003-2884-6991; Gonzalez Diaz, Diego/0000-0002-6809-5996; Fernandes, Luis/0000-0002-7061-8768; Villar, Jose Angel/0000-0003-0228-7589; Moutinho, Luis/0000-0001-9074-4449; Irastorza, Igor/0000-0003-1163-1687 FU European Research Funding through an ERC Advanced Grant (NEXT); Ministerio de Economia y Competitividad of Spain [CSD2008- 0037 (CUP), FPA2009-13697-C04-04, FIS2012-37947-C04]; FCT [SFRH/BPD/76842/2011]; Portuguese FCT; FEDER through program COMPETE [PTDC/FIS/103860/2008] FX The NEXT experiment is supported by the following agencies and institutions: the European Research Funding through an ERC Advanced Grant (NEXT 2013); Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008- 0037 (CUP), FPA2009-13697-C04-04 and FIS2012-37947-C04; the Portuguese FCT and FEDER through program COMPETE, project PTDC/FIS/103860/2008. C.M.B. Monteiro acknowledges grant SFRH/BPD/76842/2011 from FCT. NR 16 TC 0 Z9 0 U1 4 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2015 VL 10 AR C02039 DI 10.1088/1748-0221/10/02/C02039 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CE2RU UT WOS:000351664800039 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Rougny, R Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TD Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Biasotto, M Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Galanti, M Gasparini, U Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Golutvin, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kaminskiy, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Wang, Y Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Verwilligen, P Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Rougny, R. Van de Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Mora Herrera, C. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Biasotto, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Galanti, M. Gasparini, U. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kaminskiy, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Wang, Y. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Verwilligen, P. Vuosalo, C. Woods, N. CA CMS Collaboration TI Performance of the CMS missing transverse momentum reconstruction in pp data at root s=8 TeV SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Large detector-systems performance; Missing Transverse Energy studies; Performance of High Energy Physics Detectors AB The performance of missing transverse energy reconstruction algorithms is presented using root s = 8 TeV proton-proton (pp) data collected with the CMS detector. Events with anomalous missing transverse energy are studied, and the performance of algorithms used to identify and remove these events is presented. The scale and resolution for missing transverse energy, including the effects of multiple pp interactions (pileup), are measured using events with an identified Z boson or isolated photon, and are found to be well described by the simulation. Novel missing transverse energy reconstruction algorithms developed specifically to mitigate the effects of large numbers of pileup interactions on the missing transverse energy resolution are presented. These algorithms significantly reduce the dependence of the missing transverse energy resolution on pileup interactions. Finally, an algorithm that provides an estimate of the significance of the missing transverse energy is presented, which is used to estimate the compatibility of the reconstructed missing transverse energy with a zero nominal value. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-2015 JIN Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, CNRS, IN2P3, Univ Haute Alsace Mulhouse,Inst Pluridisciplinair, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3B, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Kaminskiy, A.] Univ Padua, Padua, Italy. [Kanishchev, K.; Kaminskiy, A.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barbone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Khalil, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Fed, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Giordano, F.; Gori, V.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Casasso, S.; Obertino, M. M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Martin, C.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Wang, Y.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS 38677 USA. [Malik, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Sultan Qaboos Univ, Muscat, Oman. [Agram, J. -L.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Hempel, M.; Lohmann, W.; Marfin, I.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de la Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Gamsizkan, H.] Anadolu Univ, Eskisehir, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Sznajder, Andre/L-1621-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Andreev, Vladimir/M-8665-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Manganote, Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012; Bernardes, Cesar Augusto/D-2408-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Petrushanko, Sergey/D-6880-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Cavallo, Nicola/F-8913-2012; candelise, vieri/H-2195-2015; Montanari, Alessandro/J-2420-2012 OI Sznajder, Andre/0000-0001-6998-1108; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research,; Estonian Research Council [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Innovation Office, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education; University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion; Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis and Aristeia programmes - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 34 TC 3 Z9 3 U1 7 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2015 VL 10 AR UNSP P02006 DI 10.1088/1748-0221/10/02/P02006 PG 57 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CE2RU UT WOS:000351664800053 ER PT J AU Liu, T Deptuch, G Hoff, J Jindariani, S Joshi, S Olsen, J Tran, N Trimpl, M AF Liu, T. Deptuch, G. Hoff, J. Jindariani, S. Joshi, S. Olsen, J. Tran, N. Trimpl, M. TI Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory SO JOURNAL OF INSTRUMENTATION LA English DT Article DE VLSI circuits; Trigger concepts and systems (hardware and software); Trigger algorithms; Digital electronic circuits AB An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R& D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking; in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (proto VIPRAMOO). The results show that these building blocks are ready for 3D stacking. C1 [Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.] Fermilab Natl Accelerator Lab, Particle Phys Div, Batavia, IL 60565 USA. RP Liu, T (reprint author), Fermilab Natl Accelerator Lab, Particle Phys Div, Batavia, IL 60565 USA. EM thliu@fnal.gov FU US DOE CDRD (Collider Detector Research and Development) program FX This work has been supported by US DOE CDRD (Collider Detector Research and Development) program. Special thanks to Bob Patti of Tezzaron Semiconductor for his support of this project. NR 7 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2015 VL 10 AR C02029 DI 10.1088/1748-0221/10/02/C02029 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CE2RU UT WOS:000351664800029 ER PT J AU Roy, T Yumiceva, F Hirschauer, J Freeman, J Hughes, E Hare, D Dal Monte, L Whitbeck, A Zimmerman, T AF Roy, T. Yumiceva, F. Hirschauer, J. Freeman, J. Hughes, E. Hare, D. Dal Monte, L. Whitbeck, A. Zimmerman, T. TI QIE: performance studies of the next generation charge integrator SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Calorimeters; Cherenkov detectors AB The Phase 1 upgrade of the Hadron Calorimeter (HCAL) in the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) will include two new generations (named QIE10 and QIE11) of the radiation-tolerant flash ADC chip known as the Charge Integrator and Encoder or QIE. The QIE integrates charge from a photo sensor over a 25 ns time period and encodes the result in a non-linear digital output while having a good sensitivity in both the higher and the lower energy values. The charge integrator has the advantage of analyzing fast signals coming from the calorimeters as long as the timing and pulse information is available. The calorimeters send fast, negative polarity signals, which the QIE integrates in its non-inverting input amplifier. The input analog signal enters the QIE chip through two points: signal and reference. The chip integrates the difference between these two values. This helps in getting rid of the incoming noise, which is effectively cancelled out in the difference. Over a period of about six months between September, 2013 and April, 2014 about 320 QIE10 and about 20 QIE11 chips were tested in Fermilab using a single-chip test stand where every individual chip was tested for its characteristic features using a clam-shell. The results of those tests performed on the QIE10 and QIE11 are summarized in this document. C1 [Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Hirschauer, J.; Freeman, J.; Hare, D.; Dal Monte, L.; Whitbeck, A.; Zimmerman, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hughes, E.] Rutgers State Univ, Piscataway, NJ 08855 USA. RP Roy, T (reprint author), Florida Inst Technol, Melbourne, FL 32901 USA. EM titas.roy@cern.ch NR 4 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2015 VL 10 AR UNSP C02009 DI 10.1088/1748-0221/10/02/C02009 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA CE2RU UT WOS:000351664800009 ER PT J AU Mihai, C Chrisler, WB Xie, YM Hu, DH Szymanski, CJ Tolic, A Klein, JA Smith, JN Tarasevich, BJ Orr, G AF Mihai, Cosmin Chrisler, William B. Xie, Yumei Hu, Dehong Szymanski, Craig J. Tolic, Ana Klein, Jessica A. Smith, Jordan N. Tarasevich, Barbara J. Orr, Galya TI Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface SO NANOTOXICOLOGY LA English DT Article DE Airborne nanoparticles; air-liquid interface; endosomes; FluoZin-3; intracellular Zn2+; lysosomes ID METAL-OXIDE NANOPARTICLES; SILVER NANOPARTICLES; IN-VITRO; CELLULAR UPTAKE; TOXICITY; PARTICLES; CYTOTOXICITY; SOLUBILITY; NANOMATERIALS; TRAFFICKING AB Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs. C1 [Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Chrisler, William B.; Klein, Jessica A.; Smith, Jordan N.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Tarasevich, Barbara J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Orr, G (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999 MS K8-88, Richland, WA 99352 USA. EM galya.orr@pnl.gov RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 FU NIEHS [1RC2ES018786-01]; Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research FX This work was funded by NIEHS grant 1RC2ES018786-01 to GO, and by Pacific Northwest National Laboratory (PNNL) research and development funds. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 54 TC 10 Z9 10 U1 4 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1743-5390 EI 1743-5404 J9 NANOTOXICOLOGY JI Nanotoxicology PD FEB PY 2015 VL 9 IS 1 BP 9 EP 22 DI 10.3109/17435390.2013.859319 PG 14 WC Nanoscience & Nanotechnology; Toxicology SC Science & Technology - Other Topics; Toxicology GA CE2CY UT WOS:000351622200002 PM 24289294 ER PT J AU Saha, B Saber, S Naik, GV Boltasseva, A Stach, EA Kvam, EP Sands, TD AF Saha, Bivas Saber, Sammy Naik, Gururaj V. Boltasseva, Alexandra Stach, Eric A. Kvam, Eric P. Sands, Timothy D. TI Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE bandgap bowing; epitaxy; metal/semiconductor superlattices; rocksalt semiconductors ID STABILIZATION; COATINGS; NITRIDE AB Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 +/- 0.19 eV. The direct bandgap of metastable rocksalt-AlN is extrapolated to be 4.70 +/- 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Saha, Bivas; Saber, Sammy; Stach, Eric A.; Kvam, Eric P.; Sands, Timothy D.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.; Sands, Timothy D.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Naik, Gururaj V.; Boltasseva, Alexandra; Sands, Timothy D.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Saha, B (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM bsaha@purdue.edu RI Sands, Timothy/D-2133-2009; Stach, Eric/D-8545-2011 OI Sands, Timothy/0000-0001-9718-6515; Stach, Eric/0000-0002-3366-2153 FU National Science Foundation; US Department of Energy [CBET-1048616]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX B.S. and T.D.S. acknowledge financial support by the National Science Foundation and US Department of Energy (CBET-1048616). B.S. thanks Robert Wortman for assistance in Hall measurements. E.A.S. acknowledges support to the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 27 TC 8 Z9 8 U1 2 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2015 VL 252 IS 2 BP 251 EP 259 DI 10.1002/pssb.201451314 PG 9 WC Physics, Condensed Matter SC Physics GA CD5WP UT WOS:000351159700001 ER PT J AU Yoon, T Rhodes, C Shah, FA AF Yoon, Taeyeon Rhodes, Charles Shah, Farhed A. TI Upstream water resource management to address downstream pollution concerns: A policy framework with application to the Nakdong River basin in South Korea SO WATER RESOURCES RESEARCH LA English DT Article DE downstream water pollution; long-panel data; rating curves; Nakdong River basin; upstream-downstream conflict; watershed management ID SUSPENDED-SEDIMENT LOADS; RATING CURVES; QUALITY; CONFLICT AB An empirical framework for assisting with water quality management is proposed that relies on open-source hydrologic data. Such data are measured periodically at fixed water stations and commonly available in time-series form. To fully exploit the data, we suggest that observations from multiple stations should be combined into a single long-panel data set, and an econometric model developed to estimate upstream management effects on downstream water quality. Selection of the model's functional form and explanatory variables would be informed by rating curves, and idiosyncrasies across and within stations handled in an error term by testing contemporary correlation, serial correlation, and heteroskedasticity. Our proposed approach is illustrated with an application to the Nakdong River basin in South Korea. Three alternative policies to achieve downstream BOD level targets are evaluated: upstream water treatment, greater dam discharge, and development of a new water source. Upstream water treatment directly cuts off incoming pollutants, thereby presenting the smallest variation in its downstream effects on BOD levels. Treatment is advantageous when reliability of water quality is a primary concern. Dam discharge is a flexible tool, and may be used strategically during a low-flow season. We consider development of a new water corridor from an extant dam as our third policy option. This turns out to be the most cost-effective way for securing lower BOD levels in the downstream target city. Even though we consider a relatively simple watershed to illustrate the usefulness of our approach, it can be adapted easily to analyze more complex upstream-downstream issues. C1 [Yoon, Taeyeon] Korea Energy Econ Inst, Ulsan, South Korea. [Rhodes, Charles] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Shah, Farhed A.] Univ Connecticut, Dept Agr & Resource Econ, Storrs, CT USA. RP Yoon, T (reprint author), Korea Energy Econ Inst, Ulsan, South Korea. EM taeyeon.yoon@keei.re.kr NR 50 TC 2 Z9 2 U1 7 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2015 VL 51 IS 2 BP 787 EP 805 DI 10.1002/2013WR014201 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CD9ET UT WOS:000351401200001 ER PT J AU Kuhlman, KL Malama, B Heath, JE AF Kuhlman, Kristopher L. Malama, Bwalya Heath, Jason E. TI Multiporosity flow in fractured low-permeability rocks SO WATER RESOURCES RESEARCH LA English DT Article DE dual-porosity; shale; multirate; triple-porosity ID PRESSURE TRANSIENT ANALYSIS; PORE-SCALE HETEROGENEITY; MASS-TRANSFER PROCESSES; DOUBLE-POROSITY; TRACER TESTS; RESERVOIRS; BEHAVIOR; SYSTEMS; FLUIDS; MEDIA AB A multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks. C1 [Kuhlman, Kristopher L.] Sandia Natl Labs, Appl Syst Anal & Res Dept, Albuquerque, NM 87185 USA. [Malama, Bwalya] Calif Polytech State Univ San Luis Obispo, Dept Nat Resources Management & Environm Sci, San Luis Obispo, CA 93407 USA. [Heath, Jason E.] Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. RP Kuhlman, KL (reprint author), Sandia Natl Labs, Appl Syst Anal & Res Dept, POB 5800, Albuquerque, NM 87185 USA. EM klkuhlm@sandia.gov OI Kuhlman, Kristopher/0000-0003-3397-3653 FU Sandia Laboratory-Directed Research and Development; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by Sandia Laboratory-Directed Research and Development. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. A Fortran program implementing the multiporosity model is available from the corresponding author. NR 53 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2015 VL 51 IS 2 BP 848 EP 860 DI 10.1002/2014WR016502 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CD9ET UT WOS:000351401200004 ER PT J AU Scheibe, TD Perkins, WA Richmond, MC McKinley, MI Romero-Gomez, PDJ Oostrom, M Wietsma, TW Serkowski, JA Zachara, JM AF Scheibe, Timothy D. Perkins, William A. Richmond, Marshall C. McKinley, Matthew I. Romero-Gomez, Pedro D. J. Oostrom, Mart Wietsma, Thomas W. Serkowski, John A. Zachara, John M. TI Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column SO WATER RESOURCES RESEARCH LA English DT Article DE pore-scale; simulation; flow; transport; porous media ID REACTIVE TRANSPORT; HETEROGENEOUS MEDIA; MASS-TRANSFER; POROUS-MEDIUM; DIFFUSION; DISPERSION; GROWTH; MODEL AB Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, laboratory experiments that measure continuum properties are typically performed on decimeter-scale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeter-scale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a multiscale Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Flow and transport simulations based on the binary segmentation were inconsistent with experimental observations because of overestimation of large connected pores. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain. C1 [Scheibe, Timothy D.; Perkins, William A.; Richmond, Marshall C.; McKinley, Matthew I.; Romero-Gomez, Pedro D. J.; Oostrom, Mart; Serkowski, John A.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [McKinley, Matthew I.] Silverline, New York, NY USA. [Scheibe, Timothy D.; Wietsma, Thomas W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zachara, John M.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Scheibe, TD (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM tim.scheibe@pnnl.gov RI Richmond, Marshall/D-3915-2013; Scheibe, Timothy/A-8788-2008 OI Richmond, Marshall/0000-0003-0111-1485; Scheibe, Timothy/0000-0002-8864-5772 FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER), Subsurface Biogeochemical Research program, through the PNNL Subsurface Science Scientific Focus Area project; DOE Office of Science [DE-AC02-05CH11231]; Department of Energy's Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This research was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER), Subsurface Biogeochemical Research program, through the PNNL Subsurface Science Scientific Focus Area project. Computations described here were performed using computational facilities of the PNNL Institutional Computing program and the National Energy Research Supercomputing Center (NERSC), which is supported by the DOE Office of Science under contract DE-AC02-05CH11231. Sediment imaging was performed at the High-Resolution X-ray CT Facility, an NSF-supported multiuser facility at the University of Texas at Austin. Column experiments were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. XCT image data (raw and segmented) and column tracer breakthrough curve data are available by request to the corresponding author. PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 40 TC 14 Z9 14 U1 5 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2015 VL 51 IS 2 BP 1023 EP 1035 DI 10.1002/2014WR015959 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CD9ET UT WOS:000351401200015 ER PT J AU Nizolek, T Avallone, J Pollock, T Mara, N Beyerlein, I Scott, J AF Nizolek, Thomas Avallone, Jaclyn Pollock, Tresa Mara, Nathan Beyerlein, Irene Scott, Jeffrey TI HIGH STRENGTH BULK METALLIC NANOLAMINATES SO ADVANCED MATERIALS & PROCESSES LA English DT Editorial Material C1 [Nizolek, Thomas; Avallone, Jaclyn; Pollock, Tresa] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Mara, Nathan; Beyerlein, Irene; Scott, Jeffrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nizolek, T (reprint author), Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. EM tnizolek@engr.ucsb.edu RI Mara, Nathan/J-4509-2014 NR 7 TC 1 Z9 1 U1 2 U2 16 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD FEB PY 2015 VL 173 IS 2 BP 18 EP 21 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA CD2NK UT WOS:000350914900017 ER PT J AU Otto, M Algasinger, M Branz, H Gesemann, B Gimpel, T Fuchsel, K Kasebier, T Kontermann, S Koynov, S Li, XP Naumann, V Oh, J Sprafke, AN Ziegler, J Zilk, M Wehrspohn, RB AF Otto, Martin Algasinger, Michael Branz, Howard Gesemann, Benjamin Gimpel, Thomas Fuechsel, Kevin Kaesebier, Thomas Kontermann, Stefan Koynov, Svetoslav Li, Xiaopeng Naumann, Volker Oh, Jihun Sprafke, Alexander N. Ziegler, Johannes Zilk, Matthias Wehrspohn, Ralf B. TI Black Silicon Photovoltaics SO ADVANCED OPTICAL MATERIALS LA English DT Review ID FEMTOSECOND-LASER-PULSES; HETEROJUNCTION SOLAR-CELLS; ATOMIC LAYER DEPOSITION; ULTRATHIN AL2O3 FILMS; P-TYPE SILICON; SURFACE-RECOMBINATION; MACROPOROUS SILICON; INFRARED-ABSORPTION; LIMITING EFFICIENCY; TEXTURED SILICON AB This article presents an overview of the fabrication methods of black silicon, their resulting morphologies, and a quantitative comparison of their optoelectronic properties. To perform this quantitative comparison, different groups working on black silicon solar cells have cooperated for this study. The optical absorption and the minority carrier lifetime are used as benchmark parameters. The differences in the fabrication processes plasma etching, chemical etching, or laser processing are discussed and compared with numerical models. Guidelines to optimize the relevant physical parameters, such as the correlation length, optimal height of the nanostructures, and the surface defect densities for optoelectronic applications are given. C1 [Otto, Martin; Gesemann, Benjamin; Li, Xiaopeng; Sprafke, Alexander N.; Ziegler, Johannes; Wehrspohn, Ralf B.] Univ Halle Wittenberg, D-06120 Halle, Germany. [Algasinger, Michael; Koynov, Svetoslav] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Branz, Howard; Oh, Jihun] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gimpel, Thomas; Kontermann, Stefan] Fraunhofer Heinrich Hertz Inst HHI, D-38640 Goslar, Germany. [Fuechsel, Kevin; Kaesebier, Thomas; Zilk, Matthias] Univ Jena, Inst Appl Phys, D-07743 Jena, Germany. RP Otto, M (reprint author), Univ Halle Wittenberg, Heinrich Damerow Str 4, D-06120 Halle, Germany. EM martin.otto@physik.uni-halle.de; ralf.wehrspohn@physik.uni-halle.de RI Wehrspohn, Ralf/B-9197-2011; Oh, Jihun/B-7085-2013 OI Wehrspohn, Ralf/0000-0002-6588-8544; Oh, Jihun/0000-0001-6465-6736 FU German Federal Ministry of Science and Education (BMBF) within the project STRUKTURSOLAR; DOE American Recovery and Reinvestment Act (ARRA) FX R.B.W. would like to thank Margrit Hanbucken for the hospitality at CINAM, Marseille for writing this review. M.O. would like to thank Rolf Herold (Fraunhofer IWM, Halle) for the preparation of the FIB cross-sectional images. We gratefully acknowledge funding from the German Federal Ministry of Science and Education (BMBF) within the project STRUKTURSOLAR. This work was also partially supported by a DOE American Recovery and Reinvestment Act (ARRA). NR 117 TC 21 Z9 22 U1 17 U2 102 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD FEB PY 2015 VL 3 IS 2 BP 147 EP 164 DI 10.1002/adom.201400395 PG 18 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA CB9OO UT WOS:000349961400001 ER PT J AU Xie, ZL Blair, RG Orlovskaya, N Payzant, EA AF Xie, Z. L. Blair, R. G. Orlovskaya, N. Payzant, E. A. TI Hexagonal OsB2 reduction upon heating in H-2 containing environment SO ADVANCES IN APPLIED CERAMICS LA English DT Article DE Osmium diboride; Redox stability; Hydrogen ID SUPERHARD RHENIUM DIBORIDE; OSMIUM DIBORIDE; MECHANICAL-PROPERTIES; COMPOSITES; PRESSURE; BEHAVIOR; POWDER; ZRB2 AB The stability of hexagonal ReB2 type OsB2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375 degrees C and complete transformation of OsB2 to metallic Os was observed at 725 degrees C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and (-3) valences in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms. C1 [Xie, Z. L.; Blair, R. G.; Orlovskaya, N.] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Blair, R. G.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Payzant, E. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU NSF [DMR 0748364]; Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by NSF project DMR 0748364. High temperature XRD studies were supported by Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 27 TC 3 Z9 3 U1 3 U2 3 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1743-6753 EI 1743-6761 J9 ADV APPL CERAM JI Adv. Appl. Ceram. PD FEB PY 2015 VL 114 IS 2 BP 114 EP 120 DI 10.1179/1743676114Y.0000000212 PG 7 WC Materials Science, Ceramics SC Materials Science GA CD4VV UT WOS:000351084400008 ER PT J AU Bleem, LE Stalder, B de Haan, T Aird, KA Allen, SW Applegate, DE Ashby, MLN Bautz, M Bayliss, M Benson, BA Bocquet, S Brodwin, M Carlstrom, JE Chang, CL Chiu, I Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S Dietrich, JP Dobbs, MA Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Hennig, C Hoekstra, H Holder, GP Holzapfel, WL Hrubes, JD Jones, C Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Meyer, SS Mocanu, L Mohr, JJ Murray, SS Padin, S Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Schrabback, T Shirokoff, E Song, J Spieler, HG Stanford, SA Staniszewski, Z Stark, AA Story, KT Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Bleem, L. E. Stalder, B. de Haan, T. Aird, K. A. Allen, S. W. Applegate, D. E. Ashby, M. L. N. Bautz, M. Bayliss, M. Benson, B. A. Bocquet, S. Brodwin, M. Carlstrom, J. E. Chang, C. L. Chiu, I. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dietrich, J. P. Dobbs, M. A. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Hennig, C. Hoekstra, H. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Meyer, S. S. Mocanu, L. Mohr, J. J. Murray, S. S. Padin, S. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Schrabback, T. Shirokoff, E. Song, J. Spieler, H. G. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. T. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: clusters: individual; large-scale structure of universe ID SOUTH-POLE TELESCOPE; ALL-SKY SURVEY; SIMILAR-TO 1; BLANCO COSMOLOGY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; SHEAR-SELECTED CLUSTERS; STAR-FORMING GALAXIES; FLUX-LIMITED SAMPLE; X-RAY OBSERVATIONS; 720 SQUARE DEGREES AB We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of xi = 4.5 (5.0). Ground-and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the xi > 4.5 candidates and 387 (or 95%) of the xi > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z similar to 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M-500c(rho(crit)) similar to 3.5 x 10(14) M-circle dot h(70)(-1) 70, the median redshift is z(med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution. C1 [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Mantz, A.; Meyer, S. S.; Mocanu, L.; Padin, S.; Schaffer, K. K.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Allen, S. W.; Keisler, R.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Allen, S. W.; Keisler, R.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Allen, S. W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Applegate, D. E.; Schrabback, T.] Argelander Inst Astron, D-53121 Bonn, Germany. [Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Meyer, S. S.; Mocanu, L.; Padin, S.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Hennig, C.; Liu, J.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Hennig, C.; Liu, J.; Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosif, Santiago, Chile. [Crites, A. T.; Lueker, M.; Padin, S.; Shirokoff, E.; Staniszewski, Z.; Williamson, R.] CALTECH, Pasadena, CA 91125 USA. [Dobbs, M. A.] Canadian Inst Adv Res, CIFAR Program Cosmol & Grav, Toronto, ON M5G 1Z8, Canada. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hoekstra, H.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Song, J.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Lawrence, CA 94720 USA. [Zenteno, A.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. RP Bleem, LE (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 South Cass Ave, Argonne, IL 60439 USA. RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; CRAWFORD, THOMAS/0000-0001-9000-5013; Dietrich, Jorg/0000-0002-8134-9591; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Forman, William/0000-0002-9478-1682; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; U.S. Department of Energy [DE-AC02-06CH11357]; United States Department of Energy [De-AC02-07CH11359]; DFG Cluster of Excellence "Origin and Structure of the Universe"; Transregio program "The Dark Universe" [TR33]; NASA through a Hubble Fellowship - Space Telescope Science Institute [HST-HF51308.01-A]; German Federal Ministry of Economics and Technology (BMWi) through DLR [50 OR 1210]; Cerro Tololo Interamerican Observatories [2005B- 0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT programs [086.A-0741, 087.A-0843, 088.A-0796(A), 088.A- 0889(A,B,C), 286.A-5021]; Gemini programs [GS-2009B-Q-16, GS-2011A-C-3, GS-2011B-C-6, GS-2012A-Q-4, GS-2012A-Q-37, GS-2012B-Q-29, GS-2012B-Q-59, GS-2013A-Q-5, GS-2013A-Q-45, GS-2013B-Q-25, GS-2013B-Q-72]; NASA [NAS 5-26555]; NASA through JPL/Caltech; Space Telescope Science Institute under U.S. Government [NAG W-2166]; [12246]; [12477]; [13412] FX The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012 and at SAO in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. This work was partially completed at Fermilab, operated by Fermi Research Alliance, LLC under contract no. De-AC02-07CH11359 with the United States Department of Energy. The Munich group acknowledges support from the DFG Cluster of Excellence "Origin and Structure of the Universe" and the Transregio program TR33 "The Dark Universe." M.M. acknowledges support by NASA through a Hubble Fellowship grant HST-HF51308.01-A awarded by the Space Telescope Science Institute. T.S. and D.A. acknowledge support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under project 50 OR 1210.; Optical imaging data from the Blanco 4 m at Cerro Tololo Interamerican Observatories (programs 2005B- 0043, 2009B-0400, 2010A-0441, 2010B-0598) and spectroscopic observations from VLT programs 086.A-0741, 087.A-0843, 088.A-0796(A), 088.A- 0889(A,B,C), and 286.A-5021 and Gemini programs GS-2009B-Q-16, GS-2011A-C-3, GS-2011B-C-6, GS-2012A-Q-4, GS-2012A-Q-37, GS-2012B-Q-29, GS-2012B-Q-59, GS-2013A-Q-5, GS-2013A-Q-45, GS-2013B-Q-25 and GS-2013B-Q-72 were included in this work. Additional data were obtained with the 6.5 m Magellan Telescopes and the Swope Telescope, which are located at the Las Campanas Observatory in Chile and the MPG/ESO 2.2 m and ESO NTT located at La Silla Facility in Chile. This work is based in part on observations made with the Spitzer Space Telescope (PIDs 60099, 70053, 80012 and 10101), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is also partly based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555; these observations are associated with programs 12246, 12477, and 13412. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. NR 158 TC 87 Z9 87 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2015 VL 216 IS 2 AR 27 DI 10.1088/0067-0049/216/2/27 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD2ID UT WOS:000350899000006 ER PT J AU Connaughton, V Briggs, MS Goldstein, A Meegan, CA Paciesas, WS Preece, RD Wilson-Hodge, CA Gibby, MH Greiner, J Gruber, D Jenke, P Kippen, RM Pelassa, V Xiong, S Yu, HF Bhat, PN Burgess, JM Byrne, D Fitzpatrick, G Foley, S Giles, MM Guiriec, S Van der Horst, AJ Von Kienlin, A McBreen, S McGlynn, S Tierney, D Zhang, BB AF Connaughton, V. Briggs, M. S. Goldstein, A. Meegan, C. A. Paciesas, W. S. Preece, R. D. Wilson-Hodge, C. A. Gibby, M. H. Greiner, J. Gruber, D. Jenke, P. Kippen, R. M. Pelassa, V. Xiong, S. Yu, H. -F. Bhat, P. N. Burgess, J. M. Byrne, D. Fitzpatrick, G. Foley, S. Giles, M. M. Guiriec, S. Van der Horst, A. J. Von Kienlin, A. McBreen, S. McGlynn, S. Tierney, D. Zhang, B. -B. TI LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gamma-ray burst: general; techniques: miscellaneous ID 1ST 2 YEARS; SPECTRAL CATALOG; GRB 090902B; LOCATIONS AB The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degrees, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.degrees 7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis. C1 [Connaughton, V.; Briggs, M. S.; Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N.; Burgess, J. M.; Zhang, B. -B.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Connaughton, V.; Briggs, M. S.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Goldstein, A.; Wilson-Hodge, C. A.] NASA, Astrophys Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Paciesas, W. S.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Preece, R. D.] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA. [Gibby, M. H.; Giles, M. M.] Jacobs Technol Inc, Huntsville, AL USA. [Greiner, J.; Yu, H. -F.; Von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruber, D.] Planetarium Sudtirol, I-39053 Karneid, Italy. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yu, H. -F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Byrne, D.; Fitzpatrick, G.; Foley, S.; McBreen, S.; McGlynn, S.; Tierney, D.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Guiriec, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Van der Horst, A. J.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. RP Connaughton, V (reprint author), Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35899 USA. EM valerie@nasa.gov RI Zhang, Binbin/C-9035-2013; OI Zhang, Binbin/0000-0003-2002-116X; Burgess, James/0000-0003-3345-9515 FU NASA; Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301]; Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR [50 OG 1101]; DFG cluster of excellence "Origin and Structure of the Universe"; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions under FP7; Irish Research Council; Science Foundation Ireland [09-RFP-AST-2400] FX We thank an anonymous referee for very useful contributions to this paper. The GBM project is supported by NASA. Support for the German contribution to GBM was provided by the Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under contract number 50 QV 0301. A.v.K. was supported by the Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR grant 50 OG 1101. H.F.Y. acknowledges support by the DFG cluster of excellence "Origin and Structure of the Universe." A.G. and S.G. are funded through the NASA Post-doctoral Fellowship Program. S.F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, co-funded by Marie Curie Actions under FP7. G.F. acknowledges the support of the Irish Research Council. D.T. acknowledges support from Science Foundation Ireland under grant number 09-RFP-AST-2400. NR 33 TC 12 Z9 12 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2015 VL 216 IS 2 AR 32 DI 10.1088/0067-0049/216/2/32 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD2ID UT WOS:000350899000011 ER PT J AU Kang, S Wang, D Nichols, JA Schuchart, J Kline, KL Wei, Y Ricciuto, DM Wullschleger, SD Post, WM Izaurralde, RC AF Kang, S. Wang, D. Nichols, J. A. Schuchart, J. Kline, K. L. Wei, Y. Ricciuto, D. M. Wullschleger, S. D. Post, W. M. Izaurralde, R. C. TI Development of mpi_EPIC model for global agroecosystem modeling SO COMPUTERS AND ELECTRONICS IN AGRICULTURE LA English DT Article DE Bioenergy; Food; High performance computing (HPC); Message passing interface (MPI); Parallel design; Sustainability ID CLIMATE-CHANGE; SWITCHGRASS; SYSTEM; YIELD; BIOMASS AB Agroecosystem models that can incorporate management practices and quantify environmental effects are necessary to assess sustainability-associated food and bioenergy production across spatial scales. However, most agroecosystem models are designed for a plot scale. Tremendous computational capacity on simulations and datasets is needed when large scales of high-resolution spatial simulations are conducted. We used the message passing interface (MPI) parallel technique and developed a master slave scheme for an agroecosystem model, EPIC on global food and bioenergy studies. Simulation performance was further enhanced by applying the Vampir framework. On a Linux-based supercomputer, Cray XT7 Titan, we used 2048 cores and successfully shortened the running time from days to 30 min for a global 30 years of modeling of a bioenergy crop at the resolution of half-degree (62,482 grids) with the message passing interface based EPIC (mpi_EPIC). The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analyses of agricultural production systems, management alternatives and environmental effects. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kang, S.; Wang, D.; Kline, K. L.; Wei, Y.; Ricciuto, D. M.; Wullschleger, S. D.; Post, W. M.] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Nichols, J. A.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Schuchart, J.] Tech Univ Dresden, Ctr Informat Serv & High Performance Comp ZIH, D-01062 Dresden, Germany. [Izaurralde, R. C.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Kang, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, POB 2008, Oak Ridge, TN 37831 USA. EM kangs@ornl.gov RI Ricciuto, Daniel/I-3659-2016; Wullschleger, Stan/B-8297-2012; OI Ricciuto, Daniel/0000-0002-3668-3021; Wullschleger, Stan/0000-0002-9869-0446; Kline, Keith/0000-0003-2294-1170 FU U.S. Department of Energy (DOE) Bioenergy Technologies Office; Department of Energy [DE-AC05-00OR22725] FX This research was thanks to computational resources made available through the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory. Contributions were also supported by the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the Department of Energy under Contract DE-AC05-00OR22725. NR 29 TC 1 Z9 1 U1 3 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0168-1699 EI 1872-7107 J9 COMPUT ELECTRON AGR JI Comput. Electron. Agric. PD FEB PY 2015 VL 111 BP 48 EP 54 DI 10.1016/j.compag.2014.12.004 PG 7 WC Agriculture, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Agriculture; Computer Science GA CD2XR UT WOS:000350942800006 ER PT J AU Davidson, C Steinberg, D Margolis, R AF Davidson, Carolyn Steinberg, Daniel Margolis, Robert TI Exploring the market for third-party-owned residential photovoltaic systems: insights from lease and power-purchase agreement contract structures and costs in California SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE residential solar; third-party ownership; lease cost ID DISCOUNT RATES; DECISIONS AB Over the past several years, third-party-ownership (TPO) structures for residential photovoltaic (PV) systems have become the predominant ownership model in the US residential market. Under a TPO contract, the PV system host typically makes payments to the third-party owner of the system. Anecdotal evidence suggests that the total TPO contract payments made by the customer can differ significantly from payments in which the system host directly purchases the system. Furthermore, payments can vary depending on TPO contract structure. To date, a paucity of data on TPO contracts has precluded studies evaluating trends in TPO contract cost. This study relies on a sample of 1113 contracts for residential PV systems installed in 2010-2012 under the California Solar Initiative to evaluate how the timing of payments under a TPO contract impacts the ultimate cost of the system to the customer. Furthermore, we evaluate how the total cost of TPO systems to customers has changed through time, and the degree to which contract costs have tracked trends in the installed costs of a PV system. We find that the structure of the contract and the timing of the payments have financial implications for the customer: (1) power-purchase contracts, on average, cost more than leases, (2) nomoney-down contracts are more costly than prepaid contracts, assuming a customer's discount rate is lower than 17% and (3) contracts that include escalator clauses cost more, for both power-purchase agreements and leases, at most plausible discount rates. In addition, all contract costs exhibit a wide range, and do not parallel trends in installed costs over time. C1 [Davidson, Carolyn; Steinberg, Daniel; Margolis, Robert] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Davidson, C (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM carolyn.davidson@nrel.gov OI Steinberg, Daniel/0000-0003-1769-2261 NR 16 TC 7 Z9 7 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD FEB PY 2015 VL 10 IS 2 AR 024006 DI 10.1088/1748-9326/10/2/024006 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CC7UI UT WOS:000350573500008 ER PT J AU Sobota, DJ Compton, JE McCrackin, ML Singh, S AF Sobota, Daniel J. Compton, Jana E. McCrackin, Michelle L. Singh, Shweta TI Cost of reactive nitrogen release from human activities to the environment in the United States SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE nitrogen; United States; damage costs; spatial; ecosystem services; agriculture; economic analysis ID ECOSYSTEM SERVICES; DECISION-MAKING; SOCIAL COST; US; CYCLE; DEPOSITION; POLICY; EUTROPHICATION; PERSPECTIVE; PHOSPHORUS AB Leakage of reactive nitrogen (N) from human activities to the environment can cause human health and ecological problems. Often these harmful effects are not reflected in the costs of food, fuel, and fiber that derive from Nuse. Spatial analyses of damage costs attributable to source at management-relevant scales could inform decisions in areas where anthropogenic N leakage causes harm. We used recently compiled data describing N inputs in the conterminous United States (US) to assess potential damage costs associated with anthropogenic N. We estimated fates of N leaked to the environment (air/deposition, surface freshwater, groundwater, and coastal zones) in the early 2000s by multiplying watershed-level N inputs (8-digit US Geologic Survey Hydrologic Unit Codes; HUC8s) with published coefficients describing nutrient uptake efficiency, leaching losses, and gaseous emissions. We scaled these N leakage estimates with mitigation, remediation, direct damage, and substitution costs associated with human health, agriculture, ecosystems, and climate (per kg of N) to calculate annual damage cost (US dollars in 2008 or as reported) of anthropogenic N per HUC8. Estimates of N leakage by HUC8 ranged from <1 to 125 kg N ha(-1) yr(-1), with most N leaked to freshwater ecosystems. Estimates of potential damages (based on median estimates) ranged from $1.94 to $2255 ha(-1) yr(-1) across watersheds, with a median of $252 ha(-1) yr(-1). Eutrophication of freshwater ecosystems and respiratory effects of atmospheric N pollution were important across HUC8s. However, significant data gaps remain in our ability to fully assess N damages, such as damage costs from harmful algal blooms and drinking water contamination. Nationally, potential health and environmental damages of anthropogenic N in the early 2000s totaled $210 billion yr(-1) USD (range: $81-$441 billion yr(-1)). While a number of gaps and uncertainties remain in these estimates, overall this work represents a starting point to inform decisions and engage stakeholders on the costs of N pollution. C1 [Sobota, Daniel J.] US EPA, Oak Ridge Inst Sci & Educ, Western Ecol Div, Corvallis, OR 97333 USA. [Compton, Jana E.] US EPA, Western Ecol Div, Corvallis, OR 97333 USA. [McCrackin, Michelle L.] Stockholm Univ, Balt Sea Ctr, SE-10691 Stockholm, Sweden. [Singh, Shweta] Univ Toronto, Toronto, ON, Canada. RP Sobota, DJ (reprint author), Oregon Dept Environm Qual, Environm Solut Div, Portland, OR 97206 USA. EM sobota.daniel@deq.state.or.us OI McCrackin, Michelle/0000-0002-8570-2831 FU Oak Ridge Institute for Science and Education Award FX This research was performed while the lead author held an Oak Ridge Institute for Science and Education Award at the Western Ecology Division of the US Environmental Protection Agency in Corvallis, OR. Steve Jordan provided comments on an early version that greatly improved the manuscript. We thank Matt Weber, Michael Papenfus, Patricia Glibert, Hans van Grinsven, Roxanne Maranger, Cliff Snyder and David Simpson for discussions on approaches and data analysis techniques. Materials in this manuscript were presented at the 6th International Nitrogen Conference in Kampala, Uganda, 17-22 November 2013. This manuscript has undergone internal peer-review at the US Environmental Protection Agency and has been approved for publication. The views and opinions expressed by the authors are their own and do not reflect views of the US Environmental Protection Agency. NR 55 TC 10 Z9 10 U1 14 U2 66 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD FEB PY 2015 VL 10 IS 2 AR 025006 DI 10.1088/1748-9326/10/2/025006 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CC7UI UT WOS:000350573500027 ER PT J AU Baty, RS AF Baty, Roy S. TI Modern infinitesimals and delta-function perturbations of a contact discontinuity SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID SHOCK-WAVE; CONSERVATION-LAWS; INSTABILITY; ENTROPY; JUMP AB This article applies nonstandard analysis - a modern theory of infinitesimals - to study generalized-function perturbations of contact discontinuities in compressible, inviscid fluids. Nonstandard analysis is an area of modern mathematics that studies extensions of the real number system to nonstandard number systems that contain infinitely large and infinitely small numbers. Perturbations of a contact discontinuity are considered that represent one-dimensional analogs of the two-dimensional perturbations observed in the initial evolution of a Richtmyer-Meshkov instability on a density interface. Nonstandard predistributions of the Dirac delta function, delta, and its derivatives, delta((n)), are applied as the perturbations of a contact discontinuity. The one-dimensional Euler equations are used to model the flow field of a fluid containing a perturbed density interface and generalized solutions are constructed for the perturbed flow field. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Baty, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM RBATY@LANL.GOV NR 21 TC 0 Z9 0 U1 0 U2 0 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD FEB-APR PY 2015 VL 14 IS 1-2 BP 25 EP 50 DI 10.1260/1475-472X.14.1-2.25 PG 26 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA CD0BT UT WOS:000350735900004 ER PT J AU Jordan, AB Stauffer, PH Harp, D Carey, JW Pawar, RJ AF Jordan, Amy B. Stauffer, Philip H. Harp, Dylan Carey, J. William Pawar, Rajesh J. TI A response surface model to predict CO2 and brine leakage along cemented wellbores SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Sequestration; Carbon storage; Wellbore leakage; System-scale modeling; Probabilistic risk analysis ID GEOLOGIC CARBON SEQUESTRATION; ADAPTIVE REGRESSION SPLINES; SYSTEM MODEL; IMPACTS; INJECTION; PRESSURE; STORAGE; SCALE; SITE; PERMEABILITY AB Potential CO2 and brine leakage from geologic sequestration reservoirs must be quantified on a site-specific basis to predict the long-term effectiveness of geologic storage. The primary goals of this study are to develop and validate reduced-order models (ROMs) to estimate wellbore leakage rates of CO2 and brine from storage reservoirs to the surface or into overlying aquifers, and to understand how the leakage profile evolves as a function of wellbore properties and the state of the CO2 plume. A multiphase reservoir simulator is used to perform Monte Carlo simulations of CO2 and water flow along wellbores across a wide range of relevant parameters including wellbore permeability, wellbore depth, reservoir pressure and saturation. The leakage rates are used to produce validated response surfaces that can be sampled to estimate wellbore flow. Minima in flow rates seen in the response surface are shown to result from complex nonlinear phase behavior along the wellbore. Presence of a shallow aquifer can increase CO2 leakage compared to cases that only allow CO2 flow directly to the land surface. The response surfaces are converted into computationally efficient ROMs and the utility of the ROMs is demonstrated by incorporation into a system-level risk analysis tool. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Jordan, Amy B.; Stauffer, Philip H.; Harp, Dylan; Carey, J. William; Pawar, Rajesh J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. RP Jordan, AB (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, EES-16,MS T003, Los Alamos, NM 87545 USA. EM ajordan@lanl.gov FU U.S. Department of Energy under the Advanced Carbon Capture and Storage Simulation Initiative through the National Risk Assessment Partnership (NRAP) [DE-AC52-06NA25396] FX This work was funded by the U.S. Department of Energy under the Advanced Carbon Capture and Storage Simulation Initiative through the National Risk Assessment Partnership (NRAP), under grant DE-AC52-06NA25396. The authors would like to thank two anonymous reviewers, whose comments greatly improved this paper. NR 37 TC 13 Z9 13 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2015 VL 33 BP 27 EP 39 DI 10.1016/j.ijggc.2014.12.002 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CD2RO UT WOS:000350926900004 ER PT J AU Chen, T Huang, LJ AF Chen, Ting Huang, Lianjie TI Seismicity characterization around the Farnsworth field site for combined large-scale CO2 storage and EOR SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; Enhanced oil recovery; Farnsworth; Earthquake catalog; Seismicity; Site characterization ID CARBON-SEQUESTRATION-PARTNERSHIPS; PROGRAM; VALIDATION; UPDATE; US AB Induced seismicity at levels noticeable to the public or higher is a concern for long-term, large-scale geologic carbon storage. To lower the risk of induced seismicity, it is desirable to sequester CO2 within a region where earthquakes are rare. We characterize the natural seismicity around the Farnsworth field site for the Phase III project of the U.S. Southwest Regional Partnership on Carbon Sequestration. We study all available catalog earthquake information within a region of approximately 180 km x 220 km (2 x 2 degrees) centered at the Farn worth field. We find that there is no recorded catalog earthquake within a region of approximately 30 km in radius from planned CO2 injection well No. 13-10A. The earliest earthquake recorded within our study region occurred in 1907, and the maximum magnitude of all recorded earthquakes since then is 4.8. Out of all the earthquakes recorded in this region, only four of them have magnitudes larger than 4. Our seismicity study indicates that the seismic risk for large-scale geologic carbon storage combined with enhanced oil recovery at the Farnsworth field may be relatively low. This characterization of natural seismicity around the Farnsworth field also benefits the ongoing monitoring of induced seismicity at the site. Published by Elsevier Ltd. C1 [Chen, Ting; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP Chen, T (reprint author), Los Alamos Natl Lab, MS D446, Los Alamos, NM 87545 USA. EM tchen@lanl.gov; ljh@lanl.gov OI Chen, Ting/0000-0002-9599-871X FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). This research was part of the effort of the U.S. Southwest Regional Partnership on Carbon Sequestration managed by the U.S. National Energy Technology Laboratory (NETL). We thank William O'Dowd of NETL, Julianna Fessenden-Rahn of LANL, Reid Grigg of the New Mexico Institute of Mining and Technology, and Brian McPherson of the University of Utah for their support of this work and careful review of this paper. We thank two anonymous reviewers for their valuable comments to help improve the manuscript. NR 18 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2015 VL 33 BP 63 EP 68 DI 10.1016/j.ijggc.2014.11.024 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CD2RO UT WOS:000350926900007 ER PT J AU Jonko, AK AF Jonko, Alexandra K. TI Adapting to nonlinear change SO NATURE CLIMATE CHANGE LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jonko, AK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ajonko@lanl.gov OI Jonko, Alexandra/0000-0001-6026-5527 NR 8 TC 3 Z9 3 U1 1 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2015 VL 5 IS 2 BP 103 EP 104 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CC4MO UT WOS:000350327700014 ER PT J AU Tavoni, M Kriegler, E Riahi, K van Vuuren, DP Aboumahboub, T Bowen, A Calvin, K Campiglio, E Kober, T Jewell, J Luderer, G Marangoni, G McCollum, D van Sluisveld, M Zimmer, A van der Zwaan, B AF Tavoni, Massimo Kriegler, Elmar Riahi, Keywan van Vuuren, Detlef P. Aboumahboub, Tino Bowen, Alex Calvin, Katherine Campiglio, Emanuele Kober, Tom Jewell, Jessica Luderer, Gunnar Marangoni, Giacomo McCollum, David van Sluisveld, Mariesse Zimmer, Anne van der Zwaan, Bob TI Post-2020 climate agreements in the major economies assessed in the light of global models SO NATURE CLIMATE CHANGE LA English DT Review ID GREENHOUSE-GAS EMISSIONS; RESEARCH-AND-DEVELOPMENT; CHANGE MITIGATION; CARBON EMISSIONS; ENERGY; TARGETS; SCENARIOS; TECHNOLOGY; COALITIONS; STABILITY AB Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2 degrees C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity. C1 [Tavoni, Massimo; Marangoni, Giacomo] FEEM, I-20123 Milan, Italy. [Tavoni, Massimo; Marangoni, Giacomo] Ctr Euromediterraneo Cambiamenti Climatici CMCC, I-20123 Milan, Italy. [Tavoni, Massimo; Marangoni, Giacomo] Politecn Milan, Dept Management & Econ, I-20156 Milan, Italy. [Kriegler, Elmar; Aboumahboub, Tino; Luderer, Gunnar; Zimmer, Anne] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany. [Riahi, Keywan; Jewell, Jessica; McCollum, David] IIASA, A-2361 Laxenburg, Austria. [van Vuuren, Detlef P.; van Sluisveld, Mariesse] UU, Copernicus Inst Sustainable Dev, NL-3584 CS Utrecht, Netherlands. [van Vuuren, Detlef P.; van Sluisveld, Mariesse] Netherlands Environm Assessment Agcy PBL, NL-3720 AH Bilthoven, Netherlands. [Bowen, Alex; Campiglio, Emanuele] London Sch Econ & Polit Sci LSE, Grantham Res Inst, London WC2A 2AE, England. [Calvin, Katherine] PNNL, JGCRI, College Pk, MD 20740 USA. [Kober, Tom; van der Zwaan, Bob] Energy Res Ctr Netherlands ECN, NL-1043 NT Amsterdam, Netherlands. [van der Zwaan, Bob] Univ Amsterdam, Fac Sci, NL-1098 XH Amsterdam, Netherlands. [van der Zwaan, Bob] Johns Hopkins Univ, Sch Adv Int Studies, I-40126 Bologna, Italy. RP Tavoni, M (reprint author), FEEM, Corso Magenta 63, I-20123 Milan, Italy. EM massimo.tavoni@feem.it RI van der Zwaan, Bob/F-4070-2015; Luderer, Gunnar/G-2967-2012; van Vuuren, Detlef/A-4764-2009; Kriegler, Elmar/I-3048-2016; Riahi, Keywan/B-6426-2011 OI Calvin, Katherine/0000-0003-2191-4189; van der Zwaan, Bob/0000-0001-5871-7643; van Vuuren, Detlef/0000-0003-0398-2831; Kriegler, Elmar/0000-0002-3307-2647; Riahi, Keywan/0000-0001-7193-3498 FU European Union [282846] FX The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 282846 (LIMITS). NR 93 TC 31 Z9 31 U1 6 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2015 VL 5 IS 2 BP 119 EP 126 DI 10.1038/NCLIMATE2475 PG 8 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CC4MO UT WOS:000350327700019 ER PT J AU Clark, DS Marinak, MM Weber, CR Eder, DC Haan, SW Hammel, BA Hinkel, DE Jones, OS Milovich, JL Patel, PK Robey, HF Salmonson, JD Sepke, SM Thomas, CA AF Clark, D. S. Marinak, M. M. Weber, C. R. Eder, D. C. Haan, S. W. Hammel, B. A. Hinkel, D. E. Jones, O. S. Milovich, J. L. Patel, P. K. Robey, H. F. Salmonson, J. D. Sepke, S. M. Thomas, C. A. TI Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign SO PHYSICS OF PLASMAS LA English DT Article ID HYDRA SIMULATIONS; FACILITY; TARGETS; INSTABILITY; IMPLOSION; GROWTH; NOVA; NIF AB The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included. (C) 2015 AIP Publishing LLC. C1 [Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Clark, DS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Patel, Pravesh/E-1400-2011 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 57 TC 39 Z9 40 U1 3 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022703 DI 10.1063/1.4906897 PG 18 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000083 ER PT J AU Hara, K Chapman, T Banks, JW Brunner, S Joseph, I Berger, RL Boyd, ID AF Hara, Kentaro Chapman, Thomas Banks, Jeffrey W. Brunner, Stephan Joseph, Ilon Berger, Richard L. Boyd, Iain D. TI Quantitative study of the trapped particle bunching instability in Langmuir waves SO PHYSICS OF PLASMAS LA English DT Article ID FREQUENCY-SHIFT; PLASMA WAVES AB The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 ( 2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters. (C) 2015 AIP Publishing LLC. C1 [Hara, Kentaro; Boyd, Iain D.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Chapman, Thomas; Joseph, Ilon; Berger, Richard L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Banks, Jeffrey W.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. [Brunner, Stephan] Ecole Polytech Fed Lausanne, CRPP PPB, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. RP Hara, K (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. EM kenhara@umich.edu RI Banks, Jeffrey/A-9718-2012; Brunner, Stephan/B-6200-2009; EPFL, Physics/O-6514-2016 OI Brunner, Stephan/0000-0001-7588-7476; FU U.S. Department of Energy by LLNL - Laboratory Directed Research and Development Program at LLNL [DE-AC52-07NA27344, 12-ERD-061]; U.S. DOE Office of Science, Fusion Energy Sciences Program [DESC0001939] FX The authors acknowledge fruitful discussions with I. Dodin, I. Kaganovich, and E. Startsev. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, funded by Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-061, and supported by U.S. DOE Office of Science, Fusion Energy Sciences Program, Grant No. DESC0001939. NR 21 TC 2 Z9 2 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022104 DI 10.1063/1.4906884 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000021 ER PT J AU Henderson, M Saibene, G Darbos, C Farina, D Figini, L Gagliardi, M Gandini, F Gassmann, T Hanson, G Loarte, A Omori, T Poli, E Purohit, D Takahashi, K AF Henderson, M. Saibene, G. Darbos, C. Farina, D. Figini, L. Gagliardi, M. Gandini, F. Gassmann, T. Hanson, G. Loarte, A. Omori, T. Poli, E. Purohit, D. Takahashi, K. TI The targeted heating and current drive applications for the ITER electron cyclotron system SO PHYSICS OF PLASMAS LA English DT Article ID TRANSMISSION-LINE; UPPER LAUNCHER; ASDEX UPGRADE; ECCD AB A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H&CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H&CD systems. An initial attempt has been developed at prioritizing the allocated H&CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (similar to 12 MA), and Advanced (similar to 9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems. C1 [Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.] ITER Org, F-13067 St Paul Les Durance, France. [Saibene, G.; Gagliardi, M.] Fus Energy, Barcelona 08019, Spain. [Farina, D.; Figini, L.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [Hanson, G.] Oak Ridge Natl Lab, US ITER Project Off, Oak Ridge, TN 37831 USA. [Poli, E.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Takahashi, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. RP Henderson, M (reprint author), ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France. OI Figini, Lorenzo/0000-0002-0034-4028 NR 34 TC 10 Z9 10 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 021808 DI 10.1063/1.4908598 PG 15 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000017 ER PT J AU Huijsmans, GTA Chang, CS Ferraro, N Sugiyama, L Waelbroeck, F Xu, XQ Loarte, A Futatani, S AF Huijsmans, G. T. A. Chang, C. S. Ferraro, N. Sugiyama, L. Waelbroeck, F. Xu, X. Q. Loarte, A. Futatani, S. TI Modelling of edge localised modes and edge localised mode control SO PHYSICS OF PLASMAS LA English DT Article ID MHD STABILITY ANALYSIS; X-POINT GEOMETRY; MAGNETIC PERTURBATIONS; BALLOONING MODES; ELM DYNAMICS; DIII-D; ITER; SIMULATIONS; TRANSPORT; PEDESTAL AB Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. To avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Therefore, the extrapolation of the ELM properties and the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. In this paper, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues. C1 [Huijsmans, G. T. A.; Loarte, A.] ITER Org, F-13067 St Paul Les Durance, France. [Chang, C. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ferraro, N.] Gen Atom Co, San Diego, CA 92186 USA. [Sugiyama, L.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Waelbroeck, F.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Futatani, S.] Ecole Cent Lyon, F-69130 Lyon, France. RP Huijsmans, GTA (reprint author), ITER Org, Route Vinon Sur Verdon, F-13067 St Paul Les Durance, France. OI Futatani, Shimpei/0000-0001-5742-5454 NR 128 TC 11 Z9 11 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 021805 DI 10.1063/1.4905231 PG 19 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000014 ER PT J AU Humphreys, D Ambrosino, G de Vries, P Felici, F Kim, SH Jackson, G Kallenbach, A Kolemen, E Lister, J Moreau, D Pironti, A Raupp, G Sauter, O Schuster, E Snipes, J Treutterer, W Walker, M Welander, A Winter, A Zabeo, L AF Humphreys, D. Ambrosino, G. de Vries, P. Felici, F. Kim, S. H. Jackson, G. Kallenbach, A. Kolemen, E. Lister, J. Moreau, D. Pironti, A. Raupp, G. Sauter, O. Schuster, E. Snipes, J. Treutterer, W. Walker, M. Welander, A. Winter, A. Zabeo, L. TI Novel aspects of plasma control in ITER SO PHYSICS OF PLASMAS LA English DT Article ID NEOCLASSICAL TEARING MODES; CONTROL-SYSTEM; SHAPE CONTROL; DIII-D; CURRENT PROFILE; ACTIVE CONTROL; CURRENT DRIVE; TOKAMAK; STABILIZATION; DESIGN AB ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e. g., current profile regulation, tearing mode (TM) suppression), control mathematics (e. g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e. g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER. (C) 2015 AIP Publishing LLC. C1 [Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.] Gen Atom Co, San Diego, CA 92186 USA. [Ambrosino, G.; Pironti, A.] Univ Naples Federico II, CREATE, Naples, Italy. [de Vries, P.; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L.] ITER Org, St Paul Les Durance, France. [Felici, F.] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands. [Kallenbach, A.; Raupp, G.; Treutterer, W.] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany. [Kolemen, E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lister, J.; Sauter, O.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Lausanne, Switzerland. [Moreau, D.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Schuster, E.] Lehigh Univ, Bethlehem, PA 18015 USA. RP Humphreys, D (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI EPFL, Physics/O-6514-2016; OI Ambrosino, Giuseppe/0000-0002-2549-2772 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698, DE-AC02-09CH11466] FX This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award DE-FC02-04ER54698 and DE-AC02-09CH11466. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 85 TC 4 Z9 5 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 021806 DI 10.1063/1.4907901 PG 26 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000015 ER PT J AU Jones, B Apruzese, JP Harvey-Thompson, AJ Ampleford, DJ Jennings, CA Hansen, SB Moore, NW Lamppa, DC Johnson, D Jones, MC Waisman, EM Coverdale, CA Cuneo, ME Rochau, GA Giuliani, JL Thornhill, JW Ouart, ND Chong, YK Velikovich, AL Dasgupta, A Krishnan, M Coleman, PL AF Jones, B. Apruzese, J. P. Harvey-Thompson, A. J. Ampleford, D. J. Jennings, C. A. Hansen, S. B. Moore, N. W. Lamppa, D. C. Johnson, D. Jones, M. C. Waisman, E. M. Coverdale, C. A. Cuneo, M. E. Rochau, G. A. Giuliani, J. L. Thornhill, J. W. Ouart, N. D. Chong, Y. K. Velikovich, A. L. Dasgupta, A. Krishnan, M. Coleman, P. L. TI The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions SO PHYSICS OF PLASMAS LA English DT Article ID STARK-PROFILE CALCULATIONS; Z-PINCH; DENSE-PLASMAS; Z MACHINE; ARGON; RADIATION; PHYSICS AB Argon gas puffs have produced 330 kJ +/- 9% of x-ray radiation above 3 keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs. (C) 2015 AIP Publishing LLC. C1 [Jones, B.; Harvey-Thompson, A. J.; Ampleford, D. J.; Jennings, C. A.; Hansen, S. B.; Moore, N. W.; Lamppa, D. C.; Johnson, D.; Jones, M. C.; Waisman, E. M.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Apruzese, J. P.] Engility Corp, Chantilly, VA 20151 USA. [Giuliani, J. L.; Thornhill, J. W.; Ouart, N. D.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.] Naval Res Lab, Washington, DC 20375 USA. [Krishnan, M.] Alameda Appl Sci Corp, San Leandro, CA 94577 USA. [Coleman, P. L.] Evergreen Hill Sci, Philomath, OR 97370 USA. RP Jones, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bmjones@sandia.gov FU Defense Threat Reduction Agency; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the Z operations and diagnostics teams, and the Z and System Integration Test Facility (SITF) gas-puff team, for supporting these experiments. Gas nozzle assembly and characterization at SITF was supported by the Defense Threat Reduction Agency, and we acknowledge in particular, S. W. Seiler, J. F. Davis, and Major K. Brown. We also acknowledge valuable discussions with Yitzhak Maron of the Weizmann Institute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 32 TC 9 Z9 9 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 020706 DI 10.1063/1.4913350 PG 5 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000006 ER PT J AU Koester, P Booth, N Cecchetti, CA Chen, H Evans, RG Gregori, G Labate, L Levato, T Li, B Makita, M Mithen, J Murphy, CD Notley, M Pattathil, R Riley, D Woolsey, N Gizzi, LA AF Koester, Petra Booth, Nicola Cecchetti, Carlo A. Chen, Hui Evans, Roger G. Gregori, Gianluca Labate, Luca Levato, Tadzio Li, Bin Makita, Mikako Mithen, James Murphy, Christopher D. Notley, Margaret Pattathil, Rajeev Riley, David Woolsey, Nigel Gizzi, Leonida A. TI Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; GENERATION; SIMULATION; TRANSPORT; DRIVEN AB The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10(19) W/cm(2). High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams. (C) 2015 AIP Publishing LLC. C1 [Koester, Petra; Cecchetti, Carlo A.; Labate, Luca; Levato, Tadzio; Gizzi, Leonida A.] CNR, INO, Intense Laser Irradiat Lab, I-56100 Pisa, Italy. [Booth, Nicola; Woolsey, Nigel] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Chen, Hui] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Evans, Roger G.] Univ London Imperial Coll Sci Technol & Med, London, England. [Gregori, Gianluca; Li, Bin; Mithen, James; Murphy, Christopher D.] Univ Oxford, Dept Phys, Oxford, England. [Labate, Luca; Gizzi, Leonida A.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Levato, Tadzio] Univ Roma Tor Vergata, Rome, Italy. [Makita, Mikako; Riley, David] Queens Univ Belfast, Dept Phys, Belfast, Antrim, North Ireland. [Notley, Margaret; Pattathil, Rajeev] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. RP Koester, P (reprint author), CNR, INO, Intense Laser Irradiat Lab, I-56100 Pisa, Italy. OI Gizzi, Leonida A./0000-0001-6572-6492 FU LASERLAB EUROPE Transnational Access Programme [228334]; HiPER Project [211737]; MIUR-PRIN [PRIN2012AY5LEL] FX We would like to thank Ch. Spindloe and coworkers for the preparation of the target foils. We would also like to thank F. Califano for fruitful discussions. The authors acknowledge support from the LASERLAB EUROPE Transnational Access Programme (Grant Agreement No. 228334), the HiPER Project (Grant Agreement No. 211737), and MIUR-PRIN 2012 (Contract No. PRIN2012AY5LEL). NR 31 TC 0 Z9 0 U1 4 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 020701 DI 10.1063/1.4907195 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000001 ER PT J AU Loizu, J Hudson, S Bhattacharjee, A Helander, P AF Loizu, J. Hudson, S. Bhattacharjee, A. Helander, P. TI Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria SO PHYSICS OF PLASMAS LA English DT Article ID PRESSURE-INDUCED ISLANDS; PLASMA EQUILIBRIA; TOROIDAL PLASMA; STABILITY; MODE AB Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac delta-function, which presumably prevents the formation of islands, and the Pfirsch-Schluter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD. (C) 2015 AIP Publishing LLC. C1 [Loizu, J.; Helander, P.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Loizu, J.; Hudson, S.; Bhattacharjee, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Loizu, J (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. EM joaquim.loizu@ipp.mpg.de RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU Max-Planck-Princeton Center for Plasma Physics FX We acknowledge discussions with Robert Dewar and Joachim Geiger. This work was carried out under the auspices of the Max-Planck-Princeton Center for Plasma Physics. NR 29 TC 9 Z9 9 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022501 DI 10.1063/1.4906888 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000060 ER PT J AU Melvin, J Lim, H Rana, V Cheng, B Glimm, J Sharp, DH Wilson, DC AF Melvin, J. Lim, H. Rana, V. Cheng, B. Glimm, J. Sharp, D. H. Wilson, D. C. TI Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR; MODEL AB We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results. (C) 2015 AIP Publishing LLC. C1 [Melvin, J.; Lim, H.; Rana, V.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Cheng, B.; Sharp, D. H.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Melvin, J (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. FU Leland Stanford Junior University, Army Research Office [2175022040367A, W911NF0910306]; DOE; Los Alamos National Laboratory [JL3K00 NYSB0000]; U.S. Department of Energy [DE-AC02-98CH1-886]; Office of Science of the U.S. Department of Energy [DF-AC02005CH11231] FX The authors wish to thank the referees for their very helpful comments and suggestions. The authors thank Dan Clark and Marty Marinak for permission to use HYDRA and the radiation tuned input files. The authors also thank Chris Fontes for assistance in retrieving proper opacity data through TOPS. In addition, the authors thank T. J. T. Kwan, S. Batha, and P. Bradley for their support and helpful discussions and S. Haan for his help creating experimental tuned drives available to use on the open network. This work is supported in part by Leland Stanford Junior University 2175022040367A (sub award with DOE as prime sponsor), Army Research Office W911NF0910306. This manuscript has been co-authored by Los Alamos National Laboratory, under Contract No. JL3K00 NYSB0000, Inertial Confinement Fusion Campaign. This manuscript has been co-authored by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting this article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DF-AC02005CH11231. NR 26 TC 4 Z9 4 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022708 DI 10.1063/1.4908278 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000088 ER PT J AU Mustafaev, AS Demidov, VI Kaganovich, ID Koepke, ME Grabovskiy, A AF Mustafaev, A. S. Demidov, V. I. Kaganovich, I. D. Koepke, M. E. Grabovskiy, A. TI Sharp transition between two regimes of operation of dc discharge with two anodes and thermionic emission from cathode (vol 21, 053508, 2014) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Mustafaev, A. S.; Grabovskiy, A.] Natl Mineral Resources Univ Gorniy, St Petersburg 199106, Russia. [Demidov, V. I.; Koepke, M. E.] W Virginia Univ, Morgantown, WV 26506 USA. [Demidov, V. I.] St Petersburg State Univ, St Petersburg 199034, Russia. [Demidov, V. I.] Univ ITMO, St Petersburg 197101, Russia. [Kaganovich, I. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Mustafaev, AS (reprint author), Natl Mineral Resources Univ Gorniy, St Petersburg 199106, Russia. RI Demidov, Vladimir/A-4247-2013; Mustafaev, Alexander/I-1319-2016 OI Demidov, Vladimir/0000-0002-2672-7684; FU DOE OFES [DE-SC0001939]; SPbGU [11.38.658.2013]; ITMO [713577]; NMRU FX This work was partially supported by the DOE OFES (Contract No. DE-SC0001939), SPbGU (Grant No. 11.38.658.2013), ITMO (Grant No. 713577), and NMRU. NR 1 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 029901 DI 10.1063/1.4907183 PG 1 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000134 ER PT J AU Nagel, SR Haan, SW Rygg, JR Barrios, M Benedetti, LR Bradley, DK Field, JE Hammel, BA Izumi, N Jones, OS Khan, SF Ma, T Pak, AE Tommasini, R Town, RPJ AF Nagel, S. R. Haan, S. W. Rygg, J. R. Barrios, M. Benedetti, L. R. Bradley, D. K. Field, J. E. Hammel, B. A. Izumi, N. Jones, O. S. Khan, S. F. Ma, T. Pak, A. E. Tommasini, R. Town, R. P. J. TI Effect of the mounting membrane on shape in inertial confinement fusion implosions SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL IGNITION FACILITY; INSTABILITY AB The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or "tent" thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P-2 and P-4) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P-4 mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P-4 and core P-4, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature. (C) 2015 AIP Publishing LLC. C1 [Nagel, S. R.; Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Nagel, SR (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM nagel7@llnl.gov RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy [DE-AC52-07NA27344, LLNL-JRNL-664740] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Nos. DE-AC52-07NA27344 and DE-AC52-07NA27344; LLNL-JRNL-664740. NR 25 TC 30 Z9 31 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022704 DI 10.1063/1.4907179 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000084 ER PT J AU Perkins, RJ Bellan, PM AF Perkins, R. J. Bellan, P. M. TI Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion SO PHYSICS OF PLASMAS LA English DT Article ID SCREENED COULOMB POTENTIALS; PERTURBATION-THEORY; TURBULENT TRANSPORT; QUANTUM-THEORY; PENNING TRAP; TOKAMAKS; HYPERVIRIAL; PINCH; FIELD; PARTICLES AB Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion. (C) 2015 AIP Publishing LLC. C1 [Perkins, R. J.; Bellan, P. M.] CALTECH, Appl Phys & Mat Sci, Pasadena, CA 91125 USA. RP Perkins, RJ (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. EM rperkins@pppl.gov OI Perkins, Rory/0000-0002-7216-0201 FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences [DE-FG02-04ER54755, DE-SC0010471]; National Science Foundation [1059519]; Air Force Office of Scientific Research [FA9550-11-1-0184] FX This material was based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Nos. DE-FG02-04ER54755 and DE-SC0010471, by the National Science Foundation under Award No. 1059519, and by the Air Force Office of Scientific Research under Award No. FA9550-11-1-0184. We thank John Preskill for pointing out the connection to the Aharonov-Bohm effect. NR 35 TC 1 Z9 1 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022108 DI 10.1063/1.4905635 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000025 ER PT J AU Shi, EL Hakim, AH Hammett, GW AF Shi, E. L. Hakim, A. H. Hammett, G. W. TI A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE; SIMULATIONS AB An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. The authors focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cell equations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheath boundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. This test problem also helps illustrate some of the physics contained in the Hamiltonian form of the gyrokinetic equations and some of the numerical challenges in developing an edge gyrokinetic code. (C) 2015 AIP Publishing LLC. C1 [Shi, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Hakim, A. H.; Hammett, G. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hakim, A. H.; Hammett, G. W.] Princeton Univ, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. RP Shi, EL (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. EM eshi@princeton.edu RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU U.S. Department of Energy through the Max-Planck/Princeton Center for Plasma Physics; SciDAC Center for the Study of Plasma Microturbulence; Princeton Plasma Physics Laboratory [DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy through the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and the Princeton Plasma Physics Laboratory under Contract No. DE-AC02-09CH11466. NR 30 TC 3 Z9 3 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022504 DI 10.1063/1.4907160 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000063 ER PT J AU Sips, ACC Giruzzi, G Ide, S Kessel, C Luce, TC Snipes, JA Stober, JK AF Sips, A. C. C. Giruzzi, G. Ide, S. Kessel, C. Luce, T. C. Snipes, J. A. Stober, J. K. CA ITPA TI Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor SO PHYSICS OF PLASMAS LA English DT Article ID BURNING PLASMA; ITER; TRANSPORT; TOKAMAKS; CONFINEMENT; PERFORMANCE; MODES; JET AB The development of operating scenarios is one of the key issues in the research for ITER which aims to achieve a fusion gain (Q) of similar to 10, while producing 500 MW of fusion power for >= 300 s. The ITER Research plan proposes a success oriented schedule starting in hydrogen and helium, to be followed by a nuclear operation phase with a rapid development towards Q similar to 10 in deuterium/tritium. The Integrated Operation Scenarios Topical Group of the International Tokamak Physics Activity initiates joint activities among worldwide institutions and experiments to prepare ITER operation. Plasma formation studies report robust plasma breakdown in devices with metal walls over a wide range of conditions, while other experiments use an inclined EC launch angle at plasma formation to mimic the conditions in ITER. Simulations of the plasma burn-through predict that at least 4 MW of Electron Cyclotron heating (EC) assist would be required in ITER. For H-modes at q(95) similar to 3, many experiments have demonstrated operation with scaled parameters for the ITER baseline scenario at n(e)/n(GW) similar to 0.85. Most experiments, however, obtain stable discharges at H-98(y,H-2) similar to 1.0 only for beta(N) = 2.0-2.2. For the rampup in ITER, early X-point formation is recommended, allowing auxiliary heating to reduce the flux consumption. A range of plasma inductance (l(i)(3)) can be obtained from 0.65 to 1.0, with the lowest values obtained in H-mode operation. For the rampdown, the plasma should stay diverted maintaining H-mode together with a reduction of the elongation from 1.85 to 1.4. Simulations show that the proposed rampup and rampdown schemes developed since 2007 are compatible with the present ITER design for the poloidal field coils. At 13-15 MA and densities down to n(e)/n(GW) similar to 0.5, long pulse operation (>1000 s) in ITER is possible at Q similar to 5, useful to provide neutron fluence for Test Blanket Module assessments. ITER scenario preparation in hydrogen and helium requires high input power (>50 MW). H-mode operation in helium may be possible at input powers above 35 MW at a toroidal field of 2.65T, for studying H-modes and ELM mitigation. In hydrogen, H-mode operation is expected to be marginal, even at 2.65T with 60 MW of input power. Simulation code benchmark studies using hybrid and steady state scenario parameters have proved to be a very challenging and lengthy task of testing suites of codes, consisting of tens of sophisticated modules. Nevertheless, the general basis of the modelling appears sound, with substantial consistency among codes developed by different groups. For a hybrid scenario at 12 MA, the code simulations give a range for Q = 6.5-8.3, using 30 MW neutral beam injection and 20 MW ICRH. For non-inductive operation at 7-9 MA, the simulation results show more variation. At high edge pedestal pressure (T-ped similar to 7 keV), the codes predict Q = 3.3-3.8 using 33 MW NB, 20 MW EC, and 20 MW ion cyclotron to demonstrate the feasibility of steady-state operation with the day-1 heating systems in ITER. Simulations using a lower edge pedestal temperature (similar to 3 keV) but improved core confinement obtain Q = 5-6.5, when ECCD is concentrated at mid-radius and similar to 20 MW off-axis current drive (ECCD or LHCD) is added. Several issues remain to be studied, including plasmas with dominant electron heating, mitigation of transient heat loads integrated in scenario demonstrations and (burn) control simulations in ITER scenarios. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Sips, A. C. C.] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Sips, A. C. C.] Commiss European Communities, B-1049 Brussels, Belgium. [Giruzzi, G.] CEA, IRFM, F-13108 Cadarache, St Paul L Lez D, France. [Ide, S.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Kessel, C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Luce, T. C.] Gen Atom Co, San Diego, CA 92186 USA. [Snipes, J. A.] ITER Org, F-13115 St Paul Les Durance, France. [Stober, J. K.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. RP Sips, ACC (reprint author), JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM george.sips@jet.efda.org NR 73 TC 8 Z9 8 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 021804 DI 10.1063/1.4904015 PG 24 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000013 ER PT J AU Wang, ZX Lin, ZH Deng, WJ Holod, I Heidbrink, WW Xiao, Y Zhang, H Zhang, W Van Zeeland, M AF Wang, Zhixuan Lin, Zhihong Deng, Wenjun Holod, Ihor Heidbrink, W. W. Xiao, Y. Zhang, H. Zhang, W. Van Zeeland, M. TI Properties of toroidal Alfven eigenmode in DIII-D plasma SO PHYSICS OF PLASMAS LA English DT Article ID MHD STABILITY; D TOKAMAK; TRANSPORT; INSTABILITIES; SIMULATIONS; EXCITATION; PARTICLES; DRIVEN; WAVES; MODEL AB Linear properties of the toroidal Alfven eigenmode (TAE) excited by energetic particles (EP) in a DIII-D tokamak experiment have been studied in global gyrokinetic particle simulations treating self-consistently kinetic effects of EP, thermal ions, and electrons. Simulation results of the TAE frequency and mode structure agree very well with the experimental measurements. The non-perturbative EP contribution induces a radial localization of the TAE mode structure, a break-down of mode radial symmetry, as well as a frequency dependence on the toroidal mode number. The simulations further demonstrate the dependence of the growth rate and mode structure on EP pressure gradients. The in-out asymmetry of the mode structure and the experimental identification of the poloidal harmonics have also been clarified. (C) 2015 AIP Publishing LLC. C1 [Wang, Zhixuan; Lin, Zhihong; Holod, Ihor; Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Deng, Wenjun] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Xiao, Y.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310058, Zhejiang, Peoples R China. [Zhang, H.] Peking Univ, Fus Simulat Ctr, Beijing 100871, Peoples R China. [Zhang, W.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Van Zeeland, M.] Gen Atom Co, San Diego, CA 92121 USA. [Zhang, W.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. RP Lin, ZH (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM zhihongl@uci.edu RI Holod, Ihor/G-2801-2015; OI Deng, Wenjun/0000-0002-4591-264X FU U.S. Department of Energy (DOE) SciDAC GSEP center; China National Magnetic Confinement Fusion Science Program [2013GB111000]; DOE [DE-AC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy (DOE) SciDAC GSEP center and by China National Magnetic Confinement Fusion Science Program, Grant No. 2013GB111000. This research used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory (DOE Contract No. DE-AC05-00OR22725), and the National Energy Research Scientific Computing Center (DOE Contract No. DE-AC02-05CH11231). NR 55 TC 4 Z9 4 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022509 DI 10.1063/1.4908274 PG 13 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000068 ER PT J AU White, RB Gates, DA Brennan, DP AF White, R. B. Gates, D. A. Brennan, D. P. TI Thermal island destabilization and the Greenwald limit SO PHYSICS OF PLASMAS LA English DT Article ID NEOCLASSICAL TEARING MODES; TOKAMAK; MAGNETOHYDRODYNAMICS AB Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit. (C) 2015 AIP Publishing LLC. C1 [White, R. B.; Gates, D. A.; Brennan, D. P.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP White, RB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU U.S. Department of Energy [DE-AC02-09CH11466] FX This work was partially supported by the U.S. Department of Energy Grant No. DE-AC02-09CH11466. NR 26 TC 11 Z9 12 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022514 DI 10.1063/1.4913433 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000073 ER PT J AU Wilson, JR Bonoli, PT AF Wilson, J. R. Bonoli, P. T. TI Progress on ion cyclotron range of frequencies heating physics and technology in support of the International Tokamak Experimental Reactor SO PHYSICS OF PLASMAS LA English DT Article ID ALCATOR C-MOD; ARC DETECTION SYSTEM; ANTENNA DESIGN; CURRENT DRIVE; ICRF ANTENNA; PLASMAS; JET; WAVE; CONVERSION AB Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored. (C) 2014 AIP Publishing LLC. C1 [Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bonoli, P. T.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Wilson, JR (reprint author), Princeton Plasma Phys Lab, POB 453, Princeton, NJ 08543 USA. OI wilson, james/0000-0003-3627-1278 FU USDOE [DE-AC02-09CH11466, DE-FC02-99ER54512] FX This work was performed under USDOE Contract Nos. DE-AC02-09CH11466 and DE-FC02-99ER54512. NR 121 TC 7 Z9 7 U1 6 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 021801 DI 10.1063/1.4901090 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000010 ER PT J AU Winske, D Daughton, W AF Winske, D. Daughton, W. TI Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution SO PHYSICS OF PLASMAS LA English DT Article ID INSTABILITIES; ACCELERATION; RESONANCE; FIELD AB We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (beta(e) = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T-i = T-e. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (beta(i) = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Winske, D.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Winske, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM winske@lanl.gov RI Daughton, William/L-9661-2013 FU DREAM FX The authors acknowledge useful discussions with and comments from Dr. Leonid Rudakov, Dr. Gurudas Ganguli, Dr. Manish Mithaiwala, and Dr. Chris Crabtree at the Naval Research Laboratory. This research was conducted as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project at Los Alamos National Laboratory. We are grateful to the sponsors of DREAM for financial and technical support. Allocations for computer time on the Los Alamos Institutional Computing resources and at the National Institute of Computational Sciences for time on the Kraken machine are also gratefully acknowledged. NR 27 TC 1 Z9 1 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2015 VL 22 IS 2 AR 022102 DI 10.1063/1.4906889 PG 13 WC Physics, Fluids & Plasmas SC Physics GA CC7MN UT WOS:000350552000019 ER PT J AU Haskey, SR Lanctot, MJ Liu, YQ Paz-Soldan, C King, JD Blackwell, BD Schmitz, O AF Haskey, S. R. Lanctot, M. J. Liu, Y. Q. Paz-Soldan, C. King, J. D. Blackwell, B. D. Schmitz, O. TI Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE non-axisymmetric coil; plasma response; magnetic perturbation; toroidal rotation; plasma resistivity ID WALL MODES; TEARING MODES; D TOKAMAK; TRANSPORT; STABILITY; COILS AB Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to which resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary (Schmitz et al 2014 Nucl. Fusion 54 012001). Good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling. C1 [Haskey, S. R.; Blackwell, B. D.] Australian Natl Univ, Res Sch Phys & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. [Lanctot, M. J.; Paz-Soldan, C.] Gen Atom Co, San Diego, CA 92186 USA. [Liu, Y. Q.] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [King, J. D.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Schmitz, O.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Haskey, SR (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Plasma Res Lab, GPO Box 4, Canberra, ACT 0200, Australia. EM shaun.haskey@anu.edu.au RI Haskey, Shaun/M-1469-2015; Blackwell, Boyd/M-2717-2015; Lanctot, Matthew J/O-4979-2016 OI Haskey, Shaun/0000-0002-9978-6597; Blackwell, Boyd/0000-0002-9091-9269; Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698]; AINSE Ltd. FX This material is based upon work supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award DE-FC02-04ER54698. SRH wishes to thank AINSE Ltd. for providing financial assistance to enable this work to be conducted. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. This paper has benefited greatly from input from the referees, R J Buttery and W M Solomon. NR 47 TC 12 Z9 12 U1 4 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2015 VL 57 IS 2 AR 025015 DI 10.1088/0741-3335/57/2/025015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CC1VU UT WOS:000350133900015 ER PT J AU Ren, Q Lao, LL Garofalo, AM Holcomb, CT Solomon, WM Belli, EA Smith, SP Meneghini, O Qian, J Li, G Wan, B Ding, S Gong, X Xu, G AF Ren, Q. Lao, L. L. Garofalo, A. M. Holcomb, C. T. Solomon, W. M. Belli, E. A. Smith, S. P. Meneghini, O. Qian, J. Li, G. Wan, B. Ding, S. Gong, X. Xu, G. TI Test of bootstrap current models using high-beta(p) EAST-demonstration plasmas on DIII-D SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE high poloidal beta; kinetic equilibrium reconstruction; bootstrap current ID D TOKAMAK; CURRENT PROFILES; STABILITY; PEDESTAL; RECONSTRUCTION; SIMULATION AB Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-beta(p) EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-beta(p) plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-beta(p) plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. These results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality (Belli et al 2014 Plasma Phys. Control. Fusion 56 045006). C1 [Ren, Q.; Qian, J.; Li, G.; Wan, B.; Ding, S.; Gong, X.; Xu, G.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Lao, L. L.; Garofalo, A. M.; Belli, E. A.; Smith, S. P.; Meneghini, O.] Gen Atom Co, San Diego, CA 92186 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ren, Q (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. EM qilong.ren@gmail.com FU US Department of Energy [DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC52-07NA27344, DE-AC02-09CH11466]; National Magnetic Confinement Fusion Program of China [2011GB105004, 2013GB111005, 2014GB106001] FX This work was supported in part by US Department of Energy under DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC52-07NA27344 and DE-AC02-09CH11466 and the National Magnetic Confinement Fusion Program of China (No. 2011GB105004, No. 2013GB111005 and No. 2014GB106001). DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 34 TC 5 Z9 5 U1 4 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2015 VL 57 IS 2 AR 025020 DI 10.1088/0741-3335/57/2/025020 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CC1VU UT WOS:000350133900020 ER PT J AU Shiraki, D Paz-Soldan, C Hanson, JM La Haye, RJ Logan, NC Olofsson, KEJ Strait, EJ Sweeney, RM Volpe, FA AF Shiraki, D. Paz-Soldan, C. Hanson, J. M. La Haye, R. J. Logan, N. C. Olofsson, K. E. J. Strait, E. J. Sweeney, R. M. Volpe, F. A. TI Measurements of the toroidal torque balance of error field penetration locked modes SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE tokamak; locked mode; error field; torque balance ID DIII-D; TOKAMAK; PERTURBATIONS; PLASMA; ITER; JET AB Detailed measurements from the DIII-D tokamak of the toroidal dynamics of error field penetration locked modes under the influence of slowly evolving external fields, enable study of the toroidal torques on the mode, including interaction with the intrinsic error field. The error field in these low density Ohmic discharges is well known based on the mode penetration threshold, allowing resonant and non-resonant torque effects to be distinguished. These m/n = 2/1 locked modes are found to be well described by a toroidal torque balance between the resonant interaction with n = 1 error fields, and a viscous torque in the electron diamagnetic drift direction which is observed to scale as the square of the perturbed field due to the island. Fitting to this empirical torque balance allows a time-resolved measurement of the intrinsic error field of the device, providing evidence for a time-dependent error field in DIII-D due to ramping of the Ohmic coil current. C1 [Shiraki, D.; Hanson, J. M.; Olofsson, K. E. J.; Sweeney, R. M.; Volpe, F. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [La Haye, R. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Logan, N. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Shiraki, D (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM shirakid@fusion.gat.com RI Volpe, Francesco/D-2994-2009 OI Volpe, Francesco/0000-0002-7193-7090 FU US Department of Energy [DE-SC0008520, DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work was supported in part by the US Department of Energy under DE-SC0008520, DE-AC05-06OR23100, DE-FC02-04ER54698 and DE-AC02-09CH11466. DIII-D data shown in this paper can be obtained in digital format by following the links at http://fusion.gat.com/global.D3D_DMP. NR 20 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2015 VL 57 IS 2 AR 025016 DI 10.1088/0741-3335/57/2/025016 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CC1VU UT WOS:000350133900016 ER PT J AU Tappan, BC Chavez, DE AF Tappan, Bryce C. Chavez, David E. TI Combustion Properties of Amino-Substituted Guanidinium 4,4 ',5,5 '-Tetranitro-2,2 '-biimidazolate(N4BIM) Salts SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Propellants; Burn rate; High nitrogen; Aminoguanidinium; Tetranitrobiimidazole ID ENERGETIC PROPERTIES AB This paper describes the combustion properties of the amino-substituted guanidinium 4,4,5,5-tetranitro-2,2-biimidazolate (N4BIM) series, including the bis-mono, di and triaminoguanidinium salts. These salts are of interest as propellant ingredient additives, and in particular, the bis-triaminoguanidinium salt of N4BIM displays excellent burn rate and combustion behavior. Our combustion studies have shown that TAGN4-BIM displays a fast burning rate and has the lowest pressure dependence exponent yet measured for a triaminoguanidinium salt. C1 [Tappan, Bryce C.; Chavez, David E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tappan, BC (reprint author), Los Alamos Natl Lab, MS C920, Los Alamos, NM 87545 USA. EM btappan@lanl.gov; dechavez@lanl.gov FU LANL LDRD Program; Department of Defense; Department of Energy Munitions Technology Development Program; U.S. Department of Energy's National Nuclear Security Agency [DE-AC52-06NA25396. LA-UR-14-27925] FX This work was supported by the LANL LDRD Program and the joint Department of Defense and the Department of Energy Munitions Technology Development Program. The Los Alamos National Laboratory is operated by Los Alamos National Security for the U.S. Department of Energy's National Nuclear Security Agency under contract DE-AC52-06NA25396. LA-UR-14-27925 NR 10 TC 1 Z9 1 U1 2 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2015 VL 40 IS 1 BP 13 EP 15 DI 10.1002/prep.201400247 PG 3 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA CC7LS UT WOS:000350549700003 ER PT J AU Lorenz, KT Lee, EL Chambers, R AF Lorenz, Karl Thomas Lee, Edward L. Chambers, Ronald TI A Simple and Rapid Evaluation of Explosive Performance - The Disc Acceleration Experiment SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Disc acceleration experiment (DAX); Detonation; Equation-of-state; CJ pressure; PETN AB It is crucial in the development of a new explosive to obtain an evaluation of performance early in the process when the availability of material is limited. Evaluation requires dynamic measurements of detonation velocity, pressure, and expansion energy - typically in separate experiments that require large amounts of material, time, and expense. There is also a need for evaluation of the total available thermodynamic energy. The dynamic evaluations, in particular, have been a major hindrance to development of new explosives. The new experimental testing method to be described here requires small charges and obtains accurate measurement of all three of the detonation performance characteristics in a single test. The design, a Disc Acceleration eXperiment (DAX), provides an initial condition of steady detonation and a charge-geometry amenable to 2D hydrodynamic simulations. The velocity history of a metal disk attached to the end of the explosive charge is measured with Photonic Doppler Velocimetry (PDV). This disc velocity data is analyzed to give both CJ pressure and expansion energy. The detonation velocity is obtained with probes along the charge length. The experiments and subsequent analyses are concentrated on LX-16, a known PETN based explosive, for the purpose of establishing the accuracy of the method and to provide a standard for comparison with other explosives. We present details of the experimental design and also detonation velocity and PDV results from a number of experiments. The total available internal energy for the explosive was obtained from published detonation calorimetry measurements by Ornellas [1], and from thermodynamic equilibrium calculations. An equation-of-state (EOS) for LX-16 was derived from hydrodynamic simulations of thin plate-push velocity-time data. We will show a successful comparison with a previously published Jones-Wilkins-Lee (JWL) EOS for PETN by Green and Lee [2-4]. C1 [Lorenz, Karl Thomas; Lee, Edward L.; Chambers, Ronald] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94551 USA. RP Lorenz, KT (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94551 USA. EM lorenz3@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 NR 22 TC 1 Z9 1 U1 5 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2015 VL 40 IS 1 BP 95 EP 108 DI 10.1002/prep.201400081 PG 14 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA CC7LS UT WOS:000350549700015 ER PT J AU Sandstrom, MM Brown, GW Preston, DN Pollard, CJ Warner, KF Sorensen, DN Remmers, DL Phillips, JJ Shelley, TJ Reyes, JA Hsu, PC Reynolds, JG AF Sandstrom, Mary M. Brown, Geoffrey W. Preston, Daniel N. Pollard, Colin J. Warner, Kirstin F. Sorensen, Daniel N. Remmers, Daniel L. Phillips, Jason J. Shelley, Timothy J. Reyes, Jose A. Hsu, Peter C. Reynolds, John G. TI Variation of Methods in Small-Scale Safety and Thermal Testing of Improvised Explosives SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Small-scale safety testing; Homemade explosives; Improvised explosives; Impact; Friction; Electrostatic discharge ID INITIATION; IMPACT AB One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of homemade or improvised explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories, two U.S. Department of Defense and three U.S. Department of Energy, sponsored by the Department of Homeland Security, Science & Technology Directorate, Explosives Division. The testing included impact, friction, electrostatic discharge (ESD) and thermal. The testing matrix was designed to address problems encountered with improvised materials: powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. All testing materials and/or precursors came from the same batch distributed to each of the participants and were handled, pretreated, and mixed by standardized procedures. For this proficiency test, the participants had similar equipment, usually differing by vintage. This allowed for a direct comparison of the results from each participant to the average of the results from all the participants. Some general trends observed for each series of tests were: (1) Drop hammer - LLNL usually found the materials less sensitive than the average with materials that have high sensitivity to impact and LANL usually found the materials less sensitive than the average with materials that have high sensitivity to impact; (2) friction - LLNL found the materials less sensitive than the average; (3) and ESD - IHD usually found the materials less sensitive than the average. In this report, the proficiency test data from all the participants is compared and contrasted for impact, selected friction, and ESD testing. Other friction and thermal data will be addressed elsewhere as well as the statistical analysis of several repeated measurements on the proficiency test standards. C1 [Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; Pollard, Colin J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Warner, Kirstin F.; Sorensen, Daniel N.; Remmers, Daniel L.] Naval Surface Warfare Ctr, Indian Head, Indian Head, MD USA. [Phillips, Jason J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shelley, Timothy J.] Bur Alcohol Tobacco & Firearms, Redstone Arsenal, AL USA. [Reyes, Jose A.] Appl Res Associates, Tyndall AFB, FL USA. [Hsu, Peter C.; Reynolds, John G.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sandstrom, MM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM reynolds3@llnl.gov FU Los Alamos National Laboratory; Lawrence Livermore National Laboratory; Sandia National Laboratories; Air Force Research Laboratory; Indian Head Division, Naval Surface Warfare; U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Air Force Research Laboratory [HSHQDC10X00414. LLNL-JRNL-649574 (769520)]; Indian Head Division, Naval Surface Warfare [HSHQDC10X00414. LLNL-JRNL-649574 (769520)] FX The authors thank Doug Bauer, Laura J. Parker and Greg Struba for their enthusiastic support. This work was performed by the Integrated Data Collection Analysis (IDCA) Program, a five-lab effort supported by Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratories, the Air Force Research Laboratory, and Indian Head Division, Naval Surface Warfare under sponsorship of the U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under Contract DE-AC52-06NA25396. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Air Force Research Laboratory and Indian Head Division, Naval Surface Warfare also performed work in support of this effort under contract HSHQDC10X00414. LLNL-JRNL-649574 (769520). NR 35 TC 4 Z9 5 U1 3 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2015 VL 40 IS 1 BP 109 EP 126 DI 10.1002/prep.201400108 PG 18 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA CC7LS UT WOS:000350549700016 ER PT J AU Sirbuly, DJ Friddle, RW Villanueva, J Huang, Q AF Sirbuly, Donald J. Friddle, Raymond W. Villanueva, Joshua Huang, Qian TI Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE force spectroscopy; nanomechanics; biophysics; AFM; optical tweezer ID SINGLE DNA-MOLECULES; PARTICLE-TRACKING MICRORHEOLOGY; RNA-POLYMERASE MOLECULES; MUSCLE PROTEIN TITIN; ATOMIC-FORCE; MAGNETIC TWEEZERS; OPTICAL TWEEZERS; LIVING CELLS; TRACTION FORCES; LIVE CELLS AB Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function. C1 [Sirbuly, Donald J.; Villanueva, Joshua; Huang, Qian] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Sirbuly, Donald J.] Univ Calif San Diego, Mat Sci & Engn, La Jolla, CA 92093 USA. [Friddle, Raymond W.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sirbuly, DJ (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. EM dsirbuly@ucsd.edu FU National Science Foundation [ECCS 1150952]; University of California, Office of the President [UC-LFRP 12-LR-238415]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the support of the National Science Foundation (ECCS 1150952) and the University of California, Office of the President (UC-LFRP 12-LR-238415) for financially supporting the work of DJS, JV and QH. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 238 TC 5 Z9 5 U1 5 U2 43 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2015 VL 78 IS 2 AR 024101 DI 10.1088/0034-4885/78/2/024101 PG 22 WC Physics, Multidisciplinary SC Physics GA CD1IG UT WOS:000350827700002 PM 25629797 ER PT J AU Parnell, SR Washington, AL Li, K Yan, H Stonaha, P Li, F Wang, T Walsh, A Chen, WC Parnell, AJ Fairclough, JPA Baxter, DV Snow, WM Pynn, R AF Parnell, S. R. Washington, A. L. Li, K. Yan, H. Stonaha, P. Li, F. Wang, T. Walsh, A. Chen, W. C. Parnell, A. J. Fairclough, J. P. A. Baxter, D. V. Snow, W. M. Pynn, R. TI Spin echo small angle neutron scattering using a continuously pumped He-3 neutron polarisation analyser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STATE POLARIZING BENDER; 2ND TARGET STATION; COLD NEUTRONS; FILTER; FLIPPER; REFLECTOMETRY; PERFORMANCE; INSTRUMENT; DEVICES; DESIGN AB We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of He-3. We describe the performance of the analyser along with a study of the 3He polarisation stability and its implications for SESANS measurements. Scattering from silica Stober particles is investigated and agrees with samples run on similar instruments. (c) 2015 AIP Publishing LLC. C1 [Parnell, S. R.; Washington, A. L.; Li, K.; Yan, H.; Stonaha, P.; Li, F.; Wang, T.; Baxter, D. V.; Snow, W. M.; Pynn, R.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Washington, A. L.; Fairclough, J. P. A.] Univ Sheffield, Dept Mech Engn, Sheffield S1 3DJ, S Yorkshire, England. [Walsh, A.] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England. [Chen, W. C.] NIST, Gaithersburg, MD 20899 USA. [Chen, W. C.] Univ Maryland, College Pk, MD 20742 USA. [Parnell, A. J.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Pynn, R.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Parnell, SR (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. RI Baxter, David /D-3769-2013; Parnell, Andrew/F-8969-2011; Fairclough, Patrick/B-1419-2012; OI Baxter, David /0000-0003-2812-0904; Parnell, Andrew/0000-0001-8606-8644; Fairclough, Patrick/0000-0002-1675-5219; Washington, Adam/0000-0002-3243-1556 FU Indiana University Center for Spacetime Symmetries; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-09ER46279, DE-FG02-03ER46093]; National Science Foundation [DMR-0220560, DMR-0320627]; 21st Century Science and Technology fund of Indiana, Indiana University; Department of Defence FX The authors would like to thank Jeff Andersen of the NIST shop for fabrication of the GE180 cell and Dr. W. A. Hamilton from Oak Ridge National Laboratory for helpful comments in the preparation of this manuscript. Also Dr. R. Dalgliesh from the ISIS pulsed neutron and muon source for help with the comparison between Offspec and SESAME results. W. M. Snow and H. Yan (now Chinese Academy of Engineering Physics) acknowledge support from the Indiana University Center for Spacetime Symmetries. This project was supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant Nos. DE-FG02-09ER46279 and DE-FG02-03ER46093. Construction of LENS was supported by the National Science Foundation Grant Nos. DMR-0220560 and DMR-0320627, the 21st Century Science and Technology fund of Indiana, Indiana University, and the Department of Defence. NR 49 TC 6 Z9 6 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2015 VL 86 IS 2 AR 023902 DI 10.1063/1.4909544 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CC7MT UT WOS:000350552700042 PM 25725858 ER PT J AU Sjue, SKL Broussard, LJ Makela, M McGaughey, PL Young, AR Zeck, BA AF Sjue, S. K. L. Broussard, L. J. Makela, M. McGaughey, P. L. Young, A. R. Zeck, B. A. TI Radial distribution of charged particles in a magnetic field SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DECAY SPECTROMETER PERKEO; NEUTRON DECAY; BETA-ASYMMETRY; PRECISION AB The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle's helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112-119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a Bi-207 electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed. (C) 2015 AIP Publishing LLC. C1 [Sjue, S. K. L.; Broussard, L. J.; Makela, M.; McGaughey, P. L.; Zeck, B. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Young, A. R.; Zeck, B. A.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Sjue, SKL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sjue@lanl.gov OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683 NR 14 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2015 VL 86 IS 2 AR 023102 DI 10.1063/1.4906547 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CC7MT UT WOS:000350552700002 PM 25725818 ER PT J AU Roy, UN Bolotnikov, AE Camarda, GS Cui, Y Hossain, A Lee, K Lee, W Tappero, R Yang, G Gul, R James, RB AF Roy, U. N. Bolotnikov, A. E. Camarda, G. S. Cui, Y. Hossain, A. Lee, K. Lee, W. Tappero, R. Yang, G. Gul, R. James, R. B. TI High compositional homogeneity of CdTexSe1-x crystals grown by the Bridgman method SO APL MATERIALS LA English DT Article ID CADMIUM ZINC TELLURIDE; DETECTORS; SEGREGATION; CDTE AB We obtained high-quality CdTexSe1-x ( CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL's National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was similar to 1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight-to ten fold compared to that of conventional CdxZn1-xTe ( CdZnTe or CZT). (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lee, K.; Lee, W.] Korea Univ, Seoul 136103, South Korea. RP Roy, UN (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development, DNN RD; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development, DNN R&D. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 17 TC 3 Z9 3 U1 5 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2015 VL 3 IS 2 AR 026102 DI 10.1063/1.4907250 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CC7KK UT WOS:000350546000004 ER PT J AU Jung, R Phark, SH Kim, DW Upton, M Casa, D Gog, T Kim, J AF Jung, Ranju Phark, Soo-Hyon Kim, Dong-Wook Upton, Mary Casa, Diego Gog, Thomas Kim, Jungho TI Indirect probing of defects in unipolar resistive switching NiOx thin films by Ni K-edge resonant inelastic X-ray scattering SO APPLIED PHYSICS EXPRESS LA English DT Article ID EXCITATIONS AB We present observations of the Ni K-edge resonant inelastic X-ray scattering (RIXS) in NiOx thin films showing unipolar resistive switching (RS). The RIXS spectra of RS NiOx thin films can be described in terms of crystal field (dd) and charge transfer (CT) excitations. We found distorted dd excitations in the films' pristine state before electroforming, and identical excitations for high and low resistance states after electroforming. This suggests that the RS property of NiOx thin film is related to defects in pristine NiOx films, and RS occurs in local nanosized spots too small to be detected by RIXS. (C) 2015 The Japan Society of Applied Physics C1 [Jung, Ranju] Kwangwoon Univ, Dept Elect & Biol Phys, Seoul 139701, South Korea. [Phark, Soo-Hyon; Kim, Dong-Wook] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Upton, Mary; Casa, Diego; Gog, Thomas; Kim, Jungho] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, J (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jhkim@aps.anl.gov RI Kim, Dong-Wook/E-9866-2012; Casa, Diego/F-9060-2016 OI Kim, Dong-Wook/0000-0002-5687-7739; FU U.S. DOE [DE-AC02-06CH11357]; Quantum Metamaterials Research Center through a National Research Foundation of Korea Grant [NRF-2008-0061893] FX R. Jung conducted this work during a sabbatical year from Kwangwoon University in 2014. The use of the Advanced Photon Source was supported by the U.S. DOE under contract No. DE-AC02-06CH11357. S.P. and D.K. were supported by the Quantum Metamaterials Research Center (NRF-2008-0061893) through a National Research Foundation of Korea Grant. NR 18 TC 0 Z9 0 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD FEB PY 2015 VL 8 IS 2 AR 021101 DI 10.7567/APEX.8.021101 PG 4 WC Physics, Applied SC Physics GA CC1HI UT WOS:000350091400002 ER PT J AU Dawson, AL Tinker, SC Jamieson, DJ Hobbs, CA Rasmussen, SA Reefhuis, J AF Dawson, April L. Tinker, Sarah C. Jamieson, Denise J. Hobbs, Charlotte A. Rasmussen, Sonja A. Reefhuis, Jennita CA Natl Birth Defects Prevention TI Epidemiology of Twinning in the National Birth Defects Prevention Study, 1997 to 2007 SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE twinning; ART; IVF; orofacial clefts; clomiphene citrate ID IN-VITRO FERTILIZATION; BODY-MASS INDEX; MULTIPLE BIRTHS; PERINATAL OUTCOMES; UNITED-STATES; FOLIC-ACID; RISK; TWINS; SUPPLEMENTATION; PREGNANCIES AB BackgroundOur objective was to evaluate associations between twinning and maternal demographic factors and periconceptional exposures among infants with and without orofacial clefts. MethodsWe used data from the National Birth Defects Prevention Study; 228 twins and 8242 singletons without birth defects (controls), and 117 twins and 2859 singletons with orofacial clefts, born 1997 to 2007, were included in the analyses. Because of the occurrence of twinning due to the use of assisted reproductive technologies, logistic regression models were computed to estimate odds ratios and 95% confidence intervals for each exposure, stratified by fertility treatment use. To evaluate factors by zygosity, we used sex-pairing data and a simulation approach to estimate the zygosity of like-sex twin pairs for unassisted conceptions. ResultsAmong control mothers who did not use fertility treatments, predictors of twinning included non-Hispanic black maternal race (adjusted odds ratio, 1.6; 95% confidence interval, 1.0-2.4), and tobacco smoking (adjusted odds ratio, 1.6; 95% confidence interval, 1.1-2.4). Among control mothers who used fertility treatments, older maternal age, higher income, and state of residence were associated with twinning. Associations were generally stronger among mothers of dizygotic (estimated) twins than monozygotic (estimated) twins. Results for mothers of infants with isolated orofacial clefts were similar to those of controls. ConclusionWe observed an increased twinning frequency with increasing maternal age, but factors such as maternal race/ethnicity and socioeconomic status may also contribute. Among women receiving fertility treatments, factors associated with twinning suggested a relation with treatment specifics (e.g., treatment type and number of embryos implanted) and availability of insurance coverage. Birth Defects Research (Part A) 103:85-99, 2015 (c) 2014 Wiley Periodicals, Inc. C1 [Dawson, April L.; Tinker, Sarah C.; Reefhuis, Jennita] Ctr Dis Control & Prevent CDC, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Dawson, April L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Jamieson, Denise J.] CDC, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. [Hobbs, Charlotte A.] Univ Arkansas Med Sci, Coll Med, Little Rock, AR 72205 USA. [Rasmussen, Sonja A.] CDC, Off Infect Dis, Atlanta, GA 30333 USA. RP Dawson, AL (reprint author), 1600 Clifton Rd,MS E86, Atlanta, GA 30333 USA. EM isp3@cdc.gov FU Centers for Disease Control and Prevention [PA 96043, PA 02081, FOA DD09-001]; U.S. Department of Energy; CDC FX This research was supported in part by appointments to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. This work was supported through cooperative agreements under PA 96043, PA 02081, and FOA DD09-001 from the Centers for Disease Control and Prevention to the Centers for Birth Defects Research and Prevention participating in the National Birth Defects Prevention Study. NR 44 TC 3 Z9 3 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD FEB PY 2015 VL 103 IS 2 BP 85 EP 99 DI 10.1002/bdra.23325 PG 15 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA CC6JF UT WOS:000350470500003 PM 25359509 ER PT J AU Razzaghi, H Dawson, A Grosse, SD Allori, AC Kirby, RS Olney, RS Correia, J Cassell, CH AF Razzaghi, Hilda Dawson, April Grosse, Scott D. Allori, Alexander C. Kirby, Russell S. Olney, Richard S. Correia, Jane Cassell, Cynthia H. TI Factors Associated with High Hospital Resource Use in a Population-Based Study of Children with Orofacial Clefts SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE orofacial clefts; health services research; resource use; hospitalization; cost; cleft lip; cleft palate ID BIRTH-DEFECTS PREVENTION; PRENATAL-DIAGNOSIS; UNITED-STATES; CARE; CLASSIFICATION; REGRESSION; REGISTRY; POISSON; INFANTS; WEIGHT AB BackgroundLittle is known about population-based maternal, child, and system characteristics associated with high hospital resource use for children with orofacial clefts (OFC) in the US. MethodsThis was a statewide, population-based, retrospective observational study of children with OFC born between 1998 and 2006, identified by the Florida Birth Defects Registry whose records were linked with longitudinal hospital discharge records. We stratified the descriptive results by cleft type [cleft lip with cleft palate, cleft lip, and cleft palate] and by isolated versus nonisolated OFC (accompanied by other coded major birth defects). We used Poisson regression to analyze associations between selected characteristics and high hospital resource use (90(th) percentile of estimated hospitalized days and inpatient costs) for birth, postbirth, and total hospitalizations initiated before age 2 years. RESULTSOur analysis included 2,129 children with OFC. Infants who were born low birth weight (<2500 grams) were significantly more likely to have high birth hospitalization costs for CLP (adjusted prevalence ratio: 1.6 [95% confidence interval: 1.0-2.7]), CL (adjusted prevalence ratio: 3.0 [95% confidence interval: 1.1-8.1]), and CP (adjusted prevalence ratio: 2.3 [95% confidence interval: 1.3-4.0]). Presence of multiple birth defects was significantly associated with a three- to eleven-fold and a three- to nine-fold increase in the prevalence of high costs and number of hospitalized days, respectively; at birth, postbirth before age 2 years and overall hospitalizations. ConclusionChildren with cleft palate had the greatest hospital resources use. Additionally, the presence of multiple birth defects contributed to greater inpatient days and costs for children with OFC. Birth Defects Research (Part A) 103:127-143, 2015 (c) 2015 Wiley Periodicals, Inc. C1 [Razzaghi, Hilda; Dawson, April; Grosse, Scott D.; Olney, Richard S.; Cassell, Cynthia H.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Razzaghi, Hilda] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Allori, Alexander C.] Duke Univ Hosp, Div Plast Maxillofacial & Oral Surg, Duke Cleft & Craniofacial Ctr, Durham, NC USA. [Allori, Alexander C.] Childrens Hlth Ctr, Durham, NC USA. [Kirby, Russell S.] Univ S Florida, Coll Publ Hlth, Dept Community & Family Hlth, Birth Defects Surveillance Program, Tampa, FL USA. [Correia, Jane] Florida Dept Hlth, Florida Birth Defects Registry, Bur Epidemiol, Div Dis Control & Hlth Protect, Tallahassee, FL USA. RP Razzaghi, H (reprint author), CDC, NCBDDD, 1600 Clifton Rd MS E86, Atlanta, GA 30333 USA. EM hir2@cdc.gov OI Allori, Alexander/0000-0003-3334-9877 FU March of Dimes Foundation FX The authors thank the March of Dimes Foundation for providing funding for various aspects of this project. The authors also thank the entire staff of the FBDR within the FDOH, the Children's Medical Services Program, and the Florida AHCA. Without these agencies, these data could not have been obtained. We also thank Jason Salemi, PhD, MPH, with the University of South Florida and Marie Bailey, MA, with FDOH for consultations on data linkages and variables. We also thank Adrienne Henderson, MPH, and Gloria Barker with AHCA, Florida Center for Health Information and Policy Analysis, and Karen Freeman, MPH, MS, with FDOH for consultations on hospital discharge data and hospitals.; Financial Disclosure: The authors have no financial relationships relevant to this article to disclose. Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. NR 35 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD FEB PY 2015 VL 103 IS 2 BP 127 EP 143 DI 10.1002/bdra.23356 PG 17 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA CC6JF UT WOS:000350470500008 PM 25721952 ER PT J AU Graziani, F AF Graziani, Frank TI Special Issue: Internationale Conference Strongly Coupled Coulomb System Preface SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Graziani, F (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD FEB PY 2015 VL 55 IS 2-3 SI SI BP 84 EP 84 PG 1 WC Physics, Fluids & Plasmas SC Physics GA CC6ME UT WOS:000350478300001 ER PT J AU Whitley, HD Alastuey, A Gaffney, JA Cauble, R Kraeft, WD Bonitz, M AF Whitley, H. D. Alastuey, A. Gaffney, J. A. Cauble, R. Kraeft, W. D. Bonitz, M. TI A tribute to pioneers of strongly coupled plasmas: Hugh E. DeWitt, Bernard Jancovici, and Forrest J. Rogers SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUN 27-AUG 01, 2014 CL Santa Fe, NM DE Nonideal plasma; strongly coupled Coulomb systems ID EQUATION-OF-STATE; ONE-COMPONENT PLASMA; CLASSICAL COULOMB-SYSTEMS; ROSSELAND MEAN OPACITY; STATISTICAL-MECHANICS; ASTROPHYSICAL APPLICATIONS; OCCUPATION NUMBERS; NUCLEAR-REACTIONS; SCREENING FACTORS; REACTING PLASMAS AB The field of strongly coupled Coulomb systems that stretches from dense plasma, to astrophysics, condensed matter and high energy physics has seen a dramatic development over the last four decades. At the beginning of this process were a few physicists whose work has had a high impact on many exciting developments of the recent years. Among them are Hugh E. DeWitt, Bernard Jancovici and Forrest J. Rogers who passed away in 2013-2014. Their important contributions to the field of strongly coupled Coulomb systems are summarized in this article. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Whitley, H. D.; Gaffney, J. A.; Cauble, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Alastuey, A.] Univ Lyon, Lab Phys, Ecole Normale Super Lyon, F-69007 Lyon, France. [Alastuey, A.] CNRS, F-69007 Lyon, France. [Kraeft, W. D.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Bonitz, M.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. RP Bonitz, M (reprint author), Univ Kiel, Inst Theoret Phys & Astrophys, Leibnizstr 15, D-24098 Kiel, Germany. EM bonitz@physik.uni-kiel.de RI Bonitz, Michael/A-6873-2010; OI Bonitz, Michael/0000-0001-7911-0656; Gaffney, Jim/0000-0002-2408-0047; Whitley, Heather/0000-0002-2344-8698 NR 66 TC 0 Z9 0 U1 1 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD FEB PY 2015 VL 55 IS 2-3 SI SI BP 102 EP 115 DI 10.1002/ctpp.201400083 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CC6ME UT WOS:000350478300003 ER PT J AU Clerouin, J Arnault, P Robert, G Ticknor, C Kress, JD Collins, LA AF Clerouin, J. Arnault, Ph. Robert, G. Ticknor, C. Kress, J. D. Collins, L. A. TI Self-Organization in Dense Plasmas: The Gamma-Plateau SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUN 27-AUG 01, 2014 CL Santa Fe, NM DE Warm dense matter; ionization; Thomas-Fermi; strongly coupled plasmas AB When heated at constant volume (isochoric heating) a hot and dense plasma (10-5000 eV, 1-50 g/cm(3)) exhibits the same persistent microscopic structure over a wide range of temperatures as intuited long time ago by Laughlin [1]. In this steady-state regime, which depends on the chosen density and on the atomic number, the static structure is essentially independent of the temperature and results in the subtle balance between ionization and temperature leading to a constant coupling between ions. This behavior, suggested by simulations, is confirmed by an analysis in the framework of the Thomas-Fermi scaling laws and is driven by the ionization dynamics which regulates the coupling between ions and electrons. A simple fit is derived allowing for predicting the occurrence of this self-organized regime: the F-plateau. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Clerouin, J.; Arnault, Ph.; Robert, G.] CEA, DAM, DIF, F-91297 Arpajon, France. [Ticknor, C.; Kress, J. D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Clerouin, J (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM jean.clerouin@cea.fr RI Clerouin, jean/D-8528-2015; Ticknor, Christopher/B-8651-2014; OI Clerouin, jean/0000-0003-2144-2759; Ticknor, Christopher/0000-0001-9972-4524 FU Advanced Simulation and Computing Program (ASC); LANS, LLC for the NNSA of the U.S. DOE [DE-AC52-06NA25396]; CEA/DAM and NNSA/DP FX We thanks F. Lambert for his essential contribution on the OFMD code and C. Denoual for his help to build 3D representations. Some of the authors (CT,JDK,LAC) gratefully acknowledge support from the Advanced Simulation and Computing Program (ASC), science campaigns 1 and 4, and LANL which is operated by LANS, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC52-06NA25396. This work was performed under the auspices of an agreement between CEA/DAM and NNSA/DP on cooperation on fundamental science. NR 17 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD FEB PY 2015 VL 55 IS 2-3 SI SI BP 159 EP 163 DI 10.1002/ctpp.201400064 PG 5 WC Physics, Fluids & Plasmas SC Physics GA CC6ME UT WOS:000350478300010 ER PT J AU Whitley, HD Scullard, CR Benedict, LX Castor, JI Randles, A Glosli, JN Richards, DF Desjarlais, MP Graziani, FR AF Whitley, H. D. Scullard, Ch. R. Benedict, L. X. Castor, J. I. Randles, A. Glosli, J. N. Richards, D. F. Desjarlais, M. P. Graziani, F. R. TI Lenard-Balescu Calculations and Classical Molecular Dynamics Simulations of Electrical and Thermal Conductivities of Hydrogen Plasmas SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUN 27-AUG 01, 2014 CL Santa Fe, NM DE Conductivity; hydrogen; molecular dynamics; Lenard-Balescu equation ID EQUATION-OF-STATE; KINETIC-EQUATION; TRANSPORT-COEFFICIENTS; DENSE-PLASMAS; IONIZED-GAS; SYSTEMS; ALUMINUM AB We present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from our particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations. Comparison between quantum Lenard-Balescu and classical Lenard-Balescu for conductivities then allows us to both validate and critique the use of various statistical potentials for the prediction of plasma transport properties. These findings complement our earlier MD/kinetic theory work on temperature equilibration [1], and reach similar conclusions as to which forms of statistical potentials best reproduce true quantum behavior. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Whitley, H. D.; Scullard, Ch. R.; Benedict, L. X.; Castor, J. I.; Randles, A.; Glosli, J. N.; Richards, D. F.; Graziani, F. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Benedict, LX (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM benedict5@llnl.gov OI Whitley, Heather/0000-0002-2344-8698 FU DOE; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL as part of the Cimarron Project [12-SI-005] FX We thank J.C. Weisheit, W.H. Cabot, L.G. Stanton, A.A. Correa, R. Redmer, M.S. Murillo, RE. Grabsowski, and M. Bonitz for helpful discussions. H.D. Whitley is grateful to the DOE for support provided through a PECASE Award. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under tracking code No. 12-SI-005 as part of the Cimarron Project. NR 56 TC 9 Z9 9 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD FEB PY 2015 VL 55 IS 2-3 SI SI BP 192 EP 202 DI 10.1002/ctpp.201400066 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CC6ME UT WOS:000350478300015 ER PT J AU Baalrud, SD Rasmussen, KO Daligault, J AF Baalrud, S. D. Rasmussen, K. O. Daligault, J. TI Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUN 27-AUG 01, 2014 CL Santa Fe, NM DE Strongly coupled plasmas; transport AB The effective potential theory is a physically motivated method for extending traditional plasma transport theories to stronger coupling. It is practical in the sense that it is easily incorporated within the framework of the Chapman-Enskog or Grad methods that are commonly applied in plasma physics and it is computationally efficient to evaluate. The extension is to treat binary scatterers as interacting through the potential of mean force, rather than the bare Coulomb or Debye-screened Coulomb potential. This allows for aspects of many-body correlations to be included in the transport coefficients. Recent work has shown that this method accurately extends plasma theory to orders of magnitude stronger coupling when applied to the classical one-component plasma model. The present work shows that similar accuracy is realized for the Yukawa one-component plasma model and it provides a comparison with other approaches. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Baalrud, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Rasmussen, K. O.; Daligault, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Baalrud, SD (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM scott-baalrud@uiowa.edu RI Rasmussen, Kim/B-5464-2009 OI Rasmussen, Kim/0000-0002-4029-4723 FU University of Iowa; DOE Office of Fusion Sciences FX The work of S.D.B. was supported in part by the University of Iowa. The work of J.D. and K.O.R. was supported by the DOE Office of Fusion Sciences. NR 20 TC 1 Z9 1 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD FEB PY 2015 VL 55 IS 2-3 SI SI BP 209 EP 214 DI 10.1002/ctpp.201400084 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CC6ME UT WOS:000350478300017 ER PT J AU Bahadur, J Radlinski, AP Melnichenko, YB Mastalerz, M Schimmelrnannv, A AF Bahadur, Jitendra Radlinski, Andrzej P. Melnichenko, Yuri B. Mastalerz, Maria Schimmelrnannv, Arndt TI Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity SO ENERGY & FUELS LA English DT Article ID GAS-ADSORPTION; SURFACE-AREA; USANS/SANS; POROSITY; ROCKS; COAL; ACCESSIBILITY; INTRUSION; INSIGHTS; BARNETT AB Small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques were applied to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of the polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Pore volumes estimated by the N-2 and CO2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed. C1 [Bahadur, Jitendra; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Radlinski, Andrzej P.] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld 4111, Australia. [Radlinski, Andrzej P.; Mastalerz, Maria] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA. [Schimmelrnannv, Arndt] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM melnichenkoy@ornl.gov FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ORNL Postdoctoral Research Associates Program; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0006978]; National Science Foundation [DMR-0454672] FX The authors would like to acknowledge D. F. R. Mildner for his help during USANS experiments. The research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. This study was also partly supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant Award No. DE-SC0006978 (formerly No. DE-FG02-11ER16246). This work utilized facilities supported in part by the National Science Foundation, under Agreement No. DMR-0454672. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. NR 21 TC 9 Z9 9 U1 6 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2015 VL 29 IS 2 BP 567 EP 576 DI 10.1021/ef502211w PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB9HT UT WOS:000349943300014 ER PT J AU Brady, PV Morrow, NR Fogden, A Deniz, V Loahardjo, N Winoto AF Brady, Patrick V. Morrow, Norman R. Fogden, Andrew Deniz, Vivianne Loahardjo, Nina Winoto TI Electrostatics and the Low Salinity Effect in Sandstone Reservoirs SO ENERGY & FUELS LA English DT Article ID OIL-RECOVERY; MIXED-WETTABILITY; FINES MIGRATION; INTERFACIAL-TENSION; WATER; THERMODYNAMICS; IMBIBITION; CARBONATE; DRAINAGE; SYSTEMS AB There is widespread interest in improved oil recovery by the low salinity effect (LSE) and a pressing need to better predict the likely response and its relation to wettability change. A LSE in kaolinite-bearing sandstones can arise from detachment of crude oil, by its peeling from rock surfaces due to increased oil/rock repulsion, and/or by detachment of mineral fines with adhering oil, due to increased fines/rock repulsion. In a mixed wet sandstone reservoir, oil is typically in close contact with an extremely small fraction of total rock surface, a key component of which are asperity tips such as at edges of kaolinite platelets. An Integrated pH Ion Surface Electrostatics (IpHISE) model is used to predict speciation and interactions of oil surfaces and kaolinite edges across NaCl and CaCl2 solutions of variable pH in sandstones. At pH < 5, a LSE can arise by weakened oil adhesion due to fewer positively charged oil base groups adsorbed to kaolinite edges. At higher pH, the electrostatics is dictated by competition between negatively and positively charged acid groups produced by respectively deprotonation and calcium binding. The LSE is predicted to be strongest in a narrow range around pH 56 in which salinity reduction switches the oil/kaolinite edge interaction to repulsive. At pH > 6, the interaction becomes increasingly repulsive at all salinities. There, a LSE can only arise from the extended range of repulsion, both between oil and kaolinite edges and between the latter and the underlying rock. The existence and cutoff values of these pH ranges depend sensitively upon the oils acid number/base number, salt concentrations, and the pH shift caused by injection of low salinity fluid. C1 [Brady, Patrick V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Morrow, Norman R.; Loahardjo, Nina; Winoto] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Fogden, Andrew; Deniz, Vivianne] Australian Natl Univ, Res Sch Phys & Engn, Dept Appl Math, Canberra, ACT 0200, Australia. RP Brady, PV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pvbrady@sandia.gov FU Sandia National Laboratories LDRD program; DigiCore Consortium; Wettability Satellite; Chevron; BP; Statoil; Wold Chair; University of Wyoming Enhanced Oil Recovery Institute; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Funding from the Sandia National Laboratories LDRD program is appreciated. A.N.U. thanks the member companies of the DigiCore Consortium and Wettability Satellite for funding. Support at UW was provided by Chevron, BP, and Statoil, the Wold Chair, and the University of Wyoming Enhanced Oil Recovery Institute. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 56 TC 10 Z9 10 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2015 VL 29 IS 2 BP 666 EP 677 DI 10.1021/ef502474a PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CB9HT UT WOS:000349943300025 ER PT J AU Raman, AV Baliga, NS AF Raman, Arjun V. Baliga, Nitin S. TI The universe under a microscope SO ENVIRONMENTAL MICROBIOLOGY REPORTS LA English DT Editorial Material C1 [Raman, Arjun V.; Baliga, Nitin S.] Inst Syst Biol, Seattle, WA 98109 USA. [Baliga, Nitin S.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Baliga, Nitin S.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Baliga, Nitin S.] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA. [Baliga, Nitin S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Raman, AV (reprint author), Inst Syst Biol, Seattle, WA 98109 USA. FU NIGMS NIH HHS [2P50GM076547] NR 0 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-2229 J9 ENV MICROBIOL REP JI Environ. Microbiol. Rep. PD FEB PY 2015 VL 7 IS 1 BP 11 EP 12 DI 10.1111/1758-2229.12225 PG 2 WC Environmental Sciences; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CC6KP UT WOS:000350474100005 PM 25721591 ER PT J AU Hakomori, SI Handa, K AF Hakomori, Sen-Itiroh Handa, Kazuko TI GM3 and cancer SO GLYCOCONJUGATE JOURNAL LA English DT Review DE Glycosphingolipids; GM3; Cancer; Growth factor receptors; Membrane microdomains; Tetraspanins; Cell signaling ID GROWTH-FACTOR RECEPTOR; MEMBRANE-ASSOCIATED SIALIDASE; GANGLIOSIDE-MEDIATED MODULATION; OVARIAN-CARCINOMA CELLS; TYROSINE PHOSPHORYLATION; SIALOSYLLACTOSYLCERAMIDE GM3; GLYCOLIPID SYNTHESIS; HAMSTER FIBROBLASTS; MELANOMA-CELLS; N-GLYCOLYL AB Our studies during the early 1970s showed that expression of GM3, the simplest ganglioside and an abundant animal cell membrane component, is reduced during malignant transformation of cells by oncogenic viruses. Levels of mRNA for GM3 synthase were reduced in avian and mammalian cells transformed by oncoprotein "v-Jun", and overexpression of GM3 synthase in the transformed cells caused reversion from transformed to normal cell-like phenotype. GM3 has a well-documented inhibitory effect on activation of growth factor receptors (GFRs), particularly epidermal GFR (EGFR). De-N-acetyl GM3, which is expressed in some invasive human cancer cells, has an enhancing effect on EGFR activation. The important role of the sialosyl group of GM3 was demonstrated using NEU3, a plasma membrane-associated sialidase that selectively remove sialic acids from gangliosides GM3 and GD1a and is up-regulated in many human cancer cells. GM3 is highly enriched in a type of membrane microdomain termed "glycosynapse", and forms complexes with co-localized cell signaling molecules, including Src family kinases, certain tetraspanins (e.g., CD9, CD81, CD82), integrins, and GFRs (e.g., fibroblast growth factor receptor and hepatocyte growth factor receptor c-Met). Studies by our group and others indicate that GM3 modulates cell adhesion, growth, and motility by altering molecular organization in glycosynaptic microdomains and the activation levels of co-localized signaling molecules that are involved in cancer pathogenesis. C1 [Hakomori, Sen-Itiroh; Handa, Kazuko] Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA 98122 USA. [Hakomori, Sen-Itiroh] Univ Washington, Dept Pathobiol, Seattle, WA 98195 USA. [Hakomori, Sen-Itiroh] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Hakomori, SI (reprint author), Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA 98122 USA. EM hakomori@u.washington.edu; khanda@pnri.org FU National Cancer Institute [CA42505, R01 CA80054]; Biomembrane Institute FX Our studies described here were supported mainly by National Cancer Institute Outstanding Investigator Grant (OIG) CA42505 and R01 CA80054, and by The Biomembrane Institute. The authors are grateful to Dr. S. Anderson for English editing of the manuscript NR 73 TC 16 Z9 17 U1 6 U2 28 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0282-0080 EI 1573-4986 J9 GLYCOCONJUGATE J JI Glycoconjugate J. PD FEB PY 2015 VL 32 IS 1-2 BP 1 EP 8 DI 10.1007/s10719-014-9572-4 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CC3JK UT WOS:000350243400001 PM 25613425 ER PT J AU Barreiro, JG Wenk, HR Vogel, S AF Gomez Barreiro, Juan Wenk, Hans-Rudolf Vogel, Sven TI Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada) SO JOURNAL OF STRUCTURAL GEOLOGY LA English DT Article; Proceedings Paper CT 19th International Conference on Deformation Mechanisms, Rheology and Tectonics CY SEP, 2013 CL Univ Leuven, Leuven, BELGIUM HO Univ Leuven DE Pyroxene plagioclase texture; Neutron diffraction; Anorthosite; Elastic properties; Seismic anisotropy; Grenville province ID LATTICE-PREFERRED ORIENTATIONS; HIGH-TEMPERATURE DEFORMATION; NATURALLY DEFORMED OMPHACITES; TOF NEUTRON-DIFFRACTION; LOWER CONTINENTAL-CRUST; GRENVILLE PROVINCE; SEISMIC PROPERTIES; INTRAPLATE EARTHQUAKES; LABORATORY EXPERIMENTS; MECHANICAL-PROPERTIES AB A sample of anorthosite from the granulite facies Morin Shear Zone (Quebec, Canada) was investigated for crystal preferred orientation and elastic anisotropy. Time-of-flight neutron diffraction data obtained with the HIPPO diffractometer at LANSCE were analyzed with the Rietveld method to obtain orientation distribution functions of the principal phases (plagioclase, clinopyroxene and orthopyroxene). Texture and microstructures are compatible with the plastic deformation of the aggregate under high-T conditions. All mineral phases depict a significant preferred orientation that could be related to the general top-to-the north shearing history of the Morin Shear Zone. Texture patterns suggest that (010)[001] in plagioclase and (110)[001] in clinopyroxene are likely dominant slip systems. Using preferred orientation data P- and S-waves velocities and elastic anisotropy were calculated and compared with previous studies to explore elastic properties of rocks with different pyroxene-plagioclase mixtures. P-wave velocity, S-wave splitting and anisotropy increase with clinopyroxene content. Seismic anisotropy is linked to the texture symmetry which can lead to large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data, particularly for monoclinic or triclinic texture symmetries. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gomez Barreiro, Juan] Univ Salamanca, Dept Geol, E-37008 Salamanca, Spain. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Vogel, Sven] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Barreiro, JG (reprint author), Univ Salamanca, Dept Geol, Pza Caidos S-N, E-37008 Salamanca, Spain. EM jugb@usal.es; wenk@berkeley.edu; sven@lanl.gov RI Gomez Barreiro, Juan/A-1661-2011; OI Gomez Barreiro, Juan/0000-0002-5031-3115; Vogel, Sven C./0000-0003-2049-0361 FU Spanish Ministry of Science and Innovation, National Program of Projects in Fundamental Research, in the frame of the VI National Plan of Scientific Research, Development and Technologic Innovation [CGL2011-22728]; Spanish Ministry of Science and Innovation through the Ramon y Cajal program; Fulbright - Jose Castillejo program of the Spanish Ministry of Education, Culture and Sports (Programa Nacional de Movilidad de Recursos Humanos - Plan Nacional de I-D + i) [RYC-2010-05818, CAS12/00156] FX The sample was collected on a fieldtrip organized by J. Martignole and S. Ji on occasion of ICOTOM 12 in Montreal. This contribution has been funded by the research project CGL2011-22728 of the Spanish Ministry of Science and Innovation, as part of the National Program of Projects in Fundamental Research, in the frame of the VI National Plan of Scientific Research, Development and Technologic Innovation 2008-2011. JGB appreciates financial support by the Spanish Ministry of Science and Innovation through the Ramon y Cajal program and funds from the Fulbright - Jose Castillejo program of the Spanish Ministry of Education, Culture and Sports (Programa Nacional de Movilidad de Recursos Humanos - Plan Nacional de I-D + i 2008-2011) (RYC-2010-05818 and CAS12/00156). Access to HIPPO - LANSCE is kindly appreciated. HRW acknowledges support from NSF (EAR-1343908-) and DOE (DE-FG02-05ER15637). We are grateful to Luiz F. G. Morales and Holger Stunitz for thorough and constructive reviews and to Dave Prior for the editorial work. We are appreciative of M. Sintubin for the invitation to participate in this volume to commemorate Henk Zwart, who inspired many of us. NR 89 TC 2 Z9 2 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0191-8141 J9 J STRUCT GEOL JI J. Struct. Geol. PD FEB PY 2015 VL 71 SI SI BP 100 EP 111 DI 10.1016/j.jsg.2014.07.021 PG 12 WC Geosciences, Multidisciplinary SC Geology GA CC7FM UT WOS:000350533100008 ER PT J AU Banerjee, A Noh, JH Liu, YG Rack, PD Papautsky, I AF Banerjee, Ananda Noh, Joo Hyon Liu, Yuguang Rack, Philip D. Papautsky, Ian TI Programmable Electrowetting with Channels and Droplets SO MICROMACHINES LA English DT Article ID ON-A-CHIP; DIGITAL MICROFLUIDICS; DEVICES; DIELECTROPHORESIS; ACTUATION; BIOLOGY AB In this work, we demonstrate continuous and discrete functions in a digital microfluidic platform in a programmed manner. Digital microfluidics is gaining popularity in biological and biomedical applications due to its ability to manipulate discrete droplet volumes (nL-pL), which significantly reduces the need for a costly and precious biological and physiological sample volume and, thus, diagnostic time. Despite the importance of discrete droplet volume handling, the ability of continuous microfluidics to process larger sample volumes at a higher throughput cannot be easily reproduced by merely using droplets. To bridge this gap, in this work, parallel channels are formed and programmed to split into multiple droplets, while droplets are programmed to be split from one channel, transferred and merged into another channel. This programmable handling of channels and droplets combines the continuous and digital paradigms of microfluidics, showing the potential for a wider range of microfluidic functions to enable applications ranging from clinical diagnostics in resource-limited environments, to rapid system prototyping, to high throughput pharmaceutical applications. C1 [Banerjee, Ananda; Liu, Yuguang; Papautsky, Ian] Univ Cincinnati, Dept Elect Engn & Comp Syst, Cincinnati, OH 45221 USA. [Noh, Joo Hyon; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Papautsky, Ian] Univ Cincinnati, Ohio Ctr Microfluid Innovat, Cincinnati, OH 45221 USA. RP Papautsky, I (reprint author), Univ Cincinnati, Dept Elect Engn & Comp Syst, Cincinnati, OH 45221 USA. EM ananda1985@gmail.com; jnoh4@utk.edu; liu2yi@mail.uc.edu; prack@utk.edu; ian.papautsky@uc.edu OI Rack, Philip/0000-0002-9964-3254 FU National Science Foundation [ECCS-1001141, 1001146]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We gratefully acknowledge support by the National Science Foundation (ECCS-1001141 and 1001146). The authors also acknowledge that the device fabrication was partially conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 39 TC 5 Z9 5 U1 3 U2 23 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-666X J9 MICROMACHINES-BASEL JI Micromachines PD FEB PY 2015 VL 6 IS 2 BP 172 EP 185 DI 10.3390/mi6020172 PG 14 WC Nanoscience & Nanotechnology; Instruments & Instrumentation SC Science & Technology - Other Topics; Instruments & Instrumentation GA CD0EK UT WOS:000350743100002 ER PT J AU Lukic, Z Stark, CW Nugent, P White, M Meiksin, AA Almgren, A AF Lukic, Zarija Stark, Casey W. Nugent, Peter White, Martin Meiksin, Avery A. Almgren, Ann TI The Lyman alpha forest in optically thin hydrodynamical simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; intergalactic medium; quasars: absorption lines; large-scale structure of universe ID DIGITAL SKY SURVEY; COLD DARK-MATTER; HE II REIONIZATION; QSO ABSORPTION-SPECTRA; SMALL-SCALE STRUCTURE; EQUATION-OF-STATE; INTERGALACTIC MEDIUM; POWER SPECTRUM; TRANSMITTED FLUX; INTENSITY FLUCTUATIONS AB We study the statistics of the Ly alpha forest in a flat Lambda cold dark matter cosmology with the N-body + Eulerian hydrodynamics code NYX. We produce a suite of simulations, covering the observationally relevant redshift range 2 <= z <= 4. We find that a grid resolution of 20 h(-1) kpc is required to produce 1 per cent convergence of Lya forest flux statistics, up to k = 10 h(-1) Mpc. In addition to establishing resolution requirements, we study the effects of missing modes in these simulations, and find that box sizes of L > 40h(-1) Mpc are needed to suppress numerical errors to a sub-per cent level. Our optically thin simulations with the ionizing background prescription of Haardt & Madau reproduce an intergalactic medium density-temperature relation with T-0 approximate to 10(4) K and gamma approximate to 1.55 at z = 2, with a mean transmitted flux close to the observed values. When using the ionizing background prescription of Faucher-Gigu` ere et al., the mean flux is 10-15 per cent below observed values at z = 2, and a factor of 2 too small at z = 4. We show the effects of the common practice of rescaling optical depths to the observed mean flux and how it affects convergence rates. We also investigate the practice of `splicing' results from a number of different simulations to estimate the 1D flux power spectrum and show it is accurate at the 10 per cent level. Finally, we find that collisional heating of the gas from dark matter particles is negligible in modern cosmological simulations. C1 [Lukic, Zarija; Nugent, Peter; White, Martin; Almgren, Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stark, Casey W.; Nugent, Peter; White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Meiksin, Avery A.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Lukic, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM zarija@lbl.gov RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research; Office of High Energy Physics; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Anze Slosar, Pat McDonald, and Matt McQuinn for many useful discussions, and are grateful to Francesco Haardt, Piero Madau, and Claude-Andree Faucher-Giguere for making their UVB rates publicly available. We acknowledge the helpful review of an original version of the manuscript by an anonymous referee. ZL and CWS acknowledge the hospitality of Triple Rock where many concepts were refined. This work was in part supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by US Department of Energy Office of Advanced Scientific Computing Research and the Office of High Energy Physics. Calculations presented in this paper used resources of the NERSC, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work made extensive use of the NASA Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. NR 101 TC 18 Z9 18 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2015 VL 446 IS 4 BP 3697 EP 3724 DI 10.1093/mnras/stu2377 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TH UT WOS:000350272400036 ER PT J AU Firth, RE Sullivan, M Gal-Yam, A Howell, DA Maguire, K Nugent, P Piro, AL Baltay, C Feindt, U Hadjiyksta, E McKinnon, R Ofek, E Rabinowitz, D Walker, ES AF Firth, R. E. Sullivan, M. Gal-Yam, A. Howell, D. A. Maguire, K. Nugent, P. Piro, A. L. Baltay, C. Feindt, U. Hadjiyksta, E. McKinnon, R. Ofek, E. Rabinowitz, D. Walker, E. S. TI The rising light curves of Type Ia supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; LEGACY SURVEY; SN 2011FE; RISE-TIME; COSMOLOGICAL CONSTRAINTS; SHOCK-BREAKOUT; WHITE-DWARFS; SDSS-II; POWERED SUPERNOVAE AB We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory and the La Silla-QUEST variability survey. We fit these early data flux using a simple power law (f(t) = alpha x t(n)) to determine the time of first light (t(0)), and hence the rise time (t(rise)) from first light to peak luminosity, and the exponent of the power-law rise (n). We find a mean uncorrected rise time of 18.98 +/- 0.54 d, with individual supernova (SN) rise times ranging from 15.98 to 24.7 d. The exponent n shows significant departures from the simple 'fireball model' of n = 2 (or f(t) proportional to t(2)) usually assumed in the literature. With a mean value of n = 2.44 +/- 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of Ni-56 throughout the SN ejecta, with a higher index suggesting a lesser degree of Ni-56 mixing. The range of n found also confirms that the Ni-56 distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light-curve shape or stretch used to standardize SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves. C1 [Firth, R. E.; Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Gal-Yam, A.; Ofek, E.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Maguire, K.] European So Observ, D-85748 Garching, Germany. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Nugent, P.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Piro, A. L.] CALTECH, Theoret Astrophys, Pasadena, CA 91125 USA. [Baltay, C.; Hadjiyksta, E.; McKinnon, R.; Rabinowitz, D.; Walker, E. S.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Feindt, U.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. RP Firth, RE (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM r.firth@soton.ac.uk OI Sullivan, Mark/0000-0001-9053-4820 FU Royal Society; EU/FP7-ERC [615929]; Marie Curie Intra European Fellowship, within the 7th European Community Framework Programme (FP7); Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ); Israeli Ministry of Science; Israel Science Foundation, Minerva; Weizmann-UK; I-CORE Programme of the Planning and Budgeting Committee; Israel Science Foundation; W. M. Keck Foundation; Robert Martin Ayers Sciences Fund FX MS acknowledges support from the Royal Society and EU/FP7-ERC grant no [615929].; KM is supported by a Marie Curie Intra European Fellowship, within the 7th European Community Framework Programme (FP7).; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231.; EO is incumbent of the Arye Dissentshik career development chair and is grateful to support by grants from the Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ), Israeli Ministry of Science, Israel Science Foundation, Minerva, Weizmann-UK and the I-CORE Programme of the Planning and Budgeting Committee and The Israel Science Foundation.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund. NR 91 TC 25 Z9 25 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2015 VL 446 IS 4 BP 3895 EP 3910 DI 10.1093/mnras/stu2314 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TH UT WOS:000350272400052 ER PT J AU Armin, A Jansen-van Vuuren, RD Kopidakis, N Burn, PL Meredith, P AF Armin, Ardalan Jansen-van Vuuren, Ross D. Kopidakis, Nikos Burn, Paul L. Meredith, Paul TI Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes SO NATURE COMMUNICATIONS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; POLYMER PHOTODIODES; SMALL-MOLECULE; 300 NM; PHOTODETECTORS; CHARGE; FULLERENE; PHOTOCURRENT; PERFORMANCE; ABSORPTION AB Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors. C1 [Armin, Ardalan; Jansen-van Vuuren, Ross D.; Burn, Paul L.; Meredith, Paul] Univ Queensland, Sch Math & Phys, Ctr Organ Photon & Elect, Brisbane, Qld 4072, Australia. [Armin, Ardalan; Jansen-van Vuuren, Ross D.; Burn, Paul L.; Meredith, Paul] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia. [Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Burn, PL (reprint author), Univ Queensland, Sch Math & Phys, Ctr Organ Photon & Elect, Brisbane, Qld 4072, Australia. EM p.burn2@uq.edu.au; meredith@physics.uq.edu.au RI Burn, Paul/F-5347-2010; Kopidakis, Nikos/N-4777-2015; OI Jansen-van Vuuren, Ross/0000-0002-2919-6962 FU University of Queensland International Scholarship; Energy Frontier Research Center 'Molecularly Engineered Energy Materials (MEEMs)' - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001342:001]; Australian Research Council Discovery Program [DP120103726]; University of Queensland (Strategic Initiative-Centre for Organic Photonics Electronics) FX A.A. was funded by University of Queensland International Scholarship. P.M. is an Australian Research Council Discovery Outstanding Research Fellow, and P.L.B. is a University of Queensland Vice Chancellor's Senior Research Fellow. N.K. acknowledges funding from the Energy Frontier Research Center 'Molecularly Engineered Energy Materials (MEEMs)' funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract Number DE-SC0001342:001. The work was part funded by the Australian Research Council Discovery Program (DP120103726). We acknowledge support from The University of Queensland (Strategic Initiative-Centre for Organic Photonics & Electronics). This work was performed in part at the Australian National Fabrication Facility Queensland Node (ANFF-Q)-a company established under the National Collaborative Research Infrastructure Strategy to provide nano-and micro-fabrication facilities for Australia's researchers. We thank the Institute for Materials Research and Engineering (Singapore) for supplying the DPP-DTT. NR 54 TC 44 Z9 44 U1 20 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6343 DI 10.1038/ncomms7343 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4AI UT WOS:000350292400001 PM 25721323 ER PT J AU Bruno, FY Grisolia, MN Visani, C Valencia, S Varela, M Abrudan, R Tornos, J Rivera-Calzada, A Unal, AA Pennycook, SJ Sefrioui, Z Leon, C Villegas, JE Santamaria, J Barthelemy, A Bibes, M AF Bruno, F. Y. Grisolia, M. N. Visani, C. Valencia, S. Varela, M. Abrudan, R. Tornos, J. Rivera-Calzada, A. Uenal, A. A. Pennycook, S. J. Sefrioui, Z. Leon, C. Villegas, J. E. Santamaria, J. Barthelemy, A. Bibes, M. TI Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping SO NATURE COMMUNICATIONS LA English DT Article ID MANGANITE TUNNEL-JUNCTIONS; MAGNETORESISTANCE; ELECTRONICS; FILMS AB At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO3 (LFO) and ferromagnetic La0.7Sr0.3MnO3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects. C1 [Bruno, F. Y.; Grisolia, M. N.; Visani, C.; Villegas, J. E.; Barthelemy, A.; Bibes, M.] Unite Mixte Phys CNRS Thales, F-91767 Palaiseau, France. [Bruno, F. Y.; Grisolia, M. N.; Visani, C.; Villegas, J. E.; Barthelemy, A.; Bibes, M.] Univ Paris 11, F-91405 Orsay, France. [Valencia, S.; Abrudan, R.; Uenal, A. A.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Varela, M.; Tornos, J.; Rivera-Calzada, A.; Sefrioui, Z.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. [Varela, M.; Tornos, J.; Rivera-Calzada, A.; Sefrioui, Z.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Unidad Asociada CSIC, Lab Heteroestruct Con Aplicac Spintron, Madrid 28049, Spain. [Varela, M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Abrudan, R.] Ruhr Univ Bochum, Inst Expt Phys Festkorperphys, D-44780 Bochum, Germany. [Pennycook, S. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Bruno, FY (reprint author), Unite Mixte Phys CNRS Thales, 1 Ave A Fresnel, F-91767 Palaiseau, France. EM flavio.bruno@unige.ch; manuel.bibes@thalesgroup.com RI Bruno, Flavio/C-7380-2008; Valencia, Sergio/D-3615-2015; Leon, Carlos/A-5587-2008; Varela, Maria/E-2472-2014; Bibes, Manuel/C-5899-2013; Villegas, Javier E./C-7200-2011; Santamaria, Jacobo/N-8783-2016; Sefrioui, Zouhair/C-2728-2017; OI Bruno, Flavio/0000-0002-3970-8837; Valencia, Sergio/0000-0002-3912-5797; Leon, Carlos/0000-0002-3262-1843; Varela, Maria/0000-0002-6582-7004; Bibes, Manuel/0000-0002-6704-3422; Villegas, Javier E./0000-0002-2096-3360; Santamaria, Jacobo/0000-0003-4594-2686; Sefrioui, Zouhair/0000-0002-6703-3339; Abrudan, Radu/0000-0002-9335-4929 FU European Research Council (ERC Advanced Grant FEMMES) [267579]; Labex NanoSaclay project FIRET; BMBF [05K10PC2]; European Community's Seventh Framework Programme (FP7) [226716]; Consolider Ingenio [2010-CSD2009-00013]; CAM [S2009/MAT-1756]; ERC starting Investigator Award [239739 STEMOX]; [MAT2011-27470-C02] FX We acknowledge financial support from the European Research Council (ERC Advanced Grant FEMMES, No. 267579) and the Labex NanoSaclay project FIRET. The ALICE project is supported by the BMBF Contract No. 05K10PC2. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. Work at UCM was supported by grants MAT2011-27470-C02 and Consolider Ingenio 2010-CSD2009-00013 (Imagine), by CAM through grant S2009/MAT-1756 (Phama) and by the ERC starting Investigator Award, grant #239739 STEMOX. Microscopy at ORNL (M.V.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. We thank N.M. Nemes and M. Garcia-Hernandez for collaboration and assistance with the preliminary magnetic characterization of the LSMO/LFO structures and V. Garcia for his constructive comments. NR 52 TC 4 Z9 4 U1 10 U2 107 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6306 DI 10.1038/ncomms7306 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC3ZP UT WOS:000350290300004 PM 25686532 ER PT J AU Chatterjee, U Zhao, J Iavarone, M Di Capua, R Castellan, JP Karapetrov, G Malliakas, CD Kanatzidis, MG Claus, H Ruff, JPC Weber, F van Wezel, J Campuzano, JC Osborn, R Randeria, M Trivedi, N Norman, MR Rosenkranz, S AF Chatterjee, U. Zhao, J. Iavarone, M. Di Capua, R. Castellan, J. P. Karapetrov, G. Malliakas, C. D. Kanatzidis, M. G. Claus, H. Ruff, J. P. C. Weber, F. van Wezel, J. Campuzano, J. C. Osborn, R. Randeria, M. Trivedi, N. Norman, M. R. Rosenkranz, S. TI Emergence of coherence in the charge-density wave state of 2H-NbSe2 SO NATURE COMMUNICATIONS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; PHASE-TRANSITION; SUPERCONDUCTORS; PSEUDOGAP; 2H-TASE2; NBSE2; ORDER AB A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set in simultaneously at the CDW transition temperature T-cdw. Here we investigate, using photoemission, X-ray scattering and scanning tunnelling microscopy, the canonical CDW compound 2H-NbSe2 intercalated with Mn and Co, and show that the conventional view is untenable. We find that, either at high temperature or at large intercalation, CDW order becomes short-ranged with a well-defined amplitude, which has impacts on the electronic dispersion, giving rise to an energy gap. The phase transition at T-cdw marks the onset of long-range order with global phase coherence, leading to sharp electronic excitations. Our observations emphasize the importance of phase fluctuations in strongly coupled CDW systems and provide insights into the significance of phase incoherence in 'pseudogap' states. C1 [Chatterjee, U.; Castellan, J. P.; Malliakas, C. D.; Kanatzidis, M. G.; Claus, H.; Weber, F.; van Wezel, J.; Campuzano, J. C.; Osborn, R.; Norman, M. R.; Rosenkranz, S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chatterjee, U.; Zhao, J.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Zhao, J.; Campuzano, J. C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Iavarone, M.; Di Capua, R.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Castellan, J. P.] Karlsruhe Inst Technol, Inst Solid State Phys, D-76021 Karlsruhe, Germany. [Karapetrov, G.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Malliakas, C. D.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Ruff, J. P. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ruff, J. P. C.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [van Wezel, J.] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands. [Randeria, M.; Trivedi, N.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Chatterjee, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM uc5j@virginia.edu; srosenkranz@anl.gov RI Rosenkranz, Stephan/E-4672-2011; Norman, Michael/C-3644-2013; Karapetrov, Goran/C-2840-2008; Di Capua, Roberto/G-9622-2012 OI Rosenkranz, Stephan/0000-0002-5659-0383; Karapetrov, Goran/0000-0003-1113-0137; Di Capua, Roberto/0000-0003-3605-0993 FU Materials Science and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy; Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center - U.S. DOE, BES [DE-SC0012575]; VIDI grant - Netherlands Organization for Scientific Research (NWO); DOE-BES grant [DE-SC0005035]; U.S. DOE, Office of Science [DE-FG02-07ER46423]; University of Wisconsin, Madison; DOE, Office of Science, BES FX Work at Argonne (U.C., J.Z., J.P.C., C.D.M., M.G.K., H.C., J.P.C.R., F.W., J.C.C, R.O., M.R.N., S.R.) was supported by the Materials Science and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy. Work at Temple University (M.I) and Drexel University (G.K.) was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. DOE, BES under Award DE-SC0012575. J.v.W. acknowledges support from a VIDI grant financed by the Netherlands Organization for Scientific Research (NWO). M.R. was supported by the DOE-BES grant DE-SC0005035. N.T. was supported by the U.S. DOE, Office of Science, Grant DE-FG02-07ER46423. The Synchrotron Radiation Center is supported by the University of Wisconsin, Madison. Synchrotron X-ray scattering experiments were carried out at the Advanced Photon Source, which is supported by the DOE, Office of Science, BES. We thank Ming Shi for his support with the experiments at the Swiss Light Source, Paul Scherrer Institut, Switzerland, and D. Robinson and K. Attenkofer for their support with the XRD measurements at the Advanced Photon Source, Argonne National Laboratory. NR 46 TC 11 Z9 11 U1 13 U2 91 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6313 DI 10.1038/ncomms7313 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC3ZP UT WOS:000350290300011 PM 25687135 ER PT J AU Li, B Nie, ZM Vijayakumar, M Li, GS Liu, J Sprenkle, V Wang, W AF Li, Bin Nie, Zimin Vijayakumar, M. Li, Guosheng Liu, Jun Sprenkle, Vincent Wang, Wei TI Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery SO NATURE COMMUNICATIONS LA English DT Article ID RESEARCH-AND-DEVELOPMENT; STORAGE; IODINE; PROGRESS; BROMINE AB Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (similar to 25Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M Znl(2) electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 degrees C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. C1 [Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei] Pacific NW Natl Lab, Energy & Environm Directorate, Washington, DC 99352 USA. RP Wang, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Washington, DC 99352 USA. EM wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) [57558]; DOE's Office of Biological and Environmental Research (BER); Battelle for DOE [DE-AC05-76RL01830] FX We acknowledge the financial support from the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE; under Contract No. 57558). The NMR work was carried out at the Environmental and Molecular Science Laboratory at Pacific Northwest National Laboratory (PNNL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. We also appreciate Dr Anil Shukla and Dr Meng Gu for their help on mass spectrometry and SEM measurements, respectively. NR 29 TC 31 Z9 31 U1 23 U2 136 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6303 DI 10.1038/ncomms7303 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC3ZP UT WOS:000350290300001 PM 25709083 ER PT J AU Luef, B Frischkorn, KR Wrighton, KC Holman, HYN Birarda, G Thomas, BC Singh, A Williams, KH Siegerist, CE Tringe, SG Downing, KH Comolli, LR Banfield, JF AF Luef, Birgit Frischkorn, Kyle R. Wrighton, Kelly C. Holman, Hoi-Ying N. Birarda, Giovanni Thomas, Brian C. Singh, Andrea Williams, Kenneth H. Siegerist, Cristina E. Tringe, Susannah G. Downing, Kenneth H. Comolli, Luis R. Banfield, Jillian F. TI Diverse uncultivated ultra-small bacterial cells in groundwater SO NATURE COMMUNICATIONS LA English DT Article ID S-LAYER PROTEINS; RNA GENE CLONES; LIFE-STYLE; MICROSCOPY; ARCHAEA; MICROORGANISMS; SEQUENCES; EVOLUTION; INSIGHTS; GENOMES AB Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a similar to 0.2-mu m filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009 +/- 0.002 mu m(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms. C1 [Luef, Birgit; Frischkorn, Kyle R.; Wrighton, Kelly C.; Thomas, Brian C.; Singh, Andrea; Siegerist, Cristina E.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Holman, Hoi-Ying N.; Birarda, Giovanni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [Williams, Kenneth H.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geophys, Div Earth Sci, Berkeley, CA 94720 USA. [Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Downing, Kenneth H.; Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Div Life Sci, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Comolli, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS Mol Biol Consortium, Adv Light Source Beamline 4 2 2, Berkeley, CA 94720 USA. EM lrcomolli@lbl.gov; jbanfield@berkeley.edu RI Williams, Kenneth/O-5181-2014; Holman, Hoi-Ying/N-8451-2014; OI Williams, Kenneth/0000-0002-3568-1155; Holman, Hoi-Ying/0000-0002-7534-2625; Tringe, Susannah/0000-0001-6479-8427 FU U.S. Department of Energy [DE-SC0004733, ER65009]; Office of Basic Energy Sciences, Berkeley Synchrotron Infrared Structural Biology Program [DE-AC02-05CH11231]; DOE Joint Genome Institute [DE-AC02-05CH11231] FX Support for this research was provided by the U.S. Department of Energy under contracts DE-SC0004733 and ER65009 (Subsurface Biogeochemistry Program, Biological and Environmental Research), and DE-AC02-05CH11231 (Office of Basic Energy Sciences, Berkeley Synchrotron Infrared Structural Biology Program, and DOE Joint Genome Institute). We thank R. Csencsits for help with microscopy, S.W. Mullin for assistance with clone library construction, L.A. Hug for input to phylogenetic analyses and I. Zweimuller for statistics support. NR 54 TC 38 Z9 39 U1 6 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6372 DI 10.1038/ncomms7372 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4BR UT WOS:000350296200003 PM 25721682 ER PT J AU Qian, JF Henderson, WA Xu, W Bhattacharya, P Engelhard, M Borodin, O Zhang, JG AF Qian, Jiangfeng Henderson, Wesley A. Xu, Wu Bhattacharya, Priyanka Engelhard, Mark Borodin, Oleg Zhang, Ji-Guang TI High rate and stable cycling of lithium metal anode SO NATURE COMMUNICATIONS LA English DT Article ID ELECTROLYTE-SOLUTIONS; RECHARGEABLE BATTERIES; IONIC LIQUIDS; ELECTROCHEMICAL PROPERTIES; CARBONATE SOLVENTS; APROTIC-SOLVENTS; SALT ELECTROLYTE; PHASE-BEHAVIOR; STABILITY; MECHANISM AB Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl) imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. With 4M lithium bis(fluorosulfonyl) imide in 1,2-dimethoxyethane as the electrolyte, a lithium|lithium cell can be cycled at 10mA cm(-2) for more than 6,000 cycles, and a copper|lithium cell can be cycled at 4mA cm(-2) for more than 1,000 cycles with an average Coulombic efficiency of 98.4%. These excellent performances can be attributed to the increased solvent coordination and increased availability of lithium ion concentration in the electrolyte. Further development of this electrolyte may enable practical applications for lithium metal anode in rechargeable batteries. C1 [Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Zhang, Ji-Guang] Joint Ctr Energy Storage Res, Argonne, IL 60439 USA. [Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Engelhard, Mark] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Borodin, Oleg] US Army Res Lab, Sensor & Elect Devices Directorate, Electrochem Branch, Adelphi, MD 20783 USA. RP Zhang, JG (reprint author), Joint Ctr Energy Storage Res, Argonne, IL 60439 USA. EM jiguang.zhang@pnnl.gov RI Borodin, Oleg/B-6855-2012; OI Borodin, Oleg/0000-0002-9428-5291; Engelhard, Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research; Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences; DOE's Office of Biological and Environmental Research (BER); Linus Pauling distinguished Postdoctoral Fellowship of PNNL; U.S. Army Research Laboratory; DOE [DE-AC05-76RLO1830] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. The SEM and XPS characterizations were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL)-a national scientific user facility located at PNNL that is sponsored by the DOE's Office of Biological and Environmental Research (BER). P.B. and O.B. gratefully acknowledged supports from the Linus Pauling distinguished Postdoctoral Fellowship of PNNL and U.S. Army Research Laboratory, respectively. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. We thank Mark Bowden of EMSL for his help on XRD measurement and Dr Masashi Yukitake of Nippon Shokubai for supplying the LiFSI salt without charge. NR 43 TC 127 Z9 127 U1 91 U2 448 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6362 DI 10.1038/ncomms7362 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4BL UT WOS:000350295600001 PM 25698340 ER PT J AU Yashchuk, VV Samoylova, LV Kozhevnikov, IV AF Yashchuk, Valeriy V. Samoylova, Liubov V. Kozhevnikov, Igor V. TI Specification of x-ray mirrors in terms of system performance: new twist to an old plot SO OPTICAL ENGINEERING LA English DT Article DE x-ray optics; surface metrology; specification; simulation; surface finish and figure; power spectral density; autoregressive moving average; fabrication tolerances ID ROUGH SURFACES; OPTICS; FINISH; SCATTERING; ALGORITHM; PACKAGE AB In the early 1990s, Church and Takacs pointed out that the specification of surface figure and finish of x-ray mirrors must be based on their performance in the beamline optical system. We demonstrate the limitations of specification, characterization, and performance evaluation based on conventional statistical approaches, including root-mean-square roughness and residual slope variation, evaluated over spatial frequency bandwidths that are system specific, and a more refined description of the surface morphology based on the power spectral density distribution. We show that these limitations are fatal, especially in the case of highly collimated coherent x-ray beams, like beams from x-ray free electron lasers (XFELs). The limitations arise due to the deterministic character of the surface profile data for a definite mirror, while the specific correlation properties of the surface are essential for the performance of the entire x-ray optical system. As a possible way to overcome the problem, we treat a method, suggested by Yashchuk and Yashchuk in 2012, based on an autoregressive moving average modeling of the slope measurements with a limited number of parameters. The effectiveness of the approach is demonstrated with an example specific to the x-ray optical systems under design at the European XFEL. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Samoylova, Liubov V.] European XFEL GmbH, D-22761 Hamburg, Germany. [Kozhevnikov, Igor V.] Russian Acad Sci, Shubnikov Inst Crystallog, Moscow 119333, Russia. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM VVYashchuk@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Russian Ministry of Science and Education via the program "Physics at the accelerators and reactors of the West Europe (excluding CERN)" FX The authors are very grateful to Wayne R. McKinney for very useful discussions and to Daniel J. Merthe, Nikolay A. Artemiev, and Daniele Cocco for help with high-accuracy surface slope measurements of the LCLS beam split and delay mirror. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. One of the authors (I.V.K.) was supported by the Russian Ministry of Science and Education via the program "Physics at the accelerators and reactors of the West Europe (excluding CERN)." NR 64 TC 11 Z9 11 U1 2 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD FEB PY 2015 VL 54 IS 2 AR 025108 DI 10.1117/1.OE.54.2.025108 PG 13 WC Optics SC Optics GA CC6NM UT WOS:000350481900026 ER PT J AU Reda, I AF Reda, Ibrahim TI Solar eclipse monitoring for solar energy applications SO SOLAR ENERGY LA English DT Article DE Solar eclipse; Moon position; Solar position; Solar energy AB In recent years, the interest in using solar energy as a major contributor to renewable energy applications has increased, and the focus to optimize the use of electrical energy based on demand and resources from different locations has strengthened. This article includes a procedure for implementing an algorithm to calculate the Moon's zenith angle with uncertainty of +/- 0.001 degrees and azimuth angle with uncertainty of +/- 0.003 degrees. In conjunction with Solar Position Algorithm, the angular distance between the Sun and the Moon is used to develop a method to instantaneously monitor the partial or total solar eclipse occurrence for solar energy applications. This method can be used in many other applications for observers of the Sun and the Moon positions for applications limited to the stated uncertainty. (C) 2014 Elsevier Ltd. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Reda, I (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Ibrahim.Reda@nrel.gov FU Quality Management and Assurance office, NREL Metrology Laboratory; DOE-ARM and Solar programs FX I would like to thank the Quality Management and Assurance office, NREL Metrology Laboratory, and DOE-ARM and Solar programs for providing the funds for this publication. I extend special appreciation to my wife Mary Alice and my daughter Lenah for their inspiration about the Moon's influence on romance, legends, and art. I also thank the staff from the University of Oregon for providing the measured data during the solar eclipse in Oregon, USA. NR 4 TC 3 Z9 3 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD FEB PY 2015 VL 112 BP 339 EP 350 DI 10.1016/j.solener.2014.12.010 PG 12 WC Energy & Fuels SC Energy & Fuels GA CC2QZ UT WOS:000350191000033 ER PT J AU Burton, PD King, BH Riley, D AF Burton, Patrick D. King, Bruce H. Riley, Daniel TI Predicting the spectral effects of soils on high concentrating photovoltaic systems SO SOLAR ENERGY LA English DT Article DE Spectral response; Triple junction limiting current; Soiling losses ID SOLAR-CELLS; PERFORMANCE AB Soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We have predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. The wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Burton, Patrick D.] Sandia Natl Labs, Chem & Biol Syst Dept, Albuquerque, NM 87185 USA. [King, Bruce H.; Riley, Daniel] Sandia Natl Labs, Photovolta & Distributed Syst Integrat Dept, Albuquerque, NM 87185 USA. RP Burton, PD (reprint author), Sandia Natl Labs, Chem & Biol Syst Dept, POB 5800, Albuquerque, NM 87185 USA. EM pdburto@sandia.gov; bhking@sandia.gov; driley@sandia.gov FU U.S. Department of Energy SunShot Initiative; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy SunShot Initiative. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 3 Z9 3 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD FEB PY 2015 VL 112 BP 469 EP 474 DI 10.1016/j.solener.2014.11.022 PG 6 WC Energy & Fuels SC Energy & Fuels GA CC2QZ UT WOS:000350191000044 ER PT J AU Gorog, JP Hemrick, JG Walter, HA Leary, WR Ellis, M AF Gorog, J. Peter Hemrick, James G. Walter, Harald A. Leary, W. Ray Ellis, Murray TI Design of refractory linings for balanced energy efficiency, uptime, and capacity in lime kilns SO TAPPI JOURNAL LA English DT Article AB In this work a computer model is used to examine how refractory linings with both high alumina and basic refractory bricks affect kiln operations. Recommendations are made based on the results to aid mill personnel in designing optimized refractory linings for specific situations. Kilns used to regenerate lime in the kraft process are highly energy intensive. Throughout the 1990s, in response to increasing fuel prices, the pulp and paper industry primarily used backup insulation in conjunction with high alumina brick to line calcining zones of their kilns. The dramatic decline in price of natural gas over the past decade, in combination with mounting pressures to increase production of existing assets, has led many mills to focus more on increasing uptime and capacity rather than on energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line calcining zones. While the use of basic brick can increase the uptime and reduce the cost to maintain the refractory lining, it can dramatically increase the shell temperatures and heat losses. Tradeoffs, therefore, are created among energy efficiency, capacity, and uptime. C1 [Gorog, J. Peter; Leary, W. Ray] Houghton Cascade Holding LLC, Auburn, WA 98092 USA. [Hemrick, James G.] Oak Ridge Natl Lab, Mech Properties & Mech Grp, Oak Ridge, TN USA. [Walter, Harald A.] Refratechnik North Amer Inc, St Louis, MO USA. [Ellis, Murray] Australian Paper Maryvale Mill, Morwell, Vic, Australia. RP Gorog, JP (reprint author), Houghton Cascade Holding LLC, Auburn, WA 98092 USA. EM peter.gorog@houghtoncascade.com NR 14 TC 0 Z9 0 U1 0 U2 3 PU TECH ASSOC PULP PAPER IND INC PI NORCROSS PA 15 TECHNOLOGY PARK SOUTH, NORCROSS, GA 30092 USA SN 0734-1415 J9 TAPPI J JI TAPPI J. PD FEB PY 2015 VL 14 IS 2 BP 141 EP 151 PG 11 WC Materials Science, Paper & Wood SC Materials Science GA CC6PQ UT WOS:000350488600008 ER PT J AU Banerjee, D Cairns, AJ Liu, J Motkuri, RK Nune, SK Fernandez, CA Krishna, R Strachan, DM Thallapally, PK AF Banerjee, Debasis Cairns, Amy J. Liu, Jian Motkuri, Radha K. Nune, Satish K. Fernandez, Carlos A. Krishna, Rajamani Strachan, Denis M. Thallapally, Praveen K. TI Potential of Metal-Organic Frameworks for Separation of Xenon and Krypton SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID NOBLE-GAS ADSORPTION; RARE-GASES; RESONANCE; SITES; PORES AB The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application. C1 [Banerjee, Debasis; Cairns, Amy J.; Thallapally, Praveen K.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Liu, Jian; Motkuri, Radha K.; Nune, Satish K.; Fernandez, Carlos A.; Strachan, Denis M.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Krishna, Rajamani] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM Praveen.thallapally@pnnl.gov RI Motkuri, Radha/F-1041-2014; Krishna, Rajamani/A-1098-2012; Liu, Jian/C-4707-2011; Liu, Jian/D-3393-2009; OI Motkuri, Radha/0000-0002-2079-4798; Krishna, Rajamani/0000-0002-4784-8530; Liu, Jian/0000-0001-5329-7408; Liu, Jian/0000-0001-5329-7408; Thallapally, Praveen Kumar/0000-0001-7814-4467 FU US Department of Energy (DOE), Office of Nuclear Energy; US Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank the US Department of Energy (DOE), Office of Nuclear Energy, and in particular, J. Bresee, for their support. T. Todd (Idaho National Laboratory) and B. Jubin (Oak Ridge National Laboratory) provided programmatic support and guidance. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 34 TC 67 Z9 67 U1 51 U2 278 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD FEB PY 2015 VL 48 IS 2 BP 211 EP 219 DI 10.1021/ar5003126 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KS UT WOS:000349806300008 PM 25479165 ER PT J AU Raugei, S DuBois, DL Rousseau, R Chen, ST Ho, MH Bullock, RM Dupuis, M AF Raugei, Simone DuBois, Daniel L. Rousseau, Roger Chen, Shentan Ho, Ming-Hsun Bullock, R. Morris Dupuis, Michel TI Toward Molecular Catalysts by Computer SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID COUPLED ELECTRON-TRANSFER; TRANSITION-METAL HYDRIDES; AB-INITIO CALCULATIONS; H-2 PRODUCTION; PENDANT AMINES; THEORETICAL METHODS; OXYGEN REDUCTION; COMPLEXES; PROTON; HYDROGEN AB Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to design catalysts by computer. In this Account, we first review how thermodynamic properties such as redox potentials (E degrees), acidity constants (pK(a)), and hydride donor abilities (Delta G(H)(-)) form the basis for a framework for the systematic design of molecular catalysts for reactions that are critical for a secure energy future. We illustrate this for hydrogen evolution and oxidation, oxygen reduction, and CO conversion, and we give references to other instances where it has been successfully applied. The framework is amenable to quantum-chemical calculations and conducive to predictions by computer. We review how density functional theory allows the determination and prediction of these thermodynamic properties within an accuracy relevant to experimentalists (similar to 0.06 eV for redox potentials, similar to 1 pK(a) unit for pK(a) values, and 1-2 kcal/mol for hydricities). Computation yielded correlations among thermodynamic properties as they reflect the electron population in the d shell of the metal center, thus substantiating empirical correlations used by experimentalists. These correlations point to the key role of redox potentials and other properties (pK(a) of the parent aminium for the proton-relay-based catalysts designed in our laboratory) that are easily accessible experimentally or computationally in reducing the parameter space for design. These properties suffice to fully determine free energies maps and profiles associated with catalytic cycles, i.e., the relative energies of intermediates. Their prediction puts us in a position to distinguish a priori between desirable and undesirable pathways and mechanisms. Efficient catalysts have flat free energy profiles that avoid high activation barriers due to low- and high-energy intermediates. The criterion of a flat energy profile can be mathematically resolved in a functional in the reduced parameter space that can be efficaciously calculated by means of the correlation expressions. Optimization of the functional permits the prediction by computer of design points for optimum catalysts. Specifically, the optimization yields the values of the thermodynamic properties for efficient (high rate and low overpotential) catalysts. We are on the verge of design of molecular electrocatalysts by computer. Future efforts must focus on identifying actual ligands that possess these properties. We believe that this can also be achieved through computation, using Taft-like relationships linking molecular composition and structure with electron-donating ability and steric effects. We note also that the approach adopted here of using free energy maps to decipher catalytic pathways and mechanisms does not account for kinetic barriers associated with elementary steps along the catalytic pathway, which may make thermodynamically accessible intermediates kinetically inaccessible. Such an extension of the approach will require further computations that, however, can take advantage of Polanyi-like linear free energy relationships linking activation barriers and reaction free energies. C1 [Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel] Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Raugei, S (reprint author), Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. EM simone.raugei@pnnl.gov; roger.rousseau@pnnl.gov; michel.dupuis@pnnl.gov RI Rousseau, Roger/C-3703-2014; Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences FX This research was carried out at the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle. Computer resources were provided by the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a National Scientific User Facility located at PNNL and sponsored by DOE's Office of Biological and Environmental Research. Computer resources were also provided by the National Energy Research Computing Center (NERSC) at the Lawrence Berkeley National Laboratory. NR 41 TC 19 Z9 19 U1 12 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD FEB PY 2015 VL 48 IS 2 BP 248 EP 255 DI 10.1021/ar500342g PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KS UT WOS:000349806300012 PM 25574854 ER PT J AU Dasgupta, NP Meng, XB Elam, JW Martinson, ABF AF Dasgupta, Neil P. Meng, Xiangbo Elam, Jeffrey W. Martinson, Alex B. F. TI Atomic Layer Deposition of Metal Sulfide Materials SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID LITHIUM-SULFUR BATTERIES; SOLAR-ENERGY CONVERSION; MONOSULFIDE THIN-FILMS; IN-SITU; HYDROGEN-SULFIDE; QUANTUM DOTS; EPITAXY; GROWTH; CELLS; NANOCOMPOSITES AB The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application space, the benefits and challenges of novel ALD processes are emphasized and common trends are summarized. We conclude with a perspective on potential future directions for metal chalcogenide ALD as well as untapped opportunities. Finally, we consider challenges that must be addressed prior to implementing ALD metal sulfides into future device architectures. C1 [Dasgupta, Neil P.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Meng, Xiangbo; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Dasgupta, NP (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. EM ndasgupt@umich.edu; jelam@anl.gov; martinson@anl.gov OI Martinson, Alex/0000-0003-3916-1672; Meng, Xiangbo/0000-0002-4631-7260 FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. DOE [DE-AC02-06CH11357]; Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0001059] FX Work by J.W.E. and X.M. was supported as part of the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Work at ANL was supported under U.S. DOE Contract DE-AC02-06CH11357. N.P.D. acknowledges support from the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Work by A.B.F.M. was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-SC0001059. NR 60 TC 27 Z9 27 U1 38 U2 219 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD FEB PY 2015 VL 48 IS 2 BP 341 EP 348 DI 10.1021/ar500360d PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB7KS UT WOS:000349806300021 PM 25581295 ER PT J AU Li, X Lam, CN Sanchez-Diaz, LE Smith, GS Olsen, BD Chen, WR AF Li, Xin Lam, Christopher N. Sanchez-Diaz, Luis E. Smith, Gregory S. Olsen, Bradley D. Chen, Wei-Ren TI Scattering from Colloid-Polymer Conjugates with Excluded Volume Effect SO ACS MACRO LETTERS LA English DT Article ID ANGLE X-RAY; GIANT AMPHIPHILES; BLOCK-COPOLYMERS; COFACTOR RECONSTITUTION; PEG CRYSTALLIZATION; PEPTIDE-FRAGMENTS; NANOPARTICLES; CONFORMATION; PROTEINS; CHAIN AB This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein polymer conjugates and nanoparticle polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated. The model is able to describe the experimental scattering signature of the solutions of suspending hard particle polymer conjugates and provide additional conformational information. This model explicitly elucidates the link between the global conformation of a conjugate and the microstructure of its constituent components. C1 [Li, Xin; Sanchez-Diaz, Luis E.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Lam, Christopher N.; Olsen, Bradley D.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Olsen, BD (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. EM bdolsen@mit.edu; chenw@ornl.gov RI Smith, Gregory/D-1659-2016; OI Smith, Gregory/0000-0001-5659-1805; Olsen, Bradley/0000-0002-7272-7140 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 38 TC 1 Z9 1 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2015 VL 4 IS 2 BP 165 EP 170 DI 10.1021/mz5006958 PG 6 WC Polymer Science SC Polymer Science GA CB7NM UT WOS:000349814100006 ER PT J AU Staude, I Khardikov, VV Fofang, NT Liu, S Decker, M Neshev, DN Luk, TS Brener, I Kivshar, YS AF Staude, Isabelle Khardikov, Vyacheslav V. Fofang, Nche T. Liu, Sheng Decker, Manuel Neshev, Dragomir N. Luk, Ting Shan Brener, Igal Kivshar, Yuri S. TI Shaping Photoluminescence Spectra with Magnetoelectric Resonances in All-Dielectric Nanoparticles SO ACS PHOTONICS LA English DT Article DE nanoantennas; quantum light sources; all-dielectric nanophotonics; magnetic resonance; light scattering; quantum dots ID SPONTANEOUS EMISSION; FANO RESONANCES; QUANTUM DOTS; ENHANCEMENT; ANTENNAS; LIGHT; METAMATERIALS; NANOANTENNAS; LUMINESCENCE; SCATTERING AB We measure the near-infrared photoluminescence spectra of colloidal quantum dots coupled to the localized electric and magnetic resonances of subwavelength silicon nanodisks. The spectral position of the resonances with respect to each other, is controlled Via the nanbdisk geometry. We observe a strong influence of the nanodisk resonance positions on the quantum dot photoluminescence, spectra. For separate resonances, the spectral density observed in transmittance measurements correlates with the spectral range covered by a broad emission spectrum. For the case of spectral overlap of the electric and magnetic dipolar resonances we enter effect evident in the transmittance spectra is accompanied by observations are in good-qualitative agreement with numerical a new regime for coupling, where the characteristic transparency by a pronounced single emission maximum. Our experimental observations are in good-qualitative agreement with numerical calculations. C1 [Staude, Isabelle; Decker, Manuel; Neshev, Dragomir N.; Kivshar, Yuri S.] Australian Natl Univ, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia. [Staude, Isabelle; Decker, Manuel; Neshev, Dragomir N.; Kivshar, Yuri S.] Australian Natl Univ, Ctr Ultrahigh bandwidth Devices Opt Syst CUDOS, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Staude, Isabelle; Fofang, Nche T.; Liu, Sheng; Luk, Ting Shan; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Khardikov, Vyacheslav V.] Kharkov Natl Univ, UA-61022 Kharkov, Ukraine. [Khardikov, Vyacheslav V.] Natl Acad Sci Ukraine, Inst Radio Astron, UA-61022 Kharkov, Ukraine. RP Staude, I (reprint author), Australian Natl Univ, Nonlinear Phys Ctr, GPO Box 4, Canberra, ACT 2601, Australia. EM isabelle.staude@anu.edu.au RI Staude, Isabelle/N-4270-2015; Neshev, Dragomir/A-3759-2008; OI Neshev, Dragomir/0000-0002-4508-8646; Decker, Manuel/0000-0002-9125-0851 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Australian Research Council through Centre of Excellence, Discovery Project; DECRA Fellowship grants FX We thank A. E. Miroshnichenko for useful discussion. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also acknowledge support from the Australian Research Council through Centre of Excellence, Discovery Project, and DECRA Fellowship grants. NR 36 TC 15 Z9 15 U1 7 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD FEB PY 2015 VL 2 IS 2 BP 172 EP 177 DI 10.1021/ph500379p PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA CB7NP UT WOS:000349814400001 ER PT J AU Delubac, T Bautista, JE Busca, NG Rich, J Kirkby, D Bailey, S Font-Ribera, A Slosar, A Lee, KG Pieri, MM Hamilton, JC Aubourg, E Blomqvist, M Bovy, J Brinkmann, J Carithers, W Dawson, KS Eisenstein, DJ Gontcho, SGA Kneib, JP Le Goff, JM Margala, D Miralda-Escude, J Myers, AD Nichol, RC Noterdaeme, P O'Connell, R Olmstead, MD Palanque-Delabrouille, N Paris, I Petitjean, P Ross, NP Rossi, G Schlegel, DJ Schneider, DP Weinberg, DH Yeche, C York, DG AF Delubac, Timothee Bautista, Julian E. Busca, Nicola G. Rich, James Kirkby, David Bailey, Stephen Font-Ribera, Andreu Slosar, Anze Lee, Khee-Gan Pieri, Matthew M. Hamilton, Jean-Christophe Aubourg, Eric Blomqvist, Michael Bovy, Jo Brinkmann, Jon Carithers, William Dawson, Kyle S. Eisenstein, Daniel J. Gontcho, Satya Gontcho A. Kneib, Jean-Paul Le Goff, Jean Marc Margala, Daniel Miralda-Escude, Jordi Myers, Adam D. Nichol, Robert C. Noterdaeme, Pasquier O'Connell, Ross Olmstead, Matthew D. Palanque-Delabrouille, Nathalie Paris, Isabelle Petitjean, Patrick Ross, Nicholas P. Rossi, Graziano Schlegel, David J. Schneider, Donald P. Weinberg, David H. Yeche, Christophe York, Donald G. TI Baryon acoustic oscillations in the Lya forest of BOSS DR11 quasars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; dark energy; large-scale structure of Universe; cosmological parameters ID DIGITAL SKY SURVEY; DATA RELEASE 9; SPECTROSCOPIC GALAXY SAMPLE; LUMINOUS RED GALAXIES; 10TH DATA RELEASE; 9TH DATA RELEASE; MEASURING D-A; ALPHA FOREST; SDSS-III; TARGET SELECTION AB We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly alpha forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137 562 quasars in the redshift range 2.1 <= z <= 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, D-A(Z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, r(d). We find D-A/r(d) = 11.28 +/- 0.65(1 sigma)(-1.2)(+2.8)(2 sigma) and D-H/r(d) = 9.18 +/- 0.28(1 sigma) +/- 0.6(2 sigma) where D-H = c/H. The optimal combination, similar to(DHDA0.3)-D-0.7/r(d) is determined with a precision of similar to 2%. For the value r(d) = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find D-A(Z = 2.34) = 1662 +/- 96(1 sigma) Mpc and H(z = 2.34) = 222 +/- 7(1 sigma) km s(-1) Mpc(-1). Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Ly alpha forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of D-A/r(d) that are 7% lower and 7% higher for D-H/r(d) than the predictions of a flat ACDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is approximate to 2.5 sigma. C1 [Delubac, Timothee; Rich, James; Le Goff, Jean Marc; Palanque-Delabrouille, Nathalie; Rossi, Graziano; Yeche, Christophe] CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Bautista, Julian E.; Busca, Nicola G.; Hamilton, Jean-Christophe; Aubourg, Eric] Univ Paris 07, APC, CNRS, IN2P3,CEA,Observ Paris, F-75205 Paris, France. [Kirkby, David; Blomqvist, Michael; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bailey, Stephen; Font-Ribera, Andreu; Carithers, William; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lee, Khee-Gan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Pieri, Matthew M.; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Bovy, Jo] Inst Adv Study, Princeton, NJ 08540 USA. [Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA. [Dawson, Kyle S.; Olmstead, Matthew D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Eisenstein, Daniel J.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Delubac, Timothee; Kneib, Jean-Paul] Ecole Polytech Fed Lausanne, Lab Astrophys, CH-1015 Lausanne, Switzerland. [Kneib, Jean-Paul] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis, Barcelona, Catalonia, Spain. [Gontcho, Satya Gontcho A.; Miralda-Escude, Jordi] Univ Barcelona, IEEC, Inst Ciencies Cosmos, E-08028 Barcelona, Catalonia, Spain. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Noterdaeme, Pasquier; Paris, Isabelle; Petitjean, Patrick] Univ Paris 06, F-75014 Paris, France. [Noterdaeme, Pasquier; Paris, Isabelle; Petitjean, Patrick] CNRS, Inst Astrophys Paris, F-75014 Paris, France. [O'Connell, Ross] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60615 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60615 USA. [Busca, Nicola G.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [Busca, Nicola G.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. RP Delubac, T (reprint author), CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. EM timothee.delubac@epfl.ch RI Kneib, Jean-Paul/A-7919-2015; EPFL, Physics/O-6514-2016; OI Kneib, Jean-Paul/0000-0002-4616-4989; Bovy, Jo/0000-0001-6855-442X FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; Agence Nationale de la Recherche [ANR-12-BS05-0015-01, ANR-08-BLAN-0222]; ERC advanced grant LIDA; European Union [PHF-GA-2011-301665]; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; ERC; European Union Seventh Framework Programme [PHF-GA-2011-301665] FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III web site is http: //www.adss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona. the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group. the German Participation Group, Harvard University. the Instituto de Astrofisica de Canarias. the Michigan State/Notre Dame/JINA Participation Group. Johns Hopkins University. Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University. University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. The French Participation Group of SDSS-III was supported by the Agence Nationale de la Recherche under contracts ANR-08-BLAN-0222 and ANR-12-BS05-0015-01. Timothee Delubac and Jean Paul Kneib acknowledge support from the ERC advanced grant LIDA. Matthew Pieri has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. [PHF-GA-2011-301665]. The authors acknowledge the support of France Grilles for providing computing resources on the French National Grid Infrastructure. NR 62 TC 120 Z9 121 U1 0 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2015 VL 574 AR A59 DI 10.1051/0004-6361/201423969 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB2OJ UT WOS:000349467000059 ER PT J AU Leloudas, G Hsiao, EY Johansson, J Maeda, K Moriya, TJ Nordin, J Petrushevska, T Silverman, JM Sollerman, J Stritzinger, MD Taddia, F Xu, D AF Leloudas, G. Hsiao, E. Y. Johansson, J. Maeda, K. Moriya, T. J. Nordin, J. Petrushevska, T. Silverman, J. M. Sollerman, J. Stritzinger, M. D. Taddia, F. Xu, D. TI Supernova spectra below strong circumstellar interaction SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: general ID CORE-COLLAPSE SUPERNOVAE; ABSOLUTE MAGNITUDE DISTRIBUTIONS; GAMMA-RAY BURST; IA SUPERNOVAE; LIGHT-CURVES; IIN SUPERNOVAE; SN 2009IP; STRIPPED-ENVELOPE; MASSIVE STAR; LOW-LUMINOSITY AB We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a black-body continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as "SNe IInS" to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum f(v) is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as f(v) decreases. The transition between Ia-CSM and IInS occurs at f(v) similar to 0.2-0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range -19.5 > M > -21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the H alpha profiles vary with f(v). SNe IIn fainter than M = -17.2 are unable to mask SNe IIP brighter than M = -15. A more advanced simulation, including radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement with real data. C1 [Leloudas, G.; Johansson, J.; Petrushevska, T.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Leloudas, G.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Leloudas, G.; Xu, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Hsiao, E. Y.] Las Campanas Observ, Carnegie Observ, Colina El Pino, Chile. [Hsiao, E. Y.; Stritzinger, M. D.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Maeda, K.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Maeda, K.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Moriya, T. J.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Nordin, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Nordin, J.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Sollerman, J.; Taddia, F.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. RP Leloudas, G (reprint author), Stockholm Univ, Dept Phys, Oskar Klein Ctr, S-10691 Stockholm, Sweden. EM giorgos@dark-cosmology.dk OI Sollerman, Jesper/0000-0003-1546-6615; stritzinger, maximilian/0000-0002-5571-1833 FU Swedish Research Council [623-2011-7117]; Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant; JSPS [23740141, 26800100]; Japan Society for the Promotion of Science Postdoctoral Fellowships Astrophysics Postdoctoral fellowship [AST-1302771]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Swedish Research Council; Danish National Research Foundation FX We thank Joe Anderson for sharing with us the results on the absolute magnitude distribution of Type II SNe prior to publication. We also thank Ariel Goobar and Rahman Amanullah for discussions, and Jens Hjorth for comments on th manuscipt. G.L. was supported by the Swedish Research Council through grant No. 623-2011-7117 during the time this work was carried out. E.Y.H. and M.D.S. gratefully acknowledge generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. The work by K.M. is supported by JSPS Grant-in-Aid for Scientific Research (23740141, 26800100). T.J.M. is supported by Japan Society for the Promotion of Science Postdoctoral Fellowships Astrophysics Postdoctoral fellowship under award AST-1302771. This research is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The Oskar Klein Centre is funded by the Swedish Research Council. The Dark Cosmology Centre is funded by the Danish National Research Foundation. NR 101 TC 10 Z9 10 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2015 VL 574 AR A61 DI 10.1051/0004-6361/201322035 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB2OJ UT WOS:000349467000061 ER PT J AU Topham, CM Smith, JC AF Topham, Christopher M. Smith, Jeremy C. TI Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues SO COMPUTATIONAL BIOLOGY AND CHEMISTRY LA English DT Article DE Peptide reference structure; Relative amino acid solvent-accessible surface area; Peptide geometry; Protein conformation; Quantum chemical modelling ID SOLVATION MODEL; FORCE-FIELD; BIOMOLECULAR SIMULATIONS; STRUCTURE VALIDATION; SUBSTITUTION TABLES; MOLECULAR-DYNAMICS; COLLAGEN STABILITY; UNFOLDED PROTEINS; BACKBONE GEOMETRY; PROLINE RESIDUES AB Relative amino acid residue solvent accessibility values allow the quantitative comparison of atomic solvent-accessible surface areas in different residue types and physical environments in proteins and in protein structural alignments. Geometry-optimised tri-peptide structures in extended solvent-exposed reference conformations have been obtained for 43 amino acid residue types at a high level of quantum chemical theory. Significant increases in side-chain solvent accessibility, offset by reductions in main-chain atom solvent exposure, were observed for standard residue types in partially geometry-optimised structures when compared to non-minimised models built from identical sets of proper dihedral angles abstracted from the literature. Optimisation of proper dihedral angles led most notably to marked increases of up to 54% in proline main-chain atom solvent accessibility compared to literature values. Similar effects were observed for fully-optimised tri-peptides in implicit solvent. The relief of internal strain energy was associated with systematic variation in N, C-alpha and C-beta atom solvent accessibility across all standard residue types. The results underline the importance of optimisation of 'hard' degrees of freedom (bond lengths and valence bond angles) and improper dihedral angle values from force field or other context-independent reference values, and impact on the use of standardised fixed internal co-ordinate geometry in sampling approaches to the determination of absolute values of protein amino acid residue solvent accessibility. Quantum chemical methods provide a useful and accurate alternative to molecular mechanics methods to perform energy minimisation of peptides containing non-standard (chemically modified) amino acid residues frequently present in experimental protein structure data sets, for which force field parameters may not be available. Reference tri-peptide atomic co-ordinate sets including hydrogen atoms are made freely available. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Topham, Christopher M.] Mol Forces Consulting, F-31400 Toulouse, France. [Topham, Christopher M.; Smith, Jeremy C.] Heidelberg Univ, IWR, D-69120 Heidelberg, Germany. [Topham, Christopher M.; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Topham, Christopher M.; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Topham, CM (reprint author), Mol Forces Consulting, 40 Rue Boyssonne, F-31400 Toulouse, France. EM christopher.topham@gmail.com RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU University of Tennessee; Oak Ridge Institute for Science and Education (ORISE) FX CMT is grateful to the University of Tennessee and the Oak Ridge Institute for Science and Education (ORISE) for the award of visiting scholarships. NR 79 TC 3 Z9 3 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1476-9271 EI 1476-928X J9 COMPUT BIOL CHEM JI Comput. Biol. Chem. PD FEB PY 2015 VL 54 BP 33 EP 43 DI 10.1016/j.compbiolchem.2014.11.007 PG 11 WC Biology; Computer Science, Interdisciplinary Applications SC Life Sciences & Biomedicine - Other Topics; Computer Science GA CC2QS UT WOS:000350190300004 PM 25544680 ER PT J AU Reiner, A Levitz, J Isacoff, EY AF Reiner, Andreas Levitz, Joshua Isacoff, Ehud Y. TI Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential SO CURRENT OPINION IN PHARMACOLOGY LA English DT Article ID UNNATURAL AMINO-ACIDS; OPTICAL CONTROL; ION CHANNELS; PHOTOCHROMIC AGONIST; DENDRITIC SPINES; TETHERED LIGANDS; AMPA RECEPTORS; REMOTE-CONTROL; 2-PHOTON; ACTIVATION AB Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. C1 [Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Reiner, Andreas/E-4897-2011 OI Reiner, Andreas/0000-0003-0802-7278 FU National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function [2PN2EY018241] FX We thank all members of the Isacoff lab and our collaboration partners who contributed to the development and refinement of soluble and tethered photoswitches. Work in our lab was supported by the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (2PN2EY018241). NR 45 TC 11 Z9 11 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4892 EI 1471-4973 J9 CURR OPIN PHARMACOL JI Curr. Opin. Pharmacol. PD FEB PY 2015 VL 20 BP 135 EP 143 DI 10.1016/j.coph.2014.12.008 PG 9 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA CB6LN UT WOS:000349738600020 PM 25573450 ER PT J AU Weber, WJ Duffy, DM Thome, L Zhang, YW AF Weber, William J. Duffy, Dorothy M. Thome, Lionel Zhang, Yanwen TI The role of electronic energy loss in ion beam modification of materials SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Irradiation effects; Electronic/nuclear energy loss; Two-temperature model; Thermal spike model; Ion annealing; Synergistic effects ID MOLECULAR-DYNAMICS SIMULATIONS; RADIATION-DAMAGE; IRRADIATION FACILITY; COLLISION CASCADES; GRAIN-GROWTH; LATTICE; METALS; TRACKS; IMMOBILIZATION; SEMICONDUCTORS AB The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. These results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Weber, William J.; Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, William J.; Zhang, Yanwen] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Duffy, Dorothy M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Duffy, Dorothy M.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Thome, Lionel] Univ Paris 11, IN2P3, CNRS, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France. RP Weber, WJ (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wjweber@utk.edu; d.duffy@ucl.ac.uk; Lionel.Thome@csnsm.in2p3.fr; Zhangy1@ornl.gov RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The research of two authors (WJW, YZ) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 83 TC 23 Z9 23 U1 10 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2015 VL 19 IS 1 BP 1 EP 11 DI 10.1016/j.cossms.2014.09.003 PG 11 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CC1FC UT WOS:000350085600001 ER PT J AU Zhang, YW Debelle, A Boulle, A Kluth, P Tuomisto, F AF Zhang, Yanwen Debelle, Aurelien Boulle, Alexandre Kluth, Patrick Tuomisto, Filip TI Advanced techniques for characterization of ion beam modified materials SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Rutherford backscattering spectrometry; Raman spectroscopy; X-ray diffraction; Small-angle X-ray scattering; Positron annihilation spectroscopy; Ion beam modification ID X-RAY-DIFFRACTION; RAMAN-SPECTROSCOPY; RUTHERFORD BACKSCATTERING; COMPOUND-CRYSTALS; SINGLE-CRYSTALS; SILICON-CARBIDE; ENERGY LOSS; IRRADIATION; DEFECTS; TRACKS AB Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of mu m, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhang, Yanwen] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Debelle, Aurelien] Univ Paris 11, IN2P3, CNRS, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France. [Boulle, Alexandre] Ctr Europeen Ceram, CNRS UMR 7315, F-87068 Limoges, France. [Kluth, Patrick] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia. [Tuomisto, Filip] Aalto Univ, Dept Appl Phys, Aalto 00076, Finland. RP Zhang, YW (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM zhangy1@ornl.gov; aurelien.debelle@u-psud.fr; alexandre.boulle@unilim.fr; Patrick.Kluth@anu.edu.au; filip.tuomisto@aalto.fi RI Kluth, Patrick/A-1497-2008; Tuomisto, Filip/B-8189-2008 OI Kluth, Patrick/0000-0002-1806-2432; Tuomisto, Filip/0000-0002-6913-5654 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; SAXS/WAXS beam line at the Australian Synchrotron; Australian Research Council; Centre National de la Recherche (CNRS); Universite Paris-Sud; Universite de Limoges; Academy of Finland FX YZ was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. PK acknowledges the SAXS/WAXS beam line at the Australian Synchrotron and the Australian Research Council for financial support. AD and AB research work was supported by the Centre National de la Recherche (CNRS) and by Universite Paris-Sud and Universite de Limoges. FT acknowledges the Academy of Finland for financial support. NR 77 TC 15 Z9 15 U1 7 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2015 VL 19 IS 1 BP 19 EP 28 DI 10.1016/j.cossms.2014.09.007 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CC1FC UT WOS:000350085600003 ER PT J AU Lang, M Devanathan, R Toulemonde, M Trautmann, C AF Lang, Maik Devanathan, Ram Toulemonde, Marcel Trautmann, Christina TI Advances in understanding of swift heavy-ion tracks in complex ceramics SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Swift heavy Ions; Pyrochlores; Tracks; Thermal spike; MD simulation ID IRRADIATION-INDUCED AMORPHIZATION; TRANSIENT THERMAL-PROCESS; ELECTRONIC-ENERGY LOSS; BUBBLE RE-SOLUTION; MOLECULAR-DYNAMICS; INORGANIC INSULATORS; MAGNETIC INSULATORS; RADIATION TOLERANCE; FISSION TRACKS; CROSS-SECTION AB Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A(2)B(2)O(7), the track structure and radiation sensitivity show a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system). Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lang, Maik] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Devanathan, Ram] Pacific NW Natl Lab, Div Nucl Sci, Richland, WA 99352 USA. [Toulemonde, Marcel] Univ Caen, CEA CNRS ENSICAEN, CIMAP GANIL, Ctr Rech Ions Mat & Photon, F-14070 Caen, France. [Trautmann, Christina] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Trautmann, Christina] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. RP Trautmann, C (reprint author), GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany. RI Trautmann, Christina/C-6623-2016; OI Devanathan, Ram/0000-0001-8125-4237 FU Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089] FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award #DE-SC0001089 (UT). The authors gratefully acknowledge editing support by Jacob Shamblin (University of Tennessee). NR 79 TC 15 Z9 15 U1 15 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2015 VL 19 IS 1 BP 39 EP 48 DI 10.1016/j.cossms.2014.10.002 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CC1FC UT WOS:000350085600005 ER PT J AU Rocha, P Siddiqui, A Stadler, M AF Rocha, Paula Siddiqui, Afzal Stadler, Michael TI Improving energy efficiency via smart building energy management systems: A comparison with policy measures SO ENERGY AND BUILDINGS LA English DT Article DE Smart building energy management; Dynamic energy consumption; Energy-efficiency policy measures; Non-linear optimisation ID MICROGRIDS; SIMULATION; POWER AB To foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Rocha, Paula; Siddiqui, Afzal] UCL, Dept Stat Sci, London, England. [Siddiqui, Afzal] Stockholm Univ, Dept Comp & Syst Sci, S-10691 Stockholm, Sweden. [Stadler, Michael] Ctr Energy & Innovat Technol, Hofamt Priel, Austria. [Stadler, Michael] Ernesto Orlando Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Siddiqui, A (reprint author), UCL, Dept Stat Sci, London, England. EM p.rocha@ucl.ac.uk; afzal.siddiqui@ucl.ac.uk; MStadler@cet.or.at OI Rocha, Paula/0000-0003-3498-6077 FU European Union Seventh Framework Programme [260041]; Austrian Federal Ministry for Transport, Innovation, and Technology through the "Building of Tomorrow" program; Theodor Kery Foundation of the province of Burgenland FX The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 260041 for Collaborative Project "Energy Efficiency and Risk Management in Public Buildings" (EnRiMa). The Center for Energy and Innovative Technologies (CET) is supported by the Austrian Federal Ministry for Transport, Innovation, and Technology through the "Building of Tomorrow" program and by the Theodor Kery Foundation of the province of Burgenland. Cooperation of Fundacion Asturiana de Atencion y Proteccion a Personas con Discapacidades y/o Dependencias (Siero, Asturias, Spain), Fachhochschule Burgenland's Pinkafeld campus (Burgenland, Austria), and Fachhochschule Technikum Wien's ENERGYbase facility (Vienna, Austria) has greatly enhanced our understanding of energy management at the building level. Feedback from Ruud Egging (SINTEF and NTNU) has helped to improve this paper. We are also grateful for comments provided by two anonymous reviewers. All remaining errors are the authors' own. NR 19 TC 19 Z9 19 U1 3 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2015 VL 88 BP 203 EP 213 DI 10.1016/j.enbuild.2014.11.077 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CB6JA UT WOS:000349732100020 ER PT J AU D'Oca, S Hong, TZ AF D'Oca, Simona Hong, Tianzhen TI Occupancy schedules learning process through a data mining framework SO ENERGY AND BUILDINGS LA English DT Article DE Occupant behavior; Data mining; Occupancy schedule; Behavioral pattern; Office building; Building simulation ID SIMULATION; PATTERNS; BEHAVIOR; OFFICES; MODELS AB Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10 min interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. The identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings. (C) 2014 Elsevier B.V. All rights reserved. C1 [D'Oca, Simona; Hong, Tianzhen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Oca, Simona] Politecn Torino, I-10129 Turin, Italy. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@lbl.gov FU U.S. Department of Energy under the U.S.-China Clean Energy Research Center for Building Energy Efficiency [DE-AC02-05CH11231] FX This work was sponsored by the U.S. Department of Energy (Contract No. DE-AC02-05CH11231) under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The authors very appreciated Marcel Schweiker and Andreas Wagner of Karlsruhe Institute of Technology, Germany for sharing the dataset and answering our questions. This work is also part of the research activities of the International Energy Agency Energy in Buildings and Communities Program Annex 66, Definition and Simulation of Occupant Behavior in Buildings. NR 32 TC 27 Z9 27 U1 8 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2015 VL 88 BP 395 EP 408 DI 10.1016/j.enbuild.2014.11.065 PG 14 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CB6JA UT WOS:000349732100036 ER PT J AU Chick, L Weimar, M Whyatt, G Powell, M AF Chick, L. Weimar, M. Whyatt, G. Powell, M. TI The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation SO FUEL CELLS LA English DT Article DE Cost Study; Distributed Generation; Natural Gas Fuelled; Power System; Solid Oxide Fuel Cell ID BENEFITS AB Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 55% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. PNNL has performed cost modeling for production of 270kW (DC) NGSOFC power systems, sized for light industry or large box stores. If mass manufacturing (10.000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 8,2 (c) over bar /kWh, well within the range of commercial and residential retail prices at the national level (9,9-10 (c) over bar /kWh and 11-12 (c) over bar /kWh, respectively). With 5 (c) over bar /kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices. C1 [Chick, L.; Weimar, M.; Whyatt, G.; Powell, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chick, L (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM larry.chick@pnnl.gov NR 36 TC 2 Z9 2 U1 1 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD FEB PY 2015 VL 15 IS 1 BP 49 EP 60 DI 10.1002/fuce.201400103 PG 12 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA CB9RS UT WOS:000349970700006 ER PT J AU Krishnan, L Yeager, G Clark, K Kerr, J Soloveichik, G AF Krishnan, L. Yeager, G. Clark, K. Kerr, J. Soloveichik, G. TI Enhanced Fuel Cell Performance of Decalin Treated Nafion (R) Membranes SO FUEL CELLS LA English DT Article DE Decalin; Low RH Operation; Nafion; Organic Fuels; SAXS ID X-RAY-SCATTERING; HYDROGEN STORAGE; TRANSPORT; OXIDATION; HUMIDITY; HYDRIDES AB The interaction of Nafion (R) 212 membrane with a carbocyclic fuel, decalin was studied. Membrane electrode assemblies ( MEA) fabricated with decalin treated membranes exhibited significant increase in power density in a H-2/Air fuel cell at 60% relative humidity. Small angle X-ray scattering experiments were used to understand the morphological changes in the membrane due to decalin treatment. C1 [Krishnan, L.; Yeager, G.; Soloveichik, G.] GE Global Resarch, Niskayuna, NY 12309 USA. [Clark, K.; Kerr, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Krishnan, L (reprint author), GE Global Resarch, 1 Res Circle, Niskayuna, NY 12309 USA. EM krishnan@ge.com FU Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage, an Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001055] FX This material is based upon work supported as part of the Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001055. NR 26 TC 1 Z9 1 U1 6 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD FEB PY 2015 VL 15 IS 1 BP 239 EP 245 DI 10.1002/fuce.201400130 PG 7 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA CB9RS UT WOS:000349970700025 ER PT J AU Tillack, MS Humrickhouse, PW Malang, S Rowcliffe, AF AF Tillack, M. S. Humrickhouse, P. W. Malang, S. Rowcliffe, A. F. TI The use of water in a fusion power core SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Blankets; Divertors; Power plants ID RESEARCH-AND-DEVELOPMENT; STEAM-CHEMICAL-REACTIVITY; LITHIUM-LEAD BLANKET; TITANIUM BERYLLIDE; COPPER-ALLOYS; DEMO DESIGN; ITER; DIVERTOR; TOKAMAK; PLANT AB Water has both advantages and disadvantages as a coolant in conceptual designs of future fusion power plants. In the United States, water has not been chosen as a fusion power core coolant for decades. Researchers in other countries continue to adopt water in their designs, in some cases as the leading or sole candidate. In this article, we summarize the technical challenges resulting from the choice of water coolant and the differences in approach and assumptions that lead to different design decisions amongst researchers in this field. (C) 2014 Elsevier B.V. All rights reserved. C1 [Tillack, M. S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Humrickhouse, P. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Malang, S.] Fus Nucl Technol Consulting, D-83415 Linkenheim, Germany. [Rowcliffe, A. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tillack, MS (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM mtillack@ucsd.edu FU U.S. Department of Energy Office of Fusion Energy Sciences [DE-FG02-04ER54757, DE-AC07-051D14517] FX This material is based upon work supported by the U.S. Department of Energy Office of Fusion Energy Sciences under Award Numbers DE-FG02-04ER54757 and DE-AC07-051D14517. NR 55 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD FEB PY 2015 VL 91 BP 52 EP 59 DI 10.1016/j.fusengdes.2014.12.013 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CC1CJ UT WOS:000350078500008 ER PT J AU Jones, KR Whitaker, RW Arrowsmith, SJ AF Jones, Kyle R. Whitaker, Rodney W. Arrowsmith, Stephen J. TI Modelling infrasound signal generation from two underground explosions at the Source Physics Experiment using the Rayleigh integral SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Controlled source seismology; Seismic monitoring and test-ban treaty verification; Wave propagation; Acoustic properties AB We use the Rayleigh integral (RI) as an approximation to the Helmholtz-Kirchoff integral to model infrasound generation and propagation from underground chemical explosions at distances of 250 m out to 5 km as part of the Source Physics Experiment (SPE). Using a sparse network of surface accelerometers installed above ground zero, we are able to accurately create synthetic acoustic waveforms and compare them to the observed data. Although the underground explosive sources were designed to be symmetric, the resulting seismic wave at the surface shows an asymmetric propagation pattern that is stronger to the northeast of the borehole. This asymmetric bias may be attributed to the subsurface geology and faulting of the area and is observed in the acoustic waveforms. We compare observed and modelled results from two of the underground SPE tests with a sensitivity study to evaluate the asymmetry observed in the data. This work shows that it is possible to model infrasound signals from underground explosive sources using the RI and that asymmetries observed in the data can be modelled with this technique. C1 [Jones, Kyle R.] Sandia Natl Labs, Ground Based Monitoring R&E, Albuquerque, NM 87185 USA. [Whitaker, Rodney W.; Arrowsmith, Stephen J.] Los Alamos Natl Lab, EES MSF665 17, Los Alamos, NM 87545 USA. RP Jones, KR (reprint author), Sandia Natl Labs, Ground Based Monitoring R&E, POB 5800, Albuquerque, NM 87185 USA. EM krjones@sandia.gov FU Los Alamos National Laboratory [DE-AC52-06NA25946]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy's NNSA FX The authors want to thank Bobby Corbell (Sandia - Ret.) for deploying and collecting the SPE-2 data set as well Bob White and Ryan Emmitt (NSTec) for their invaluable and continued field efforts in support of this project. We would also like to thank Maggie Townsend (NSTec) for her valuable insight into the geology and surface fracturing of the SPE source region and Artie Rodgers (LLNL) for his insightful comments and feedback on the analysis. The SPEs would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN R&D), and the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was done by Sandia National Laboratories and Los Alamos National Laboratory under award number DE-AC52-06NA25946. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-9173J. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy's NNSA. NR 16 TC 0 Z9 0 U1 2 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2015 VL 200 IS 2 BP 777 EP 788 DI 10.1093/gji/ggu433 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC0RC UT WOS:000350042400006 ER PT J AU Kaviani, A Sandvol, E Bao, XY Rumpker, G Gok, R AF Kaviani, Ayoub Sandvol, Eric Bao, Xueyang Ruempker, Georg Goek, Rengin TI The structure of the crust in the Turkish-Iranian Plateau and Zagros using Lg Q and velocity SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Turkish-Iranian Plateau; Seismic attenuation; Seismic tomography; Crustal structure ID FREQUENCY-DEPENDENT ATTENUATION; CONTINENTAL COLLISION ZONE; SEISMIC-WAVE PROPAGATION; SOUTH CASPIAN BASIN; MOUNTAIN BELT IRAN; EAST-CENTRAL IRAN; MIDDLE-EAST; LITHOSPHERIC STRUCTURE; LATERAL VARIATIONS; STRUCTURE BENEATH AB We present a new approach for understanding the origin and nature of seismic anomalies in the continental crust of the Northern Middle East. We have created detailed attenuation (Q(Lg)) and velocity (V-Lg) models for the Northern Middle East based on the analysis of waveforms of regional seismic phase Lg from 3171 regional earthquakes recorded at 578 stations in Turkish and Iranian Plateaus and surrounding regions. The attenuation and velocity models are assumed to serve as proxies for the bulk average crustal shear wave attenuation (Q(beta)) and velocities (V-s). 31 232 reliable Lg spectra were collected and used to measure the two-station method (TSM) and reverse two-station/event method (RTM) Lg Q at 1 Hz (Q(0)) and its frequency-dependence factor (eta). The Lg Q(0) and eta values are measured over the individual TSM and RTM paths and are then used to perform an LSQR tomographic inversion for lateral variations in Q(0) and eta. The Lg Q(0) and. models both correlate well with the major tectonic boundaries in the region. The tomographic models as well as the individual TSM and RTM measurements show lower values of Lg Q(0) over the Turkish-Anatolian Plateau (<150) than those observed over the Iranian Plateau (150-400). Furthermore, we obtained the Lg group velocity model by inverting the time of the first arrival of the Lg waveform on each seismogram. Our Q measurements are strongly correlated with the measurements of Lg group velocity (V-Lg) suggesting that the source of many of the low Q and velocity anomalies is likely the same. The regions where we see negative correlations are likely a result of Sn to Lg converted energy. Our results also have implications for the far field ground motions, suggesting that large earthquakes in eastern Iran could have a significant far field ground motions due to relatively low crustal attenuation within the Iranian plateau. C1 [Kaviani, Ayoub; Ruempker, Georg] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Sandvol, Eric] Univ Missouri Columbia, Dept Geol Sci, Columbia, MO 65211 USA. [Bao, Xueyang] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Goek, Rengin] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Kaviani, A (reprint author), Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. EM kaviani@geophysik.uni-frankfurt.de RI Gok, Rengin/O-6639-2014; GEOFON, GlobalSeismicNetwork/E-4273-2012 FU AFRL [FA9453-11-C-0235] FX We would like to thank our colleagues at the KOERI and Azeri seismic networks for providing data for this study. We also thank the Iranian Seismological Center (IRSC: http://irsc.ut.ac.ir) for providing public access to the data from the Iranian permanent stations. The data from the temporary stations in Iran come from two transects run across the Zagros, Alborz and Central Iran in 2001 and 2003 through collaboration between IIEES (Iran), ISTerre (Grenoble, France) and University of Cambridge (UK). Anne Paul from ISTerre is thanked for making the data available to us. GEOFON is also thanked for providing data from the permanent and temporary stations along the Dead Sea Fault. We would also like to thank the IRIS-DMC for providing data to us. We are grateful to the editor J. Wassermann and an anonymous reviewer for their constructive comments and suggestions that improved the manuscript. We used GMT software (www.soest.hawaii.edu/gmt) for some of the figures presented in the paper. This work was supported by an AFRL contract No. FA9453-11-C-0235. NR 73 TC 5 Z9 5 U1 1 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2015 VL 200 IS 2 BP 1252 EP 1266 DI 10.1093/gji/ggu468 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC0RC UT WOS:000350042400039 ER PT J AU DePaolo, DJ AF DePaolo, Donald J. TI GHG S&T Editorial January 2015 SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP DePaolo, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 74R316C, Berkeley, CA 94720 USA. EM djdepaolo@lbl.gov NR 4 TC 0 Z9 0 U1 1 U2 3 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2015 VL 5 IS 1 BP 1 EP 2 DI 10.1002/ghg.1481 PG 2 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA CB8RQ UT WOS:000349899000001 ER PT J AU Lu, C Zhang, C Hunag, H Johnson, TC AF Lu, Chuan Zhang, Chi Hunag, Hai Johnson, Timothy C. TI Monitoring CO2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time-lapse electrical resistivity tomography SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE electrical resistivity tomography; CO2 monitoring; brine intrusion ID INJECTED CO2; VADOSE ZONE; INVERSION; SITE; NAGAOKA; PILOT AB Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions. C1 [Lu, Chuan] Chinese Acad Geol Sci, Inst Hydrol & Environm Geol, Shjiazhuang, Hebei, Peoples R China. [Zhang, Chi; Hunag, Hai] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Zhang, Chi] Rutgers State Univ, Newark, NJ 07102 USA. [Johnson, Timothy C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, C (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, 101 Warren St, Newark, NJ 07102 USA. EM chi.zhang15@gmail.com FU Idaho National Laboratory (INL) Laboratory Directed Research and Development (LDRD) program FX This work is sponsored by Idaho National Laboratory (INL) Laboratory Directed Research and Development (LDRD) program. NR 32 TC 0 Z9 0 U1 1 U2 10 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2015 VL 5 IS 1 BP 34 EP 49 DI 10.1002/ghg.1437 PG 16 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA CB8RQ UT WOS:000349899000005 ER PT J AU Oldenburg, CM Spycher, N AF Oldenburg, Curtis M. Spycher, Nicolas TI Will mercury impurities impact CO2 injectivity in deep sedimentary formations? I. Condensation and net porosity reduction SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE mercury; injectivity; geologic carbon sequestration; contaminants in CO2; condensation; cinnabar ID SALT-PRECIPITATION; PRESSURE; STORAGE AB Mercury is a common contaminant in natural gas and partially follows carbon dioxide through amine separation during natural gas processing. In this study, we used simple volumetric analyses, the simulator TOUGH2/EOS7C, and dew-point calculations to investigate the potential impacts on injectivity of trace amounts of mercury in a carbon dioxide stream injected for geologic carbon dioxide sequestration. For mercury concentrations up to 190 ppbV (approximate to 1.6 mg/stdm(3) CO2), the total volumetric pore-space plugging that could occur around the wellbore due to complete condensation of mercury, or due to complete precipitation of mercury as cinnabar, results in a very small porosity change. Evaporative concentration of aqueous mercury by water evaporation into carbon dioxide is unlikely because the volatility of mercury into the carbon dioxide stream is higher than that of water. Dew-point calculations suggest that mercury concentrations of about 2000 ppbV are needed for mercury condensation to occur. Our analyses suggest that for mercury concentrations of a few hundred ppbV, the impacts on injectivity of mercury deposition by condensation or precipitation as cinnabar are negligible. C1 [Oldenburg, Curtis M.; Spycher, Nicolas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Spycher, Nicolas/E-6899-2010 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Chevron; Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX We thank Tim Kneafsey (LBNL) for helpful discussions and review of an earlier draft. Support for this work was provided by Chevron with project management by Scott Imbus (Chevron). Additional support was provided by the Assistant Secretary for Fossil Energy (DOE), Office of Coal and Power Systems, through the National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 21 TC 2 Z9 2 U1 1 U2 9 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2015 VL 5 IS 1 BP 64 EP 71 DI 10.1002/ghg.1472 PG 8 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA CB8RQ UT WOS:000349899000007 ER PT J AU Spycher, N Oldenburg, CM AF Spycher, Nicolas Oldenburg, Curtis M. TI Will mercury impurities impact CO2 injectivity in deep sedimentary formations? II. Mineral dissolution and precipitation SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CCS; carbon dioxide; Hg; H2S; reactive transport; cinnabar; injection; co-contaminant; carbon; geologic storage; modeling; porosity ID MOLAL THERMODYNAMIC PROPERTIES; AQUIFER DISPOSAL; SALINE AQUIFER; NORTH-SEA; DAWSONITE; SEQUESTRATION; SOLUBILITY; GASES; DEPOSITION; TRANSPORT AB Numerical simulations of carbon dioxide (CO2) injection into a sandstone reservoir (approximate to 2 km depth) were used to investigate the geochemical effects of trace amounts of mercury (Hg, 7 and 190 ppbV), with and without hydrogen sulfide (H2S, 200 ppm). Geochemical reaction-path modeling shows that cinnabar precipitates as soon as the Hg-bearing CO2 reacts with the formation. Mercury does not condense to liquid, and the net volume change from mineral dissolution and precipitation is found to be negligible. Two-dimensional radial reactive transport simulations of CO2 injection at a rate of 14.5 kg/s (approximate to 0.5 Mt/y) into a 400-m-thick formation at 106 degrees C and 215 bar, with varying amounts of Hg and H2S, show that porosity changes only by about +/- 0.05% absolute (i.e., new porosity% = initial porosity% +/- 0.05), and that Hg readily precipitates as cinnabar in a zone mostly coinciding with the single-phase CO2 plume. This essentially negligible porosity change is not expected to affect permeability and CO2 injectivity. The precipitation of minerals other than cinnabar dominates the evolution of porosity. Although the predicted porosity change is small, the dissolution and precipitation predicted for individual minerals is not negligible. The main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars. Except for some replacement of pyrite by ankerite when H2S is deficient, the cases with and without H2S show similar results. Experimental measurements are needed to decrease uncertainty in simulation results. C1 [Spycher, Nicolas; Oldenburg, Curtis M.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Spycher, N (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM nspycher@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Spycher, Nicolas/E-6899-2010 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Chevron; Assistant Secretary for Fossil Energy (DOE), Office of Coal and Power Systems, through the National Energy Technology Laboratory (NETL); Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX We thank L. Zheng and N. Pester (LBNL) and two external reviewers for their constructive comments, and E. Sonnenthal (LBNL) for leading the development of TOUGHREACT V3-OMP and providing early versions of this simulator for our use in this study. Support for this work was provided by Chevron with project management by Scott Imbus (Chevron). Additional support was provided by the Assistant Secretary for Fossil Energy (DOE), Office of Coal and Power Systems, through the National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 55 TC 0 Z9 0 U1 2 U2 6 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2015 VL 5 IS 1 BP 72 EP 90 DI 10.1002/ghg.1474 PG 19 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA CB8RQ UT WOS:000349899000008 ER PT J AU Mengesha, W Kiff, SD AF Mengesha, Wondwosen Kiff, Scott D. TI Neutron Spectrometry for UF6 Enrichment Verification in Storage Cylinders SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE 30-B cylinders; Geant4 simulation; MCNP5 simulation; neutron spectrometry; nondestructive assay; principal component analysis; UF6; uranium enrichment ID SPECTRA; YIELDS AB Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. Results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented. C1 [Mengesha, Wondwosen; Kiff, Scott D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Mengesha, W (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM wmenges@sandia.gov; skiff@sandia.gov FU Laboratory of Directed Research and Development (LDRD) at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory of Directed Research and Development (LDRD) at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 272 EP 280 DI 10.1109/TNS.2015.2389214 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MZ UT WOS:000349672900011 ER PT J AU Deptuch, GW Carini, G Collier, T Grybos, P Kmon, P Lipton, R Maj, P Siddons, DP Szczygiel, R Yarema, R AF Deptuch, Grzegorz W. Carini, Gabriella Collier, Terence Grybos, Pawel Kmon, Piotr Lipton, Ronald Maj, Piotr Siddons, David P. Szczygiel, Robert Yarema, Raymond TI Results of Tests of Three-Dimensionally Integrated Chips Bonded to Sensors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Active pixel sensors; bonding processes; mixed analog digital integrated circuits; semiconductor radiation detectors; three-dimensional integrated circuits; through-silicon vias; X-ray detectors; wafer bonding ID CIRCUITS AB The VIPIC1 readout integrated circuit was designed for X-ray Photon Correlation Spectroscopy experiments that are typically performed using mono-energetic (8 keV) X-rays at a synchrotron radiation facility. The device is a pixel detector with sparsification and parallel readout from the groups, yielding high timing resolution. Recent improvements in bonding alignment of wafers resulted in deliveries of 3D bonded wafers. The stacks, bonded with both the Cu-Cu thermo-compression method and the Cu DBI bonding method, yielded operational devices that have been tested. Chips (with a pixel pitch of mu m) were also bonded to silicon pixelated sensors (with a pixel pitch of mu m) and the assemblies were exposed to X-ray sources for the first time. The paper focuses on the test results, including the calibrated noise (ENC) and the conversion gain. The noise measured corresponded to 39 e-and 70 e(-), respectively for the readout channels that were not connected and connected to the sensor diodes. The conversion gain varied from 43 to 52 mu V/e(-) as a function of the bias current in the front-end block. Essentially all the pixels on a small prototype were operational. C1 [Deptuch, Grzegorz W.; Lipton, Ronald; Yarema, Raymond] Fermilab Natl Accelerator Lab, ASIC Dev Grp, Dept Elect Engn, Particle Phys Div, Batavia, IL 60510 USA. [Siddons, David P.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Carini, Gabriella] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert] AGH Univ Sci & Technol, Dept Measurement & Elect, Fac Elect Engn Automat Comp Sci & Biomed Engn, PL-30059 Krakow, Poland. [Collier, Terence] CVInc, Richardson, TX 75081 USA. RP Deptuch, GW (reprint author), Fermilab Natl Accelerator Lab, ASIC Dev Grp, Dept Elect Engn, Particle Phys Div, POB 500, Batavia, IL 60510 USA. EM deptuch@ieee.org; carini@SLAC.stanford.edu; tqcol-lier@covinc.com; pawel.grybos@agh.edu.pl; kmon@agh.edu.pl; lipton@fnal.gov; piotr.maj@agh.edu.pl; siddons@bnl.gov; robert.szczygiel@agh.edu.pl; yarema@fnal.gov FU U.S. Department of Energy [DE-AC02-07CH11359]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Center [DEC-2011/01/B/ST7/05155]; EU FP7 AIDA program [262025]; Polish Ministry of Science and Higher Education [2225/7. PR/2011/2] FX Fermilab is operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. BNL is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. AGH-UST was supported by National Science Center, under Contract DEC-2011/01/B/ST7/05155 and by EU FP7 AIDA program (Grant Agreement Number 262025) and Polish Ministry of Science and Higher Education (Project number 2225/7. PR/2011/2). NR 10 TC 4 Z9 4 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 349 EP 358 DI 10.1109/TNS.2014.2378784 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MZ UT WOS:000349672900021 ER PT J AU Maj, P Grybos, P Szczygiel, R Kmon, P Kleczek, R Drozd, A Otfinowski, P Deptuch, G AF Maj, P. Grybos, P. Szczygiel, R. Kmon, P. Kleczek, R. Drozd, A. Otfinowski, P. Deptuch, G. TI Measurements of Matching and Noise Performance of a Prototype Readout Chip in 40 nm CMOS Process for Hybrid Pixel Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Analog circuits; matching; noise; x-ray detectors ID TECHNOLOGY; DESIGN; MODE AB The paper presents a prototype integrated circuit built in a 40 nm CMOS process for readout of a hybrid pixel detector. The core of the IC constitutes a matrix of 18 x 24 pixels with the pixel size of 100 mu m x 100 mu m. The paper explains the functionality and the architecture of the IC, which is designed to operate in both the standard single photon counting mode and the single photon counting mode with interpixel communication to mitigate negative effects of charge sharing. This article focuses on the measurement results of the IC operating in the standard single photon counting mode. The measured ENC is 84e(-) rms (for the peaking time of 48 ns), the gain is 79.7 mu V/e(-), while the effective threshold dispersion is 21e(-) rms. C1 [Maj, P.; Grybos, P.; Szczygiel, R.; Kmon, P.; Kleczek, R.; Drozd, A.; Otfinowski, P.; Deptuch, G.] AGH Univ Sci & Technol, Dept Measurements & Elect, PL-30059 Krakow, Poland. [Deptuch, G.] Fermilab Natl Accelerator Lab, Dept Particle Phys Div, Batavia, IL 60510 USA. RP Maj, P (reprint author), AGH Univ Sci & Technol, Dept Measurements & Elect, PL-30059 Krakow, Poland. EM maj@agh.edu.pl; pawel.grybos@agh.edu.pl; robert.szczygiel@agh.edu.pl; kmon@agh.edu.pl; rafal.kleczek@agh.edu.pl; drozd@agh.edu.pl; potfin@agh.edu.pl; deptuch@ieee.org FU National Science Center, Poland [DEC-2011/01/B/ST7/05155] FX This work was supported by the National Science Center, Poland under Contract DEC-2011/01/B/ST7/05155. NR 34 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 359 EP 367 DI 10.1109/TNS.2014.2385595 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MZ UT WOS:000349672900022 ER PT J AU Cameron, RJ Fritz, BG Hurlbut, C Kouzes, RT Ramey, A Smola, R AF Cameron, Richard J. Fritz, Bradley G. Hurlbut, Charles Kouzes, Richard T. Ramey, Ashley Smola, Richard TI Fogging in Polyvinyl Toluene Scintillators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Aging effects; crazing; fogging; linear expansion coefficient; plastic scintillator; polyvinyl toluene; PVT ID POLYMERS; WATER; DEGRADATION AB It has been observed that large polyvinyl toluene (PVT)-based gamma-ray detectors can suffer internal "fogging" when exposed to certain outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated. C1 [Cameron, Richard J.; Fritz, Bradley G.; Kouzes, Richard T.] PNNL, Richland, WA 99352 USA. [Hurlbut, Charles; Ramey, Ashley; Smola, Richard] Eljen Technol, Sweetwater, TX 79556 USA. RP Cameron, RJ (reprint author), PNNL, Richland, WA 99352 USA. EM Richard.cameron@pnnl.gov; bradley.fritz@pnnl.gov; churlbut@eljentechnology.com; richard.kouzes@pnnl.gov; aramey@lud-lums.com; rsmola@ludlums.com FU Eljen Technology; U.S. Department of Energy [DE-AC05-76RLO 1830] FX This work was supported in part by Eljen Technology. PNNL is operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 15 TC 0 Z9 0 U1 4 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 368 EP 371 DI 10.1109/TNS.2015.2390076 PN 2 PG 4 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MZ UT WOS:000349672900023 ER PT J AU Payne, SA AF Payne, Stephen A. TI Nonproportionality of Scintillator Detectors. IV. Resolution Contribution from Delta-Rays SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma ray detectors; optical materials; resolution; scintillation mechanisms; solid scintillation detectors ID LIGHT YIELD NONPROPORTIONALITY; INTRINSIC ENERGY RESOLUTION; NON-PROPORTIONALITY; COMPTON ELECTRONS; CHARGED-PARTICLES; NAI(TL); IONIZATION; CRYSTALS; CSI(TL) AB This paper is the fourth in a series of articles published on the light yield nonproportionality of scintillators and its impact on the detector's energy resolution. Herein, we focus on modeling the resolution degradation induced by delta-rays. To do this, we begin with Moller's classic equation to describe collisions between incident high-energy electrons and those in the scintillator medium, which lead to the delta-rays. The trajectories of delta-rays having energies above a specified cut-off value are further analyzed to determine the resolution degradation induced by fluctuations in their light yield and ionization density. Our conclusion is that the delta-ray contribution to resolution is typically smaller but comparable to that arising from the primary electron. We have considered the cases for two illustrative scintillators: NaI(Tl) and LSO(Ce). C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Payne, SA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM payne3@llnl.gov FU National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development Office of the U.S. DOE [DE-AC03-76SF00098]; U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development Office of the U.S. DOE under Contract No. DE-AC03-76SF00098, and was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. (Release #: LLNL-JRNL-660604). NR 39 TC 1 Z9 1 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 372 EP 380 DI 10.1109/TNS.2014.2387256 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MZ UT WOS:000349672900024 ER PT J AU Ren, YF Li, T Yu, DT Jin, SD Robertazzi, T AF Ren, Yufei Li, Tan Yu, Dantong Jin, Shudong Robertazzi, Thomas TI Design, Implementation, and Evaluation of a NUMA-Aware Cache for iSCSI Storage Servers SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Non-uniform memory access; internet small computer system interface (iSCSI); storage area networks; multi-core architecture; remote direct memory access ID PERFORMANCE; ARCHITECTURE AB In an iSCSI based storage area network, target hosts serve concurrent I/O requests from initiators to achieve both high throughput and low latency. Existing iSCSI leverages the OS page cache to ensure data sharing and reuse. However, the non-uniform memory access (NUMA) architecture introduces another dimension of complexity, i.e., asymmetric memory access in multi-core and many-core platforms. Within a NUMA platform, an iSCSI target often dispatches an access request with a cache hit to an I/O thread remote to cached data, and thus cannot fully utilize multi-core systems. We encounter this problem in the context of ultra high-speed data transfer between two iSCSI storage systems, during which inferior NUMA remote memory access lags behind available high network bandwidth, and thereby becomes a bottleneck of the entire end-to-end data transfer path. We design a NUMA-aware cache mechanism to align cache memory with local NUMA nodes and threads, and then schedule I/O requests to those threads that are local to the data being accessed. This NUMA-aware solution results in lower access latency and higher system throughput. We implement a cache system within the Linux SCSI target framework, and evaluated it on our NUMA-based iSCSI testbed. Experimental results show the NUMA-aware cache can significantly improve the performance of iSCSI as measured by several benchmark tools and confirm its viability in data intensive applications and real-life workloads. C1 [Ren, Yufei; Li, Tan; Jin, Shudong; Robertazzi, Thomas] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. [Yu, Dantong] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Ren, YF (reprint author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. EM yufei.ren@stonybrook.edu; tan.li@stonybrook.edu; dtyu@bnl.gov; shudong.jin@stonybrook.edu; thomas.robertazzi@stonybrook.edu FU United States Department of Energy [DE-SC0003361]; American Recovery and Reinvestment Act FX The authors are grateful to the facility and hardware donation from Mellanox Technologies, Inc., LSI Corp., and Fusion-io, Inc. This research was supported by United States Department of Energy, Grant No. DE-SC0003361. The contract is funded through the American Recovery and Reinvestment Act of 2009. NR 27 TC 2 Z9 2 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD FEB PY 2015 VL 26 IS 2 BP 413 EP 422 DI 10.1109/TPDS.2014.2311817 PG 10 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CB6XE UT WOS:000349769300009 ER PT J AU Ferson, S O'Rawe, J Antonenko, A Siegrist, J Mickley, J Luhmann, CC Sentz, K Finkel, AM AF Ferson, Scott O'Rawe, Jason Antonenko, Andrei Siegrist, Jack Mickley, James Luhmann, Christian C. Sentz, Kari Finkel, Adam M. TI Natural language of uncertainty: numeric hedge words SO INTERNATIONAL JOURNAL OF APPROXIMATE REASONING LA English DT Article DE Approximator; Linguistic expression of uncertainty; Hedge; Amazon Mechanical Turk; Elicitation; Uncertainty communication ID MEMBERSHIP FUNCTIONS; RISK COMMUNICATION; PROBABILITY; QUANTIFIERS; PREFERENCE AB An important part of processing elicited numerical inputs is an ability to quantitatively decode natural-language words that are commonly used to express or modify numerical values. These include 'about', 'around', 'almost', 'exactly', 'nearly', 'below', 'at least', 'order of, etc., which are collectively known as approximators or numerical hedges. Figuring out the quantitative implications of these expressions for the uncertainty of numerical quantities is important for being able to understand, for example, what is actually being reported by a patient who says a headache has lasted for "about 7 days", and how we should translate the patient's report into uncertainty about the duration. We used Amazon Mechanical Turk to empirically identify the implications of various approximators common in English. To evaluate the numerical range implied by each approximator, we analyzed paired statements differing only in the approximator used in numerical expressions. Despite often considerable diversity, there were several statistically significant findings, but far less quantitative variation implied by the approximators than might have been expected. The numerical implication of different approximators interacts with the magnitude and roundness of the nominal quantity. This investigation strategy generalizes easily to languages other than English. (C) 2014 Elsevier Inc. All rights reserved. C1 [O'Rawe, Jason] SUNY Stony Brook, Genet Program, Stony Brook, NY 11794 USA. [Antonenko, Andrei] SUNY Stony Brook, Dept Linguist, Stony Brook, NY 11794 USA. [Mickley, James] Univ Connecticut, Unit 3043, Storrs, CT 06269 USA. [Luhmann, Christian C.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Sentz, Kari] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Finkel, Adam M.] Univ Penn, Sch Law, Philadelphia, PA 19104 USA. RP Ferson, S (reprint author), 100 North Country Rd, Setauket, NY 11733 USA. EM sandp8@gmail.com OI Mickley, James/0000-0002-5988-5275 FU National Institutes of Health (NIH) [RC3LM010794]; National Science Foundation [0756539]; National Library of Medicine; American Recovery and Reinvestment Act FX We thank William McGill of Penn State, Lev Ginzburg and Dan Rozell of Stony Brook University, Mark Burgman and Louisa Flander of University of Melbourne, Nick Friedenberg of Applied Biomathematics, and Robert O'Connor of the National Science Foundation. This work was supported by the National Library of Medicine, a component of the National Institutes of Health (NIH), through a Small Business Innovation Research grant (award number RC3LM010794) to Applied Biomathematics funded under the American Recovery and Reinvestment Act, and by the National Science Foundation, through a grant (award number 0756539) to Adam Finkel at The University of Pennsylvania, and a subcontract with Applied Biomathematics. The views expressed should not be considered those of the National Library of Medicine, the National Institutes of Health, or the National Science Foundation. NR 71 TC 2 Z9 2 U1 2 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0888-613X EI 1873-4731 J9 INT J APPROX REASON JI Int. J. Approx. Reasoning PD FEB PY 2015 VL 57 BP 19 EP 39 DI 10.1016/j.ijar.2014.11.003 PG 21 WC Computer Science, Artificial Intelligence SC Computer Science GA CB8LA UT WOS:000349879900002 ER PT J AU Whittemore, SM Autrey, T AF Whittemore, Sean M. Autrey, Tom TI Kinetic and Thermodynamic Study of the Reduction of 1,1-Diphenylethylene by a Thermally Frustrated Diethyl Ether-BCF Lewis Pair SO ISRAEL JOURNAL OF CHEMISTRY LA English DT Article DE kinetics; Lewis acids; Lewis bases; NMR spectroscopy; thermodynamics ID FREE CATALYTIC-HYDROGENATION; METAL-FREE HYDROGENATION; HETEROLYTIC DIHYDROGEN ACTIVATION; KETONE HYDROGENATION; CARBONYL-COMPOUNDS; BORANE; REACTIVITY; B(C6F5)(3); DESIGN; IMINES C1 [Whittemore, Sean M.; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Autrey, T (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM tom.autrey@pnnl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The authors are grateful to Drs. Donald Camaioni and Abhi Karkamkar for valuable discussion. NR 28 TC 2 Z9 2 U1 2 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0021-2148 EI 1869-5868 J9 ISR J CHEM JI Isr. J. Chem. PD FEB PY 2015 VL 55 IS 2 SI SI BP 196 EP 201 DI 10.1002/ijch.201400142 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CB9LU UT WOS:000349953900005 ER PT J AU Daloz, AS Camargo, SJ Kossin, JP Emanuel, K Horn, M Jonas, JA Kim, D LaRow, T Lim, YK Patricola, CM Roberts, M Scoccimarro, E Shaevitz, D Vidale, PL Wang, H Wehner, M Zhao, M AF Daloz, Anne S. Camargo, S. J. Kossin, J. P. Emanuel, K. Horn, M. Jonas, J. A. Kim, D. LaRow, T. Lim, Y. -K. Patricola, C. M. Roberts, M. Scoccimarro, E. Shaevitz, D. Vidale, P. L. Wang, H. Wehner, M. Zhao, M. TI Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODELS; GLOBAL ATMOSPHERIC MODEL; SEA-SURFACE TEMPERATURE; AFRICAN EASTERLY WAVES; HIGH-RESOLUTION; CLIMATE MODELS; CMIP5 MODELS; INTENSITY; FREQUENCY; GCM AB A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1 degrees-0.25 degrees), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks' seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors' results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others. C1 [Daloz, Anne S.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53704 USA. [Camargo, S. J.; Kim, D.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Kossin, J. P.] NOAA Natl Climat Data Ctr, Asheville, NC USA. [Emanuel, K.] MIT, Cambridge, MA 02139 USA. [Horn, M.] Univ Melbourne, Sch Earth, Melbourne, Vic, Australia. [Jonas, J. A.] Columbia Univ, Ctr Climate Syst, New York, NY USA. [Jonas, J. A.; Lim, Y. -K.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Jonas, J. A.; Lim, Y. -K.] NASA Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res IM Syst Grp, Greenbelt, MD USA. [LaRow, T.] Florida State Univ, Tallahassee, FL 32306 USA. [Patricola, C. M.] Texas A&M Univ, College Stn, TX USA. [Roberts, M.] Met Off Hadley Ctr, Exeter, Devon, England. [Scoccimarro, E.] Ist Nazl Geofis & Vulcanol, Bologna, Italy. [Scoccimarro, E.] Ctr Euromediterraneo Cambiamenti Climat, Lecce, Italy. [Shaevitz, D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Vidale, P. L.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading, Berks, England. [Wang, H.] NOAA NWS NCEP Climate Predict Ctr, College Pk, MD USA. [Wang, H.] Innovim LLC, Greenbelt, MD USA. [Wehner, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wehner, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Zhao, M.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Daloz, AS (reprint author), Univ Wisconsin, Space Sci & Engn Ctr, 1225 West Dayton St,11th Floor, Madison, WI 53704 USA. EM adaloz@wisc.edu RI Camargo, Suzana/C-6106-2009; Zhao, Ming/C-6928-2014; Kossin, James/C-2022-2016; Patricola, Christina/L-9902-2016; OI Camargo, Suzana/0000-0002-0802-5160; Kossin, James/0000-0003-0461-9794; Patricola, Christina/0000-0002-3387-0307; Vidale, Pier Luigi/0000-0002-1800-8460 FU NOAA [NA11OAR4310093]; NSF [AGS1143959]; NASA [NNX09AK34G]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX We acknowledge support from NOAA Grant NA11OAR4310093, NSF Grant AGS1143959, and NASA Grant NNX09AK34G. The data were provided by the U.S. CLIVAR Hurricane Working Group. We thank Naomi Henderson for her support with the U.S. CLIVAR Hurricane Working Group dataset. Wehner was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under Contract DE-AC02-05CH11231. CAM5 calculations were performed at the National Energy Research Supercomputing Center (NERSC) at the Lawrence Berkeley National Laboratory. We also would like to thank the three anonymous reviewers for their helpful comments. NR 89 TC 8 Z9 8 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2015 VL 28 IS 4 BP 1333 EP 1361 DI 10.1175/JCLI-D-13-00646.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB5LX UT WOS:000349670000001 ER PT J AU Cui, P Hu, HS Zhao, B Miller, JT Cheng, P Li, J AF Cui, Ping Hu, Han-Shi Zhao, Bin Miller, Jeffery T. Cheng, Peng Li, Jun TI A multicentre-bonded [Zn-I](8) cluster with cubic aromaticity SO NATURE COMMUNICATIONS LA English DT Article ID METAL-METAL BONDS; ZN-ZN BOND; STRUCTURAL-CHARACTERIZATION; STABLE COMPOUND; ZN-2(ETA(5)-C5ME5)(2); DECAMETHYLDIZINCOCENE; ANTIAROMATICITY; COMPLEXES; CHEMISTRY; MOLECULE AB Polynuclear zinc clusters [Znx] (x>2) with multicentred Zn-Zn bonds and +1 oxidation state zinc (that is, zinc(I) or Zn-I) are to our knowledge unknown in chemistry. Here we report the polyzinc compounds with an unusual cubic [Zn-8(I)(HL)(4)(L)(8)](12) (-) (L = tetrazole dianion) cluster core, composed of zinc(I) ions and short Zn-Zn bonds (2.2713(19) angstrom). The [Zn-8(I)]bearing compounds possess surprisingly high stability in air and solution. Quantum chemical studies reveal that the eight Zn 4s(1) electrons in the [Zn-8(I)] cluster fully occupy four bonding molecular orbitals and leave four antibonding ones entirely empty, leading to an extensive electron delocalization over the cube and significant stabilization. The bonding pattern of the cube represents a class of aromatic system that we refer to as cubic aromaticity, which follows a 6n + 2 electron counting rule. Our finding extends the aromaticity concept to cubic metallic systems, and enriches Zn-Zn bonding chemistry. C1 [Cui, Ping; Zhao, Bin; Cheng, Peng] Nankai Univ, Dept Chem, Tianjin Key Lab Met & Mol Based Mat Chem, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China. [Cui, Ping; Zhao, Bin; Cheng, Peng] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China. [Hu, Han-Shi; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Hu, Han-Shi; Li, Jun] Tsinghua Univ, Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Miller, Jeffery T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhao, B (reprint author), Nankai Univ, Dept Chem, Tianjin Key Lab Met & Mol Based Mat Chem, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China. EM zhaobin@nankai.edu.cn; junli@tsinghua.edu.cn RI Li, Jun/E-5334-2011; Cheng, Peng/R-6211-2016 OI Li, Jun/0000-0002-8456-3980; Cheng, Peng/0000-0003-0396-1846 FU NKBRSF [2012CB821702, 2011CB932400, 2011CB935902]; NSFC [21331003, 21221062, 21433005]; MOE of China [IRT-13R30, IRT13022] FX We thank Professors Jinshun Huang and Guocong Guo for independent examination of the crystallographic data. This work was supported by NKBRSF (2012CB821702, 2011CB932400 and 2011CB935902) and NSFC (21331003, 21221062 and 21433005) and MOE (IRT-13R30 and IRT13022) of China. The calculations were performed at Tsinghua National Laboratory for Information Science and Technology, Shanghai Supercomputing Center and the Supercomputer Center of the Computer Network Information Center, Chinese Academy of Sciences. NR 35 TC 23 Z9 23 U1 15 U2 115 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6331 DI 10.1038/ncomms7331 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4AB UT WOS:000350291500001 PM 25704327 ER PT J AU Piper, DM Evans, T Leung, K Watkins, T Olson, J Kim, SC Han, SS Bhat, V Oh, KH Buttry, DA Lee, SH AF Piper, Daniela Molina Evans, Tyler Leung, Kevin Watkins, Tylan Olson, Jarred Kim, Seul Cham Han, Sang Sub Bhat, Vinay Oh, Kyu Hwan Buttry, Daniel A. Lee, Se-Hee TI Stable silicon-ionic liquid interface for next-generation lithium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID SOLID-ELECTROLYTE INTERPHASE; COMPOSITE ANODES; ELECTROCHEMICAL PERFORMANCE; AMORPHOUS-SILICON; THIN-FILMS; LI; METAL; SPECTROSCOPY; CHALLENGES; NANOWIRES AB We are currently in the midst of a race to discover and develop new battery materials capable of providing high energy-density at low cost. By combining a high-performance Si electrode architecture with a room temperature ionic liquid electrolyte, here we demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75% capacity after 500 cycles. Such high performance is enabled by a stable half-cell coulombic efficiency of 99.97%, averaged over the first 200 cycles. Equally as significant, our detailed characterization elucidates the previously convoluted mechanisms of the solid-electrolyte interphase on Si electrodes. We provide a theoretical simulation to model the interface and microstructural-compositional analyses that confirm our theoretical predictions and allow us to visualize the precise location and constitution of various interfacial components. This work provides new science related to the interfacial stability of Si-based materials while granting positive exposure to ionic liquid electrochemistry. C1 [Piper, Daniela Molina; Evans, Tyler; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Leung, Kevin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Watkins, Tylan; Buttry, Daniel A.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Olson, Jarred; Bhat, Vinay] Boulder Ion Corp, Arvada, CO 80007 USA. [Kim, Seul Cham; Han, Sang Sub; Oh, Kyu Hwan] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Olson, Jarred/F-6216-2014 OI Olson, Jarred/0000-0001-7560-8668 FU Boulder Ionics Corporation through the Membrane Science, Engineering and Technology (MAST) Center at CU-Boulder; NSF Industry-University Cooperative Research Center; National Science Foundation [IIP-1152040]; National Science Foundation (NSF) [CHE-1231048]; Fundamental R&D Program for Technology of World Premier Materials; Ministry of Knowledge Economy, Republic of Korea [10037919]; Research Institute of Advanced Materials (RIAM); Army Research Office [W911NF-11-1-0432]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is funded by Boulder Ionics Corporation through the Membrane Science, Engineering and Technology (MAST) Center at CU-Boulder, an NSF Industry-University Cooperative Research Center. This material is based pon work supported by the National Science Foundation under Grant No. IIP-1152040. This work was also supported by the National Science Foundation (NSF, CHE-1231048), by a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy, Republic of Korea (10037919) and by the Research Institute of Advanced Materials (RIAM). Work at ASU was supported by Army Research Office grant number W911NF-11-1-0432. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 51 TC 29 Z9 30 U1 42 U2 238 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6230 DI 10.1038/ncomms7230 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC2VF UT WOS:000350202100002 ER PT J AU Rivera, P Schaibley, JR Jones, AM Ross, JS Wu, SF Aivazian, G Klement, P Seyler, K Clark, G Ghimire, NJ Yan, JQ Mandrus, DG Yao, W Xu, XD AF Rivera, Pasqual Schaibley, John R. Jones, Aaron M. Ross, Jason S. Wu, Sanfeng Aivazian, Grant Klement, Philip Seyler, Kyle Clark, Genevieve Ghimire, Nirmal J. Yan, Jiaqiang Mandrus, D. G. Yao, Wang Xu, Xiaodong TI Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID DER-WAALS HETEROSTRUCTURES; VALLEY POLARIZATION; DIRAC FERMIONS; MOS2; HETEROJUNCTION; SUPERLATTICES; GENERATION; WSE2; SPIN AB Van der Waals bound heterostructures constructed with two-dimensional materials, such as graphene, boron nitride and transition metal dichalcogenides, have sparked wide interest in device physics and technologies at the two-dimensional limit. One highly coveted heterostructure is that of differing monolayer transition metal dichalcogenides with type-II band alignment, with bound electrons and holes localized in individual monolayers, that is, interlayer excitons. Here, we report the observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by photoluminescence and photoluminescence excitation spectroscopy. We find that their energy and luminescence intensity are highly tunable by an applied vertical gate voltage. Moreover, we measure an interlayer exciton lifetime of similar to 1.8 ns, an order of magnitude longer than intralayer excitons in monolayers. Our work demonstrates optical pumping of interlayer electric polarization, which may provoke further exploration of interlayer exciton condensation, as well as new applications in two-dimensional lasers, light-emitting diodes and photovoltaic devices. C1 [Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.; Wu, Sanfeng; Aivazian, Grant; Klement, Philip; Seyler, Kyle; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ross, Jason S.; Clark, Genevieve; Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Ghimire, Nirmal J.; Mandrus, D. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ghimire, Nirmal J.; Yan, Jiaqiang; Mandrus, D. G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang; Mandrus, D. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. RP Rivera, P (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM pasqual@uw.edu; xuxd@uw.edu RI Yao, Wang/C-1353-2008; Wu, Sanfeng/L-1323-2016; OI Jones, Aaron/0000-0002-8326-1294; Yao, Wang/0000-0003-2883-4528; Wu, Sanfeng/0000-0002-6227-6286; Rivera, Pasqual/0000-0002-5909-1686 FU US DoE, BES, Materials Sciences and Engineering Division [DE-SC0008145]; US DoE, BES, Materials Sciences and Engineering Division; Research Grant Council of Hong Kong [HKU17305914P, HKU9/CRF/13G]; Croucher Foundation under the Croucher Innovation Award; Cottrell Scholar Award; UW GO-MAP program; NSF [DGE-0718124, DGE-1256082]; State of Washington through the UW Clean Energy Institute; NSF FX This work is mainly supported by the US DoE, BES, Materials Sciences and Engineering Division (DE-SC0008145). N.J.G., J.Y. and D.G.M. are supported by US DoE, BES, Materials Sciences and Engineering Division. W.Y. is supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU9/CRF/13G), and the Croucher Foundation under the Croucher Innovation Award. X.X. thanks the support of the Cottrell Scholar Award. P.R. thanks the UW GO-MAP program for their support. A.M.J. is partially supported by the NSF (DGE-0718124). J.S.R. is partially supported by the NSF (DGE-1256082). S.W. and G.C. are partially supported by the State of Washington through the UW Clean Energy Institute. Device fabrication was performed at the Washington Nanofabrication Facility and NSF-funded Nanotech User Facility. NR 34 TC 112 Z9 112 U1 85 U2 397 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6242 DI 10.1038/ncomms7242 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC2VI UT WOS:000350202400006 PM 25708612 ER PT J AU Rosenberg, MJ Li, CK Fox, W Igumenshchev, I Seguin, FH Town, RPJ Frenje, JA Stoeckl, C Glebov, V Petrasso, RD AF Rosenberg, M. J. Li, C. K. Fox, W. Igumenshchev, I. Seguin, F. H. Town, R. P. J. Frenje, J. A. Stoeckl, C. Glebov, V. Petrasso, R. D. TI A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas SO NATURE COMMUNICATIONS LA English DT Article ID OMEGA AB Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely directed field lines collide. In most natural circumstances, the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. In addition, the regime of strongly driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed the experiments to probe reconnection in asymmetric, strongly driven, laser-generated plasmas. Here we show that, in this strongly driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. In addition, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows. C1 [Rosenberg, M. J.; Li, C. K.; Seguin, F. H.; Frenje, J. A.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Fox, W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Igumenshchev, I.; Stoeckl, C.; Glebov, V.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rosenberg, MJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mrosenbe@mit.edu FU U.S. Department of Energy [DE-AC05-00OR22725]; U.S. DoE [DE-FG03-09NA29553, DE-SC0007168]; LLE [414090-G]; NLUF [DE-NA0000877]; FSC [415023-G]; LLNL [B580243] FX We thank the OMEGA operations and target fabrication crews for their assistance in carrying out these experiments and J. Schaeffer, R. Frankel and E. Doeg for their help in processing of CR-39 data used in this work. We also thank Paul Cassak, Stephen Bradshaw and James Drake for discussions on asymmetric reconnection. The PIC simulations were conducted on the Titan supercomputer through the INCITE programme at the Oak Ridge Leadership Computing Facility, supported by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This work was performed in partial fulfillment of the first author's PhD thesis and supported in part by the U.S. DoE (Grant No. DE-FG03-09NA29553, No. DE-SC0007168), LLE (No. 414090-G), NLUF (No. DE-NA0000877), FSC (No. 415023-G) and LLNL (No. B580243). NR 40 TC 11 Z9 11 U1 7 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6190 DI 10.1038/ncomms7190 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC2UI UT WOS:000350199700006 PM 25648079 ER PT J AU Vericella, JJ Baker, SE Stolaroff, JK Duoss, EB Hardin, JO Lewicki, J Glogowski, E Floyd, WC Valdez, CA Smith, WL Satcher, JH Bourcier, WL Spadaccini, CM Lewis, JA Aines, RD AF Vericella, John J. Baker, Sarah E. Stolaroff, Joshuah K. Duoss, Eric B. Hardin, James O. Lewicki, James Glogowski, Elizabeth Floyd, William C. Valdez, Carlos A. Smith, William L. Satcher, Joe H., Jr. Bourcier, William L. Spadaccini, Christopher M. Lewis, Jennifer A. Aines, Roger D. TI Encapsulated liquid sorbents for carbon dioxide capture SO NATURE COMMUNICATIONS LA English DT Article ID METAL-ORGANIC FRAMEWORK; POSTCOMBUSTION CO2 CAPTURE; REACTION-KINETICS; SEPARATION; MONOETHANOLAMINE; SEQUESTRATION; SOLUBILITY; MODEL; ABSORPTION; MEMBRANES AB Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture. C1 [Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Lewicki, James; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H., Jr.; Bourcier, William L.; Spadaccini, Christopher M.; Aines, Roger D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vericella, John J.; Hardin, James O.; Glogowski, Elizabeth; Smith, William L.; Lewis, Jennifer A.] Univ Illinois, Urbana, IL 61801 USA. [Hardin, James O.; Lewis, Jennifer A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Hardin, James O.; Lewis, Jennifer A.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. RP Spadaccini, CM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM spadaccini2@llnl.gov; jalewis@seas.harvard.edu; aines1@llnl.gov FU Advanced Research Projects Agency-Energy through the US Department of Energy Innovative Materials and Processes for Advanced Carbon Capture Technology (IMPACCT) Program Award (University of Illinois and Babcock and Wilcox) [09/CJ000/05/01 (LLNL) DE-AR0000099]; IC Postdoctoral Fellowship; [LLNL-JRNL-636834-DRAFT] FX We gratefully acknowledge funding provided by Advanced Research Projects Agency-Energy through the US Department of Energy Innovative Materials and Processes for Advanced Carbon Capture Technology (IMPACCT) Program Award 09/CJ000/05/01 (LLNL) DE-AR0000099 (University of Illinois and Babcock and Wilcox). LLNL-JRNL-636834-DRAFT. We thank C. Martinez for useful discussions on droplet-based microfluidics and S. Roberts for help with collecting and analysing the X-ray diffraction spectra. J.O. Hardin was supported by an IC Postdoctoral Fellowship. NR 37 TC 21 Z9 21 U1 20 U2 123 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 6124 DI 10.1038/ncomms7124 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC2TO UT WOS:000350197700001 PM 25652243 ER PT J AU Aivazian, G Gong, ZR Jones, AM Chu, RL Yan, J Mandrus, DG Zhang, CW Cobden, D Yao, W Xu, X AF Aivazian, G. Gong, Zhirui Jones, Aaron M. Chu, Rui-Lin Yan, J. Mandrus, D. G. Zhang, Chuanwei Cobden, David Yao, Wang Xu, X. TI Magnetic control of valley pseudospin in monolayer WSe2 SO NATURE PHYSICS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; MOS2; POLARIZATION; DISULFIDE; STATES; SPIN AB Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudospin in addition to real spies. In transition metal dichalcogenides this valley pseudospin, like real spin, is associated with a magnetic moment(1,6) that underlies the valley-dependent circular dichroism(6) that allows optical generation of valley polarization(7-9), intervalley quantum coherence(10) and the valley Hall effect(11). However, magnetic manipulation of valley pseudospin via this magnetic momentlz(12,13), analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magnetic tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons that is explained by renormalization of the excitonic spectrum due to strong exchange interactions. C1 [Aivazian, G.; Jones, Aaron M.; Cobden, David; Xu, X.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Gong, Zhirui; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Gong, Zhirui; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Chu, Rui-Lin; Zhang, Chuanwei] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Yan, J.; Mandrus, D. G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yan, J.; Mandrus, D. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Xu, X.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Yao, W (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM wangyao@hku.hk; xuxd@uw.edu RI Yao, Wang/C-1353-2008; Zhang, Chuanwei/H-3571-2011; OI Yao, Wang/0000-0003-2883-4528; Jones, Aaron/0000-0002-8326-1294 FU DoE, BES, Materials Sciences and Engineering Division [DE-SC0008145]; Croucher Foundation; RGC of Hong Kong [HKU705513P, HKU9/CRF/13G]; US DoE, BES, Materials Sciences and Engineering Division [DE-SC0002197]; ARO [W911NF-12-1-0334]; AFOSR [FA9550-13-1-0045]; Cottrell Scholar Award; NSF FX We thank X. Li for helpful discussions. This work is mainly supported by the DoE, BES, Materials Sciences and Engineering Division (DE-SC0008145). Z.G. and WY. were supported by the Croucher Foundation (Croucher Innovation Award) and the RGC of Hong Kong (HKU705513P, HKU9/CRF/13G). D.C. is supported by US DoE, BES, Materials Sciences and Engineering Division (DE-SC0002197). J.Y. and D.G.M. were supported by US DoE, BES, Materials Sciences and Engineering Division. R-L.C. and C.Z. are supported by ARO (W911NF-12-1-0334) and AFOSR (FA9550-13-1-0045). X.X. acknowledges a Cottrell Scholar Award. Device fabrication was performed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. NR 29 TC 94 Z9 94 U1 26 U2 156 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2015 VL 11 IS 2 BP 148 EP 152 DI 10.1038/NPHYS3201 PG 5 WC Physics, Multidisciplinary SC Physics GA CB9EL UT WOS:000349934700018 ER PT J AU Huntington, CM Fiuza, F Ross, JS Zylstra, AB Drake, RP Froula, DH Gregori, G Kugland, NL Kuranz, CC Levy, MC Li, CK Meinecke, J Morita, T Petrasso, R Plechaty, C Remington, BA Ryutov, DD Sakawa, Y Spitkovsky, A Takabe, H Park, HS AF Huntington, C. M. Fiuza, F. Ross, J. S. Zylstra, A. B. Drake, R. P. Froula, D. H. Gregori, G. Kugland, N. L. Kuranz, C. C. Levy, M. C. Li, C. K. Meinecke, J. Morita, T. Petrasso, R. Plechaty, C. Remington, B. A. Ryutov, D. D. Sakawa, Y. Spitkovsky, A. Takabe, H. Park, H. -S. TI Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows SO NATURE PHYSICS LA English DT Article ID RELATIVISTIC COLLISIONLESS SHOCKS; ELECTRON-ION PLASMAS; ACCELERATION; AFTERGLOW; WAVES AB Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts. C1 [Huntington, C. M.; Fiuza, F.; Ross, J. S.; Levy, M. C.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Park, H. -S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zylstra, A. B.; Li, C. K.; Petrasso, R.] MIT, Cambridge, MA 02139 USA. [Drake, R. P.; Kuranz, C. C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Froula, D. H.] Univ Rochester, Dept Phys, Rochester, NY 14636 USA. [Froula, D. H.] Univ Rochester, Laser Energet Lab, Rochester, NY 14636 USA. [Gregori, G.; Meinecke, J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Kugland, N. L.] Lam Res Corp, Fremont, CA 94538 USA. [Morita, T.; Sakawa, Y.; Takabe, H.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Spitkovsky, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Huntington, CM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM huntington4@llnl.gov RI Sakawa, Youichi/J-5707-2016; Drake, R Paul/I-9218-2012 OI Sakawa, Youichi/0000-0003-4165-1048; Drake, R Paul/0000-0002-5450-9844 FU US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL LDRD grant [11-ERD-054]; European Research Council under the European Community's Seventh Framework Programme (FP7), ERC grant [256973]; ALCF [DE-AC02-06CH11357]; LLNL Lawrence Fellowship; DOE [DE-NA0002200] FX We thank the staff of the Omega Laser Facility for their experimental support. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory, under Contract No. DE-AC52-07NA27344, with funding support from LLNL LDRD grant No. 11-ERD-054 and from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013), ERC grant agreement no. 256973. Computing support for this work came from ALCC and INCITE awards on Mira (ALCF supported under contract DE-AC02-06CH11357) and from the LLNL Institutional Computing Grand Challenge program on Vulcan. Additionally, the authors would like to acknowledge the OSIRIS Consortium, consisting of UCLA and IST (Lisbon, Portugal) for the use of the OSIRIS 2.0 framework and the visXD framework. F.F. acknowledges the LLNL Lawrence Fellowship for financial support. A.S. is supported by DOE grant DE-NA0002200. NR 28 TC 46 Z9 47 U1 8 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2015 VL 11 IS 2 BP 173 EP 176 DI 10.1038/NPHYS3178 PG 4 WC Physics, Multidisciplinary SC Physics GA CB9EL UT WOS:000349934700023 ER PT J AU Allan, MP Lee, K Rost, AW Fischer, MH Massee, F Kihou, K Lee, CH Iyo, A Eisaki, H Chuang, TM Davis, JC Kim, EA AF Allan, M. P. Lee, Kyungmin Rost, A. W. Fischer, M. H. Massee, F. Kihou, K. Lee, C-H. Iyo, A. Eisaki, H. Chuang, T-M. Davis, J. C. Kim, Eun-Ah TI Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors SO NATURE PHYSICS LA English DT Article AB Cooper pairing in the iron-based high-T-c superconductors(1-3) is often conjectured to involve bosonic fluctuations. Among the candidates are antiferromagnetic spin fluctuations(1,4,5) and d-orbital fluctuations amplified by phonons(6,7). Any such electron-boson interaction should alter the electron's 'self-energy', and then become detectable through consequent modifications in the energy dependence of the electron's momentum and lifetime(8-10). Here we introduce a novel theoretical/experimental approach aimed at uniquely identifying the relevant fluctuations of iron-based superconductors by measuring effects of their self-energy. We use innovative quasiparticle interference (QPI) imaging(11) techniques in LiFeAs to reveal strongly momentum-space anisotropic self-energy signatures that are focused along the Fe-Fe (interband scattering) direction, where the spin fluctuations of LiFeAs are concentrated. These effects coincide in energy with perturbations to the density of states N(omega) usually associated with the Cooper pairing interaction. We show that all the measured phenomena comprise the predicted QPI 'fingerprint' of a self-energy due to antiferromagnetic spin fluctuations, thereby distinguishing them as the predominant electron-boson interaction. C1 [Allan, M. P.; Lee, Kyungmin; Rost, A. W.; Fischer, M. H.; Massee, F.; Davis, J. C.; Kim, Eun-Ah] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Allan, M. P.; Massee, F.; Davis, J. C.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Rost, A. W.; Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Rost, A. W.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Kihou, K.; Lee, C-H.; Iyo, A.; Eisaki, H.] Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Kihou, K.; Lee, C-H.; Iyo, A.; Eisaki, H.] JST, Transformat Res Project Iron Pnictides TRIP, Tokyo 1020075, Japan. [Chuang, T-M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Davis, J. C.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Kim, EA (reprint author), Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. EM eun-ah.kim@cornell.edu RI Rost, Andreas/F-3004-2011; Lee, Kyungmin/L-5846-2015; Massee, Freek/N-2617-2015 OI Lee, Kyungmin/0000-0001-6018-4014; FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0010313]; NSF [DMR-1120296]; NSF CAREER grant [DMR-0955822]; Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory; US Department of Energy [DE-2009-BNL-PM015]; UK EPSRC; Japan Society for the Promotion of Science [22540380]; [NSC101-2112-M-001-029-MY3] FX We are especially grateful to A. P. Mackenzie and D. J. Scalapino for key guidance with this project. We acknowledge and thank D. H. Lee, A. Chubukov, P. J. Hirschfeld, M. Norman and J. Schmalian for helpful discussions and communications. Theoretical studies are supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0010313 (K.L. and E-A.K.); NSF DMR-1120296 to the Cornell Center for Materials Research and NSF CAREER grant DMR-0955822 (M.H.F.). Experimental studies are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by the US Department of Energy, under DE-2009-BNL-PM015; by the UK EPSRC; by a Grant-in-Aid for Scientific Research C (No. 22540380) from the Japan Society for the Promotion of Science. T-M.C. acknowledges support by NSC101-2112-M-001-029-MY3. NR 33 TC 12 Z9 12 U1 4 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2015 VL 11 IS 2 BP 177 EP 182 DI 10.1038/NPHYS3187 PG 6 WC Physics, Multidisciplinary SC Physics GA CB9EL UT WOS:000349934700024 ER PT J AU Kim, SJ Zemelis, S Keegstra, K Brandizzi, F AF Kim, Sang-Jin Zemelis, Starla Keegstra, Kenneth Brandizzi, Federica TI The cytoplasmic localization of the catalytic site of CSLF6 supports a channeling model for the biosynthesis of mixed-linkage glucan SO PLANT JOURNAL LA English DT Article DE CSLF6; mixed-linkage glucan; Golgi; enzyme topology; Brachypodium ID PLANT-CELL WALLS; GOLGI-APPARATUS; CELLULOSE BIOSYNTHESIS; SYNTHASE; MEMBRANE; BARLEY; MAIZE; ARABIDOPSIS; TOPOLOGY; POLYSACCHARIDE AB Mixed-linkage glucan (MLG) is a significant cell wall carbohydrate in grasses and an important carbon source for human consumption and biofuel production. MLG biosynthesis depends on the biochemical activity of membrane spanning glucan synthases encoded by the CSLH and CSLF cellulose synthase-like gene families. CSLF proteins are the best characterized to date but relatively little information is known about their topology with respect to the biosynthetic membranes. In this study, we report on the topology of CSLF6 protein derived from the model grass species Brachypodium distachyon (BdCSLF6) when it is expressed in heterologous systems. Using live cell imaging and immuno-electron microscopy analyses of tobacco epidermal cells expressing BdCSLF6, we demonstrate that a functional yellow fluorescent protein (YFP) fusion of BdCSLF6 is localized to the Golgi apparatus and that the Golgi localization of BdCSLF6 is sufficient for MLG biosynthesis. By implementing protease protection assays of BdCSLF6 expressed in the yeast Pichia pastoris, we also demonstrate that the catalytic domain, the N-terminus and the C- terminus of the protein are exposed in the cytosol. Furthermore, we found that BdCSLF6 is capable of producing MLG not only in tobacco cells but also in Pichia, which generally does not produce MLG. Together, these results support the conclusion that BdCSLF6 can produce both of the linkages present in the (1,3;1,4)--d-glucan chain of MLG and that the product is channelled at the Golgi into the secretory pathway for deposition into the cell wall. C1 [Kim, Sang-Jin; Zemelis, Starla; Keegstra, Kenneth; Brandizzi, Federica] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Keegstra, Kenneth; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM fb@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX We thank Dr Jacob Jensen and Alicia Withrow for providing cDNA of BdCSLF6 and help with immunogold labelling, respectively. SJK, KK and FB designed and analyze the experiments, and SJK and SZ performed the experiments. SJK, KK and FB wrote manuscript. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). Authors have no conflict of interest to declare. NR 44 TC 6 Z9 6 U1 2 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD FEB PY 2015 VL 81 IS 4 BP 537 EP 547 DI 10.1111/tpj.12748 PG 11 WC Plant Sciences SC Plant Sciences GA CC0OV UT WOS:000350036200001 PM 25557048 ER PT J AU Zhao, ZL Shaw, SL Wang, DL AF Zhao, Ziliang Shaw, Shih-Lung Wang, Dali TI A Space-Time Raster GIS Data Model for Spatiotemporal Analysis of Vegetation Responses to a Freeze Event SO TRANSACTIONS IN GIS LA English DT Article ID CLASSIFICATION; REPRESENTATION AB Many past space-time GIS data models viewed the world mainly from a spatial perspective. They attached a time stamp to each state of an entity or the entire area of study. This approach is less efficient for certain spatio-temporal analyses that focus on how locations change over time, which require researchers to view each location from a temporal perspective. In this article, we present a data model to organize multi-temporal remote sensing datasets and track their changes at the individual pixel level. This data model can also integrate raster datasets from heterogeneous sources under a unified framework. The proposed data model consists of several object classes under a hierarchical structure. Each object class is associated with specific properties and behaviors to facilitate efficient spatio-temporal analyses. We apply this data model to a case study of analyzing the impact of the 2007 freeze in Knoxville, Tennessee. The characteristics of different vegetation clusters before, during, and after the 2007 freeze event are compared. Our findings indicate that the majority of the study area is impacted by this freeze event, and different vegetation types show different response patterns to this freeze. C1 [Zhao, Ziliang; Shaw, Shih-Lung] Univ Tennessee, Dept Geog, Knoxville, TN USA. [Shaw, Shih-Lung] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China. [Wang, Dali] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Shaw, SL (reprint author), Univ Tennessee, 304 Burchfiel Geog Bldg, Knoxville, TN 37996 USA. EM sshaw@utk.edu FU Joint Directed Research and Development (JDRD) Program - Science Alliance of the University of Tennessee; Oak Ridge National Laboratory FX This research is supported by a Joint Directed Research and Development (JDRD) Program sponsored by the Science Alliance of the University of Tennessee in collaborative research with the Oak Ridge National Laboratory. NR 38 TC 2 Z9 2 U1 4 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1361-1682 EI 1467-9671 J9 T GIS JI Trans. GIS PD FEB PY 2015 VL 19 IS 1 BP 151 EP 168 DI 10.1111/tgis.12088 PG 18 WC Geography SC Geography GA CC1XW UT WOS:000350139700008 ER PT J AU Kovalenko, MV Manna, L Cabot, A Hens, Z Talapin, DV Kagan, CR Klimov, VI Rogach, AL Reiss, P Milliron, DJ Guyot-Sionnnest, P Konstantatos, G Parak, WJ Hyeon, T Korgel, BA Murray, CB Heiss, W AF Kovalenko, Maksym V. Manna, Liberato Cabot, Andreu Hens, Zeger Talapin, Dmitri V. Kagan, Cherie R. Klimov, Victor I. Rogach, Andrey L. Reiss, Peter Milliron, Delia J. Guyot-Sionnnest, Philippe Konstantatos, Gerasimos Parak, Wolfgang J. Hyeon, Taeghwan Korgel, Brian A. Murray, Christopher B. Heiss, Wolfgang TI Prospects of Nanoscience with Nanocrystals SO ACS NANO LA English DT Article ID METAL-OXIDE NANOCRYSTALS; QUANTUM-DOT SOLIDS; LIGHT-EMITTING-DIODES; SURFACE-PLASMON RESONANCE; FIELD-EFFECT TRANSISTORS; LITHIUM-ION BATTERIES; COLLOIDAL SEMICONDUCTOR NANOCRYSTALS; NUCLEAR-MAGNETIC-RESONANCE; ATOMIC LAYER DEPOSITION; NANOSTRUCTURED THERMOELECTRIC-MATERIALS AB Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Todays strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years. C1 [Kovalenko, Maksym V.] ETH, Dept Chem & Appl Biosci, Inst Inorgan Chem, CH-8093 Zurich, Switzerland. [Kovalenko, Maksym V.] EMPA Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, CH-8600 Dubendorf, Switzerland. [Manna, Liberato] Italian Inst Technol, Nanochem Dept, Genoa, Italy. [Manna, Liberato] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. [Cabot, Andreu] Catalonia Energy Res Inst, St Adria Del Besos 08930, Spain. [Cabot, Andreu] ICREA, Barcelona 08010, Spain. [Hens, Zeger] Univ Ghent, B-9000 Ghent, Belgium. [Hens, Zeger] Univ Ghent, Ctr Nano & Biophoton, B-9000 Ghent, Belgium. [Talapin, Dmitri V.; Guyot-Sionnnest, Philippe] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Talapin, Dmitri V.; Guyot-Sionnnest, Philippe] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kagan, Cherie R.] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. [Kagan, Cherie R.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Kagan, Cherie R.; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Klimov, Victor I.; Hyeon, Taeghwan] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Rogach, Andrey L.; Korgel, Brian A.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Rogach, Andrey L.; Korgel, Brian A.] City Univ Hong Kong, Ctr Funct Photon, Kowloon, Hong Kong, Peoples R China. [Reiss, Peter] Univ Grenoble Alpes, CNRS, CEA INAC, UMR SPrAM 5819,Lab Elect Mol Organ & Hybride, F-38054 Grenoble, France. [Milliron, Delia J.; Korgel, Brian A.] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. [Parak, Wolfgang J.] Univ Marburg, Marburg, Germany. [Parak, Wolfgang J.] CIC Biomagune, San Sebastian, Spain. [Hyeon, Taeghwan] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 151742, South Korea. [Klimov, Victor I.; Hyeon, Taeghwan] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea. [Konstantatos, Gerasimos] ICFO, Inst Photon Sci, Castelldefels 08860, Spain. [Rogach, Andrey L.; Korgel, Brian A.] Univ Texas Austin, Texas Mat Inst, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA. [Heiss, Wolfgang] Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria. [Heiss, Wolfgang] Univ Erlangen Nurnberg, Mat Elect & Energy Technol iMEET, D-91058 Erlangen, Germany. [Heiss, Wolfgang] Energie Campus Nurnberg, D-90429 Nurnberg, Germany. RP Kovalenko, MV (reprint author), ETH, Dept Chem & Appl Biosci, Inst Inorgan Chem, CH-8093 Zurich, Switzerland. EM mvkovalenko@ethz.ch; wolfgang.heiss@fau.de RI biomaGUNE, CIC/J-9136-2014; Heiss, Wolfgang/F-1200-2011; Manna, Liberato/G-2339-2010; Kovalenko, Maksym/B-6844-2008; Milliron, Delia/D-6002-2012; OI biomaGUNE, CIC/0000-0001-7690-0660; Heiss, Wolfgang/0000-0003-0430-9550; Manna, Liberato/0000-0003-4386-7985; Kovalenko, Maksym/0000-0002-6396-8938; Konstantatos, Gerasimos/0000-0001-7701-8127; Klimov, Victor/0000-0003-1158-3179 FU European Union (EU) via ERC [306733]; EU via ERC [614897]; Ghent University (GOA Detavernier-Hens); FWO-Vlaanderen [G.0760.12]; SIM (SIBO SoPPoM); BelSPo [IAP 735]; Robert A. Welch Foundation [F-1464]; NSF [CHE-1308813]; EU FP7 under project UNION [FP7-NMP 310250]; Guandong Province Technology Council, China [R-IND4601]; Gesellschaft fur Mikro- und Nanoelektronik (GMe); Austrian Science fund FWF; "Aufbruch Bayern" initiative of the state of Bavaria; French National Research Agency (NANOFRET) [ANR-12-NANO-0007]; NIRA [ANR-13-BS08-0011]; Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center of the U.S. Department of Energy (DOE), Office of Science (OS) and Office of Basic Energy Sciences (OBES); EU; U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0002158]; NSF MRSEC [DMR 08-20054]; [CNECT-ICT-604391]; [EH-H2020] FX This article was inspired by the discussions and presentations at the NaNaX6 conference held in Bad-Hofgastein, Austria, May 18-23, 2014. M.K. acknowledges partial financial support by the European Union (EU) via ERC Starting Grant 2012 (Project NANOSOLID, GA No. 306733). L.M. acknowledges partial financial support by the EU via ERC Consolidator Grant 2013 (Project TRANS-NANO, GA No. 614897) and CNECT-ICT-604391 (Graphene Flagship). Z.H. acknowledges Ghent University (GOA Detavernier-Hens), the FWO-Vlaanderen (G.0760.12), SIM (SIBO SoPPoM), BelSPo (IAP 735, photonics@be) and EH-H2020 (ETN Phonsi) for research funding. B.A.K. acknowledges financial support from the Robert A. Welch Foundation (F-1464) and the NSF (CHE-1308813). A.C. acknowledges financial support from the EU FP7 under project UNION (FP7-NMP 310250). A.L.R. acknowledges financial support from the Guandong Province Technology Council, China (Project R-IND4601). W.H. thanks the "Gesellschaft fur Mikro- und Nanoelektronik (GMe)", the Austrian Science fund FWF, for financial support via the SFB project IR_ON and acknowledges the use of the services and facilities of the "Energie Campus Nurnberg" and financial support through the "Aufbruch Bayern" initiative of the state of Bavaria. P.R. acknowledges financial support from French National Research Agency (NANOFRET, Grant No. ANR-12-NANO-0007; NIRA, Grant No. ANR-13-BS08-0011). V.I.K acknowledges financial support from the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center of the U.S. Department of Energy (DOE), Office of Science (OS) and Office of Basic Energy Sciences (OBES). W.J.P. acknowledges funding for the EU (project FutureNanoNeeds). C.R.K and C.B.M. acknowledge financial support from the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering (Award No. DE-SC0002158). D.V.T. and P.G.-S. acknowledge financial support from the NSF MRSEC Program under Award No. DMR 08-20054. NR 516 TC 209 Z9 209 U1 181 U2 911 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2015 VL 9 IS 2 BP 1012 EP 1057 DI 10.1021/nn506223h PG 46 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9GR UT WOS:000349940500003 PM 25608730 ER PT J AU Choi, YY Sharma, P Phatak, C Gosztola, DJ Liu, YY Lee, J Lee, B Li, JY Gruverman, A Ducharme, S Hong, S AF Choi, Yoon-Young Sharma, Pankaj Phatak, Charudatta Gosztola, David J. Liu, Yunya Lee, Joonseok Lee, Byeongdu Li, Jiangyu Gruverman, Alexei Ducharme, Stephen Hong, Seungbum TI Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure SO ACS NANO LA English DT Article DE mechanical annealing effect; ferroelectric polymers; P(VDF-TrFE); piezoresponse hysteresis loops ID ATOMIC-FORCE MICROSCOPY; POLY(VINYLIDENE FLUORIDE-CO-TRIFLUOROETHYLENE) FILMS; FLUORIDE TRIFLUOROETHYLENE COPOLYMERS; HIGH MOLAR CONTENT; VINYLIDENE FLUORIDE; THIN-FILMS; POLYVINYLIDENE DIFLUORIDE; ORIENTATION CONTROL; PHASE-TRANSITION; SINGLE-CRYSTALS AB Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believe that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films. C1 [Choi, Yoon-Young; Phatak, Charudatta; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Sharma, Pankaj; Gruverman, Alexei; Ducharme, Stephen] Univ Nebraska, Dept Phys & Astron, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Gosztola, David J.; Lee, Joonseok] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Liu, Yunya] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Li, Jiangyu] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hong@anl.gov RI Hong, Seungbum/B-7708-2009; Gosztola, David/D-9320-2011; Ducharme, Stephen/A-1909-2009; OI Hong, Seungbum/0000-0002-2667-1983; Gosztola, David/0000-0003-2674-1379; Ducharme, Stephen/0000-0003-0936-7995; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; Center for Nanoscale Materials, Electron Microscopy Center and Advanced Photon Source, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facilities [DE-AC02-06CH11357]; National Science Foundation (NSF) through the Materials Research Science and Engineering Center (MRSEC) [DMR-1420645]; NSFC [11102175]; NSF [CMMI-1100339] FX The authors gratefully acknowledge T. Wang for fabrication of Langmuir-Blodgett P(VDF-TrFE) films for X-ray measurement. The submitted manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The works of Raman spectroscopy, SEM and TEM imaging, and GIWAXS were performed at the Center for Nanoscale Materials, Electron Microscopy Center and Advanced Photon Source, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facilities, under Contract DE-AC02-06CH11357. The research at the University of Nebraska-Lincoln (PFM characterization and sample fabrication by P. Sharma, A. Gruverman, and S. Ducharme) was supported by the National Science Foundation (NSF) through the Materials Research Science and Engineering Center (MRSEC) under Grant DMR-1420645. Y.Y.L. acknowledges the support of NSFC (11102175), and J.Li. acknowledges the support of the NSF (CMMI-1100339). NR 56 TC 13 Z9 13 U1 13 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2015 VL 9 IS 2 BP 1809 EP 1819 DI 10.1021/nn5067232 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9GR UT WOS:000349940500077 PM 25646972 ER PT J AU Li, Q Jesse, S Tselev, A Collins, L Yu, P Kravchenko, I Kalinin, SV Balke, N AF Li, Qian Jesse, Stephen Tselev, Alexander Collins, Liam Yu, Pu Kravchenko, Ivan Kalinin, Sergei V. Balke, Nina TI Probing Local Bias-Induced Transitions Using Photothermal Excitation Contact Resonance Atomic Force Microscopy and Voltage Spectroscopy SO ACS NANO LA English DT Article DE scanning probe microscopy; elastic spectroscopy; Young's modulus; ferroelectric; electrochemical reaction ID ACOUSTIC MICROSCOPY; BAND EXCITATION; NANOSCALE; SILICON AB Nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods, capable of revealing, their dependence On various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique: We applied this spectroscopy to explore local bias-Induced phenomena ranging from-purely-physical-to surface electromechanical and electrochemical processes. Our measurements show that the changes in:the surface properties associated with these bias-induced transitions can be accurately assessed In a-fast and dynamic manner using resonance frequency as a signature. With many of the advantages-offered by. photothermal excitation, contact resonance voltage spectroscopy not only is expected,to find applications in-a broader field-of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies. C1 [Li, Qian; Jesse, Stephen; Tselev, Alexander; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Collins, Liam] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Yu, Pu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Yu, Pu/F-1594-2014; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Kravchenko, Ivan/K-3022-2015; Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Collins, Liam/A-3833-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Kravchenko, Ivan/0000-0003-4999-5822; Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892; Collins, Liam/0000-0003-4946-9195 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Office of Science Early Career Research Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Personal support was provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Office of Science Early Career Research Program (N.B., Q.L.). The experiments were performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, which also provided additional personal support (S.J., A.T., S.V.K.). NR 41 TC 12 Z9 12 U1 7 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2015 VL 9 IS 2 BP 1848 EP 1857 DI 10.1021/nn506753u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9GR UT WOS:000349940500081 PM 25559112 ER PT J AU Roy, T Tosun, M Cao, X Fang, H Lien, DH Zhao, PD Chen, YZ Chueh, YL Guo, J Javey, A AF Roy, Tania Tosun, Mahmut Cao, Xi Fang, Hui Lien, Der-Hsien Zhao, Peida Chen, Yu-Ze Chueh, Yu-Lun Guo, Jing Javey, Ali TI Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors SO ACS NANO LA English DT Article DE transition metal dichalcogenide; electron tunneling; negative differential resistance; TFET; steep; 2D ID FIELD-EFFECT TRANSISTORS; MOS2; LAYER; HETEROSTRUCTURES; HETEROJUNCTION; GENERATION AB Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of similar to 80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors. C1 [Roy, Tania; Tosun, Mahmut; Fang, Hui; Lien, Der-Hsien; Zhao, Peida; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Roy, Tania; Tosun, Mahmut; Fang, Hui; Lien, Der-Hsien; Zhao, Peida; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Roy, Tania; Tosun, Mahmut; Fang, Hui; Lien, Der-Hsien; Zhao, Peida; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Cao, Xi; Guo, Jing] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA. [Lien, Der-Hsien] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan. [Chen, Yu-Ze; Chueh, Yu-Lun] Natl Tsing Hua Univ, Hsinchu, Taiwan. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Roy, Tania/M-6540-2015; Javey, Ali/B-4818-2013; Chueh, Yu-Lun/E-2053-2013 OI Chueh, Yu-Lun/0000-0002-0155-9987 FU Center for Low Energy Systems Technology (LEAST) - STARnet phase of the Focus Center Research Program (FCRP); Semiconductor Research Corporation program - MARCO; DARPA; Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF E3S FX The device fabrication and characterization was funded by the Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program sponsored by MARCO and DARPA. The material processing, including the dry-transfer steps for the heterostacks, was funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. H.F. and P.Z. were funded by NSF E3S. NR 28 TC 65 Z9 65 U1 28 U2 181 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2015 VL 9 IS 2 BP 2071 EP 2079 DI 10.1021/nn507278b PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9GR UT WOS:000349940500103 PM 25598307 ER PT J AU Ye, JC Baumgaertel, AC Wang, YM Biener, J Biener, MM AF Ye, Jianchao Baumgaertel, Andreas C. Wang, Y. Morris Biener, Juergen Biener, Monika M. TI Structural Optimization of 3D Porous Electrodes for High-Rate Performance Lithium Ion Batteries SO ACS NANO LA English DT Article DE Atomic layer deposition; nanoporous gold; TiO2; lithium ion batteries; length scales ID ELECTROCHEMICAL ENERGY-STORAGE; ATOMIC LAYER DEPOSITION; MICROBATTERY APPLICATIONS; TITANIA NANOTUBES; ANATASE TIO2; GRAPHENE; LI; BEHAVIOR; DESIGN; POWER AB Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes. Bulk nanoporous gold provides deterministic control over the pore size and is used as a monolithic metallic scaffold and current collector. Extremely uniform and conformal TiO2 films of controlled thickness were deposited on the current collector by employing atomic layer deposition (ALD). Our experiments demonstrate profound performance improvements by matching the Li+ diffusivity in the electrolyte and the solid state through adjusting pore size and thickness of the active coating which, for 200 mu m thick porous electrodes, requires the presence of 100 nm pores. Decreasing the thickness of the TiO2 coating generally improves the power performance of the electrode by reducing the Li+ diffusion pathway, enhancing the Li+ solid solubility, and minimizing the voltage drop across the electrode/electrolyte interface. With the use of the optimized electrode morphology, supercapacitor-like power performance with lithium-ion-battery energy densities was realized. Our results provide the much-needed fundamental insight for the rational design of the 3D architecture of lithium ion battery electrodes with improved power performance. C1 [Ye, Jianchao; Baumgaertel, Andreas C.; Wang, Y. Morris; Biener, Juergen; Biener, Monika M.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Ye, JC (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, 7000 East Ave, Livermore, CA 94550 USA. EM ye3@llnl.gov; biener3@llnl.gov RI Wang, Yinmin (Morris)/F-2249-2010 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) Program at LLNL [13-LWD-031] FX Work at LLNL was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Project 13-LWD-031 was funded by the Laboratory Directed Research and Development (LDRD) Program at LLNL. NR 58 TC 29 Z9 29 U1 30 U2 292 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2015 VL 9 IS 2 BP 2194 EP 2202 DI 10.1021/nn505490u PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CB9GR UT WOS:000349940500116 PM 25491650 ER PT J AU Troia, MJ Williams, LR Williams, MG Ford, NB AF Troia, Matthew J. Williams, Lance R. Williams, Marsha G. Ford, Neil B. TI The process domains concept as a framework for fish and mussel habitat in a coastal plain river of southeastern North America SO ECOLOGICAL ENGINEERING LA English DT Article DE Disturbance regime; Fluvial geomorphology; Functional traits; Hydraulic modeling; Neches River ID FRESH-WATER MUSSELS; LIFE-HISTORY; ASSEMBLAGE STRUCTURE; COMMUNITY STRUCTURE; CONSERVATION STATUS; STREAM ECOSYSTEMS; SHELL SCULPTURE; UNITED-STATES; ABUNDANCE; TRAITS AB Hydrologic processes interact with geomorphic patterns to create the spatial and temporal variation in riverine habitat that affects the distribution of aquatic species throughout stream networks. The process domains concept (PDC) states that longitudinally-abrupt changes in geomorphic processes along streams determine temporal patterns of natural disturbance that influence the distribution of stream organisms. Despite its potential generality, the PDC has been applied primarily to mountain streams of western North America. We tested the utility of the PDC as a conceptual framework for characterizing spatiotemporal variability in abiotic conditions and assessed the influence of process domains (PDs) on community composition of fishes and mussels along a fifth order river mainstem in the gulf coastal plain of the southeastern United States. We measured channel cross sections at three transects nested within three sites nested within three stream reaches to quantify multi-scale spatial variability in channel geomorphology along the mainstem of the Neches River, Texas, USA. Next, we modeled stage-dependent channel hydraulics to quantify temporal variability in habitat area and benthic disturbance. Lastly, we sampled fishes and mussels at each site and tested whether PDs correlate with spatial variation in taxonomic and functional community composition. Channel cross-sectional dimensions varied at the reach scale and affected the modeled temporal variability in habitat area and benthic disturbance. This interaction between channel geomorphology and disturbance regime indicated the presence of distinct PDs at the reach scale. Taxonomic composition of fishes did not differ among reaches, whereas abundance and richness of mussels were strongly reduced in the upper reach compared to the middle and lower reaches. Only slight differences in functional traits of fishes and mussels were apparent among reaches, suggesting that reach scale PDs do not influence community composition via the filtering of these functional traits. This study provides empirical evidence that the PDC is a useful framework for describing hydrogeomorphic conditions and mussel abundance and richness and can guide channel restorations in streams draining regions of low topography. (C) 2014 Elsevier B.V. All rights reserved. C1 [Troia, Matthew J.; Williams, Lance R.; Williams, Marsha G.; Ford, Neil B.] Univ Texas Tyler, Dept Biol, Tyler, TX 75799 USA. RP Troia, MJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM troiamj@ornl.gov FU State Wildlife Grant from Texas Parks and Wildlife Department FX This research was funded by a State Wildlife Grant from Texas Parks and Wildlife Department. We thank J. Bouse, S. Depaepe, A. Dunithan, E. Farley-Dawson, D. Ford, D. Kimberly, J. King, A. Lauritsen, K. Nixon, M. Padgett, M. Simpson, J. Sonn, and J. Walters for their assistance in the field. We also thank T. Anderson, A. Jayakaran, K. Gido, J. Perkin, A. Veach, and J. Whitney comments on early drafts of this manuscript. We thank J. Julian and an anonymous reviewer for their thorough reviews that improved this manuscript. NR 68 TC 2 Z9 2 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-8574 EI 1872-6992 J9 ECOL ENG JI Ecol. Eng. PD FEB PY 2015 VL 75 BP 484 EP 496 DI 10.1016/j.ecoleng.2014.12.016 PG 13 WC Ecology; Engineering, Environmental; Environmental Sciences SC Environmental Sciences & Ecology; Engineering GA CB4LC UT WOS:000349598200058 ER PT J AU Kao, SC Sale, MJ Ashfaq, M Martinez, RU Kaiser, DP Wei, YX Diffenbaugh, NS AF Kao, Shih-Chieh Sale, Michael J. Ashfaq, Moetasim Martinez, Rocio Uria Kaiser, Dale P. Wei, Yaxing Diffenbaugh, Noah S. TI Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants SO ENERGY LA English DT Article DE Climate change; Hydropower; Water availability ID CLIMATE-CHANGE; PACIFIC-NORTHWEST; WATER-RESOURCES; RIVER-BASIN; TEMPERATURE; MANAGEMENT; HYDROLOGY; IMPACTS; SCALE AB Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median change in annual generation at federal projects is projected to be -2 TWh, with an estimated ensemble uncertainty of +/- 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Kao, Shih-Chieh; Martinez, Rocio Uria; Kaiser, Dale P.; Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Kao, Shih-Chieh; Ashfaq, Moetasim; Kaiser, Dale P.; Wei, Yaxing] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Sale, Michael J.] BCS Inc, Wartburg, TN 37887 USA. [Ashfaq, Moetasim] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. RP Kao, SC (reprint author), POB 2008 MS-6038, Oak Ridge, TN 37831 USA. EM kaos@ornl.gov RI Kao, Shih-Chieh/B-9428-2012 OI Kao, Shih-Chieh/0000-0002-3207-5328 FU DOE [DE-AC05-00OR22725]; US DOE [DE-SC005171] FX This study was sponsored by the DOE Wind and Water Power Program. The study supported a DOE Report to Congress under 249 Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11). A second study due in 2016 under that legislation is underway. The valuable support from PMA staff, including J. Eisdorfer, B. Kuepper, E. Pytlak, L Baker, C. Olive and T. Johnson (BPA); D. Spencer (SEPA); F. Ohlson and G. Robbins (SWPA); and M. Cowan, J. Gierard, S. Loftin, L. Cady-Hoffman, X. Gonzalez and T. Patton (SWPA), and other technical reviewers acknowledged in Ref. [34] is deeply appreciated. This paper was authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with DOE. Accordingly, the US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NSD was supported by the US DOE Integrated Assessment Research Program, Grant No. DE-SC005171. NR 40 TC 9 Z9 10 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD FEB 1 PY 2015 VL 80 BP 239 EP 250 DI 10.1016/j.energy.2014.11.066 PG 12 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA CB6FS UT WOS:000349723500023 ER PT J AU Nejdl, J Howlett, ID Carlton, D Anderson, EH Chao, W Marconi, MC Rocca, JJ Menoni, CS AF Nejdl, J. Howlett, I. D. Carlton, D. Anderson, E. H. Chao, W. Marconi, M. C. Rocca, J. J. Menoni, C. S. TI Image Plane Holographic Microscopy With a Table-Top Soft X-Ray Laser SO IEEE PHOTONICS JOURNAL LA English DT Article DE Holography; EUV; X-ray imaging; extreme ultraviolet and X-ray lasers ID PHASE-CONTRAST; REPETITION RATE; RESOLUTION; INTERFEROMETRY; WAVELENGTH AB We demonstrate image plane holographic microscopy in the soft X-ray (SXR) spectral region, combining the coherent output from a 46.9-nm wavelength table-top SXR laser and two Fresnel zone plates. Phase and amplitude maps of the object are simultaneously obtained from holograms created at the image plane by the superposition of a reference and object beam originating from the zero and first diffraction order of the zone plates. We have used the microscope to record holograms of nanometer-scale periodic Si elbow patterns with similar to 30% absorption contrast at the laser wavelength. The measured phase shift of 2.3 rad accurately predicts the Si dense line step height of 100 nm. The scheme is scalable to shorter wavelengths and allows for simultaneous high spatial and temporal resolution. C1 [Nejdl, J.; Howlett, I. D.; Marconi, M. C.; Rocca, J. J.; Menoni, C. S.] Natl Sci Fdn Engn Res Ctr Extreme Ultraviolet Sci, Ft Collins, CO 80523 USA. [Howlett, I. D.; Marconi, M. C.; Rocca, J. J.; Menoni, C. S.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Carlton, D.; Anderson, E. H.; Chao, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Nejdl, J.] Inst Phys ASCR, ELI Beamlines Project, Prague 18221, Czech Republic. [Nejdl, J.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague 16636, Czech Republic. RP Menoni, CS (reprint author), Natl Sci Fdn Engn Res Ctr Extreme Ultraviolet Sci, Ft Collins, CO 80523 USA. EM Carmen.Menoni@colostate.edu OI Howlett, Isela/0000-0003-0555-4005 FU National Science Foundation (NSF) [EEC-0310717, MRI-ARRA 09-561]; Fulbright Program; Ministry of Education, Youth, and Sport of the Czech Republic [CZ.1.07/2.3.00/20.0279, CZ.1.07/2.3.00/30.0057, CZ.1.05/1.1.00/02.0061] FX This work was supported by the National Science Foundation (NSF) under Award EEC-0310717 using equipment developed under NSF Award MRI-ARRA 09-561. The work of J. Nejdl was supported in part by the Fulbright Program and by the Ministry of Education, Youth, and Sport of the Czech Republic under Project ECOP CZ.1.07/2.3.00/20.0279, Project CZ.1.07/2.3.00/30.0057, and Project ELI-Beamlines CZ.1.05/1.1.00/02.0061. NR 32 TC 1 Z9 1 U1 4 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1943-0655 EI 1943-0647 J9 IEEE PHOTONICS J JI IEEE Photonics J. PD FEB PY 2015 VL 7 IS 1 AR 6900108 DI 10.1109/JPHOT.2015.2389957 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CB5OU UT WOS:000349678100048 ER PT J AU Peng, Q Choong, WS Vu, C Huber, JS Janecek, M Wilson, D Huesman, RH Qi, JY Zhou, J Moses, WW AF Peng, Q. Choong, W. -S. Vu, C. Huber, J. S. Janecek, M. Wilson, D. Huesman, R. H. Qi, Jinyi Zhou, Jian Moses, W. W. TI Performance of the Tachyon Time-of-Flight PET Camera SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Signal-to-noise ratio; time-of-flight; timing resolution. ID DETECTOR; SCANNER; RECONSTRUCTION; SCINTILLATOR; TOMOGRAPHY; RESOLUTION; LABR3 AB We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the similar to 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 x 25 mm(2) side of 6.15 x 6.15 x 25 mm(3) LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps/ - 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. C1 [Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Moses, W. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Berkeley, CA 94720 USA. [Qi, Jinyi; Zhou, Jian] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. RP Peng, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Berkeley, CA 94720 USA. EM qpeng@lbl.gov RI Qi, Jinyi/A-1768-2010 OI Qi, Jinyi/0000-0002-5428-0322 FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, U.S. Department of Energy [DE-AC0205CH11231]; National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering [R01EB006085, R21EB007081] FX This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, U.S. Department of Energy under contract DE-AC0205CH11231, and in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, under Grants R01EB006085 and R21EB007081. NR 27 TC 0 Z9 0 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2015 VL 62 IS 1 BP 111 EP 119 DI 10.1109/TNS.2014.2375176 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CB5MX UT WOS:000349672700013 PM 26594057 ER PT J AU Collett, T Bahk, JJ Baker, R Boswell, R Divins, D Frye, M Goldberg, D Husebo, J Koh, C Malone, M Morell, M Myers, G Shipp, C Torres, M AF Collett, Tim Bahk, Jang-Jun Baker, Rick Boswell, Ray Divins, David Frye, Matt Goldberg, Dave Husebo, Jarle Koh, Carolyn Malone, Mitch Morell, Margo Myers, Greg Shipp, Craig Torres, Marta TI Methane Hydrates in Nature-Current Knowledge and Challenges SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article; Proceedings Paper CT 8th International Conference on Gas Hydrates (ICGH8) CY JUL 28-AUG 01, 2014 CL Beijing, PEOPLES R CHINA ID STRATIGRAPHIC TEST WELL; ALASKA NORTH SLOPE; STOREGGA SLIDE; GAS; SEDIMENT; DISSOCIATION; AREA AB Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance our understanding of methane hydrates in nature. COL assembled a Methane Hydrate Project Science Team with members from academia, industry, and government. This Science Team worked with COL and DOE to develop and host the Methane Hydrate Community Workshop, which surveyed a substantial cross section of the methane hydrate research community for input on the most important research developments in our understanding of methane hydrates in nature and their potential role as an energy resource, a geohazard, and/or as an agent of global climate change. Our understanding of how methane hydrates occur in nature is still growing and evolving, and it is known with certainty that field, laboratory, and modeling studies have contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information needed to advance our understanding of methane hydrates. C1 [Collett, Tim] US Geol Survey, Lakewood, CO 80225 USA. [Bahk, Jang-Jun] Korea Inst Geosci & Mineral Resources, Taejon 305350, South Korea. [Baker, Rick; Boswell, Ray] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Divins, David; Morell, Margo; Myers, Greg] Consortium Ocean Leadership, Washington, DC 20005 USA. [Frye, Matt] US Bur Ocean Energy Management, Herndon, VA 20170 USA. [Goldberg, Dave] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Husebo, Jarle] Statoil ASA, N-4035 Stavanger, Norway. [Koh, Carolyn] Colorado Sch Mines, Golden, CO 80401 USA. [Malone, Mitch] Texas A&M Univ, College Stn, TX 77843 USA. [Shipp, Craig] Shell Int Explorat & Prod Inc, Houston, TX 77079 USA. [Torres, Marta] Oregon State Univ, Corvallis, OR 97331 USA. RP Collett, T (reprint author), US Geol Survey, West 6th Ave & Kipling St, Lakewood, CO 80225 USA. EM tcollett@usgs.gov OI Boswell, Ray/0000-0002-3824-2967 NR 54 TC 18 Z9 18 U1 7 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD FEB PY 2015 VL 60 IS 2 BP 319 EP 329 DI 10.1021/je500604h PG 11 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA CB4BX UT WOS:000349574300018 ER PT J AU Wang, JL Wang, RJ Yoon, RH Seol, Y AF Wang, Jialin Wang, Ruijia Yoon, Roe-Hoan Seol, Yongkoo TI Use of Hydrophobic Particles as Kinetic Promoters for Gas Hydrate Formation SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article; Proceedings Paper CT 8th International Conference on Gas Hydrates (ICGH8) CY JUL 28-AUG 01, 2014 CL Beijing, PEOPLES R CHINA ID METHANE HYDRATE; HYDROGEN STORAGE; LIQUID WATER; THERMODYNAMIC PROPERTIES; CO2; SURFACTANTS; SURFACES; CAPTURE AB Hydrophobic particles have been tested as kinetic promoters for gas hydrate formation. The experimental results obtained with stationary beds of sands show that methane (CH4) hydrate is more readily formed when the sand particles are hydrophobized by coating the surfaces with octadecyltrichlorosilane (OTS). The induction times decreased steadily with increasing water contact angles (theta) possibly due to the increased propensity of the water molecules in the vicinity of hydrophobic surfaces to form partial clathrates. The kinetics of CO2 hydrate formation has been studied using Teflon and hydrophobic silica particles to disperse either water in gas phase to obtain dry water or to disperse gas in water phase to obtain foam. The results show that hydrates are formed instantaneously due to the increased mass transfer rates at the gas/water interface and the formation of partial clathrates in the vicinity of hydrophobic surfaces. C1 [Wang, Jialin; Wang, Ruijia; Yoon, Roe-Hoan] Virginia Tech, Ctr Adv Separat Technol, Blacksburg, VA 24060 USA. [Seol, Yongkoo] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Seol, Y (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Yongkoo.seol@netl.doe.gov FU National Energy Technology Laboratory (NETL), U.S. Department of Energy [RES1000024] FX The authors would like to acknowledge the financial support from the National Energy Technology Laboratory (NETL), U.S. Department of Energy (Project Number: RES1000024). NR 40 TC 6 Z9 6 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD FEB PY 2015 VL 60 IS 2 BP 383 EP 388 DI 10.1021/je5006455 PG 6 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA CB4BX UT WOS:000349574300027 ER PT J AU Wang, H Yang, YL Li, YX Bai, B Wang, XS Tan, HY Liu, T Beach, TG Peng, JM Wu, ZP AF Wang, Hong Yang, Yanling Li, Yuxin Bai, Bing Wang, Xusheng Tan, Haiyan Liu, Tao Beach, Thomas G. Peng, Junmin Wu, Zhiping TI Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE long LC column; mass spectrometry; AD proteome ID GAS-PHASE FRACTIONATION; PEAK-CAPACITY; PEPTIDE IDENTIFICATION; LIQUID-CHROMATOGRAPHY; SHOTGUN PROTEOMICS; YEAST PROTEOME; UP PROTEOMICS; LABEL-FREE; QUANTIFICATION; MS/MS AB The development of high-resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse-phase long column (100 mu m X 150 cm, 5 mu m C18 beads) coupled to Q Exactive MS. The column was capable of achieving a peak capacity of similar to 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was similar to 6 mu g of peptides, although the column allowed loading as many as 20 mu g. Gas-phase fractionation of peptide ions further increased the number of peptide identification by similar to 10%. Moreover, the combination of basic pH LC prefractionation with the long gradient LC-MS/MS platform enabled the identification of 96 127 peptides and 10 544 proteins at 1% protein false discovery rate in a post-mortem brain sample of Alzheimer's disease. Because deep RNA sequencing of the same specimen suggested that similar to 16 000 genes were expressed, the current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed. C1 [Wang, Hong; Yang, Yanling; Li, Yuxin; Bai, Bing; Peng, Junmin; Wu, Zhiping] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Wang, Xusheng; Tan, Haiyan; Peng, Junmin] St Jude Childrens Res Hosp, St Jude Prote Facil, Memphis, TN 38105 USA. [Peng, Junmin] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA. [Wang, Hong] Univ Tennessee, Hlth Sci Ctr, Integrated Biomed Sci Program, Memphis, TN 38163 USA. [Liu, Tao] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Beach, Thomas G.] Banner Sun Hlth Res Inst, Sun City, AZ 85351 USA. RP Peng, JM (reprint author), St Jude Childrens Res Hosp, Dept Biol Struct, 262 Danny Thomas Pl, Memphis, TN 38105 USA. EM junmin.peng@stjude.org; zhiping.wu@stjude.org RI Yang, Yanling/F-5954-2014; Li, Yuxin/K-9197-2016 FU NIH [R21AG039764, R21NS081571, U24NS072026, P30AG19610]; Arizona Department of Health Services [211002]; Arizona Biomedical Research Commission [4001, 0011, 05-901, 1001]; Michael J. Fox Foundation; ALSAC (American Lebanese Syrian Associated Charities); NIH Cancer Center Support Grant [P30CA021765] FX We thank all lab and proteomics facility members for helpful discussion. This work was partially supported by NIH grant R21AG039764, R21NS081571, U24NS072026, P30AG19610, Arizona Department of Health Services (contract 211002), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901, and 1001), the Michael J. Fox Foundation, and ALSAC (American Lebanese Syrian Associated Charities). The MS analysis was performed in the St. Jude Children's Research Hospital Proteomics Facility, partially supported by NIH Cancer Center Support Grant (P30CA021765). NR 49 TC 6 Z9 7 U1 5 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2015 VL 14 IS 2 BP 829 EP 838 DI 10.1021/pr500882h PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CA9WV UT WOS:000349276400023 PM 25455107 ER PT J AU Ferrandon, M Daggupati, V Wang, Z Naterer, G Trevani, L AF Ferrandon, M. Daggupati, V. Wang, Z. Naterer, G. Trevani, L. TI Using XANES to obtain mechanistic information for the hydrolysis of CuCl2 and the decomposition of Cu2OCl2 in the thermochemical Cu-Cl cycle for H-2 production SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY LA English DT Article DE Copper oxychloride; XANES; Thermogravimetric analysis; Thermochemical cycles; Hydrogen production; Copper-chlorine cycle ID RAY-ABSORPTION SPECTROSCOPY; HYDROGEN-PRODUCTION; COPPER; CATALYSTS; REACTOR; HCL AB The Advanced Photon Source (APS) at Argonne National Laboratory was used to investigate the progress of two of the reactions of the copper-chlorine cycle for production of hydrogen in situ by studying the evolution of the solid Cu species, using X-ray absorption near edge structure (XANES) spectroscopy. The hydrolysis of CuCl2 (2 CuCl2 + H2O -> Cu2OCl2 + 2 HCl) was studied under low and high steam-to-copper ratios from 423 to 725 K, and the decomposition of Cu2OCl2 (Cu2OCl2 -> 2 CuCl + A1/2 O-2) in dry and humidified nitrogen up to 750 K. This study showed that the formation of Cu2OCl2 by hydrolysis of CuCl2 is more favorable under low steam-to-copper mole ratios and it reaches a maximum around 675 K. Over this limit, the formation of CuO and Cl-2 as reaction byproducts starts to be noticeable. The same reaction byproducts were observed to form under all of the other experimental conditions and at temperatures as low as 635 K. The results from the decomposition studied by XANES are in very good agreement with calorimetric studies (TG/DSC) and they confirm that the formation of Cl-2 takes place in the early stages of the decomposition of Cu2OCl2. To the best of our knowledge, this is the first time that the XANES spectrum of a Cu2OCl2 standard has been reported, since in previous studies Cu2OCl2 was always a reaction intermediate. C1 [Ferrandon, M.] Argonne Natl Lab, Lemont, IL 60439 USA. [Daggupati, V.] Tyne Engn Inc, Burlington, ON L7L 5V1, Canada. [Wang, Z.] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada. [Naterer, G.] Mem Univ Newfoundland, St John, NF A1C 5S7, Canada. [Trevani, L.] Univ Ontario Inst Technol, Fac Sci, Oshawa, ON L1H 7K4, Canada. RP Trevani, L (reprint author), Univ Ontario Inst Technol, Fac Sci, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada. EM liliana.trevani@uoit.ca FU U.S. Department of Energy's Fuel Cell Technologies Program Offices; U.S. Department of Energy [DE-AC-02-06CH11357] FX We are grateful to Professor Gregory Hope from Griffith University, Australia, for the synthesis of the copper oxychloride sample used as reference material and to Mr. Allan Nixon for collecting the TG/DSC data presented in this study. This work could not be performed without the support of the University of Ontario Institute of Technology, Argonne National Laboratory, and the Ministry of Research and Innovation (Ontario Research Fund-Research Excellence program). This work was also supported by the U.S. Department of Energy's Fuel Cell Technologies Program Offices. Argonne National Laboratory is managed for the U.S. Department of Energy by University of Chicago Argonne, LLC, under contract DE-AC-02-06CH11357. NR 19 TC 1 Z9 1 U1 4 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-6150 EI 1572-8943 J9 J THERM ANAL CALORIM JI J. Therm. Anal. Calorim. PD FEB PY 2015 VL 119 IS 2 BP 975 EP 982 DI 10.1007/s10973-014-4240-2 PG 8 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA AZ4LL UT WOS:000348192400026 ER PT J AU Zhang, PF Qiao, ZA Jiang, XG Veith, GM Dai, S AF Zhang, Pengfei Qiao, Zhen-An Jiang, Xueguang Veith, Gabriel M. Dai, Sheng TI Nanoporous Ionic Organic Networks: Stabilizing and Supporting Gold Nanoparticles for Catalysis SO NANO LETTERS LA English DT Article DE Gold nanoparticles; gold catalysis; porous polyelectrolyte; porous poly(ionic liquid)s; aerobic oxidation ID AEROBIC OXIDATION; METAL NANOPARTICLES; CHEMOSELECTIVE HYDROGENATION; PLATINUM NANOPARTICLES; POLY(IONIC LIQUID); IMIDAZOLIUM CATION; PD NANOPARTICLES; ALCOHOLS; AU; ALDEHYDES AB Nanoporous ionic organic networks (PIONs) with a high ionic density (three cation-anion pairs per unit) have been synthesized by a facile S(N)2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1-2 nm. The Au@PION hybrid materials used as a heterogeneous catalyst were highly active, selective, and stable in the aerobic oxidation of saturated alcohols. C1 [Zhang, Pengfei; Qiao, Zhen-An; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Jiang, Xueguang; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Jiang, Xueguang/J-5784-2013; Dai, Sheng/K-8411-2015; OI Jiang, Xueguang/0000-0002-9937-6029; Dai, Sheng/0000-0002-8046-3931; Qiao, Zhen-An/0000-0001-6064-9360 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering FX P.F.Z. and S.D. (polymer synthesis) were supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Z.A.Q, and X.G.J. (catalysis) were supported by Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. G.M.V. (XPS) was supported by U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering. NR 52 TC 25 Z9 25 U1 28 U2 196 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 823 EP 828 DI 10.1021/nl504780j PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000004 PM 25625306 ER PT J AU Barzegar, HR Gracia-Espino, E Yan, AM Ojeda-Aristizabal, C Dunn, G Wagberg, T Zettl, A AF Barzegar, Hamid Reza Gracia-Espino, Eduardo Yan, Aiming Ojeda-Aristizabal, Claudia Dunn, Gabriel Wagberg, Thomas Zettl, Alex TI C-60/Collapsed Carbon Nanotube Hybrids:. A Variant of Peapods SO NANO LETTERS LA English DT Article DE Peapods; fullerenes; collapsed carbon nanotubes; silocrystals ID GRAPHENE NANORIBBONS; C-60 INCORPORATION; HYDROCARBONS; FULLERENES; DIAMETERS; PRESSURE; COLLAPSE; RELEASE; PHASES; ENERGY AB We examine a variant of so-called carbon nanotube peapods by packing C-60 molecules inside the open edge ducts of collapsed carbon nanotubes. C-60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C-60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C-60 solid cores. C1 [Barzegar, Hamid Reza; Yan, Aiming; Ojeda-Aristizabal, Claudia; Dunn, Gabriel; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yan, Aiming; Ojeda-Aristizabal, Claudia; Dunn, Gabriel; Zettl, Alex] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Barzegar, Hamid Reza; Gracia-Espino, Eduardo; Wagberg, Thomas] Umea Univ, Dept Phys, S-90187 Umea, Sweden. [Gracia-Espino, Eduardo] Umea Univ, Dept Chem, S-90187 Umea, Sweden. [Yan, Aiming; Ojeda-Aristizabal, Claudia; Dunn, Gabriel; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Wagberg, Thomas/C-2912-2008; Zettl, Alex/O-4925-2016; OI Wagberg, Thomas/0000-0002-5080-8273; Zettl, Alex/0000-0001-6330-136X; Gracia-Espino, Eduardo/0000-0001-9239-0541 FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Naval Research [N00014-12-1-1008]; Swedish Research Council [2010-3973]; Angpanneforeningen's Foundation [14-541]; JC Kempe Foundation; KAW foundation by the "Artificial Leaf" project FX This work was supported in part by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract #DE-AC02-05CH11231, within the sp2-bonded Materials Program, which provided for TEM characterization; by the Office of Naval Research under contract N00014-12-1-1008 which provided for collapsed nanoribbon synthesis; and by the Swedish Research Council (grant nr 2010-3973) which provided for student support (HRB). The theoretical calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N). E.G.E. acknowledges additional support from Angpanneforeningen's Foundation (14-541). H.R.B. thanks the JC Kempe Foundation for support. T.W. and E.G.E. acknowledge support from the KAW foundation by the "Artificial Leaf" project. NR 40 TC 5 Z9 5 U1 6 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 829 EP 834 DI 10.1021/nl503388f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000005 PM 25557832 ER PT J AU Zhai, DY Lau, KC Wang, HH Wen, JG Miller, DJ Lu, J Kang, FY Li, BH Yang, WG Gao, J Indacochea, E Curtiss, LA Amine, K AF Zhai, Dengyun Lau, Kah Chun Wang, Hsien-Hau Wen, Jianguo Miller, Dean J. Lu, Jun Kang, Feiyu Li, Baohua Yang, Wenge Gao, Jing Indacochea, Ernesto Curtiss, Larry A. Amine, Khalil TI Interfacial Effects on Lithium Superoxide Disproportionation in Li-O-2 Batteries SO NANO LETTERS LA English DT Article DE Lithium-oxygen battery; lithium superoxide; stability; nanostructure; interface ID STABILITY; ELECTROLYTE; MORPHOLOGY AB During the cycling of Li-O-2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O-2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O-2 battery. C1 [Zhai, Dengyun; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lau, Kah Chun; Wang, Hsien-Hau; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Kang, Feiyu; Li, Baohua] Tsinghua Univ, Grad Sch Shenzhen, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China. [Yang, Wenge] Carnegie Inst Sci, Geophys Lab, High Pressure Synerget Consortium, Argonne, IL 60439 USA. [Gao, Jing; Indacochea, Ernesto] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM junlu@anl.gov; curtiss@anl.gov; amine@anl.gov FU U.S. Department of Energy from Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE). We also acknowledge grants of computer time through INCITE awards for BlueGene/Q computer at Argonne National Laboratory and allocations on the CNM Carbon Cluster at Argonne National Laboratory, the ALCF Fusion Cluster at Argonne National Laboratory, and the EMSL Chinook Cluster at Pacific Northwest National Laboratory. Use of the Advanced Photon Source, Center for Nanoscale Materials, and the Electron Microscopy Center for Materials Research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 25 TC 27 Z9 27 U1 14 U2 146 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1041 EP 1046 DI 10.1021/nl503943z PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000037 PM 25615912 ER PT J AU Yang, SM Strelcov, E Paranthaman, MP Tselev, A Noh, TW Kalinin, SV AF Yang, Sang Mo Strelcov, Evgheni Paranthaman, M. Parans Tselev, Alexander Noh, Tae Won Kalinin, Sergei V. TI Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality SO NANO LETTERS LA English DT Article DE Humidity; electrochemistry; silver; ionic conduction; locality; scanning probe microscopy ID RESISTIVE SWITCHING MEMORIES; ATOMIC-FORCE MICROSCOPY; GLASSES; SPECTROSCOPY; TRANSPORT; SURFACES AB Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry. C1 [Yang, Sang Mo; Noh, Tae Won] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 151747, South Korea. [Yang, Sang Mo; Noh, Tae Won] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Yang, Sang Mo; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Yang, SM (reprint author), Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 151747, South Korea. EM yangs@ornl.gov; sergei2@ornl.gov RI Strelcov, Evgheni/H-1654-2013; Tselev, Alexander/L-8579-2015; Paranthaman, Mariappan/N-3866-2015; Yang, Sang Mo/Q-2455-2015; Kalinin, Sergei/I-9096-2012 OI Tselev, Alexander/0000-0002-0098-6696; Paranthaman, Mariappan/0000-0003-3009-8531; Yang, Sang Mo/0000-0003-1809-2938; Kalinin, Sergei/0000-0001-5354-6152 FU Center for Nanophase Materials Sciences DOE Office of Science User Facility; DOE; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; [IBS-R009-D1] FX We acknowledge J. M. Black for helpful discussion. This research was conducted at and partially supported by (E.S., A.T., and S.V.K.) the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Support (S.M.Y. and S.V.K.) was also provided by a DOE Presidential Early Career for Scientists and Engineers. This research was also partially supported (S.M.Y. and T.W.N.) by IBS-R009-D1, Korea. Materials synthesis work (M.P.P.) was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. NR 43 TC 7 Z9 7 U1 2 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1062 EP 1069 DI 10.1021/nl5040286 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000041 PM 25564924 ER PT J AU Appavoo, K Liu, MZ Black, CT Sfeir, MY AF Appavoo, Kannatassen Liu, Mingzhao Black, Charles T. Sfeir, Matthew Y. TI Quantifying Bulk and Surface Recombination Processes in Nanostructured Water Splitting Photocatalysts via In Situ Ultrafast Spectroscopy SO NANO LETTERS LA English DT Article DE Water-splitting; transient emission spectroscopy; heterostructure nanowire; recombination pathway; photoelectrochemical cell; light harvesting ID ELECTRON-HOLE RECOMBINATION; SENSITIZED SOLAR-CELLS; PHOTOGENERATED HOLES; SILICON PHOTOANODES; BIVO4 PHOTOANODES; CHARGE-TRANSFER; OXIDATION; DYNAMICS; TIO2; CATALYSTS AB A quantitative description of recombination processes in nanostructured semiconductor photocatalysts-one that distinguishes between bulk (charge transport) and surface (chemical reaction) losses-is critical for advancing solar-to-fuel technologies. Here we present an in situ experimental framework that determines the bias-dependent quantum yield for ultrafast carrier transport to the reactive interface. This is achieved by simultaneously measuring the electrical characteristics and the subpicosecond charge dynamics of a heterostructured photoanode in a working photoelectrochemical cell. Together with direct measurements of the overall incident-photon-to-current efficiency, we illustrate how subtle structural modifications that are not perceivable by conventional X-ray diffraction can drastically affect the overall photocatalytic quantum yield. We reveal how charge carrier recombination losses occurring on ultrafast time scales can limit the overall efficiency even in nanostructures with dimensions smaller than the minority carrier diffusion length. This is particularly true for materials with high carrier concentration, where losses as high as 37% are observed. Our methodology provides a means of evaluating the efficacy of multifunctional designs where high overall efficiency is achieved by maximizing surface transport yield to near unity and utilizing surface layers with enhanced activity. C1 [Appavoo, Kannatassen; Liu, Mingzhao; Black, Charles T.; Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sfeir, MY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM msfeir@bnl.gov RI Liu, Mingzhao/A-9764-2011; OI Liu, Mingzhao/0000-0002-0999-5214; Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research is carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors thank M. Hybertsen for his insightful discussions. NR 45 TC 14 Z9 14 U1 9 U2 123 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1076 EP 1082 DI 10.1021/nl504035j PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000043 PM 25564871 ER PT J AU Parent, LR Cheng, YW Sushko, PV Shao, YY Liu, J Wang, CM Browning, ND AF Parent, Lucas R. Cheng, Yingwen Sushko, Peter V. Shao, Yuyan Liu, Jun Wang, Chong-Min Browning, Nigel D. TI Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn SO NANO LETTERS LA English DT Article DE Mg-ion battery; nanostructured Sn; SnSb nanoparticles; ion insertion anode; multivalent battery; STEM EDS ID AUGMENTED-WAVE METHOD; ELECTROLYTE-SOLUTIONS; ELECTROCHEMICAL-BEHAVIOR; MAGNESIUM BATTERIES; LITHIUM; CATHODE; STORAGE; SB; INTERCALATION; SPECTROSCOPY AB Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anodeelectrolytecathode incompatibilities.1-6 Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries2,7 but must be systematically tailored for effective Mg2+ storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg2+ insertion and extraction mechanisms and transformation processes in beta-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several chargedischarge cycles (conditioning), the beta-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 +/- 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted,8 but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics. C1 [Parent, Lucas R.; Browning, Nigel D.] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Cheng, Yingwen] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. [Sushko, Peter V.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Shao, Yuyan; Liu, Jun] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy Proc & Mat Div, Richland, WA 99352 USA. [Wang, Chong-Min] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Parent, LR (reprint author), Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM lrparent@ucdavis.edu RI Cheng, Yingwen/B-2202-2012; Shao, Yuyan/A-9911-2008; Sushko, Peter/F-5171-2013; OI Cheng, Yingwen/0000-0002-0778-5504; Shao, Yuyan/0000-0001-5735-2670; Sushko, Peter/0000-0001-7338-4146; Browning, Nigel/0000-0003-0491-251X FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830]; Laboratory Directed Research and Development Program at PNNL FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. P.V.S. was supported by the Laboratory Directed Research and Development Program at PNNL. NR 35 TC 8 Z9 8 U1 12 U2 211 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1177 EP 1182 DI 10.1021/nl5042534 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000059 PM 25531653 ER PT J AU Lien, DH Kang, JS Amani, M Chen, K Tosun, M Wang, HP Roy, T Eggleston, MS Wu, MC Dubey, M Lee, SC He, JH Javey, A AF Lien, Der-Hsien Kang, Jeong Seuk Amani, Matin Chen, Kevin Tosun, Mahmut Wang, Hsin-Ping Roy, Tania Eggleston, Michael S. Wu, Ming C. Dubey, Madan Lee, Si-Chen He, Jr-Hau Javey, Ali TI Engineering Light Outcoupling in 2D Materials SO NANO LETTERS LA English DT Article DE 2D materials; light outcoupling; substrate interference; photoluminescence; Raman ID RAMAN-SPECTROSCOPY; LAYER MOS2; GRAPHENE; WSE2; PHOTOLUMINESCENCE; EMISSION; DIODES; ENERGY; FILMS AB When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a similar to 11 times increase in Raman signal and a similar to 30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. C1 [Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S.; Wu, Ming C.; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lien, Der-Hsien; Wang, Hsin-Ping; He, Jr-Hau] KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia. [Lien, Der-Hsien; Wang, Hsin-Ping; Lee, Si-Chen] Natl Taiwan Univ, Inst Elect Engn, Dept Elect Engn, Taipei 10617, Taiwan. [Dubey, Madan] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA. RP He, JH (reprint author), KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia. EM jrhau.he@kaust.edu.sa; ajavey@eecs.berkeley.edu RI He, Jr-Hau/B-5141-2011; Javey, Ali/B-4818-2013 OI He, Jr-Hau/0000-0003-1886-9241; NR 27 TC 26 Z9 26 U1 7 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1356 EP 1361 DI 10.1021/nl504632u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000085 PM 25602462 ER PT J AU He, K Xin, HLL Zhao, KJ Yu, XQ Nordlund, D Weng, TC Li, J Jiang, Y Cadigan, CA Richards, RM Doeff, MM Yang, XQ Stach, EA Li, J Lin, F Su, D AF He, Kai Xin, Huolin L. Zhao, Kejie Yu, Xiqian Nordlund, Dennis Weng, Tsu-Chien Li, Jing Jiang, Yi Cadigan, Christopher A. Richards, Ryan M. Doeff, Marca M. Yang, Xiao-Qing Stach, Eric A. Li, Ju Lin, Feng Su, Dong TI Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials SO NANO LETTERS LA English DT Article DE Lithium ion battery; nickel oxide; conversion reaction; in situ TEM; incubation; rate capability ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; PERFORMANCE; NANOWIRES; INTERCALATION; CHALLENGES; STORAGE; ANODES; NANOSHEETS AB Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni2+ -> Ni-0) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a shrinking-core mode). However, the interior capacity for Ni2+ -> Ni-0 can be accessed efficiently following the nucleation of lithiation fingers that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging. C1 [He, Kai; Xin, Huolin L.; Li, Jing; Stach, Eric A.; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Zhao, Kejie; Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Zhao, Kejie; Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Yu, Xiqian; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Nordlund, Dennis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Li, Jing; Su, Dong] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Jiang, Yi] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Cadigan, Christopher A.; Richards, Ryan M.; Lin, Feng] Colorado Sch Mines, Mat Sci Program, Dept Chem & Geochem, Golden, CO 80401 USA. [Doeff, Marca M.; Lin, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Li, J (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM liju@mit.edu; flin@lbl.gov; dsu@bnl.gov RI Zhao, Kejie/F-8640-2010; Nordlund, Dennis/A-8902-2008; Yu, Xiqian/B-5574-2014; Stach, Eric/D-8545-2011; Li, Ju/A-2993-2008; Richards, Ryan/B-3513-2008; He, Kai/B-9535-2011; Su, Dong/A-8233-2013; Xin, Huolin/E-2747-2010 OI Nordlund, Dennis/0000-0001-9524-6908; Yu, Xiqian/0000-0001-8513-518X; Doeff, Marca/0000-0002-2148-8047; Stach, Eric/0000-0002-3366-2153; Li, Ju/0000-0002-7841-8058; He, Kai/0000-0003-4666-1800; Su, Dong/0000-0002-1921-6683; Xin, Huolin/0000-0002-6521-868X FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-SC-00112704]; U.S. DOE, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC02-98CH10886, DE-SC-00112704]; U.S. DOE [DE-AC02-76SF00515]; DOE [DE-FG02-11ER16210]; NSF [DMR-1240933, DMR-1120901]; Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR130038] FX The electron microscopy work (S/TEM, EELS, and tomography) was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 and DE-SC-00112704. The authors acknowledge the technical support from Dr. Steven N. Ehrlich at Beam line X18A of National Synchrotron Light Source at Brookhaven National Laboratory, as well as the support from Beam line 9-BM-B at APS. X.Y. and X.-Q.Y. were supported by the U.S. DOE, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DE-AC02-98CH10886 and DE-SC-00112704. The synchrotron X-ray work was partially carried out at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, supported by the U.S. DOE under Contract No. DE-AC02-76SF00515. Y.J. is supported by DOE Grant DE-FG02-11ER16210. Ju L. acknowledges support by NSF DMR-1240933 and DMR-1120901. Computational time on the Extreme Science and Engineering Discovery Environment (XSEDE) under Grant TG-DMR130038 is gratefully acknowledged. NR 40 TC 22 Z9 22 U1 10 U2 113 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2015 VL 15 IS 2 BP 1437 EP 1444 DI 10.1021/nl5049884 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB4DI UT WOS:000349578000097 PM 25633328 ER PT J AU van der Schot, G Svenda, M Maia, FRNC Hantke, M DePonte, DP Seibert, MM Aquila, A Schulz, J Kirian, R Liang, M Stellato, F Iwan, B Andreasson, J Timneanu, N Westphal, D Almeida, NF Odic, D Hasse, D Carlsson, GH Larsson, DSD Barty, A Martin, AV Schorb, S Bostedt, C Bozek, JD Rolles, D Rudenko, A Epp, S Foucar, L Rudek, B Hartmann, R Kimmel, N Holl, P Englert, L Loh, NTD Chapman, HN Andersson, I Hajdu, J Ekeberg, T AF van der Schot, Gijs Svenda, Martin Maia, Filipe R. N. C. Hantke, Max DePonte, Daniel P. Seibert, M. Marvin Aquila, Andrew Schulz, Joachim Kirian, Richard Liang, Mengning Stellato, Francesco Iwan, Bianca Andreasson, Jakob Timneanu, Nicusor Westphal, Daniel Almeida, F. Nunes Odic, Dusko Hasse, Dirk Carlsson, Gunilla H. Larsson, Daniel S. D. Barty, Anton Martin, Andrew V. Schorb, Sebastian Bostedt, Christoph Bozek, John D. Rolles, Daniel Rudenko, Artem Epp, Sascha Foucar, Lutz Rudek, Benedikt Hartmann, Robert Kimmel, Nils Holl, Peter Englert, Lars Loh, Ne-Te Duane Chapman, Henry N. Andersson, Inger Hajdu, Janos Ekeberg, Tomas TI Imaging single cells in a beam of live cyanobacteria with an X-ray laser SO NATURE COMMUNICATIONS LA English DT Article ID FREE-ELECTRON LASER; DIFFRACTION MICROSCOPY; MAMMALIAN-CELLS; VIABILITY; SOFTWARE; PHASE; WHOLE AB There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential. C1 [van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max; Seibert, M. Marvin; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F. Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Maia, Filipe R. N. C.; Barty, Anton] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [DePonte, Daniel P.; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Martin, Andrew V.; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Chapman, Henry N.] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. [DePonte, Daniel P.; Seibert, M. Marvin; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.] LCLS, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Aquila, Andrew; Schulz, Joachim; Hajdu, Janos] European XFEL GmbH, D-22761 Hamburg, Germany. [Stellato, Francesco] Univ Roma Tor Vergata, INFN & Phys Dept, I-00133 Rome, Italy. [Martin, Andrew V.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Coherent Xray Sci, Parkville, Vic 3010, Australia. [Rudenko, Artem] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Foucar, Lutz] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Rudek, Benedikt] PTB, D-38116 Braunschweig, Germany. [Hartmann, Robert; Kimmel, Nils; Holl, Peter] PNSensor GmbH, D-80803 Munich, Germany. [Kimmel, Nils] Max Planck Inst Extraterrestrial Phys, D-85741 Garching, Germany. [Englert, Lars] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26129 Oldenburg, Germany. [Loh, Ne-Te Duane] Natl Univ Singapore, Ctr BioImaging Sci, Singapore 117557, Singapore. [Chapman, Henry N.] Univ Hamburg, D-22607 Hamburg, Germany. RP Hajdu, J (reprint author), Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, Husargatan 3 Box 596, SE-75124 Uppsala, Sweden. EM janos@xray.bmc.uu.se; ekeberg@xray.bmc.uu.se RI Larsson, Daniel/G-3699-2012; Rudenko, Artem/C-7412-2009; Barty, Anton/K-5137-2014; Timneanu, Nicusor/C-7691-2012; Loh, Duane/I-7371-2013; Chapman, Henry/G-2153-2010; Bozek, John/E-9260-2010; Rudek, Benedikt/A-5100-2017; OI Rudenko, Artem/0000-0002-9154-8463; Barty, Anton/0000-0003-4751-2727; Timneanu, Nicusor/0000-0001-7328-0400; Loh, Duane/0000-0002-8886-510X; Chapman, Henry/0000-0002-4655-1743; Bozek, John/0000-0001-7486-7238; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; MARTIN, ANDREW/0000-0003-3704-1829; Epp, Sascha/0000-0001-6366-9113 FU Swedish Research Council; Knut and Alice Wallenberg Foundation; European Research Council; Rontgen-Angstrom Cluster; Stiftelsen Olle Engkvist Byggmastare; Max Planck Society FX This work was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council, the Rontgen-Angstrom Cluster and Stiftelsen Olle Engkvist Byggmastare. Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We are grateful to the scientific and technical staff of the LCLS for support. We are indebted to the CAMP collaboration for giving us access to their experimental set-up and for supporting the experiment at the LCLS. We also thank the Max Planck Society for funding the development and operation of the CAMP instrument, which benefited many users at the LCLS. NR 52 TC 30 Z9 31 U1 13 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2015 VL 6 AR 5704 DI 10.1038/ncomms6704 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC0OD UT WOS:000350034400002 PM 25669616 ER PT J AU Petersen, MR Jacobsen, DW Ringler, TD Hecht, MW Maltrud, ME AF Petersen, Mark R. Jacobsen, Douglas W. Ringler, Todd D. Hecht, Matthew W. Maltrud, Mathew E. TI Evaluation of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model SO OCEAN MODELLING LA English DT Article DE Ocean modeling; Diapycnal ocean mixing; Arbitrary Lagrangian-Eulerian coordinate method; Unstructured mesh ID CIRCULATION MODELS; FREE-SURFACE; TOPOGRAPHY; TRANSPORT; REPRESENTATION; SIMULATIONS; FORMULATION; SCHEMES; CELLS AB The vertical coordinate of the Model for Prediction Across Scales-Ocean (MPAS-Ocean) uses the Arbitrary Lagrangian-Eulerian (ALE) method, which offers a variety of configurations. When fully Eulerian, the vertical coordinate is fixed like a z-level ocean model; when fully Lagrangian there is no vertical transport through the interfaces so that the mesh moves with the fluid; additional options for vertical coordinates exist between these two extremes, including z-star, z-tilde, sigma, and isopycnal coordinates. Here we evaluate spurious diapycnal mixing in MPAS-Ocean in several idealized test cases as well as real-world domains with full bathymetry. Mixing data is compared to several other ocean models, including the Parallel Ocean Program (POP) z-level and z-star formulations. In three-dimensional domains, MPAS-Ocean has lower spurious mixing that other ocean models. A series of simulations show that this is likely due to MPAS-Ocean's hexagon-type horizontal grid cells combined with a flux-corrected transport tracer advection scheme designed for these unstructured meshes. The frequency-filtered vertical coordinate of Leclair and Madec (2011) (also called z-tilde) has been implemented and analyzed in MPAS-Ocean. This addition allows low-frequency vertical transport to pass through the vertical interface in an Eulerian manner, while high-frequency vertical oscillations, such as internal gravity waves, are treated in a Lagrangian manner. Z-tilde leads to a substantial reduction in vertical transport across layer interfaces, and a reduction in spurious diapycnal mixing. Published by Elsevier Ltd. C1 [Petersen, Mark R.; Hecht, Matthew W.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Jacobsen, Douglas W.; Ringler, Todd D.; Maltrud, Mathew E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Petersen, MR (reprint author), Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. EM mpetersen@lanl.gov OI Hecht, Matthew/0000-0003-0946-4007; Petersen, Mark/0000-0001-7170-7511 FU Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the US Department of Energy's Office of Science FX The authors thank A. Adcroft and an anonymous reviewer for helpful feedback, and M. Ilicak for providing useful feedback, data in electronic form, and details of the initial conditions for the four test cases. Simulations were conducted using LANL Institutional Computing resources. This work was supported by the Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the US Department of Energy's Office of Science. NR 46 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD FEB PY 2015 VL 86 BP 93 EP 113 DI 10.1016/j.ocemod.2014.12.004 PG 21 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA CB5VL UT WOS:000349695700006 ER PT J AU Hensley, AJR Wang, Y McEwen, JS AF Hensley, Alyssa J. R. Wang, Yong McEwen, Jean-Sabin TI Phenol Deoxygenation Mechanisms on Fe(110) and Pd(111) SO ACS CATALYSIS LA English DT Article DE Density Functional Theory; Minimum Energy Pathways; Transition State Theory; Phenol Deoxygenation; Fe(110); Pd(111); Benzene Production; BEP Relations ID FINDING SADDLE-POINTS; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; M-CRESOL; CATALYTIC HYDRODEOXYGENATION; PHASE HYDRODEOXYGENATION; BIO-OIL; METAL-SURFACES; 1ST PRINCIPLES; AQUEOUS-PHASE AB The catalytic deoxygenation of phenolic compounds has become a major area of interest in recent years because they are produced during the pyrolysis of lignin and are present in biofuels. Our previous work showed that a PdFe bimetallic catalyst was catalytically active for the deoxygenation of phenolics. To better understand and control the catalytic deoxygenation reaction of phenolics, the detailed surface reaction mechanisms are needed for phenol, a key intermediate in phenolic deoxygeantion. Here, we have examined five distinct reaction mechanisms for the deoxygenation of phenol on the Fe(110) and Pd(111) surfaces so as to identify the most likely deoxygenation mechanism on these surfaces. Our results show that the elementary phenol deoxygenation reaction step for each mechanism was highly endothermic on Pd(111), whereas the same mechanisms are exothermic on Fe(110). On the basis of the reaction energy studies, detailed mechanistic studies were performed on the Fe(110) surface, and it was found that the most energetically and kinetically favorable reaction mechanism occurs via the direct cleavage of the C-O bond. C1 [Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [McEwen, Jean-Sabin] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP McEwen, JS (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM js.mcewen@wsu.edu FU Voiland School of Chemical Engineering and Bioengineering; USDA/NIFA [WNP00807]; American Chemical Society; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by institutional funds provided to J.S.M. from the Voiland School of Chemical Engineering and Bioengineering and was partially funded by USDA/NIFA through the Hatch Project No. WNP00807 titled: "Fundamental and Applied Chemical and Biological Catalysts to Minimize Climate Change, Create a Sustainable Energy Future, and Provide a Safer Food Supply". Our thanks also go to the donors of The American Chemical Society Petroleum Research Fund for in part support of this research. We also thank the support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We acknowledge computational resources provided by the Center for Nanoscale Materials at Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 60 TC 22 Z9 22 U1 11 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 523 EP 536 DI 10.1021/cs501403w PG 14 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300005 ER PT J AU Deshlahra, P Carr, RT Chai, SH Iglesia, E AF Deshlahra, Prashant Carr, Robert T. Chai, Song-Hai Iglesia, Enrique TI Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol SO ACS CATALYSIS LA English DT Article DE redox cycle; C-H activation; electron transfer; in situ UV-vis spectroscopy; time-dependent DFT; H-atom addition energy ID SUPPORTED MOLYBDENUM OXIDE; TOTAL-ENERGY CALCULATIONS; DIMETHYL ETHER OXIDATION; WAVE BASIS-SET; SELECTIVE OXIDATION; SOLID ACIDS; KEGGIN-TYPE; X-RAY; DENSITY; DEHYDROGENATION AB Acid and redox reaction rates of CH3OH-O-2 mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. P-31-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO2 and after use in CH3OH reactions. The effects of CH3OH and O-2 pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH3OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV vis spectra obtained during catalysis, are consistent with the effects of CH3OH/O-2 ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo6+ and W6+ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their RAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH3OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of composition on dehydration reactivity reflect changes in charge reorganizations and electrostatic forces that stabilize protons at Bronsted acid sites. C1 [Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Chai, Song-Hai/A-9299-2012; Iglesia, Enrique/D-9551-2017 OI Chai, Song-Hai/0000-0002-4152-2513; Iglesia, Enrique/0000-0003-4109-1001 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC05-76RL0-1830]; National Science Foundation [ACI-1053575, CHE-0840505] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC05-76RL0-1830. Computational facilities were provided by the Environmental Molecular Science Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL), a DOE Office of Science User Facility, under proposal no. 47582. The use of molecular DFT calculations using Gaussian program was made possible by the Extreme Science and Engineering Discovery Environment (XSEDE) and a UC Berkeley College of Chemistry facility, which are supported by National Science Foundation grant numbers (ACI-1053575 and CHE-0840505, respectively). The 31P-MAS NMR measurements were performed at the Caltech Solid State NMR Facility with the assistance of Dr. Sonjong Hwang. We are grateful to Mr. William Knaeble (UC Berkeley) for developing two-dimensional visualizations of the HAE distributions in POM clusters and for technical discussions, Ms. Sarika Goel (UC Berkeley) for TEM imaging, and Mr. Neelay Phadke for a careful review of this manuscript. NR 56 TC 6 Z9 6 U1 10 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 666 EP 682 DI 10.1021/cs501599y PG 17 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300022 ER PT J AU Liu, C Liu, P AF Liu, Cheng Liu, Ping TI Mechanistic Study of Methanol Synthesis from CO2 and H-2 on a Modified Model Mo6S8 Cluster SO ACS CATALYSIS LA English DT Article DE CO2 activation; methanol; modified molybdenum sulfide; alkali metal; DFT ID ETHANOL SYNTHESIS; CATALYSTS; HYDROGENATION; MOLYBDENUM; CONVERSION; SURFACES; SYNGAS; GAS; REDUCTION; MOLECULES AB We report the methanol synthesis from CO2 and H-2 on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo6S8 catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo6S8 cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo6S8 and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo6S8 is the most obvious among the systems studied; however, it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo6S8. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo6S8, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo6S8 to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo6S8 the most, whereas the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo6S8 is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo6S8 but also predicts some possible candidates, which can be used as a promoter to facilitate the CH3OH synthesis on Mo sulfides. C1 [Liu, Cheng] Yangzhou Univ, Mech Engn Coll, Yangzhou 225127, Jiangsu, Peoples R China. [Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-98CH10886]; International Industry-University-Research Project [YZ2012061] FX Part of the research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. Part of the DFT calculations was carried out at Centers for Functional Nanomaterials at Brookhaven National Laboratory. C.L. would like to thank the funding from the International Industry-University-Research Project No. YZ2012061. NR 42 TC 7 Z9 7 U1 15 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 1004 EP 1012 DI 10.1021/cs501354b PG 9 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300058 ER PT J AU Pierpont, AW Batista, ER Martin, RL Chen, WZ Kim, JK Hoyt, CB Gordon, JC Michalczyk, R Silks, LA Wu, RL AF Pierpont, Aaron W. Batista, Enrique R. Martin, Richard L. Chen, Weizhong Kim, Jin Kyung Hoyt, Caroline B. Gordon, John C. Michalczyk, Ryszard Silks, Louis APete Wu, Ruilian TI Origins of the Regioselectivity in the Lutetium Inflate Catalyzed Ketalization of Acetone with Glycerol: A DFT Study SO ACS CATALYSIS LA English DT Article DE glycerol; solketal; regioselective; Lewis acid; catalysis ID SET MODEL CHEMISTRY; AQUEOUS-SOLUTION; HARTREE-FOCK; ACETALIZATION; WATER; IONS; THERMOCHEMISTRY; TRANSITION; CHEMICALS; ENERGIES AB We describe DFT computations that address the regioselective preference toward the five-membered ring product 1,3-dioxolane (solketal) over the six-membered-ring product (1,3-dioxane) during Lu(OTf)(3)-catalyzed ketalization of acetone with glycerol. When ketalization occurs via the internal (secondary) -OH group of glycerol, only solketal production should be possible due to the symmetry of the intermediates. Ketalization via the terminal -OH group of glycerol is predicted to occur in a different manner than the conventionally proposed ketalization mechanism. A constrained hemiketal intermediate is invoked to explain the selectivity for solketal formation. C1 [Pierpont, Aaron W.; Batista, Enrique R.; Martin, Richard L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chen, Weizhong; Gordon, John C.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Kim, Jin Kyung; Hoyt, Caroline B.; Michalczyk, Ryszard; Silks, Louis APete; Wu, Ruilian] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Pierpont, AW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jgordon@lanl.gov OI Silks, Pete/0000-0002-2993-5630; Michalczyk, Ryszard/0000-0001-8839-6473 FU LANL Laboratory Directed Research and Development Program FX We to thank the LANL Laboratory Directed Research and Development Program for financial support. NR 45 TC 6 Z9 6 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 1013 EP 1019 DI 10.1021/cs5010932 PG 7 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300059 ER PT J AU Lin, CC Guo, YJ Vela, J AF Lin, Chia-Cheng Guo, Yijun Vela, Javier TI Microstructure Effects on the Water Oxidation Activity of Co3O4/Porous Silica Nanocomposites SO ACS CATALYSIS LA English DT Article DE Co3O4/SiO2 core/shells; nanocomposites; nanocatalysts; water oxidation; microstructure effects ID PHOTOCATALYTIC OXYGEN EVOLUTION; COBALT-OXIDE; CO3O4 NANOPARTICLES; EVOLVING CATALYSTS; HYDRODYNAMIC RADII; MOLECULAR WIRES; RECENT PROGRESS; EFFICIENT; SURFACE; ELECTROCATALYSTS AB We investigate the effect of microstructuring on the water oxidation (oxygen evolution) activity of two types of Co3O4/porous silica composites: Co3O4/porous SiO2 core/shell nanoparticles with varying shell thicknesses and surface areas, and Co3O4/mesoporous silica nanocomposites with various surface functionalities. Catalytic tests in the presence of Ru(bpy)(3)(2+) as a photosensitizer and S2O82- as a sacrificial electron acceptor show that porous silica shells of up to similar to 20 nm in thickness lead to increased water oxidation activity. We attribute this effect to either (1) a combination of an effective increase in catalyst active area or consequent higher local concentration of Ru(bpy)(3)(2+); (2) a decrease in the permittivity of the medium surrounding the catalyst surface and a consequent increase in the rate of charge transfer; or both. Functionalized Co3O4/mesoporous silica nanocomposites show lower water oxidation activity compared with the parent nonfunctionalized catalyst, likely because of partial pore blocking of the silica support upon surface grafting. A more thorough understanding of the effects of microstructure and permittivity on water oxidation ability will enable the construction of next generation catalysts possessing optimal configuration and better efficiency for water splitting. C1 [Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU National Science Foundation through the Division of Materials Research, Solid State and Materials Chemistry program [NSF-DMR-1309510] FX J. Vela gratefully acknowledges the National Science Foundation for funding of this work through the Division of Materials Research, Solid State and Materials Chemistry program (NSF-DMR-1309510). The authors thank Sarah Cady for assistance with NMR, Jenee Jacobs and Sam Houk for assistance with ICP-MS, and Michelle Thompson for comments. NR 79 TC 17 Z9 17 U1 16 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 1037 EP 1044 DI 10.1021/cs501650j PG 8 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300062 ER PT J AU Jarrige, I Ishii, K Matsumura, D Nishihata, Y Yoshida, M Kishi, H Taniguchi, M Uenishi, M Tanaka, H Kasai, H Mizuki, J AF Jarrige, Ignace Ishii, Kenji Matsumura, Daiju Nishihata, Yasuo Yoshida, Masahiro Kishi, Hirofumi Taniguchi, Masashi Uenishi, Mari Tanaka, Hirohisa Kasai, Hideaki Mizuki, Jun'ichiro TI Toward Optimizing the Performance of Self-Regenerating Pt-Based Perovskite Catalysts SO ACS CATALYSIS LA English DT Article DE platinum; perovskite; heterogeneous catalysis; nanoparticle; RIXS; XAS ID AUTOMOTIVE-EMISSIONS CONTROL; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; METALS; CAZRO3; RH; PD AB Self-regenerating automotive catalysts owe their remarkable performance to the repeated motion of the precious metal atoms in and out of the perovskite lattice under fluctuating oxidizing and reducing conditions, preventing coalescence of the metal nanoparticles. Here we use resonant inelastic X-ray scattering to characterize the occupied and unoccupied Pt 5d states in two self-regenerating Pt-perovskite catalysts, CaTi0.95Pt0.05O3 and CaZr0.95Pt0.05O3. Upon reduction, the element and symmetry-specific charge excitation spectra reveal a sizable hybridization between the Pt 5d and the Ti 3d or Zr 4d states at the interface between the nanoparticles and the perovskite, which involves the occupied states and is thus invisible in X-ray absorption spectra. A correlation is found between the strength of this d-band hybridization and the proportion of Pt nanoparticles that remain buried below the surface during reduction, indicating that the motion of the Pt atoms toward the surface is hindered by this hybridization specifically, rather than by the Pt-O bonding. These results provide direct evidence that the strength of the metal-metal d-band hybridization plays a pivotal role in determining the efficiency of self-regeneration in perovskite catalysts. C1 [Jarrige, Ignace; Ishii, Kenji; Matsumura, Daiju; Nishihata, Yasuo; Yoshida, Masahiro; Mizuki, Jun'ichiro] Japan Atom Energy Agcy, SPring 8, Sayo, Hyogo 6795148, Japan. [Kishi, Hirofumi; Kasai, Hideaki] Osaka Univ, Dept Precis Sci & Technol & Appl Phys, Suita, Osaka 5650871, Japan. [Taniguchi, Masashi; Uenishi, Mari; Tanaka, Hirohisa] Daihatsu Motor Co Ltd, Div Res & Dev, Gamo, Shiga 5202593, Japan. RP Jarrige, I (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM jarrige@bnl.gov RI Jarrige, Ignace/M-6371-2016 OI Jarrige, Ignace/0000-0002-1043-5695 FU Elements Science and Technology Project FX This work was supported by the Elements Science and Technology Project. The synchrotron radiation experiments were performed at the BL11XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2011B3502, 2010B3502, 2010A3502, and 2009B3502). NR 23 TC 3 Z9 3 U1 9 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 1112 EP 1118 DI 10.1021/cs501608k PG 7 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300069 ER PT J AU King, AE Brooks, TJ Tian, YH Batista, ER Sutton, AD AF King, Amanda E. Brooks, Ty J. Tian, Yong-Hui Batista, Enrique R. Sutton, Andrew D. TI Understanding Ketone Hydrodeoxygenation for the Production of Fuels and Feedstocks From Biomass SO ACS CATALYSIS LA English DT Article DE hydrodeoxygenation; biomass; ketone reduction; dehydration; mechanism ID COBALT-CATALYZED HYDROGENATION; ACID; ORGANOCATALYSIS; COMPLEXES; SYSTEMS; DIESEL; XYLOSE; MILD AB Although we can efficiently convert bioderived furans into linear alkanes, the most energy-intensive step in this approach is the hydrodeoxygenation of the intermediate polyketone. To fully understand this process, we have examined the hydrodeoxygenation of a model compound, 3-pentanone, which allows us to follow this process stepwise using Pd/C, H-2 (200 psi), and La(OTf)(3) in acetic acid to remove the oxygen atom at temperatures between 25 and 200 degrees C. We have found that ketone reduction to an alcohol is followed by acetoxylation, which provides a more facile route to C-O bond cleavage relative to the parent alcohol. C1 [King, Amanda E.; Brooks, Ty J.; Sutton, Andrew D.] Los Alamos Natl Lab, Chem Div C IIAC, Los Alamos, NM 87544 USA. [Tian, Yong-Hui; Batista, Enrique R.] Los Alamos Natl Lab, Theoret Div T 1, Los Alamos, NM 87544 USA. RP Sutton, AD (reprint author), Los Alamos Natl Lab, Chem Div C IIAC, POB 1663, Los Alamos, NM 87544 USA. EM adsutton@lanl.gov RI Sutton, Andrew/D-1047-2015 OI Sutton, Andrew/0000-0001-7984-1715 FU Los Alamos National Laboratory LDRD-ECR (Laboratory Directed Research and Development - Early Career Research); National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX Funding for this research was received from Los Alamos National Laboratory LDRD-ECR (Laboratory Directed Research and Development - Early Career Research). We thank Dr. John C. Gordon for useful discussions during the preparation of this manuscript and congratulate him on being appointed as a Laboratory Fellow at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC5206NA25396. LA-UR-14-28593. NR 20 TC 7 Z9 7 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2015 VL 5 IS 2 BP 1223 EP 1226 DI 10.1021/cs501965w PG 4 WC Chemistry, Physical SC Chemistry GA CA9WK UT WOS:000349275300081 ER PT J AU Wolf, H Jorgensen, MRV Chen, YS Herbst-Irmer, R Stalke, D AF Wolf, Hilke Jorgensen, Mads R. V. Chen, Yu-Sheng Herbst-Irmer, Regine Stalke, Dietmar TI Charge density investigations on [2,2]-paracyclophane - in data we trust SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS LA English DT Article DE charge density investigation; phase transitions; paracyclophanes ID X-RAY-SCATTERING; ELECTRON POPULATION ANALYSIS; DATA QUALITY; DATA SETS; DIFFRACTION; CYCLOPHANES; PARAMETERS; RESOLUTION; ERRORS AB Four datasets on [2,2]-paracyclophane were collected in-house and at the Advanced Photon Source at two different temperatures for charge density investigation. Global data quality indicators such as high resolution, high I/sigma(I) values, low merging R values and high multiplicity were matched for all four datasets. The structural parameters did not show significant differences, but the synchrotron data depicted deficiencies in the topological analysis. In retrospect these deficiencies could be assigned to the low quality of the innermost data, which could have been identified by e.g. merging R values for only these reflections. In the multipole refinement these deficiencies could be monitored using DRK-plot and residual density analysis. In this particular example the differences in the topological parameters were relatively small but significant. C1 [Wolf, Hilke; Herbst-Irmer, Regine; Stalke, Dietmar] Univ Gottingen, Inst Anorgan Chem, D-37077 Gottingen, Germany. [Jorgensen, Mads R. V.] Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. [Chen, Yu-Sheng] Univ Chicago, ChemMatCARS, Adv Photon Source, Argonne, IL 60539 USA. RP Stalke, D (reprint author), Univ Gottingen, Inst Anorgan Chem, Tammannstr 4, D-37077 Gottingen, Germany. EM dstalke@chemie.uni-goettingen.de RI Jorgensen, Mads Ry Vogel/C-6109-2017 OI Jorgensen, Mads Ry Vogel/0000-0001-5507-9615 FU Danish National Research Foundation [DNRF93]; National Science Foundation/Department of Energy [NSF/CHE-1346572]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Danish Research Council for Nature and Universe (Danscatt) FX We thank the Danish National Research Foundation (DNRF93) funded Center for Materials Crystallography (CMC) for financial support. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant NSF/CHE-1346572. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. HW also thanks Mette Schmokel for fruitful discussions about the synchrotron data. MRVJ is grateful for the support by the Danish Research Council for Nature and Universe (Danscatt). NR 54 TC 5 Z9 5 U1 3 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-7681 EI 1600-5740 J9 ACTA CRYSTALLOGR B JI Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat. PD FEB PY 2015 VL 71 BP 10 EP 19 DI 10.1107/S2052520614026080 PN 1 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CB0JU UT WOS:000349312800003 PM 25643711 ER PT J AU Gonzalez, JM Fisher, SZ AF Gonzalez, Javier M. Fisher, S. Zoe TI Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4) SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE human fatty-acid binding protein; adipocyte; aP2; ALBP; iLBP; FABP4; ibuprofen ID INHIBITORS; AP2; ATHEROSCLEROSIS; PROGRAM; CRYSTALLOGRAPHY; REFINEMENT; COMPLEXES AB Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. C1 [Gonzalez, Javier M.; Fisher, S. Zoe] Los Alamos Natl Lab, Biosci Div, Prot Crystallog Stn, Los Alamos, NM 87545 USA. RP Gonzalez, JM (reprint author), Los Alamos Natl Lab, Biosci Div, Prot Crystallog Stn, POB 1663, Los Alamos, NM 87545 USA. EM javierg@lanl.gov OI Gonzalez, Javier M./0000-0002-3298-2235 FU LANL Director's Postdoctoral Fellowship [DOE-LDRD 20120776PRD4]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Institute of General Medical Sciences [P41GM103393] FX JMG is the recipient of a LANL Director's Postdoctoral Fellowship, grant DOE-LDRD 20120776PRD4. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH. Edwin Pozharski and Ryszard Michalczyk are gratefully acknowledged for their helpful discussions and manuscript proofreading. NR 35 TC 5 Z9 7 U1 0 U2 11 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD FEB PY 2015 VL 71 BP 163 EP 170 DI 10.1107/S2053230X14027897 PN 2 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CB0YN UT WOS:000349353700009 PM 25664790 ER PT J AU Beresh, SJ Wagner, JL Pruett, BOM Henfling, JF Spillers, RW AF Beresh, Steven J. Wagner, Justin L. Pruett, Brian O. M. Henfling, John F. Spillers, Russell W. TI Supersonic Flow over a Finite-Width Rectangular Cavity SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 51st AIAA Aerospace Sciences Meeting and Exhibit Including the New Horizons Forum and Aerospace Exposition CY JAN 06-11, 2013 CL Grapevine, TX SP AIAA ID PARTICLE IMAGE VELOCIMETRY; SHEAR-LAYER; MIXING LAYER; DEEP CAVITY; OSCILLATIONS; VELOCITY; SPEED; PIV AB Two-component and stereoscopic particle image velocimetry measurements have been acquired in the streamwise plane for supersonic flow over a rectangular cavity of variable width, peering over the sidewall lip to view the depths of the cavity. The data reveal the turbulent shear layer over the cavity and the recirculation region within it. The mean position of the recirculation region was found to be a function of the length-to-width ratio of the cavity, as was the turbulence intensity within both the shear layer and the recirculation region. Compressibility effects were observed in which turbulence levels dropped, and the shear layer thickness decreased as the Mach number was raised from 1.5 to 2.0 and 2.5. Supplemental measurements in the crossplane and the planform view suggest that zones of high turbulence were affixed to each sidewall centered on the cavity lip, with a strip of turbulence stretched out across the cavity shear layer for which the intensity was a function of the length-to-width ratio. These sidewall features are attributed to spillage, which is greatly reduced for the narrowest cavity. Such effects cannot be found in experiments lacking finite spanwise extent. C1 [Beresh, Steven J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [Wagner, Justin L.; Pruett, Brian O. M.; Henfling, John F.; Spillers, Russell W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov NR 42 TC 6 Z9 7 U1 0 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD FEB PY 2015 VL 53 IS 2 BP 296 EP 310 DI 10.2514/1.J053097 PG 15 WC Engineering, Aerospace SC Engineering GA CB1DA UT WOS:000349365700002 ER PT J AU Swantek, AB Austin, JM AF Swantek, A. B. Austin, J. M. TI Flowfield Establishment in Hypervelocity Shock-Wave/Boundary-Layer Interactions SO AIAA JOURNAL LA English DT Article ID HEAT-TRANSFER; SEPARATION; FLOW; LENGTH AB Shock/boundary-layer interactions generated over double-wedge and double-cone models in high-enthalpy, hypersonic flows are known to be sensitive to the thermochemical state of the gas. In this study, the transient evolution of shock interactions and separated flow is examined in nitrogen and air freestream conditions with stagnation enthalpies ranging from 2 to 8 MJ/kg and Mach numbers from 4 to 7. The time-dependent flowfield and associated time scales required to reach mean values for both viscous and inviscid processes are investigated using fast-response thermocouples and high-speed schlieren and chemiluminescence imaging. In all cases, the oblique/bow-shock triple point is observed to propagate upstream to a mean location as the bow-shock standoff distance increases with time. For all freestream conditions, the triple point reaches a mean position in less time for the conical than the wedge flow. Distinct differences between nitrogen and air both in the evolution and mean flow features are observed in the highest-enthalpy test case. The triple-point establishment time is greater in nitrogen than air, corresponding to an increased bow-shock standoff distance, whereas the viscous establishment times in the region of peak heating are comparable. Although the observed dependence on freestream composition and enthalpy can be used to quantify the effect of thermochemistry, we note the time scales for viscous and inviscid processes are of the same order of magnitude for all conditions studied. Normalized establishment times of 2-8 are measured, in reasonable agreement with existing experimental data from surface gauges (6-11). C1 [Swantek, A. B.; Austin, J. M.] Univ Illinois, Dept Aerosp Engn, Champaign, IL 61801 USA. RP Swantek, AB (reprint author), Univ Illinois, Argonne Natl Labs, Champaign, IL 61801 USA. FU U.S. Air Force Office of Scientific Research [FA 9550-11-1-0129] FX This work was funded in part by the U.S. Air Force Office of Scientific Research, FA 9550-11-1-0129, with John Schmisseur as program manager. The authors gratefully acknowledge Andrew Knisely at the University of Illinois for his valuable assistance with the experiments and data processing. NR 20 TC 5 Z9 6 U1 3 U2 19 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD FEB PY 2015 VL 53 IS 2 BP 311 EP 320 DI 10.2514/1.J053104 PG 10 WC Engineering, Aerospace SC Engineering GA CB1DA UT WOS:000349365700003 ER PT J AU Ossenkoppele, R Schonhaut, DR Baker, SL O'Neil, JP Janabi, M Ghosh, PM Santos, M Miller, ZA Bettcher, BM Gorno-Tempini, ML Miller, BL Jagust, WJ Rabinovici, GD AF Ossenkoppele, Rik Schonhaut, Daniel R. Baker, Suzanne L. O'Neil, James P. Janabi, Mustafa Ghosh, Pia M. Santos, Miguel Miller, Zachary A. Bettcher, Brianne M. Gorno-Tempini, Maria L. Miller, Bruce L. Jagust, William J. Rabinovici, Gil D. TI Tau, Amyloid, and Hypometabolism in a Patient with Posterior Cortical Atrophy SO ANNALS OF NEUROLOGY LA English DT Article ID ONSET ALZHEIMERS-DISEASE; CLINICAL VARIANTS; BURDEN AB Determining the relative contribution of amyloid plaques and neurofibrillary tangles to brain dysfunction in Alzheimer disease is critical for therapeutic approaches, but until recently could only be assessed at autopsy. We report a patient with posterior cortical atrophy (visual variant of Alzheimer disease) who was studied using the novel tau tracer [F-18]AV-1451 in conjunction with [C-11]Pittsburgh compound B (PIB; amyloid) and [F-18]fluorodeoxyglucose (FDG) positron emission tomography. Whereas [C-11]PIB bound throughout association neocortex, [F-18]AV-1451 was selectively retained in posterior brain regions that were affected clinically and showed markedly reduced [F-18]FDG uptake. This provides preliminary in vivo evidence that tau is more closely linked to hypometabolism and symptomatology than amyloid. Ann Neurol 2014. C1 [Ossenkoppele, Rik; Schonhaut, Daniel R.; Ghosh, Pia M.; Santos, Miguel; Miller, Zachary A.; Bettcher, Brianne M.; Gorno-Tempini, Maria L.; Miller, Bruce L.; Rabinovici, Gil D.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94158 USA. [Ossenkoppele, Rik; Schonhaut, Daniel R.; Jagust, William J.; Rabinovici, Gil D.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Baker, Suzanne L.; O'Neil, James P.; Janabi, Mustafa; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Ossenkoppele, R (reprint author), Univ Calif San Francisco, Memory & Aging Ctr, 675 Nelson Rising Lane,Suite 190, San Francisco, CA 94158 USA. EM r.ossenkoppele@vumc.nl FU Marie Curie FP7 International Outgoing Fellowship [628812]; NIH National Institute on Aging [R01-AG045611, R01-AG027859, P50-AG023501]; Tau Consortium; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Centre of California [04-33516]; Alzheimer's Disease Research, a program of BrightFocus Foundation FX This research was funded by the Marie Curie FP7 International Outgoing Fellowship (628812; R.O.); donors of Alzheimer's Disease Research, a program of BrightFocus Foundation (R.O.); NIH National Institute on Aging (R01-AG045611, G.D.R.; R01-AG027859, W.J.J.; P50-AG023501, B.L.M.); Tau Consortium (G.D.R., W.J.J); John Douglas French Alzheimer's Foundation (G.D.R., B.L.M.); and State of California Department of Health Services Alzheimer's Disease Research Centre of California (04-33516, B.L.M). Avid Radiopharmaceuticals enabled use of the [18F]AV-1451 tracer, but did not provide direct funding and was not involved in data analysis or interpretation. NR 20 TC 36 Z9 36 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0364-5134 EI 1531-8249 J9 ANN NEUROL JI Ann. Neurol. PD FEB PY 2015 VL 77 IS 2 BP 338 EP 342 DI 10.1002/ana.24321 PG 5 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA CB1KF UT WOS:000349385400018 PM 25448043 ER PT J AU Lau, KC Lu, J Luo, XY Curtiss, LA Amine, K AF Lau, Kah Chun Lu, Jun Luo, Xiangyi Curtiss, Larry A. Amine, Khalil TI Implications of the Unpaired Spins in Li-O-2 Battery Chemistry and Electrochemistry: A Minireview SO CHEMPLUSCHEM LA English DT Review DE batteries; electrochemistry; energy conversion; lithium; oxygen ID LITHIUM-AIR BATTERIES; SUPEROXIDE ION; SECONDARY BATTERIES; DECOMPOSITION MECHANISM; DISCHARGE PRODUCT; AQUEOUS-SOLUTIONS; OXYGEN REDUCTION; CHARGE-TRANSPORT; ELECTROLYTE; LI2O2 AB Recent experimental and theoretical reports suggest that the valence states of oxygen species residing in the Li-O-2 cell discharge products can be very complex. The Li-O-2 discharge products may consist of composite structures of Li/O-2 compounds, such as Li2O2, O-rich Li2O2, LiO2-like superoxide, and Li2O, which can be both crystalline and amorphous phase. Some impurities can also be present owing to undesired parasitic reactions associated with electrolyte decomposition. In particular, the observation of unpaired spins associated with Li-O-2 discharge products may be because of the oxygen-rich environment of the Li-O-2 cell, which results in reduced oxygen radical species (e. g., O-2(-), LiO2, etc.). The presence of unpaired spins in Li-O-2 cell products can have a significant impact on electrolyte stability and cell performance (e. g., overpotential, electrical conductivity). Besides standard ex situ experimental characterization, accurate and robust in situ experimental characterizations (e. g., EPR, NMR, Raman, and FTIR spectroscopy) in combination with well-controlled materials synthesis techniques are further needed to probe the time-evolution reaction mechanism of these unpaired electron spins within the Li-O-2 cell environment for better materials understanding and future Li-O-2 battery design. C1 [Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lu, Jun; Luo, Xiangyi; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Luo, Xiangyi] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Amine, Khalil] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 80203, Saudi Arabia. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov; amine@anl.gov RI Luo, Xiangyi/K-6058-2015; Faculty of, Sciences, KAU/E-7305-2017 OI Luo, Xiangyi/0000-0002-4817-1461; FU U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; DOE EERE Postdoctoral Research Award under the EERE Vehicles Technology Program [DE-AC05-06OR23100] FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), and partially supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. J.L. was supported by a DOE EERE Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE under DOE contract number DE-AC05-06OR23100. NR 68 TC 5 Z9 5 U1 11 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2015 VL 80 IS 2 SI SI BP 336 EP + DI 10.1002/cplu.201402053 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB2PH UT WOS:000349469400005 ER PT J AU Buonaiuto, M Neuhold, S Schroeder, DJ Lopez, CM Vaughey, JT AF Buonaiuto, Megan Neuhold, Susanna Schroeder, David J. Lopez, Carmen M. Vaughey, John T. TI Functionalizing the Surface of Lithium-Metal Anodes SO CHEMPLUSCHEM LA English DT Article DE electrochemistry; lithium; polymers; silanes; surface chemistry ID BATTERIES; ELECTROLYTE; STABILIZATION; SOLVENTS; SILANE AB Metal-air batteries are one important aspect of many in moving beyond lithium-ion research efforts. However, as our understanding of how molecular oxygen can act as a rechargeable cathode has progressed, the problems associated with how these materials at various states of charge interact with the lithium-metal anode are only beginning to come to the surface. In this study we have devised a method to coat the surface of lithium with a functional group to act as either an anchor for further derivation studies or be polymerized to create a nanometer-thick polymer coating attached to the surface by silane groups. These stable films, formed by polymerization of vinyl substituents, lower cell impedance at the electrode and over the first 50 cycles, increase cycling efficiency, and demonstrate lower-capacity fade. C1 [Buonaiuto, Megan; Neuhold, Susanna; Lopez, Carmen M.; Vaughey, John T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Schroeder, David J.] No Illinois Univ, Dept Engn Technol, Coll Engn & Engn Technol, De Kalb, IL 60115 USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vaughey@anl.gov OI Lopez, Carmen M./0000-0002-6096-0674; Vaughey, John/0000-0002-2556-6129 FU Office of Vehicle Technologies (Batteries for Advanced Transportation Technologies (BATT) Program) at the U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Argonne National Laboratory FX We thank D. L. Proffit, A. N. Jansen, B. Polzin, and F. Brushett for helpful discussion and Z. Zhang for use of the FTIR. M. B. would like to acknowledge the support received while at Argonne National Laboratory as a participant in the Science Undergraduate Laboratory Internship (SULI) program administered by the Office of Science: Office of Workforce Development for Teachers and Scientists, U.S. Department of Energy. Support from the Office of Vehicle Technologies (Batteries for Advanced Transportation Technologies (BATT) Program) at the U.S. Department of Energy under contract no. DE-AC02-06CH11357 is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 19 TC 4 Z9 4 U1 6 U2 81 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2015 VL 80 IS 2 SI SI BP 363 EP 367 DI 10.1002/cplu.201402084 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA CB2PH UT WOS:000349469400011 ER PT J AU Cho, KT Tucker, MC Ding, M Ridgway, P Battaglia, VS Srinivasan, V Weber, AZ AF Cho, Kyu Taek Tucker, Michael C. Ding, Markus Ridgway, Paul Battaglia, Vincent S. Srinivasan, Venkat Weber, Adam Z. TI Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage SO CHEMPLUSCHEM LA English DT Article DE cyclic performance; electrochemistry; hydrogen-bromine flow battery; platinum; redox chemistry; side reaction ID RESEARCH-AND-DEVELOPMENT; PLATINUM-ELECTRODES; ACID-SOLUTIONS; FUEL-CELL; TRANSPORT-PROPERTIES; ELECTROOSMOTIC DRAG; BROMIDE ADSORPTION; DOUBLE-LAYER; ANIONS; MEMBRANES AB This paper explores the critical factors dominating the cycle performance of the hydrogen/bromine redox flow battery (RFB). Carbon electrode oxidation to CO2 was seen as the dominant side reaction, which can be prevented by operating the cell below 1.4 V. Crossover of bromide species from the positive to the negative electrode, especially during charge, dominates the coulombic efficiency, and can result in dissolution of the Pt catalyst if an adequate hydrogen supply is not maintained. This paper also describes the tradeoffs in voltaic, energy, and coulombic efficiencies during cycling, including the determination of the peak energy efficiency with respect to the HBr concentration and current density. Long-term cycling demonstrates negligible cell-component degradation over 600 cycles (approximate to 3 months), with capacity loss caused by the bromine from the system, which can be mitigated by proper system design. The data and methodologies provided in this paper can be used to understand better the operation of this and other RFBs. C1 [Cho, Kyu Taek; Tucker, Michael C.; Ridgway, Paul; Battaglia, Vincent S.; Srinivasan, Venkat; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Ding, Markus] Tech Univ Munich, D-85748 Garching, Germany. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Cyclotron Rd, Berkeley, CA 94720 USA. EM azweber@lbl.gov FU Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy [DE-AC02-05CH11231, DE-ARDE-AR0000137]; Robert Bosch LLC FX We would like to thank Ms. Karen Sugano for ICP and capillary electrophoresis measurements. This work was funded by the Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy (contract no. DE-AC02-05CH11231 for LBNL and DE-ARDE-AR0000137 for Robert Bosch LLC) with cost share provided by Robert Bosch LLC. NR 52 TC 14 Z9 14 U1 5 U2 50 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2015 VL 80 IS 2 SI SI BP 402 EP 411 DI 10.1002/cplu.201402043 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CB2PH UT WOS:000349469400017 ER PT J AU Vijayakumar, M Nie, ZM Walter, E Hu, JZ Liu, J Sprenkle, V Wang, W AF Vijayakumar, Murugesan Nie, Zimin Walter, Eric Hu, Jianzhi Liu, Jun Sprenkle, Vincent Wang, Wei TI Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes SO CHEMPLUSCHEM LA English DT Article DE density functional calculations; NMR spectroscopy; redox flow batteries; solvation structure; vanadium ID DENSITY-FUNCTIONAL THEORY; RESEARCH-AND-DEVELOPMENT; ENERGY-STORAGE; COORDINATION SPHERE; CELL ELECTROLYTE; CATIONS; IONS; CHEMISTRY; EXCHANGE; PROGRESS AB The investigation of the vanadium electrolyte stability issue on the molecular-level solvation structure and the dynamics has led to the successful designing of mixed acid-based vanadium electrolytes. This new mixed-acid based electrolyte system render approximately 70% increase in energy density (approximate to 40 WhL(-1)) and approximately 80% increase in stable temperature window (-10 to +50 degrees C) compared with conventional sulfuric acid-based vanadium electrolyte. Through a comprehensive study by density functional theory and nuclear magnetic resonance spectroscopies, the improved stability is attributed to the hydrochloric acid as optimal cosolvent providing chloride anions for a ligand-exchange process in the vanadium solvation structure. The role of the chloride counteranion in the solvation structure and dynamics of vanadium species was studied using combined magnetic resonance spectroscopy and DFT-based theoretical methods. The solvation phenomenon of multiple vanadium species and their impact on vanadium redox flow battery electrolyte chemical stability are discussed. C1 [Vijayakumar, Murugesan; Nie, Zimin; Walter, Eric; Hu, Jianzhi; Liu, Jun; Sprenkle, Vincent; Wang, Wei] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Vijayakumar, M (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM vijay@pnnl.gov; wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010; Hu, Jian Zhi/F-7126-2012; Walter, Eric/P-9329-2016 OI Wang, Wei/0000-0002-5453-4695; FU Office of Electricity Delivery & Energy Reliability, U.S. Department of Energy (DOE) [57558]; DOE [DE-AC05-76L01830]; DOE's Office of Biological and Environmental Research (BER) FX This study was supported by the Office of Electricity Delivery & Energy Reliability (project manager: Dr. Imre Gyuk), U.S. Department of Energy (DOE) under contract #57558. PNNL is a multiprogram laboratory operated for DOE by Battelle under Contract DE-AC05-76L01830. The NMR, EPR, and computational studies were performed at the Environmental and Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). We thank Sarah D. Burton, PNNL, for her help with NMR measurements. NR 50 TC 4 Z9 5 U1 3 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2015 VL 80 IS 2 SI SI BP 428 EP 437 DI 10.1002/cplu.201402139 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CB2PH UT WOS:000349469400020 ER PT J AU Xu, M Wang, LM Peng, R Ge, QQ Chen, F Ye, ZR Zhang, Y Chen, SD Xia, M Liu, RH Arita, M Shimada, K Namatame, H Taniguchi, M Matsunami, M Kimura, S Shi, M Chen, XH Yin, WG Ku, W Xie, BP Feng, DL AF Xu Min Wang Li-Min Peng Rui Ge Qing-Qin Chen Fei Ye Zi-Rong Zhang Yan Chen Su-Di Xia Miao Liu Rong-Hua Arita, M. Shimada, K. Namatame, H. Taniguchi, M. Matsunami, M. Kimura, S. Shi Ming Chen Xian-Hui Yin Wei-Guo Ku Wei Xie Bin-Ping Feng Dong-Lai TI Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder SO CHINESE PHYSICS LETTERS LA English DT Article AB Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors. C1 [Xu Min; Peng Rui; Ge Qing-Qin; Chen Fei; Ye Zi-Rong; Zhang Yan; Chen Su-Di; Xia Miao; Xie Bin-Ping; Feng Dong-Lai] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Xu Min; Peng Rui; Ge Qing-Qin; Chen Fei; Ye Zi-Rong; Zhang Yan; Chen Su-Di; Xia Miao; Xie Bin-Ping; Feng Dong-Lai] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Wang Li-Min; Yin Wei-Guo; Ku Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Liu Rong-Hua; Chen Xian-Hui] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. [Liu Rong-Hua; Chen Xian-Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China. [Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Hiroshima 7398526, Japan. [Matsunami, M.; Kimura, S.] Natl Inst Nat Sci, Inst Mol Sci, UVSOR Facil, Okazaki, Aichi 4448585, Japan. [Shi Ming] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Peng Rui; Xie Bin-Ping; Feng Dong-Lai] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. RP Ku, W (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM weiku@bnl.gov; dlfeng@fudan.edu.cn RI Matsunami, Masaharu/H-8817-2012; Shimada, Kenya/G-5080-2016; Yin, Weiguo/A-9671-2014; Liu, Ronghua/A-9790-2013 OI Shimada, Kenya/0000-0002-1945-2352; Yin, Weiguo/0000-0002-4965-5329; Liu, Ronghua/0000-0002-4053-3923 FU National Basic Research Program of China [2012CB921400, 2011CB921802, 2011CBA00112] FX Supported by the National Basic Research Program of China under Grant Nos 2012CB921400, 2011CB921802 and 2011CBA00112. NR 24 TC 0 Z9 0 U1 3 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X EI 1741-3540 J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD FEB PY 2015 VL 32 IS 2 AR 027401 DI 10.1088/0256-307X/32/2/027401 PG 4 WC Physics, Multidisciplinary SC Physics GA CB1WP UT WOS:000349419000032 ER PT J AU Ayers, PL Boyd, RJ Bultinck, P Caffarel, M Carbo-Dorca, R Causa, M Cioslowski, J Contreras-Garcia, J Cooper, DL Coppens, P Gatti, C Grabowsky, S Lazzeretti, P Macchi, P Pendas, AM Popelier, PLA Ruedenberg, K Rzepa, H Savin, A Sax, A Schwarz, WHE Shahbazian, S Silvi, B Sola, M Tsirelson, V AF Ayers, Paul L. a Boyd, Russell J. b Bultinck, Patrick Caffarel, Michel d Carbo-Dorca, Ramon e Causa, Mauro f Cioslowski, Jerzy g Contreras-Garcia, Julia h Cooper, David L. i Coppens, Philip j Gatti, Carlo k Grabowsky, Simon l Lazzeretti, Paolo m Macchi, Piero n Martin Pendas, Angel o Popelier, Paul L. A. pq Ruedenberg, Klaus r Rzepa, Henry s Savin, Andreas h Sax, Alexander t Schwarz, W. H. Eugen uv Shahbazian, Shant w Silvi, Bernard h Sola, Miquel e Tsirelson, Vladimir x TI Six questions on topology in theoretical chemistry SO COMPUTATIONAL AND THEORETICAL CHEMISTRY LA English DT Article DE Topological methods; Methodology; Chemical concepts; Observables ID ELECTRON LOCALIZATION FUNCTION; HE-AT-ADAMANTANE; CHARGE-DENSITY; CHEMICAL-BOND; GROUP ELECTRONEGATIVITIES; ATOMIC PROPERTIES; CRITICAL-POINT; X-RAY; MOLECULES; DISTRIBUTIONS AB The paper collects the answers of the authors to the following questions: " What is the significance of topological approach? Can new chemical concepts be found by a topological approach? What is the status of a chemical concept within a topological approach? Should topological approaches provide measurable quantities? Is it possible to predict the outcome of a topological approach without performing a calculation on a computer? What are new domains for which topological approaches would be useful? (C) 2014 Elsevier B.V. All rights reserved. C1 [Ayers, Paul L. a] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. [Boyd, Russell J. b] Dalhousie Univ, Dept Chem, Halifax, NS 83H 4R2, Canada. [Bultinck, Patrick] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium. [Caffarel, Michel d] CNRS IRSAMC Univ Toulouse, Lab Chim & Phys Quant, Toulouse, France. [Carbo-Dorca, Ramon e; Sola, Miquel e] Univ Girona, Inst Quim Computac & Catalisi, E-17071 Girona, Catalonia, Spain. [Carbo-Dorca, Ramon e; Sola, Miquel e] Univ Girona, Dept Quim, E-17071 Girona, Catalonia, Spain. [Causa, Mauro f] Univ Naples Federico II, Dipartimento Chim Paolo Corradini, I-80126 Naples, Italy. [Cioslowski, Jerzy g] Univ Szczecin, Inst Phys, PL-70451 Szczecin, Poland. [Contreras-Garcia, Julia h; Savin, Andreas h; Silvi, Bernard h] Univ Paris 06, Sorbonne Univ, UMR 7616, Chim Theor Lab, F-75005 Paris, France. [Cooper, David L. i] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England. [Coppens, Philip j] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Gatti, Carlo k] CNR, Ist Sci & Tecnol Mol, I-20133 Milan, Italy. [Grabowsky, Simon l] Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. [Lazzeretti, Paolo m] Univ Modena, Dipartimento Sci Chim & Geol, I-41100 Modena, Italy. [Macchi, Piero n] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. [Martin Pendas, Angel o] Univ Oviedo, Dept Quim Fis & Analit, E-33006 Oviedo, Spain. [Popelier, Paul L. A. pq] Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England. [Popelier, Paul L. A. pq] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Ruedenberg, Klaus r] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Ruedenberg, Klaus r] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Rzepa, Henry s] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England. [Sax, Alexander t] Graz Univ, Dept Chem, A-8010 Graz, Austria. [Schwarz, W. H. Eugen uv] Tsinghua Univ, Theoret Chem Grp, Beijing 100084, Peoples R China. [Schwarz, W. H. Eugen uv] Univ Siegen, Fac Sci & Engn, Phys & Theoret Chem Lab, D-57068 Siegen, Germany. [Shahbazian, Shant w] Shahid Beheshti Univ, Dept Pure Chem, Fac Chem, Tehran, Iran. [Tsirelson, Vladimir x] Mendeleev Univ Chem Technol, Dept Quantum Chem, Moscow 125047, Russia. RP Silvi, B (reprint author), Univ Paris 06, Sorbonne Univ, UMR 7616, Chim Theor Lab, Case Courrier 137,4 Pl Jussieu, F-75005 Paris, France. EM silvi@lct.jussieu.fr RI Sola, Miquel/A-6155-2009; Bultinck, Patrick/E-4716-2011; Ayers, Paul/A-1154-2008; Grabowsky, Simon/H-6014-2012; Macchi, Piero/A-7562-2012; Martin Pendas, Angel/A-8539-2009; CONTRERAS-GARCIA, JULIA/A-2482-2012; Gatti, Carlo/B-7410-2009; Carbo-Dorca, Ramon/E-3201-2015 OI CAFFAREL, Michel/0000-0003-3267-6809; Silvi, Bernard/0000-0002-3872-0121; Sola, Miquel/0000-0002-1917-7450; Bultinck, Patrick/0000-0003-2766-2672; Ayers, Paul/0000-0003-2605-3883; Macchi, Piero/0000-0001-6292-9825; Martin Pendas, Angel/0000-0002-4471-4000; CONTRERAS-GARCIA, JULIA/0000-0002-8947-9526; Gatti, Carlo/0000-0002-0047-1596; Carbo-Dorca, Ramon/0000-0002-9219-0686 NR 95 TC 23 Z9 23 U1 10 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-271X EI 1872-7999 J9 COMPUT THEOR CHEM JI Comput. Theor. Chem. PD FEB 1 PY 2015 VL 1053 SI SI BP 2 EP 16 DI 10.1016/j.comptc.2014.09.028 PG 15 WC Chemistry, Physical SC Chemistry GA CB4IO UT WOS:000349591600002 ER PT J AU Stappert, K Unal, D Spielberg, ET Mudring, AV AF Stappert, Kathrin Unal, Derya Spielberg, Eike T. Mudring, Anja-Verena TI Influence of the Counteranion on the Ability of 1-Dodecyl-3-methyltriazolium Ionic Liquids to Form Mesophases SO CRYSTAL GROWTH & DESIGN LA English DT Article ID IMIDAZOLIUM SALTS; THERMAL-BEHAVIOR; CRYSTALS AB The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl-, Br-, I-, I-3(-), PF6-, and Tf2N- [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces the triazolium cation to align with it in this crystal structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. Their clearing points shift with increasing anion radius to lower temperatures. C1 [Stappert, Kathrin; Unal, Derya; Spielberg, Eike T.; Mudring, Anja-Verena] Ruhr Univ Bochum, Fak Chem & Biochem, D-44780 Bochum, Germany. [Mudring, Anja-Verena] Ames Lab, Crit Mat Inst, Ames, IA 50011 USA. [Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mudring, AV (reprint author), Ruhr Univ Bochum, Fak Chem & Biochem, D-44780 Bochum, Germany. EM anja.mudring@ruhr-uni-bochum.de RI Spielberg, Eike/D-9890-2015 OI Spielberg, Eike/0000-0002-3333-5814 FU German Science Foundation DEG through the DEG Cluster of Excellence RESOLV [EXC 1069]; Iowa State University; Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX This work was supported in part by the German Science Foundation DEG through the DEG Cluster of Excellence RESOLV (EXC 1069), Iowa State University and the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 39 TC 6 Z9 6 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2015 VL 15 IS 2 BP 752 EP 758 DI 10.1021/cg501564j PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CA7ZY UT WOS:000349137500030 ER PT J AU Sadler, NC Wright, AT AF Sadler, Natalie C. Wright, Aaron T. TI Activity-based protein profiling of microbes SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID CODED AFFINITY TAGS; IN-VIVO; MYCOBACTERIUM-TUBERCULOSIS; CHEMICAL PROTEOMICS; HUMAN SERUM; S.-AUREUS; BINDING; PROBES; ENZYMES; CYSTEINES AB Activity-based protein profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems can enhance protein annotation, characterize protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems. C1 [Sadler, Natalie C.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wright, AT (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Aaron.Wright@PNNL.gov OI Wright, Aaron/0000-0002-3172-5253 FU Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics and Foundational Scientific Focus Area projects; DOE-BER Bioimaging Pilot Project program; Environmental Molecular Sciences Laboratory, a DOE-BER national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, Washington; Battelle for the DOE [DE-AC05-76RLO-1830] FX We thank Richard D Smith for his careful edits and insightful suggestions. Portions of this research were supported by the Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics and Foundational Scientific Focus Area projects, and the DOE-BER Bioimaging Pilot Project program; additional resources supporting research described herein was provided via the Environmental Molecular Sciences Laboratory, a DOE-BER national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 33 TC 11 Z9 11 U1 4 U2 42 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1367-5931 EI 1879-0402 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD FEB PY 2015 VL 24 BP 139 EP 144 DI 10.1016/j.cbpa.2014.10.022 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CB4CB UT WOS:000349574700017 PM 25531039 ER PT J AU Azimi, N Xue, Z Hua, LB Takoudis, C Zhang, SS Zhang, ZC AF Azimi, Nasim Xue, Zheng Hua, Libo Takoudis, Christos Zhang, Shengshui Zhang, Zhengcheng TI Additive Effect on the Electrochemical Performance of Lithium-Sulfur Battery SO ELECTROCHIMICA ACTA LA English DT Article DE Electrolyte; LiDFOB additive; Silicon-based electrolyte; Coulombic efficiency; Lithium-sulfur batteries ID LI-S BATTERIES; DISCHARGE PERFORMANCE; LIQUID ELECTROLYTE; GRAPHENE OXIDE; COMPOSITE; CELL; CATHODE; CHARGE AB Lithium difluoro(oxalato) borate (LiDFOB) was investigated as an electrolyte additive for the Li-S battery. This additive was identified to be an efficient electrolyte additive to suppress the polysulfide shuttling effect existing in the conventional Li-S chemistry. To detect the positive impact of the new additive, oligo (ethylene glycol) functionalized silane was employed as the electrolyte solvent due to its high solvation capability with the lithium polysulfides. The electrochemical results and the SEM data of Li-S battery using the new electrolyte confirmed the role of the LiDFOB as a critical component to eliminate the shuttling of the dissolved polysulfides thus enabling a high coulombic efficiency. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Azimi, Nasim; Xue, Zheng; Hua, Libo; Zhang, Zhengcheng] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Azimi, Nasim; Takoudis, Christos] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. [Azimi, Nasim; Takoudis, Christos] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. [Zhang, Shengshui] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov RI Zhang, Sheng/A-4456-2012 OI Zhang, Sheng/0000-0003-4435-4110 FU Vehicle Technologies Office, U.S. Department of Energy; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research is supported by the Vehicle Technologies Office, U.S. Department of Energy. Argonne, a U.S. Department of Energy laboratory, is operated by UChicago Argonne, LLC under contract DE-AC02-06CH11357. Z.Z. would like to thank Prof. Donghai Wang from Pennsylvania State University for the technical discussions. NR 35 TC 8 Z9 8 U1 14 U2 98 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 1 PY 2015 VL 154 BP 205 EP 210 DI 10.1016/j.electacta.2014.12.041 PG 6 WC Electrochemistry SC Electrochemistry GA CB3RR UT WOS:000349546500027 ER PT J AU Wiens, RC Maurice, S AF Wiens, Roger C. Maurice, Sylvestre CA MSL Sci Team TI ChemCam: Chemostratigraphy by the First Mars Microprobe SO ELEMENTS LA English DT Article DE Mars geochemistry; chemostratigraphy; laser-induced breakdown spectroscopy; Curiosity rover; Gale Crater ID GALE CRATER; INSTRUMENT SUITE; ROCKNEST; ROCKS; UNIT AB The ChemCam laser-induced breakdown spectrometer on the rover Curiosity has provided more than 200,000 spectra from over 5000 different locations on Mars. This instrument is the first chemical microprobe on Mars and has an analytical footprint 0.3-0.6 mm in diameter. Chem Cam has observed a measure of hydration in all the sedimentary materials encountered along the rover traverse in Gale Crater, indicating the ubiquity of phyllosilicates as a constituent of the analyzed sandstones, mudstones, and conglomerates. Diagenetic features, including calcium sulfate veins, millimeter-thick magnesium-rich diagenetic ridges, and manganese-rich rock surfaces, provide clues to water-rock interactions. Float clasts of coarse-grained igneous rocks are rich in alkali feldspars and some are enriched in fluorine, indicating greater magmatic evolution than expected on Mars. The identification of individual soil components has contributed to our understanding of the evolution of Martian soil. These observations have broadened our understanding of Mars as an active and once habitable planet. C1 [Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Maurice, Sylvestre] Inst Rech Astrophys & Planetol, Toulouse, France. RP Wiens, RC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rwiens@lanl.gov; Sylvestre.maurice@irap.omp.eu RI Rodriguez-Manfredi, Jose/L-8001-2014; Ramos, Miguel/K-2230-2014 OI Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Ramos, Miguel/0000-0003-3648-6818 FU NASA Mars Program Office in the US; French Space Agency (CNES) in France; Jet Propulsion Laboratory FX This work was supported by the NASA Mars Program Office in the US and by the French Space Agency (CNES) in France. Ryan Anderson, Fred Calef, Zareh Gorjian, Stephane Le Mouelic, Nicolas Mangold, Marion Nachon, William Rapin, Sam Clegg, Cecile Fabre, Agnes Cousin, and Violaine Sautter are thanked for their contributions to this work. The Jet Propulsion Laboratory is thanked for and congratulated on its excellent development and support of the MSL mission. The manuscript benefited from constructive reviews by R. Arvidson and G. Rossman, and from editorial support by J. Grotzinger and G. Brown. NR 28 TC 12 Z9 12 U1 5 U2 30 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD FEB PY 2015 VL 11 IS 1 BP 33 EP 38 DI 10.2113/gselements.11.1.33 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CB5ES UT WOS:000349650900008 ER PT J AU Boixo, S Ortiz, G Somma, R AF Boixo, S. Ortiz, G. Somma, R. TI Fast quantum methods for optimization SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Review ID ADIABATIC EVOLUTION; MECHANICS; ALGORITHM; PHYSICS AB Discrete combinatorial optimization consists in finding the optimal configuration that minimizes a given discrete objective function. An interpretation of such a function as the energy of a classical system allows us to reduce the optimization problem into the preparation of a low-temperature thermal state of the system. Motivated by the quantum annealing method, we present three strategies to prepare the low-temperature state that exploit quantum mechanics in remarkable ways. We focus on implementations without uncontrolled errors induced by the environment. This allows us to rigorously prove a quantum advantage. The first strategy uses a classical-to-quantum mapping, where the equilibrium properties of a classical system in d spatial dimensions can be determined from the ground state properties of a quantum system also in d spatial dimensions. We show how such a ground state can be prepared by means of quantum annealing, including quantum adiabatic evolutions. This mapping also allows us to unveil some fundamental relations between simulated and quantum annealing. The second strategy builds upon the first one and introduces a technique called spectral gap amplification to reduce the time required to prepare the same quantum state adiabatically. If implemented on a quantum device that exploits quantum coherence, this strategy leads to a quadratic improvement in complexity over the well-known bound of the classical simulated annealing method. The third strategy is not purely adiabatic; instead, it exploits diabatic processes between the low-energy states of the corresponding quantum system. For some problems it results in an exponential speedup (in the oracle model) over the best classical algorithms. C1 [Boixo, S.] Google Quantum AI Labs, Venice, CA 90291 USA. [Ortiz, G.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Somma, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Boixo, S (reprint author), Google Quantum AI Labs, Venice, CA 90291 USA. NR 48 TC 2 Z9 2 U1 3 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD FEB PY 2015 VL 224 IS 1 BP 35 EP 49 DI 10.1140/epjst/e2015-02341-5 PG 15 WC Physics, Multidisciplinary SC Physics GA CB2GZ UT WOS:000349446400006 ER PT J AU Larson, J Liang, KY Johansoon, KH AF Larson, Jeffrey Liang, Kuo-Yun Johansoon, Karl H. TI A Distributed Framework for Coordinated Heavy-Duty Vehicle Platooning SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Automated highways; intelligent systems; road transportation AB Heavy-duty vehicles (HDVs) traveling in single file with small intervehicle distances experience reduced aerodynamic drag and, therefore, have improved fuel economy. In this paper, we attempt to maximize the amount of fuel saved by coordinating platoon formation using a distributed network of controllers. These virtual controllers, placed at major intersections in a road network, help coordinate the velocity of approaching vehicles so they arrive at the junction simultaneously and can therefore platoon. This control is initiated only if the cost of forming the platoon is smaller than the savings incurred from platooning. In a largescale simulation of the German Autobahn network, we observe that savings surpassing 5% when only a few thousand vehicles participate in the system. These results are corroborated by an analysis of real-world HDV data that show significant platooning opportunities currently exist, suggesting that a slightly invasive network of distributed controllers, such as the one proposed in this paper, can yield considerable savings. C1 [Larson, Jeffrey] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Liang, Kuo-Yun; Johansoon, Karl H.] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, S-10044 Stockholm, Sweden. [Liang, Kuo-Yun; Johansoon, Karl H.] KTH Royal Inst Technol, Dept Automat Control, S-10044 Stockholm, Sweden. RP Larson, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmlarson@anl.gov; kyliang@kth.se; kuo-yun.liang@scania.com OI Johansson, Karl H./0000-0001-9940-5929 FU VINNOVA within the FFI program [2011-01144]; EU FP7 Project COMPANION; Swedish Research Council; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported in part by VINNOVA within the FFI program under Contract 2011-01144, by the EU FP7 Project COMPANION, by the Swedish Research Council, by the Swedish Foundation for Strategic Research, by the Knut and Alice Wallenberg Foundation, and by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357. The Associate Editor for this paper was B. De Schutter. NR 22 TC 7 Z9 7 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 EI 1558-0016 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD FEB PY 2015 VL 16 IS 1 BP 419 EP 429 DI 10.1109/TITS.2014.2320133 PG 11 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA CB1MG UT WOS:000349391200037 ER PT J AU Mernild, SH Hanna, E McConnell, JR Sigl, M Beckerman, AP Yde, JC Cappelen, J Malmros, JK Steffen, K AF Mernild, Sebastian H. Hanna, Edward McConnell, Joseph R. Sigl, Michael Beckerman, Andrew P. Yde, Jacob C. Cappelen, John Malmros, Jeppe K. Steffen, Konrad TI Greenland precipitation trends in a long-term instrumental climate context (1890-2012): evaluation of coastal and ice core records SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE climate; Greenland; ice core; observations; precipitation; weather stations ID SURFACE MASS-BALANCE; MITTIVAKKAT GLETSCHER; SOUTHEAST GREENLAND; SNOW ACCUMULATION; AMMASSALIK ISLAND; EAST GREENLAND; WEST GREENLAND; SHEET; GLACIERS; RUNOFF AB Here, we present an analysis of monthly, seasonal, and annual long-term precipitation time-series compiled from coastal meteorological stations in Greenland and Greenland Ice Sheet (GrIS) ice cores (including three new ice core records from ACT11D, Tunu2013, and Summit2010). The dataset covers the period from 1890 to 2012, a period of climate warming. For approximately the first decade of the new millennium (2001-2012) minimum and maximum mean annual precipitation conditions are found in Northeast Greenland (Tunu2013 c. 120mm water equivalent (w.e.) year(-1)) and South Greenland (Ikerasassuaq: c. 2300mm w.e. year(-1)), respectively. The coastal meteorological stations showed on average increasing trends for 1890-2012 (3.5mm w.e. year(-2)) and 1961-2012 (1.3mm w.e. year(-2)). Years with high coastal annual precipitation also had a: (1) significant high number of precipitation days (r(2) = 0.59); and (2) high precipitation intensity measured as 24-h precipitation (r(2) = 0.54). For the GrIS the precipitation estimated from ice cores increased on average by 0.1mm w.e. year(-2) (1890-2000), showing an antiphase variability in precipitation trends between the GrIS and the coastal regions. Around 1960 a major shift occurred in the precipitation pattern towards wetter precipitation conditions for coastal Greenland, while drier conditions became more prevalent on the GrIS. Differences in precipitation trends indicate a heterogeneous spatial distribution of precipitation in Greenland. An Empirical Orthogonal Function analysis reveals a spatiotemporal cycle of precipitation that is linked instantaneously to the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation and with an approximate to 6 years lag time response to the Greenland Blocking Index. C1 [Mernild, Sebastian H.; Malmros, Jeppe K.] Ctr Estudios Cient, Ctr Sci Studies, Glaciol & Climate Change Lab, Valdivia 5110466, Chile. [Mernild, Sebastian H.] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Los Alamos, NM 87545 USA. [Hanna, Edward] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England. [McConnell, Joseph R.; Sigl, Michael] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Beckerman, Andrew P.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Yde, Jacob C.] Sogn & Fjordane Univ Coll, Fac Engn Sci, Sogndal, Norway. [Cappelen, John] Danish Meteorol Inst, Copenhagen, Denmark. [Steffen, Konrad] Swiss Fed Res Inst WSL, Birmensdorf, Switzerland. [Steffen, Konrad] Swiss Fed Inst Technol, Inst Atmosphere & Climate, Zurich, Switzerland. [Steffen, Konrad] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Mernild, SH (reprint author), Ctr Estudios Cient, Ctr Sci Studies, Glaciol & Climate Change Lab, Av Arturo Prat 514, Valdivia 5110466, Chile. EM smernild@gmail.com RI Steffen, Konrad/C-6027-2013; Beckerman, Andrew/D-3020-2011; Hanna, Edward/H-2219-2016; OI Steffen, Konrad/0000-0001-8658-1026; Beckerman, Andrew/0000-0002-4797-9143; Hanna, Edward/0000-0002-8683-182X; Yde, Jacob Clement/0000-0002-6211-2601 FU NSF; NASA including NSF [0909541, 1023672, 1204176]; CONICYT, Chile [MEC80120004] FX The ice core data were developed with support from NSF and NASA, including NSF grants 0909541, 1023672, and 1204176 which funded the collection and analyses of a number of recent ice cores records. We gratefully acknowledge assistance from logistics and drilling personnel in the field as well as students and staff in the Reno laboratory, Nevada. Special thanks are given to the Danish Meteorological Institute for providing observed meteorological station data. A.P.B. was funded by CONICYT, Chile (Grant Reference: MEC80120004). The authors have no conflict of interest. NR 61 TC 13 Z9 13 U1 6 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD FEB PY 2015 VL 35 IS 2 BP 303 EP 320 DI 10.1002/joc.3986 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB5JP UT WOS:000349663600011 ER PT J AU Zimmermann, EA Kohne, T Bale, HA Panganiban, B Gludovatz, B Zustin, J Hahn, M Amling, M Ritchie, RO Busse, B AF Zimmermann, Elizabeth A. Koehne, Till Bale, Hrishikesh A. Panganiban, Brian Gludovatz, Bernd Zustin, Joszef Hahn, Michael Amling, Michael Ritchie, Robert O. Busse, Bjoern TI Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget's Disease of Bone SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Article DE PAGET'S DISEASE OF BONE; PATHOMECHANISM; FRACTURE RISK; BONE QUALITY; MECHANICAL PROPERTIES; COLLAGEN CHARACTERISTICS ID HUMAN CORTICAL BONE; ILIAC CREST BONE; HISTOMORPHOMETRIC ANALYSIS; BISPHOSPHONATE TREATMENT; OSTEOGENESIS IMPERFECTA; MINERALIZATION DENSITY; NATURAL-HISTORY; TISSUE; MANAGEMENT; TOUGHNESS AB Paget's disease of bone (PDB) is the second most common bone disease mostly developing after 50 years of age at one or more localized skeletal sites; it is associated with severely high bone turnover, bone enlargement, bowing/deformity, cracking, and pain. Here, to specifically address the origins of the deteriorated mechanical integrity, we use a cohort of control and PDB human biopsies to investigate multiscale architectural and compositional modifications to the bone structure (ie, bone quality) and relate these changes to mechanical property measurements to provide further insight into the clinical manifestations (ie, deformities and bowing) and fracture risk caused by PDB. Here, at the level of the collagen and mineral (ie, nanometer-length scale), we find a 19% lower mineral content and lower carbonate-to-phosphate ratio in PDB, which accounts for the 14% lower stiffness and 19% lower hardness promoting plastic deformation in pathological bone. At the microstructural scale, trabecular regions are known to become densified, whereas cortical bone loses its characteristic parallel-aligned osteonal pattern, which is replaced with a mosaic of lamellar and woven bone. Although we find this loss of anisotropic alignment produces a straighter crack path in mechanically-loaded PDB cases, cortical fracture toughness appears to be maintained due to increased plastic deformation. Clearly, the altered quality of the bone structure in PDB affects the mechanical integrity leading to complications such as bowing, deformities, and stable cracks called fissure fractures associated with this disease. Although the lower mineralization and loss of aligned Haversian structures do produce a lower modulus tissue, which is susceptible to deformities, our results indicate that the higher levels of plasticity may compensate for the lost microstructural features and maintain the resistance to crack growth. (c) 2014 American Society for Bone and Mineral Research C1 [Zimmermann, Elizabeth A.; Koehne, Till; Hahn, Michael; Amling, Michael; Busse, Bjoern] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Hamburg, Germany. [Zimmermann, Elizabeth A.; Gludovatz, Bernd; Ritchie, Robert O.; Busse, Bjoern] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bale, Hrishikesh A.; Panganiban, Brian; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zustin, Joszef] Univ Med Ctr Hamburg Eppendorf, Inst Pathol, Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr, Dept Osteol & Biomech, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Ritchie, Robert/A-8066-2008; Busse, Bjorn/O-8462-2016; OI Ritchie, Robert/0000-0002-0501-6998; Busse, Bjorn/0000-0002-3099-8073; Zimmermann, Elizabeth/0000-0001-9927-3372; Gludovatz, Bernd/0000-0002-2420-3879 FU German Research Foundation (DFG) [BU 2562/2-1, BU 2562/1-1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by the German Research Foundation (DFG) under grants BU 2562/2-1 and BU 2562/1-1. We acknowledge use of the mu CT beam line 8.3.2 at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr. Bjorn Jobke (DKFZ, Heidelberg) for plain film images of PDB. NR 58 TC 14 Z9 14 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2015 VL 30 IS 2 BP 264 EP 273 DI 10.1002/jbmr.2340 PG 10 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA CA4CM UT WOS:000348851900009 PM 25112610 ER PT J AU Hu, B Getsoian, A Schweitzer, NM Das, U Kim, H Niklas, J Poluektov, O Curtiss, LA Stair, PC Miller, JT Hock, AS AF Hu, Bo Getsoian, Andrew Bean Schweitzer, Neil M. Das, Ujjal Kim, HackSung Niklas, Jens Poluektov, Oleg Curtiss, Larry A. Stair, Peter C. Miller, Jeffrey T. Hock, Adam S. TI Selective propane dehydrogenation with single-site Co-II on SiO2 by a non-redox mechanism SO JOURNAL OF CATALYSIS LA English DT Article DE Single-site catalysis; Dehydrogenation; Lewis acid; EXAFS; Raman spectroscopy ID H BOND ACTIVATION; SURFACE ORGANOMETALLIC CHEMISTRY; ABSORPTION-SPECTROSCOPY; HETEROGENEOUS CATALYSTS; ALKENE ISOMERIZATION; REACTION PATHWAYS; COBALT; SILICA; HYDROGENATION; COMPLEXES AB We report the synthesis, characterization, and catalytic performance for gas phase propane dehydrogenation of single-site Co2+ ions supported on silica. Spectroscopic characterization by resonance Raman, electron paramagnetic resonance, and X-ray near-edge and extended absorption fine structure revealed that tetrahedrally coordinated Co2+ ions are chemisorbed into the trisiloxane rings on the surface of amorphous silica. In situ XAS shows that Co is not oxidized by air nor reduced by hydrogen even at 650 degrees C. For catalytic propane dehydrogenation, single-site Co2+/SiO2 exhibits selectivities >95% at 550 degrees C and >90% at 650 degrees C with stable activity over 24 h. Calculations with hybrid density functional theory support a non-redox mechanism for activation of C-H and H-H bonds by Co2+ similar to that previously reported for single-site Zn2+/SiO2. (C) 2015 Published by Elsevier Inc. C1 [Hu, Bo; Getsoian, Andrew Bean; Schweitzer, Neil M.; Das, Ujjal; Kim, HackSung; Niklas, Jens; Poluektov, Oleg; Curtiss, Larry A.; Stair, Peter C.; Miller, Jeffrey T.; Hock, Adam S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hu, Bo; Hock, Adam S.] IIT, Chicago, IL 60616 USA. [Schweitzer, Neil M.; Kim, HackSung; Stair, Peter C.] Northwestern Univ, Evanston, IL 60208 USA. RP Miller, JT (reprint author), IIT, Dept Chem, Chicago, IL 60616 USA. EM millerjt@anl.gov; ahock@iit.edu RI Niklas, Jens/I-8598-2016; Hock, Adam/D-7660-2012 OI Niklas, Jens/0000-0002-6462-2680; Hock, Adam/0000-0003-1440-1473 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-AC-02-06CH11357]; Illinois Institute of Technology; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences under Contract DE-AC-02-06CH11357. BH and ASH would like to thank the Illinois Institute of Technology for a Starr-Fieldhouse Fellowship (BH) and startup funding support. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Materials Research Collaborative Access Team (MRCAT, Sectors 10 BM and 10ID) operations are supported by the Department of Energy and the MRCAT member institutions. Density functional theory calculations were performed using the computational resources available at the Argonne National Laboratory Center for Nanoscale Materials (CNM) and the computing resources provided on "Fusion" and "Blues," high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 77 TC 18 Z9 18 U1 14 U2 110 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD FEB PY 2015 VL 322 BP 24 EP 37 DI 10.1016/j.jcat.2014.10.018 PG 14 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CA9UM UT WOS:000349270300003 ER PT J AU Wei, ZH Karim, AM Li, Y King, DL Wang, Y AF Wei, Zhehao Karim, Ayman M. Li, Yan King, David L. Wang, Yong TI Elucidation of the roles of Re in steam reforming of glycerol over Pt-Re/C catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Reforming; Pt-Re/C; Bimetallic catalyst; CO adsorption; Rhenium oxidation; X-ray absorption; Infrared spectroscopy; In situ characterization ID WATER-GAS-SHIFT; RAY-ABSORPTION-SPECTROSCOPY; PLATINUM-RHENIUM CATALYSTS; CARBON-SUPPORTED PLATINUM; BIMETALLIC CATALYSTS; HYDROGEN-PRODUCTION; FTIR SPECTROSCOPY; METAL-CLUSTERS; FINE-STRUCTURE; CO OXIDATION AB In this paper, we report the fundamental surface properties of Pt/C and Pt-Re/C catalysts and their correlation with catalytic performance in steam reforming of glycerol. We found that the addition of Re increases the catalytic activity, H-2/COx, ratio, and CO2 selectivity. N-2 physisorption, CO chemisorption, and attenuated total reflectance infrared (ATR-IR), Raman, and X-ray absorption spectroscopy (XAS) with in situ capabilities were employed to provide insight into the roles of Re. Using ATR-IR, we show that CO adsorption on reduced Pt-Re/C is stronger than on Pt/C. However, CO desorption from Pt-Re/C is much facilitated compared with that from Pt/C after steam pretreatment, which is more representative of the steam reforming conditions. In situ Raman and XAS studies suggest that oxidized rhenium species are formed in steam environments on the Pt-Re/C catalyst surface. The spillover of CO from neighboring Pt to such oxidized rhenium is likely the reason for the facile desorption of CO, which could further react to form CO2. Such facile CO desorption leads to enhanced glycerol steam reforming and water-gas shift activities over the Pt-Re/C catalyst. (C) 2014 Elsevier Inc. All rights reserved. C1 [Wei, Zhehao; Li, Yan; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Karim, Ayman M.; King, David L.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM yong.wang@pnnl.gov RI Karim, Ayman/G-6176-2012; Wei, Zhehao/L-2801-2013 OI Karim, Ayman/0000-0001-7449-542X; Wei, Zhehao/0000-0002-9670-4752 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-05ER15712, DE-FG02-05ER15688] FX The authors acknowledge financial support from the U.S. Department of Energy, Office of Basic Energy Sciences (Grant DE-FG02-05ER15712). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, for the EXAFS experiments was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Grant DE-FG02-05ER15688). Beam line X18A is supported, in part, by the Synchrotron Catalysis Consortium. Z.W. thanks Stephen Davidson (Washington State University) for his help with the reaction setup. A.M.K. thanks Yongchun Hong (Washington State University) for his help with the XAS data collection. NR 56 TC 11 Z9 11 U1 7 U2 72 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD FEB PY 2015 VL 322 BP 49 EP 59 DI 10.1016/j.jcat.2014.11.006 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CA9UM UT WOS:000349270300005 ER PT J AU Gettelman, A Morrison, H Santos, S Bogenschutz, P Caldwell, PM AF Gettelman, A. Morrison, H. Santos, S. Bogenschutz, P. Caldwell, P. M. TI Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol-Cloud Interactions SO JOURNAL OF CLIMATE LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; GENERAL-CIRCULATION MODEL; ORDER TURBULENCE CLOSURE; BOUNDARY-LAYER CLOUDS; CLIMATE SIMULATIONS; SINGLE-COLUMN; SHALLOW CONVECTION; VERSION-3 CAM3; PARAMETERIZATION; IMPACT AB A modified microphysics scheme is implemented in the Community Atmosphere Model, version 5 (CAM5). The new scheme features prognostic precipitation. The coupling between the microphysics and the rest of the model is modified to make it more flexible. Single-column tests show the new microphysics can simulate a constrained drizzling stratocumulus case. Substepping the cloud condensation (macrophysics) within a time step improves single-column results. Simulations of mixed-phase cases are strongly sensitive to ice nucleation. The new microphysics alters process rates in both single-column and global simulations, even at low (200 km) horizontal resolution. Thus, prognostic precipitation can be important, even in low-resolution simulations where advection of precipitation is not important. Accretion dominates as liquid water path increases in agreement with cloud-resolving model simulations and estimates from observations. The new microphysics with prognostic precipitation increases the ratio of accretion over autoconversion. The change in process rates appears to significantly reduce aerosol cloud interactions and indirect radiative effects of anthropogenic aerosols by up to 33% (depending on substepping) to below 1 W m(-2) of cooling between simulations with preindustrial (1850) and present-day (2000) aerosol emissions. C1 [Gettelman, A.; Morrison, H.; Santos, S.; Bogenschutz, P.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Caldwell, P. M.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Gettelman, A (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM andrew@ucar.edu FU NASA [NNX09AJ05G, NNX12AH90G]; U.S. DOE ASR [DE-SC0006702, DE-SC0005336]; NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP) [ATM-0425247]; DOE's Earth System Modeling program; DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was partially supported by NASA NNX09AJ05G, U.S. DOE ASR DE-SC0006702, and U.S. DOE ASR DE-SC0005336, sub-awarded through NASA NNX12AH90G. The work was also supported by the NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP), managed by Colorado State University under Cooperative Agreement ATM-0425247. Caldwell's efforts were funded by DOE's Earth System Modeling program and were performed under the auspices of DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Thanks to R. Neale for comments. NR 45 TC 21 Z9 21 U1 3 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB 1 PY 2015 VL 28 IS 3 BP 1288 EP 1307 DI 10.1175/JCLI-D-14-00103.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA9WJ UT WOS:000349275200022 ER PT J AU Powers, JM Paolucci, S Mengers, JD Al-Khateeb, AN AF Powers, Joseph M. Paolucci, Samuel Mengers, Joshua D. Al-Khateeb, Ashraf N. TI Slow attractive canonical invariant manifolds for reactive systems SO JOURNAL OF MATHEMATICAL CHEMISTRY LA English DT Article DE Slow manifold; Attractive manifold; Invariant manifold; Chemical kinetics; Model reduction ID LOW-DIMENSIONAL MANIFOLDS; LORENZ-KRISHNAMURTHY MODEL; CHEMICAL-KINETICS; COMPOSITION SPACE; GEOMETRY; EQUILIBRIUM; DIFFUSION; REDUCTION AB We analyze the efficacy of a standard manifold-based reduction method used to simplify reaction dynamics and find conditions under which the reduction can succeed and fail. In the standard reduction, a heteroclinic trajectory linking saddle and sink equilibria is taken as a candidate reduced manifold which we call a Canonical Invariant Manifold (CIM). We develop and exercise analytic tools for studying the local behavior of trajectories near the CIM. In so doing, we find conditions under which nearby trajectories are attracted to the CIM (ACIM) as well as conditions for which the dynamics on the ACIM are slow (SACIM). The method is demonstrated on a (1) simple model problem, (2) Zel'dovich mechanism for nitric oxide production, and (3) hydrogen-air system. For systems that evolve in a three-dimensional composition space, we find that normal stretching away from the CIM in a volume-shrinking vector field is admitted and that depending on the magnitude of the local rotation rate, may or may not render the CIM to be attractive. The success and failure of the candidate CIM as a SACIM is displayed for the model system. Results for the Zel'dovich mechanism and hydrogen-air systems are less definitive, though for specific conditions a SACIM is identified for both systems. C1 [Powers, Joseph M.; Paolucci, Samuel] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA. [Mengers, Joshua D.] US DOE, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. [Al-Khateeb, Ashraf N.] Khalifa Univ, Dept Aerosp Engn, Abu Dhabi, U Arab Emirates. RP Powers, JM (reprint author), Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA. EM powers@nd.edu RI Powers, Joseph/A-7086-2013; Al-Khateeb, Ashraf/A-9936-2012 OI Powers, Joseph/0000-0001-8694-8369; Al-Khateeb, Ashraf/0000-0003-4651-1490 FU National Science Foundation (NSF) [CBET-0650843] FX The authors recognize the partial support of the National Science Foundation (NSF) under Grant No. CBET-0650843. NR 25 TC 1 Z9 1 U1 4 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0259-9791 EI 1572-8897 J9 J MATH CHEM JI J. Math. Chem. PD FEB PY 2015 VL 53 IS 2 BP 737 EP 766 DI 10.1007/s10910-014-0454-6 PG 30 WC Chemistry, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Chemistry; Mathematics GA CA5WW UT WOS:000348979800018 ER PT J AU Zhu, HY Wang, Y Xiao, J Liu, M Xiong, SM Wong, ZJ Ye, ZL Ye, Y Yin, XB Zhang, X AF Zhu, Hanyu Wang, Yuan Xiao, Jun Liu, Ming Xiong, Shaomin Wong, Zi Jing Ye, Ziliang Ye, Yu Yin, Xiaobo Zhang, Xiang TI Observation of piezoelectricity in free-standing monolayer MoS2 SO NATURE NANOTECHNOLOGY LA English DT Article ID MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; LAYER MOS2; SYSTEMS; MICROSCOPY; NANOWIRES; FILMS AB Piezoelectricity allows precise and robust conversion between electricity and mechanical force, and arises from the broken inversion symmetry in the atomic structure(1-3). Reducing the dimensionality of bulk materials has been suggested to enhance piezoelectricity(4). However, when the thickness of a material approaches a single molecular layer, the large surface energy can cause piezoelectric structures to be thermodynamically unstable(5). Transition-metal dichalcogenides can retain their atomic structures down to the single-layer limit without lattice reconstruction, even under ambient conditions(6). Recent calculations have predicted the existence of piezoelectricity in these two-dimensional crystals due to their broken inversion symmetry(7). Here, we report experimental evidence of piezoelectricity in a free-standing single layer of molybdenum disulphide (MoS2) and a measured piezoelectric coefficient of e(11) = 2.9 x 10(-10) C m(-1). The measurement of the intrinsic piezoelectricity in such free-standing crystals is free from substrate effects such as doping and parasitic charges. We observed a finite and zero piezoelectric response in MoS2 in odd and even number of layers, respectively, in sharp contrast to bulk piezoelectric materials. This oscillation is due to the breaking and recovery of the inversion symmetry of the two-dimensional crystal. Through the angular dependence of electromechanical coupling, we determined the two-dimensional crystal orientation. The piezoelectricity discovered in this single molecular membrane promises new applications in low-power logic switches for computing and ultrasensitive biological sensors scaled down to a single atomic unit cell(8,9). C1 [Zhu, Hanyu; Wang, Yuan; Xiao, Jun; Liu, Ming; Xiong, Shaomin; Wong, Zi Jing; Ye, Ziliang; Ye, Yu; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Ye, Ziliang/A-2104-2011; Wang, Yuan/F-7211-2011; Yin, Xiaobo/A-4142-2011 FU US Department of Energy, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) [DOE DE-AC02-05CH11231] FX This work was supported by the US Department of Energy, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) under award DOE DE-AC02-05CH11231. NR 33 TC 83 Z9 84 U1 32 U2 238 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2015 VL 10 IS 2 BP 151 EP 155 DI 10.1038/NNANO.2014.309 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CB2OV UT WOS:000349468200015 PM 25531085 ER PT J AU Chen, YC Cao, T Chen, C Pedramrazi, Z Haberer, D de Oteyza, DG Fischer, FR Louie, SG Crommie, MF AF Chen, Yen-Chia Cao, Ting Chen, Chen Pedramrazi, Zahra Haberer, Danny de Oteyza, Dimas G. Fischer, Felix R. Louie, Steven G. Crommie, Michael F. TI Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions SO NATURE NANOTECHNOLOGY LA English DT Article ID STATE; GAP AB Bandgap engineering is used to create semiconductor hetero-structure devices that perform processes such as resonant tunnelling(1,2) and solar energy conversion(3,4). However, the performance of such devices degrades as their size is reduced(5,6). Graphene-based molecular electronics has emerged as a candidate to enable high performance down to the single-molecule scale(7-17). Graphene nanoribbons, for example, can have widths of less than 2 nm and bandgaps that are tunable via their width and symmetry(6,18,19). It has been predicted that bandgap engineering within a single graphene nanoribbon may be achieved by varying the width of covalently bonded segments within the nanoribbon(20-22). Here, we demonstrate the bottom-up synthesis of such width-modulated armchair graphene nanoribbon heterostructures, obtained by fusing segments made from two different molecular building blocks. We study these heterojunctions at subnanometre length scales with scanning tunnelling microscopy and spectroscopy, and identify their spatially modulated electronic structure, demonstrating molecular-scale bandgap engineering, including type I heterojunction behaviour. First-principles calculations support these findings and provide insight into the microscopic electronic structure of bandgap-engineered graphene nanoribbon heterojunctions. C1 [Chen, Yen-Chia; Cao, Ting; Pedramrazi, Zahra; Haberer, Danny; de Oteyza, Dimas G.; Louie, Steven G.; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chen, Yen-Chia; Cao, Ting; Fischer, Felix R.; Louie, Steven G.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Chen; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [de Oteyza, Dimas G.] Univ Basque Country, Ctr Phys Mat, CSIC, Ctr Fis Mat, E-20018 San Sebastian, Spain. [Fischer, Felix R.; Crommie, Michael F.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Fischer, Felix R.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fischer, FR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ffischer@berkeley.edu; sglouie@berkeley.edu; crommie@berkeley.edu RI de Oteyza, Dimas/H-5955-2013; CSIC-UPV/EHU, CFM/F-4867-2012 OI de Oteyza, Dimas/0000-0001-8060-6819; FU Office of Naval Research BRC Program (molecular synthesis and characterization); Office of Science; Office of Basic Energy Sciences of the US Department of Energy under the Nanomachine Program at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation (NSF) [DMR-1206512, DMR10-1006184]; Simons Foundation Fellowship in Theoretical Physics; German Research Foundation (DFG) [Ha 6946/1-1] FX This research was supported by the Office of Naval Research BRC Program (molecular synthesis and characterization), by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under the Nanomachine Program at the Lawrence Berkeley National Laboratory (contract no. DE-AC02-05CH11231, STM instrumentation development, STM operation and simulations) and by National Science Foundation (NSF) awards (DMR-1206512, image analysis; DMR10-1006184, basic theory and formalism). Computational resources were provided by the NSF through XSEDE resources at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin and Lawrence Berkeley National Laboratory's High Performance Computing Services. S.G.L. acknowledges the support of a Simons Foundation Fellowship in Theoretical Physics. D.H. acknowledges a research fellowship from the German Research Foundation (DFG; grant no. Ha 6946/1-1). NR 30 TC 85 Z9 85 U1 33 U2 203 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2015 VL 10 IS 2 BP 156 EP 160 DI 10.1038/NNANO.2014.307 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CB2OV UT WOS:000349468200016 PM 25581888 ER PT J AU Allison, K Hill, CT Ross, GG AF Allison, Kyle Hill, Christopher T. Ross, Graham G. TI An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton SO NUCLEAR PHYSICS B LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; AXION; CONSERVATION; INVARIANCE; PARTICLES AB In the context of a Coleman-Weinberg mechanism for the Higgs boson mass, we address the strong CP problem. We show that a DFSZ-like invisible axion model with a gauge-singlet complex scalar field S, whose couplings to the Standard Model are naturally ultra-weak, can solve the strong CP problem and simultaneously generate acceptable electroweak symmetry breaking. The ultra-weak couplings of the singlet S are associated with underlying approximate shift symmetries that act as custodial symmetries and maintain technical naturalness. The model also contains a very light pseudo-Goldstone dilaton that is consistent with cosmological Polonyi bounds, and the axion can be the dark matter of the universe. We further outline how a SUSY version of this model, which may be required in the context of Grand Unification, can avoid introducing a hierarchy problem. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Allison, Kyle; Ross, Graham G.] Univ Oxford, Dept Theoret Phys, Oxford OX1 3NP, England. [Hill, Christopher T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hill, CT (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM k.allison1@physics.ox.ac.uk; hill@fnal.gov; g.ross1@physics.ox.ac.uk FU Leverhulme Trust; Fermilab; U.S. Department of Energy [DE-ACO2-07CH11359] FX One of us (G.G.R.) would like to thank I. Antoniadis, W. Buchmuller, S. Davidson and L. Alvarez-Gaume for useful comments. Part of this work was done at Fermilab, operated by Fermi Research Alliance, LLC, under Contract No. DE-ACO2-07CH11359 with the U.S. Department of Energy. G.G.R. would like to thank the Leverhulme Trust and Fermilab for support during the course of this research. NR 65 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD FEB PY 2015 VL 891 BP 613 EP 626 DI 10.1016/j.nuclphysb.2014.12.022 PG 14 WC Physics, Particles & Fields SC Physics GA CB3AG UT WOS:000349499400022 ER PT J AU Li, XJ Zakharov, LE Galkin, SA AF Li Xujing Zakharov, L. E. Galkin, S. A. TI Adaptive Grids in Simulations of Toroidal Plasma Starting from Magneto-Hydrodynamic Equilibrium SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE tokamak; magneto-hydrodynamics; disruptions; numerical simulations; adaptive grid ID RECONSTRUCTION; TOKAMAKS; PROFILES AB This paper introduces the notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma. The set of TMHD equations is formulated for simulation of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is adequate to plasma dynamics with realistic parameters of high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. Examples of their use in 2-dimensional cases of tokamak equilibria and dynamics of the wall touching kink mode are presented. For the 3-dimensional case of an ergodic magnetic field, this paper introduces the reference magnetic coordinates as a practical algorithm for generating adaptive grids for TMHD. C1 [Li Xujing] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China. [Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Galkin, S. A.] FAR TECH Inc, San Diego, CA 92121 USA. RP Li, XJ (reprint author), Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China. EM xli2@pppl.gov FU US DoE [DE-AC02-09-CH11466]; National Magnetic Confinement Fusion Science Program of China [2011GB105003]; US DOE SBIR [94307S10-II] FX supported by US DoE Contract No, DE-AC02-09-CH11466, by the National Magnetic Confinement Fusion Science Program of China (No. 2011GB105003), and by the US DOE SBIR grant # 94307S10-II NR 27 TC 1 Z9 1 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD FEB PY 2015 VL 17 IS 2 BP 97 EP 104 DI 10.1088/1009-0630/17/2/02 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CB4TC UT WOS:000349620100002 ER PT J AU Fisher, AC Bailey, DS Kaiser, TB Eder, DC Gunney, BTN Masters, ND Koniges, AE Anderson, RW AF Fisher, A. C. Bailey, D. S. Kaiser, T. B. Eder, D. C. Gunney, B. T. N. Masters, N. D. Koniges, A. E. Anderson, R. W. TI An AMR Capable Finite Element Diffusion Solver for ALE Hydrocodes SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE hydrodynamic simulation; heat conduction; thermal radiation; adaptive mesh refinement; finite element method ID ADAPTIVE MESH REFINEMENT; RADIATION DIFFUSION; HYDRODYNAMIC CODES; EULER EQUATIONS; CELL; SCHEME AB We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L-2 norm. C1 [Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.; Eder, D. C.; Gunney, B. T. N.; Masters, N. D.; Anderson, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Koniges, A. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fisher, AC (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM fisher47@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science of the U. S. Department of Energy and the Petascale Initiative in Computational Science and Engineering [DE-AC02-05CH11231]; Office of Science, U. S. Department of Energy [DE-AC02-05CH11231] FX This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work by LBNL under DE-AC02-05CH11231 was supported by the Director, Office of Science of the U. S. Department of Energy and the Petascale Initiative in Computational Science and Engineering. We acknowledge the National Energy Research Scientific Computing Center, supported by the Office of Science, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 2 Z9 2 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD FEB PY 2015 VL 17 IS 2 BP 109 EP 116 DI 10.1088/1009-0630/17/2/04 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CB4TC UT WOS:000349620100004 ER PT J AU Koniges, A Masters, N Fisher, A Eder, D Liu, WY Anderson, R Benson, D Bertozzi, A AF Koniges, Alice Masters, Nathan Fisher, Aaron Eder, David Liu, Wangyi Anderson, Robert Benson, David Bertozzi, Andrea TI Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE multi-physics simulations; arbitrary lagrangian eulerian hydrodynamics; adaptive mesh refinement; fragmentation; laser ray tracing; NIF ID EULER EQUATIONS AB We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices. C1 [Koniges, Alice; Liu, Wangyi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Masters, Nathan; Fisher, Aaron; Eder, David; Anderson, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Benson, David] Univ Calif San Diego, Jacobs Sch Engn, La Jolla, CA 92093 USA. [Bertozzi, Andrea] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA. RP Koniges, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aekoniges@lbl.gov RI Bertozzi, Andrea/A-1831-2012 OI Bertozzi, Andrea/0000-0003-0396-7391 FU Office of Science, U. S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231]; Petascale Initiative in Computational Science and Engineering; U. S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; UC Lab Fees Research [09-LR-04-116741-BERA]; NSF [DMS-1312543] FX We acknowledge the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Work by LBNL under DE-AC02-05CH11231 was supported by the Director, Office of Science of the U. S. Department of Energy and the Petascale Initiative in Computational Science and Engineering. Work by LLNL was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. UCLA and LLNL acknowledge UC Lab Fees Research Grant 09-LR-04-116741-BERA. Work by UCLA also funded by NSF grant DMS-1312543. NR 47 TC 3 Z9 3 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD FEB PY 2015 VL 17 IS 2 BP 117 EP 128 DI 10.1088/1009-0630/17/2/05 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CB4TC UT WOS:000349620100005 ER PT J AU Fitzsimmons, JM Mausner, L AF Fitzsimmons, Jonathan M. Mausner, Leonard TI Development of a production scale purification of Ge-68 from irradiated gallium metal SO RADIOCHIMICA ACTA LA English DT Article DE Gallium-68; Ga-68; Germanium-68; Ge-68; Radiochemical separation ID GERMANIUM; PEPTIDES; INDIUM AB Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex (c) G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68. C1 [Fitzsimmons, Jonathan M.; Mausner, Leonard] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fitzsimmons, JM (reprint author), Brookhaven Natl Lab, Bldg 801, Upton, NY 11973 USA. EM john.jmf635@gmail.com FU Department of Energy, Office of Nuclear Physic FX This study was supported by funding provided by the Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications. Special thanks to the Brookhaven National Laboratory isotope production team: Cleve Dodge, Louis Evers Jr., Anna Goldberg, Elizabeth Korach, Slawko Kurczak, Joseph O'Conor, Dmitri Medvedev. NR 16 TC 3 Z9 3 U1 3 U2 10 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD FEB PY 2015 VL 103 IS 2 BP 117 EP 123 DI 10.1515/ract-2014-2306 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CB1UM UT WOS:000349413500005 ER PT J AU Hu, Z Kim, JH Wang, JH Byrne, J AF Hu, Zheng Kim, Jin-ho Wang, Jianhui Byrne, John TI Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Dynamic pricing; Demand response; Electricity tariffs ID RESIDENTIAL DEMAND RESPONSE AB With the development of demand response (DR) technologies and increasing electricity demand, dynamic pricing has been a popular topic in many countries. This paper evaluates various dynamic pricing programs in the U.S. and Europe, and provides insights into various aspects including risks and rewards, enabling technologies, lower-income groups and customer types surrounding programs such as Time-of-Use (TOU), Critical Peak Pricing (CPP), Peak Time Rebates (PTR) and Real Time Pricing (RTP). We conclude this paper with three main findings: (1) policy coordination in promoting dynamic pricing programs between federal and state regulatory agencies is very critical; (2) customer engagement is very important and can be enhanced via more accessible educational programs and policy adjustments; and (3) more investment in related R&D is required to construct a commonly accepted methodology for measuring the effectiveness of dynamic pricing programs. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hu, Zheng] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kim, Jin-ho] Gachon Univ, Dept Energy & Informat Technol, Songnam, South Korea. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Byrne, John] Univ Delaware, Ctr Energy & Environm Policy, Newark, DE 19716 USA. RP Wang, JH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov FU KETEP [2001T100100424] FX This work is sponsored by KETEP (2001T100100424). NR 34 TC 14 Z9 14 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD FEB PY 2015 VL 42 BP 743 EP 751 DI 10.1016/j.rser.2014.10.078 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA AZ2TI UT WOS:000348084800056 ER PT J AU McDowell, NG Coops, NC Beck, PSA Chambers, JQ Gangodagamage, C Hicke, JA Huang, CY Kennedy, R Krofcheck, DJ Litvak, M Meddens, AJH Muss, J Negron-Juarez, R Peng, CH Schwantes, AM Swenson, JJ Vernon, LJ Williams, AP Xu, CG Zhao, MS Running, SW Allen, CD AF McDowell, Nate G. Coops, Nicholas C. Beck, Pieter S. A. Chambers, Jeffrey Q. Gangodagamage, Chandana Hicke, Jeffrey A. Huang, Cho-ying Kennedy, Robert Krofcheck, Dan J. Litvak, Marcy Meddens, Arjan J. H. Muss, Jordan Negron-Juarez, Robinson Peng, Changhui Schwantes, Amanda M. Swenson, Jennifer J. Vernon, Louis J. Williams, A. Park Xu, Chonggang Zhao, Maosheng Running, Steve W. Allen, Craig D. TI Global satellite monitoring of climate-induced vegetation disturbances SO TRENDS IN PLANT SCIENCE LA English DT Review DE climate change; die-off; drought; forests; landscape; mortality; satellite ID MOUNTAIN PINE-BEETLE; SPATIAL-RESOLUTION IMAGERY; WESTERN UNITED-STATES; FOREST COVER CHANGE; CHANGE-TYPE DROUGHT; TREE MORTALITY; BARK BEETLE; LANDSAT IMAGERY; POTENTIAL DISTRIBUTION; MULTITEMPORAL ANALYSIS AB Terrestrial disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring system. Remote sensing offers a means to quantify the frequency and extent of disturbances globally. Here, we review the current application of remote sensing to this problem and offer a framework for more systematic analysis in the future. We recommend that any proposed monitoring system should not only detect disturbances, but also be able to: identify the proximate cause(s); integrate a range of spatial scales; and, ideally, incorporate process models to explain the observed patterns and predicted trends in the future. Significant remaining challenges are tied to the ecology of disturbances. To meet these challenges, more effort is required to incorporate ecological principles and understanding into the assessments of disturbance worldwide. C1 [McDowell, Nate G.; Gangodagamage, Chandana; Muss, Jordan; Vernon, Louis J.; Xu, Chonggang] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Coops, Nicholas C.] Univ British Columbia, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. [Beck, Pieter S. A.] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, VA, Italy. [Chambers, Jeffrey Q.; Negron-Juarez, Robinson] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hicke, Jeffrey A.; Meddens, Arjan J. H.] Univ Idaho, Dept Geog, Moscow, ID 83844 USA. [Huang, Cho-ying] Natl Taiwan Univ, Dept Geog, Taipei 10617, Taiwan. [Kennedy, Robert] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Krofcheck, Dan J.; Litvak, Marcy] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Peng, Changhui] Univ Quebec, Dept Biol Sci, Ctr CEF ESCER, Montreal, PQ H3C 3P8, Canada. [Peng, Changhui] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China. [Schwantes, Amanda M.; Swenson, Jennifer J.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Williams, A. Park] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Zhao, Maosheng] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Running, Steve W.] Univ Montana, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. RP McDowell, NG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov RI Chambers, Jeffrey/J-9021-2014; Huang, Cho-ying/E-6573-2012; Williams, Park/B-8214-2016; Coops, Nicholas/J-1543-2012; Vernon, Louis/K-9729-2016; Negron-Juarez, Robinson/I-6289-2016; OI Chambers, Jeffrey/0000-0003-3983-7847; Xu, Chonggang/0000-0002-0937-5744; Huang, Cho-ying/0000-0002-9174-7542; Williams, Park/0000-0001-8176-8166; Coops, Nicholas/0000-0002-0151-9037; Vernon, Louis/0000-0001-5379-7488; Schwantes, Amanda/0000-0002-7791-1078 FU Los Alamos National Laboratory's Interplanetary Geophysics and Planetary Physics (IGPP) program; EU project EUFOR-INNO FX This manuscript resulted from a workshop supported by Los Alamos National Laboratory's Interplanetary Geophysics and Planetary Physics (IGPP) program with additional support from the EU project EUFOR-INNO. NR 110 TC 25 Z9 26 U1 18 U2 88 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1360-1385 J9 TRENDS PLANT SCI JI Trends Plant Sci. PD FEB PY 2015 VL 20 IS 2 BP 114 EP 123 DI 10.1016/j.tplants.2014.10.008 PG 10 WC Plant Sciences SC Plant Sciences GA CB3CD UT WOS:000349504900009 PM 25500552 ER PT J AU Mehta, VS Maillot, F Wang, ZM Catalano, JG Giammar, DE AF Mehta, Vrajesh S. Maillot, Fabien Wang, Zheming Catalano, Jeffrey G. Giammar, Daniel E. TI Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization SO WATER RESEARCH LA English DT Article DE Uranium; Phosphate; In situ immobilization; Reactive transport; Sequential extractions; CXTFIT ID CONTAMINATED HANFORD SEDIMENTS; SURFACE COMPLEXATION; AQUIFER SEDIMENTS; SUBSURFACE MEDIA; ADSORPTION; SPECIATION; GOETHITE; URANYL; GROUNDWATER; SORPTION AB Phosphate amendments can be added to U(VI)-contaminated subsurface environments to promote in situ remediation. The primary objective of this study was to evaluate the impacts of phosphate addition on the transport of U(VI) through contaminated sediments. In batch experiments using sediments (<2 mm size fraction) from a site in Rifle, Colorado, U(VI) only weakly adsorbed due to the dominance of the aqueous speciation by Ca-U(VI)carbonate complexes. Column experiments with these sediments were performed with flow rates that correspond to a groundwater velocity of 1.1 m/day. In the absence of phosphate, the sediments took up 1.68-1.98 mu g U/g of sediments when the synthetic groundwater influent contained 4 mu M U(VI). When U(VI)-free influents were then introduced with and without phosphate, substantially more uranium was retained within the column when phosphate was present in the influent. Sequential extractions of sediments from the columns revealed that uranium was uniformly distributed along the length of the columns and was primarily in forms that could be extracted by ion exchange and contact with a weak acid. Laser induced fluorescence spectroscopy (LIPS) analysis along with sequential extraction results suggest adsorption as the dominant uranium uptake mechanism. The response of dissolved uranium concentrations to stopped-flow events and the comparison of experimental data with simulations from a simple reactive transport model indicated that uranium adsorption to and desorption from the sediments was not always at local equilibrium. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Mehta, Vrajesh S.; Giammar, Daniel E.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Maillot, Fabien; Catalano, Jeffrey G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Wang, Zheming] Pacific NW Natl Lab, Dept Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Giammar, DE (reprint author), 1 Brookings Dr,Campus Box 1180, St Louis, MO 63130 USA. EM giammar@wustl.edu RI Wang, Zheming/E-8244-2010; Catalano, Jeffrey/A-8322-2013 OI Wang, Zheming/0000-0002-1986-4357; Catalano, Jeffrey/0000-0001-9311-977X FU U.S. Department of Energy (DOE) [DE-SC0006857]; National Science Foundation [ECS-0335765]; DOE Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO-1830] FX We are grateful to the McDonnell International Scholars Academy at Washington University for providing the Ameren corporate fellowship for Vrajesh Mehta. This work was supported by the U.S. Department of Energy (DOE) Subsurface Biogeochemical Research program (Award No. DE-SC0006857). ICP-MS analysis was performed at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which was supported by the National Science Foundation under Grant No. ECS-0335765. LIES measurements were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle Memorial Institute under Contract # DE-AC06-76RLO-1830. Sediments were kindly provided by Ken Williams, Phil Long and the Rifle Integrated Field Research Challenge team. The critical comments of three anonymous reviewers were helpful for revising the initial version of this paper. NR 54 TC 7 Z9 7 U1 4 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD FEB 1 PY 2015 VL 69 BP 307 EP 317 DI 10.1016/j.watres.2014.11.044 PG 11 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA CB3BQ UT WOS:000349503600030 PM 25497429 ER PT J AU Rowan, EL Engle, MA Kraemer, TF Schroeder, KT Hammack, RW Doughten, MW AF Rowan, Elisabeth L. Engle, Mark A. Kraemer, Thomas F. Schroeder, Karl T. Hammack, Richard W. Doughten, Michael W. TI Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania SO AAPG BULLETIN LA English DT Article ID CHEMICAL EVOLUTION; SEAWATER CHEMISTRY; ILLINOIS BASIN; SEDIMENTARY BASIN; FLUID INCLUSIONS; ORIGIN; BRINES; HALITE; GROUNDWATER; EVAPORATION AB The number of Marcellus Shale gas wells drilled in the Appalachian basin has increased rapidly over the past decade, leading to increased interest in the highly saline water produced with the natural gas which must be recycled, treated, or injected into deep disposal wells. New geochemical and isotopic analyses of produced water for 3 time-series and 13 grab samples from Marcellus Shale gas wells in southwest and north central Pennsylvania (PA) are used to address the origin of the water and solutes produced over the long term (>12 months). The question of whether the produced water originated within the Marcellus Shale, or whether it may have been drawn from adjacent reservoirs via fractures is addressed using measurements of Ra-228/Ra-226 and Ra-226 activity. These parameters indicate that the water originated in the Marcellus Shale, and can be more broadly used to trace water of Marcellus Shale origin. During the first 1-2 weeks of production, rapid increases in salinity and positive shifts in delta O-18 values were observed in the produced water, followed by more gradual changes until a compositional plateau was reached within approximately 1 yr. The delta O-18 values and relationships between Na, Cl, and Br provide evidence that the water produced after compositional stabilization is natural formation water, the salinity for which originated primarily from evaporatively concentrated paleoseawater. The rapid transition from injected water to chemically and isotopically distinct water while <50% of the injected water volume had been recovered, supports the hypothesis that significant volumes of injected water were removed from circulation by imbibition. C1 [Rowan, Elisabeth L.; Doughten, Michael W.] US Geol Survey, Reston, VA 20192 USA. [Engle, Mark A.] Univ Texas El Paso, US Geol Survey, El Paso, TX 79968 USA. [Kraemer, Thomas F.] US Geol Survey, Woods Hole, MA 02543 USA. [Schroeder, Karl T.; Hammack, Richard W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Rowan, EL (reprint author), US Geol Survey, 12207 Sunrise Valley Dr,MS 956, Reston, VA 20192 USA. EM erowan@usgs.gov; engle@usgs.gov; tkraemer@usgs.gov; Karl.Schroeder@netl.doe.gov; richard.hammack@netl.doe.gov; doughten@usgs.gov OI Engle, Mark/0000-0001-5258-7374 FU U.S. Geological Survey FX We thank the staff of the operating companies for generously granting access to their wells for sample collection. We also thank the Department of Energy for facilitating collaboration through an ongoing research program, and for assisting with sample collection and analyses. We are grateful to Yousif Kharaka, Jennifer McIntosh, and an anonymous reviewer whose comments significantly improved the manuscript. Funding for this study was provided by the Energy Resources and Toxic Substances Hydrology Programs of the U.S. Geological Survey. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 84 TC 19 Z9 19 U1 8 U2 59 PU AMER ASSOC PETROLEUM GEOLOGIST PI TULSA PA 1444 S BOULDER AVE, PO BOX 979, TULSA, OK 74119-3604 USA SN 0149-1423 EI 1558-9153 J9 AAPG BULL JI AAPG Bull. PD FEB PY 2015 VL 99 IS 2 BP 181 EP 206 DI 10.1306/07071413146 PG 26 WC Geosciences, Multidisciplinary SC Geology GA CA2QA UT WOS:000348751300001 ER PT J AU Jones, RJR Shinde, A Guevarra, D Xiang, CX Haber, JA Jin, J Gregoiret, JM AF Jones, Ryan J. R. Shinde, Aniketa Guevarra, Dan Xiang, Chengxiang Haber, Joel A. Jin, Jian Gregoiret, John M. TI Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts SO ACS COMBINATORIAL SCIENCE LA English DT Article DE solar fuels; high throughput; oxygen evolution; electrochemical stability; combinatorial electrochemistry ID COMBINATORIAL DISCOVERY; SCREENING METHOD; WATER OXIDATION; CATALYSIS; CELLS AB Many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. Imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts in the parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operation of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed-metal oxides to oxygen evolution conditions in 1 M sulfuric acid for 2 h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements. C1 [Jones, Ryan J. R.; Shinde, Aniketa; Guevarra, Dan; Xiang, Chengxiang; Haber, Joel A.; Gregoiret, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Gregoiret, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM gregoire@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). NR 16 TC 2 Z9 2 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD FEB PY 2015 VL 17 IS 2 BP 71 EP 75 DI 10.1021/co500148p PG 5 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA CA9VS UT WOS:000349273500001 PM 25561243 ER PT J AU Chirgadze, YN Clarke, TE Romanov, V Kisselman, G Wu-Brown, J Soloveychik, M Chan, TSY Gordon, RD Battaile, KP Pai, EF Chirgadze, NY AF Chirgadze, Yuri N. Clarke, Teresa E. Romanov, Vladimir Kisselman, Gera Wu-Brown, Jean Soloveychik, Maria Chan, Tiffany S. Y. Gordon, Roni D. Battaile, Kevin P. Pai, Emil F. Chirgadze, Nickolay Y. TI The structure of SAV1646 from Staphylococcus aureus belonging to a new 'ribosome-associated' subfamily of bacterial proteins SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CRYSTAL-STRUCTURE AB The crystal structure of the SAV1646 protein from the pathogenic microorganism Staphylococcus aureus has been determined at 1.7 angstrom resolution. The 106-amino-acid protein forms a two-layer sandwich with alpha/beta topology. The protein molecules associate as dimers in the crystal and in solution, with the monomers related by a pseudo-twofold rotation axis. A sequence-homology search identified the protein as a member of a new subfamily of yet uncharacterized bacterial 'ribosome-associated' proteins with at least 13 members to date. A detailed analysis of the crystal protein structure along with the genomic structure of the operon containing the sav1646 gene allowed a tentative functional model of this protein to be proposed. The SAV1646 dimer is assumed to form a complex with ribosomal proteins L21 and L27 which could help to complete the assembly of the large subunit of the ribosome. C1 [Chirgadze, Yuri N.] Russian Acad Sci, Inst Prot Res, Pushchino 142290, Moscow Region, Russia. [Clarke, Teresa E.; Romanov, Vladimir; Kisselman, Gera; Wu-Brown, Jean; Soloveychik, Maria; Chan, Tiffany S. Y.; Gordon, Roni D.; Pai, Emil F.; Chirgadze, Nickolay Y.] Univ Hlth Network, Princess Margaret Canc Ctr, Campbell Family Inst Canc Res, Toronto, ON M5G 2C4, Canada. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. [Pai, Emil F.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Pai, Emil F.] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Pai, Emil F.] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A8, Canada. [Chirgadze, Nickolay Y.] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada. RP Chirgadze, YN (reprint author), Russian Acad Sci, Inst Prot Res, Pushchino 142290, Moscow Region, Russia. EM chir@vega.protres.ru; nchirgadze@gmail.com OI Battaile, Kevin/0000-0003-0833-3259; Pai, Emil/0000-0002-1162-7242 FU Canada Research Chairs program; Ontario Research and Development Challenge Fund [99-SEP-0512]; Hauptman-Woodward Medical Research Institute; US Department of Energy, Office of Basic Energy Sciences [W-31-109-Eng38] FX We thank Dr V. Ksenzenko, Dr V. Kolb, Dr V. Vasiliev and Dr S. Garbuzinsky from the Institute of Protein Research, Russian Academy of Sciences for valuable discussions. EFP acknowledges support from the Canada Research Chairs program. YNC would like to express gratitude to his wife L. I. Chirgadze for her invaluable help and encouragement during this work. Contract grant sponsors: Ontario Research and Development Challenge Fund (99-SEP-0512), the Canada Research Chairs program, Hauptman-Woodward Medical Research Institute and the US Department of Energy, Office of Basic Energy Sciences (contract grant No. W-31-109-Eng38). NR 19 TC 1 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2015 VL 71 BP 332 EP 337 DI 10.1107/S1399004714025619 PN 2 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CB2EQ UT WOS:000349439900015 PM 25664743 ER PT J AU Zeldin, OB Brewster, AS Hattne, J Uervirojnangkoorn, M Lyubimov, AY Zhou, QJ Zhao, ML Weis, WI Sauter, NK Brunger, AT AF Zeldin, Oliver B. Brewster, Aaron S. Hattne, Johan Uervirojnangkoorn, Monarin Lyubimov, Artem Y. Zhou, Qiangjun Zhao, Minglei Weis, William I. Sauter, Nicholas K. Brunger, Axel T. TI Data Exploration Toolkit for serial diffraction experiments SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID FREE-ELECTRON LASERS; FEMTOSECOND CRYSTALLOGRAPHY; NIGGLI REDUCTION; RAY; GEOMETRY; PYTHON AB Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the 'diffraction before destruction' nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography data sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing. C1 [Zeldin, Oliver B.; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Weis, William I.; Brunger, Axel T.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Zeldin, Oliver B.; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Brunger, Axel T.] Howard Hughes Med Inst, Chevy Chase, MD USA. [Brewster, Aaron S.; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Hattne, Johan] Janelia Res Campus, Ashburn, VA 20147 USA. [Weis, William I.; Brunger, Axel T.] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA. [Weis, William I.; Brunger, Axel T.] SLAC Natl Lab, Dept Photon Sci, Menlo Pk, CA USA. RP Brunger, AT (reprint author), Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. EM brunger@stanford.edu RI Zhao, Minglei/J-4446-2015; Sauter, Nicholas/K-3430-2012; OI Zhao, Minglei/0000-0001-5832-6060; Brunger, Axel/0000-0001-5121-2036 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Institute of General Medical Sciences [P41GM103393]; NIH [GM095887, GM102520]; Office of Science, Department of Energy (DOE) [DE-AC02-05CH11231]; HHMI Collaborative Innovation Award (HCIA) FX The authors would like to thank Lawrence C. Andrews and Herbert J. Bernstein for their valuable advice on implementing the NCDist metric. We thank SSRL/LCLS scientists Aina E. Cohen, S. Michael Soltis, Henrik T. Lemke, Roberto Alonso-Mori, Elizabeth L. Baxter, Matthieu Chollet, Paul Ehrensberger, Thomas I. Eriksson, Yiping Feng, Michael Hollenbeck, Elena G. Kovaleva, Scott E. McPhillips, Silke Nelson, Jinhu Song, Yingssu Tsai, Vladimir Vinetsky and Diling Zhu for their invaluable assistance with data collection at the LCLS XPP facility. Use of the Stanford Synchrotron Radiation Lightsource (SSRL) and Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). ASB and NKS were supported by NIH grants GM095887 and GM102520 and the Director, Office of Science, Department of Energy (DOE) under contract DE-AC02-05CH11231 for data-processing methods. This work is supported by an HHMI Collaborative Innovation Award (HCIA) to ATB and WIW. NR 13 TC 11 Z9 11 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2015 VL 71 BP 352 EP 356 DI 10.1107/S1399004714025875 PN 2 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CB2EQ UT WOS:000349439900018 PM 25664746 ER PT J AU Brewster, AS Sawaya, MR Rodriguez, J Hattne, J Echols, N McFarlane, HT Cascio, D Adams, PD Eisenberg, DS Sauter, NK AF Brewster, Aaron S. Sawaya, Michael R. Rodriguez, Jose Hattne, Johan Echols, Nathaniel McFarlane, Heather T. Cascio, Duilio Adams, Paul D. Eisenberg, David S. Sauter, Nicholas K. TI Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article ID X-RAY; FORMING PEPTIDE; PROTEIN; YEAST; NANOCRYSTALLOGRAPHY; CONVERSION; SOFTWARE; FIBRIL AB Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 angstrom resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented. C1 [Brewster, Aaron S.; Hattne, Johan; Echols, Nathaniel; Adams, Paul D.; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sawaya, Michael R.; Rodriguez, Jose; McFarlane, Heather T.; Cascio, Duilio; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Rodriguez, Jose; McFarlane, Heather T.; Cascio, Duilio; Eisenberg, David S.] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Sauter, NK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM nksauter@lbl.gov RI Sauter, Nicholas/K-3430-2012; Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Sawaya, Michael/0000-0003-0874-9043 FU LBNL Laboratory Directed Research and Development award under Department of Energy (DOE) [DE-AC02-05CH11231]; National Institutes of Health (NIH) [GM095887, GM102520]; NIH [GM063210]; DOE [DE-FC02-02ER63421]; A. P. Giannini Foundation [20133546]; HHMI FX NKS acknowledges an LBNL Laboratory Directed Research and Development award under Department of Energy (DOE) contract DE-AC02-05CH11231 and National Institutes of Health (NIH) grants GM095887 and GM102520. PDA and NE acknowledge support from NIH grant GM063210. The UCLA group acknowledges support from DOE DE-FC02-02ER63421, the A. P. Giannini Foundation, award No. 20133546, and an HHMI Collaborative Innovation Award. We thank the staff at LCLS/SLAC. We thank S. Botha and R. Shoeman for help with sample injection. LCLS is an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. NR 33 TC 3 Z9 3 U1 1 U2 14 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD FEB PY 2015 VL 71 BP 357 EP 366 DI 10.1107/S1399004714026145 PN 2 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CB2EQ UT WOS:000349439900019 PM 25664747 ER PT J AU Sun, P Fang, ZZ Koopman, M Paramore, J Chandran, KSR Ren, Y Lu, J AF Sun, Pei Fang, Z. Zak Koopman, Mark Paramore, James Chandran, K. S. Ravi Ren, Yang Lu, Jun TI An experimental study of the (Ti-6Al-4V) xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques SO ACTA MATERIALIA LA English DT Article DE Ti-6Al-4V; Hydrogen; In situ synchrotron XRD; Phase diagram; TGA-DSC ID TEMPORARY ALLOYING ELEMENT; HYDROGEN EMBRITTLEMENT; MECHANICAL-PROPERTIES; TITANIUM-ALLOYS; TRANSFORMATIONS; MICROSTRUCTURE; DEFORMATION; REFINEMENT; FRACTURE; AL AB Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of beta <-> alpha + delta was observed in the (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 degrees C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900 degrees C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900 degrees C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Sun, Pei; Fang, Z. Zak; Koopman, Mark; Paramore, James; Chandran, K. S. Ravi] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Fang, ZZ (reprint author), Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. EM zak.fang@utah.edu OI Sun, Pei/0000-0002-1686-8037 FU US Department of Energy, Innovative Manufacturing Initiative through the Advanced Manufacturing Office [DEEE0005761]; Office of Energy Efficiency and Renewable Energy; US DOE [DE-AC02-06CH11357] FX The authors acknowledge funding support by the US Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. The first author acknowledges the valuable assistance of Ms. Xiangyi Luo, Mr. Chun Yu and Mr. Rick Spence for synchrotron X-ray experiments at Argonne National Lab, and helpful discussions with Dr. Yang Xia and Mr. Chengshang Zhou at the University of Utah. NR 43 TC 7 Z9 7 U1 3 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 29 EP 41 DI 10.1016/j.actamat.2014.10.045 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300004 ER PT J AU Martinez, E Schwen, D Caro, A AF Martinez, Enrique Schwen, Daniel Caro, Alfredo TI Helium segregation to screw and edge dislocations in alpha-iron and their yield strength SO ACTA MATERIALIA LA English DT Article DE Helium; Segregation; Dislocation mobility; Modeling; Monte Carlo ID HIGH-TEMPERATURE EMBRITTLEMENT; TENSILE PROPERTIES; STRUCTURAL-MATERIALS; MARTENSITIC STEELS; VACANCY CLUSTERS; METALS; FE; IRRADIATION; DYNAMICS; MOBILITY AB Helium (He) presents one of the mayor concerns in the nuclear materials community as it modifies the mechanical properties of the system withstanding fast neutron spectra, promoting swelling and embrittlement. Ferritic/martensitic steels are one of the main candidates as structural materials for future nuclear applications. Experimentally the bubble distribution is observed to vary depending on irradiation conditions (temperature, dose rate and total dose). However, traditional atomistic models decouple the role of temperature in the mechanical properties from its effect on the bubble distribution. In this paper we study substitutional He segregation to screw and edge dislocations in alpha-Fe at different temperatures. We use an object kinetic Monte Carlo methodology to obtain general trends in bubble distribution and a canonical Monte Carlo algorithm, with full atomistic fidelity, to find the He distribution at the dislocation cores. Molecular dynamics has subsequently been applied to study the yield strength, which increases significantly in the presence of He, more remarkably for the edge dislocation. The total stress fits a Kocks relation. However, if the lattice resistance is subtracted, the relation between the critical shear stress and the temperature is non-monotonic for the screw character. To reproduce this effect, we propose to modify the Kocks relation, adding a second-order term in temperature that extends the range of applicability of the model. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Martinez, Enrique; Schwen, Daniel; Caro, Alfredo] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM enriquem@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - US Department of Energy at Los Alamos National Laboratory [2008LANL1026]; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396] FX The authors want to thank J. Marian and J.P. Hirth for useful discussions. Work performed with support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. NR 49 TC 1 Z9 1 U1 2 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 208 EP 214 DI 10.1016/j.actamat.2014.10.066 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300019 ER PT J AU Jiao, ZB Luan, JH Miller, MK Yu, CY Liu, CT AF Jiao, Z. B. Luan, J. H. Miller, M. K. Yu, C. Y. Liu, C. T. TI Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles SO ACTA MATERIALIA LA English DT Article DE NiAl nanoparticle; Precipitation; Microsegregation; Atom probe tomography; Mechanical property ID AUSTENITIC STAINLESS-STEELS; CREEP-RESISTANT; ALLOYS; PARAMETERS; ELEMENTS AB The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jiao, Z. B.; Luan, J. H.; Yu, C. Y.; Liu, C. T.] City Univ Hong Kong, Coll Sci & Engn, Dept Mech & Biomed Engn, Ctr Adv Struct Mat, Hong Kong, Hong Kong, Peoples R China. [Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Liu, CT (reprint author), City Univ Hong Kong, Coll Sci & Engn, Dept Mech & Biomed Engn, Ctr Adv Struct Mat, Hong Kong, Hong Kong, Peoples R China. EM chainliu@cityu.edu.hk FU City University of Hong Kong [9380060] FX This research was supported by the internal funding from City University of Hong Kong (account CityU No. 9380060). Atom probe tomography was conducted (by M.K.M.) at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 41 TC 10 Z9 11 U1 5 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 283 EP 291 DI 10.1016/j.actamat.2014.10.065 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300026 ER PT J AU Kumar, MA Kanjarla, AK Niezgoda, SR Lebensohn, RA Tome, CN AF Kumar, M. Arul Kanjarla, A. K. Niezgoda, S. R. Lebensohn, R. A. Tome, C. N. TI Numerical study of the stress state of a deformation twin in magnesium SO ACTA MATERIALIA LA English DT Article DE Deformation twinning; Hcp materials; Twinning shear transformation; Crystal plasticity; Local stress distribution ID ELECTRON BACKSCATTER DIFFRACTION; CLOSE-PACKED MATERIALS; FINITE-ELEMENT APPROACH; HARDENING EVOLUTION; LATTICE ROTATIONS; ELASTIC STRAIN; AZ31 ALLOY; TEXTURE; GRAIN; MG AB We present here a numerical study of the distribution of the local stress state associated with deformation twinning in Mg, both inside the twinned domain and in its immediate neighborhood, due to the accommodation of the twinning transformation shear. A full-field elastoviscoplastic formulation based on fast Fourier transformation is modified to include the shear transformation strain associated with deformation twinning. We have performed two types of twinning transformation simulations with: (i) the twin completely embedded inside a single crystal and (ii) the twin front terminating at a grain boundary. We show that: (a) the resulting stress distribution is more strongly determined by the shear transformation than by the intragranular character of the twin or the orientation of the neighboring grain; (b) the resolved shear stress on the twin plane along the twin direction is inhomogeneous along the twin parent interface; and (c) there are substantial differences in the average values of the shear stress in the twin and in the parent grain that contains the twin. We discuss the effect of these local stresses on twin propagation and growth, and the implications of our findings for the modeling of deformation twinning. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Kumar, M. Arul; Lebensohn, R. A.; Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Kanjarla, A. K.] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India. [Niezgoda, S. R.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Kumar, MA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM marulkr@lanl.gov RI Tome, Carlos/D-5058-2013; Lebensohn, Ricardo/A-2494-2008; Niezgoda, Stephen/I-6750-2013 OI Lebensohn, Ricardo/0000-0002-3152-9105; Niezgoda, Stephen/0000-0002-7123-466X FU US Department of Energy, Office of Basic Energy Sciences (OBES) [FWP-06SCPE401] FX This work was entirely funded by the US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401. NR 45 TC 33 Z9 33 U1 5 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 349 EP 358 DI 10.1016/j.actamat.2014.10.048 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300032 ER PT J AU Osetsky, Y Anento, N Serra, A Terentyev, D AF Osetsky, Y. Anento, N. Serra, A. Terentyev, D. TI The role of nickel in radiation damage of ferritic alloys SO ACTA MATERIALIA LA English DT Article DE Dislocation loops; Fe-Ni alloys; Diffusion mechanism; Radiation effects ID GLISSILE INTERSTITIAL CLUSTERS; FE-CR ALLOYS; ALPHA-IRON; DISPLACEMENT CASCADES; DISLOCATION LOOPS; ATOM CLUSTERS; MODEL ALLOYS; BCC IRON; COPPER; EMBRITTLEMENT AB According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe-0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Osetsky, Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Anento, N.; Serra, A.] Univ Politecn Cataluna, BarcelonaTech, Dept Matemat Aplicada 3, ETS, ES-08034 Barcelona, Spain. [Terentyev, D.] Nucl Mat Sci Inst, SCK CEN, B-2400 Mol, Belgium. RP Osetsky, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM osetskiyyn@ornl.gov RI Anento, Napoleon/H-7022-2015; OI Anento, Napoleon/0000-0002-4643-7270; Serra, Anna/0000-0002-8754-5649; Osetskiy, Yury/0000-0002-8109-0030 FU Center for Defect Physics, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; EC (FP7) [PERFORM60: 232612]; MINECO [FIS2012-39443-C02-02]; EUROfusion consortium FX Research at the Oak Ridge National Laboratory supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Research at UPC was supported by EC (FP7, PERFORM60: 232612) and MINECO (FIS2012-39443-C02-02). Research at SCK.CEN was partially supported by EUROfusion consortium. This work also contributes to the Joint Program on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA). NR 41 TC 4 Z9 4 U1 8 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 368 EP 374 DI 10.1016/j.actamat.2014.10.060 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300034 ER PT J AU Chen, Y Liu, Y Fu, EG Sun, C Yu, KY Song, M Li, J Wang, YQ Wang, H Zhang, X AF Chen, Y. Liu, Y. Fu, E. G. Sun, C. Yu, K. Y. Song, M. Li, J. Wang, Y. Q. Wang, H. Zhang, X. TI Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers SO ACTA MATERIALIA LA English DT Article DE He ion irradiation; Immiscible multilayers; Size effect; Radiation hardening; He bubbles ID RADIATION-DAMAGE; HE ION; GRAIN-BOUNDARIES; FERRITIC/MARTENSITIC STEELS; STACKING-FAULT; VOID FORMATION; IN-SITU; MULTILAYERS; METALS; TOLERANCE AB Prior studies on He ion irradiation-induced damage in several immiscible metallic nanolayer systems with incoherent interfaces show a prominent size effect on mitigation of radiation damage frequently. In general, the magnitude of radiation hardening and defect cluster density are both lower in smaller individual layer thickness (h) than in larger h, as interfaces can effectively reduce the density of radiation-induced defect clusters. This research shows, however, an opposite size-dependent strengthening behavior in He ion-irradiated immiscible coherent Cu/Co multilayers, i.e. films with smaller h have greater radiation hardening. Such unusual size-dependent strengthening could be explained via a transition of strengthening mechanisms from partial dislocation (before radiation) to full dislocation transmission (after radiation) across layer interfaces as a result of the formation of He bubbles at the layer interfaces. Furthermore, it is shown that, similarly to incoherent immiscible systems, a coherent interface in the immiscible system can also effectively reduce the population of radiation-induced defect clusters. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen, Y.; Liu, Y.; Song, M.; Li, J.; Wang, H.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Fu, E. G.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Sun, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Yu, K. Y.] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Liu, Yue/H-4071-2014; Yu, Kaiyuan /B-8398-2014; Chen, Youxing/P-5006-2016 OI Liu, Yue/0000-0001-8518-5734; Yu, Kaiyuan /0000-0002-5442-2992; Chen, Youxing/0000-0003-1111-4495 FU NSF [DMR-1304101]; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX X.Z. acknowledges financial support by NSF DMR-1304101. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. Access to the microscopy and imaging center (MIC) at Texas A&M University is also acknowledged. NR 63 TC 13 Z9 13 U1 1 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2015 VL 84 BP 393 EP 404 DI 10.1016/j.actamat.2014.10.061 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CA1RC UT WOS:000348688300037 ER PT J AU Vitaglione, P Mennella, I Ferracane, R Rivellese, AA Giacco, R Ercolini, D Gibbons, SM La Storia, A Gilbert, JA Jonnalagadda, S Thielecke, F Gallo, MA Scalfi, L Fogliano, V AF Vitaglione, Paola Mennella, Ilario Ferracane, Rosalia Rivellese, Angela A. Giacco, Rosalba Ercolini, Danilo Gibbons, Sean M. La Storia, Antonietta Gilbert, Jack A. Jonnalagadda, Satya Thielecke, Frank Gallo, Maria A. Scalfi, Luca Fogliano, Vincenzo TI Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber SO AMERICAN JOURNAL OF CLINICAL NUTRITION LA English DT Article DE bioavailability; ferulic acid; inflammation; obesity; wholegrain wheat ID FERULIC ACID; CARDIOVASCULAR-DISEASE; COFFEE CONSUMPTION; METABOLIC SYNDROME; PHENOLIC-ACIDS; HUMAN GUT; ARABINOXYLAN FRACTIONS; MICROBIAL COMMUNITY; HEMOSTATIC FACTORS; HYDROLASE ACTIVITY AB Background: Epidemiology associates whole-grain (WG) consumption with several health benefits. Mounting evidence suggests that WG wheat polyphenols play a role in mechanisms underlying health benefits. Objective: The objective was to assess circulating concentration, excretion, and the physiologic role of WG wheat polyphenols in subjects with suboptimal dietary and lifestyle behaviors. Design: A placebo-controlled, parallel-group randomized trial with 80 healthy overweight/obese subjects with low intake of fruit and vegetables and sedentary lifestyle was performed. Participants replaced precise portions of refined wheat (RW) with a fixed amount of selected WG wheat or RW products for 8 wk. At baseline and every 4 wk, blood, urine, feces, and anthropometric and body composition measures were collected. Profiles of phenolic acids in biological samples, plasma markers of metabolic disease and inflammation, and fecal microbiota composition were assessed. Results: WG consumption for 4-8 wk determined a 4-fold increase in serum dihydroferulic acid (DHFA) and a 2-fold increase in fecal ferulic acid (FA) compared with RW consumption (no changes). Similarly, urinary FA at 8 wk doubled the baseline concentration only in WG subjects. Concomitant reduction in plasma tumor necrosis factor-alpha (TNF-alpha) after 8 wk and increased interleukin (IL)-10 only after 4 wk with WG compared with RW (P = 0.04) were observed. No significant change in plasma metabolic disease markers over the study period was observed, but a trend toward lower plasma plasminogen activator inhibitor 1 with higher excretion of FA and DHFA in the WG group was found. Fecal FA was associated with baseline low Bifidobacteriales and Bacteroidetes abundances, whereas after WG consumption, it correlated with increased Bacteroidetes and Firmicutes but reduced Clostridium. TNF-alpha reduction correlated with increased Bacteroides and Lactobacillus. No effect of dietary interventions on anthropometric measurements and body composition was found. Conclusions: WG wheat consumption significantly increased excreted FA and circulating DHFA. Bacterial communities influenced fecal FA and were modified by WG wheat consumption. C1 [Vitaglione, Paola; Mennella, Ilario; Ferracane, Rosalia; Ercolini, Danilo; La Storia, Antonietta; Fogliano, Vincenzo] Univ Naples Federico II, Dept Agr & Food Sci, Portici, NA, Italy. [Rivellese, Angela A.] Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy. [Scalfi, Luca] Univ Naples Federico II, Dept Publ Hlth, Naples, Italy. [Giacco, Rosalba] CNR, Inst Food Sci, Avellino, Italy. [Gibbons, Sean M.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gibbons, Sean M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA. [Jonnalagadda, Satya] Gen Mills Bell Inst Hlth & Nutr, Minneapolis, MN USA. [Thielecke, Frank] Cereal Partners Worldwide SA, Lausanne, Switzerland. [Gallo, Maria A.] Ctr Diagnost San Ciro, Portici, Italy. RP Vitaglione, P (reprint author), Dipartimento Agraria, Via Univ 100, Portici, NA, Italy. EM paola.vitaglione@unina.it RI fogliano, vincenzo/A-1419-2009; Vitaglione, Paola/B-2864-2010; OI fogliano, vincenzo/0000-0001-8786-9355; Vitaglione, Paola/0000-0002-6608-5209; Giacco, Rosalba/0000-0002-4006-9761; La Storia, Antonietta/0000-0002-8318-9376; Ercolini, Danilo/0000-0003-3061-9560 FU General Mills Bell Institute of Health and Nutrition FX Supported by General Mills Bell Institute of Health and Nutrition with an unconditional grant. NR 66 TC 28 Z9 28 U1 15 U2 94 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0002-9165 EI 1938-3207 J9 AM J CLIN NUTR JI Am. J. Clin. Nutr. PD FEB PY 2015 VL 101 IS 2 BP 251 EP 261 DI 10.3945/ajcn.114.088120 PG 11 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CA5US UT WOS:000348973900003 PM 25646321 ER PT J AU Golany, B Goldberg, N Rothblum, UG AF Golany, B. Goldberg, N. Rothblum, U. G. TI Allocating multiple defensive resources in a zero-sum game setting SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Multiple resource allocation; Resource substitution; Nash equilibria; Allocation monotonicity ID TARGETS AB This paper investigates the problem of allocating multiple defensive resources to protect multiple sites against possible attacks by an adversary. The effectiveness of the resources in reducing potential damage to the sites is assumed to vary across the resources and across the sites and their availability is constrained. The problem is formulated as a two-person zero-sum game with piecewise linear utility functions and polyhedral action sets. Linearization of the utility functions is applied in order to reduce the computation of the game's Nash equilibria to the solution of a pair of linear programs (LPs). The reduction facilitates revelation of structure of Nash equilibrium allocations, in particular, of monotonicity properties of these allocations with respect to the amounts of available resources. Finally, allocation problems in non-competitive settings are examined (i.e., situations where the attacker chooses its targets independently of actions taken by the defender) and the structure of solutions in such settings is compared to that of Nash equilibria. C1 [Golany, B.; Rothblum, U. G.] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel. [Goldberg, N.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Goldberg, N (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM golany@ie.technion.ac.il; noam.goldberg@gmail.com FU Daniel Rose Technion-Yale Initiative for Research on Homeland Security and Counter-Terrorism; Daniel Rose Technion-Yale Initiative for Research on Homeland Security, and Counter-Terrorism; Center for Absorption in Science of the Ministry of Immigrant Absorption; Council of Higher Education, State of Israel FX The authors would like to thank Pelin Canbolat, Edward H. Kaplan, and Hanan Luss for comments. B. Golany and U.G. Rothblum were supported in part by the Daniel Rose Technion-Yale Initiative for Research on Homeland Security and Counter-Terrorism. N. Goldberg was supported in part by the Daniel Rose Technion-Yale Initiative for Research on Homeland Security, and Counter-Terrorism, the Center for Absorption in Science of the Ministry of Immigrant Absorption and the Council of Higher Education, State of Israel. NR 19 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD FEB PY 2015 VL 225 IS 1 BP 91 EP 109 DI 10.1007/s10479-012-1196-0 PG 19 WC Operations Research & Management Science SC Operations Research & Management Science GA CA9FB UT WOS:000349225700007 ER PT J AU Bradley, PA Guzik, JA Miles, LF Uytterhoeven, K Jackiewicz, J Kinemuchi, K AF Bradley, P. A. Guzik, J. A. Miles, L. F. Uytterhoeven, K. Jackiewicz, J. Kinemuchi, K. TI RESULTS OF A SEARCH FOR gamma DOR AND delta SCT STARS WITH THE KEPLER SPACECRAFT SO ASTRONOMICAL JOURNAL LA English DT Article DE space vehicles: instruments; stars: rotation; stars: variables: delta Scuti; stars: variables: general ID F-TYPE STARS; DORADUS STARS; INITIAL CHARACTERISTICS; INPUT CATALOG; CADENCE DATA; SCUTI; PULSATORS; CLASSIFICATION AB The light curves of 2768 stars with effective temperatures and surface gravities placing them near the gamma Doradus (gamma Dor)/delta Scuti (delta Sct) instability region were observed as part of the Kepler Guest Observer program from Cycles 1 through 5. The light curves were analyzed in a uniform manner to search for gamma Dor, delta Sct, and hybrid star pulsations. The gamma Dor, delta Sct, and hybrid star pulsations extend asteroseismology to stars slightly more massive (1.4-2.5M(circle dot)) than our Sun. We find 207 gamma Dor, 84 delta Sct, and 32 hybrid candidate stars. Many of these stars are cooler than the red edge of the gamma Dor instability strip as determined from ground-based observations made before Kepler. A few of our gamma Dor candidate stars lie on the hot side of the ground-based gamma Dor instability strip. The hybrid candidate stars cover the entire region between 6200 K and the blue edge of the ground-based delta Sct instability strip. None of our candidate stars are hotter than the hot edge of the ground-based delta Sct instability strip. Our discoveries, coupled with the work of others, show that Kepler has discovered over 2000 gamma Dor, delta Sct, and hybrid star candidates in the 116 square degree Kepler field of view. We found relatively few variable stars fainter than magnitude 15, which may be because they are far enough away to lie between spiral arms in our Galaxy, where there would be fewer stars. C1 [Bradley, P. A.; Miles, L. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Guzik, J. A.] Los Alamos Natl Lab, XTD NTA, Los Alamos, NM 87545 USA. [Uytterhoeven, K.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Uytterhoeven, K.] Univ La Laguna, Dept Astrofis, E-38200 Tenerife, Spain. [Jackiewicz, J.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Kinemuchi, K.] Apache Point Observ, Sunspot, NM 88349 USA. RP Bradley, PA (reprint author), Los Alamos Natl Lab, XCP 6,MS F-699, Los Alamos, NM 87545 USA. EM pbradley@lanl.gov OI Bradley, Paul/0000-0001-6229-6677 FU Kepler Guest Observer program; NASA; Spanish National Plan of RD [AYA2010-17803]; European Community [269194]; Project FP-7-PEOPLE-IRSES: ASK [269194] FX We acknowledge support from the Kepler Guest Observer program. Part of this work was funded by NASA grants Cycles 1-4. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission Directorate.; K.U. acknowledges support from the Spanish National Plan of R&D for 2010, project AYA2010-17803. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 269194. This project benefited from Project FP-7-PEOPLE-IRSES: ASK Np. 269194. We acknowledge fruitful discussions with Andrezj Pigulski, Joanna Molenda-Zakowicz, Patrick Gaulme, and Gerald Handler. We thank the anonymous referee for a careful reading of the manuscript and comments that greatly improved this paper. NR 41 TC 16 Z9 16 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2015 VL 149 IS 2 AR 68 DI 10.1088/0004-6256/149/2/68 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB1BA UT WOS:000349360200033 ER PT J AU Meixner, M Panuzzo, P Roman-Duval, J Engelbracht, C Babler, B Seale, J Hony, S Montiel, E Sauvage, M Gordon, K Misselt, K Okumura, K Chanial, P Beck, T Bernard, JP Bolatto, A Bot, C Boyer, ML Carlson, LR Clayton, GC Chen, CHR Cormier, D Fukui, Y Galametz, M Galliano, F Hora, JL Hughes, A Indebetouw, R Israel, FP Kawamura, A Kemper, F Kim, S Kwon, E Lebouteiller, V Li, A Long, KS Madden, SC Matsuura, M Muller, E Oliveira, JM Onishi, T Otsuka, M Paradis, D Poglitsch, A Reach, WT Robitaille, TP Rubio, M Sargent, B Sewilo, M Skibba, R Smith, LJ Srinivasan, S Tielens, AGGM van Loon, JT Whitney, B AF Meixner, M. Panuzzo, P. Roman-Duval, J. Engelbracht, C. Babler, B. Seale, J. Hony, S. Montiel, E. Sauvage, M. Gordon, K. Misselt, K. Okumura, K. Chanial, P. Beck, T. Bernard, J. -P. Bolatto, A. Bot, C. Boyer, M. L. Carlson, L. R. Clayton, G. C. Chen, C. -H. R. Cormier, D. Fukui, Y. Galametz, M. Galliano, F. Hora, J. L. Hughes, A. Indebetouw, R. Israel, F. P. Kawamura, A. Kemper, F. Kim, S. Kwon, E. Lebouteiller, V. Li, A. Long, K. S. Madden, S. C. Matsuura, M. Muller, E. Oliveira, J. M. Onishi, T. Otsuka, M. Paradis, D. Poglitsch, A. Reach, W. T. Robitaille, T. P. Rubio, M. Sargent, B. Sewilo, M. Skibba, R. Smith, L. J. Srinivasan, S. Tielens, A. G. G. M. van Loon, J. Th. Whitney, B. TI THE HERSCHEL INVENTORY OF THE AGENTS OF GALAXY EVOLUTION (HERITAGE) IN THE MAGELLANIC CLOUDS, A HERSCHEL OPEN TIME KEY PROGRAM (vol 146, 62, 2013) SO ASTRONOMICAL JOURNAL LA English DT Correction ID EXCESS EMISSION; SUBMILLIMETER; DUST; ORIGIN; GAS C1 [Meixner, M.; Roman-Duval, J.; Seale, J.; Gordon, K.; Beck, T.; Boyer, M. L.; Long, K. S.; Sargent, B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Meixner, M.; Sewilo, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Panuzzo, P.; Hony, S.; Sauvage, M.; Okumura, K.; Chanial, P.; Cormier, D.; Galliano, F.; Lebouteiller, V.; Madden, S. C.] CEA, Lab AIM, Irfu, SAp, F-91191 Gif Sur Yvette, France. [Panuzzo, P.] CNRS, Observ Paris, Lab GEPI, F-92195 Meudon, France. [Engelbracht, C.; Montiel, E.; Misselt, K.; Skibba, R.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Engelbracht, C.] Raytheon Co, Tucson, AZ 85756 USA. [Babler, B.; Whitney, B.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Montiel, E.; Clayton, G. C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Bernard, J. -P.; Paradis, D.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bernard, J. -P.; Paradis, D.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Bolatto, A.] Univ Maryland, Dept Astron, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. [Bot, C.] Univ Strasbourg, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Bot, C.] CNRS, Observ Astron Strasbourg, UMR7550, F-67000 Strasbourg, France. [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Chen, C. -H. R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukui, Y.] Nagoya Univ, Dept Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Hora, J. L.] Harvard Univ, Ctr Astrophys, Cambridge, MA 02138 USA. [Hughes, A.; Robitaille, T. P.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Indebetouw, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Indebetouw, R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Kawamura, A.; Muller, E.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Kemper, F.; Otsuka, M.; Srinivasan, S.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Kim, S.] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Li, A.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Matsuura, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Oliveira, J. M.; van Loon, J. Th.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Sakai, Osaka 5998531, Japan. [Poglitsch, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Rubio, M.] Univ Chile, Dept Astron, Santiago, Chile. [Sargent, B.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Sargent, B.] Rochester Inst Technol, Lab Multiwavelength Astrophys, Rochester, NY 14623 USA. [Smith, L. J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smith, L. J.] European Space Agcy, Baltimore, MD 21218 USA. [Srinivasan, S.] UPMC, CNRS, UMR7095, Inst Astrophys, F-75014 Paris, France. RP Meixner, M (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM meixner@stsci.edu RI Rubio, Monica/J-3384-2016; Kemper, Francisca/D-8688-2011 OI Kemper, Francisca/0000-0003-2743-8240 NR 6 TC 0 Z9 0 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2015 VL 149 IS 2 AR 88 DI 10.1088/0004-6256/149/2/88 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB1BA UT WOS:000349360200053 ER PT J AU Oelkers, RJ Macri, LM Wang, LF Ashley, MCB Cui, XQ Feng, LL Gong, XF Lawrence, JS Qiang, L Luong-Van, D Pennypacker, CR Yang, HG Yuan, XY York, DG Zhou, X Zhu, ZX AF Oelkers, Ryan J. Macri, Lucas M. Wang, Lifan Ashley, Michael C. B. Cui, Xiangqun Feng, Long-Long Gong, Xuefei Lawrence, Jon S. Qiang, Liu Luong-Van, Daniel Pennypacker, Carl R. Yang, Huigen Yuan, Xiangyan York, Donald G. Zhou, Xu Zhu, Zhenxi TI DIFFERENCE IMAGE ANALYSIS OF DEFOCUSED OBSERVATIONS WITH CSTAR SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: variables: general ID VARIABLE-STARS; SPACED DATA; PHOTOMETRY; ANTARCTICA; DOME; TELESCOPE; SUBTRACTION; PRECISION AB The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008-2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively. C1 [Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, George P & Cynthiya W Mitchell Inst Fundamental, College Stn, TX 77843 USA. [Wang, Lifan; Feng, Long-Long; Zhu, Zhenxi] Chinese Acad Sci, Purple Mt Observ, Nanjing, Peoples R China. [Wang, Lifan; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Qiang, Liu; Yang, Huigen; Yuan, Xiangyan; Zhou, Xu; Zhu, Zhenxi] Chinese Ctr Antarct Astron, Nanjing, Peoples R China. [Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Cui, Xiangqun; Gong, Xuefei; Yuan, Xiangyan] Nanjing Inst Astron Optic & Technol, Nanjing, Peoples R China. [Lawrence, Jon S.] Australian Astron Observ, Epping, NSW, Australia. [Qiang, Liu; Zhou, Xu] Chinese Acad Sci, Natl Astron Observ, Beijing, Peoples R China. [Pennypacker, Carl R.] Inst Nucl & Particle Astrophys, Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Yang, Huigen] Polar Res Inst China, Shanghai, Peoples R China. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Oelkers, RJ (reprint author), Texas A&M Univ, Dept Phys & Astron, George P & Cynthiya W Mitchell Inst Fundamental, College Stn, TX 77843 USA. EM ryan.oelkers@physics.tamu.edu OI Macri, Lucas/0000-0002-1775-4859 FU Robert Martin Ayers Science Fund; Collaborative Research Center "The Milky Way System" of the German Research Foundation (DFG) [SFB 881, A3]; U. S. National Science Foundation [9988259]; NASA through Hubble Fellowship grant [HF-01082.01-96A]; Space Telescope Science Institute; Natural Sciences and Engineering Research Council of Canada (NSERC); National Aeronautics and Space Administration; National Science Foundation FX We appreciate helpful recommendations from an anonymous referee. Observations using PROMPT were made possible by the Robert Martin Ayers Science Fund. M. A. acknowledges support by the Collaborative Research Center "The Milky Way System" (SFB 881, subproject A3) of the German Research Foundation (DFG). A. L. acknowledges support from the U. S. National Science Foundation under grant No. 9988259 and from NASA through Hubble Fellowship grant HF-01082.01-96A, which was awarded by the Space Telescope Science Institute. D. W. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of a Discovery Grant. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the International Variable Star Index (VSX) database, operated at AAVSO, Cambridge, Massachusetts, USA. NR 28 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2015 VL 149 IS 2 AR 50 DI 10.1088/0004-256/149/2/50 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB1BA UT WOS:000349360200015 ER PT J AU Zong, WK Fu, JN Niu, JS Charpinet, S Vauclair, G Ashley, MCB Cui, XQ Feng, LL Gong, XF Lawrence, JS Luong-Van, D Liu, Q Pennypacker, CR Wang, LZ Wang, LF Yuan, XY York, DG Zhou, X Zhu, ZX Zhu, ZH AF Zong, Weikai Fu, Jian-Ning Niu, Jia-Shu Charpinet, S. Vauclair, G. Ashley, Michael C. B. Cui, Xiangqun Feng, Longlong Gong, Xuefei Lawrence, Jon S. Luong-Van, Daniel Liu, Qiang Pennypacker, Carl R. Wang, Lingzhi Wang, Lifan Yuan, Xiangyan York, Donald G. Zhou, Xu Zhu, Zhenxi Zhu, Zonghong TI DISCOVERY OF MULTIPLE PULSATIONS IN THE NEW delta SCUTI STAR HD 92277: ASTEROSEISMOLOGY FROM DOME A, ANTARCTICA SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: individual (HD 92277); stars: variables: delta Scuti; techniques: photometric ID VARIABLE-STARS; SKY SURVEY; PHOTOMETRY; TELESCOPE; CATALOG; CSTAR; REDUCTION; NETWORK; KEPLER; SITE AB We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the delta Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f(1) = 10.810 days(-1) corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B - V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification. C1 [Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Zhu, Zonghong] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Zong, Weikai; Charpinet, S.; Vauclair, G.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Zong, Weikai; Charpinet, S.; Vauclair, G.] CNRS, IRAP, F-31400 Toulouse, France. [Fu, Jian-Ning] Chinese Acad Sci, Visiting Astronomer Xinjiang Astron Observ, Urumqi 830011, Peoples R China. [Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Cui, Xiangqun; Gong, Xuefei] Nanjing Inst Astron Opt & Technol, Nanjing 210042, Jiangsu, Peoples R China. [Feng, Longlong; Wang, Lifan; Yuan, Xiangyan; Zhu, Zhenxi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China. [Lawrence, Jon S.] Australian Astron Observ, Epping, NSW 1710, Australia. [Liu, Qiang; Wang, Lingzhi; Zhou, Xu] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Pennypacker, Carl R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Astrophys, Berkeley, CA 94720 USA. [Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Yuan, Xiangyan] Chinese Ctr Antarct Astron, Nanjing 210008, Jiangsu, Peoples R China. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Zong, WK (reprint author), Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. EM jnfu@bnu.edu.cn FU China Scholarship Council; Astronomy of National Natural Science Foundation of China (NSFC) [U1231202]; Chinese Academy of Sciences [U1231202]; National Basic Research Program of China (973 Program) [2014CB845700, 2013CB834900]; NSFC [11303041]; Commonwealth of Australia under the Australia-China Science and Research Fund; Australian Research Council; Australian Antarctic Division FX W.K.Z. acknowledges the financial support from the China Scholarship Council. W.K.Z., J.N.F., and J.S.N. acknowledge support from the Joint Fund of Astronomy of National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences through grant U1231202 and support from the National Basic Research Program of China (973 Program 2014CB845700 and 2013CB834900). L.Z.W. acknowledges support from NSFC 11303041. This project is supported by the Commonwealth of Australia under the Australia-China Science and Research Fund and by the Australian Research Council and the Australian Antarctic Division. This research has made use of the Simbad database, operated at CDS, Strasbourg, France. The authors thank the referee for valuable comments that were helpful in improving the manuscript. The authors appreciate the great efforts made by the 24-29th Dome A expedition teams for assistance to the astronomers that set up and provide annual maintenance for the CSTAR telescopes and other facilities. NR 54 TC 1 Z9 1 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2015 VL 149 IS 2 AR 84 DI 10.1088/0004-6256/149/2/84 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB1BA UT WOS:000349360200049 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Amin, MA Baldini, L Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Blandford, RD Bonamente, E Borgland, AW Bregeon, J Brigida, M Buehler, R Bulmash, D Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cavazzuti, E Cecchi, C Charles, E Cheung, CC Chiang, J Chiaro, G Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbet, RHD Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Drell, PS Drlica-Wagner, A Favuzzi, C Finke, J Focke, WB Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Giglietto, N Giordano, F Giroletti, M Glanzman, T Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Hughes, RE Inoue, Y Jackson, MS Jogler, T Johannesson, G Johnson, AS Kamae, T Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Mazziotta, MN Mehault, J Michelson, PF Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nemmen, R Nuss, E Ohno, M Ohsugi, T Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reyes, LC Ritz, S Romoli, C Roth, M Parkinson, PMS Sgro, C Siskind, EJ Spandre, G Spinelli, P Takahashi, H Takeuchi, Y Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tinivella, M Torres, DF Tosti, G Troja, E Tronconi, V Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Werner, M Winer, BL Wood, KS AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Amin, M. A. Baldini, L. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Blandford, R. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brigida, M. Buehler, R. Bulmash, D. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Charles, E. Cheung, C. C. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbet, R. H. D. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Finke, J. Focke, W. B. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Hughes, R. E. Inoue, Y. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Mazziotta, M. N. Mehault, J. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nemmen, R. Nuss, E. Ohno, M. Ohsugi, T. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reyes, L. C. Ritz, S. Romoli, C. Roth, M. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Takahashi, H. Takeuchi, Y. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Tronconi, V. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Werner, M. Winer, B. L. Wood, K. S. TI GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211 OBSERVED BY Fermi LAT SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: galaxies; gamma rays: general; gravitational lensing: strong; quasars: individual (PKS 1830-211); radiation mechanisms: non-thermal; X-rays: individual (PKS 1830-211) ID LARGE-AREA TELESCOPE; EINSTEIN RING PKS-1830-211; MOLECULAR ABSORPTION-LINES; RADIO-SOURCE PKS1830-211; X-RAY; TIME-DELAY; GALACTIC NUCLEI; SOURCE CATALOG; LIGHT CURVES; 3C 454.3 AB The Large Area Telescope ( LAT) on board the FermiGamma- ray Space Telescope routinely detects the MeV- peaked flat- spectrum radio quasar PKS 1830- 211 ( z = 2.507). Its apparent isotropic. - ray luminosity ( E > 100 MeV), averaged over 3 years of observations and peaking on 2010 October 14/ 15 at 2.9 x 1050 erg s- 1, makes it among the brightest high- redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time- delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large. - ray flares of PKS 1830- 211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the. - ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X- ray flux with the. - ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and. - ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy- dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results. C1 [Abdo, A. A.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ackermann, M.; Buehler, R.] DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Drell, P. S.; Focke, W. B.; Glanzman, T.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Drell, P. S.; Focke, W. B.; Glanzman, T.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Amin, M. A.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Amin, M. A.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Amin, M. A.; Bulmash, D.] MIT, Dept Phys, Cambridge, MA 02138 USA. [Baldini, L.; Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.; Romoli, C.; Tronconi, V.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Univers & Particules Montpellier, CNRS, IN2P3, Montpellier, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bulmash, D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Caliandro, G. A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Ist Nazl Astrofis, Osservatorio Astron Roma, I-00040 Rome, Italy. [Conrad, J.; Larsson, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, SE-10405 Stockholm, Sweden. [Corbet, R. H. D.; Nemmen, R.] Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Corbet, R. H. D.; Nemmen, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Corbet, R. H. D.; Nemmen, R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Corbet, R. H. D.; Nemmen, R.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [D'Ammando, F.; Giroletti, M.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fukazawa, Y.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Gehrels, N.; Guiriec, S.; Hays, E.; Nemmen, R.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Grenier, I. A.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Jackson, M. S.] KTH Royal Inst Technol, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lott, B.; Mehault, J.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA. [Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Takeuchi, Y.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Tanaka, T.] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 606, Japan. [Torres, D. F.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Ciprini, S (reprint author), Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. EM sara.buson@pd.infn.it; stefano.ciprini@asdc.asi.it; dammando@ira.inaf.it; justin.finke@nrl.navy.mil RI Nemmen, Rodrigo/O-6841-2014; Morselli, Aldo/G-6769-2011; Reimer, Olaf/A-3117-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Mazziotta, Mario /O-8867-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Giordano, Francesco/0000-0002-8651-2394; Caraveo, Patrizia/0000-0003-2478-8018; Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Mazziotta, Mario /0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Baldini, Luca/0000-0002-9785-7726; Larsson, Stefan/0000-0003-0716-107X NR 95 TC 10 Z9 10 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 143 DI 10.1088/0004-637X/799/2/143 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900030 ER PT J AU Barriere, NM Krivonos, R Tomsick, JA Bachetti, M Boggs, SE Chakrabarty, D Christensen, FE Craig, WW Hailey, CJ Harrison, FA Hong, J Mori, K Stern, D Zhang, WW AF Barriere, Nicolas M. Krivonos, Roman Tomsick, John A. Bachetti, Matteo Boggs, Steven E. Chakrabarty, Deepto Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Hong, Jaesub Mori, Kaya Stern, Daniel Zhang, William W. TI NuSTAR OBSERVATION OF A TYPE I X-RAY BURST FROM GRS 1741.9-2853 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; nuclear reactions; nucleosynthesis; abundances; stars: neutron; X-rays: binaries; X-rays: bursts; X-rays: individual (GRS 1741.9-2853) ID GALACTIC-CENTER REGION; PHOTOSPHERIC RADIUS EXPANSION; ACCRETING NEUTRON-STARS; ABSORPTION-LINES; SHELL FLASHES; EXO 0748-676; MILKY-WAY; SPECTRA; BINARY; DISCOVERY AB We report on two NuSTAR observations of GRS 1741.9-2853, a faint neutron star (NS) low-mass X-ray binary burster located 10 ' away from the Galactic center. NuSTAR detected the source serendipitously as it was emerging from quiescence: its luminosity was 6x10(34) erg s(-1) on 2013 July 31 and 5x10(35) erg s(-1) in a second observation on 2013 August 3. A bright, 800 s long, H-triggered mixed H/He thermonuclear Type I burst with mild photospheric radius expansion (PRE) was present during the second observation. Assuming that the luminosity during the PRE was at the Eddington level, an H mass fraction X = 0.7 in the atmosphere, and an NS mass M = 1.4 M-circle dot, we determine a new lower limit on the distance for this source of 6.3 +/- 0.5 kpc. Combining with previous upper limits, this places GRS 1741.9-2853 at a distance of 7 kpc. Energy independent (achromatic) variability is observed during the cooling of the NS, which could result from the disturbance of the inner accretion disk by the burst. The large dynamic range of this burst reveals a long power-law decay tail. We also detect, at a 95.6% confidence level (1.7 sigma), a narrow absorption line at 5.46 +/- 0.10 keV during the PRE phase of the burst, reminiscent of the detection by Waki et al. We propose that the line, if real, is formed in the wind above the photosphere of the NS by a resonant K alpha transition from H-like Cr gravitationally redshifted by a factor 1 + z = 1.09, corresponding to a radius range of 29.0-41.4 km for a mass range of 1.4-2.0 M-circle dot. C1 [Barriere, Nicolas M.; Krivonos, Roman; Tomsick, John A.; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bachetti, Matteo] Inst Rech Astrophys & Plantol, UMR 5277, Toulouse, France. [Chakrabarty, Deepto] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, Copenhagen, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.; Mori, Kaya] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Barriere, NM (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM barriere@ssl.berkeley.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). The authors thank Nevin Weinberg for useful discussions, and the anonymous referee for constructive comments. NR 69 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 123 DI 10.1088/0004-637X/799/2/123 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900010 ER PT J AU Bocquet, S Saro, A Mohr, JJ Aird, KA Ashby, MLN Bautz, M Bayliss, M Bazin, G Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Chiu, I Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S de Haan, T Dietrich, JP Dobbs, MA Foley, RJ Forman, WR Gangkofner, D George, EM Gladders, MD Gonzalez, AH Halverson, NW Hennig, C Hlavacek-Larrondo, J Holder, GP Holzapfel, WL Hrubes, JD Jones, C Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Marrone, DP McDonald, M McMahon, JJ Meyer, SS Mocanu, L Murray, SS Padin, S Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Sayre, JT Schaffer, KK Shirokoff, E Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Story, K Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Bocquet, S. Saro, A. Mohr, J. J. Aird, K. A. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Chiu, I. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. de Haan, T. Dietrich, J. P. Dobbs, M. A. Foley, R. J. Forman, W. R. Gangkofner, D. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Hennig, C. Hlavacek-Larrondo, J. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Marrone, D. P. McDonald, M. McMahon, J. J. Meyer, S. S. Mocanu, L. Murray, S. S. Padin, S. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Sayre, J. T. Schaffer, K. K. Shirokoff, E. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION sigma(v) AND X-RAY Y-X MEASUREMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: individual; large-scale structure of universe ID SOUTH-POLE TELESCOPE; BARYON ACOUSTIC-OSCILLATIONS; DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; 720 SQUARE DEGREES; GREATER-THAN 1; SCALING RELATIONS; OBSERVED GROWTH; CONSTRAINTS; CATALOG AB We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg(2) of the survey along with 63 velocity dispersion (sigma(v)) and 16 X-ray Y-X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using sigma(v) and Y-X are consistent at the 0.6 sigma level, with the sigma(v) calibration preferring similar to 16% higher masses. We use the full SPTCL data set (SZ clusters+sigma(v)+Y-X) to measure sigma(8)(Omega(m)/0.27)(0.3) = 0.809 +/- 0.036 within a flat ACDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is Sigma m(upsilon) = 0.06 eV, we find the data sets to be consistent at the 1.0 sigma level for WMAP9 and 1.5 sigma for Planck+WP. Allowing for larger Sigma m(upsilon) further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9 sigma higher than the Y-X calibration and 0.8 sigma higher than the sigma(v) calibration. Given the scale of these shifts (similar to 44% and similar to 23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Omega(m) = 0.299 +/- 0.009 and sigma(8) = 0.829 +/- 0.011. Within upsilon CDM model we find Sigma m(upsilon) = 0.148 +/- 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index gamma and the dark energy equation-of-state parameter w to vary, we find gamma = 0.73 +/- 0.28 and w = -1.007 +/- 0.065, demonstrating that the expansion and the growth histories are consistent with ACDM universe (gamma = 0.55; w = -1). C1 [Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S.; Dietrich, J. P.; Gangkofner, D.; Hennig, C.; Liu, J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bocquet, S.; Mohr, J. J.; Desai, S.; Dietrich, J. P.; Gangkofner, D.; Liu, J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Ashby, M. L. N.; Bayliss, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Meyer, S. S.; Mocanu, L.; Padin, S.; Schaffer, K. K.; Story, K.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Meyer, S. S.; Mocanu, L.; Padin, S.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosif, Santiago, Chile. [Crites, A. T.; Lueker, M.; Padin, S.; Shirokoff, E.; Staniszewski, Z.; Williamson, R.] CALTECH, Pasadena, CA 91125 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hlavacek-Larrondo, J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Hlavacek-Larrondo, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art, Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. [Zenteno, A.] Cerro Tololo Interamer Observ, La Serena, Chile. RP Bocquet, S (reprint author), Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany. EM bocquet@usm.lmu.de RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080 FU DFG Cluster of Excellence "Origin and Structure of the Universe"; Transregio program TR33 "The Dark Universe"; NASA; National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; NSF [AST-1009012, AST-1009649, MRI-0723073]; UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research FX We acknowledge the support of the DFG Cluster of Excellence "Origin and Structure of the Universe" and the Transregio program TR33 "The Dark Universe." The calculations have been carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP) and of the Leibniz Supercomputer Center (LRZ). Optical spectroscopic data from VLT programs 086.A-0741 and 286.A-5021 and Gemini program GS-2009B-Q-16 were included in this work. Additional data were obtained with the 6.5 m Magellan Telescopes, which is located at the Las Campanas Observatory in Chile. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012, and research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. Work at Argonne National Lab is supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs Program, and the Canadian Institute for Advanced Research. NR 83 TC 29 Z9 29 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 214 DI 10.1088/0004-637X/799/2/214 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900101 ER PT J AU Dobler, G Fassnacht, CD Treu, T Marshall, P Liao, K Hojjati, A Linder, E Rumbaugh, N AF Dobler, Gregory Fassnacht, Christopher D. Treu, Tommaso Marshall, Phil Liao, Kai Hojjati, Alireza Linder, Eric Rumbaugh, Nicholas TI STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: strong; methods: data analysis ID DAMPED RANDOM-WALK; GRAVITATIONAL LENS; MICROLENSING VARIABILITY; IMAGE-ANALYSIS; LIGHT-CURVE; PG 1115+080; QUASAR; COSMOGRAIL; PRECISION; GALAXIES AB The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor similar to 10(3) strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders," each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper. C1 [Dobler, Gregory] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Dobler, Gregory] NYU, Ctr Urban Sci Progress, Brooklyn, NY 11201 USA. [Fassnacht, Christopher D.; Rumbaugh, Nicholas] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Treu, Tommaso; Liao, Kai] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Marshall, Phil] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Liao, Kai] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Hojjati, Alireza] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hojjati, Alireza] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Linder, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Linder, Eric] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Dobler, G (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. EM tt@astro.ucla.edu FU NSF [AST-1312329, 1450141]; Packard Foundation; U.S. Department of Energy Office of Science [DE-AC02-76SF00515, DE-AC02-05CH11231]; China Scholarship Council; NSERC FX We thank Frederic Courbin, Malte Tewes, and Brendon Brewer for useful comments and suggestions about the chal-lenge. We acknowledge the LSST Dark Energy Science Collaboration for hosting several meetings of the "evil" team, and the private code repository used in this work. C.D.F. and T.T. acknowledge support from the NSF through Collaborative Award "Accurate cosmology with strong gravitational lens time delays" (AST-1312329 and 1450141). T.T. acknowledges support from the Packard Foundation through a Packard Research Fellowship. P.J.M. and E.L. acknowledge the U.S. Department of Energy Office of Science under Contracts No. DE-AC02-76SF00515 and DE-AC02-05CH11231 respectively. K.L. was supported by the China Scholarship Council. A.H. is supported by an NSERC discovery grant. This paper was drafted using the Authorea Web service at http://authorea.com. NR 51 TC 10 Z9 10 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 DI 10.1088/0004-637X/799/2/168 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900055 ER PT J AU George, EM Reichardt, CL Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA Dudley, J Halverson, NW Harrington, NL Holder, GP Holzapfel, WL Hou, Z Hrubes, JD Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D McMahon, JJ Mehl, J Meyer, SS Millea, M Mocanu, LM Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Staniszewski, Z Stark, AA Story, KT van Engelen, A Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF George, E. M. Reichardt, C. L. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H-M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. Dudley, J. Halverson, N. W. Harrington, N. L. Holder, G. P. Holzapfel, W. L. Hou, Z. Hrubes, J. D. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. McMahon, J. J. Mehl, J. Meyer, S. S. Millea, M. Mocanu, L. M. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Staniszewski, Z. Stark, A. A. Story, K. T. van Engelen, A. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; dark ages, reionization, first stars; diffuse radiation; large-scale structure of universe ID SOUTH-POLE TELESCOPE; STAR-FORMING GALAXIES; BARYON ACOUSTIC-OSCILLATIONS; ATACAMA COSMOLOGY TELESCOPE; ZELDOVICH POWER SPECTRUM; SUNYAEV-ZELDOVICH; CLUSTER PHYSICS; SOURCE CATALOG; DUST EMISSION; INHOMOGENEOUS REIONIZATION AB We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg(2) SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < l < 11,000 (angular scales 5' greater than or similar to theta greater than or similar to 1'). These are the most precise measurements of the angular power spectra at l > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg(2) of the SPT-SZ survey. We measure the tSZ power at 143 GHz to be D-3000(tSZ) = 4.08(-0.67)(+0.58) mu K-2 and the kSZ power to be D-3000(kSZ) = 2.9 +/- 1.3 mu K-2. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of xi = 0.113(-0.054)(+0.057) between sources of tSZ and CIB power, with xi < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Delta z < 5.4 at 95% CL. C1 [George, E. M.; Reichardt, C. L.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Plagge, T.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Plagge, T.; Schaffer, K. K.; Shirokoff, E.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Mehl, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H-M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Crites, A. T.; Lueker, M.; Padin, S.] CALTECH, Pasadena, CA 91125 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J.; Holder, G. P.; Shaw, L.; van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hou, Z.; Knox, L.; Millea, M.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Keisler, R.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Keisler, R.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP George, EM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM lizinvt@berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA Hubble Fellowship [HF-51275.01]; Alfred P. Sloan Research Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Science FX The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. R. Keisler acknowledges support from NASA Hubble Fellowship grant HF-51275.01. M. Dobbs acknowledges support from an Alfred P. Sloan Research Fellowship. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 102 TC 41 Z9 41 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 177 DI 10.1088/0004-637X/799/2/177 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900064 ER PT J AU Lee, KG Hennawi, JF Spergel, DN Weinberg, DH Hogg, DW Viel, M Bolton, JS Bailey, S Pieri, MM Carithers, W Schlegel, DJ Lundgren, B Palanque-Delabrouille, N Suzuki, N Schneider, DP Yeche, C AF Lee, Khee-Gan Hennawi, Joseph F. Spergel, David N. Weinberg, David H. Hogg, David W. Viel, Matteo Bolton, James S. Bailey, Stephen Pieri, Matthew M. Carithers, William Schlegel, David J. Lundgren, Britt Palanque-Delabrouille, Nathalie Suzuki, Nao Schneider, Donald P. Yeche, Christophe TI IGM CONSTRAINTS FROM THE SDSS-III/BOSS DR9 Ly alpha FOREST TRANSMISSION PROBABILITY DISTRIBUTION FUNCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE intergalactic medium; large-scale structure of universe; methods: data analysis; quasars: absorption lines; quasars: emission lines; techniques: spectroscopic ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; COLUMN DENSITY DISTRIBUTION; EQUATION-OF-STATE; PRINCIPAL COMPONENT ANALYSIS; DATA RELEASE 9; PHOTOIONIZED INTERGALACTIC MEDIUM; BARYON ACOUSTIC-OSCILLATIONS; COMPOSITE QUASAR SPECTRA; QSO ABSORPTION-SPECTRA AB The Ly alpha forest transmission probability distribution function (PDF) is an established probe of the intergalactic medium (IGM) astrophysics, especially the temperature-density relationship of the IGM. We measure the transmission PDF from 3393 Baryon Oscillations Spectroscopic Survey (BOSS) quasars from Sloan Digital Sky Survey Data Release 9, and compare with mock spectra that include careful modeling of the noise, continuum, and astrophysical uncertainties. The BOSS transmission PDFs, measured at < z > = [2.3, 2.6, 3.0], are compared with PDFs created from mock spectra drawn from a suite of hydrodynamical simulations that sample the IGM temperature-density relationship, gamma, and temperature at mean density, T-0, where T (Delta) = T-0 Delta(gamma-1). We find that a significant population of partial Lyman-limit systems (LLSs) with a column-density distribution slope of beta(pLLS)similar to-2 are required to explain the data at the low-transmission end of transmission PDF, while uncertainties in the mean Ly alpha forest transmission affect the high-transmission end. After modeling the LLSs and marginalizing over mean transmission uncertainties, we find that gamma = 1.6 best describes the data over our entire redshift range, although constraints on T-0 are affected by systematic uncertainties. Within our model framework, isothermal or inverted temperature-density relationships (gamma <= 1) are disfavored at a significance of over 4s, although this could be somewhat weakened by cosmological and astrophysical uncertainties that we did not model. C1 [Lee, Khee-Gan; Hennawi, Joseph F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lee, Khee-Gan; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Hogg, David W.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Viel, Matteo] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Viel, Matteo] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bolton, James S.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bailey, Stephen; Carithers, William; Schlegel, David J.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pieri, Matthew M.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Lundgren, Britt] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Palanque-Delabrouille, Nathalie; Yeche, Christophe] CEA, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Suzuki, Nao] Univ Tokyo, Kavli Inst Phys & Math Universe IPMU, Kashiwa, Chiba, Japan. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Lee, KG (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM lee@mpia.de OI Viel, Matteo/0000-0002-2642-5707 FU Alexander von Humboldt foundation; German Federal Ministry for Education and Research; STFC; ERC [GA-257670]; PRIN-MIUR; Royal Society University; NSF [AST-1202963]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX We thank Michael Strauss, J. Xavier Prochaska, Gabor Worseck, and Joop Schaye for useful comments and discussion. We also thank the members of the ENIGMA group (http://www.mpia-hd.mpg.de/ENIGMA/) at the Max Planck Institute for Astronomy (MPIA) for helpful discussions. J.F.H. acknowledges generous support from the Alexander von Humboldt foundation in the context of the Sofja Kovalevskaja Award. The Humboldt foundation is funded by the German Federal Ministry for Education and Research. The hydrodynamic simulations in this work were performed using the COSMOS Supercomputer in Cambridge (UK), which is sponsored by SGI, Intel, HEFCE and the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England. COSMOS and DARWIN are part of the DIRAC high performance computing facility funded by STFC. M. V. is supported by the FP7 ERC grant "cosmoIGM" GA-257670, PRIN-MIUR and INFN/PD51 grants. J.S.B. acknowledges the support of a Royal Society University Research Fellowship. B.L. acknowledges support from the NSF Astronomy and Astrophsics Fellowship grant AST-1202963.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. NR 127 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 196 DI 10.1088/0004-637X/799/2/196 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900083 ER PT J AU Perrin, MD Duchene, G Millar-Blanchaer, M Fitzgerald, MP Graham, JR Wiktorowicz, SJ Kalas, PG Macintosh, B Bauman, B Cardwell, A Chilcote, J De Rosa, RJ Dillon, D Doyon, R Dunn, J Erikson, D Gavel, D Goodsell, S Hartung, M Hibon, P Ingraham, P Kerley, D Konapacky, Q Larkin, JE Maire, J Marchis, F Marois, C Mittal, T Morzinski, KM Oppenheimer, BR Palmer, DW Patience, J Poyneer, L Pueyo, L Rantakyro, FT Sadakuni, N Saddlemyer, L Savransky, D Soummer, R Sivaramakrishnan, A Song, I Thomas, S Wallace, JK Wang, JJ Wolff, SG AF Perrin, Marshall D. Duchene, Gaspard Millar-Blanchaer, Max Fitzgerald, Michael P. Graham, James R. Wiktorowicz, Sloane J. Kalas, Paul G. Macintosh, Bruce Bauman, Brian Cardwell, Andrew Chilcote, Jeffrey De Rosa, Robert J. Dillon, Daren Doyon, Rene Dunn, Jennifer Erikson, Darren Gavel, Donald Goodsell, Stephen Hartung, Markus Hibon, Pascale Ingraham, Patrick Kerley, Daniel Konapacky, Quinn Larkin, James E. Maire, Jerome Marchis, Franck Marois, Christian Mittal, Tushar Morzinski, Katie M. Oppenheimer, B. R. Palmer, David W. Patience, Jennifer Poyneer, Lisa Pueyo, Laurent Rantakyroe, Fredrik T. Sadakuni, Naru Saddlemyer, Leslie Savransky, Dmitry Soummer, Remi Sivaramakrishnan, Anand Song, Inseok Thomas, Sandrine Wallace, J. Kent Wang, Jason J. Wolff, Schuyler G. TI POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: adaptive optics; instrumentation: high angular resolution; instrumentation: polarimeters; polarization; stars: individual (HR 4796A) ID INTERSTELLAR LINEAR-POLARIZATION; COMPLEX ORGANIC MATERIALS; TAURI CIRCUMBINARY RING; IMAGING POLARIMETRY; DEBRIS DISK; WAVELENGTH DEPENDENCE; PROTOPLANETARY DISKS; BETA-PICTORIS; PERICENTER GLOW; SPACE-TELESCOPE AB We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side greater than or similar to 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring. C1 [Perrin, Marshall D.; Pueyo, Laurent; Soummer, Remi; Sivaramakrishnan, Anand; Wolff, Schuyler G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Duchene, Gaspard; Graham, James R.; Kalas, Paul G.; Mittal, Tushar; Wang, Jason J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Duchene, Gaspard] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Duchene, Gaspard] CNRS, IPAG, F-38000 Grenoble, France. [Millar-Blanchaer, Max; Maire, Jerome] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Fitzgerald, Michael P.; Chilcote, Jeffrey; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Wiktorowicz, Sloane J.; Dillon, Daren; Gavel, Donald] UC Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Macintosh, Bruce; Bauman, Brian; Palmer, David W.; Poyneer, Lisa] Lawrence Livermore Natl Lab, Livermore, CA 94040 USA. [Macintosh, Bruce; Ingraham, Patrick] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Rantakyroe, Fredrik T.; Sadakuni, Naru] Gemini Observ, La Serena, Chile. [De Rosa, Robert J.; Patience, Jennifer] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [De Rosa, Robert J.] Univ Exeter, Sch Phys, Coll Engn Math & Phys Sci, Exeter EX4 4QL, Devon, England. [Doyon, Rene; Ingraham, Patrick] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Dunn, Jennifer; Erikson, Darren; Kerley, Daniel; Marois, Christian; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Marchis, Franck] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Morzinski, Katie M.] Univ Arizona, Ctr Astron Adapt Opt, Steward Observ, Tucson, AZ 85721 USA. [Oppenheimer, B. R.] Amer Museum Nat Hist, New York, NY 10024 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Thomas, Sandrine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wallace, J. Kent] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Perrin, MD (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RI Fitzgerald, Michael/C-2642-2009; Savransky, Dmitry/M-1298-2014; OI Fitzgerald, Michael/0000-0002-0176-8973; Savransky, Dmitry/0000-0002-8711-7206; Oppenheimer, Rebecca/0000-0001-7130-7681; Morzinski, Katie/0000-0002-1384-0063; Wang, Jason/0000-0003-0774-6502 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the international team of engineers and scientists who worked to make GPI a reality. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia),Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). We acknowledge financial support from the Gemini Observatory, the National Science Foundation (NSF) Center for Adaptive Optics at University of California, SantaCruz, theNSF (AST-0909188; AST-1211562), NASA (NNX11AD21G and NNX10AH31G), the University of California Office of the President (LFRP-118057), and the Dunlap Institute, University of Toronto. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and other portions under contract with the California Institute of Technology Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. We also acknowledge support from the Natural Science and Engineering Council of Canada. M. D. P. was supported in part by a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship, NSFAST-0702933. M.D.P. also acknowledges support from the STScI Director's Discretionary Research Fund. NR 101 TC 27 Z9 27 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 182 DI 10.1088/0004-637X/799/2/182 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900069 ER PT J AU Rana, V Harrison, FA Bachetti, M Walton, DJ Furst, F Barret, D Miller, JM Fabian, AC Boggs, SE Christensen, FC Craig, WW Grefenstette, BW Hailey, CJ Madsen, KK Ptak, AF Stern, D Webb, NA Zhang, WW AF Rana, Vikram Harrison, Fiona A. Bachetti, Matteo Walton, Dominic J. Furst, Felix Barret, Didier Miller, Jon M. Fabian, Andrew C. Boggs, Steven E. Christensen, Finn C. Craig, William W. Grefenstette, Brian W. Hailey, Charles J. Madsen, Kristin K. Ptak, Andrew F. Stern, Daniel Webb, Natalie A. Zhang, William W. TI THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion; accretion disks; black hole physics; X-rays: binaries; X-rays: individual (IC 342 X-1, IC 342 X-2) ID MASS BLACK-HOLES; COOL ACCRETION DISKS; HOLMBERG-IX X-1; NGC 1313 X-1; VARIABILITY; MODELS; REFLECTION; OUTFLOWS; IC-342; STATES AB We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by similar to 7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04(-0.06)(+0.08) x 10(40) erg s(-1) for IC 342 X-1 and 7.40 +/- 0.20 x 10(39) erg s(-1) for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies. C1 [Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bachetti, Matteo; Barret, Didier; Webb, Natalie A.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Bachetti, Matteo; Barret, Didier; Webb, Natalie A.] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Fabian, Andrew C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn C.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Ptak, Andrew F.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rana, V (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337; Madsen, Kristin/0000-0003-1252-4891; Rana, Vikram/0000-0003-1703-8796 FU NASA [NNG08FD60C]; Centre National d'Etudes Spatiales (CNES); National Aeronautics and Space Administration and XMM-Newton, an ESA mission FX This work was supported under NASA No. NNG08FD60C and made use of data from the Nuclear Spectroscopic Telescope Array (NuSTAR) mission, a project led by Caltech, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration and XMM-Newton, an ESA mission. We thank the anonymous referee for positive comments that improved the quality of this paper. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and Caltech (USA). D.B. and M.B. are grateful to the Centre National d'Etudes Spatiales (CNES) for funding their activities. NR 47 TC 18 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 121 DI 10.1088/0004-637X/799/2/121 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900008 ER PT J AU Saliwanchik, BR Montroy, TE Aird, KA Bayliss, M Benson, BA Bleem, LE Bocquet, S Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Hlavacek-Larrondo, J Holder, GP Holzapfel, WL Hrubes, JD Jones, C Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Murray, SS Nurgaliev, D Padin, S Patej, A Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Saro, A Sayre, JT Schaffer, KK Shirokoff, E Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Story, K Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Saliwanchik, B. R. Montroy, T. E. Aird, K. A. Bayliss, M. Benson, B. A. Bleem, L. E. Bocquet, S. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Hlavacek-Larrondo, J. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Murray, S. S. Nurgaliev, D. Padin, S. Patej, A. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saro, A. Sayre, J. T. Schaffer, K. K. Shirokoff, E. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI MEASUREMENT OF GALAXY CLUSTER INTEGRATED COMPTONIZATION AND MASS SCALING RELATIONS WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; methods: data analysis; X-rays: galaxies: clusters ID SUNYAEV-ZELDOVICH ARRAY; MICROWAVE BACKGROUND ANISOTROPIES; X-RAY; EXTRAGALACTIC SOURCES; COSMOLOGICAL CONSTRAINTS; RELATIVISTIC CORRECTIONS; SAMPLE; GAS; CATALOG; DEG(2) AB We describe a method formeasuring the integrated Comptonization ( YSZ) of clusters of galaxies from measurements of the Sunyaev- Zel'dovich ( SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope ( SPT) data. We use a Markov Chain Monte Carlo method to fit a beta- model source profile and integrate YSZ within an angular aperture on the sky. In simulated observations of an SPT- like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT- SZ survey levels, we show that we can accurately recover beta- model parameters for inputted clusters. We measure YSZ for simulated semi- analytic clusters and find that YSZ is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure YSZ and to constrain mass scaling relations using X- ray mass estimates for a sample of 18 galaxy clusters from the SPT- SZ survey. Measuring YSZ within a 0. 75 radius aperture, we find an intrinsic log- normal scatter of 21% 11% in YSZ at a fixed mass. Measuring YSZ within a 0.3 Mpc projected radius ( equivalent to 0. 75 at the survey median redshift z = 0.6), we find a scatter of 26% 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that YSZ measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance. C1 [Saliwanchik, B. R.; Montroy, T. E.; Ruhl, J. E.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Bayliss, M.; Nurgaliev, D.; Patej, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bayliss, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Mantz, A.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Schaffer, K. K.; Story, K.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hlavacek-Larrondo, J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Hlavacek-Larrondo, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.; Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Saliwanchik, BR (reprint author), Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. EM benjamin.saliwanchik@case.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Forman, William/0000-0002-9478-1682; Stark, Antony/0000-0002-2718-9996 FU NSF [AST-1009012] FX We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis ( LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST- 1009649 and MRI- 0723073. The McGill group acknowledges funding from theNational Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. The Munich group was supported by The Cluster of Excellence " Origin and Structure of the Universe," funded by the Excellence Initiative of the Federal Government of Germany, EXC project number 153. R. J. F. is supported by a Clay Fellowship, and B. A. B. is supported by aKICP Fellowship. A. P. is supported by an NSF Graduate Research Fellowship under grant No. DGE- 1144152. J. H. L. is supported by NASA through the Einstein Fellowship Program under grant No. PF2- 130094. M. M. acknowledges support provided by NASA through aHubble Fellowship grant from STScI. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C. J. acknowledge support from the Smithsonian Institution, and B. S. acknowledges support from the Brinson Foundation. NR 76 TC 2 Z9 2 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2015 VL 799 IS 2 AR 137 DI 10.1088/0004-637X/799/2/137 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA3QH UT WOS:000348820900024 ER PT J AU Dodge, DA Walter, WR AF Dodge, D. A. Walter, W. R. TI Initial Global Seismic Cross-Correlation Results: Implications for Empirical Signal Detectors SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID WAVE-FORM CORRELATION; EVENTS AB In this work, we cross-correlated waveforms in a global dataset consisting of over 310 million waveforms from nearly 3.8 million events recorded between 1970 and 2013 for two purposes: to better understand the nature of global seismicity and to evaluate correlation as a technique for automated event processing. We found that about 14.5% of the events for which we have at least one waveform correlated with at least one other event at the 0.6 or higher level. Within the geographic regions where our waveform holdings are complete or nearly complete, that fraction rose to nearly 18%. Moreover, among the events for which we had one or more seismograms recorded at distances less than 12 degrees, the fraction of correlated events was much higher, often exceeding 50%. These results imply that global seismicity contains a large number of repeating events, that is, events that are sufficiently similar to each other to have correlated waveforms over the time period spanned by our dataset. These results are very encouraging for using correlation in aspects of automated event processing. It is well known that because of the strongly implied similarity of the sources of correlated signals, they can be used as empirical signal detectors (ESD) to detect, locate, and identify an event using as few as one channel. Our results are very encouraging for using correlation and perhaps other forms of ESD for regional network processing and continental global processing because, for example, nearly all continental seismicity (99%) is within 12 degrees of at least one International Monitoring System station. C1 [Dodge, D. A.; Walter, W. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Dodge, DA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,MS 046, Livermore, CA 94550 USA. EM dodge1@llnl.gov; walter5@llnl.gov RI Walter, William/C-2351-2013 OI Walter, William/0000-0002-0331-0616 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX We thank Stan Ruppert and Terri Hauk for their long-term work to build and maintain the Lawrence Livermore National Laboratory (LLNL) research database. We thank Travis Addair for work on the massive correlation processing. We thank Steve Myers and Dave Harris for comments that improved the manuscript. We also thank Eric Chael, David Schaff, and an anonymous reviewer for suggestions that significantly helped improve the manuscript. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. This is LLNL Contribution LLNL-JRNL-661420. NR 24 TC 10 Z9 10 U1 0 U2 5 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2015 VL 105 IS 1 BP 240 EP 256 DI 10.1785/0120140166 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CA4TQ UT WOS:000348898700016 ER PT J AU Janabi, M Pollock, CM Chacko, AM Hunter, DH AF Janabi, Mustafa Pollock, Catherine M. Chacko, Ann-Marie Hunter, Duncan H. TI Resin-supported arylstannanes as precursors for radiolabeling with iodine: benzaldehydes, benzoic acids, benzamides, and NHS esters SO CANADIAN JOURNAL OF CHEMISTRY LA English DT Article DE solid phase organic chemistry (SPOC); radiopharmaceuticals; iodobenzamides; N-succinimidyl benzoate; radioiodination ID LITHIUM HALOGEN EXCHANGE; PHASE ORGANIC-CHEMISTRY; SOLID-PHASE; MALIGNANT-MELANOMA; CELLULAR UPTAKE; N-SUCCINIMIDYL; IMAGING AGENT; IN-VITRO; REAGENTS; DERIVATIVES AB A highly cross-linked polystyrene resin bearing a reactive chlorostannane moiety 1 has been used to generate a variety of arylstannane radiopharmaceutical precursors for no-carrier-added radioiodination. The resins were characterized for their solvent compatibility and sensitivity to acid cleavage. Resin-supported arylstannanes synthesized via their aryllithium analogues include 3-and 4-stannylbenzaldehydes, 3-and 4-stannylbenzoic acids, and 3-and 4-N-succinimidyl benzoates. A three-step route to the resin-supported stannylbenzoic acids 12a/b was developed through resin-supported benzaldehydes 11a/b. The aldehyde to acid conversion efficiency is >90%, and acid loading capacities of 0.66-0.94 mmol/g were obtained. Resin-supported N-succinimidyl benzoates 16a/b were prepared from the acid with 78%-84% conversion efficiency. Libraries of resin-supported benzamides 19a/b prepared from amine conjugation to corresponding benzoic acids or N-succinimidyl benzoates are described. A third approach describes the preparation of resin-supported benzamides via direct conjugation of the dilithio salt of the intact benzamide to the chlorostannane resin 1. Lastly, as proof-of-principle, a radiolabeling study with iodine-131 (I-131) was performed with a resinsupported benzamide to afford the corresponding radioligand in moderate yields, and high radiochemical purity. C1 [Janabi, Mustafa; Pollock, Catherine M.; Chacko, Ann-Marie; Hunter, Duncan H.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Janabi, Mustafa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Radiotracer Dev & Imaging Technol Dept, Berkeley, CA 94720 USA. [Chacko, Ann-Marie] Univ Penn, Dept Radiol, Inst Translat Med & Therapeut, Perelman Sch Med, Philadelphia, PA 19104 USA. RP Janabi, M (reprint author), Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. EM mjanabi@lbl.gov OI Chacko, Ann-Marie/0000-0001-5140-2622 FU Progenics Pharmaceuticals, Inc., subsidiary Molecular Insight Pharmaceuticals; Ontario Graduate Scholarship (OGS); Natural Sciences and Engineering Research Council (NSERC); University of Western Ontario FX We wish to thank Progenics Pharmaceuticals, Inc., and its subsidiary Molecular Insight Pharmaceuticals, for ongoing financial, scientific, and morale support. This work was also supported by the Ontario Graduate Scholarship (OGS), the Natural Sciences and Engineering Research Council (NSERC), and the University of Western Ontario. Thanks to Chris Kirby and Doug Hairsine for their NMR and mass spectrometry assistance and to Mary Jane Walzak, Marina Suominen Fuller, and Brad Kobe at Surface Science Western for their help with DRIFT spectroscopy and SEM analysis. NR 49 TC 0 Z9 0 U1 0 U2 4 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4042 EI 1480-3291 J9 CAN J CHEM JI Can. J. Chem. PD FEB PY 2015 VL 93 IS 2 BP 207 EP 217 DI 10.1139/cjc-2014-0265 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA CA3BR UT WOS:000348781400009 ER PT J AU Sham, TK Gordon, RA AF Sham, T. K. Gordon, R. A. TI RIXS at the cerium L-3-edge of Ce(III) and Ce(IV) systems: some observations SO CANADIAN JOURNAL OF CHEMISTRY LA English DT Article DE resonant inelastic X-ray scattering (RIXS); X-ray emission (XES); cerium L-3-edge; XANES; constant initial state (CIS); constant final state (CFS) ID X-RAY-ABSORPTION; RESONANT RAMAN-SCATTERING; VALENCE STATE; SPECTROSCOPY; EDGE; CEO2; SPECTRA; PRO2; L-3 AB We report recent observations of resonant inelastic X-ray scattering (RIXS) at the cerium L-3-edge of CePO4, CeO2, and Ce3+ ion in aqueous solution. The intensity of the emission spectrum, including the dispersive Raman below the edge and the emerging nondispersive fluorescence above the edge, was recorded with a solid-state detector with low-energy resolution and a WDX detector with modestly high-energy resolution. The yield of the emission was used to monitor the cerium L-3-edge X-ray absorption near edge structures (XANES) in a constant initial state (CIS) mode as the photon energy sweeps across the cerium L-3-edge. The CIS XANES is compared with the XANES recorded using the nondispersive fluorescence yield, L-alpha, in a constant final state (CFI) mode. It is found that the Raman yield dominates the total emission in the pre-edge region and diminishes rapidly at threshold. The RIXS of Ce3+ (i)n aqueous solution exhibits similar behavior as CePO4. The post-whiteline RIXS intensity of CePO4 exhibits a correlation with excitation energy. CeO2 also exhibits a less intense whiteline in CIS XANES compared with the XANES detected with normal fluorescence. The implications of these observations with improved instrumental resolution are noted. C1 [Sham, T. K.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Gordon, R. A.] Argonne Natl Lab, Adv Photon Source, PNC XSD, Argonne, IL 60439 USA. [Gordon, R. A.] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 5A1, Canada. RP Sham, TK (reprint author), Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. EM tsham@uwo.ca FU NSERC; CFI; CRC; OIT; US Department of Energy, Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; US Department of Energy [DE-AC02-06CH11357] FX Research at The University of Western Ontario is supported by NSERC, CFI, CRC, and OIT. PNC-XSD facilities at the Advanced Photon Source and research at these facilities are supported by the US Department of Energy, Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by the Argonne National Laboratory, was supported by the US Department of Energy under contract No. DE-AC02-06CH11357. NR 41 TC 1 Z9 1 U1 5 U2 27 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4042 EI 1480-3291 J9 CAN J CHEM JI Can. J. Chem. PD FEB PY 2015 VL 93 IS 2 BP 218 EP 226 DI 10.1139/cjc-2014-0261 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CA3BR UT WOS:000348781400010 ER PT J AU Jeon, JW Zhang, LB Lutkenhaus, JL Laskar, DD Lemmon, JP Choi, D Nandasiri, MI Hashmi, A Xu, J Motkuri, RK Fernandez, CA Liu, J Tucker, MP McGrail, PB Yang, B Nune, SK AF Jeon, Ju-Won Zhang, Libing Lutkenhaus, Jodie L. Laskar, Dhrubojyoti D. Lemmon, John P. Choi, Daiwon Nandasiri, Manjula I. Hashmi, Ali Xu, Jie Motkuri, Radha K. Fernandez, Carlos A. Liu, Jian Tucker, Melvin P. McGrail, Peter B. Yang, Bin Nune, Satish K. TI Controlling Porosity in Lignin-Derived Nanoporous Carbon for Supercapacitor Applications SO CHEMSUSCHEM LA English DT Article DE carbonization; lignin; porous carbon; supercapacitor; sustainable materials ID HIGH-PERFORMANCE SUPERCAPACITORS; ENERGY-STORAGE; ACTIVATED CARBON; POROUS CARBON; ELECTROCHEMICAL CAPACITORS; MESOPOROUS CARBONS; LITHIUM BATTERIES; CATHODE MATERIALS; MOLECULAR-WEIGHT; KOH ACTIVATION AB Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials. C1 [Jeon, Ju-Won; Lemmon, John P.; Choi, Daiwon; Nandasiri, Manjula I.; Motkuri, Radha K.; Fernandez, Carlos A.; Liu, Jian; McGrail, Peter B.; Nune, Satish K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Zhang, Libing; Laskar, Dhrubojyoti D.; Yang, Bin] Washington State Univ, Richland, WA 99354 USA. [Zhang, Libing; Laskar, Dhrubojyoti D.; Yang, Bin] Washington State Univ, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. [Jeon, Ju-Won; Lutkenhaus, Jodie L.] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. [Hashmi, Ali] Washington State Univ, Dept Mech Engn, Vancouver, WA 98686 USA. [Xu, Jie] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Jeon, JW (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. EM binyang@tricity.wsu.edu; satish.nune@pnnl.gov RI Choi, Daiwon/B-6593-2008; Motkuri, Radha/F-1041-2014; Liu, Jian/C-4707-2011; Liu, Jian/D-3393-2009; OI yang, bin/0000-0003-1686-8800; Motkuri, Radha/0000-0002-2079-4798; Liu, Jian/0000-0001-5329-7408; Liu, Jian/0000-0001-5329-7408; Lutkenhaus, Jodie/0000-0002-2613-6016 FU Pacific Northwest National Laboratory's (PNNL) Open Call-LDRD program; Department of Energy's Office of Biological and Environmental Research; DARPA Young Faculty Award [N66001-11-1-414]; National Renewable Energy Laboratory [XGB-2-22204-01] FX S.K.N. thanks the Pacific Northwest National Laboratory's (PNNL) Open Call-LDRD program for the support. SEM and XPS characterization were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at PNNL. J.W.J. thanks PNNL for internship opportunity. We thank Paul Martin for his help regarding the use of furnace, Zemin Nie for nitrogen-sorption measurements. We are grateful to the DARPA Young Faculty Award N66001-11-1-414, and National Renewable Energy Laboratory for subcontract XGB-2-22204-01 for funding this research. J.L.L. thanks the Welch Foundation (A-1766). NR 58 TC 28 Z9 28 U1 23 U2 208 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2015 VL 8 IS 3 BP 428 EP 432 DI 10.1002/cssc.201402621 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CA8DL UT WOS:000349146600002 PM 25339600 ER PT J AU Fisher, JC Gray, M AF Fisher, James C., II Gray, McMahan TI Cyclic Stability Testing of Aminated-Silica Solid Sorbent for Post-Combustion CO2 Capture SO CHEMSUSCHEM LA English DT Article DE amine; carbon capture; flue gas; silica; sorbents ID AMINE SORBENTS; ADSORBENTS; ADSORPTION AB The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity. C1 [Fisher, James C., II] URS Energy & Construct Inc, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Gray, McMahan] Natl Energy Technol Lab, Funct Mat Dev Div, Pittsburgh, PA 15236 USA. RP Fisher, JC (reprint author), URS Energy & Construct Inc, Natl Energy Technol Lab, 3610 Collins Ferry Rd,M-S M02, Morgantown, WV 26507 USA. EM james.fisher@netl.doe.gov FU Department of Energy, National Energy Technology Laboratory, an agency of the United States Government; URS Energy & Construction, Inc.; National Energy Technology Laboratory's ongoing research under the RES [DE-FE0004000] FX This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.; This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. NR 14 TC 5 Z9 5 U1 3 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2015 VL 8 IS 3 BP 452 EP 455 DI 10.1002/cssc.201402423 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CA8DL UT WOS:000349146600007 PM 25510438 ER PT J AU Walczak, K Chen, YK Karp, C Beeman, JW Shaner, M Spurgeon, J Sharp, ID Amashukeli, X West, W Jin, J Lewis, NS Xiang, CX AF Walczak, Karl Chen, Yikai Karp, Christoph Beeman, Jeffrey W. Shaner, Matthew Spurgeon, Joshua Sharp, Ian D. Amashukeli, Xenia West, William Jin, Jian Lewis, Nathan S. Xiang, Chengxiang TI Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System SO CHEMSUSCHEM LA English DT Article DE multi-physics modeling; prototype; solar fuels; tungsten oxide; water splitting ID SEMICONDUCTOR PHOTOELECTRODE ARRAYS; HYDROGEN-PRODUCTION; WO3 PHOTOANODES; EFFICIENCY; ELECTROLYTE; EVOLUTION; OXIDATION; DESIGN; DEVICE; CELLS AB A fully integrated solar-driven water-splitting system comprised of WO3/FTO/p(+)n Si as the photoanode, Pt/TiO2/Ti/n(+)p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0M HClO4, and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3. A hydrogen-production rate of 0.17mLhr(-1) and a STH conversion efficiency of 0.24% was observed in a full cell configuration for >20h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, (STH), calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of (STH) was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available. C1 [Walczak, Karl; Beeman, Jeffrey W.; Sharp, Ian D.; Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Walczak, Karl; Beeman, Jeffrey W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Yikai; Karp, Christoph; Shaner, Matthew; Spurgeon, Joshua; Amashukeli, Xenia; West, William; Lewis, Nathan S.; Xiang, Chengxiang] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Noyes Lab 210, Pasadena, CA 91125 USA. RP Walczak, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM nslewis@caltech.edu; cxx@caltech.edu RI Sharp, Ian/I-6163-2015 OI Sharp, Ian/0000-0001-5238-7487 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. NR 34 TC 24 Z9 24 U1 14 U2 109 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2015 VL 8 IS 3 BP 544 EP 551 DI 10.1002/cssc.201402896 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CA8DL UT WOS:000349146600018 PM 25581231 ER PT J AU Ananthakrishnan, R Chard, K Foster, I Tuecke, S AF Ananthakrishnan, Rachana Chard, Kyle Foster, Ian Tuecke, Steven TI Globus platform-as-a-service for collaborative science applications SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT International Workshop on Science Gateways CY JUN 03-05, 2013 CL Zurich, SWITZERLAND DE platform-as-a-service; identity; group; authentication; authorization; profile; transfer; sharing; science gateways; collaboration; cloud AB Globus, developed as software-as-a-service for research data management, also provides APIs that constitute a flexible and powerful platform-as-a-service to which developers can outsource data management activities such as transfer and sharing, as well as identity, profile, and group management. By providing these frequently important but always challenging capabilities as a service, accessible over the network, Globus platform-as-a-service streamlines Web application development and makes it easy for individuals, teams, and institutions to create collaborative applications such as science gateways for science communities. We introduce the capabilities of this platform and review representative applications. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Chard, Kyle] Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle] Univ Chicago, Chicago, IL 60637 USA. EM chard@uchicago.edu OI Tuecke, Steven/0000-0003-2038-2512 FU NIH through NIGMS [5U24RR025736]; NSF [OCI-1053575, OCI-0534113]; DOE [DE-AC02-06CH11357] FX We thank the Globus team for their work implementing and operating Globus. We also thank the XSEDE architecture team for their contributions to our understanding of requirements and Von Welch for his Globus security review. This work was supported in part by the NIH through NIGMS grant 5U24RR025736, the NSF through grants OCI-1053575 and OCI-0534113, and the DOE through grant DE-AC02-06CH11357. NR 22 TC 3 Z9 3 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2015 VL 27 IS 2 SI SI BP 290 EP 305 DI 10.1002/cpe.3262 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CA7HG UT WOS:000349087800004 PM 25642152 ER PT J AU de Rond, T Danielewicz, M Northen, T AF de Rond, Tristan Danielewicz, Megan Northen, Trent TI High throughput screening of enzyme activity with mass spectrometry imaging SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID TIME-OF-FLIGHT; COATED GLASS SLIDES; MALDI-TOF MS; POROUS SILICON; LASER-DESORPTION; HIGH-SENSITIVITY; PEPTIDE ARRAYS; ACTIVITY ASSAY; DESORPTION/IONIZATION; CHIP AB Mass spectrometry imaging (MSI) has found a diversity of applications ranging from localizing metabolites and proteins in tissues to investigating microbial interactions, and as a result is perhaps the fastest growing subfield of mass spectrometry. Advances in surface mass spectrometry technologies are equally applicable to the analysis of arrayed samples. One promising field in which this capacity has been leveraged is the high-throughput analysis of enzyme activity, an important step in the development of a wide range of biotechnologies. This review article describes several emerging approaches that seek to improve the quality and scope of this application of MSI. C1 [de Rond, Tristan] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Danielewicz, Megan; Northen, Trent] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Northen, Trent] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Northen, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM trnorthen@lbl.gov OI Northen, Trent/0000-0001-8404-3259 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The DOE Joint BioEnergy Institute is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231. NR 83 TC 8 Z9 8 U1 7 U2 59 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2015 VL 31 BP 1 EP 9 DI 10.1016/j.copbio.2014.07.008 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA CA5PL UT WOS:000348960200002 PM 25129648 ER PT J AU Wagner, MR Lundberg, DS Coleman-Derr, D Tringe, SG Dangl, JL Mitchell-Olds, T AF Wagner, Maggie R. Lundberg, Derek S. Coleman-Derr, Devin Tringe, Susannah Green Dangl, Jeffery L. Mitchell-Olds, Thomas TI Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative (vol 18, pg 218, 2015) SO ECOLOGY LETTERS LA English DT Correction DE Flowering time; life history; microbiome; phenology; plant-microbe interactions; plasticity; selection; selective agents; soil ecology C1 [Wagner, Maggie R.] Duke Univ, Dept Biol, Program Genet & Genom, Durham, NC 27708 USA. [Lundberg, Derek S.] Univ N Carolina, Carolina Ctr Genome Sci, Curriculum Genet & Mol Biol, Chapel Hill, NC 27599 USA. [Coleman-Derr, Devin; Tringe, Susannah Green] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Dangl, Jeffery L.] Univ N Carolina, Dept Microbiol & Immunol, Carolina Ctr Genome Sci, Curriculum Genet & Mol Biol, Chapel Hill, NC 27599 USA. [Mitchell-Olds, Thomas] Duke Univ, Dept Biol, Inst Genome Sci & Policy, Durham, NC 27708 USA. RP Wagner, MR (reprint author), Duke Univ, Dept Biol, Program Genet & Genom, Box 90338, Durham, NC 27708 USA. EM maggie.r.wagner@gmail.com RI Mitchell-Olds, Thomas/K-8121-2012 OI Mitchell-Olds, Thomas/0000-0003-3439-9921 NR 3 TC 1 Z9 1 U1 5 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1461-023X EI 1461-0248 J9 ECOL LETT JI Ecol. Lett. PD FEB PY 2015 VL 18 IS 2 BP 218 EP 220 DI 10.1111/ele.12400 PG 3 WC Ecology SC Environmental Sciences & Ecology GA CA2DU UT WOS:000348719900010 ER PT J AU Robinson, SA Erickson, DJ AF Robinson, Sharon A. Erickson, David J., III TI Not just about sunburn - the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems SO GLOBAL CHANGE BIOLOGY LA English DT Review DE Antarctica; atmospheric and oceanic circulation; carbon cycle; extreme events; marine and terrestrial ecosystem impacts; ozone hole; precipitation; Southern Annular Mode (SAM); Southern Hemisphere; Southern Ocean; UV radiation ID ULTRAVIOLET-B RADIATION; PENINSULA ICE CORE; ANNULAR MODE; WEST ANTARCTICA; TIPPING POINTS; MONTREAL PROTOCOL; OCEAN CIRCULATION; POLAR-REGIONS; PINE ISLAND; DNA-DAMAGE AB Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion. C1 [Robinson, Sharon A.] Univ Wollongong, Sch Biol Sci, Inst Conservat Biol, Wollongong, NSW 2522, Australia. [Erickson, David J., III] Oak Ridge Natl Lab, Comp Sci & Math Div, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. RP Robinson, SA (reprint author), Univ Wollongong, Sch Biol Sci, Inst Conservat Biol, Wollongong, NSW 2522, Australia. EM sharonr@uow.edu.au RI Robinson, Sharon/B-2683-2008 OI Robinson, Sharon/0000-0002-7130-9617 FU Australian Research Council [DP110101714]; Australian Antarctic Science Grants [3129, 4046]; Oak Ridge National Laboratory by Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX SAR acknowledges receipt of Australian Research Council Grant (DP110101714) and Australian Antarctic Science Grants 3129 and 4046. DJE acknowledges the support of Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. We thank Andrew Netherwood for production of all figures and Stephen Wilson, members of the Robinson Research Group and two anonymous reviewers for feedback on drafts of the manuscript. NR 108 TC 14 Z9 14 U1 5 U2 100 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2015 VL 21 IS 2 BP 515 EP 527 DI 10.1111/gcb.12739 PG 13 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CA1DE UT WOS:000348652400003 PM 25402975 ER PT J AU Anderson-Teixeira, KJ Davies, SJ Bennett, AC Gonzalez-Akre, EB Muller-Landau, HC Wright, SJ Abu Salim, K Zambrano, AMA Alonso, A Baltzer, JL Basset, Y Bourg, NA Broadbent, EN Brockelman, WY Bunyavejchewin, S Burslem, DFRP Butt, N Cao, M Cardenas, D Chuyong, GB Clay, K Cordell, S Dattaraja, HS Deng, XB Detto, M Du, XJ Duque, A Erikson, DL Ewango, CEN Fischer, GA Fletcher, C Foster, RB Giardina, CP Gilbert, GS Gunatilleke, N Gunatilleke, S Hao, ZQ Hargrove, WW Hart, TB Hau, BCH He, FL Hoffman, FM Howe, RW Hubbell, SP Inman-Narahari, FM Jansen, PA Jiang, MX Johnson, DJ Kanzaki, M Kassim, AR Kenfack, D Kibet, S Kinnaird, MF Korte, L Kral, K Kumar, J Larson, AJ Li, YD Li, XK Liu, SR Lum, SKY Lutz, JA Ma, KP Maddalena, DM Makana, JR Malhi, Y Marthews, T Serudin, RM McMahon, SM McShea, WJ Memiaghe, HR Mi, XC Mizuno, T Morecroft, M Myers, JA Novotny, V de Oliveira, AA Ong, PS Orwig, DA Ostertag, R den Ouden, J Parker, GG Phillips, RP Sack, L Sainge, MN Sang, WG Sri-ngernyuang, K Sukumar, R Sun, IF Sungpalee, W Suresh, HS Tan, S Thomas, SC Thomas, DW Thompson, J Turner, BL Uriarte, M Valencia, R Vallejo, MI Vicentini, A Vrska, T Wang, XH Wang, XG Weiblen, G Wolf, A Xu, H Yap, S Zimmerman, J AF Anderson-Teixeira, Kristina J. Davies, Stuart J. Bennett, Amy C. Gonzalez-Akre, Erika B. Muller-Landau, Helene C. Wright, S. Joseph Abu Salim, Kamariah Zambrano, Angelica M. Almeyda Alonso, Alfonso Baltzer, Jennifer L. Basset, Yves Bourg, Norman A. Broadbent, Eben N. Brockelman, Warren Y. Bunyavejchewin, Sarayudh Burslem, David F. R. P. Butt, Nathalie Cao, Min Cardenas, Dairon Chuyong, George B. Clay, Keith Cordell, Susan Dattaraja, Handanakere S. Deng, Xiaobao Detto, Matteo Du, Xiaojun Duque, Alvaro Erikson, David L. Ewango, Corneille E. N. Fischer, Gunter A. Fletcher, Christine Foster, Robin B. Giardina, Christian P. Gilbert, Gregory S. Gunatilleke, Nimal Gunatilleke, Savitri Hao, Zhanqing Hargrove, William W. Hart, Terese B. Hau, Billy C. H. He, Fangliang Hoffman, Forrest M. Howe, Robert W. Hubbell, Stephen P. Inman-Narahari, Faith M. Jansen, Patrick A. Jiang, Mingxi Johnson, Daniel J. Kanzaki, Mamoru Kassim, Abdul Rahman Kenfack, David Kibet, Staline Kinnaird, Margaret F. Korte, Lisa Kral, Kamil Kumar, Jitendra Larson, Andrew J. Li, Yide Li, Xiankun Liu, Shirong Lum, Shawn K. Y. Lutz, James A. Ma, Keping Maddalena, Damian M. Makana, Jean-Remy Malhi, Yadvinder Marthews, Toby Serudin, Rafizah Mat McMahon, Sean M. McShea, William J. Memiaghe, Herve R. Mi, Xiangcheng Mizuno, Takashi Morecroft, Michael Myers, Jonathan A. Novotny, Vojtech de Oliveira, Alexandre A. Ong, Perry S. Orwig, David A. Ostertag, Rebecca den Ouden, Jan Parker, Geoffrey G. Phillips, Richard P. Sack, Lawren Sainge, Moses N. Sang, Weiguo Sri-ngernyuang, Kriangsak Sukumar, Raman Sun, I-Fang Sungpalee, Witchaphart Suresh, Hebbalalu Sathyanarayana Tan, Sylvester Thomas, Sean C. Thomas, Duncan W. Thompson, Jill Turner, Benjamin L. Uriarte, Maria Valencia, Renato Vallejo, Marta I. Vicentini, Alberto Vrska, Tomas Wang, Xihua Wang, Xugao Weiblen, George Wolf, Amy Xu, Han Yap, Sandra Zimmerman, Jess TI CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change SO GLOBAL CHANGE BIOLOGY LA English DT Review DE biodiversity; Center for Tropical Forest Science (CTFS); climate change; demography; forest dynamics plot; Forest Global Earth Observatory (ForestGEO); long-term monitoring; spatial analysis ID TROPICAL TREE COMMUNITY; LONG-TERM NITROGEN; RAIN-FOREST; NEOTROPICAL FOREST; FUNCTIONAL TRAITS; SPATIAL-PATTERNS; EL-NINO; PHYLOGENETIC STRUCTURE; SEEDLING RECRUITMENT; DISPERSAL LIMITATION AB Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. C1 [Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Muller-Landau, Helene C.; Wright, S. Joseph; Basset, Yves; Detto, Matteo; Gilbert, Gregory S.; Hubbell, Stephen P.; Jansen, Patrick A.; Kenfack, David; McMahon, Sean M.; Turner, Benjamin L.] Smithsonian Trop Res Inst, Ctr Trop Forest Sci, Forest Global Earth Observ, Panama City, Panama. [Anderson-Teixeira, Kristina J.; Bennett, Amy C.; Gonzalez-Akre, Erika B.; Zambrano, Angelica M. Almeyda; Bourg, Norman A.; Broadbent, Eben N.; McShea, William J.] Natl Zool Pk, Conservat Ecol Ctr, Smithsonian Conservat Biol Inst, Front Royal, VA USA. [Davies, Stuart J.; Erikson, David L.; Kenfack, David] Natl Museum Nat Hist, Dept Bot, Washington, DC 20560 USA. [Abu Salim, Kamariah] Univ Brunei Darussalam, Fac Sci, BE-1410 Bandar Seri Begawan, Brunei. [Zambrano, Angelica M. Almeyda; Broadbent, Eben N.] Stanford Univ, Stanford Woods Inst Environm, Stanford, CA 94305 USA. [Zambrano, Angelica M. Almeyda; Broadbent, Eben N.] Univ Alabama, Dept Geog, Tuscaloosa, AL USA. [Alonso, Alfonso; Korte, Lisa] Smithsonian Inst, Natl Zool Pk, Ctr Conservat Educ & Sustainabil, Smithsonian Conservat Biol Inst, Washington, DC 20008 USA. [Baltzer, Jennifer L.] Wilfrid Laurier Univ, Dept Biol, Waterloo, ON N2L 3C5, Canada. [Brockelman, Warren Y.] Mahidol Univ, Dept Biol, Bangkok 10700, Thailand. [Bunyavejchewin, Sarayudh] Dept Natl Pk Wildlife & Plant Conservat, Res Off, Bangkok, Thailand. [Burslem, David F. R. P.] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland. [Butt, Nathalie] Univ Queensland, Sch Biol Sci, St Lucia, Qld 4072, Australia. [Butt, Nathalie; Malhi, Yadvinder; Marthews, Toby] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England. [Cao, Min; Deng, Xiaobao] Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Kunming 650223, Peoples R China. [Cardenas, Dairon] Inst Amazon Invest Cient Sinchi, Bogota, Colombia. [Chuyong, George B.] Univ Buea, Dept Bot & Plant Physiol, Buea, Cameroon. [Clay, Keith; Johnson, Daniel J.; Phillips, Richard P.] Indiana Univ, Dept Biol, Bloomington, IN USA. [Cordell, Susan; Giardina, Christian P.] US Forest Serv, Inst Pacific Isl Forestry, USDA, Hilo, HI USA. [Dattaraja, Handanakere S.; Sukumar, Raman; Suresh, Hebbalalu Sathyanarayana] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India. [Du, Xiaojun; Ma, Keping; Mi, Xiangcheng; Sang, Weiguo] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. [Duque, Alvaro] Univ Nacl Colombia, Dept Ciencias Forestales, Medellin, Colombia. [Ewango, Corneille E. N.] Reserve Faune Okapis, Ctr Format & Rech Conservat Forestiere CEFRECOF E, Ituri Forest, Epulu, DEM REP CONGO. [Fischer, Gunter A.] Kadoorie Farm & Bot Garden, Tai Po, Hong Kong, Peoples R China. [Fletcher, Christine; Kassim, Abdul Rahman] Forest Res Inst Malaysia, Selangor, Malaysia. [Foster, Robin B.] Field Museum Nat Hist, Dept Bot, Chicago, IL 60605 USA. [Gilbert, Gregory S.] Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA. [Gunatilleke, Nimal; Gunatilleke, Savitri] Univ Peradeniya, Fac Sci, Dept Bot, Peradeniya, Sri Lanka. [Hao, Zhanqing] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China. [Hargrove, William W.] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, Stn Headquarters, Asheville, NC USA. [Hart, Terese B.; Wang, Xugao] Lukuru Wildlife Res Fdn, Tshuapa Lomami Lualaba Project, Kinshasa, DEM REP CONGO. [Hau, Billy C. H.] Univ Hong Kong, Kadoorie Inst, Pokfulam, Hong Kong, Peoples R China. [Hau, Billy C. H.] Univ Hong Kong, Sch Biol Sci, Pokfulam, Hong Kong, Peoples R China. [He, Fangliang] Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada. [Hoffman, Forrest M.; Kumar, Jitendra; Maddalena, Damian M.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN USA. [Howe, Robert W.] Univ Wisconsin, Dept Nat & Appl Sci, Green Bay, WI 54311 USA. [Hubbell, Stephen P.; Sack, Lawren] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA. [Inman-Narahari, Faith M.] Univ Hawaii Manoa, Coll Trop Agr & Human Resources, Honolulu, HI 96822 USA. [Jansen, Patrick A.] Wageningen Univ, Resource Ecol Grp, NL-6700 AP Wageningen, Netherlands. [Jiang, Mingxi] Chinese Acad Sci, Wuhan Bot Garden, Wuhan 430074, Peoples R China. [Kanzaki, Mamoru; Mizuno, Takashi] Kyoto Univ, Grad Sch Agr, Kyoto, Japan. [Kibet, Staline] Natl Museums Kenya, Nairobi, Kenya. [Kibet, Staline] Univ Nairobi, Land Resource Management & Agr Technol Dept, Nairobi, Kenya. [Kinnaird, Margaret F.] Mpala Res Ctr, Nanyuki 10400, Kenya. [Kinnaird, Margaret F.] Wildlife Conservat Soc, Global Conservat Programs, Bronx, NY 10460 USA. [Kral, Kamil; Vrska, Tomas] Silva Tarouca Res Inst, Dept Forest Ecol, Brno, Czech Republic. [Larson, Andrew J.] Univ Montana, Coll Forestry & Conservat, Dept Forest Management, Missoula, MT 59812 USA. [Li, Yide; Xu, Han] Chinese Acad Forestry, Res Inst Trop Forestry, Guangzhou, Guangdong, Peoples R China. [Li, Xiankun] Chinese Acad Sci, Guangxi Inst Bot, Guilin, Guangxi, Peoples R China. [Liu, Shirong] Chinese Acad Forestry, Res Inst Forest Ecol Environm & Protect, Beijing, Peoples R China. [Lum, Shawn K. Y.] Nanyang Technol Univ, Natl Inst Educ, Nat Sci & Sci Educ Acad Grp, Singapore 639798, Singapore. [Lutz, James A.] Utah State Univ, Wildland Resources Dept, Logan, UT 84322 USA. [Makana, Jean-Remy] Wildlife Conservat Soc, Brazzaville, DEM REP CONGO. [Serudin, Rafizah Mat] Univ Brunei Darussalam, Fac Sci, BE-1410 Bandar Seri Begawan, Brunei. [McMahon, Sean M.; Parker, Geoffrey G.] Smithsonian Environm Res Ctr, Forest Ecol Grp, Edgewater, MD 21037 USA. [Memiaghe, Herve R.] Ctr Natl Rech Sci & Technol, Inst Rech Ecol Tropicale, Libreville, Gabon. [Morecroft, Michael] Nat England, Sheffield, S Yorkshire, England. [Myers, Jonathan A.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Novotny, Vojtech] New Guinea Binatang Res Ctr, Madang, Papua N Guinea. [Novotny, Vojtech] Acad Sci Czech Republic, Ctr Biol, Ceske Budejovice 37005, Czech Republic. [Novotny, Vojtech] Univ South Bohemia, Fac Sci, Ceske Budejovice 37005, Czech Republic. [de Oliveira, Alexandre A.] Univ Sao Paulo, Dept Ecol, Inst Biociencias, Sao Paulo, Brazil. [Ong, Perry S.; Yap, Sandra] Univ Philippines Diliman, Inst Biol, Quezon City, Philippines. [Orwig, David A.] Harvard Univ, Harvard Forest, Petersham, MA USA. [Ostertag, Rebecca] Univ Hawaii, Dept Biol, Hilo, HI 96720 USA. [den Ouden, Jan] Wageningen Univ, Forest Ecol & Forest Management Grp, NL-6700 AP Wageningen, Netherlands. [Sainge, Moses N.] Trop Plant Explorat Grp TroPEG, Mundemba, Southwest Regio, Cameroon. [Sun, I-Fang] Natl Dong Hwa Univ, Dept Nat Resources & Environm Studies, Hualien, Taiwan. [Tan, Sylvester] Sarawak Forest Dept, Kuching, Sarawak, Malaysia. [Thomas, Sean C.] Univ Toronto, Fac Forestry, Toronto, ON M5S 3B3, Canada. [Thomas, Duncan W.] Washington State Univ, Sch Biol Sci, Vancouver, WA USA. [Thompson, Jill] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Thompson, Jill; Zimmerman, Jess] Univ Puerto Rico, Inst Trop Ecosyst Studies, Dept Environm Sci, San Juan, PR 00936 USA. [Uriarte, Maria] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA. [Valencia, Renato] Pontifical Catholic Univ Ecuador, Dept Biol Sci, Quito, Ecuador. [Vallejo, Marta I.] Inst Alexander von Humboldt, Bogota, Colombia. [Vicentini, Alberto] Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil. [Wang, Xihua] E China Normal Univ, Sch Ecol & Environm Sci, Shanghai 200062, Peoples R China. [Weiblen, George] Univ Minnesota, Dept Plant Biol, St Paul, MN USA. [Wolf, Amy] UW Green Bay, Dept Biol, Green Bay, WI 54311 USA. [Wolf, Amy] UW Green Bay, Dept Nat & Appl Sci, Green Bay, WI 54311 USA. RP Anderson-Teixeira, KJ (reprint author), Smithsonian Trop Res Inst, Ctr Trop Forest Sci, Forest Global Earth Observ, Panama City, Panama. EM teixeirak@si.edu RI Hoffman, Forrest/B-8667-2012; Basset, Yves/B-6642-2014; Sack, Lawren/A-5492-2008; Giardina, Christian/C-3120-2011; Kral, Kamil/E-4415-2014; Turner, Benjamin/E-5940-2011; Jansen, Patrick/G-2545-2015; wang, xugao/B-1111-2015; Novotny, Vojtech/G-9434-2014; Thompson, Jill/K-2200-2012; Kumar, Jitendra/G-8601-2013; Wright, Stuart/M-3311-2013; OI Hoffman, Forrest/0000-0001-5802-4134; Sack, Lawren/0000-0002-7009-7202; Giardina, Christian/0000-0002-3431-5073; Almeyda Zambrano, Angelica/0000-0001-5081-9936; Turner, Benjamin/0000-0002-6585-0722; Jansen, Patrick/0000-0002-4660-0314; wang, xugao/0000-0003-1207-8852; Novotny, Vojtech/0000-0001-7918-8023; Thompson, Jill/0000-0002-4370-2593; Kumar, Jitendra/0000-0002-0159-0546; Wright, Stuart/0000-0003-4260-5676; Bourg, Norman/0000-0002-7443-1992; Oliveira, Alexandre/0000-0001-5526-8109; Parker, Geoffrey/0000-0001-7055-6491; Burslem, David/0000-0001-6033-0990 FU Smithsonian Competitive Grants Program for Science; Smithsonian Institution; Smithsonian Tropical Research Institute; Arnold Arboretum of Harvard University; National Science Foundation; Rockefeller Foundation; John Merck Fund; John D. and Catherine T. MacArthur Foundation; Andrew W. Mellon Foundation; Frank Levinson Family Foundation; HSBC Climate Partnership; Bromley Charitable Trust; John Swire Sons Pty Ltd; Celerity; F.H. Levinson Fund; Small World Institute Fund FX We thank everyone involved in the collection of the vast quantity of data and information in the CTFS-ForestGEO network; to F. Dentener and W. Laurance for providing data; E. Leigh, Y. Lin, J. McGarvey and A. Miller for helpful comments; E. Aikens, L. Gonzalez and M. Azimi for help with analysis and figures. Study on this manuscript was funded in part by a Smithsonian Competitive Grants Program for Science award to KJAT. The CTFS-ForestGEO network has received major support from the Smithsonian Institution - particularly the Smithsonian Tropical Research Institute, the Arnold Arboretum of Harvard University, the National Science Foundation (multiple grants), the Rockefeller Foundation, the John Merck Fund, the John D. and Catherine T. MacArthur Foundation, the Andrew W. Mellon Foundation, the Frank Levinson Family Foundation, the HSBC Climate Partnership, the Bromley Charitable Trust, John Swire & Sons Pty Ltd, Celerity, F.H. Levinson Fund, Small World Institute Fund and Jennifer and Greg Johnson. Site-specific support is listed in Table S8. NR 199 TC 61 Z9 67 U1 41 U2 207 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2015 VL 21 IS 2 BP 528 EP 549 DI 10.1111/gcb.12712 PG 22 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CA1DE UT WOS:000348652400004 PM 25258024 ER PT J AU Chowdhury, TR Herndon, EM Phelps, TJ Elias, DA Gu, BH Liang, LY Wullschleger, SD Graham, DE AF Chowdhury, Taniya Roy Herndon, Elizabeth M. Phelps, Tommy J. Elias, Dwayne A. Gu, Baohua Liang, Liyuan Wullschleger, Stan D. Graham, David E. TI Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska SO GLOBAL CHANGE BIOLOGY LA English DT Article DE anaerobic carbon mineralization; climate models; methanogenesis; organic carbon; permafrost; Q(10); tundra biogeochemistry ID CARBON-CYCLE FEEDBACK; SOIL ORGANIC-CARBON; PERMAFROST CARBON; METHANE FLUXES; MICROBIAL ACTIVITY; MOISTURE CONTROL; NORTHERN ALASKA; UNFROZEN WATER; CLIMATE-CHANGE; ARCTIC TUNDRA AB Arctic permafrost ecosystems store 50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at -2, +4, or +8 degrees C for 60day incubation period. Temporal dynamics of CO2 production and methanogenesis at -2 degrees C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q(10) values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at -2 degrees C in all horizons. Such discontinuity in CH4 production between -2 degrees C and the elevated temperatures (+4 and +8 degrees C) indicated the insufficient representation of methanogenesis on the basis of Q(10) values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (12% wt. C) produced 5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons. C1 [Chowdhury, Taniya Roy; Phelps, Tommy J.; Elias, Dwayne A.; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Herndon, Elizabeth M.; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Graham, DE (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS-6038, Oak Ridge, TN 37831 USA. EM grahamde@ornl.gov RI Graham, David/F-8578-2010; Gu, Baohua/B-9511-2012; Wullschleger, Stan/B-8297-2012; Liang, Liyuan/O-7213-2014 OI Graham, David/0000-0001-8968-7344; Gu, Baohua/0000-0002-7299-2956; Wullschleger, Stan/0000-0002-9869-0446; Liang, Liyuan/0000-0003-1338-0324 FU Biological and Environmental Research program in the US Department of Energy (DOE) Office of Science; DOE [DE-AC05-00OR22725] FX We gratefully acknowledge the assistance of Bob Busey, Larry Hinzman, Kenneth Lowe, Deanne Brice, and Craig Ulrich in obtaining and analyzing frozen core samples, as well as logistical support provided by UMIAQ, LLC. We appreciate helpful discussions with Jon Holmgren and T.C. Onstott regarding coring and SIPRE auger modifications. We are grateful to Christopher Schadt for comments that greatly helped in improving this manuscript. The Next-Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project is supported by the Biological and Environmental Research program in the US Department of Energy (DOE) Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract No. DE-AC05-00OR22725. NR 71 TC 14 Z9 14 U1 8 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2015 VL 21 IS 2 BP 722 EP 737 DI 10.1111/gcb.12762 PG 16 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CA1DE UT WOS:000348652400019 ER PT J AU Gustafson, EJ De Bruijn, AMG Pangle, RE Limousin, JM McDowell, NG Pockman, WT Sturtevant, BR Muss, JD Kubiske, ME AF Gustafson, Eric J. De Bruijn, Arjan M. G. Pangle, Robert E. Limousin, Jean-Marc McDowell, Nate G. Pockman, William T. Sturtevant, Brian R. Muss, Jordan D. Kubiske, Mark E. TI Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; competition for light; drought; forest landscape disturbance and succession model; LANDIS-II; Pinon-juniper ecosystem; PnET-Succession; tree mortality; water stress ID PINYON-JUNIPER WOODLAND; VEGETATION MORTALITY; SIMULATION-MODEL; ATMOSPHERIC CO2; TREE MORTALITY; UNITED-STATES; LANDIS-II; PLANTS; MECHANISMS; DYNAMICS AB Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a pinon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the pinon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for pinon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. C1 [Gustafson, Eric J.; De Bruijn, Arjan M. G.; Sturtevant, Brian R.; Kubiske, Mark E.] US Forest Serv, Inst Appl Ecosyst Studies, No Res Stn, USDA, Rhinelander, WI 54501 USA. [De Bruijn, Arjan M. G.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Pangle, Robert E.; Limousin, Jean-Marc; Pockman, William T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate G.; Muss, Jordan D.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Gustafson, EJ (reprint author), US Forest Serv, Inst Appl Ecosyst Studies, No Res Stn, USDA, 5985 Highway K, Rhinelander, WI 54501 USA. EM egustafson@fs.fed.us RI Pockman, William/D-4086-2014 OI Pockman, William/0000-0002-3286-0457 FU Northern Research Station of the USDA Forest Service; Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture [105321]; US Department of Energy (BER); National Science Foundation via the Sevilleta LTER program FX Funding was provided by the Northern Research Station of the USDA Forest Service and an Agriculture and Food Research Initiative Competitive Grant (no. 105321) to Purdue University from the USDA National Institute of Food and Agriculture. The Sevilleta drought experiment was funded by the US Department of Energy (BER) with additional support from the National Science Foundation via the Sevilleta LTER program. Thanks to Rich Birdsey, Neil Cobb, and anonymous reviewers for critical reviews of the manuscript. NR 50 TC 7 Z9 7 U1 9 U2 60 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2015 VL 21 IS 2 BP 843 EP 856 DI 10.1111/gcb.12713 PG 14 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CA1DE UT WOS:000348652400028 PM 25155807 ER PT J AU Blessinger, M Manin, J Skeen, SA Meijer, M Parrish, S Pickett, LM AF Blessinger, Matthew Manin, Julien Skeen, Scott A. Meijer, Maarten Parrish, Scott Pickett, Lyle M. TI Quantitative mixing measurements and stochastic variability of a vaporizing gasoline direct-injection spray SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Rayleigh scattering; quantitative mixing measurements; air-fuel mixing; direct injection; gasoline engines ID SPARK-IGNITION ENGINE AB Spark-ignition direct-injection engines operating in a stratified, lean-burn regime offer improved engine efficiency; however, seemingly random fluctuations in stratified combustion that result in partial-burn or misfire prevent widespread implementation. Eliminating these poor combustion events requires detailed understanding of engine flow, fuel delivery, and ignition, but knowing the dominant cause is difficult because they occur simultaneously in an engine. This study investigated the variability in fuel-air mixture linked to fuel injection hardware in a near-quiescent pressure vessel at high-temperature conditions representative of late, stratified-charge injection. An eight-hole spark-ignition direct-injection spray was interrogated using high-speed schlieren and Mie-scatter imaging from multiple, simultaneous views to acquire the vapor and liquid envelopes of the spray. The mixture fraction of vaporized sections of the spray was then quantified at a plane between plumes using Rayleigh scattering. Probability contours of the line-of-sight vapor envelope showed little variability between injections, whereas probability contours derived from planar, quantitative mixing measurements exhibit greater amounts of variability for lean-combustion-limit charge. The mixture field between plumes was characterized by multi-hole and end-of-injection dynamics that attract the plumes to each other and toward the injection axis, resulting in a liquid-fuel-droplet-dense merged central jet in the planar measurements. Supplemental long-working distance microscopy imaging showed the existence of fuel droplets far downstream in the region of the planar laser measurements. C1 [Blessinger, Matthew; Manin, Julien; Skeen, Scott A.; Pickett, Lyle M.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. [Blessinger, Matthew] Univ Wisconsin, Dept Mech Engn, Engine Res Ctr, Madison, WI 53705 USA. [Meijer, Maarten] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands. [Parrish, Scott] Gen Motors Global R&D, Warren, MI USA. RP Blessinger, M (reprint author), Univ Wisconsin, Dept Mech Engn, Engine Res Ctr, 1500 Engn Dr, Madison, WI 53705 USA. EM blessinger@wisc.edu FU US Department of Energy, Office of Vehicle Technologies; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Support for this research was provided by the US Department of Energy, Office of Vehicle Technologies, with injection equipment donated by General Motors. The research was performed at the Combustion Research Facility, Livermore, CA, USA. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 3 Z9 3 U1 1 U2 11 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2015 VL 16 IS 2 BP 238 EP 252 DI 10.1177/1468087414531971 PG 15 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA CA9EZ UT WOS:000349225300009 ER PT J AU Stukowski, A Cereceda, D Swinburne, TD Marian, J AF Stukowski, Alexander Cereceda, David Swinburne, Thomas D. Marian, Jaime TI Thermally-activated non-Schmid glide of screw dislocations in W using atomistically-informed kinetic Monte Carlo simulations SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Metallic material; Numerical algorithms; Ductility ID BCC TRANSITION-METALS; PLASTIC-FLOW; DYNAMICS SIMULATIONS; RECENT PROGRESS; SHEAR-STRESS; KINK-PAIRS; MOTION; DEFORMATION; NUCLEATION; SLIP AB Thermally-activated 1/2 < 111 > screw dislocation motion is the controlling plastic mechanism at low temperatures in body-centered cubic (bcc) crystals. Dislocation motion proceeds by nucleation and propagation of atomic-sized kink pairs in close-packed planes. The atomistic character of kink pairs can be studied using techniques such as molecular dynamics (MD). However, MD's natural inability to properly sample thermally-activated processes as well as to capture {110} screw dislocation glide calls for the development of other methods capable of overcoming these limitations. Here we develop a kinetic Monte Carlo (kMC) approach to study single screw dislocation dynamics from room temperature to 0.5T(m), and at stresses 0 < sigma < 0.9 sigma(P), where T-m and sigma(P) are the melting point and the Peierls stress. The method is entirely parameterized with atomistic simulations using an embedded atom potential for tungsten. To increase the physical fidelity of our simulations, we calculate the deviations from Schmid's law prescribed by the interatomic potential used and we study single dislocation kinetics using both projections. We calculate dislocation velocities as a function of stress, temperature, and dislocation line length. We find that considering non-Schmid effects has a strong influence on both the magnitude of the velocities and the trajectories followed by the dislocation. We finish by condensing all the calculated data into effective stress and temperature dependent mobilities to be used in more homogenized numerical methods. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Stukowski, Alexander] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. [Stukowski, Alexander; Cereceda, David; Marian, Jaime] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Cereceda, David] Univ Politecn Madrid, Inst Fus Nucl, E-28006 Madrid, Spain. [Swinburne, Thomas D.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Swinburne, Thomas D.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. RP Marian, J (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90005 USA. RI Albe, Karsten/F-1139-2011; OI Stukowski, Alexander/0000-0001-6750-3401; Swinburne, Thomas/0000-0002-3255-4257 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE's Early Career Research Program; Consejo Social; PhD program of the Universidad Politecnica de Madrid; Centre for Doctoral Training on Theory and Simulation of Materials at Imperial College London - EPSRC [EP/G036888/1]; European Union's Horizon research and innovation programme; United Kingdom Engineering and Physical Sciences Research Council [EP/G050031]; RCUK Energy Programme [EP/I501045] FX We are indebted to V. Bulatov for useful discussions and helpful guidance. Conversations with D. Rodney, M. Gilbert, and W. Cai are gratefully acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. J.M. acknowledges support from DOE's Early Career Research Program. D.C. acknowledges support from the Consejo Social and the PhD program of the Universidad Politecnica de Madrid. T.D.S. was supported through a studentship in the Centre for Doctoral Training on Theory and Simulation of Materials at Imperial College London funded by EPSRC under Grant No. EP/G036888/1. This work was part-funded by the RCUK Energy Programme (Grant No. EP/I501045) and by the European Union's Horizon 2020 research and innovation programme. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the United Kingdom Engineering and Physical Sciences Research Council via a programme Grant EP/G050031. NR 61 TC 5 Z9 5 U1 3 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2015 VL 65 BP 108 EP 130 DI 10.1016/j.ijplas.2014.08.015 PG 23 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CA5OP UT WOS:000348958000007 ER PT J AU Tucker, GJ Foiles, SM AF Tucker, Garritt J. Foiles, Stephen M. TI Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Molecular dynamics; Twinning; Dislocations; Grain boundaries; Polycrystalline material ID MOLECULAR-DYNAMICS SIMULATIONS; ULTRAFINE-GRAINED METALS; DISLOCATION NUCLEATION; NANOTWINNED METALS; HIGH-STRENGTH; NANOSTRUCTURED METALS; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; ULTRAHIGH-STRENGTH; TENSILE DUCTILITY AB Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of < 100 > columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized to compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension-compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Tucker, Garritt J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Tucker, Garritt J.; Foiles, Stephen M.] Sandia Natl Labs, Computat Mat & Data Sci Dept, Albuquerque, NM 87185 USA. RP Tucker, GJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, 3141 Chestnut St,LeBow 344, Philadelphia, PA 19104 USA. EM gtucker@coe.drexel.edu RI Tucker, Garritt/A-1954-2016; OI Tucker, Garritt/0000-0002-4011-450X; Foiles, Stephen/0000-0002-1907-454X FU US Department of Energy, Office of Basic Energy Sciences; US Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the support of the US Department of Energy, Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. We would also like to acknowledge the University Research Computing Facility at Drexel University for the use of their resources and computing facilities, and several helpful discussions with Prof. C.R. Weinberger (Drexel). NR 66 TC 8 Z9 9 U1 5 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2015 VL 65 BP 191 EP 205 DI 10.1016/j.ijplas.2014.09.006 PG 15 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CA5OP UT WOS:000348958000011 ER PT J AU Mayeur, JR Beyerlein, IJ Bronkhorst, CA Mourad, HM AF Mayeur, J. R. Beyerlein, I. J. Bronkhorst, C. A. Mourad, H. M. TI Incorporating interface affected zones into crystal plasticity SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Nanolamellar composites; Interface stability; Slip transfer; Accumulative roll bonding ID GRAIN-BOUNDARIES; DEFORMATION-BEHAVIOR; BIMETAL INTERFACES; SLIP TRANSMISSION; TEXTURE EVOLUTION; POLYCRYSTALLINE MATERIALS; NANOLAMELLAR COMPOSITES; DISLOCATION DENSITY; ISOAXIAL BICRYSTALS; PHASE BOUNDARIES AB This work presents a crystal plasticity modeling framework that accounts for the influence of material interfaces on the plastic behavior of the two crystals on either side of the interface. Within an interface-affected zone (IAZ) extending from both sides of the interface, slip system activity is presumed to be biased towards systems that permit slip transfer across the interface. The preferred slip transfer pathways are determined from the geometric alignment of the slip systems and the stress state within each crystal. The IAZ model is applied to study the plastic stability of Cu-Nb biaystals under plane strain compression. Our results show that the additional constraints imposed through the enforcement of slip continuity across the interface leads to reduced plastic stability as compared to the case without an IAZ for several of the interfaces studied. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Mayeur, J. R.; Beyerlein, I. J.; Bronkhorst, C. A.; Mourad, H. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mayeur, JR (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jmayeur@lanl.gov OI Bronkhorst, Curt/0000-0002-2709-1964 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Los Alamos National Laboratory Directed Research and Development (LDRD) [ER20140348]; DOE [DE AC52 06NA25396] FX JRM and IJB gratefully acknowledge support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. CAB and HMM acknowledge the support of the Los Alamos National Laboratory Directed Research and Development (LDRD) Project ER20140348. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC52 06NA25396. NR 75 TC 14 Z9 14 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2015 VL 65 BP 206 EP 225 DI 10.1016/j.ijplas.2014.08.013 PG 20 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CA5OP UT WOS:000348958000012 ER PT J AU Srirangam, P Idrees, Y Ilavsky, J Daymond, MR AF Srirangam, Prakash Idrees, Yasir Ilavsky, Jan Daymond, Mark R. TI Ultra-small-angle X-ray scattering study of second-phase particles in heat-treated Zircaloy-4 SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE ultra-small-angle X-ray scattering; Zircaloy-4; second-phase particles; precipitate size distribution; volume fraction; number density; transmission electron microscopy; scanning transmission electron microscopy ID SECOND-PHASE PARTICLES; ADVANCED PHOTON SOURCE; ZIRCONIUM ALLOYS; NODULAR CORROSION; SYNCHROTRON-RADIATION; PRECIPITATE GROWTH; SIZE DISTRIBUTION; IRRADIATION; RECRYSTALLIZATION; MICROSTRUCTURES AB The ultra-small-angle X-ray scattering (USAXS) technique has been used to investigate and to quantify the morphology and size distribution of second-phase particles in Zircaloy-4 under various heat-treatment conditions. The alloy samples were solutionized in the phase field at 1293K for 15min and then cooled at different rates, including water quenching, air cooling and furnace cooling. The water-quenched samples were subsequently subjected to a thermal aging treatment at 873K for different aging times (30, 60, 120 and 300min). The USAXS results show that water quenching and air cooling from the phase field produces a narrow size distribution of fine-size precipitates with an average diameter of 300-800 angstrom, while furnace cooling resulted in coarsening of the particles, with a broad size distribution having an average precipitate size of 600-1200 angstrom. Further, the furnace-cooled sample shows a higher volume fraction of particles than the water-quenched or air-cooled sample. The USAXS results on the quenched then aged samples show that aging at 873K for 10min resulted in very fine size precipitates with an average diameter of 200-350 angstrom. A rapid precipitation with the highest number density of second-phase particles amongst all the heat-treated samples (4.3 x 10(20)m(-3)) was observed in the sample aged for 10min at 873K. Particles of larger size and with a broad size distribution were observed in the sample aged at 873K for 300min. A bimodal type of particle size distribution was observed in all the heat-treated samples. Important parameters in the characterization of second-phase particles, such as the average size, size distribution, volume fraction and number density, were evaluated and quantified. These parameters are discussed for both heat-treated and aged specimens. Transmission and scanning transmission electron microscopy characterization were carried out on all heat-treated samples, to assist in interpretation and to substantiate the results from the USAXS measurements. C1 [Srirangam, Prakash] Univ Warwick, Warwick Mfg Grp WMG, Coventry CV4 7AL, W Midlands, England. [Idrees, Yasir; Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Srirangam, P (reprint author), Univ Warwick, Warwick Mfg Grp WMG, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM p.srirangam@warwick.ac.uk RI Ilavsky, Jan/D-4521-2013; OI Ilavsky, Jan/0000-0003-1982-8900; Daymond, Mark/0000-0001-6242-7489 FU Division of Chemistry (CHE), National Science Foundation [NSF/CHE-1346572]; Division of Materials Research (DMR), National Science Foundation [NSF/CHE-1346572]; US DOE [DE-AC02-06CH11357]; NSERC/UNENE Industrial Research Chair in Nuclear Materials FX ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant No. NSF/CHE-1346572. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. We thank Dr Sterling St Lawrence, Scientist at Chalk River Laboratories, AECL, Canada, for providing the Zircaloy-4 materials for the USAXS measurements. The work was supported by the NSERC/UNENE Industrial Research Chair in Nuclear Materials. NR 48 TC 0 Z9 0 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2015 VL 48 BP 52 EP 60 DI 10.1107/S1600576714024893 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CA8ZU UT WOS:000349210700008 ER PT J AU Khalifah, P AF Khalifah, Peter TI Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE powder diffraction; cylindrical absorption correction ID NEUTRON-DIFFRACTION; SPECIMENS; CYLINDERS AB The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages both in computational efficiency and in gaining an intuitive understanding of the effects of absorption on the diffraction data. A matrix of absorption coefficients calculated for R products between 0 and 20 for diffraction angles (D) of 0-90 degrees were used to examine the influence of (1) capillary diameter and (2) sample density on the overall scattered intensity as a function of diffraction angle, where is the linear absorption coefficient for the sample and R is the capillary radius. On the basis of this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0-50 degrees is in general expected to be achieved when the maximum radius capillary compatible with the beam is used and when the sample density is adjusted to be 3/(4R) of its original density. C1 [Khalifah, Peter] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Khalifah, Peter] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Khalifah, P (reprint author), SUNY Stony Brook, Dept Chem, 100 Nicolls Rd, Stony Brook, NY 11794 USA. EM kpete@bnl.gov FU National Science Foundation [DMR-0955646] FX This work has been funded by the National Science Foundation under award DMR-0955646. NR 11 TC 0 Z9 0 U1 3 U2 16 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2015 VL 48 BP 149 EP 158 DI 10.1107/S1600576714026569 PN 1 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CA8ZU UT WOS:000349210700019 ER PT J AU Prill, D Juhas, P Schmidt, MU Billinge, SJL AF Prill, Dragica Juhas, Pavol Schmidt, Martin U. Billinge, Simon J. L. TI Modelling pair distribution functions (PDFs) of organic compounds: describing both intra- and intermolecular correlation functions in calculated PDFs SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE pair distribution function; intramolecular and intermolecular correlation functions ID RAY-POWDER DIFFRACTION; CRYSTAL-STRUCTURES; ATOMIC-STRUCTURE; CHARGE-DENSITY; NAPHTHALENE; REFINEMENT; NANOSCALE AB The methods currently used to calculate atomic pair distribution functions (PDFs) from organic structural models do not distinguish between the intramolecular and intermolecular distances. Owing to the stiff bonding between atoms within a molecule, the PDF peaks arising from intramolecular atom-atom distances are much sharper than those of the intermolecular atom-atom distances. This work introduces a simple approach to calculate PDFs of molecular systems without building a supercell model by using two different isotropic displacement parameters to describe atomic motion: one parameter is used for the intramolecular, the other one for intermolecular atom-atom distances. Naphthalene, quinacridone and paracetamol were used as examples. Calculations were done with the DiffPy-CMI complex modelling infrastructure. The new modelling approach produced remarkably better fits to the experimental PDFs, confirming the higher accuracy of this method for organic materials. C1 [Prill, Dragica; Schmidt, Martin U.] Goethe Univ Frankfurt, Inst Inorgan & Analyt Chem, D-60438 Frankfurt, Germany. [Juhas, Pavol; Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Schmidt, MU (reprint author), Goethe Univ Frankfurt, Inst Inorgan & Analyt Chem, Max von Laue Str 7, D-60438 Frankfurt, Germany. EM m.schmidt@chemie.uni-frankfurt.de; sb2896@columbia.edu RI Fachbereich14, Dekanat/C-8553-2015; OI Juhas, Pavol/0000-0001-8751-4458 FU US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; Laboratory Directed Research and Development (LDRD) program [12-007] FX Data collection, development of the DiffPy-CMI modelling software and PDF simulations were supported by the Laboratory Directed Research and Development (LDRD) program 12-007 (Complex Modeling) at Brookhaven National Laboratory (BNL). X-ray experiments were carried out at the National Synchrotron Light Source beamline X17A, at BNL. BNL is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, DE-AC02-98CH10886. NR 34 TC 12 Z9 12 U1 5 U2 31 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2015 VL 48 BP 171 EP 178 DI 10.1107/S1600576714026454 PN 1 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CA8ZU UT WOS:000349210700022 ER PT J AU Adlmann, FA Gutfreund, P Ankner, JF Browning, JF Parizzi, A Vacaliuc, B Halbert, CE Rich, JP Dennison, AJC Wolff, M AF Adlmann, F. A. Gutfreund, P. Ankner, J. F. Browning, J. F. Parizzi, A. Vacaliuc, B. Halbert, C. E. Rich, J. P. Dennison, A. J. C. Wolff, M. TI Towards neutron scattering experiments with sub-millisecond time resolution SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE neutron scattering; in situ rheology; block copolymers; time-resolved studies; surface kinetics; large amplitude oscillatory shear (LAOS); time-of-flight reflectometry ID AMPLITUDE OSCILLATORY SHEAR; SOLID-LIQUID INTERFACE; TRIBLOCK COPOLYMERS; MICELLAR-SOLUTION; AQUEOUS-SOLUTIONS; BLOCK-COPOLYMER; COMPLEX FLUIDS; SPIN-ECHO; TRANSITION; RHEOLOGY AB Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. It is demonstrated that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode at the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. The opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear. C1 [Adlmann, F. A.; Dennison, A. J. C.; Wolff, M.] Uppsala Univ, Dept Phys & Astron, Div Mat Phys, S-75120 Uppsala, Sweden. [Gutfreund, P.; Dennison, A. J. C.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Ankner, J. F.; Browning, J. F.; Parizzi, A.; Vacaliuc, B.; Halbert, C. E.; Rich, J. P.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. RP Adlmann, FA (reprint author), Uppsala Univ, Dept Phys & Astron, Div Mat Phys, Box 516, S-75120 Uppsala, Sweden. EM franz.adlmann@physics.uu.se RI Browning, James/C-9841-2016; OI Browning, James/0000-0001-8379-259X; Ankner, John/0000-0002-6737-5718 FU Swedish Research Council [C0511501]; STINT [IG-2011-2067]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors acknowledge the help of Jean-Christophe Bilheux during the neutron scattering experiment and preparation, and the Swedish Research Council (project grant No. C0511501) and STINT (contract No. IG-2011-2067) for financial support. This research at the ORNL Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors express their gratitude to Anton Paar for technical support and to the Large Scale Structures group at ILL for the good ongoing partnership. NR 36 TC 1 Z9 1 U1 2 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2015 VL 48 BP 220 EP 226 DI 10.1107/S1600576714027848 PN 1 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CA8ZU UT WOS:000349210700028 ER EF